Science.gov

Sample records for lithium beryllium boron

  1. Cosmic Ray Lithium, Beryllium, and Boron Isotopes from ACE/CRIS

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Binns, W. R.; Cummings, A. C.; Christian, E. R.; George, J. S.; Hink, P. L.; Israel, M. H.; Klarmann, J.; Leske, R. A.; Lijowski, M.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.; Wiedenbeck, M. E.; Yanasak, N. E.

    2001-08-01

    The cosmic-ray isotopes of lithium, beryllium, and boron (LiBeB) are generally believed to originate from interactions within the interstellar medium, primarily through CNO spallation. Other sources are known to contribute to the abundance of 7 Li and 11 B, most notably the production of 7 Li from big bang nucleosynthesis. Thus, identifying the abundances of the galactic cosmic-ray LiBeB places important constraints on the interpretations of early epoch nucleosynthesis. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring isotopic composition from helium through zinc in the energy range ˜70-500 MeV/nucleon since 1997 with high statistical accuracy. We present measurements of the isotopic abundances of LiBeB from CRIS and discuss these observations in the context of previous cosmic-ray measurements and predictions from cosmic-ray transport models.

  2. Evolution of lithium-beryllium-boron and oxygen in the early Galaxy

    NASA Astrophysics Data System (ADS)

    Vangioni-Flam, Elisabeth; Cassé, Michel

    2001-07-01

    Oxygen is a much better evolutionary index than iron to describe the history of lithium-beryllium-boron (LiBeB) since it is the main producer of these light elements at least in the early Galaxy. The O-Fe relation is crucial to the determination of the exact physical process responsible for the LiBeB production. At low metallicity, if [O/Fe] vs. [Fe/H] is flat, then the production mode is independent of the interstellar metallicity, BeB is proportional to oxygen, i.e. is of primary nature. If not, the production mode is a function of the progressive enrichment in O of the interstellar medium, BeB varies rather as the square of O, i.e. is of secondary nature. In the first case, fast nuclei enriched into He, C and O injected by supernovae and accelerated in surrounding superbubbles would explain the primary trend. In the second case, the main spallative agent would be the standard galactic cosmic rays. Calculated nucleosynthetic yields of massive stars, estimates of the energy cost of production of beryllium nuclei, and above all recent observations reported in this meeting seem to favor the primary mechanism, at least in the early Galaxy.

  3. A study of galactic cosmic ray propagation models based on the isotopic composition of the elements lithium, beryllium and boron

    NASA Technical Reports Server (NTRS)

    Hinshaw, G. F.; Wiedenbeck, M. E.; Greiner, D. E.

    1982-01-01

    A good test for a cosmic ray propagation model is its ability to predict the abundances of the light secondary nuclei lithium, beryllium, and boron. By using measured isotopic abundances of lithium, beryllium, and boron, Garcia-Munoz et al. (1979) were able to place limits on three important parameters of a leaky box propagation model. The considered parameters include the source spectral parameter, the leakage mean free path, and the characteristic adiabatic energy loss due to solar modulation. The present investigation is concerned with a critical evaluation of the information which can be deduced about these parameters from isotopic composition alone, taking into account the effects of uncertainties in the spallation cross section data.

  4. Measurements of the isotopes of lithium, beryllium, and boron from ACE/CRIS

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cummings, A. C.; Christian, E. R.; George, J. S.; Hink, P. L.; Israel, M. H.; Leske, R. A.; Lijowski, M.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.; Wiedenbeck, M. E.

    2001-11-01

    The isotopes of lithium, beryllium, and boron (LiBeB) are known in nature to be produced primarily by CNO spallation and α-α fusion from interactions between cosmic rays and interstellar nuclei. While the dominant source of LiBeB isotopes in the present epoch is cosmic-ray interactions, other sources are known to exist, including the production of 7Li from big bang nucleosynthesis. Precise observations of galactic cosmic-ray LiBeB in addition to accurate modeling of cosmic-ray transport can help to constrain the relative importance among the different production mechanisms. The Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer (ACE) has measured nuclei with 2<~Z<~30 in the energy range ~30-500 MeV/nucleon since 1997 with good statistical accuracy. We present measurements of the isotopic abundances of LiBeB and discuss these observations in the context of previous cosmic-ray measurements and spectroscopic observations. .

  5. Lithium-Beryllium-Boron Isotopic Compositions in Meteoritic Hibonite: Implications for Origin of 10Be and Early Solar System Irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Chang; Nittler, Larry R.; Alexander, Conel M. O'D.; Lee, Typhoon

    2010-08-01

    NanoSIMS isotopic measurements of Li, Be, and B in individual hibonite grains extracted from the Murchison meteorite revealed that 10B excesses correlate with the 9Be/11B ratios in 26Al-free PLAty hibonite Crystals. From these data, an initial 10Be/9Be = (5.5 ± 1.6) × 10-4 (2σ) and 10B/11B = 0.2508 ± 0.0015 can be inferred. On the other hand, chondritic boron isotopic compositions were found in 26Al-bearing Spinel-HIBonite spherules, most likely due to contamination with normal boron. No 7Li excesses due to 7Be decay were observed. When combined with previously reported data, the new data yield the best defined 10Be/9Be = (5.3 ± 1.0) × 10-4 (2σ) and 10B/11B = 0.2513 ± 0.0012 for PLACs. A comparison of this value and the best constrained 10Be/9Be = (8.8 ± 0.6) × 10-4 in CV Ca-Al-rich inclusions supports a heterogeneous distribution of 10Be and its protosolar irradiation origin. We consider two possible irradiation scenarios that could potentially lead to the observed Li-Be-B isotopic compositions in PLACs. Although in situ irradiation of solids with hibonite chemistry seems to provide the simplest explanation, more high quality data will be needed for quantitatively constraining the irradiation history.

  6. Study of beryllium and beryllium-lithium complexes in single-crystal silicon.

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Robertson, J. B.; Gilmer, T. E., Jr.

    1972-01-01

    When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-meV level is due to a more complex beryllium configuration than the 191-meV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two new acceptor levels at 106 and 81 meV. Quenching and annealing studies indicate that these new levels are due to lithium forming a complex with the defects responsible for the 191- and 145-meV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-meV beryllium-lithium level is split into two levels, presumably by internal strains. Tentative models are proposed to explain these results.

  7. Double Photoionization of excited Lithium and Beryllium

    SciTech Connect

    Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.

    2010-05-20

    We present total, energy-sharing and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intra-shell electron correlation.

  8. Double photoionization of excited lithium and beryllium

    NASA Astrophysics Data System (ADS)

    Yip, F. L.; McCurdy, C. W.; Rescigno, T. N.

    2010-06-01

    We present total, energy-sharing, and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital with numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intrashell electron correlation.

  9. A study of beryllium and beryllium-lithium complexes in single crystal silicon

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Robertson, J. B.; Gilmer, T. E., Jr.

    1972-01-01

    When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 MeV and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-MeV level is due to a more complex beryllium configuration than the 191-MeV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two acceptor levels at 106 MeV and 81 MeV. Quenching and annealing studies indicate that these levels are due to lithium forming a complex with the defects responsible for the 191-MeV and 145-MeV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-MeV beryllium level is split into two levels, presumably by internal strains. Tentative models are proposed.

  10. Beryllium and Boron abundances in population II stars

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The scientific focus of this program was to undertake UV spectroscopic abundance analyses of extremely metal poor stars with attention to determining abundances of light elements such as beryllium and boron. The abundances are likely to reflect primordial abundances within the early galaxy and help to constrain models for early galactic nucleosynthesis. The general metal abundances of these stars are also important for understanding stellar evolution.

  11. LITHIUM-BERYLLIUM-BORON ISOTOPIC COMPOSITIONS IN METEORITIC HIBONITE: IMPLICATIONS FOR ORIGIN OF {sup 10}Be AND EARLY SOLAR SYSTEM IRRADIATION

    SciTech Connect

    Liu, Ming-Chang; Nittler, Larry R.; Alexander, Conel M. O'D.; Lee, Typhoon

    2010-08-10

    NanoSIMS isotopic measurements of Li, Be, and B in individual hibonite grains extracted from the Murchison meteorite revealed that {sup 10}B excesses correlate with the {sup 9}Be/{sup 11}B ratios in {sup 26}Al-free PLAty hibonite Crystals. From these data, an initial {sup 10}Be/{sup 9}Be = (5.5 {+-} 1.6) x 10{sup -4} (2{sigma}) and {sup 10}B/{sup 11}B = 0.2508 {+-} 0.0015 can be inferred. On the other hand, chondritic boron isotopic compositions were found in {sup 26}Al-bearing Spinel-HIBonite spherules, most likely due to contamination with normal boron. No {sup 7}Li excesses due to {sup 7}Be decay were observed. When combined with previously reported data, the new data yield the best defined {sup 10}Be/{sup 9}Be = (5.3 {+-} 1.0) x 10{sup -4} (2{sigma}) and {sup 10}B/{sup 11}B = 0.2513 {+-} 0.0012 for PLACs. A comparison of this value and the best constrained {sup 10}Be/{sup 9}Be = (8.8 {+-} 0.6) x 10{sup -4} in CV Ca-Al-rich inclusions supports a heterogeneous distribution of {sup 10}Be and its protosolar irradiation origin. We consider two possible irradiation scenarios that could potentially lead to the observed Li-Be-B isotopic compositions in PLACs. Although in situ irradiation of solids with hibonite chemistry seems to provide the simplest explanation, more high quality data will be needed for quantitatively constraining the irradiation history.

  12. Boron, beryllium, and lithium, partitioning in olivine

    SciTech Connect

    Neroda, Elizabeth

    1996-05-01

    A one atmosphere experimental study was performed to determine the mineral/melt partition coefficients for B, Be, and Li in forsteritic olivine. Two compositions were chosen along the 1350{degrees}C isotherm, 1b (Fo{sub 17.3} Ab{sub 82.7} An{sub 0} by weight) and 8c (Fo{sub 30} Ab{sub 23.3} An{sub 47.8}, by weight) were then combined in equal amounts to form a composition was doped with 25ppm Li, B, Yb, Nb, Zr, Sr, and Hf, 50ppm Sm, and 100ppm Be, Nd, Ce, and Rb. Electron and ion microprobe analyses showed that the olivine crystals and surrounding glasses were homogeneous with respect to major and trace elements. Partition coefficients calculated from these analyses are as follows: 1b: D{sub B} = 4.41 ({+-} 2.3) E-03, D{sub Be} = 2.86 ({+-} 0.45) E-03, D{sub Li} = 1.54 ({+-} 0.21) E-01, 50/50: D{sub B} = 2.86 ({+-} 0.5) E-03, D{sub Be} = 2.07 ({+-} 0.09) E-03, D{sub Li} = 1.51 ({+-} 0.18) E-01, 8c: D{sub B} = 6.05 ({+-} 1.5) E-03, D{sub Be} = 1.81 ({+-} 0.03) E-03, D{sub Li} = 1.31 ({+-} 0.09) E-01. The results of this study will combined with similar data for other minerals as part of a larger study to understand the partitioning behavior of B, Be, and Li in melting of the upper mantle at subduction zones.

  13. Excited S-symmetry states of positronic lithium and beryllium.

    PubMed

    Strasburger, Krzysztof

    2016-04-14

    The possibility of the existence of excited S-symmetry states of positronic lithium and beryllium, resulting from the positron attachment to high-spin P parent atomic states, is examined and confirmed with variational calculations in the basis of explicitly correlated Gaussian functions. The unexpectedly different order of the energies of the S and P states is explained by the formation of the positronium cluster structure and associated disappearance of the destabilizing centrifugal force. The annihilation properties of newly discovered states are discussed in the context of prospective experimental detection. PMID:27083730

  14. Excited S-symmetry states of positronic lithium and beryllium

    NASA Astrophysics Data System (ADS)

    Strasburger, Krzysztof

    2016-04-01

    The possibility of the existence of excited S-symmetry states of positronic lithium and beryllium, resulting from the positron attachment to high-spin P parent atomic states, is examined and confirmed with variational calculations in the basis of explicitly correlated Gaussian functions. The unexpectedly different order of the energies of the S and P states is explained by the formation of the positronium cluster structure and associated disappearance of the destabilizing centrifugal force. The annihilation properties of newly discovered states are discussed in the context of prospective experimental detection.

  15. Comment on ''Crystal structure of lithium beryllium hydride''

    SciTech Connect

    Selvam, P.; Yvon, K.

    1989-06-01

    The ordered structure model recently proposed by Overhauser (Phys. Rev. B 35, 411 (1987)) for lithium beryllium trihydride, LiBeH/sub 3/, gives results in disagreement with the x-ray powder-diffraction data reported by Bell and Coates (J. Chem. Soc. (A) 1968, 628 (1968)). In this note, we present a disordered structure model which closely fits the experimental data, but is unlikely on structural chemistry grounds. New diffraction data on LiBeH/sub 3/ are required to ascertain its structure and existence.

  16. Comparison of beryllium oxide and pyrolytic graphite crucibles for boron doped silicon epitaxy

    SciTech Connect

    Ali, Dyan; Richardson, Christopher J. K.

    2012-11-15

    This article reports on the comparison of beryllium oxide and pyrolytic graphite as crucible liners in a high-temperature effusion cell used for boron doping in silicon grown by molecular beam epitaxy. Secondary ion mass spectroscopy analysis indicates decomposition of the beryllium oxide liner, leading to significant incorporation of beryllium and oxygen in the grown films. The resulting films are of poor crystal quality with rough surfaces and broad x-ray diffraction peaks. Alternatively, the use of pyrolytic graphite crucible liners results in higher quality films.

  17. Test fixture design for boron-aluminum and beryllium test panels

    NASA Technical Reports Server (NTRS)

    Breaux, C. G.

    1973-01-01

    A detailed description of the test fixture design and the backup analysis of the fixture assembly and its components are presented. The test fixture is required for the separate testing of two boron-aluminum and two beryllium compression panels. This report is presented in conjunction with a complete set of design drawings on the test fixture system.

  18. Tritium release from beryllium discs and lithium ceramics irradiated in the SIBELIUS experiment

    SciTech Connect

    Johnson, C.E.; Kopasz, J.P.; Baldwin, D.L.

    1993-11-01

    The SIBELIUS experiment was designed to obtain information on the compatibility between beryllium and ceramics, as well as beryllium and steel, in a neutron environment. This experiment comprised irradiation of eight capsules, seven of which were independently purged with a He/0.1% H{sub 2} gas mixture. Four capsules were used to examine beryllium/ceramic (Li{sub 2}O, LiAlO{sub 2}, Li{sub 4}SiO{sub 4}, and Li{sub 2}ZrO{sub 3}) and beryllium/steel (Types 316L and 1.4914) compacts. Isothermal anneal experiments have been run on representative beryllium and ceramic disks from each of the four capsules at 550{degrees}C to 850{degrees}C in steps of 100{degrees}C. The results indicate that tritium release from the beryllium did not exhibit burst release behavior, as previously reported, but rather a progressive release with increasing temperature. Generally, {approximately}99% of the tritium was released by 850{degrees}C. Tritium release from the ceramic discs was quite similar to the behavior shown in other dynamic tritium release experiments on lithium ceramics. The tritium content in beryllium discs adjacent to a steel sample was found to be significantly lower than that found in a beryllium disc adjacent to a ceramic sample. Recoil of tritium from the ceramic into the beryllium appears to be the source of tritium entering the beryllium, probably residing in the beryllium oxide layer.

  19. Boron nitride protective coating of beryllium window surfaces

    SciTech Connect

    Gmuer, N.F.

    1991-12-01

    The use of beryllium windows on white synchrotron radiation beamlines is constrained by the fact that the downstream surfaces of these windows should not be exposed to ambient atmosphere. They should, rather, be protected by a tail-piece under vacuum or containing helium atmosphere. This tailpiece is typically capped by Kapton (3M Corporation, St. Paul, MN) or aluminum foil. The reason for such an arrangement is due to the health risk associated with contaminants (BeO) which from on the exposed beryllium window surfaces and due to possible loss of integrity of the windows. Such a tail-piece may, however, add unwanted complications to the beamline in the form of vacuum pumps or helium supplies and their related monitoring systems. The Kapton windows may burn through in the case of high intensity beams and lower energy radiation may be absorbed in the case of aluminum foil windows. A more ideal situation would be to provide a coating for the exposed beryllium window surface, sealing it off from the atmosphere, thus preventing contamination and/or degradation of the window, and eliminating the need for helium or vacuum equipment.

  20. Stark shifting of analogous spectral lines along isoelectronic sequences of beryllium and boron

    NASA Astrophysics Data System (ADS)

    Blagojević, Branimir; Popović, Milan V.; Konjević, Nikola

    2001-04-01

    We report the comparison of experimental and theoretical (semiclassical and semiempirical) Stark shifts of plasma broadened lines belonging to 3s-3p transitions along beryllium and 3s-3p and 3p-3d transitions along boron isoelectronic sequence. The light source was a low pressure pulsed arc. The plasma electron densities were determined from the width of the Hell Pα line while the electron temperatures were measured from the relative intensities of spectral lines.

  1. Development of structural test articles from magnesium-lithium and beryllium

    NASA Technical Reports Server (NTRS)

    Alario, R.

    1969-01-01

    Study on the fabrication and testing of a magnesium-lithium box beam shows the formability and machinability characteristics of that alloy to be excellent. Results of forming tests for shrink and stretch flanges show values for both flange heights that may be used in future beryllium design.

  2. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Nazé, C.; Verdebout, S.; Godefroid, M.

    2014-09-15

    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.

  3. The shocking development of lithium (and boron) in supernovae

    NASA Technical Reports Server (NTRS)

    Dearborn, David S. P.; Schramm, David N.; Steigman, Gary; Truran, James

    1989-01-01

    It is shown that significant amounts of Li-7 and B-11 are produced in Type 2 supernovae. The synthesis of these rare elements occurs as the supernova shock traverses the base of the hydrogen envelope burning He-3 to masses 7 and 11 via alpha capture. The yields in this process are sufficient to account for the difference in lithium abundance observed between Pop 2 and Pop 1 stars. Since lithium (and boron) would, in this manner, be created in the same stars that produce the bulk of the heavy elements, the lithium abundance even in old Pop 1 stars would be high (as observed). The B-11 production may remedy the long-standing problem of the traditional spallation scenario to account for the observed isotopic ratio of boron. Observational consequences of this mechanism are discussed, including the evolution of lithium and boron isotope ratios in the Galaxy and the possible use of the boron yields to constrain the number of blue progenitor Type 2 supernovae.

  4. Beryllium bis(diazaborolyl): old neighbors finally shake hands.

    PubMed

    Arnold, T; Braunschweig, H; Ewing, W C; Kramer, T; Mies, J; Schuster, J K

    2015-01-14

    The synthesis of a linear beryllium bis(diazaborolyl) compound featuring the first non-cluster bond between boron and beryllium has been achieved through the reaction of Yamashita's lithium diazaborolide and BeCl2. In accord with the established chemistry of beryllium, the bonding is polar covalent in character, as determined by structural and spectroscopic analysis, as well as reactivity studies. PMID:25417558

  5. p-type conduction in beryllium-implanted hexagonal boron nitride films

    NASA Astrophysics Data System (ADS)

    He, B.; Zhang, W. J.; Yao, Z. Q.; Chong, Y. M.; Yang, Y.; Ye, Q.; Pan, X. J.; Zapien, J. A.; Bello, I.; Lee, S. T.; Gerhards, I.; Zutz, H.; Hofsäss, H.

    2009-12-01

    p-type conduction in hexagonal boron nitride (hBN) films was achieved by beryllium implantation and subsequent rapid thermal annealing treatment. The dependence of phase composition and electrical properties of hBN films on the implantation fluence and annealing was studied. A maximum resistivity reduction by six orders of magnitude was demonstrated. Hall measurements revealed a corresponding hole concentration of 3×1019 cm-3 and mobility of 27 cm2/V s. The activation energy of Be ions was estimated to be 0.21 eV. It is suggested that hBN is a promising wide bandgap semiconductor for applications in high-temperature electronic devices and transparent conductive coatings.

  6. The Evolution of Galactic Beryllium and Boron Traced by Magnesium and Calcium

    NASA Astrophysics Data System (ADS)

    King, Jeremy R.

    2002-01-01

    Beryllium and boron abundances are consistently derived on the parameter scale of two recent uniform stellar Mg and Ca abundance studies, one utilizing non-LTE parameters and abundances, the other assuming LTE. The results are used to explore the BeB-Mg and BeB-Ca relations at low metallicity as urged by B. D. Fields and coworkers. The slopes of all logarithmic BeB-MgCa relations, regardless of light element (Be or B), metallicity tracer (Mg or Ca), or parameter scale (non-LTE or LTE), are found to lie in the range 1.1-1.3. These results using the α-elements Mg and Ca confirm the need for a metal-poor ``primary'' BeB production mechanism (perhaps in addition to standard Galactic cosmic rays) previously inferred from BeB-Fe and questioned BeB-O relations.

  7. Lithium Intercalation of Single-Layer Graphene / Boron Nitride Heterostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Shu Yang Frank; Elbaz, Giselle A.; Yu, Cyndia; Bediako, D. Kwabena; Guo, Yinsheng; Watanabe, Kenji; Taniguchi, Takashi; Brus, Louis; Roy, Xavier; Kim, Philip

    Graphene intercalate compounds form a new generation of graphene derivative systems where novel physical phenomena such as superconductivity and magnetism may emerge. Experimental realization of intercalated few-layer graphenes have been limited by harsh intercalation processes, often incompatible with mesoscopic device fabrication techniques. Using electrochemical methods, we demonstrate lithium intercalation of single and few-layer graphene encapsulated in hexagonal boron nitride (BN), where the BN simultaneously serves as a scaffold for the lithium atoms as well as protects the graphene from parasitic chemical reactions in the electrolyte. In addition, we developed techniques to monitor intercalation electronically. By performing in-situ Raman spectroscopy, we confirmed that the intercalated single layer graphene/BN heterostructure reached a Fermi energy in excess of 1 . 16 eV , and corresponding Hall measurements showed a density in excess of 7 E 13 cm-2 .

  8. Distrontium lithium beryllium triborate, Sr2LiBeB3O8

    PubMed Central

    Yu, Na; Ye, Ning

    2012-01-01

    Single crystals of distrontium lithium beryllium triborate, Sr2LiBeB3O8, were obtained by spontaneous nucleation from a high-temperature melt. In the Sr2Li[BeB3O8] structure, [BeB2O7]6− rings, made up from one BeO4 tetra­hedron and two BO3 triangles, are connected to each other by [BO3] triangles to form the smallest repeat unit {[BeB3O8]8−} and then form chains along the b axis. The Sr2+ cations are seven- or eight-­coordinated and Li+ cations are tetra-­coordinated and lie between the chains. PMID:22590052

  9. An intensified π-hole in beryllium-doped boron nitride meshes: its determinant role in CO2 conversion into hydrocarbon fuels.

    PubMed

    Azofra, Luis Miguel; MacFarlane, Douglas R; Sun, Chenghua

    2016-02-28

    DFT investigations on beryllium-doped boron nitride meshes or sheets (BNs) predict the existence of a very reactive kind of novel material capable of spontaneously reducing the first hydrogenation step in the CO2 conversion mechanism. This impressive behaviour appears as a result of the very deep π-hole generated by the beryllium moieties, and also determines its selectivity towards the production of CH4. PMID:26841973

  10. LITHIUM-7, BORON-10, BORON-11, and OXYGEN-17 Nuclear Magnetic Resonance Studies of Lithium Borate Glasses and Related Compounds.

    NASA Astrophysics Data System (ADS)

    Feller, Steven Allen

    1980-06-01

    Nuclear Magnetic Resonance (NMR) studies of lithium borate glasses employing the two stable isotopes of boron, B('10) and B('11), were used in the formulation of a consistent structural model throughout the glass-forming region. The ideas of Krogh-Moe were used in which the glasses are viewed as mixtures of units found in corresponding crystalline compounds. For low-alkali oxide content glasses the results are in good agreement with those obtained by Jellison and Bray in sodium borate glasses. These glasses are viewed as being mixtures of boroxol, tetraborate and diborate units. Intermediate-alkali oxide content glasses satisfy a model proposed in this thesis in which diborate and tetraborate units are destroyed to form loose N('4) and metaborate units. For high-alkali oxide content glasses the results are in good agreement with a model proposed by Yun and Yun and Bray in which loose N('4), metaborate, pyroborate and orthoborate units exist. Li(,2)O, enriched in O('17), was synthesized in such a way that H(,2)O enriched to 54% O('17) was efficiently transferred into Li(,2)O. It is hypothesized that the synthesis of Li(,2)O enriched in O('17) as well as the synthesis of the other alkali oxides (e.g. Na(,2)O, K(,2)O, Rb(,2)O and Cs(,2)O) will greatly enlarge the range of O('17) NMR studies of glasses and related compounds. Li('7) and O('17) NMR studies of Li(,2)O revealed structureless derivative spectra of linewidths 9.9 gauss and 5.8 gauss, respectively. These experimental results were compared to a second-moment calculation of the linewidths using the anti-fluorite crystal structure for Li(,2)O. O('17) NMR studies of two lithium borate compounds, lithium metaborate (Li(,2)O(.)B(,2)O(,3)) and lithium orthoborate (3Li(,2)O(.)B(,2)O(,3)) were used to identify the quadrupole parameters of bridging and non-bridging oxygen atoms. These results, in conjunction with B('11) NMR results from these compounds, were used to determine charge densities associated with the boron and oxygen atoms by means of the simplifying approximations of Townes and Dailey.

  11. Beryllium is an inhibitor of cellular GSK-3β that is 1,000-fold more potent than lithium.

    PubMed

    Mudireddy, Swapna R; Abdul, Ataur Rahman Mohammed; Gorjala, Priyatham; Gary, Ronald K

    2014-12-01

    Glycogen synthase kinase 3β (GSK-3β) is a key regulator in signaling networks that control cell proliferation, metabolism, development, and other processes. Lithium chloride is a GSK-3 family inhibitor that has been a mainstay of in vitro and in vivo studies for many years. Beryllium salt has the potential to act as a lithium-like inhibitor of GSK-3, but it is not known whether this agent is effective under physiologically relevant conditions. Here we show that BeSO4 inhibits endogenous GSK-3β in cultured human cells. Exposure to 10 µM Be(2+) produced a decrease in GSK-3β kinase activity that was comparable to that produced by 10 mM Li(+), indicating that beryllium is about 1,000-fold more potent than the classical inhibitor when treating intact cells. There was a statistically significant dose-dependent reduction in specific activity of GSK-3β immunoprecipitated from cells that had been treated with either agent. Lithium inhibited GSK-3β kinase activity directly, and it also caused GSK-3β in cells to become phosphorylated at serine-9 (Ser-9), a post-translational modification that occurs as part of a well-known positive feedback loop that suppresses the kinase activity. Beryllium also inhibited the kinase directly, but unlike lithium it had little effect on Ser-9 phosphorylation in the cell types tested, suggesting that alternative modes of feedback inhibition may be elicited by this agent. These results indicate that beryllium, like lithium, can induce perturbations in the GSK-3β signaling network of treated cells. PMID:25104312

  12. Potential mining of lithium, beryllium and strontium from oilfield wastewater after enrichment in constructed wetlands and ponds.

    PubMed

    Schaller, Jörg; Headley, Tom; Prigent, Stephane; Breuer, Roman

    2014-09-15

    Shortages of resources (chemical elements) used by growing industrial activities require new techniques for their acquisition. A suitable technique could be the use of wetlands for the enrichment of elements from produced water of the oil industry. Oil industries produce very high amounts of water in the course of oil mining. These waters may contain high amounts of rare elements. To our best knowledge nothing is known about the economic potential regarding rare element mining from produced water. Therefore, we estimated the amount of harvestable rare elements remaining in the effluent of a constructed wetland-pond system which is being used to treat and evaporate vast quantities of produced waters. The examined wetland system is located in the desert of the south-eastern Arabian Peninsula. This system manages 95,000 m(3) per day within 350 ha of surface flow wetlands and 350 ha of evaporation ponds and is designed to be used for at least 20 years. We found a strong enrichment of some chemical elements in the water pathway of the system (e.g. lithium up to 896 μg L(-1) and beryllium up to 139 μg L(-1)). For this wetland, lithium and beryllium are the elements with the highest economic potential resulting from a high price and load. It is calculated that after 20 years retention period 131 t of lithium and 57 t of beryllium could be harvested. This technique may also be useful for acquisition of rare earth elements. Other elements (e.g. strontium) with a high calculated load of 4500 tons in 20 years are not efficiently harvestable due to a relatively low market value. In conclusion, wetland treated waters from the oil industry offer a promising new acquisition technique for elements like lithium and beryllium. PMID:25010942

  13. Development of a high-power water cooled beryllium target for use in accelerator-based boron neutron capture therapy.

    PubMed

    Blackburn, B W; Yanch, J C; Klinkowstein, R E

    1998-10-01

    In order for ABNCT (accelerator-based boron neutron capture therapy) to be successful, 10-16 kW or more must be dissipated from a target. Beryllium is well suited as a high-power target material. Beryllium has a thermal conductivity of 200 W/mK at 300 K which is comparable to aluminum, and it has one of the highest strength to weight ratios of any metal even at high temperatures (100 MPa at 600 degrees C). Submerged jet impingement cooling has been investigated as an effective means to remove averaged power densities on the order of 2 x 10(7) W/m2 with local power densities as high as 6 x 10(7) W/m2. Water velocities required to remove these power levels are in excess of 24 m/s with volumetric flow rates of nearly 100 GPM. Tests on a prototype target revealed that the heat transfer coefficient scaled as Re0.6. With jet-Reynolds numbers as high as 5.5 x 10(5) heat transfer coefficients of 2.6 x 10(5) W/m2K were achieved. With this type of cooling configuration 30 kW of power could be effectively removed from a beryllium target placed on the end of an accelerator. A beryllium target utilizing a proton beam of 3.7 MeV and cooled by submerged jet impingement could be used to deliver a dose of 13 RBE cGy/min mA to a tumor at a depth of 4 cm. With a beam power of 30 kW, 1500 cGy could be delivered in 14.2 min. PMID:9800705

  14. METHOD OF BRAZING BERYLLIUM

    DOEpatents

    Hanks, G.S.; Keil, R.W.

    1963-05-21

    A process is described for brazing beryllium metal parts by coating the beryllium with silver (65- 75 wt%)-aluminum alloy using a lithium fluoride (50 wt%)-lithium chloride flux, and heating the coated joint to a temperature of about 700 un. Concent 85% C for about 10 minutes. (AEC)

  15. Study on High Speed Lithium Jet For Neutron Source of Boron Neutron Capture Therapy (BNCT)

    NASA Astrophysics Data System (ADS)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mák, Michael; Štefanica, Jirí; Dostál, Václav; Zhao, Wei

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively.

  16. Method for hot pressing beryllium oxide articles

    DOEpatents

    Ballard, Ambrose H.; Godfrey, Jr., Thomas G.; Mowery, Erb H.

    1988-01-01

    The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

  17. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. PMID:21459008

  18. Cosmic ray models for early galactic lithium, beryllium, and boron production

    NASA Technical Reports Server (NTRS)

    Fields, Brian D.; Olive, Keith A.; Schramm, David N.

    1994-01-01

    To better understand the early galactic production of Li, Be, and B by cosmic ray spallation and fusion reactions, the dependence of these production rates on cosmic ray models and model parameters is examined. The sensitivity of elemental and isotropic production to the cosmic ray pathlength magnitude and energy dependence, source spectrum spallation kinematics, and cross section uncertainties is studied. Changes in these model features, particularly those features related to confinement, are shown to alter the Be- and B-versus-Fe slopes from a naive quadratic relation. The implications of our results for the diffuse gamma-ray background are examined, and the role of chemical evolution and its relation to our results is noted. It is also noted that the unmeasured high energy behavior of alpha + alpha fusion can lead to effects as large as a factor of 2 in the resultant yields. Future data should enable Population II Li, Be, and B abundances to constrain cosmic ray models for the early Galaxy.

  19. Cosmic-ray models for early Galactic Lithium, Beryllium, and Boron production

    NASA Technical Reports Server (NTRS)

    Fields, Brian D.; Olive, Keith A.; Schramm, David N.

    1994-01-01

    To understand better the early Galactic production of Li, Be, and B by comsmic-ray spallation and fusion reactions, the dependence of these production rates on cosmic-ray models and model parameters is examined. The sensitivity of elemental and isotopic production to the cosmic-ray path length magnitude and energy dependence, source spectrum, spallation kinematics, and cross section uncertainties is studied. Changes in these model features, particularly those features related to confinement, are shown to alter the Be- and B- versus-Fe slopes from a naive quadratic relation. The implications of our results for the diffuse gamma-ray background are examined, and the role of chemical evolution and its relation to our results is noted. It is also noted that the unmeasured high-energy behavior of alpha + alpha fusion can lead to effects as large as a factor of 2 in the resultant yields. Future data should enable Population II Li, Be, and B abundances to constrain cosmic-ray models for the early Galaxy.

  20. Production of Lithium, Beryllium, and Boron from Baryon inhomogeneous primordial nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Thomas, David; Schramm, David N.; Olive, Keith A.; Mathews, Grant J.; Meyer, Bradley S.; Fields, Brian D.

    1994-01-01

    We investigate the possibility that inhomogeneous nucleosynthesis may eventually be used to explain the abundances of Li-6, Be-9, and B in Population II stars. The present work differs from previous studies in that we have used a more extensive reaction network. It is demonstrated that in the simplest scenario the abundances of the light elements with A less than or = 7 constrain the separation of inhomogeneities to sufficently small scales that the model is indistinguishable from homogeneous nucleosynthesis and that the abundnace of Li-6, Be-9, and B are then below observations by several orders of magnitude. This conclusion does not depend on the Li-7 constraint. We also examine alternative scenarios which involve a post-nucleosynthesis reprocessing of the light elements to reproduce the observed abundances of Li and B, while allowing for a somewhat higher baryon density (still well below the cosmological critical density). Future B/H measurements may be able to exclude even this exotic scenario and further restrict primirdial nucleosynthesis to approach the homogeneous model conclusions.

  1. The isotopic composition of galactic cosmic ray lithium, beryllium and boron

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Mason, G. M.; Simpson, J. A.

    1978-01-01

    The isotopic composition of galactic-cosmic-ray Li, Be, and B has been measured near 100 MeV/nucleon by using the University of Chicago IMP 7 and IMP 8 cosmic-ray telescopes during 1973-1975. The measured abundances allow detailed checks of models of interstellar propagation and solar modulation to be made and conclusions to be drawn concerning the spectral forms at the source and the minimum solar modulation level. For example, comparing these results with local interstellar spectra calculated by using a 'leaky box' model, it is found that if solar modulation is ignored, there is no unique leakage mean free path consistent with all the observations. However, by taking account of a sizable level of residual solar modulation, excellent agreement is obtained between the calculated and measured abundances. Thus, these isotopic abundances confirm the old hypothesis that cosmic-ray Li, Be, and B are produced as secondaries in interstellar space.

  2. The isotopic composition of galactic cosmic-ray lithium, beryllium, and boron

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Mason, G. M.; Simpson, J. A.

    1975-01-01

    The isotopes of cosmic-ray Li, Be, and B near 100 MeV per nucleon have been measured with cosmic-ray telescopes on board the IMP-7 and IMP-8 satellites during 1973 and 1974. The measured isotopic abundances provide a stringent test for models of interstellar propagation and solar modulation. It is found that the isotopic abundances can be explained using a steady-state interstellar propagation model with a 5-g/sq cm leakage mean free path. These results, taken along with Be-10 abundance measurements, indicate a longer lifetime for cosmic rays than that predicted by the usual assumption of an average interstellar density of 1 to 3 atoms per cu cm.

  3. Boron and Lithium Isotope Variations in Chondrules: The Signature of Presolar Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Chaussidon, M.; Robert, F.

    1996-03-01

    We report here the preliminary results of tests concerning two major implications of the boron isotope variations that were recently found in meteoritic chondrules (Chaussidon and Robert 1995, Nature 374, 337-339). (1) Freshly nucleosynthetized boron with variable 11B/10B ratios must have been preserved as solid grains in the solar nebula and implanted or embedded in the newly formed chondrules. Therefore, chondrules cooling rates do not allow a complete isotopic homogenisation which can be tested experimentally. (2) Another element, lithium, is also formed by the spallogenic reactions occurring in the presolar cloud with a spallogenic isotopic ratio (7Li/6Li) between 2 and 5 according to different models, which is lower than the bulk solar system ratio of ~12.5. Therefore, a negative correlation between the isotopic compositions of Li and B should be present in chondrules.

  4. Effect of Boron-Doping on the Graphene Aerogel Used as Cathode for the Lithium-Sulfur Battery.

    PubMed

    Xie, Yang; Meng, Zhen; Cai, Tingwei; Han, Wei-Qiang

    2015-11-18

    A porous interconnected 3D boron-doped graphene aerogel (BGA) was prepared via a one-pot hydrothermal treatment. The BGA material was first loaded with sulfur to serve as cathode in lithium-sulfur batteries. Boron was positively polarized on the graphene framework, allowing for chemical adsorption of negative polysufide species. Compared with nitrogen-doped and undoped graphene aerogel, the BGA-S cathode could deliver a higher capacity of 994 mA h g(-1) at 0.2 C after 100 cycles, as well as an outstanding rate capability, which indicated the BGA was an ideal cathode material for lithium-sulfur batteries. PMID:26544917

  5. Acidity enhancement of unsaturated bases of group 15 by association with borane and beryllium dihydride. Unexpected boron and beryllium Brønsted acids.

    PubMed

    Martín-Sómer, Ana; Mó, Otilia; Yáñez, Manuel; Guillemin, Jean-Claude

    2015-01-21

    The intrinsic acidity of CH2[double bond, length as m-dash]CHXH2, HC[triple bond, length as m-dash]CXH2 (X = N, P, As, Sb) derivatives and of their complexes with BeH2 and BH3 has been investigated by means of high-level density functional theory and molecular orbital ab initio calculations, using as a reference the ethyl saturated analogues. The acidity of the free systems steadily increases down the group for the three series of derivatives, ethyl, vinyl and ethynyl. The association with both beryllium dihydride and borane leads to a very significant acidity enhancement, being larger for BeH2 than for BH3 complexes. This acidity enhancement, for the unsaturated compounds, is accompanied by a change in the acidity trends down the group, which do not steadily decrease but present a minimum value for both the vinyl- and the ethynyl-phosphine. When the molecule acting as the Lewis acid is beryllium dihydride, the π-type complexes in which the BeH2 molecules interact with the double or triple bond are found, in some cases, to be more stable, in terms of free energies, than the conventional complexes in which the attachment takes place at the heteroatom, X. The most important finding, however, is that P, As, and Sb ethynyl complexes with BeH2 do not behave as P, As, or Sb Brønsted acids, but unexpectedly as Be acids. PMID:25415658

  6. Boron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  7. Beryllium Toxicity

    MedlinePlus

    ... Digg Facebook Google Bookmarks Yahoo MyWeb Beryllium Toxicity Patient Education Care Instruction Sheet Course : WB 1095 CE Original ... of Contents Introduction Printer-Friendly version of the Patient Education Sheet [PDF - 48 KB] What Is Beryllium? Beryllium ...

  8. Hyperfine structures and Landé g{sub J}-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Verdebout, S.; Nazé, C.; Rynkun, P.; Godefroid, M.

    2014-09-15

    Energy levels, hyperfine interaction constants, and Landé g{sub J}-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core–valence, and core–core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.

  9. Synthesis and studies of boron based anion receptors and their use in non-aqueous electrolytes for lithium batteries

    SciTech Connect

    Sun, X.; Yang, X.Q.; Lee, H.S.; McBreen, J.; Choi, L.S.

    1998-12-31

    A new family of anion receptors based on boron compounds has been synthesized. These compounds can be used as anion receptors in lithium battery electrolytes and can greatly increase solubility and ionic conductivities of various lithium salts, such as LiF, LiCl, CF{sub 3}COOLi and C{sub 2}F{sub 5}COOLi, in DME solutions. Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy studies show that Cl{sup {minus}} anions of LiCl are complexed with these compounds in DME solutions. The electrochemical stability of lithium salts and one of the boron compounds in deferent solvents was studied. For the first time, LiF has been successfully used as conducting salt in a novel electrolyte with this boron compound as an additive in DME. A rechargeable Li/LiMn{sub 2}O{sub 4} cell using this electrolyte was successfully cycled 51 times. However, the capacity fades with cycling due to decomposition of the solvent. The cycling performance of the battery was greatly improved by replacing DME with PC-EC-DMC as the solvent.

  10. Implications of Chloride, Boron, and Lithium in Hydrothermal Systems of Jamaica, WI

    NASA Astrophysics Data System (ADS)

    Wishart, D.

    2012-12-01

    Chloride (Cl) often termed a "relatively conservative element" served as a very useful tracer (pathfinder element) in fluids from hydrothermal systems by comparing its concentration to those of select ions in solution. The concentrations of major ions of three thermal spring water samples: Bath hot springs (BTHS and BTHN), Milk River (MKR), Windsor (WS) and a cold spring water sample-Salt River spring (SR) of Jamaica were plotted against the Cl concentration. Results of chemical analyses, graphical analyses, and hydrogeochemical modeling confirmed three water types: Na-Cl-SO4, Na-Cl, and Ca-Na-Cl. Whereas chloride concentrations at MKR, WS and SR strongly indicate the influence of sea water mixing, the concentrations at MKR and SR are spatially related to a major tectonic feature, the South Coast Fault Zone (SCFZ). A principal component analysis (PCA) performed for the water samples showed a direct correlation between the concentrations of chloride and other conservative elements: boron (B), lithium (Li), bromide (Br), strontium (Sr), arsenic (As), and cesium (Cs). Isotope results (δ18O, δ2H, 3H) of the water samples implied minimal shallow mixing with deep circulating thermal fluids at the Bath site and the predominance of mixing with deep-circulating brines at the WS, MKR, and SR sites. Ionic ratios (Cl/B, Br/Cl, Li/B, have provided further interesting results for these hydrothermal systems including (1) a power series relationship between Li/B and SO4/Cl ratios; (2) the variation of B/Li versus Cl/SO4 concentrations with relatively prolonged water-rock contact time for these waters occurring at depth; and (3) low enthalpy. A discriminant analysis (DA) aided in the delineation of three independent hydrothermal systems based on processes affecting the chemical compositions of the water samples. Calculated chloride convective heat fluxes range between compared to the boron flux range of 3.41 x 104 - 1.63 x 106 Calories/second.

  11. Content of lithium, beryllium, boron, and titanium, and the isotopic composition of lithium, boron, and magnesium in Luna 16 regolith sample

    NASA Technical Reports Server (NTRS)

    Eugster, O.

    1974-01-01

    The abundance of the following elements in the L 16-19 No. 118 regolith sample, zone V was determined by isotopic dilution using a mass spectrometer equipped with a scattering ion source: Li -- 9.8, Be -- 1.2, Be -- 2.6, and Ti -- 1.92 percent. For comparison, these same elements were measured in samples of surface material returned by Apollo 11, Apollo 12, and Apollo 14, and in the terrestrial reference standard diabase W-1. The content of Li, Be, and B in the Luna 16 sample is nearly the same as in the Apollo 11 surface material. The surface material returned by Apollo 12 and Apollo 14 contains two to four times more of these elements. However, the abundance ratios of Li, Be, and B are remarkably similar in the surface materials from the four different lunar regions. With respect to basaltic achondrites and especially with respect to chondrites, the lunar basalts are enriched in Li, Be, and B up to 100 times.

  12. Boron

    MedlinePlus

    ... form of boron, inside the vagina to treat yeast infections. People also apply boric acid to the ... acid, used inside the vagina, can successfully treat yeast infections (candidiasis), including infections that do not seem ...

  13. Beryllium disease.

    PubMed Central

    Jones Williams, W.

    1988-01-01

    The increasing use of beryllium in a variety of industries continues to be a hazard. New cases are still being reported to the UK Beryllium Case Registry, now numbering 60 in the period 1945-1988. The majority of cases follow inhalation which results in acute beryllium disease (chemical pneumonitis) or more commonly chronic beryllium disease--a granulomatous pneumonitis. Granulomatous skin nodules also occur following local implantation. The clinical and radiological features are briefly described with the emphasis on pathology and immunology. Laser microprobe mass spectrometry analysis of tissue sections is a major advance in diagnosis. Detection of beryllium distinguishes the granulomas of chronic beryllium disease from other diseases, in particular sarcoidosis. The role of beryllium lymphocyte transformation tests is discussed. Chronic beryllium disease is steroid dependent and local excision of skin lesions appears to be curative. There is no evidence that beryllium is carcinogenic. Images Figure 1 PMID:3074283

  14. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong

    2016-02-01

    The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.

  15. Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30'S

    NASA Astrophysics Data System (ADS)

    Steinmetz, R. L. López

    2016-04-01

    Internally drained basins of the Andean Plateau are lithium- and boron-bearing systems. The exploration of ionic facies and parental links in a playa lake located in the eastern Puna (23°-23°30'S) was assessed by hydrochemical determinations of residual brines, feed waters and solutions from weathered rocks. Residual brines have been characterized by the Cl- (SO4 =)/Na+ (K+) ratio. Residual brines from the playa lake contain up to 450 mg/l of boron and up to 125 mg/l of lithium, and the Las Burras River supplies the most concentrated boron (20 mg/l) and lithium (3.75 mg/l) inflows of the basin. The hydro-geochemical assessment allowed for the identification of three simultaneous sources of boron: (1) inflow originating from granitic areas of the Aguilar and Tusaquillas ranges; (2) weathering of the Ordovician basement; and (3) boron-rich water from the Las Burras River. Most of the lithium input of the basin is likely generated by present geothermal sources rather than by weathering and leaching of ignimbrites and plutonic rocks. However, XRD analyses of playa lake sediments revealed the presence of lithian micas of clastic origin, including taeniolite and eucriptite. This study is the first to document these rare Li-micas from the Puna basin. Thus, both residual brines and lithian micas contribute to the total Li content in the studied hydrologic system.

  16. The boron-to-beryllium ratio in halo stars - A signature of cosmic-ray nucleosynthesis in the early Galaxy

    NASA Technical Reports Server (NTRS)

    Walker, T. P.; Steigman, G.; Schramm, D. N.; Olive, K. A.; Fields, B.

    1993-01-01

    We discuss Galactic cosmic-ray (GCR) spallation production of Li, Be, and B in the early Galaxy with particular attention to the uncertainties in the predictions of this model. The observed correlation between the Be abundance and the metallicity in metal-poor Population II stars requires that Be was synthesized in the early Galaxy. We show that the observations and such Population II GCR synthesis of Be are quantitatively consistent with the big bang nucleosynthesis production of Li-7. We find that there is a nearly model independent lower bound to B/Be of about 7 for GCR synthesis. Recent measurements of B/Be about 10 in HD 140283 are in excellent agreement with the predictions of Population II GCR nucleosynthesis. Measurements of the boron abundance in additional metal-poor halo stars is a key diagnostic of the GCR spallation mechanism. We also show that Population II GCR synthesis can produce amounts of Li-6 which may be observed in the hottest halo stars.

  17. Behaviour of boron, beryllium, and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments

    NASA Astrophysics Data System (ADS)

    Brenan, J. M.; Neroda, E.; Lundstrom, C. C.; Shaw, H. F.; Ryerson, F. J.; Phinney, D. L.

    1998-06-01

    In order to provide a more substantial foundation for interpreting the behaviour of B, Be, and Li during the production and early crystallization of primitive igneous rocks, we have measured olivine-, clinopyroxene-, orthopyroxene-, and amphibole-melt partition coefficients for these elements involving broadly basaltic-andesitic melt compositions. Experiments were conducted at both one atmosphere and 1.0-1.5 GPa and employed a time-temperature history that yielded large crystals with minimal compositional zoning. Experiment temperatures ranged from 1000 to 1350°C and were selected to minimize the total crystal fraction in a given experiment. Partition coefficients for olivine and clinopyroxene were found to be independent of run duration or total concentration of B, Be, or Li suggesting that crystal-liquid equilibrium was closely approached. Olivine-, orthopyroxene-, and clinopyroxene-melt partition coefficients decrease in the order: Li (0.1-0.2) ≫ Be ˜ B (0.002-0.03), whereas amphibole-melt partition coefficients for Be and Li are similar (˜0.2) and larger than those for B (˜0.02). Comparison of partition coefficients measured in this study with previous determinations yields good agreement, with the exception of some of our mineral-melt values for B, which are uniformly lower (up to 10 times) than values determined at similar conditions of pressure and temperature. The latter discrepancy could be due to mineral or melt compositional effects, but this hypothesis is currently untestable owing to the absence of reported mineral compositions in previous studies. Partition coefficients for olivine and clinopyroxene have been found to vary as a function of mineral and melt composition, and with the exception of B partitioning into clinopyroxene, this variation can be modeled using simple exchange reactions involving the trace element and a substituent element, such as Na, Mg, or Al. Partition coefficients measured in this study were combined with simple models of melting and crystallization to evaluate how accurately element ratios such as B/Be, B/K, B/Nb, Be/Nd, Li/V, and Li/Yb in primitive magmas reflect that of their source. These models further confirm that the source regions of IAB magmas are enriched in B/Be, B/Nb, and Li/Yb relative to the MORB source, thus lending further support to the notion of metasomatic enrichment of the IAB source by slab-derived fluids. Moreover, our modeling also indicates that the low B/Be and B/Nb in primitive OIB magmas is indicative of similarly low values in OIB sources, which is consistent with the hypothesis that OIB sources contain a B-depleted component, such as subducted, dehydrated oceanic crust. Partial melting models have also been constructed to explore the possibility of using the Li/V ratio in MORB and IAB as a monitor of redox conditions in their source-regions. Models indicate that this ratio does not uniquely constrain source fO 2 without a priori knowledge of the degree of melting. However, the small amount of dispersion in MORB Li/V is consistent with (1) the small variation in source-region fO 2 inferred for MORB by independent means and (2) degrees of melting close to clinopyroxene exhaustion. The very large dispersion in Li/V ratios in the IAB suite can be reconciled by melt generation under more oxidising conditions than that for MORB, in addition to variation in source composition resulting from metasomatism involving a Li-rich component.

  18. Inhomogeneous big bang nucleosynthesis: Upper limit on Ωb and production of lithium, beryllium, and boron

    NASA Astrophysics Data System (ADS)

    Jedamzik, Karsten; Rehm, Jan B.

    2001-07-01

    We examine the big bang nucleosynthesis (BBN) process in the presence of small-scale baryon inhomogeneities. Primordial abundance yields for D, 4He, 6Li, 7Li, 9Be, and 11B are computed for wide ranges of parameters characterizing the inhomogeneities taking account of all relevant diffusive and hydrodynamic processes. These calculations may be of interest due to (a) recent observations of the anisotropies in the cosmic microwave background radiation favoring slightly larger baryonic contribution to the critical density, Ωb, than allowed by a standard BBN scenario and (b) new observational determinations of 6Li and 9Be in metal-poor halo stars. We find considerable parameter space in which production of D and 4He is in agreement with observational constraints even for Ωbh2 a factor 2 or 3 larger than the Ωb inferred from standard BBN. Nevertheless, in this parameter space synthesis of 7Li in excess of the inferred 7Li abundance on the Spite plateau results. Production of 6Li, 9Be, and 11B in inhomogeneous BBN scenarios is still typically well below the abundance of these isotopes observed in the most metal-poor stars to date thus neither confirming nor rejecting inhomogeneous BBN. In an Appendix we summarize results of a reevaluation of baryon diffusion constants entering inhomogeneous BBN calculations.

  19. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2010-01-01

    In 2009, lithium consumption in the United States was estimated to have been about 1.2 kt (1,300 st) of contained lithium, a 40-percent decrease from 2008. The United States was estimated to be the fourth largest consumer of lithium, and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2009, world lithium consumption was estimated to have been about 18.7 kt (20,600 st) of lithium contained in minerals and compounds.

  20. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2013-01-01

    In 2012, estimated world lithium consumption was about 28 kt (31,000 st) of lithium contained in minerals and compounds, an 8 percent increase from that of 2011. Estimated U.S. consumption was about 2 kt (2,200 st) of contained lithium, the same as that of 2011. The United States was thought to rank fourth in consumption of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Rockwood Lithium Inc., produced lithium compounds from domestic brine resources near Silver Peak, NV.

  1. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2011-01-01

    In 2010, lithium consumption in the United States was estimated to have been about 1 kt (1,100 st) of contained lithium, a 23-percent decrease from 2009. The United States was estimated to be the fourth largest consumer of lithium. It remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2010, world lithium consumption was estimated to have been about 21 kt (22,000 st) of lithium contained in minerals and compounds, a 12-percent increase from 2009.

  2. Beryllium Technology Research in the United States

    SciTech Connect

    Glen R. Longhurst; Robert A. Anderl; M. Kay Adleer-Flitton; Gretchen E. Matthern; Troy J. Tranter; Kendall J. Hollis

    2005-02-01

    While most active research involving beryllium in the United States remains tied strongly to biological effects, there are several areas of technology development in the last two years that should be mentioned. (1) Beryllium disposed of in soil vaults at the Idaho National Laboratory (INL) Radioactive Waste Management Complex (RWMC) has been encapsulated in-situ by high-temperature and pressure injection of a proprietary wax based material to inhibit corrosion. (2) A research program to develop a process for removing heavy metals and cobalt from irradiated beryllium using solvent extraction techniques has been initiated to remove components that prevent the beryllium from being disposed of as ordinary radioactive waste. (3) The JUPITER-II program at the INL Safety and Tritium Applied Research (STAR) facility has addressed the REDOX reaction of beryllium in molten Flibe (a mixture of LiF and BeF2) to control tritium, particularly in the form of HF, bred in the Flibe by reactions involving both beryllium and lithium. (4) Work has been performed at Los Alamos National Laboratory to produce beryllium high heat flux components by plasma spray deposition on macro-roughened substrates. Finally, (5) corrosion studies on buried beryllium samples at the RWMC have shown that the physical form of some of the corroded beryllium is very filamentary and asbestos-like. This form of beryllium may exacerbate the contraction of chronic beryllium disease.

  3. Analysis of ultratrace lithium and boron by neutron activation and mass-spectrometric measurement of 3He and 4He.

    PubMed

    Clarke, W B; Koekebakker, M; Barr, R D; Downing, R G; Fleming, R F

    1987-01-01

    A new technique for analysis of lithium and boron at ultratrace concentrations (less than 10(-8)g g-1) is described. The method consists of mass-spectrometric assay of 3He from decay of tritium produced by thermal-neutron reaction on 6Li, and 4He produced by thermal-neutron reaction on 10B. Two neutron-irradiation facilities were used: the McMaster reactor, which is 235U-enriched and light-water moderated; and a graphite-moderated thermal column attached to the 235U-enriched, heavy-water-moderated core at the National Bureau of Standards (NBS) reactor. In the McMaster irradiations, fast neutrons (greater than 0.2 MeV) induce the reactions 14N(n, 3H)12C, 12C(n, alpha)9Be, 16O(n, alpha)13C, and 14N(n, alpha)11B. These reactions become serious sources of error in samples such as human blood which have very low concentrations of lithium and boron, and high concentrations of nitrogen, carbon and oxygen. In the NBS thermal column, fast-neutron reactions are virtually absent, and only corrections for thermal-neutron capture by deuterium, and thermal-neutron (n, alpha) reactions on oxygen, sulfur, chlorine, potassium, and calcium need to be taken into account. Results are presented for various actual samples including human blood and its components, and some standard biological reference materials, to provide a realistic base for other workers to judge the reliability of the method. PMID:2822629

  4. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2012-01-01

    In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.

  5. Lithium

    USGS Publications Warehouse

    Ober, J.A.

    2006-01-01

    In 2005, lithium consumption in the United States was at 2.5 kt of contained lithium, nearly 32% more than the estimate for 2004. World consumption was 14.1 kt of lithium contained in minerals and compounds in 2003. Exports from the US increased slightly compared with 2004. Due to strong demand for lithium compounds in 2005, both lithium carbonate plants in Chile were operating at or near capacity.

  6. Beryllium disease

    SciTech Connect

    Not Available

    1991-12-20

    After two workers at the nuclear weapons plant at Oak Ridge National Laboratory in Tennessee were diagnosed earlier this year with chronic beryllium disease (CBD), a rare and sometimes fatal scarring of the lungs, the Department of Energy ordered up a 4-year probe. Now, part of that probe has begun - tests conducted by the Oak Ridge Associated Universities' Center for Epidemiological Research measuring beryllium sensitivity in 3,000 people who've been exposed to the metal's dust since Manhattan Project managers opened the Y-12 plant at Oak Ridge in 1943. Currently, 119 Y-12 employees process beryllium, which has a number of industrial uses, including rocket heat shields and nuclear weapon and electrical components. The disease often takes 20 to 25 years to develop, and the stricken employees haven't worked with beryllium for years. There is no cure for CBD, estimated to strike 2% of people exposed to the metal. Anti-inflammatory steroids alleviate such symptoms as a dry cough, weight loss, and fatigue. Like other lung-fibrosis diseases that are linked to lung cancer, some people suspect CBD might cause some lung cancer. While difficult to diagnose, about 900 cases of CBD have been reported since a Beryllium Case Registry was established in 1952. The Department of Energy (DOE) estimates that about 10,000 DOE employees and 800,000 people in private industry have worked with beryllium.

  7. Possible sources of the Population I lithium abundance and light-element evolution

    NASA Technical Reports Server (NTRS)

    Brown, Lawrence E.

    1992-01-01

    One-zone numerical models of Galactic chemical evolution of the light elements (lithium, beryllium, boron, and deuterium) with a broad sample of possible stellar lithium production sites and star formation histories, including the multiple merger model of Mathews and Schramm (1992), are examined. Models with high primordial lithium are constrained by observations of lithium and potassium in the interstellar medium of the LMC to have Li abundances close to the Population I value of about 10 exp -9. Li-7 production in intermediate- or high-mass stars (greater than 4 solar masses) is found to fit observations somewhat better than production in low-mass (1-5 solar masses) stars. Since elevated levels of lithium are commonly observed in intermediate-mass stars in the LMC, it is argued that this is indeed the major source of the Population I Li-7 abundance.

  8. Method for welding beryllium

    DOEpatents

    Dixon, Raymond D.; Smith, Frank M.; O'Leary, Richard F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  9. Lithium

    USGS Publications Warehouse

    Ober, J.

    1998-01-01

    The lithium industry can be divided into two sectors: ore concentrate producers and chemical producers. Ore concentrate producers mine lithium minerals. They beneficiate the ores to produce material for use in ceramics and glass manufacturing.

  10. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases.

    PubMed

    Halfon, S; Paul, M; Steinberg, D; Nagler, A; Arenshtam, A; Kijel, D; Polacheck, I; Srebnik, M

    2009-07-01

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction (7)Li(p,n)(7)Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor. PMID:19406650

  11. Measurement of the LITHIUM-8(DEUTERON, NEUTRON)BERYLLIUM-9 and LITHIUM-8(ALPHA, NEUTRON)BORON-11 Reaction Cross Sections at Astrophysical Energies by Radioactive Beam Techniques

    NASA Astrophysics Data System (ADS)

    Corn, Philip Bennet

    A preliminary direct measurement of the ^8Li(d,n)^9Be cross section has been obtained by means of a radioactive beam facility used with the Lawrence Livermore National Laboratory FN van de Graaff accelerator. The cross section at a ^8Li energy of 13.3 MeV agrees plausibly with values estimated from data for the reverse reaction, ^9Be(n,d)^8Li, and for the related ^7Li(d,n) ^8Be reaction to within the large estimated experimental error. This result thus demonstrates the feasibility of the technique. In addition, a design for a similar radioactive beam measurement of the ^8Li(alpha,n) 11B reaction cross section is given. The two reactions figure prominently in network calculations for current inhomogeneous models of primordial nucleosynthesis in the early universe, and because of the short 838 millisecond half life of the radioactive ^8Li nuclide, their cross sections have not been measured directly before. The radioactive beam apparatus employs a 16.0 MeV ^7Li beam from the accelerator incident on a thin, deuterated polyethylene primary reaction target foil. A secondary beam containing ^8Li produced in the ^7 Li(d,p)^8Li reaction is concentrated by a spectrometer incorporating twin triplet magnetic quadrupole elements and an electrostatic dipole, and is focussed on a second deuterated polyethylene reaction target foil in which the reaction of interest takes place. Reaction products are identified and measured by means of a pair of surface barrier charged particle detector telescopes, and ^8Li flux is measured via a CaF_2 scintillator and photomultiplier tube at the rear of the detector chamber. Future efforts will use improved gas cell production and reaction targets and detector systems, and will focus in the near term on a definitive measurement of the ^8Li(d,n)^9 Be cross section at several energies. The experiments and apparatus described are part of a continuing program of studies of astrophysically interesting reactions on radioactive nuclides carried out with joint participation and support from Lawrence Livermore National Laboratory and the Ohio State University.

  12. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    PubMed

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. PMID:26260448

  13. A first-principles study of lithium-decorated hybrid boron nitride and graphene domains for hydrogen storage

    SciTech Connect

    Hu, Zi-Yu; Shao, Xiaohong E-mail: limin.liu@csrc.ac.cn; Wang, Da; Liu, Li-Min E-mail: limin.liu@csrc.ac.cn; Johnson, J. Karl

    2014-08-28

    First-principles calculations are performed to investigate the adsorption of hydrogen onto Li-decorated hybrid boron nitride and graphene domains of (BN){sub x}C{sub 1−x} complexes with x = 1, 0.25, 0.5, 0.75, 0, and B{sub 0.125}C{sub 0.875}. The most stable adsorption sites for the nth hydrogen molecule in the lithium-decorated (BN){sub x}C{sub 1−x} complexes are systematically discussed. The most stable adsorption sites were affected by the charge localization, and the hydrogen molecules were favorably located above the C-C bonds beside the Li atom. The results show that the nitrogen atoms in the substrate planes could increase the hybridization between the 2p orbitals of Li and the orbitals of H{sub 2}. The results revealed that the (BN){sub x}C{sub 1−x} complexes not only have good thermal stability but they also exhibit a high hydrogen storage of 8.7% because of their dehydrogenation ability.

  14. Beryllium fluoride film protects beryllium against corrosion

    NASA Technical Reports Server (NTRS)

    O donnell, P. M.; Odonnell, P. M.

    1967-01-01

    Film of beryllium fluoride protects beryllium against corrosion and stress corrosion cracking in water containing chloride ion concentrations. The film is formed by exposing the beryllium to fluorine gas at 535 degrees C or higher and makes beryllium suitable for space applications.

  15. Lithium in sediments and brines--how, why and where to search

    USGS Publications Warehouse

    Vine, James D.

    1975-01-01

    The possibility of using lithium in batteries to power electric vehicles and as fuel for thermonuclear power has focused attention on the limited resources of lithium other than in pegmatite minerals. The Clayton Valley, Nev., subsurface lithium brine has been the major source of lithium carbonate since about 1967, but the life of this brine field is probably limited to several more decades at the present rate of production. Lithium is so highly soluble during weathering and in sedimentary environments that no lithium-rich sedimentary minerals other than clays have been identified to date. The known deposits of lithium, such as the clay mineral hectorite and the lithium-rich brines, occur in closed desert basins of the Southwest in association with nonmarine evaporites. However, the ultimate source for the lithium in these deposits may be from hydrothermal solutions. The search for previously unreported deposits of nonpegmatitic lithium should consider its probable association, not only with nonmarine evaporite minerals, but also with recent volcanic and tectonic activity, as well as with deposits of boron, beryllium, fluorine, manganese, and possibly phosphate.

  16. Method for welding beryllium

    SciTech Connect

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1995-12-31

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. Beryllium parts made using this method can be used as structural components in aircraft, satellites and space applications.

  17. Piezoresistance and hole transport in beryllium-doped silicon.

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Robertson, J. B.

    1972-01-01

    The resistivity and piezoresistance of p-type silicon doped with beryllium have been studied as a function of temperature, crystal orientation, and beryllium doping concentration. It is shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gauge factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, while the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  18. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries.

    PubMed

    Yang, Chun-Peng; Yin, Ya-Xia; Ye, Huan; Jiang, Ke-Cheng; Zhang, Juan; Guo, Yu-Guo

    2014-06-11

    To exploit the high energy density of lithium-sulfur batteries, porous carbon materials have been widely used as the host materials of the S cathode. Current studies about carbon hosts are more frequently focused on the design of carbon structures rather than modification of its properties. In this study, we use boron-doped porous carbon materials as the host material of the S cathode to get an insightful investigation of the effect of B dopant on the S/C cathode. Powder electronic conductivity shows that the B-doped carbon materials exhibit higher conductivity than the pure analogous porous carbon. Moreover, by X-ray photoelectron spectroscopy, we prove that doping with B leads to a positively polarized surface of carbon substrates and allows chemisorption of S and its polysulfides. Thus, the B-doped carbons can ensure a more stable S/C cathode with satisfactory conductivity, which is demonstrated by the electrochemical performance evaluation. The S/B-doped carbon cathode was found to deliver much higher initial capacity (1300 mA h g(-1) at 0.25 C), improved cyclic stability, and rate capability when compared with the cathode based on pure porous carbon. Electrochemical impedance spectra also indicate the low resistance of the S/B-doped C cathode and the chemisorption of polysulfide anions because of the presence of B. These features of B doping can play the positive role in the electrochemical performance of S cathodes and help to build better Li-S batteries. PMID:24764111

  19. Boron in G64-12: Higher Big Bang Lithium or Signature of the Nu-Process?

    NASA Astrophysics Data System (ADS)

    Deliyannis, Constantine

    2001-07-01

    The extremely metal-poor { Fe/H -3.3 } star G64-12 shows a remarkable lithium {Li} abundance that is about 2 times larger than those seen in other warm metal-poor stars, from which the Big Bang Li abundance is inferred. This star's enhanced Li has resulted from either 1. Galactic Li enrichment from a lower Big Bang value, or 2. stellar depletion from a higher Big Bang value, with significant cosmological implications. We argue against two of the three prominent mechanisms of Galactic Li enrichment, leaving the theoretical Nu-process in Type II supernovae as the sole viable mechanism. This mechanism's crisp signature is the concomitant production of copious amounts of boron {B}; if the Nu-process enriched the material out which G64-12 formed with the extra Li observed today, then this star should also exhibit a large detectable B overabundance. B in G64-12 can only be observed from space, using HST/STIS. If this star's STIS-based B abundance lies above the established B-Fe trend, this would be the first observational evidence for the Nu-process. But if its B abundance lies near the B-Fe trend, this would provide direct evidence that G64-12 is an elusive fossil of a Big Bang Li abundance about 0.3 dex above currently favored values, providing consistency in standard Big Bang Nucleosynthesis between Li and D {but not 4He}. EITHER RESULT would be of fundamental importance to Astronomy.

  20. Method for welding beryllium

    DOEpatents

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  1. Boron and Lithium Isotope Determinations in Minerals from Subduction-Related Rocks by LA-MC-ICPMS

    NASA Astrophysics Data System (ADS)

    Martin, C.; Harlow, G. E.; Ponzevera, E.; Marschall, H.

    2014-12-01

    Lithium (Li) and boron (B) are incompatible light elements that preferentially partition into the fluid phase, whether melt or aqueous liquid, and thus are useful for tracking fluid-related processes in rocks. Currently, most of the Li isotopic data available on subduction-related rocks are whole-rock analysis; and the few B isotopic analyses on subduction material have been carried out on whole-rock or in-situ in accessory phase (tourmaline). The new method presented here couples an ESI New Wave UP-193-FX ArF* (193 nm) excimer laser ablation microscope with a Neptune Plus (Thermo Scientific) MC-ICP-MS. In situ B and Li isotopic analyses were carried out on mica and pyroxenes from jadeitites and albite mica-rocks from a subduction-related mélange. These results have been compared with SIMS analyses for B on the same mineral samples and with MC-ICP-MS analyses for Li on whole-rock or a mineral separate from the same sample. The results show that for B concentrations above 15 μg/g, the data obtained by LA-MC-ICPMS and by SIMS are similar within error, for both mica and pyroxene. The significant improvement of LA-MC-ICPMS compared to SIMS is the duration of measurements: one analysis takes 3 minutes by LA-MC-ICPMS, and 32 minutes by SIMS. Such a method therefore permits multiplying the number of isotopic analyses, providing a better interpretation of the studied samples, with a lateral resolution and an error on each measurement similar to those obtained with SIMS. The results show that for Li concentrations above 10μg/g, the data obtained by LA-MC-ICPMS and by MC-ICP-MS are also similar within error, for both mica and pyroxene. The significant improvement of LA-MC-ICPMS compared to MC-ICP-MS is better spatial resolution. Indeed, many of the mineral phases encountered in subduction-related rocks display a strong chemical zoning, and the analyses carried out by wet chemistry and MC-ICP-MS average the isotopic values of the different zones. This newly developed method permits in-situ analysis of B and Li isotopes in a short time in subduction rock-forming minerals, with an error equal or lower than methods used previously.

  2. Lithium

    MedlinePlus

    ... mania (frenzied, abnormally excited mood) in people with bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal moods). Lithium is in a ... antimanic agents. It works by decreasing abnormal activity in the brain.

  3. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    PubMed

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. PMID:26300076

  4. Newly synthesized lithium in the interstellar medium

    PubMed

    Knauth; Federman; Lambert; Crane

    2000-06-01

    Astronomical observations of elemental and isotopic abundances provide the means to determine the source of elements and to reveal their evolutionary pathways since the formation of the Galaxy some 15 billion years ago. The abundance of lithium is particularly interesting because, although some of it is thought to be primordial, most results from spallation reactions (in which Galactic cosmic rays break apart larger nuclei in the interstellar medium). Spallation reactions are crucial for the production of other light elements, such as beryllium and boron, so observations of lithium isotopic abundances can be used to test model predictions for light-element synthesis in general. Here we report observations of 7Li and 6Li abundances in several interstellar clouds lying in the direction of the star o Persei. We find the abundance ratio 7Li/6Li to be about 2, which is significantly lower than the average Solar System value of 12.3 (refs 6, 7). An abundance ratio of 2 is clear evidence that the observed lithium must have resulted entirely from spallation, confirming a basic tenet of light-element synthesis. The total lithium abundance, however, is not enhanced as expected. PMID:10864316

  5. Strengthened lithium for x-ray blast windows

    NASA Astrophysics Data System (ADS)

    Pereira, N. R.; Imam, M. A.

    2008-05-01

    Lithium's high x-ray transparency makes it an attractive material for windows intended to protect soft x-ray diagnostics in high energy density experiments. Pure lithium is soft and weak, but lithium mixed with lithium hydride powder becomes harder and stronger, in principle without any additional x-ray absorption. A comparison with the standard material for x-ray windows, beryllium, suggests that lithium or lithium strengthened by lithium hydride may well be an excellent option for such windows.

  6. Indirect Measurements for (p,{alpha}) Reactions Involving Boron Isotopes

    SciTech Connect

    Lamia, L.; Spitaleri, C.; Romano, S.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Pizzone, R. G.; Puglia, S. M. R.; Sergi, M. L.; Tudisco, S.; Tumino, A.; Carlin, N.; Szanto, M. G. del; Liguori Neto, R.; Moura, M. M. de; Munhoz, M. G.; Souza, F. A.; Suaide, A. A. P.; Szanto, E.

    2008-04-06

    Light elements lithium, beryllium and boron (LiBeB) were used in the last years as 'possible probe' for a deeper understanding of some extra-mixing phenomena occurring in young Main-Sequence stars. They are mainly destroyed by (p,{alpha}) reactions and cross section measurements for such channels are then needed. The Trojan Horse Method (THM) allows one to extract the astrophysical S(E)-factor without the experience of tunneling through the Coulomb barrier. In this work a resume of the recent results about the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be and {sup 10}B(p,{alpha}){sup 7}Be reactions is shown.

  7. Laser fabrication of beryllium components

    SciTech Connect

    Hanafee, J.E.; Ramos, T.J.

    1995-08-01

    Working with the beryllium industry on commercial applications and using prototype parts, the authors have found that the use of lasers provides a high-speed, low-cost method of cutting beryllium metal, beryllium alloys, and beryllium-beryllium oxide composites. In addition, they have developed laser welding processes for commercial structural grades of beryllium that do not need a filler metal; i.e., autogenous welds were made in commercial structural grades of beryllium by using lasers.

  8. The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: Experiments and models

    SciTech Connect

    Brenan, J.M.; Ryerson, F.J.; Shaw, H.F.

    1998-10-01

    The low atomic mass elements B, Be, and Li are viewed as sensitive tracers of the involvement of subducted materials in the genesis of island arc magmas. In order to better assess the role of dense aqueous fluids in the slab-to-mantle transfer of these elements during subduction, measurements have been made of partition coefficients for B, Be, and Li between aqueous fluid and minerals likely to be present in the basaltic portion of the downgoing slab, namely clinopyroxene and garnet. Experiments at 900 C and 2.0 GPa reveal that the average clinopyroxene-fluid partition coefficient for Be ({approximately}2) exceeds that for either Li ({approximately}0.2) or B ({approximately}0.02) and values are 100{times} (B,Li) to 1,000{times} (Be) larger than partition coefficients for garnet. Clinopyroxene-fluid partition coefficients were found to vary with the alumina content of run-product clinopyroxenes, but this variation is interpreted to reflect the specific exchange reaction that governs the incorporation of these elements into the pyroxene structure, and not mineral-fluid disequilibrium. Calculations indicate that by the time the slab reaches a depth of 200 km, B/Be and B/Nb in the dehydration residue has been reduced to {approximately}5--12% of initial values. Thus, the preferential loss of B during dehydration is viewed as a viable mechanism to prevent the excess B acquired during near-surface alteration of oceanic crust from being cycled into the mantle, thereby maintaining the distinction in B/Be and B/Nb for mantle and crustal reservoirs.

  9. The effect of boron substitution in carbon on the intercalation of lithium in Li[sub x](B[sub z]C[sub 1[minus]z])[sub 6

    SciTech Connect

    Way, B.M.; Dahn, J.R. . Dept. of Physics)

    1994-04-01

    Boron-substituted carbons, B[sub z]C[sub 1[minus]z], have been produced by chemical vapor deposition from benzene and boron trichloride precursors at 900 C. The voltage and reversible capacity of Li/Li[sub x](B[sub z]C[sub 1[minus]z])[sub 6] cells were measured for the range of boron concentrations 0 < z < 0.17. These cells show an increase in voltage for a given lithium concentration compared to that in a cell with a pure carbon anode (i.e., petroleum coke, graphite, etc.). In addition, all cells for z > 0 showed greater reversible capacities than Li/coke cells, and for z > 0.10 the capacities exceeded that of graphite. For example, for B[sub 0.17]C[sub 0.83] the reversible specific capacity was 437 mAh/g. This behavior is understood by treating boron as an electron acceptor in the carbon lattice. These materials appear to be promising candidates for anode sin lithium ion rechargeable batteries.

  10. Boron and beryllium in Gamma Geminorum

    NASA Technical Reports Server (NTRS)

    Boesgaard, A. M.; Praderie, F.

    1981-01-01

    Observations have been made of the B II resonance line at 1362 A in the A0 IV star Gamma Gem with the Princeton spectrometer on the Copernicus satellite at a spectral resolution of 0.05 A. Complementary ground-based observations of the Be II resonance lines at 3130 and 3131 A have been made at Mauna Kea Observatory with a comparable resolution. A model-atmosphere abundance analysis has been done which includes the effects of the lines that blend with the B II and Be II lines. Previous data on Alpha Lyr and Alpha CMa for B II (which blends with a V III feature) have been reanalyzed with the help of new photographic and Reticon data from Mauna Kea which enable the determination of the V abundance. The results show that Gamma Gem is depleted in B by a factor of 5-10 relative to Alpha Lyr and other normal B stars and depleted in Be by at least a factor of four. By comparison, the hot Am star Alpha CMa is B-deficient by about three orders of magnitude and Be-deficient by at least fifteen times. It is suggested that the abundance deficiencies are due to diffusion, and that Alpha CMa is intrinsically a slow rotator, and Gamma Gem is a slightly evolved slow rotator where some, but not all, of the B and Be has resurfaced.

  11. Testing Spallation Processes with Beryllium and Boron

    NASA Astrophysics Data System (ADS)

    Fields, Brian D.; Olive, Keith A.; Vangioni-Flam, Elisabeth; Cassé, Michel

    2000-09-01

    The nucleosynthesis of Be and B by spallation processes provides unique insight into the origin of cosmic rays. Namely, different spallation schemes predict sharply different trends for the growth of LiBeB abundances with respect to oxygen. ``Primary'' mechanisms predict BeB~O and are well motivated by the data if O/Fe is constant at low metallicity. In contrast, ``secondary'' mechanisms predict BeB~O2 and are consistent with the data if O/Fe increases toward low metallicity as some recent data suggest. Clearly, any primary mechanism, if operative, will dominate early in the history of the Galaxy. In this paper, we fit the BeB data to a two-component scheme which includes both primary and secondary trends. In this way, the data can be used to probe the period in which primary mechanisms are effective. We analyze the data using consistent stellar atmospheric parameters based on Balmer line data and the continuum infrared flux. Results depend sensitively on Population II O abundances (and O/Fe trends), which have recently seen renewed interest. We explore the implications of these results phenomenologically, using a systematic and consistent compilation and fitting of BeBOFe data. Two-component Be-O fits indicate that primary and secondary components contribute equally at [O/H]eq=-1.8 for Balmer line data; and [O/H]eq=-1.4 to -1.8 for IRFM. We apply these constraints to recent models for LiBeB origin. The Balmer line data do not show any evidence for primary production. On the other hand, the IRFM data do indicate a preference for a two-component model, such as a combination of standard GCR and metal-enriched particles accelerated in superbubbles. These conclusions rely on a detailed understanding of the abundance data including systematic effects which may alter the derived O-Fe and BeB-Fe relations.

  12. Low temperature coefficient of resistance and high gage factor in beryllium-doped silicon

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Littlejohn, M. A.

    1974-01-01

    The gage factor and resistivity of p-type silicon doped with beryllium was studied as a function of temperature, crystal orientation, and beryllium doping concentration. It was shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gage factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, whereas the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  13. Improved electrochemical performance of boron-doped SiO negative electrode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Woo, Jihoon; Baek, Seong-Ho; Park, Jung-Soo; Jeong, Young-Min; Kim, Jae Hyun

    2015-12-01

    We introduce a one-step process that consists of thermal disproportionation and impurity doping to enhance the reversible capacity and electrical conductivity of silicon monoxide (SiO)-based negative electrode materials in Li-ion batteries. Transmission electron microscope (TEM) results reveal that thermally treated SiO at 900 °C (H-SiO) consists of uniformly dispersed nano-crystalline Si (nc-Si) in an amorphous silicon oxide (SiOx) matrix. Compared to that of prinstine SiO, the electrochemical performance of H-SiO shows improved specific capacity, due mainly to the increased reversible capacity by nc-Si and to the reduced volume expansion by thermally disproportionated SiOx matrix. Further electrochemical improvements can be obtained by boron-doping on SiO (HB-SiO) using solution dopant during thermal disproportionation. HB-SiO electrode without carbon coating exhibits significantly enhanced specific capacity superior to that of undoped H-SiO electrode, having 947 mAh g-1 at 0.5C rate and excellent capacity retention of 93.3% over 100 cycles. Electrochemical impedance spectroscopy (EIS) measurement reveals that the internal resistance of the HB-SiO electrode is significantly reduced by boron doping.

  14. METHOD OF WORKING BERYLLIUM

    DOEpatents

    Macherey, R.E.

    1959-02-01

    >A process is presented for fabricating beryllium metal. The billet cf beryllium metal is sheathed with a jacket of either copper or stainless steel. It may then be worked by drawing or the like at a tcmperature of 300 to 400 C.

  15. Lithium absorption on single-walled boron nitride, aluminum nitride, silicon carbide and carbon nanotubes: A first-principles study

    NASA Astrophysics Data System (ADS)

    Darvish Ganji, M.; Dalirandeh, Z.; Khorasani, M.

    2016-03-01

    Using the DFT-B3LYP calculations we investigate the adsorption of Li atom on CNT, BNNT, AlNNT and SiCNT. We found that Li atom can be chemisorbed on zig-zag SiCNT with binding energy of -2.358 eV and charge transfer of 0.842 |e|, which are larger than the results of other nanotubes. The binding energy of Li on SiCNT is foun to be stronger than activation energy barrier indicating that Li metal could be well dispersed on SiCNTs. Furthermore, the average voltage caused by the lithium adsorption on SiCNT demonstrated that SiCNTs could exhibit as a stable anode similar to the lithium metal anode. The binding nature has been rationalized by analyzing the electronic structures. Our findings demonstrate that Li-BNNT, Li-SiCNT and Li-AlNNT systems exhibit spin polarized behaviors and can fascinating potential application in future spintronics. Also, Li-SiCNT system with rather small band gap might be a promising material for optical applications and active molecule in its environment.

  16. Chemical feasibility of lithium as a matrix for structural composites

    NASA Technical Reports Server (NTRS)

    Swann, R. T.; Esterling, D. M.

    1984-01-01

    The chemical compatibility of lithium with tows of carbon and aramid fibers and silicon carbide and boron monofilaments was investigated by encapsulating the fibers in liquid lithium and also by sintering. The lithium did not readily wet the various fibers. In particular, very little lithium infiltration into the carbon and aramid tows was achieved and the strength of the tows was seriously degraded. The strength of the boron and silicon carbide monofilaments, however, was not affected by the liquid lithium. Therefore lithium is not feasible as a matrix for carbon and aramid fibers, but a composite containing boron or silicon carbide fibers in a lithium matrix may be feasible for specialized applications.

  17. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. PMID:24387907

  18. Boron-lithium relationships in rhyolites and associated thermal waters of young silicic calderas, with comments on incompatible element behavior

    SciTech Connect

    Shaw, D.M. ); Sturchio, N.C. )

    1992-10-01

    This study had three goals: (1) to study B distribution in a rhyolitic volcanic sequence already extensively investigated for other elements; (2) to interpret the joint behavior of B and Li during the interaction of such rocks with subsurface waters; and (3) to assess the manner in which water affects the behavior of incompatible elements such as B and Gd. New B, Gd, and Sm analyses have been made on a suite of Yellowstone rhyolites, including fresh and partially devitrified glassy obsidian from surface exposures of several flows, a drill-core of increasing degrees of alteration in the Biscuit Basin Flow, and two drill-cores from other flows. Within the Biscuit Basin Flow, the Sm and Gd concentrations remain rather constant and behave conservatively, independent of alteration. Boron decreases from about 10 to 3 ppm with progressive alteration, and Li increases from about 40 ppm by a factor of 2-3 in the most altered rocks. Obsidians from the Valles and Long Valley calderas show greater Li loss during alteration. All the rhyolitic rocks lose B during aqueous alteration; the waters acquire both B and Li, but proportionately much more B. Natural waters of all kinds, including those from the three calderas, show six orders of magnitude range in aqueous B and Li, with a high degree of linear correlation and an average ratio B/Li essentially constant at 4.0. The linearity mainly expresses processes of dilution and concentration: reactions specific to B or Li engender waters with deviating B/Li.

  19. Joined Beryllium Mirror Demonstrator

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Parsonage, Tom; Burdine, Robert (Technical Monitor)

    2001-01-01

    Fabrications of large Beryllium optical components are fundamentally limited by available facility capabilities. To overcome this limitation, NASA funded Brush Wellman Corp to study a Be joining process. Four 76 mm diameters samples and a 0.5 mm diameter Joined Beryllium Mirror Demonstrator (JBMD) were fabricated. This presentation will review the fabrication of these samples and summarize the results of their cryogenic testing at MSFCs XRCF.

  20. Pressure dependence of the radioactive decay constant of beryllium-7.

    PubMed

    Hensley, W K; Bassett, W A; Huizenga, J R

    1973-09-21

    Diamond anvil presses of a new design were used to compress samples of beryllium-7 oxide to 120, 210, and 270 kilobars. The decay constant for the conversion of beryllium-7 to lithium-7 by electron capture was measured for compressed and uncompressed samples. A least-squares fit of the equation (lambda(c)-lambda)/lambda = KpP to the experimental data, where lambda(C) and lambda are the decay constants of the compressed sample and an uncompressed sample, respectively, and P is pressure, yields a value of (2.2 +/- 0.1) x 10(-5) kbar(-1) for the constant K(p). PMID:17744291

  1. Some Properties of Beryllium Oxide and Beryllium Oxide - Columbium Ceramals

    NASA Technical Reports Server (NTRS)

    Robards, C F; Gangler, J J

    1951-01-01

    High-temperature tensile and thermal-shock investigations were conducted on beryllium oxide and beryllium oxide plus columbium metal additions. X-ray diffraction and metallographic results are given. The tensile strength of 6150 pounds per square inch for beryllium oxide at 1800 degrees F compared favorably with the zirconia bodies previously tested. Additions of 2, 5, 8, 10, 12, and 15 percent by weight of columbium metal failed to improve the shock resistance over that of pure beryllium oxide.

  2. Containerless processing of beryllium

    NASA Technical Reports Server (NTRS)

    Wouch, G.; Keith, G. H.; Frost, R. T.; Pinto, N. P.

    1977-01-01

    Melting and solidification of a beryllium alloy containing 1.5% BeO by weight in the weightless environment of space has produced cast beryllium with a relatively uniform dispersion of BeO throughout. Examination of the cast material shows that it is coarse grained, although the BeO is not heavily agglomerated in the flight specimen. Ground based comparison experiments show extreme agglomeration and segregation of BeO, resulting in large zones which are practically free of the oxide. Several postulated hypotheses for the failure to grain refine the beryllium are formulated. These are: (1) spherodization of the BeO particles during specimen preparation and during the molten phase of the experiment; (2) loss of nucleation potency through aging in the molten phase; and (3) inability of BeO to act as a grain refiner for beryllium. Further investigation with non spherodized particles and shorter dwell times molten may delineate which of these hypotheses are valid. The results of this flight experiment indicate that the weightless environment of space is an important asset in conducting research to find grain refiners for beryllium and other metals for which cast dispersions of grain refining agents cannot be prepared terrestrially due to gravitationally driven settling and agglomeration.

  3. HANFORD BERYLLIUM STEERING GROUP CHARTER

    SciTech Connect

    HEWITT, E.R.

    2003-11-19

    The purpose of the Beryllium Steering Group (BSG) is to (1) provide a forum for discussion of beryllium issues and concerns among Hanford prime contractors and DOE; (2) review proposed changes in prime contractor Chronic Beryllium Disease Prevention Programs (CBDPP) to determine if these changes will result in significant impacts to other contractors and their employees; (3) review proposed changes to Beryllium Hanford Facilities List prior to updating of this list.

  4. Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification

    NASA Astrophysics Data System (ADS)

    Tan, ShuangYuan; Wang, Lei; Bian, Liang; Xu, JinBao; Ren, Wei; Hu, PengFei; Chang, AiMin

    2015-03-01

    Although lithium ion battery is known to be an excellent renewable energy provider in electronic markets further application of it has been limited by its notoriously poor performance at low temperature, especially below -20 °C. In this paper, the electrochemical performance of the LiNi1/3Co1/3Mn1/3O2 cathode materials coated by lithium boron oxide (LBO) glass was investigated at a temperature range from 20 to -40 °C. The results show that the LBO coating not only helps to improve the discharge capacity of LiNi1/3Co1/3Mn1/3O2 at room temperature but also increase the discharge capacity retention of the LiNi1/3Co1/3Mn1/3O2 from 22.5% to 57.8% at -40 °C. Electrochemical impedance spectra results reveal that the LBO coating plays an important role in reducing the charge-transfer resistance on the electrolyte-electrode interfaces and improving lithium ion diffusion coefficients. The mechanism associated with the change of the structure and electrical properties are discussed in detail.

  5. Beryllium - technology and applications

    SciTech Connect

    Marder, J.M.

    1984-06-01

    Beryllium can be readily described as a ''specialty'' metal. It is one of the lightest structural metals known and possesses a unique combination of properties. Among the important considerations from a design standpoint are the outstanding modulus, modulus/density ratio, strength/density ratio, elevated temperature strength, and thermal properties. This article presents several applications in which beryllium's unusual combination of properties have been effectively utilized. These are (1) optical components for large, spaceborne telescopes, (2) structural members and umbilical doors for the space shuttle, (3) space shuttle navigation system, and (4) the stylus cantilever for a high-fidelity stereophonic cartridge.

  6. Beryllium and compounds

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 98 / 008 TOXICOLOGICAL REVIEW OF BERYLLIUM AND COMPOUNDS ( CAS No . 7440 - 41 - 7 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) April 1998 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in acco

  7. EVALUATION OF THE POTENTIAL CARCINOGENICITY OF BERYLLIUM, BERYLLIUM CHLORIDE, BERYLLIUM FLUORIDE, AND BERYLLIUM NITRATE

    EPA Science Inventory

    Beryllium is a probable human carcinogen, classified as weight-of-evidence Group B2 under the EPA Guidelines for Carcinogen Risk Assessment (U.S. EPA, 1986a). vidence on potential arcinogenicity from animal studies is "Sufficient," and the evidence from human studies is "Inadequa...

  8. Designer ligands for beryllium: Stability and detection of beryllium?

    SciTech Connect

    Keizer, T. S.; Scott, B. L.; Sauer, N. N.; McCleskey, T. M.

    2004-01-01

    With the incorporation of beryllium into mainstream consumer products, there is a concern with the environmental and health implications of wide spread beryllium use. With little experimental research undertaken to address the toxic nature of beryllium (the worst case leading to chronic beryllium disease), there is a need for a fundamental understanding of the way the metal interacts with the environment and it's interaction within the human body. In addition, a better insight into beryllium interactions can lead to improvements in detection methods, which are vital with respect to preventing exposure and for the rapid clean up of beryllium in the environment. The MHC-class II receptor has been identified as the receptor that binds Be in the body. The proposed key binding sites in the antigen consist of two sections of the sequence, and each section contains three carboxylates in a row. Therefore, efforts in characterization of compounds with multiple carboxylates and hydroxides species are pursued.

  9. Characterization of shocked beryllium

    NASA Astrophysics Data System (ADS)

    Cady, C. M.; Adams, C. D.; Hull, L. M.; Gray, G. T.; Prime, M. B.; Addessio, F. L.; Wynn, T. A.; Papin, P. A.; Brown, E. N.

    2012-08-01

    While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional "arrested" drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  10. Rocky Flats beryllium health surveillance

    SciTech Connect

    Stange, A.W.; Furman, F.J.; Hilmas, D.E.

    1996-10-01

    The Rocky Flats Beryllium Health Surveillance Program (BHSP), initiated in June 1991, was designed to provide medical surveillance for current and former employees exposed to beryllium. The BHSP identifies individuals who have developed beryllium sensitivity using the beryllium lymphocyte proliferation test (BeLPT). A detailed medical evaluation to determine the prevalence of chronic beryllium disease (CBD) is offered to individuals identified as beryllium sensitized or to those who have chest X-ray changes suggestive of CBD. The BHSP has identified 27 cases of CBD and another 74 cases of beryllium sensitization out of 4268 individuals tested. The distribution of BeLPT values for normal, sensitized, and CBD-identified individuals is described. Based on the information collected during the first 3 1/3 years of the BHSP, the BeLPT is the most effective means for the early identification of beryllium-sensitized individuals and to identify individuals who may have CBD. The need for BeLPT retesting is demonstrated through the identification of beryllium sensitization in individuals who previously tested normal. Posterior/anterior chest X-rays were not effective in the identification of CBD. 12 refs., 8 tabs.

  11. Rocky Flats Beryllium Health Surveillance.

    PubMed

    Stange, A W; Furman, F J; Hilmas, D E

    1996-10-01

    The Rocky Flats Beryllium Health Surveillance Program (BHSP), initiated in June 1991, was designed to provide medical surveillance for current and former employees exposed to beryllium. The BHSP identifies individuals who have developed beryllium sensitivity using the beryllium lymphocyte proliferation test (BeLPT). A detailed medical evaluation to determine the prevalence of chronic beryllium disease (CBD) is offered to individuals identified as beryllium sensitized or to those who have chest X-ray changes suggestive of CBD. The BHSP has identified 27 cases of CBD and another 74 cases of beryllium sensitization out of 4268 individuals tested. The distribution of BeLPT values for normal, sensitized, and CBD-identified individuals is described. Based on the information collected during the first 3 1/3 years of the BHSP, the BeLPT is the most effective means for the early identification of beryllium-sensitized individuals and to identify individuals who may have CBD. The need for BeLPT retesting is demonstrated through the identification of beryllium sensitization in individuals who previously tested normal. Posterior/anterior chest X-rays were not effective in the identification of CBD. PMID:8933045

  12. Characterization of Shocked Beryllium

    SciTech Connect

    Cady, Carl M; Adams, Chris D; Hull, Lawrence M; Gray III, George T; Prime, Michael B; Addessio, Francis L; Wynn, Thomas A; Brown, Eric N

    2012-08-24

    Beryllium metal has many excellent structural properties in addition to its unique radiation characteristics, including: high elastic modulus, low Poisson's ratio, low density, and high melting point. However, it suffers from several major mechanical drawbacks: 1) high anisotropy - due to its hexagonal lattice structure and its susceptibility to crystallographic texturing; 2) susceptibility to impurity-induced fracture - due to grain boundary segregation; and 3) low intrinsic ductility at ambient temperatures thereby limiting fabricability. While large ductility results from deformation under the conditions of compression, the material can exhibit a brittle behavior under tension. Furthermore, there is a brittle to ductile transition at approximately 200 C under tensile conditions. While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. The beryllium used in this study was Grade S200-F (Brush Wellman, Inc., Elmore, OH) material. The work focused on high strain rate deformation and examine the validity of constitutive models in deformation rate regimes, including shock, the experiments were modeled using a Lagrangian hydrocode. Two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, were calibrated using the same set of quasi-static and Hopkinson bar data taken at temperatures from 77K to 873K and strain rates from 0.001/sec to 4300/sec. In spite of being calibrated on the same data, the two models give noticeably different results when compared with the measured wave profiles. These high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Preliminary analysis of the results appears to indicate that, if fractured by the initial shock loading, the S200F Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading of the material. Additional 'arrested' drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  13. 5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING BEGAN IN SIDE A OF THE BUILDING IN 1962. (11/5/73) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  14. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    SciTech Connect

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-12-31

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory`s Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 {mu}m) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications.

  15. Technical Basis for PNNL Beryllium Inventory

    SciTech Connect

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  16. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    SciTech Connect

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  17. Method for fabricating beryllium structures

    DOEpatents

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1977-01-01

    Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.

  18. Boron cosmochemistry

    NASA Technical Reports Server (NTRS)

    Curtis, D. B.; Gladney, E. S.

    1984-01-01

    The assumption that boron is a moderately volatile element is examined. It was demonstrated that interior pieces of chondrites contain significantly less boron than had been thought to be indigenous to this type of meteorite. The mean and range of boron abundances in 16 internal pieces of 10 chondrites were significantly smaller than in 126 pieces of 40 chondrites with unknown terrestrial histories. A new value of the cosmic abundance of boron was determined using the geometric average of the results from interior pieces of 10 chondrites. Based upon the thermodynamic assessment of the cosmochemical properties of boron by Cameron, et al. Anders and Ebihara assumed that boron was a moderately volatile element. They renormalized the data of Curtis et al. to a chondrule free basis and thus inferred that the cosmic abundance of boron was about 3 times greater than that proposed by Curtis, et al. To resolve these differences in data, the relative abundances of several elements including boron were measured in 38 carefully prepared interior pieces of 26 different chondrites. Correlation between boron and sulfur abundances, indicate that, contrary to the conclusions of Cameron, et al., boron is not a moderately volatile element.

  19. The solar abundance of beryllium

    NASA Technical Reports Server (NTRS)

    Ross, J. E.; Aller, L. H.

    1974-01-01

    The solar abundance of beryllium is deduced from high-resolution Kitt Peak observations of the 3130.43- and 3131.08-A lines of Be II interpreted by the method of spectrum synthesis. The results are in good agreement with those previously obtained by Grevesse (1968) and by Hauge and Engvold (1968) and indicate that in the photospheric layers, beryllium is depleted below the chondritic value by a factor of about two. It is found that the beryllium abundance is equal to logN(Be)/N(H) + 12 = 1.08 plus or minus 0.05.

  20. The natural history of beryllium sensitization and chronic beryllium disease

    SciTech Connect

    Newman, L.S. |; Lloyd, J.; Daniloff, E.

    1996-10-01

    With the advent of in vitro immunologic testing, we can now detect exposed individuals who are sensitized to beryllium and those who have chronic beryllium disease (CBD) with lung pathology and impairment. Earlier detection and more accurate diagnostic tools raise new questions about the natural history of sensitization and granulomatous disease. Preliminary data suggest that early detection identifies people who are sensitized to beryllium and that these individuals are at risk for progressing into clinical disease. This article discusses the historical, recent, and ongoing studies germane to our understanding of CBD natural history, including the immunologic and inflammatory basis of the disease, the environmental and host risk factors for disease progression, biological markers of disease severity and activity that may help predict outcome, and the implications for broad-based workplace screening to identify patients at the earliest stages of beryllium sensitization and disease. 29 refs., 2 figs.

  1. The natural history of beryllium sensitization and chronic beryllium disease.

    PubMed Central

    Newman, L S; Lloyd, J; Daniloff, E

    1996-01-01

    With the advent of in vitro immunologic testing, we can now detect exposed individuals who are sensitized to beryllium and those who have chronic beryllium disease (CBD) with lung pathology and impairment. Earlier detection and more accurate diagnostic tools raise new questions about the natural history of sensitization and granulomatous disease. Preliminary data suggest that early detection identifies people who are sensitized to beryllium and that these individuals are at risk for progressing into clinical disease. This article discusses the historical, recent, and ongoing studies germane to our understanding of CBD natural history, including the immunologic and inflammatory basis of the disease, the environmental and host risk factors for disease progression, biological markers of disease severity and activity that may help predict outcome, and the implications for broad-based workplace screening to identify patients at the earliest stages of beryllium sensitization and disease. Images Figure 1. A Figure 1. B Figure 1. C Figure 1. D PMID:8933038

  2. High-capacity electrode material BC3 for lithium batteries proposed by ab initio simulations

    NASA Astrophysics Data System (ADS)

    Kuzubov, Alexander A.; Fedorov, Aleksandr S.; Eliseeva, Natalya S.; Tomilin, Felix N.; Avramov, Pavel V.; Fedorov, Dmitri G.

    2012-05-01

    The absorption energy and diffusion rates of lithium atoms inside graphitelike boron carbide (BC3) crystal are investigated by the ab initio pseudopotential density-functional method using generalized gradient approximation. It is shown that lithium may effectively intercalate this structure with the maximum lithium concentration corresponding to Li2BC3 stoichiometry, which is threefold in comparison to lithium in graphite. The potential barrier values for lithium diffusion both at low and maximum concentration are about 0.19 eV, so lithium atoms inside the BC3 structure can move easily. These findings suggest that boron carbide looks like a good candidate as an anode material in lithium ion batteries.

  3. Characterization of shocked beryllium

    NASA Astrophysics Data System (ADS)

    Brown, E. N.; Cady, C. M.; Gray, G. T., III; Hull, L. M.; Cooley, J. H.; Bronkhorst, C. A.; Addessio, F. L.

    2014-05-01

    Explosively driven arrested beryllium experiments were performed with post mortem characterization to evaluate the failure behaviors. The test samples were encapsulated in an aluminum assembly that was large relative to the sample, and the assembly features both axial and radial momentum traps. The sample carrier was inserted from the explosively-loaded end and has features to lock the carrier to the surrounding cylinder using the induced plastic flow. Calculations with Lagrangian codes showed that the tensile stresses experienced by the Be sample were below the spall stress. Metallographic characterization of the arrested Be showed radial cracks present in the samples may have been caused by bending moments. Fractography showed the fractures propagated from the side of the sample closest to the explosives, the side with the highest tensile stress. There was evidence that the fractures may have propagated from the circumferential crack outward and downward radially.

  4. Beryllium usage in fusion blankets and beryllium data needs. [None

    SciTech Connect

    Moir, R.W.

    1988-04-06

    Increasing numbers of designers are choosing beryllium for fusion reactor blankets because it, among all nonfissile materials, produces the highest number (2.5 neutron in an infinite media) of neutrons per 14-MeV incident neutron. In amounts of about 20 cm of equivalent solid density, it can be used to produce fissile material, to breed all the tritium consumed in ITER from outboard blankets only, and in designs to produce Co-60. The problem is that predictions of neutron multiplication in beryllium are off by some 10 to 20% and appear to be on the high side, which means that better multiplication measurements and numerical methods are needed. The n,2n reactions result in two helium atoms, which cause radiation damage in the form of hardening at low temperatures (<300/degree/C) and swelling at high temperatures (>300/degree/C). The usual way beryllium parts are made is by hot pressing the powder. A lower cost method is to cold press and then sinter. There is no radiation damage data on this form of beryllium. The issues of corrosion, safety relative to the release of the tritium built-up inside beryllium, and recycle of used beryllium are also discussed. 10 figs.

  5. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.

    PubMed

    Zhang, Jinli; Nie, Ning; Liu, Yuanyuan; Wang, Jiao; Yu, Feng; Gu, Junjie; Li, Wei

    2015-09-16

    An evolutionary composite of LiFePO4 with nitrogen and boron codoped carbon layers was prepared by processing hydrothermal-synthesized LiFePO4. This novel codoping method is successfully applied to LiFePO4 for commercial use, and it achieved excellent electrochemical performance. The electrochemical performance can be improved through single nitrogen doping (LiFePO4/C-N) or boron doping (LiFePO4/C-B). When modifying the LiFePO4/C-B with nitrogen (to synthesis LiFePO4/C-B+N) the undesired nonconducting N-B configurations (190.1 and 397.9 eV) are generated. This decreases the electronic conductivity from 2.56×10(-2) to 1.30×10(-2) S cm(-1) resulting in weak electrochemical performance. Nevertheless, using the opposite order to decorate LiFePO4/C-N with boron (to obtain LiFePO4/C-N+B) not only eliminates the nonconducting N-B impurity, but also promotes the conductive C-N (398.3, 400.3, and 401.1 eV) and C-B (189.5 eV) configurations-this markedly improves the electronic conductivity to 1.36×10(-1) S cm(-1). Meanwhile the positive doping strategy leads to synergistic electrochemical activity distinctly compared with single N- or B-doped materials (even much better than their sum capacity at 20 C). Moreover, due to the electron and hole-type carriers donated by nitrogen and boron atoms, the N+B codoped carbon coating tremendously enhances the electrochemical property: at the rate of 20 C, the codoped sample can elevate the discharge capacity of LFP/C from 101.1 mAh g(-1) to 121.6 mAh g(-1), and the codoped product based on commercial LiFePO4/C shows a discharge capacity of 78.4 mAh g(-1) rather than 48.1 mAh g(-1). Nevertheless, the B+N codoped sample decreases the discharge capacity of LFP/C from 101.1 mAh g(-1) to 95.4 mAh g(-1), while the commercial LFP/C changes from 48.1 mAh g(-1) to 40.6 mAh g(-1). PMID:26305802

  6. Ceramic-metal seals for advanced battery systems. [sodium sulfur and lithium sulfur batteries

    NASA Technical Reports Server (NTRS)

    Reed, L.

    1978-01-01

    The search for materials which are electrochemically compatible with the lithium sulfur and sodium sulfur systems is discussed. The use liquid or braze alloys, titanium hydrite coatings, and tungsten yttria for bonding beryllium with ceramic is examined.

  7. Beryllium Interactions in Molten Salts

    SciTech Connect

    G. S. Smolik; M. F. Simpson; P. J. Pinhero; M. Hara; Y. Hatano; R. A. Anderl; J. P. Sharpe; T. Terai; S. Tanaka; D. A. Petti; D.-K. Sze

    2006-01-01

    Molten flibe (2LiF·BeF2) is a candidate as a cooling and tritium breeding media for future fusion power plants. Neutron interactions with the salt will produce tritium and release excess free fluorine ions. Beryllium metal has been demonstrated as an effective redox control agent to prevent free fluorine, or HF species, from reacting with structural metal components. The extent and rate of beryllium solubility in a pot design experiments to suppress continuously supplied hydrogen fluoride gas has been measured and modeled[ ]. This paper presents evidence of beryllium loss from specimens, a dependence of the loss upon bi-metal coupling, i.e., galvanic effect, and the partitioning of the beryllium to the salt and container materials. Various posttest investigative methods, viz., scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) were used to explore this behavior.

  8. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of dissolved arsenic, boron, lithium, selenium, strontium, thallium, and vanadium using inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.

    1999-01-01

    The inductively coupled plasma?mass spectrometric (ICP?MS) methods have been expanded to include the determination of dissolved arsenic, boron, lithium, selenium, strontium, thallium, and vanadium in filtered, acidified natural water. Method detection limits for these elements are now 10 to 200 times lower than by former U.S. Geological Survey (USGS) methods, thus providing lower variability at ambient concentrations. The bias and variability of the method was determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries at 5 to 10 times the method detection limit and 75 micrograms per liter in reagent-water, surface-water, and groundwater matrices averaged 93 percent for seven replicates, although selected elemental recoveries in a ground-water matrix with an extremely high iron sulfate concentration were negatively biased by 30 percent. Results for standard reference materials were within 1 standard deviation of the most probable value. Statistical analysis of the results from about 60 filtered, acidified natural-water samples indicated that there was no significant difference between ICP?MS and former USGS official methods of analysis.

  9. Beryllium technology workshop, Clearwater Beach, Florida, November 20, 1991

    SciTech Connect

    Longhurst, G.R.

    1991-12-01

    This report discusses the following topics: beryllium in the ITER blanket; mechanical testing of irradiated beryllium; tritium release measurements on irradiated beryllium; beryllium needs for plasma-facing components; thermal conductivity of plasma sprayed beryllium; beryllium research at the INEL; Japanese beryllium research activities for in-pile mockup tests on ITER; a study of beryllium bonding of copper alloy; new production technologies; thermophysical properties of a new ingot metallurgy beryllium product line; implications of beryllium:steam interactions in fusion reactors; and a test program for irradiation embrittlement of beryllium at JET.

  10. Beryllium Related Matter

    SciTech Connect

    Gaylord, R F

    2008-12-23

    In recent months, LLNL has identified, commenced, and implemented a series of interim controls, compensatory measures, and initiatives to ensure worker safety, and improve safety processes with regards to potential worker exposure to beryllium. Many of these actions have been undertaken in response to the NNSA Independent Review (COR-TS-5/15/2008-8550) received by LLNL in November of 2008. Others are the result of recent discoveries, events or incidents, and lessons learned, or were scheduled corrective actions from earlier commitments. Many of these actions are very recent in nature, or are still in progress, and vary in the formality of implementation. Actions are being reviewed for effectiveness as they progress. The documentation of implementation, and review of effectiveness, when appropriate, of these actions will be addressed as part of the formal Corrective Action Plan addressing the Independent Review. The mitigating actions taken fall into the following categories: (1) Responses to specific events/concerns; (2) Development of interim controls; (3) Review of ongoing activities; and (4) Performance improvement measures.

  11. Characterization of shocked beryllium

    NASA Astrophysics Data System (ADS)

    Cady, Carl; Brown, Eric; Gray, George; Adams, Chris; Hull, Lawrence; Wynn, Thomas; Prime, Michael; Cooley, James; Bronkhorst, Curt; Addessio, Frank

    2013-06-01

    Explosively driven arrested beryllium experiments were performed with post mortem characterization to evaluate the microstructure and failure behaviors. The test samples were encapsulated in an aluminum assembly that was large relative to the sample, and the assembly features both axial and radial momentum traps. The sample carrier was inserted from the explosively loaded end and has features to lock the carrier to the surrounding cylinder using the induced plastic flow. Calculations with Lagrangian codes showed that the tensile stresses experienced by the Be sample were below the spall stress. Metallographic characterization of the arrested Be showed radial cracks present in the samples may have been caused by bending moments. Fractography showed the fractures propagated from the side of the sample closest to the explosives, the side with the highest tensile stress. There was evidence that the fractures may have propagated from the circumferential crack outward and downward radially. The EBSD results were the most informative of the characterization techniques used. EBSD provides information regarding texture, residual strain, and twinning. There was clear evidence of grain rotation as evidenced by the pole figures, the inverse pole figures and the Kernel Average Misorientation figures.

  12. Processing Irradiated Beryllium For Disposal

    SciTech Connect

    T. J. Tranter; R. D. Tillotson; N. R. Mann; G. R. Longhurst

    2005-11-01

    The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages.

  13. Electroextraction of boron from boron carbide scrap

    SciTech Connect

    Jain, Ashish; Anthonysamy, S.; Ghosh, C.; Ravindran, T.R.; Divakar, R.; Mohandas, E.

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  14. Mineral resource of the month: beryllium

    USGS Publications Warehouse

    U.S. Geological Survey

    2013-01-01

    The article discusses information about Beryllium. It notes that Beryllium is a light metal that has a gray color. The metal is used in the production of parts and devices including bearings, computer-chip heat sinks, and output windows of X-ray tubes. The article mentions Beryllium's discovery in 1798 by French chemist, Louis-Nicolas Vanquelin. It cites that bertrandite and beryl are the principal mineral components for the commercial production of beryllium.

  15. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.33 Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling... employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  16. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.33 Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling... employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  17. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.33 Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling... employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  18. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.33 Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling... employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  19. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.33 Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling... employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  20. Beryllium--important for national defense

    USGS Publications Warehouse

    Boland, M.A.

    2012-01-01

    Beryllium is one of the lightest and stiffest metals, but there was little industrial demand for it until the 1930s and 1940s when the aerospace, defense, and nuclear sectors began using beryllium and its compounds. Beryllium is now classified by the U.S. Department of Defense as a strategic and critical material because it is used in products that are vital to national security. The oxide form of beryllium was identified in 1797, and scientists first isolated metallic beryllium in 1828. The United States is the world's leading source of beryllium. A single mine at Spor Mountain, Utah, produced more than 85 percent of the beryllium mined worldwide in 2010. China produced most of the remainder, and less than 2 percent came from Mozambique and other countries. National stockpiles also provide significant amounts of beryllium for processing. To help predict where future beryllium supplies might be located, U.S.Geological Survey (USGS) scientists study how and where beryllium resources are concentrated in Earth's crust and use that knowledge to assess the likelihood that undiscovered beryllium resources may exist. Techniques to assess mineral resources have been developed by the USGS to support the stewardship of Federal lands and to better evaluate mineral resource availability in a global context. The USGS also compiles statistics and information on the worldwide supply of, demand for, and flow of beryllium. These data are used to inform U.S. national policymaking.

  1. METHOD FOR PREPARATION OF SINTERABLE BERYLLIUM OXIDE

    DOEpatents

    Sturm, B.J.

    1963-08-13

    High-purity beryllium oxide for nuclear reactor applications can be prepared by precipitation of beryllium oxalate monohydrate from aqueous solution at a temperature above 50 deg C and subsequent calcination of the precipitate. Improved purification with respect to metallic impurities is obtained, and the product beryllium oxide sinters reproducibly to a high density. (AEC)

  2. Microstructure and electrochemical properties of boron-doped mesocarbon microbeads

    SciTech Connect

    Kim, C.; Fujino, T.; Miyashita, K.; Hayashi, T.; Endo, M.; Dresselhaus, M.S.

    2000-04-01

    The microstructure and electrochemical properties of pristine and boron-doped mesocarbon microbeads (MCMBs) were comparatively studied by X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, and electrochemical measurements. The authors examined the correlation between the boron-doping effect and the electrochemical properties of boron-doped MCMBs prepared at different heat-treatment temperatures. It was found that boron doping in MCMBs starts above 1,800 C, and then the substitution reaction proceeds with increasing heat-treatment temperature. The effect of boron doping is to accelerate graphitization of MCMBs for heat-treatment temperatures in the range from 1,800 to 2,500 C. Electrochemical lithium intercalation takes place at a higher potential in boron-doped MCMBs than in undoped MCMBs, presumably because the substitutional boron acts as an electron acceptor in the MCMBs.

  3. Beryllium and boron constraints on an early Galactic bright phase

    NASA Technical Reports Server (NTRS)

    Fields, Brian D.; Schramm, David N.; Truran, James W.

    1993-01-01

    The recent observations of Be and B in metal-deficient halo dwarfs are used to constrain a 'bright phase' of enhanced cosmic-ray flux in the early Galaxy. Assuming that this Be and B arises from cosmic-ray spallation in the early Galaxy, limits are placed on the intensity of the early (Population II) cosmic-ray flux relative to the present (Population I) flux. A simple estimate of bounds on the flux ratio is 1 - 40. This upper bound would restrict galaxies like our own from producing neutrino fluxes that would be detectable in any currently proposed detectors. It is found that the relative enhancement of the early flux varies inversely with the relative time of enhancement. It is noted that associated gamma-ray production via pp - pi sup 0 pp may be a significant contribution to the gamma-ray background above 100 MeV.

  4. Primordial nucleosynthesis and the abundances of beryllium and boron

    NASA Technical Reports Server (NTRS)

    Thomas, David; Schramm, David N.; Olive, Keith A.; Fields, Brian D.

    1993-01-01

    The recently attained ability to make measurements of Be and B as well as to put constraints on Li-6 abundances in metal-poor stars has led to a detailed reexamination of big bang nucleosynthesis in the A is greater than about 6 regime. The nuclear reaction network has been significantly expanded, with many new rates added. It is demonstrated that although a number of A is greater than 7 reaction rates are poorly determined, even with extreme values chosen, the standard homogeneous model is unable to produce significant yields above A = 7, and the (Li-7)/(Li-6) ratio always exceeds 500. We also preliminarily explore inhomogeneous models, such as those inspired by a first-order quark-hadron phase transition, where regions with high neutron/proton ratios can allow some leakage up to A is greater than 7. However, models that fit the A is not greater than 7 abundances still seem to have difficulty in obtaining significant A is greater than 7 yields.

  5. The Galactic Evolution of Beryllium and Boron Revisited

    NASA Astrophysics Data System (ADS)

    King, Jeremy R.

    2001-12-01

    The largest, highest-quality, and most near-homogeneously treated extant available samples of Be, B, Fe, and O abundances are analyzed on four different stellar parameter scales, considering different O abundance indicators and deriving uncertainties in their relation with the required aid of jackknife and bootstrap simulations/resampling. Despite large slope and zero-point differences, the various Fe-poor ([Fe/H]<~-1) BeB-FeO relations are found to be independent of parameter scale within the present, sometimes substantial, uncertainties. Variations in the BeB-O relations (as large as 1.12 dex/dex and 1.24 dex in slope and zero point) from differing O indicators do significantly differ; surprisingly, the largest differences are within the same parameter scale and not across different ones. The well-defined mean Be-Fe relation is Be~Fe1.16+/-0.04 the B-Fe relation is virtually identical, B~Fe1.17+/-0.08. The BeB-mean O relations show smaller dispersion than BeB-OH or BeB-O I relations alone, because of the significant reduction in parameter uncertainties, and are in remarkable agreement, indicating Be~mean O1.51+/-0.05 and B~mean O1.61+/-0.12. The latter is in good agreement with the slope (B~O1.39+/-0.08) derived for metal-rich dwarfs by Smith et al. utilizing enhanced Mg I b-f opacity and presumed reliable λ6300 [O I] and λ6158 O I features. The BeB-FeO slopes are also all in excellent agreement with the reanalysis of Garcia Lopez, who utilizes a Hipparcos-based gravity scale. The equivalence of the Be- and B-FeO slopes limits prodigious ν-process 11B production at low metallicity and suggests little Galactic evolution of the B/Be ratio. The BeB-mean O slopes differ significantly from pure ``primary'' and ``secondary'' values, requiring a combination of production mechanisms. The differing behavior of [O/Fe] and [Be/Fe] with [Fe/H] seems to rule out production by accelerated CO-rich grain debris in ejecta of Type II supernovae having progenitor masses M>~8 Msolar. Instead, the data are in fine accord with near-primary/intermediate BeB-FeO slopes produced by various two-component models, including standard GCR and superbubble production. Such models with a low-energy cosmic-ray source from supernovae restricted to very large progenitor mass may be consistent with the large Be abundance in the ultra-metal-poor dwarf G64-12 found by Primas et al.; however, they predict unobserved maxima in B/Be evolution near [Fe/H]~-2, produce too much total Li at intermediate metallicity, and have been suggested to be energetically untenable. Superbubble models considering a range of supernova progenitor mass and a constant cosmic-ray source composition predict the inferred modest or flat slopes in B/Be evolution. These models face possible difficulties in reproducing any nonprimordial Be plateaus at very low [Fe/H], and not underproducing 6Li for [Fe/H]<~-2 additional data are required to provide firmer observational constraints. The BeB/FeO ratios do not show consistent evidence for two metal-poor populations expected from bimodal (isolated supernovae and collective supernovae in superbubbles) production mechanisms, though these signatures may be lost in the scatter or have drastically different contributing fractions. Finally, comparison of the metal-poor BeB-Fe and BeB-mean O slopes suggests that [O/Fe]~-0.25 [Fe/H]-not constant, but not as steep as suggested in some recent analyses and in agreement with the shallow [O/Fe] increase with declining [Fe/H] suggested by King.

  6. Evolution of Beryllium and Boron in the Inhomogeneous Early Galaxy

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru Ken; Yoshii, Yuzuru; Kajino, Toshitaka

    1999-09-01

    A model of supernova-driven chemical evolution of the Galactic halo, recently proposed by Tsujimoto, Shigeyama, & Yoshii, is extended in order to investigate the evolution of light elements such as Be and B (BeB), which are produced mainly through spallative reactions with Galactic cosmic rays (GCRs). In this model, each supernova (SN) sweeps up the surrounding interstellar gas into a dense shell and directly enriches it with ejecta which consist of heavy elements produced in each Type II supernova with different progenitor masses. We propose a two-component source for GCRs such that both interstellar gas and fresh SN ejecta engulfed in the shell are accelerated by the shock wave. The released GCRs travel much faster than the expansion of the shell and thus produce the BeB elements far outside the shell which will be incorporated in subsequent formation of shells arising from later SNe. As a result, stars formed from coeval shells are predicted to show a large scatter in the abundance of heavy elements while exhibiting BeB abundances similar to that in the gas, with no appreciable scatter. This indicates that, contrary to heavy elements, stellar BeB abundances might be used as a good age indicator in the inhomogeneous Galactic halo. The production of BeB at early epochs is dominated by the primary process through spallation of heavy GCRs, although it is a minor component in the bulk of the GCR composition at present. We have calculated the frequency distribution of long-lived stars in the log(BeB/H)-[Fe/H] plane and find that the contour of constant frequency covering a range of -3<[Fe/H]<-1 in this plane is consistent with the observed linear trend between BeB and Fe. We show from our calculations that there is an intriguing possibility of distinguishing between standard and nonstandard big bang nucleosynthesis models if BeB abundances in several hundred halo stars are observed in the future.

  7. Cryogenic Properties of Aluminum-Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum- beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-32O F) and (- 252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMet162 material was purchased to the requirements of SAE- AMs7912, "Aluminum-Beryllium Alloy, Extrusions". O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMet162 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O-30H elongation decreased with decreasing temperature.

  8. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  9. Cryogenic properties of aluminum-beryllium and beryllium oxide materials

    NASA Astrophysics Data System (ADS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-12-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMet162 (38%Al-62%Be), at cryogenic (-195.5°C (-320°F) and (-252.8°C) (-423°F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8°C. AlBeMet162 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."1 O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium.2 The ultimate tensile and yield strengths for extruded AlBeMet162 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMet162 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  10. Boron in the Lithium-Rich K-Giants: A Critical Test of Deep Stellar Mixing Versus Brown-Dwarf Ingestion

    NASA Astrophysics Data System (ADS)

    de la Reza, Ramiro

    2000-07-01

    We will observe the B I 2500Angstrom lines in four Li-rich K- giants using HST with STIS/G230M in order to test two different evolutionary scenarios invoked to explain the high Li abundances: the cool bottom process {CBP} versus the possible accretion of brown dwarfs/planets. This test utilizes the two following properties of boron: among the three light elements {Li, Be, and B} which are easily destroyed in stars by {p, Alpha} reactions, B is the least fragile to nuclear destruction. In addition, unlike Li which can be created under certain conditions in stellar mixing, B can only be destroyed. The hypothetical mixing mechanism, CBP, produces Li by introducing deeper mixing to hotter layers such that ^7Li is created via ^3He{alpha, Gamma}^7Be{e^-, anti- Nu}^7Li. A by-product of CBP is the total destruction of pre- existing Be and B. If B I is absent from the spectra, we will prove that deep mixing has occurred. In an accretion scenario, the increase in the Li abundance caused by the deposition of fresh material onto the red giant from a substellar mass companion will also result in an increase in the Be and B abundances. Because B is more robust to nuclear burning than Be, as well as initially being 20 times more abundant, spectroscopy of the B I lines will provide a solid and definitive test of whether the process that creates these chemically peculiar giants is a new type of internal mixing, or the ingestion of a substellar mass companion.

  11. A Reconsideration of Acute Beryllium Disease

    PubMed Central

    Cummings, Kristin J.; Stefaniak, Aleksandr B.; Virji, M. Abbas; Kreiss, Kathleen

    2009-01-01

    Context Although chronic beryllium disease (CBD) is clearly an immune-mediated granulomatous reaction to beryllium, acute beryllium disease (ABD) is commonly considered an irritative chemical phenomenon related to high exposures. Given reported new cases of ABD and projected increased demand for beryllium, we aimed to reevaluate the patho physiologic associations between ABD and CBD using two cases identified from a survey of beryllium production facility workers. Case Presentation Within weeks after exposure to beryllium fluoride began, two workers had systemic illness characterized by dermal and respiratory symptoms and precipitous declines in pulmonary function. Symptoms and pulmonary function abnormalities improved with cessation of exposure and, in one worker, recurred with repeat exposure. Bronchoalveolar lavage fluid analyses and blood beryllium lymphocyte proliferation tests revealed lymphocytic alveolitis and cellular immune recognition of beryllium. None of the measured air samples exceeded 100 μg/m3, and most were < 10 μg/m3, lower than usually described. In both cases, lung biopsy about 18 months after acute illness revealed noncaseating granulomas. Years after first exposure, the workers left employment because of CBD. Discussion Contrary to common understanding, these cases suggest that ABD and CBD represent a continuum of disease, and both involve hypersensitivity reactions to beryllium. Differences in disease presentation and progression are likely influenced by the solubility of the beryllium compound involved. Relevance to Practice ABD may occur after exposures lower than the high concentrations commonly described. Prudence dictates limitation of further beryllium exposure in both ABD and CBD. PMID:19672405

  12. Optimization of beryllium for fusion blanket applications

    SciTech Connect

    Billone, M.C.

    1993-12-31

    The primary function of beryllium in a fusion reactor blanket is neutron multiplication to enhance tritium breeding. However, because heat, tritium and helium will be generated in and/or transported through beryllium and because the beryllium is in contact with other blanket materials, the thermal, mechanical, tritium/helium and compatibility properties of beryllium are important in blanket design. In particular, tritium retention during normal operation and release during overheating events are safety concerns. Accommodating beryllium thermal expansion and helium-induced swelling are important issues in ensuring adequate lifetime of the structural components adjacent to the beryllium. Likewise, chemical/metallurgical interactions between beryllium and structural components need to be considered in lifetime analysis. Under accident conditions the chemical interaction between beryllium and coolant and breeding materials may also become important. The performance of beryllium in fusion blanket applications depends on fabrication variables and operational parameters. First the properties database is reviewed to determine the state of knowledge of beryllium performance as a function of these variables. Several design calculations are then performed to indicate ranges of fabrication and operation variables that lead to optimum beryllium performance. Finally, areas for database expansion and improvement are highlighted based on the properties survey and the design sensitivity studies.

  13. US Beryllium Case Registry through 1977

    SciTech Connect

    Sprince, N.L.; Kazemi, H.

    1980-02-01

    A synopsis of the cases reported to the Beryllium Case Registry between 1973 and 1977 is presented. As of 1973, there were 832 cases of beryllium disease entered into the Registry. In the five years since that report, 55 additional cases have been added, 40 men and 15 women. Exposures occured in the electronics and nuclear industries in the production and use of beryllium containing alloys and beryllium oxide ceramis. Pathological changes in the lung tissue are described. Cases continue to be reported in which the diagnosis was sarcoidosis until the history of beryllium exposure led to the finding of beryllium in the lung tissue or mediastinal lymph node biopsy. Data from the Registry support the fact that chronic beryllium disease is a continued occupational hazard.

  14. Notes on UHV beryllium windows

    SciTech Connect

    Hartman, P.L.

    1986-10-01

    Techniques are described for making large ultrahigh vacuum beryllium windows for use in synchrotron radiation installations. Procedures are given for affecting both hard brazed seals and demountable seals involving either lead or copper gaskets. Brazed seals can be made to either stainless steel or copper. Possible alternative methods are suggested.

  15. Worker Environment Beryllium Characterization Study

    SciTech Connect

    NSTec Environment, Safety, Health & Quality

    2009-12-28

    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, “Minnema Report.”

  16. OVERVIEW OF BERYLLIUM SAMPLING AND ANALYSIS

    SciTech Connect

    Brisson, M

    2009-04-01

    Because of its unique properties as a lightweight metal with high tensile strength, beryllium is widely used in applications including cell phones, golf clubs, aerospace, and nuclear weapons. Beryllium is also encountered in industries such as aluminium manufacturing, and in environmental remediation projects. Workplace exposure to beryllium particulates is a growing concern, as exposure to minute quantities of anthropogenic forms of beryllium may lead to sensitization and to chronic beryllium disease, which can be fatal and for which no cure is currently known. Furthermore, there is no known exposure-response relationship with which to establish a 'safe' maximum level of beryllium exposure. As a result, the current trend is toward ever lower occupational exposure limits, which in turn make exposure assessment, both in terms of sampling and analysis, more challenging. The problems are exacerbated by difficulties in sample preparation for refractory forms of beryllium, such as beryllium oxide, and by indications that some beryllium forms may be more toxic than others. This chapter provides an overview of sources and uses of beryllium, health risks, and occupational exposure limits. It also provides a general overview of sampling, analysis, and data evaluation issues that will be explored in greater depth in the remaining chapters. The goal of this book is to provide a comprehensive resource to aid personnel in a wide variety of disciplines in selecting sampling and analysis methods that will facilitate informed decision-making in workplace and environmental settings.

  17. Beryllium in the environment: a review.

    PubMed

    Taylor, Tammy P; Ding, Mei; Ehler, Deborah S; Foreman, Trudi M; Kaszuba, John P; Sauer, Nancy N

    2003-02-01

    Beryllium is an important industrial metal because of its unusual material properties: it is lighter than aluminum and six times stronger than steel. Often alloyed with other metals such as copper, beryllium is a key component of materials used in the aerospace and electronics industries. Beryllium has a small neutron cross-section, which makes it useful in the production of nuclear weapons and in sealed neutron sources. Unfortunately, beryllium is one of the most toxic elements in the periodic table. It is responsible for the often-fatal lung disease, Chronic Beryllium Disease (CBD) or berylliosis, and is listed as a Class A EPA carcinogen. Coal-fired power plants, industrial manufacturing and nuclear weapons production and disposal operations have released beryllium to the environment. This contamination has the potential to expose workers and the public to beryllium. Despite the increasing use of beryllium in industry, there is surprisingly little published information about beryllium fate and transport in the environment. This information is crucial for the development of strategies that limit worker and public exposure. This review summarizes the current understanding of beryllium health hazards, current regulatory mandates, environmental chemistry, geochemistry and environmental contamination. PMID:12638707

  18. Beryllium - A Unique Material in Nuclear Applications

    SciTech Connect

    T., A. Tomberlin

    2004-11-01

    Beryllium, due to its unique combination of structural, chemical, atomic number, and neutron absorption cross section characteristics, has been used successfully as a neutron reflector for three generations of nuclear test reactors at the Idaho National Engineering and Environmental Laboratory (INEEL). The Advanced Test Reactor (ATR), the largest test reactor in the world, has utilized five successive beryllium neutron reflectors and is scheduled for continued operation with a sixth beryllium reflector. A high radiation environment in a test reactor produces radiation damage and other changes in beryllium. These changes necessitate safety analysis of the beryllium, methods to predict performance, and appropriate surveillances. Other nuclear applications also utilize beryllium. Beryllium, given its unique atomic, physical, and chemical characteristics, is widely used as a “window” for x-rays and gamma rays. Beryllium, intimately mixed with high-energy alpha radiation emitters has been successfully used to produce neutron sources. This paper addresses operational experience and methodologies associated with the use of beryllium in nuclear test reactors and in “windows” for x-rays and gamma rays. Other nuclear applications utilizing beryllium are also discussed.

  19. NIFTI and DISCOS: New concepts for a compact accelerator neutron source for boron neutron capture therapy applications

    SciTech Connect

    Powell, J.; Ludewig, H.; Todosow, M.; Reich, M.

    1995-06-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses fluoride compounds, such as lead or beryllium fluoride, to efficiently degrade high energy neutrons from the lithium target to the lower energies required for BNCT. The fluoride compounds are in turn encased in an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron filter, which has a deep window in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films or sheets of discrete droplets--through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is re-accelerated by an applied DC electric field. The DISCOS approach enables the accelerator--target facility to operate with a beam energy only slightly above the threshold value for neutron production--resulting in an output beam of low-energy epithermal neutrons--while achieving a high yield of neutrons per milliamp of proton beam current. Parametric trade studies of the NIFTI and DISCOS concepts are described. These include analyses of a broad range of NIFTI designs using the Monte carlo MCNP neutronics code, as well as mechanical and thermal-hydraulic analyses of various DISCOS designs.

  20. Defense programs beryllium good practice guide

    SciTech Connect

    Herr, M.

    1997-07-01

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D&D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is likely to generate dusts, mists, fumes, or small particulates. A beryllium exposure control program should minimize airborne concentrations, the potential for and spread of contamination, the number of times individuals are exposed to beryllium, and the number of employees who may be potentially exposed.

  1. Nonoccupational beryllium disease masquerading as sarcoidosis: identification by blood lymphocyte proliferative response to beryllium.

    PubMed

    Newman, L S; Kreiss, K

    1992-05-01

    Chronic granulomatous lung disease caused by industrial exposure to beryllium continues to occur, but no community cases have been reported in more than 30 yr. With the advent of a blood screening test that detects beryllium sensitization, physicians can discriminate chronic beryllium disease from sarcoidosis. A 56-yr-old woman in whom sarcoidosis was diagnosed had an unremarkable occupational history, but her husband was a beryllium production worker. Blood and bronchoalveolar lavage lymphocyte transformation tests, measuring the beryllium-specific cellular immune response, were abnormal, confirming a diagnosis of chronic beryllium disease. Chronic beryllium disease continues to occur in the nonoccupational setting and among bystanders in industry, masquerading as sarcoidosis. Because even transient or possibly low levels of exposure may cause disease, this case has important implications for how clinicians, industry, and government agencies define the populations at risk of chronic beryllium disease. PMID:1586067

  2. Direct current sputtering of boron from boron/boron mixtures

    DOEpatents

    Timberlake, J.R.; Manos, D.; Nartowitz, E.

    1994-12-13

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod. 2 figures.

  3. Tritium behavior in ITER beryllium

    SciTech Connect

    Longhurst, G.R.

    1990-10-01

    The beryllium neutron multiplier in the ITER breeding blanket will generate tritium through transmutations. That tritium constitutes a safety hazard. Experiments evaluating tritium storage and release mechanisms have shown that most of the tritium comes out in a burst during thermal ramping. A small fraction of retained tritium is released by thermally activated processes. Analysis of recent experimental data shows that most of the tritium resides in helium bubbles. That tritium is released when the bubbles undergo swelling sufficient to develop porosity that connects with the surface. That appears to occur when swelling reaches about 10--15%. Other tritium appears to be stored chemically at oxide inclusions, probably as Be(OT){sub 2}. That component is released by thermal activation. There is considerable variation in published values for tritium diffusion through the beryllium and solubility in it. Data from experiments using highly irradiated beryllium from the Idaho National Engineering Laboratory showed diffusivity generally in line with the most commonly accepted values for fully dense material. Lower density material, planned for use in the ITER blanket may have very short diffusion times because of the open structure. The beryllium multiplier of the ITER breeding blanket was analyzed for tritium release characteristics using temperature and helium production figures at the midplane generated in support of the ITER Summer Workshop, 1990 in Garching. Ordinary operation, either in Physics or Technology phases, should not result in the release of tritium trapped in the helium bubbles. Temperature excursions above 600{degree}C result in large-scale release of that tritium. 29 refs., 10 figs., 3 tabs.

  4. Tailoring material properties of sputtered beryllium

    SciTech Connect

    McEachern, R.M.

    1999-03-01

    Doped beryllium is a material of considerable interest to both the ICF and the weapons communities, as well as finding application in specialized industrial settings (e.g., x-ray windows and mirrors). Some of these uses require conformal coating of thin films on (possibly) irregularly-shaped surfaces. Physical vapor deposition (PVD) is often used to accomplish this, and sputtering is often the technique of choice. Among its advantages are that the depositing atoms are relatively energetic, leading to more compact films. Moreover, by simply applying a voltage bias to the substrate, ambient noble gas ions will bombard the growing film, which can cause further densification and other modifications to the microstructure. Sputtering is also well suited to the introduction of dopants, even those that are insoluble. Most applications of these novel materials will require fundamental knowledge of their properties. Because so many can be devised, such information is generally unavailable. The objective of the effort has been to systematically study the properties of films produced under different conditions, with an emphasis on surface finish and permeability. They have made extensive use of atomic force microscopy (AFM) and electron microscopy to determine the microstructure of the films, along with composition probes (mainly x-ray fluorescence) to quantify the chemical structure. The studies can be roughly divided into three categories. First, there are those in which the properties of pure or Cu-doped Be films have been investigated, especially on randomly-agitated spherical capsules. Included are studies of the effects of a constant substrate bias ranging from 0 to 120 v and application of an intermittent bias during deposition. Second, there are experiments in which the structure of the depositing films has been modified via the incorporation of dopants, primarily boron. Finally, there have been numerous attempts to characterize the permeability of Be coatings at temperatures ranging from 200 to 500 C.

  5. MEASUREMENTS OF THE PROPERTIES OF BERYLLIUM FOIL

    SciTech Connect

    ZHAO,Y.; WANG,H.

    2000-03-31

    The electrical conductivity of beryllium at radio frequency (800 MHz) and liquid nitrogen temperature were investigated and measured. This summary addresses a collection of beryllium properties in the literature, an analysis of the anomalous skin effect, the test model, the experimental setup and improvements, MAFIA simulations, the measurement results and data analyses. The final results show that the conductivity of beryllium is not as good as indicated by the handbook, yet very close to copper at liquid nitrogen temperature.

  6. Brazing of beryllium for structural applications

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.

    1972-01-01

    Progress made in fabricating a beryllium compression tube structure and a stiffened beryllium panel. The compression tube was 7.6cm in diameter and 30.5cm long with titanium end fittings. The panel was 203cm long and stiffened with longitudinal stringers. Both units were assembled by brazing with BAg-18 braze alloy. The detail parts were fabricated by hot forming 0.305cm beryllium sheet and the brazing parameters established.

  7. Inhibited solid propellant composition containing beryllium hydride

    NASA Technical Reports Server (NTRS)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  8. The beryllium "double standard" standard.

    PubMed

    Egilman, David S; Bagley, Sarah; Biklen, Molly; Golub, Alison Stern; Bohme, Susanna Rankin

    2003-01-01

    Brush Wellman, the world's leading producer and supplier of beryllium products, has systematically hidden cases of beryllium disease that occurred below the threshold limit value (TLV) and lied about the efficacy of the TLV in published papers, lectures, reports to government agencies, and instructional materials prepared for customers and workers. Hypocritically, Brush Wellman instituted a zero exposure standard for corporate executives while workers and customers were told the 2 microgram standard was "safe." Brush intentionally used its workers as "canaries for the plant," and referred to them as such. Internal documents and corporate depositions indicate that these actions were intentional and that the motive was money. Despite knowledge of the inadequacy of the TLV, Brush has successfully used it as a defense against lawsuits brought by injured workers and as a sales device to provide reassurance to customers. Brush's policy has reaped an untold number of victims and resulted in mass distribution of beryllium in consumer products. Such corporate malfeasance is perpetuated by the current market system, which is controlled by an organized oligopoly that creates an incentive for the neglect of worker health and safety in favor of externalizing costs to victimized workers, their families, and society at large. PMID:14758859

  9. Recommended design correlations for S-65 beryllium

    SciTech Connect

    Billone, M.C.

    1995-12-31

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined form the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing(HIP). The performance of plasma-sprayed beryllium is discussed but not quantified.

  10. MANAGING BERYLLIUM IN NUCLEAR FACILITY APPLICATIONS

    SciTech Connect

    R. Rohe; T. N. Tranter

    2011-12-01

    Beryllium plays important roles in nuclear facilities. Its neutron multiplication capability and low atomic weight make it very useful as a reflector in fission reactors. Its low atomic number and high chemical affinity for oxygen have led to its consideration as a plasma-facing material in fusion reactors. In both applications, the beryllium and the impurities in it become activated by neutrons, transmuting them to radionuclides, some of which are long-lived and difficult to dispose of. Also, gas production, notably helium and tritium, results in swelling, embrittlement, and cracking, which means that the beryllium must be replaced periodically, especially in fission reactors where dimensional tolerances must be maintained. It has long been known that neutron activation of inherent iron and cobalt in the beryllium results in significant {sup 60}Co activity. In 2001, it was discovered that activation of naturally occurring contaminants in the beryllium creates sufficient {sup 14}C and {sup 94}Nb to render the irradiated beryllium 'Greater-Than-Class-C' for disposal in U.S. radioactive waste facilities. It was further found that there was sufficient uranium impurity in beryllium that had been used in fission reactors up to that time that the irradiated beryllium had become transuranic in character, making it even more difficult to dispose of. In this paper we review the extent of the disposal issue, processes that have been investigated or considered for improving the disposability of irradiated beryllium, and approaches for recycling.

  11. Beryllium Use in the Advanced Test Reactor

    SciTech Connect

    Glen R. Longhurst

    2007-12-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) began operation in 1967. It makes use of a unique serpentine fuel core design and a beryllium reflector. Reactor control is achieved with rotating beryllium cylinders to which have been fastened plates of hafnium. Over time, the beryllium develops rather high helium content because of nuclear transmutations and begins to swell. The beryllium must be replaced at nominally 10-year intervals. Determination of when the replacement is made is by visual observation using a periscope to examine the beryllium surface for cracking and swelling. Disposition of the irradiated beryllium was once accomplished in the INL’s Radioactive Waste Management Complex, but that is no longer possible. Among contributing reasons are high levels of specific radioactive contaminants including transuranics. The INL is presently considering disposition pathways for this irradiated beryllium, but presently is storing it in the canal adjacent to the reactor. Numerous issues are associated with this situation including (1) Is there a need for ultra-low uranium material? (2) Is there a need to recover tritium from irradiated beryllium either because this is a strategic material resource or in preparation for disposal? (3) Is there a need to remove activation and fission products from irradiated beryllium? (4) Will there be enough material available to meet requirements for research reactors (fission and fusion)? In this paper will be discussed the present status of considerations on these issues.

  12. Beryllium thin films for resistor applications

    NASA Technical Reports Server (NTRS)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  13. III 1 BORON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron chemistry, analysis, environmental exposure, metabolism, anthropomorphic sources, beneficial physiological effects, and toxicity are reviewed. Boron is widely distributed in nature and always occurs bound to oxygen. Boron biochemistry is essentially that of boric acid, which forms ester comple...

  14. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    NASA Astrophysics Data System (ADS)

    Zasneda, Sabriani; Widita, Rena

    2010-06-01

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, α) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometrical factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg 10B/g blood.

  15. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    SciTech Connect

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometrical factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.

  16. Fracture toughness of hot-pressed beryllium

    NASA Technical Reports Server (NTRS)

    Lemon, D. D.; Brown, W. F., Jr.

    1985-01-01

    This paper presents the results of an investigation into the fracture toughness, sustained-load flaw growth, and fatigue-crack propagation resistance of S200E hot-pressed beryllium at room temperature. It also reviews the literature pertaining to the influence of various factors on the fracture toughness of hot-pressed beryllium determined using fatigue-cracked specimens.

  17. Process for synthesis of beryllium chloride dietherate

    DOEpatents

    Bergeron, Charles; Bullard, John E.; Morgan, Evan

    1991-01-01

    A low temperature method of producing beryllium chloride dietherate through the addition of hydrogen chloride gas to a mixture of beryllium metal in ether in a reaction vessel is described. A reflux condenser provides an exit for hydrogen produced form the reaction. A distillation condenser later replaces the reflux condenser for purifying the resultant product.

  18. Layered carbon lattices and their influence on the nature of lithium bonding in lithium intercalated carbon anodes.

    SciTech Connect

    Scanlon, L.G.

    1998-05-27

    Ab initio molecular orbital calculations have been used to investigate the nature of lithium bonding in stage 1 lithium intercalated carbon anodes. This has been approximated by using layered carbon lattices such as coronene, (C{sub 24}H{sub 12}),anthracene, and anthracene substituted with boron. With two coronene carbon lattices forming a sandwich structure and intercalated with either 2, 3, 4 or 6 six lithiums, it has been found that the predominant mode of bonding for the lithium is at the carbon edge sites as opposed to bonding at interior carbon hexagon sites. Formation of all structures is thermodynamically allowed except for the two lithium case in which there is repulsion between the lattices. The optimized structure with six lithiums gives a reasonable approximation for the stage 1 lithium intercalated carbon anode. In this case the lithium to carbon ratio is 1:8 versus 1:6 occurring in the stage 1 graphite. The coronene lattices are eclipsed with a separation of 4.03 {angstrom}. However, there is a slight ruffling of the lattice. Separation between adjacent lithiums is either 3.32 {angstrom} or 2.98 {angstrom}. Even though the separation between lithiums is very small, composition of the molecular orbitals suggests that there is no lithium cluster formation. The highest occupied molecular orbitals are composed of a combination of lithium and carbon orbitals. In contrast, in the C{sub 60} fullerene lattice with three and five lithiums intercalated, there are molecular orbitals composed only of lithiums, indicative of cluster formation. For anthracene and boron substituted anthracene, lithium bonding takes place within the carbon hexagon sites. The separation between lithiums in a sandwich type structure with two anthracenes in the eclipsed conformation is 5.36 {angstrom}. The effect of boron in a carbon lattice has been evaluated by comparing the difference in behavior of a single anthracene lattice reacting with a dilithium cluster as compared to a 1, 4, 5, 8-tetraboroanthracene lattice. The effect of boron substitution is to increases lattice flexibility by allowing the lattice to twist and lithium to bond at adjacent hexagon sites. The thermodynamic feasibility of the reaction between the dilithium cluster and the boron substituted anthracene lattice is enhanced.

  19. Electron impact ionization cross sections of beryllium and beryllium hydrides

    NASA Astrophysics Data System (ADS)

    Maihom, Thana; Sukuba, Ivan; Janev, Ratko; Becker, Kurt; Märk, Tilmann; Kaiser, Alexander; Limtrakul, Jumras; Urban, Jan; Mach, Pavel; Probst, Michael

    2013-01-01

    We report calculated electron impact ionization cross sections (EICSs) for beryllium (Be) and some of its hydrides from the ionization threshold to 1 keV using the Deutsch-Märk (DM) and the Binary-Encounter-Bethe (BEB) formalisms. The positions of the maxima of the DM and BEB cross sections are very close in each case while the DM cross section values at the maxima are consistently higher. Our calculations for Be are in qualitative agreement with results from earlier calculations (convergent close-coupling, R matrix, distorted-wave and plane-wave Born approximation) in the low energy region. For the various beryllium hydrides, we know of no other available data. The maximum cross section values for the various compounds range from 4.0 × 10-16 to 9.4 × 10-16 cm2 at energies of 44 to 56 eV for the DM cross sections and 3.0 × 10-16 to 5.4 × 10-16 cm2 at energies of 40.5 to 60 eV for the BEB cross sections.

  20. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    SciTech Connect

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  1. Some characteristics of fine beryllium particle combustion

    NASA Astrophysics Data System (ADS)

    Davydov, D. A.; Kholopova, O. V.; Kolbasov, B. N.

    2007-08-01

    Beryllium dust will be produced under plasma interaction with beryllium armor of the first wall in ITER. Exothermal reaction of this dust with water steam or air, which can leak into the reactor vacuum chamber in some accidents, gives concern in respect to reactor safety. Results of studies devoted to combustion of fine beryllium particles are reviewed in the paper. A chemically active medium and elevated temperature are prerequisite to the combustion of beryllium particles. Their ignition is hampered by oxide films, which form a diffusion barrier on the particle surface as a result of pre-flame oxidation. The temperature to initiate combustion of particles depends on flame temperature, particle size, composition of combustible mixture, heating rate and other factors. In mixtures enriched with combustible, the flame temperature necessary to ignite individual particles approaches the beryllium boiling temperature.

  2. Viscosity of molten lithium, thorium and beryllium fluorides mixtures

    NASA Astrophysics Data System (ADS)

    Merzlyakov, Alexander V.; Ignatiev, Victor V.; Abalin, Sergei S.

    2011-12-01

    Considering development of Molten Salt Fast Reactor (MSFR) concept, following Molten Salt fluorides mixtures have been chosen as an object for viscosity studies in this work (in mol%): 78LiF-22ThF 4; 71LiF-27ThF 4-2BeF 2 and 75LiF-20ThF 4-5BeF 2. Additionally, the effect of the 3 mol% CeF 3 additives on viscosity of the molten 75LiF-20ThF 4-5BeF 2 (mol%) salt mixture has been investigated experimentally. The method of torsional oscillations of cylindrical crucible filled by molten fluorides mixture has been chosen for kinematic viscosity measurement at temperatures up to 800-850 °C. In temperature ranges, where melts behave as normal liquids, dependences on viscosity vs. temperature are received: ν = А exp [B/T(K)], where ν - kinematic viscosity, m 2/s; T - temperature, K. The kinematic viscosity Rout mean squares (RMS) estimated in the assumption about dispersion homoscedasticity is (0.04-0.12) × 10 -6 (m 2/s). Discrepancies left in the data of viscosity for molten mixtures of LiF, BeF 2 and ThF 4 received by different researchers need further investigations in this area to be continued.

  3. Can mirror matter solve the the cosmological lithium problem?

    SciTech Connect

    Coc, Alain

    2014-05-02

    The abundance of lithium-7 confronts cosmology with a long lasting inconsistency between the predictions of standard Big Bang Nucleosynthesis with the baryonic density determined from the Cosmic Microwave Background observations on the one hand, and the spectroscopic determination of the lithium-7 abundance on the other hand. We investigated the influence of the existence of a mirror world, focusing on models in which mirror neutrons can oscillate into ordinary neutrons. Such a mechanism allows for an effective late time neutron injection, which induces an increase of the destruction of beryllium-7and thus a lower final lithium-7 abundance.

  4. Can mirror matter solve the the cosmological lithium problem?

    NASA Astrophysics Data System (ADS)

    Coc, Alain; Uzan, Jean-Philippe; Vangioni, Elisabeth

    2014-05-01

    The abundance of lithium-7 confronts cosmology with a long lasting inconsistency between the predictions of standard Big Bang Nucleosynthesis with the baryonic density determined from the Cosmic Microwave Background observations on the one hand, and the spectroscopic determination of the lithium-7 abundance on the other hand. We investigated the influence of the existence of a mirror world, focusing on models in which mirror neutrons can oscillate into ordinary neutrons. Such a mechanism allows for an effective late time neutron injection, which induces an increase of the destruction of beryllium-7and thus a lower final lithium-7 abundance.

  5. Accelerator-driven boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Edgecock, Rob

    2014-05-01

    Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.

  6. Technical issues for beryllium use in fusion blanket applications

    SciTech Connect

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented.

  7. Exposure-response analysis for beryllium sensitization and chronic beryllium disease among workers in a beryllium metal machining plant.

    PubMed

    Madl, Amy K; Unice, Ken; Brown, Jay L; Kolanz, Marc E; Kent, Michael S

    2007-06-01

    The current occupational exposure limit (OEL) for beryllium has been in place for more than 50 years and was believed to be protective against chronic beryllium disease (CBD) until studies in the 1990s identified beryllium sensitization (BeS) and subclinical CBD in the absence of physical symptoms. Inconsistent sampling and exposure assessment methodologies have often prevented the characterization of a clear exposure-response relationship for BeS and CBD. Industrial hygiene (3831 personal lapel and 616 general area samples) and health surveillance data from a beryllium machining facility provided an opportunity to reconstruct worker exposures prior to the ascertainment of BeS or the diagnosis of CBD. Airborne beryllium concentrations for different job titles were evaluated, historical trends of beryllium levels were compared for pre- and postengineering control measures, and mean and upper bound exposure estimates were developed for workers identified as beryllium sensitized or diagnosed with subclinical or clinical CBD. Five approaches were used to reconstruct historical exposures of each worker: industrial hygiene data were pooled by year, job title, era of engineering controls, and the complete work history (lifetime weighted average) prior to diagnosis. Results showed that exposure metrics based on shorter averaging times (i.e., year vs. complete work history) better represented the upper bound worker exposures that could have contributed to the development of BeS or CBD. Results showed that beryllium-sensitized and CBD workers were exposed to beryllium concentrations greater than 0.2 microg/m3 (95th percentile), and 90% were exposed to concentrations greater than 0.4 microg/m3 (95th percentile) within a given year of their work history. Based on this analysis, BeS and CBD generally occurred as a result of exposures greater than 0.4 microg/m3 and maintaining exposures below 0.2 microg/m3 95% of the time may prevent BeS and CBD in the workplace. PMID:17474035

  8. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  9. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  10. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  11. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  12. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  13. Beryllium Recycling in the United States in 2000

    USGS Publications Warehouse

    Cunningham, Larry D.

    2003-01-01

    This report describes the flow of beryllium in the United States in 2000 with emphasis on the extent to which beryllium was either recycled or reused. Beryllium was recycled mostly from new scrap that was generated during the manufacture of beryllium-related components. In 2000, about 35 metric tons of beryllium was either recycled or reused, about 14 percent of which was derived from old scrap. The beryllium recycling rate was calculated to be about 10 percent, and beryllium scrap recycling efficiency, about 7 percent.

  14. Beryllium recycling in the United States in 2000

    USGS Publications Warehouse

    Cunningham, Larry D.

    2004-01-01

    This report describes the flow of beryllium in the United States in 2000 with emphasis on the extent to which beryllium was either recycled or reused. Beryllium was recycled mostly from new scrap that was generated during the manufacture of beryllium-related components. In 2000, about 35 metric tons of beryllium was either recycled or reused, about 14 percent of which was derived from old scrap. The beryllium recycling rate was calculated to be about 10 percent, and beryllium scrap recycling efficiency, about 7 percent.

  15. X-ray spectroscopy of hollow argon atoms formed on a beryllium surface

    NASA Astrophysics Data System (ADS)

    Zhao, Yongtao; Xiao, Guoqing; Zhang, Xiaoan; Yang, Zhihu; Zhan, Wenlong; Chen, Ximeng; Li, Fuli

    2006-04-01

    The X-rays induced during interaction of highly charged argon ions with a beryllium surface are reported. It is found that the K shell X-ray yield of single particle during interaction of hydrogen-like argon ions was 3.6 × 10-3, which is five orders more than that of helium-like argon ions. Moreover, due to the screening the 2s electron, no K X-ray was emitted during interaction of lithium-like argon ions with the beryllium surface. It is also found that the X-ray spectrum induced by Ar17+ interacting with residual gases is very different from that induced by Ar17+ interacting with the surfaces, that provided an experimental evidence for the existence of the hollow atoms below the surface.

  16. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  17. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  18. Chemical vapor deposition, doping and characterization of boron-phosphide

    NASA Astrophysics Data System (ADS)

    Garg, S. G.

    1981-08-01

    Boron phosphide was deposited on silicon and sapphire substrates using a mixture of diborane, phosphine and purified hydrogen in a pancake type epitaxial reactor. The films deposited were of high quality. Temperature of deposition and flow rates of the constituent gases were varied during the deposition. The early growth was observed. Single crystal films of high resistivity were obtained on silicon substrates. The heterostructure between BP and SI was studied. Current conduction experiments were performed. It was concluded that a tunneling mechanism was the major contributing factor. A very low value for ionicity was established. The real part of the refractive index of boron phosphide was determined the band structure is discussed, and boron phosphide compared with other III-V compounds and group 4 elements. The films was doped with zinc, beryllium, and silicon. Conductivity was determined as a function of temperature.

  19. Beryllium at Argonne East, past and present

    SciTech Connect

    Woodring, J.L.; Davis, J.T.

    1998-07-01

    The focus of this presentation is the present activities at Argonne related to the control of beryllium exposure. However, since present activities involve some of the past uses of beryllium, the authors will review briefly the history as they have been able to resurrect it from records, memory and interviews with some of the people involved. The goal of the program is to identify past contaminated areas for remedial action, identify employees with past and current exposure who may benefit from additional medical monitoring and provide guidance and support so that any ongoing activities involving beryllium can be conducted safely.

  20. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    SciTech Connect

    Glen R. Longhurst

    2007-12-01

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  1. Carbon monoxide adsorption on beryllium surfaces

    NASA Astrophysics Data System (ADS)

    Allouche, A.

    2013-02-01

    Density functional calculations are here carried out to study the carbon monoxide molecule adsorption on pristine, hydrogenated and hydroxylated beryllium Be (0001) surfaces. The adsorption energies and structures, the activation barriers to molecular adsorption and dissociation are calculated. These reactions are described in terms of potential energy surfaces and electronic density of states. The quantum results are discussed along two directions: the beryllium surface reactivity in the domain of nuclear fusion devices and the possible usage of beryllium as a catalyst of Fischer-Tropsch-type synthesis.

  2. Combined aging of beryllium bronze

    SciTech Connect

    Duraev, P.P.; Kaplun, Yu.A.; Pastukhova, Zh.P.; Rakhshtadt, A.G.

    1986-01-01

    This article evaluates the possibility of increasing the resistance of beryllium bronze to small plastic deformations as a result of the application of stepped aging under stress. Low-temperature aging under conditions of bending under a stress of about 100 MPa was applied to alloy BrBNT1, 9Mg at 150, 180, and 210 /sup 0/C, high-temperature aging at 300 and 340 /sup 0/C under stress and without stress. As a result of applying stepped aging under stress, the elastic limit of the alloy BrBNT1, 9Mg was raised to 900 MPa. Stepped aging under stress has a substantial effect on the relaxation stability of the alloy. The procedure suggested in the article for aging may be used efficiently for treating elastic elements made of other brands of bronze as well.

  3. Beryllium-aluminum alloys for investment castings

    SciTech Connect

    Nachtrab, W.T.; Levoy, N.

    1997-05-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength.

  4. Nitrogen reactivity toward beryllium: surface reactions.

    PubMed

    Allouche, A

    2013-06-01

    Recent experiments with nitrogen as a seeding gas in fusion plasma devices together with the option of using beryllium as an armor material in the future ITER tokamak (International Thermonuclear Experimental Reactor) have raised new interest in the interactions of beryllium surfaces with nitrogen (atomic or molecular). The strong reactivity of nitrogen implies the formation of beryllium nitrite and, in conjunction with oxygen and other possible impurities, experimentalists have to consider the probability of generating various complex moieties such as imine, amine or oxyamine, and amide radicals. This chemistry would obviously dramatically perturb the plasma, and quantum investigations can be of great predictive help. Nitrogen adsorption on beryllium basal surfaces is investigated through quantum density functional theory. Different situations are examined: molecular or atomic nitrogen reactions; nitride radical adsorption or formation on surfaces; hydrogen retention on surfaces; combined nitrogen/oxygen reactivity and hydrogen retention. A tentative comparison with experiment is also proposed. PMID:23594802

  5. Chronic Beryllium Disease Prevention Program Report

    SciTech Connect

    Lee, S

    2012-03-29

    This document describes how Lawrence Livermore National Laboratory (LLNL) meets the requirements and management practices of federal regulation 10 CFR 850, 'Chronic Beryllium Disease Prevention Program (CBDPP).' This revision of the LLNL CBDPP incorporates clarification and editorial changes based on lessons learned from employee discussions, observations and reviews of Department of Energy (DOE) Complex and commercial industry beryllium (Be) safety programs. The information is used to strengthen beryllium safety practices at LLNL, particularly in the areas of: (1) Management of small parts and components; and (2) Communication of program status to employees. Future changes to LLNL beryllium activities and on-going operating experience will be incorporated into the program as described in Section S, 'Performance Feedback.'

  6. Methods of forming boron nitride

    SciTech Connect

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  7. Beryllium concentration in pharyngeal tonsils in children.

    PubMed

    Nogaj, Ewa; Kwapulinski, Jerzy; Misio?ek, Maciej; Golusi?ski, Wojciech; Kowol, Jolanta; Wiechu?a, Danuta

    2014-01-01

    Power plant dust is believed to be the main source of the increased presence of the element beryllium in the environment which has been detected in the atmospheric air, surface waters, groundwater, soil, food, and cigarette smoke. In humans, beryllium absorption occurs mainly via the respiratory system. The pharyngeal tonsils are located on the roof of the nasopharynx and are in direct contact with dust particles in inhaled air. As a result, the concentration levels of beryllium in the pharyngeal tonsils are likely to be a good indicator of concentration levels in the air. The presented study had two primary aims: to investigate the beryllium concentration in pharyngeal tonsils in children living in southern Poland, and the appropriate reference range for this element in children's pharyngeal tonsils. Pharyngeal tonsils were extracted from a total of 379 children (age 2-17 years, mean 6.2 2.7 years) living in southern Poland. Tonsil samples were mineralized in a closed cycle in a pressure mineralizer PDS 6, using 65% spectrally pure nitric acid. Beryllium concentration was determined using the ICP-AES method with a Perkin Elmer Optima 5300DVTM. The software Statistica v. 9 was used for the statistical analysis. It was found that girls had a significantly greater beryllium concentration in their pharyngeal tonsils than boys. Beryllium concentration varies greatly, mostly according to the place of residence. Based on the study results, the reference value for beryllium in pharyngeal tonsils of children is recommended to be determined at 0.02-0.04 g/g. PMID:24959774

  8. Transgenic Mouse Model of Chronic Beryllium Disease

    SciTech Connect

    Gordon, Terry

    2009-05-26

    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  9. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    PubMed

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and the use of microchannels have emerged as viable target cooling options. Neutron fields for reactor-based neutron sources provide an obvious basis of comparison for ABNS field quality. This paper compares Monte Carlo calculations of neutron field quality for an ABNS and an idealized standard reactor neutron field (ISRNF). The comparison shows that with lithium as a target, an ABNS can create a neutron field with a field quality that is significantly better (by a factor of approximately 1.2, as judged by the relative biological effectiveness (RBE)-dose that can be delivered to a tumor at a depth of 6cm) than that for the ISRNF. Also, for a beam current of 10 mA, the treatment time is calculated to be reasonable (approximately 30 min) for the boron concentrations that have been assumed. PMID:12749700

  10. Hydrogen, lithium, and lithium hydride production

    DOEpatents

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  11. Beryllium anomalies in solar-type field stars

    NASA Astrophysics Data System (ADS)

    Santos, N. C.; Israelian, G.; Randich, S.; García López, R. J.; Rebolo, R.

    2004-10-01

    We present a study of beryllium (Be) abundances in a large sample of field solar-type dwarfs and sub-giants spanning a large range of effective temperatures. The Be abundances, computed using a very uniform set of stellar parameters and near-UV spectra obtained with 3 different instruments, are used to study the depletion of this light element. The analysis shows that Be is severely depleted for F stars, as expected by the light-element depletion models. However, we also show that beryllium abundances decrease with decreasing temperature for stars cooler than ˜6000 K, a result that cannot be explained by current theoretical models including rotational mixing, but that is, at least in part, expected from the models that take into account internal wave physics. In particular, the light element abundances of the coolest and youngest stars in our sample suggest that Be, as well as lithium (Li), has already been burned early during their evolution. Furthermore, we find strong evidence for the existence of a Be-gap for solar-temperature stars. The analysis of Li and Be abundances in the sub-giants of our sample also shows the presence of one case that has still detectable amounts of Li, while Be is severely depleted. Finally, we compare the derived Be abundances with Li abundances derived using the same set of stellar parameters. This gives us the possibility to explore the temperatures for which the onset of Li and Be depletion occurs. Based on observations collected with the VLT/UT2 Kueyen telescope (Paranal Observatory, ESO, Chile) using the UVES spectrograph (Observing runs 66.C-0116 A, 66.D-0284 A, and 68.C-0058 A), and with the William Herschel and Nordic Optical Telescopes, operated at the island of La Palma by the Isaac Newton Group and jointly by Denmark, Finland, Iceland, and Norway, respectively, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  12. Beryllium colorimetric detection for high speed monitoring of laboratory environments.

    PubMed

    Taylor, Tammy P; Sauer, Nancy N

    2002-08-01

    The health consequences of beryllium (Be2+) exposure can be severe. Beryllium is responsible for a debilitating and potentially fatal lung disease, chronic beryllium disease (CBD) resulting from inhalation of beryllium particles. The US Code of Federal Register (CFR), 10 CFR 850, has established a limit of 0.2 microg beryllium/100 cm(2) as the maximum amount of beryllium allowable on surfaces to be released from beryllium work areas in Department of Energy (DOE) facilities. The analytical technique described herein reduces the time and cost of detecting beryllium on laboratory working surfaces substantially. The technique provides a positive colorimetric response to the presence of beryllium on a 30.5 cm x 30.5 cm (1 ft(2)) surface at a minimum detection of 0.2 microg/100 cm(2). The method has been validated to provide positive results for beryllium in the presence of excess iron, calcium, magnesium, copper, nickel, chromium and lead at concentrations 100 times that of beryllium and aluminum and uranium (UO2(2+)) at lesser concentrations. The colorimetric detection technique has also been validated to effectively detect solid forms of beryllium including Be(OH)2, BeCl2, BeSO4, beryllium metal and BeO. PMID:12137989

  13. Chronic beryllium disease: Diagnosis and management

    SciTech Connect

    Rossman, M.D.

    1996-10-01

    Chronic beryllium disease is predominantly a pulmonary granulomatosis that was originally described in 1946. Symptoms usually include dyspnea and cough. Fever, anorexia, and weight loss are common. Skin lesions are the most common extrathoracic manifestation. Granulomatous hepatitis, hypercalcemia, and kidney stones can also occur. Radiographic and physiologic abnormalities are similar to those in sarcoidosis. While traditionally the pathologic changes included granulomas and cellular interstitial changes, the hallmark of the disease today is the well-formed granuloma. Immunologic studies have demonstrated a cell-mediated response to beryllium that is due to an accumulation of CD4{sup +} T cells at the site of disease activity. Diagnosis depends on the demonstration of pathologic changes (i.e., granuloma) and evidence that the granuloma was caused by a hypersensitivity to beryllium (i.e., positive lung proliferative response to beryllium). Using these criteria, the diagnosis of chronic beryllium disease can now be made before the onset of clinical symptoms. Whether, with early diagnosis, the natural course of this condition will be the same as when it was traditionally diagnosed is not known. Currently, corticosteroids are used to treat patients with significant symptoms or evidence of progressive disease. 21 refs.

  14. Shockless compression and release behavior of beryllium to 110 GPa

    SciTech Connect

    Brown, J. L.; Knudson, M. D.; Alexander, C. S.; Asay, J. R.

    2014-07-21

    A magnetohydrodynamic loading technique was used to shocklessly compress beryllium to peak longitudinal stresses of 19–110 GPa and, subsequently, unload in order to determine both the compressive response and also the shear stress supported upon release. Loading strain rates were on the order of 10{sup 6 }s{sup −1}, while the unloading rates were nearly constant at 3 × 10{sup 5 }s{sup −1}. Velocimetry was used to monitor the ramp and release behavior of a beryllium/lithium fluoride window interface. After applying window corrections to infer in situ beryllium velocities, a Lagrangian analysis was employed to determine the material response. The Lagrangian wavespeed-particle velocity response is integrated to generate the stress-strain path, average change in shear stress over the elastic unloading, and estimates of the shear modulus at peak compression. These data are used to infer the pressure dependence of the flow strength at the unloading rate. Comparisons to several strength models reveal good agreement to 45 GPa, but the data indicate 20%–30% higher strength near 100 GPa.

  15. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  16. Lithium nephrotoxicity.

    PubMed

    Azab, Abed N; Shnaider, Alla; Osher, Yamima; Wang, Dana; Bersudsky, Yuly; Belmaker, R H

    2015-12-01

    Reports of toxic effects on the kidney of lithium treatment emerged very soon after lithium therapy was introduced. Lithium-induced nephrogenic diabetes insipidus is usually self-limiting or not clinically dangerous. Some reports of irreversible chronic kidney disease and renal failure were difficult to attribute to lithium treatment since chronic kidney disease and renal failure exist in the population at large. In recent years, large-scale epidemiological studies have convincingly shown that lithium treatment elevates the risk of chronic kidney disease and renal failure. Most patients do not experience renal side effects. The most common side effect of polyuria only weakly predicts increasing creatinine or reduced kidney function. Among those patients who do experience decrease in creatinine clearance, some may require continuation of lithium treatment even as their creatinine increases. Other patients may be able to switch to a different mood stabilizer medication, but kidney function may continue to deteriorate even after lithium cessation. Most, but not all, evidence today recommends using a lower lithium plasma level target for long-term maintenance and thereby reducing risks of severe nephrotoxicity. PMID:26043842

  17. Liposomal boron delivery for neutron capture therapy.

    PubMed

    Nakamura, Hiroyuki

    2009-01-01

    Tumor cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between (10)B and thermal neutrons. The thermal neutrons have an energy of 0.025 eV, clearly below the threshold energy required to ionize tissue components. However, neutron capture by (10)B produces lithium ion and helium (alpha-particles), which are high linear energy transfer (LET) particles, and dissipate their kinetic energy before traveling one cell diameter (5-9 microm) in biological tissues, ensuring their potential for precise cell killing. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer, and hepatoma using two boron compounds: sodium borocaptate (Na(2)(10)B(12)H(11)SH; Na(2)(10)BSH) and l-p-boronophenylalanine (l-(10)BPA). These low molecular weight compounds are cleared easily from the cancer cells and blood. Therefore, high accumulation and selective delivery of boron compounds into tumor tissues are most important to achieve effective BNCT and to avoid damage of adjacent healthy cells. Much attention has been focused on the liposomal drug delivery system (DDS) as an attractive, intelligent technology of targeting and controlled release of (10)B compounds. Two approaches have been investigated for incorporation of (10)B into liposomes: (1) encapsulation of (10)B compounds into liposomes and (2) incorporation of (10)B-conjugated lipids into the liposomal bilayer. Our laboratory has developed boron ion cluster lipids for application of the latter approach. In this chapter, our boron lipid liposome approaches as well as recent developments of the liposomal boron delivery system are summarized. PMID:19913168

  18. Lithium nephrotoxicity.

    PubMed

    Oliveira, Jobson Lopes de; Silva Júnior, Geraldo Bezerra da; Abreu, Krasnalhia Lívia Soares de; Rocha, Natália de Albuquerque; Franco, Luiz Fernando Leonavicius G; Araújo, Sônia Maria Holanda Almeida; Daher, Elizabeth de Francesco

    2010-01-01

    Lithium has been widely used in the treatment of bipolar disorder. Its renal toxicity includes impaired urinary concentrating ability and natriuresis, renal tubular acidosis, tubulointerstitial nephritis progressing to chronic kidney disease and hypercalcemia. The most common adverse effect is nephrogenic diabetes insipidus, which affects 20-40% of patients within weeks of lithium initiation. Chronic nephropathy correlates with duration of lithium therapy. Early detection of renal dysfunction should be achieved by rigorous monitoring of patients and close collaboration between psychiatrists and nephrologists. Recent experimental and clinical studies begin to clarify the mechanisms by which lithium induces changes in renal function. The aim of this study was to review the pathogenesis, clinical presentation, histopathological aspects and treatment of lithium-induced nephrotoxicity. PMID:21152836

  19. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  20. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  1. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  2. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  3. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true What is beryllium sensitivity monitoring? 30... and Offsets; Overpayments Payment of Claims and Offset for Certain Payments § 30.508 What is beryllium sensitivity monitoring? Beryllium sensitivity monitoring shall consist of medical examinations to confirm...

  4. REVIEWS OF THE ENVIRONMENTAL EFFECTS OF POLLUTANTS: VI. BERYLLIUM

    EPA Science Inventory

    The report is a review of the scientific literature on the biological and environmental effects of beryllium. Included in the review are a general summary and a comprehensive discussion of the following topics as related to beryllium and specific beryllium compounds: physical and...

  5. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false What is beryllium sensitivity monitoring? 30... and Offsets; Overpayments Payment of Claims and Offset for Certain Payments § 30.508 What is beryllium sensitivity monitoring? Beryllium sensitivity monitoring shall consist of medical examinations to confirm...

  6. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true What is beryllium sensitivity monitoring? 30... and Offsets; Overpayments Payment of Claims and Offset for Certain Payments § 30.508 What is beryllium sensitivity monitoring? Beryllium sensitivity monitoring shall consist of medical examinations to confirm...

  7. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false What is beryllium sensitivity monitoring? 30... and Offsets; Overpayments Payment of Claims and Offset for Certain Payments § 30.508 What is beryllium sensitivity monitoring? Beryllium sensitivity monitoring shall consist of medical examinations to confirm...

  8. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false What is beryllium sensitivity monitoring? 30... sensitivity monitoring? Beryllium sensitivity monitoring shall consist of medical examinations to confirm and monitor the extent and nature of a covered Part B employee's beryllium sensitivity. Monitoring shall...

  9. Evaluation of beryllium for space shuttle components

    NASA Technical Reports Server (NTRS)

    Trapp, A. E.

    1972-01-01

    Application of beryllium to specific full-scale space shuttle structural components and assemblies was studied. Material evaluations were conducted to check the mechanical properties of as-received material to gain design information on characteristics needed for the material in the space shuttle environment, and to obtain data needed for evaluating component and panel tests. Four beryllium structural assemblies were analyzed and designed. Selected components of these assemblies, representing areas of critical loading or design/process uncertainty, were designed and tested, and two panel assemblies were fabricated. Trends in cost and weight factors were determined by progressive estimation at key points of preliminary design, final design, and fabrication to aid in a cost/weight evaluation of the use of beryllium.

  10. Mineral resource of the month: beryllium

    USGS Publications Warehouse

    Shedd, Kim B.

    2006-01-01

    Beryllium metal is lighter than aluminum and stiffer than steel. These and other properties, including its strength, dimensional stability, thermal properties and reflectivity, make it useful for aerospace and defense applications, such as satellite and space-vehicle structural components. Beryllium’s nuclear properties, combined with its low density, make it useful as a neutron reflector and moderator in nuclear reactors. Because it is transparent to most X rays, beryllium is used as X-ray windows in medical, industrial and analytical equipment.

  11. Nuclear Transmutations in HFIR's Beryllium Reflector and Their Impact on Reactor Operation and Reflector Disposal

    SciTech Connect

    Chandler, David; Maldonado, G Ivan; Primm, Trent; Proctor, Larry Duane

    2012-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory utilizes a large cylindrical beryllium reflector that is subdivided into three concentric regions and encompasses the compact reactor core. Nuclear transmutations caused by neutron activation occur in the beryllium reflector regions, which leads to unwanted neutron absorbing and radiation emitting isotopes. During the past year, two topics related to the HFIR beryllium reflector were reviewed. The first topic included studying the neutron poison (helium-3 and lithium-6) buildup in the reflector regions and its affect on beginning-of-cycle reactivity. A new methodology was developed to predict the reactivity impact and estimated symmetrical critical control element positions as a function of outage time between cycles due to helium-3 buildup and was shown to be in better agreement with actual symmetrical critical control element position data than the current methodology. The second topic included studying the composition of the beryllium reflector regions at discharge as well as during decay to assess the viability of transporting, storing, and ultimately disposing the reflector regions currently stored in the spent fuel pool. The post-irradiation curie inventories were used to determine whether the reflector regions are discharged as transuranic waste or become transuranic waste during the decay period for disposal purposes and to determine the nuclear hazard category, which may affect the controls invoked for transportation and temporary storage. Two of the reflector regions were determined to be transuranic waste at discharge and the other region was determined to become transuranic waste in less than 2 years after being discharged due to the initial uranium content (0.0044 weight percent uranium). It was also concluded that all three of the reflector regions could be classified as nuclear hazard category 3 (potential for localized consequences only).

  12. Solvent removal of beryllium from surfaces of equipment made of beryllium copper.

    PubMed

    Dufresne, A; Turcotte, V; Golshahi, H; Viau, S; Perrault, G; Dion, C

    2009-06-01

    Exposure to beryllium compounds, both by inhalation and skin contact, may result in immune sensitization and chronic beryllium disease. The objective of the present research work was to study the feasibility of removing beryllium compounds from the surfaces of devices made of Be-Cu alloy and to estimate the frequency at which the surfaces had to be rubbed in order to evaluate the likelihood that beryllium can be removed from the surfaces by serial wipe sampling at concentrations exceeding the US Department of Energy (DOE) standard limit of 0.2 microg per 100 cm2. The standard limit was exceeded after successive cleanings of moulds and plates made of Be-Cu alloy with solvents such Citranox, an acidic solvent, Alconox, Z-99 and Fantastik, basic solvents, or more neutral solvents such as Luminox and water. Citranox was the best solvent for extracting beryllium from the tested surfaces, while Alconox seemed to be the second best one. In general, warm water, Luminox and Z-99 seemed to be less efficient for extracting Be from all equipment. The results of the present study suggest that Ghost Wipes, when passed across a surface under the firm pressure of an individual's hand, can be used to detect beryllium contamination. However, they seem to show low reliability for quantification. From a safety standpoint in occupational settings, workers should be offered skin protection and respiratory protection if they have to handle devices made of Be-Cu alloy. PMID:19254960

  13. Status of beryllium development for fusion applications

    SciTech Connect

    Billone, M.C.; Donne, M.D.; Macaulay-Newcombe, R.G.

    1994-05-01

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing component of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.

  14. Potential exposures and risks from beryllium-containing products.

    PubMed

    Willis, Henry H; Florig, H Keith

    2002-10-01

    Beryllium is the strongest of the lightweight metals. Used primarily in military applications prior to the end of the Cold War, beryllium is finding new applications in many commercial products, including computers, telecommunication equipment, and consumer and automotive electronics. The use of beryllium in nondefense consumer applications is of concern because beryllium is toxic. Inhalation of beryllium dust or vapor causes a chronic lung disease in some individuals at concentrations as low as 0.01 microg/m3 in air. As beryllium enters wider commerce, it is prudent to ask what risks this might present to the general public and to workers downstream of the beryllium materials industry. We address this question by evaluating the potential for beryllium exposure from the manufacturing, use, recycle, and disposal of beryllium-containing products. Combining a market study with a qualitative exposure analysis, we determine which beryllium applications and life cycle phases have the largest exposure potential. Our analysis suggests that use and maintenance of the most common types of beryllium-containing products do not result in any obvious exposures of concern, and that maintenance activities result in greater exposures than product use. Product disposal has potential to present significant individual risks, but uncertainties concerning current and future routes of product disposal make it difficult to be definitive. Overall, additional exposure and dose-response data are needed to evaluate both the health significance of many exposure scenarios, and the adequacy of existing regulations to protect workers and the public. Although public exposures to beryllium and public awareness and concern regarding beryllium risks are currently low, beryllium risks have psychometric qualities that may lead to rapidly heightened public concern. PMID:12442995

  15. Lithium toxicity

    MedlinePlus

    ... may also have some of the following nervous system symptoms, depending on how much lithium you took: Coma (decreased level of consciousness, lack of responsiveness) Hand tremors Incoordination of arms ...

  16. Fabrication of boron articles

    DOEpatents

    Benton, Samuel T.

    1976-01-01

    This invention is directed to the fabrication of boron articles by a powder metallurgical method wherein the articles are of a density close to the theoretical density of boron and are essentially crackfree. The method comprises the steps of admixing 1 to 10 weight percent carbon powder with amorphous boron powder, cold pressing the mixture and then hot pressing the cold pressed compact into the desired article. The addition of the carbon to the mixture provides a pressing aid for inhibiting the cracking of the hot pressed article and is of a concentration less than that which would cause the articles to possess significant concentrations of boron carbide.

  17. Historical analysis of airborne beryllium concentrations at a copper beryllium machining facility (1964-2000).

    PubMed

    McAtee, B L; Donovan, E P; Gaffney, S H; Frede, W; Knutsen, J S; Paustenbach, D J

    2009-06-01

    Copper beryllium alloys are the most commonly used form of beryllium; however, there have been few studies assessing occupational exposure in facilities that worked exclusively with this alloy versus those where pure metal or beryllium oxide may also have been present. In this paper, we evaluated the airborne beryllium concentrations at a machining plant using historical industrial hygiene samples collected between 1964 and 2000. With the exception of a few projects conducted in the 1960s, it is believed that >95% of the operations used copper beryllium alloy exclusively. Long-term (>120 min) and short-term (<120 min) personal and area samples were collected during a variety of activities including machining of copper beryllium-containing parts, as well as finishing operations (e.g., deburring and polishing) and decontamination of machinery. A total of 580 beryllium air samples were analyzed (311 personal and 269 area samples). The average concentration based on area samples (1964-2000) was 0.021 microg m(-3) (SD 0.17 microg m(-3); range 0.00012-2.5 microg m(-3)); 68.8% were below the analytical limit of detection (LOD). The average airborne beryllium concentration, based on all personal samples available from 1964 through the end of 2000 (n = 311), was 0.026 microg m(-3) (SD 0.059 microg m(-3); range 0.019-0.8 microg m(-3)); 97.4% were below the LOD. Personal samples collected from machinists (n = 78) had an average airborne concentration of 0.021 microg m(-3) (SD 0.014 microg m(-3); range 0.019-0.14 microg m(-3)); 97.4% were below the LOD. Airborne concentrations were consistently below the Occupational Safety and Health Administration permissible exposure limit for beryllium (2 microg m(-3)). Overall, the data indicate that for machining operations involving copper beryllium, the airborne concentrations for >95% of the samples were below the contemporaneous occupational exposure limits or the 1999 Department of Energy action level of 0.2 microg m(-3) and, in most cases, were below the LOD. PMID:19383942

  18. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    SciTech Connect

    Sabirianov, Ildar F.; Brand, Jennifer I. |; Fairchild, Robert W.

    2008-07-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% {sup 10}B and 80% {sup 11}B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  19. Beryllium contamination inside vehicles of machine shop workers

    SciTech Connect

    Sanderson, W.T.; Henneberger, P.K.; Martyny, J.; Ellis, K.; Mroz, M.M.; Newman, L.S.

    1999-04-01

    Inhalation of beryllium particles causes a chronic, debilitating lung disease--chronic beryllium disease (CBD)--in immunologically sensitized workers. Evidence that very low concentrations of beryllium may initiate this chronic disease is provided by incidences of the illness in family members exposed to beryllium dust from workers` clothes and residents in neighborhoods surrounding beryllium refineries. This article describes the results of a cross-sectional survey to evaluate potential take-home beryllium exposures by measuring surface concentrations on the hands and in vehicles of workers at a precision machine shop where cases of CBD had recently been diagnosed. Many workers did not change out of their work clothes and shoes at the end of their shift, increasing the risk of taking beryllium home to their families. Wipe samples collected from workers` hands and vehicle surfaces were analyzed for beryllium content by inductively coupled argon plasma-atomic emission spectroscopy (ICP-AES). The results ranged widely, from nondetectable to 40 {micro}g/ft{sup 2} on workers` hands and up to 714 {micro}g/fg{sup 2} inside their vehicles, demonstrating that many workers carried residual beryllium on their hands and contaminated the inside of their vehicles when leaving work. The highest beryllium concentrations inside the workers` vehicles were found on the drivers` floor (GM = 19 {micro}g/ft{sup 2}, GSD = 4.9), indicating that workers were carrying beryllium on their shoes into their vehicles. A safe level of beryllium contamination on surfaces is not known, but it is prudent to reduce the potential for workers to carry beryllium away from the work site.

  20. Control of beryllium powder at a DOE facility

    SciTech Connect

    Langner, G.C.; Creek, K.L.; Castro, R.G.

    1997-12-31

    Beryllium is contained in a number of domestic and national defense items. Although many items might contain beryllium in some manner, few people need worry about the adverse effects caused by exposure to beryllium because it is the inhalable form of beryllium that is most toxic. Chronic beryllium disease (CBD), a granulomas and fibrotic lung disease with long latency, can be developed after inhalation exposures to beryllium. It is a progressive, debilitating lung disease. Its occurrence in those exposed to beryllium has been difficult to predict because some people seem to react to low concentration exposures whereas others do not react to high concentration exposures. Onset of the disease frequently occurs between 15 to 20 years after exposure begins. Some people develop the disease after many years of low concentration exposures but others do not develop CBD even though beryllium is shown to be present in lungs and urine. Conclusions based on these experiences are that their is some immunological dependence of developing CBD in about 3--4% of the exposed population, but the exact mechanism involved has not yet been identified. Acute beryllium disease can occur after a single exposure to a concentration of greater than 0.100 mg/m3 (inhalation exposure); it is characterized by the development of chemical pneumoconiosis, a respiratory disease. The acute effect of skin contact is a dermatitis characterized by itching and reddened, elevated, or fluid-accumulated lesions which appear particularly on the exposed surfaces of the body, especially the face, neck, arms, and hands. Small particles of beryllium that enter breaks in the skin can lead to the development of granulomas and/or open sores that do not heal until the beryllium has been removed. Our interest is only airborne beryllium, which is found in areas that machine or produce beryllium.

  1. The structure of boron in boron fibres

    NASA Technical Reports Server (NTRS)

    Bhardwaj, J.; Krawitz, A. D.

    1983-01-01

    The structure of noncrystalline, chemically vapour-deposited boron fibres was investigated by computer modelling the experimentally obtained X-ray diffraction patterns. The diffraction patterns from the models were computed using the Debye scattering equation. The modelling was done utilizing the minimum nearest-neighbour distance, the density of the model, and the broadening and relative intensity of the various peaks as boundary conditions. The results suggest that the fibres consist of a continuous network of randomly oriented regions of local atomic order, about 2 nm in diameter, containing boron atoms arranged in icosahedra. Approximately half of these regions have a tetragonal structure and the remaining half a distorted rhombohedral structure. The model also indicates the presence of many partial icosahedra and loose atoms not associated with any icosahedra. The partial icosahedra and loose atoms indicated in the present model are in agreement with the relaxing sub-units which have been suggested to explain the anelastic behavior of fibre boron and the loosely bound boron atoms which have been postulated to explain the strengthening mechanism in boron fibres during thermal treatment.

  2. Incipient toxicity of lithium to freshwater organisms representing a salmonid habitat

    SciTech Connect

    Emery, R.; Klopfer, D.C.; Skalski, J.R.

    1981-07-01

    Because the eventual development of fusion power reactors could increase the mining, use and disposal of lithium five-fold by the year 2000, potential effects from unusual amounts of lithium in aquatic environments were investigated. Freshwater oganisms representing a Pacific Northwest salmonid habitat were exposed to elevated conentrations of lithium. Nine parameters were used to determine the incipient toxicity of lithium to rainbow trout (Salmo gairdneri), insect larvae (Chironomus sp.), and Columbia River periphyton. All three groups of biota were incipiently sensitive to lithium at concentrations ranging between 0.1 and 1 mg/L. These results correspond with the incipient toxicity of beryllium, a chemically similar component of fusion reactor cores. A maximum lithium concentration of 0.01 mg/L occurs naturally in most freshwater environments (beryllium is rarer). Therefore, a concentration range of 0.01 to 0.1 mg/L may be regarded as approaching toxic concentrations when assessing the hazards of lithium in freshwaters.

  3. Density sensitivity of the solar EUV emission from boron-like ions

    NASA Technical Reports Server (NTRS)

    Vernazza, J. E.; Mason, H. E.

    1978-01-01

    The paper investigated the level populations and the line emission arising from ions of the boron isoelectronic sequence from C II to Ca XVI. It is found that, under conditions present in the solar corona, some of these ions have pairs of emission lines having intensity ratios which are density-sensitive. The boron-like lines observed in the solar spectrum between 300 and 1350 A are analyzed, and densities for quiet and active regions, coronal holes, sunspots, and flares are derived. Some aspects of the differences in the behavior of the emission from the lithium and boron sequences are also discussed.

  4. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  5. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  6. Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups

    SciTech Connect

    Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

    1997-12-31

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface.

  7. Plasma cleaning of beryllium coated mirrors

    NASA Astrophysics Data System (ADS)

    Moser, L.; Marot, L.; Steiner, R.; Newman, M.; Widdowson, A.; Ivanova, D.; Likonen, J.; Petersson, P.; Pintsuk, G.; Rubel, M.; Meyer, E.; Contributors, JET

    2016-02-01

    Cleaning systems of metallic first mirrors are needed in more than 20 optical diagnostic systems from ITER to avoid reflectivity losses. Currently, plasma sputtering is considered as one of the most promising techniques to remove deposits coming from the main wall (mainly beryllium and tungsten). This work presents the results of plasma cleaning of rhodium and molybdenum mirrors exposed in JET-ILW and contaminated with typical tokamak elements (including beryllium and tungsten). Using radio frequency (13.56 MHz) argon or helium plasma, the removal of mixed layers was demonstrated and mirror reflectivity improved towards initial values. The cleaning was evaluated by performing reflectivity measurements, scanning electron microscopy, x-ray photoelectron spectroscopy and ion beam analysis.

  8. Dynamic structure factor in warm dense beryllium

    NASA Astrophysics Data System (ADS)

    Plagemann, K.-U.; Sperling, P.; Thiele, R.; Desjarlais, M. P.; Fortmann, C.; Dppner, T.; Lee, H. J.; Glenzer, S. H.; Redmer, R.

    2012-05-01

    We calculate the dynamic structure factor (DSF) in warm dense beryllium by means of ab initio molecular dynamics simulations. The dynamic conductivity is derived from the Kubo-Greenwood formula, and a Drude-like behaviour is observed. The corresponding dielectric function is used to determine the DSF. Since the ab initio approach is so far only applicable for wavenumbers k = 0, the k-dependence of the dielectric function is modelled via the Mermin ansatz. We present the results for the dielectric function and DSF of warm dense beryllium and compare these with perturbative treatments such as the Born-Mermin approximation. We found considerable differences between the results of these approaches; this underlines the need for a first-principles determination of the DSF of warm dense matter.

  9. Supplement to report on boron disposition from fused salts. Final report

    SciTech Connect

    Smith, M.L.

    1980-10-01

    The goal of this project was to develop a process to fabricate pure, dense, coherent boron coatings 1 mm thick on graphite or copper substrates. Electrodeposition from molten fluoride salts was the technique chosen for development. The investigation was begun by making a thorough search of the relevant literature and consulting with workers active in the field or related fields. As a result of this search, the technique selected from the literature was a process whereby boron is electrodeposited from a molten equimolal mixture of potassium and lithium fluorides containing dissolved boron trifluoride gas. Initial tests at Bendix consisted of a material evaluation study of 0.02-mm-thick, boron-coated copper specimens. The properties of the boron deposit determined from this material evaluation study were such that an apparatus was designed, constructed, and tested at Bendix Kansas City.

  10. Neutron counter based on beryllium activation

    NASA Astrophysics Data System (ADS)

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.

    2014-08-01

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  11. Neutron counter based on beryllium activation

    SciTech Connect

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M.; Scholz, M.; Igielski, A.; Karpinski, L.; Pytel, K.

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  12. Microwave sintering of boron carbide

    DOEpatents

    Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.

    1988-06-10

    A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.

  13. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  14. The Rocky Flats Environmental Technology Site beryllium characterization project

    SciTech Connect

    Morrell, D.M.; Miller, J.R.; Allen, D.F.

    1999-06-01

    A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found.

  15. Beryllium-10 in Australasian tektites - Evidence for a sedimentary precursor

    NASA Technical Reports Server (NTRS)

    Pal, D. K.; Moniot, R. K.; Kruse, T. H.; Herzog, G. F.; Tuniz, C.

    1982-01-01

    Each of seven Australasian tektites contains about 100 micron atoms of beryllium-10 (half-life, 1.53 million years) per gram. Cosmic-ray bombardment of the australites cannot have produced the measured amounts of beryllium-10 either at the earth's surface or in space. The beryllium-10 contents of these australites are consistent with a sedimentary precursor that adsorbed from precipitation beryllium-10 produced in the atmosphere. The sediments must have spent several thousand years at the earth's surface within a few million years of the tektite-producing event.

  16. The bioinorganic chemistry and associated immunology of chronic beryllium disease†

    PubMed Central

    McCleskey, T. Mark; Chaudhary, Anu; Hong-Geller, Elizabeth; Gnanakaran, S.

    2013-01-01

    Chronic beryllium disease (CBD) is a debilitating, incurable, and often fatal disease that is caused by the inhalation of beryllium particulates. The growing use of beryllium in the modern world, in products ranging from computers to dental prosthetics (390 tons of beryllium in the US in the year 2000) necessitates a molecular based understanding of the disease in order to prevent and cure CBD. We have investigated the molecular basis of CBD at Los Alamos National Laboratory during the past six years, employing a multidisciplinary approach of bioinorganic chemistry and immunology. The results of this work, including speciation, inhalation and dissolution, and immunology will be discussed. PMID:18566702

  17. Synthesis of lithium nitride for neutron production target of BNCT by in situ lithium deposition and ion implantation

    NASA Astrophysics Data System (ADS)

    Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.

    2012-12-01

    To achieve high performance of BNCT (Boron Neutron Capture Therapy) device, Li3N/Li/Pd/Cu four layered Li target was designed and the structures of the synthesized four layered target were characterized by X-ray photoelectron spectroscopy. For the purpose of avoiding the radiation blistering and lithium evaporation, in situ vacuum deposition and nitridation techniques were established for in situ production and repairing maintenance of the lithium target. Following conclusions were derived: Uniform lithium layer of a few hundreds nanometer was formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. Lithium nitrides were formed by in situ nitridation reaction by the implantation of low-energy nitrogen ions on the deposited lithium layer surface. The chemical states of the nitridated zone were close to the stoichiometric lithium nitride, Li3N. This nitridated zone formed on surface of four layered lithium target is stable for a long time in air condition. The in situ nitridation is effective to protect lithium target from degradation by unfavorable reactions.

  18. Determination of Natural Beryllium (Be) in Soil and Swipe Samples Utilizing Yttrium/Beryllium Ratio

    SciTech Connect

    2010-09-30

    1. Objective: A method to determine whether beryllium (Be) components in surface swipe samples are from a natural source is needed. 2. Methods: Soil samples and surface swipes from area facilities were analyzed for marker elements to identify source pathways for beryllium (Be). To be useful, the natural marker element must be present at reasonably consistent levels across the site, must correlate with the Be concentration, and not have the potential to be present from non-natural sources. 3. Results: The research on marker elements used to identify source pathways for beryllium (Be) concentrations demonstrates a clear correlation between Be and yttrium (Y) in natural soils on the Nevada National Security Site. The Y/Be ratio is proposed as a method to characterize the source of Be in soil and surface swipe samples and to aid in recommendations for follow up actions. Swipe samples are analyzed using an ICP/MS method and compared with results from soil samples. Natural soil constituent levels and the Y/Be Ratio range is determined for the occupied and historical facilities and surrounding areas. Y/Be ratios within the statistical range established indicate the Be is from a natural source. Y/Be ratios lower than this range indicate the presence of another Be source, and may then be correlated to alloy, ceramic, or other operational sources by the ratios of copper, nickel, cobalt, uranium, and/or niobium. Example case studies of evaluations of buildings with historical operational beryllium usage, current ongoing technical processes, and heavy equipment used in large building demolitions are included demonstrating the value of the ratio approach. 4. Conclusions: This differentiation is valuable as there is no known correlation between natural beryllium in soil and beryllium disease.

  19. Quantitative method of determining beryllium or a compound thereof in a sample

    DOEpatents

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2010-08-24

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  20. Quantitative method of determining beryllium or a compound thereof in a sample

    DOEpatents

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2006-10-31

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  1. Tritium migration in the materials proposed for fusion reactors: Li2TiO3 and beryllium

    NASA Astrophysics Data System (ADS)

    Kulsartov, T. V.; Gordienko, Yu. N.; Tazhibayeva, I. L.; Kenzhin, E. A.; Barsukov, N. I.; Sadvakasova, A. O.; Kulsartova, A. V.; Zaurbekova, Zh. A.

    2013-11-01

    The results of tritium and helium gas release from lithium ceramics samples Li2TiO3 irradiated at the WWR-K reactor (Almaty, Kazakhstan) and from beryllium samples irradiated at the BN-350 reactor (Aktau, Kazakhstan) and the IVG.1M reactor (Kurchatov, Kazakhstan) are presented. Experimentally obtained thermal desorption (TDS) spectra have shown that the dependence of tritium release from lithium ceramics has a complicated behavior and to a large extent depends on lithium ceramics type. Nevertheless, it was found that the total amount of tritium released from all types of lithium ceramics has the same order of magnitude, equal to about 1011 Bq/kg. It was found that in the temperature range from 523 K to 1373 K the process of tritium release from lithium ceramics involves volume diffusion and thermoactivated tritium release from the accumulation centers generated under irradiation. TDS of beryllium samples enables us to obtain characteristics of tritium and helium release during linear heating, to determine integrated quantities of generated helium and tritium, and to determine parameters of release processes. The range of operating temperatures from 303 K to 1773 K; The pressure in the operating volume of the chamber 10-5 Pa; The accuracy in automatic temperature maintenance with respect to given temperature ±0.5 K. The experiments were carried out as follows: the sample was loaded into the crucible of the operating chamber. Then the sample was degassed at 423 K with constant pumping for 4 h. After that the sample was cooled to room temperature and the sample heating experiment was carried out. Each of the samples was heated linearly to 1523 K examining the released gases having mass numbers 2 (Н2), 3 (3Не), 4 (4Не + НТ), 6 (Т2), 18 (Н2О), 20 (HTO) and 22 (Т2О). The rate of linear heating ranged from 5 K/min to 20 K/min. It was taken into account that the total tritium quantity is formed by values of peaks respective to 6 and 3 mass numbers. And according to standard interpretation of spectra relative to the deposition for tritium total quantity - M6 makes 95% and M3 makes 5%, which means that M3 is formed only by 3He at missing of M6 peak.It should be noted that the experimental device for TDS studies is small (the volume of the measuring chamber and all gas paths to the mass spectrometer is 3 l at the most). The assembly is equipped with a pump with a capacity of 100 l/s. Calibration experiments using helium and hydrogen pumping did not show any substantial delay in detection of gases with different mass numbers, caused by different rates of transportation from the place of gas measurement. The observed detection delay was less than 0.1 s. The majority of helium is released from samples of DV-56 in the high temperature region. For samples of TShG-200 helium released in the high-temperature region is about ˜50% of the total release. For samples of DV-56 (irradiated to higher doses than samples of TShG-200 with a higher amount of generated tritium), tritium is released in the high temperature range as T2 (˜60%), HTO and T2O (˜30%). For samples of TShG-200 tritium is released in low temperature region as HTO and T2O. In the high temperature range the overall allocation of tritium as T2 from TShG-200 samples increases from 5% to 25%. Tritium release in the form of tritium water is caused by the tritium-oxygen (beryllium oxide) reaction. We suppose that it can have a complicated mechanism: for example, in case of direct chemical interaction of tritium with beryllium oxide (or beryllium hydroxide forming HTO) or tritium-beryllium oxide decay. This mechanism is not fully understood, which is why we have not analyzed the dependences of tritium water flux obtained in the TDS experiments. The questions of the importance of sample exposure and its influence on tritium conditions in beryllium require further explanation. For samples of DV-56 the exposure is about 17 years. The dependence of T2 release were considered in diffusion coefficient estimations.Tritium release from irradiated beryllium depends on several factors such as the thickness of the oxide film with particularly low diffusion coefficients of tritium, hindered desorption from the surface, while cracking of beryllium in the heating process is quite important. The experiments did not allow for the correct determination of the oxide film or a proper assessment of beryllium cracking process due to heating, thus the calculations were carried out by using the selected model approximations; and the parameters obtained by this calculation should be considered as effective parameters.To describe the TDS experiments with DV-56 samples, we chose a model of tritium gas release that takes into account the motion of gas atoms, their deposition in cavities and migration to grain boundaries. This model was described in detail in [5,8] and was used before for describing TDS experiments with beryllium samples irradiated to the same doses to DV-56 as in our experiments. The model enables description of the gas releases observed in the experiment: at first, there is a peak of gas release at temperatures from 623 K to 1073 K, then a high temperature peak that is several orders of magnitude higher than the low temperature one.The disadvantage of this model is that it contains a great number of widely varying parameters. Nevertheless, this model enables an adequate description of TDS spectra for samples of DV-56 irradiated at the BN-350 reactor and provides the volume diffusion coefficient for tritium in beryllium. For beryllium samples of TShG-200 type the situation is rather different due to the fact that the total fast neutron fluence for these samples is considerably less intense (1019 n/cm2 versus 5 × 1021 n/cm2 for samples of DV-56). Therefore, the assumption was made that the influence of helium bubbles on tritium capture in its TDS release from less-irradiated beryllium samples is considerably lower because of smaller amounts of helium in such samples and as the reason why the tritium release dependences were modeled according to a classical diffusion mechanism. Therefore, it was suggested that the presence of the large peaks in the low temperature region of TDS spectra is caused by different mechanisms: If the TDS spectrum has several peaks for different gases 3He, 4He, T2, it indicates a non-diffusion gas release from pores, because the volume diffusion coefficients of helium and tritium differ by several orders of magnitudes. If the TDS has one peak of tritium release, it is assumed to be caused by a diffusion mechanism and can be described using the model of classical diffusion. Tritium volume diffusion coefficients in beryllium of two beryllium samples tested here and determined as the result of modeling have satisfactory agreement as shown in Table 1. Various literature data for diffusion coefficients obtained by different authors [1-8], are shown in Fig. 9. The comparison with literature has shown that calculated values of tritium diffusion coefficients agree with the values in the region for high-purity beryllium obtained by Abramov.

  2. Functionally Graded Nanophase Beryllium/Carbon Composites

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg A.; Tompa, Gary S.

    2003-01-01

    Beryllium, beryllium alloys, beryllium carbide, and carbon are the ingredients of a class of nanophase Be/Be2C/C composite materials that can be formulated and functionally graded to suit a variety of applications. In a typical case, such a composite consists of a first layer of either pure beryllium or a beryllium alloy, a second layer of B2C, and a third layer of nanophase sintered carbon derived from fullerenes and nanotubes. The three layers are interconnected through interpenetrating spongelike structures. These Be/Be2C/C composite materials are similar to Co/WC/diamond functionally graded composite materials, except that (1) W and Co are replaced by Be and alloys thereof and (2) diamond is replaced by sintered carbon derived from fullerenes and nanotubes. (Optionally, one could form a Be/Be2C/diamond composite.) Because Be is lighter than W and Co, the present Be/Be2C/C composites weigh less than do the corresponding Co/WC/diamond composites. The nanophase carbon is almost as hard as diamond. WC/Co is the toughest material. It is widely used for drilling, digging, and machining. However, the fact that W is a heavy element (that is, has high atomic mass and mass density) makes W unattractive for applications in which weight is a severe disadvantage. Be is the lightest tough element, but its toughness is less than that of WC/Co alloy. Be strengthened by nanophase carbon is much tougher than pure or alloy Be. The nanophase carbon has an unsurpassed strength-to-weight ratio. The Be/Be2C/C composite materials are especially attractive for terrestrial and aerospace applications in which there are requirements for light weight along with the high strength and toughness of the denser Co/WC/diamond materials. These materials could be incorporated into diverse components, including cutting tools, bearings, rocket nozzles, and shields. Moreover, because Be and C are effective as neutron moderators, Be/Be2C/C composites could be attractive for some nuclear applications.

  3. Innovative method for boron extraction from iron ore containing boron

    NASA Astrophysics Data System (ADS)

    Wang, Guang; Wang, Jing-song; Yu, Xin-yun; Shen, Ying-feng; Zuo, Hai-bin; Xue, Qing-guo

    2016-03-01

    A novel process for boron enrichment and extraction from ludwigite based on iron nugget technology was proposed. The key steps of this novel process, which include boron and iron separation, crystallization of boron-rich slag, and elucidation of the boron extraction behavior of boron-rich slag by acid leaching, were performed at the laboratory. The results indicated that 95.7% of the total boron could be enriched into the slag phase, thereby forming a boron-rich slag during the iron and slag melting separation process. Suanite and kotoite were observed to be the boron-containing crystalline phases, and the boron extraction properties of the boron-rich slag depended on the amounts and grain sizes of these minerals. When the boron-rich slag was slowly cooled to 1100°C, the slag crystallized well and the efficiency of extraction of boron (EEB) of the slag was the highest observed in the present study. The boron extraction property of the slow-cooled boron-rich slag obtained in this study was much better than that of szaibelyite ore under the conditions of 80% of theoretical sulfuric acid amount, leaching time of 30 min, leaching temperature of 40°C, and liquid-to-solid ratio of 8 mL/g.

  4. Beryllium Metal II. A Review of the Available Toxicity Data

    PubMed Central

    Strupp, Christian

    2011-01-01

    Beryllium metal was classified in Europe collectively with beryllium compounds, e.g. soluble salts. Toxicological equivalence was assumed despite greatly differing physicochemical properties. Following introduction of the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation, beryllium metal was classified as individual substance and more investigational efforts to appropriately characterize beryllium metal as a specific substance apart from soluble beryllium compounds was required. A literature search on toxicity of beryllium metal was conducted, and the resulting literature compiled together with the results of a recently performed study package into a comprehensive data set. Testing performed under Organisation for Economic Co-Operation and Development guidelines and Good Laboratory Practice concluded that beryllium metal was neither a skin irritant, an eye irritant, a skin sensitizer nor evoked any clinical signs of acute oral toxicity; discrepancies between the current legal classification of beryllium metal in the European Union (EU) and the experimental results were identified. Furthermore, genotoxicity and carcinogenicity were discussed in the context of the literature data and the new experimental data. It was concluded that beryllium metal is unlikely to be a classical nonthreshold mutagen. Effects on DNA repair and morphological cell transformation were observed but need further investigation to evaluate their relevance in vivo. Animal carcinogenicity studies deliver evidence of carcinogenicity in the rat; however, lung overload may be a species-specific confounding factor in the existing studies, and studies in other species do not give convincing evidence of carcinogenicity. Epidemiology has been intensively discussed over the last years and has the problem that the studies base on the same US beryllium production population and do not distinguish between metal and soluble compounds. It is noted that the correlation between beryllium exposure and carcinogenicity, even including the soluble compounds, remains under discussion in the scientific community and active research is continuing. PMID:21196456

  5. Boron aluminum composite structures

    NASA Technical Reports Server (NTRS)

    Jackson, R. E.

    1972-01-01

    Design, analysis and fabrication techniques have been developed for boron-aluminum composite structure technology and were compared with those of conventional metal structure technology to evaluate relative performance.

  6. Direct current sputtering of boron from boron/coron mixtures

    DOEpatents

    Timberlake, John R.; Manos, Dennis; Nartowitz, Ed

    1994-01-01

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod.

  7. Boron-Based Drug Design.

    PubMed

    Ban, Hyun Seung; Nakamura, Hiroyuki

    2015-06-01

    The use of the element boron, which is not generally observed in a living body, possesses a high potential for the discovery of new biological activity in pharmaceutical drug design. In this account, we describe our recent developments in boron-based drug design, including boronic acid containing protein tyrosine kinase inhibitors, proteasome inhibitors, and tubulin polymerization inhibitors, and ortho-carborane-containing proteasome activators, hypoxia-inducible factor 1 inhibitors, and topoisomerase inhibitors. Furthermore, we applied a closo-dodecaborate as a water-soluble moiety as well as a boron-10 source for the design of boron carriers in boron neutron capture therapy, such as boronated porphyrins and boron lipids for a liposomal boron delivery system. PMID:25800654

  8. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  9. Laser welding of a beryllium/tantalum collimator

    SciTech Connect

    Lingenfelter, A.C.; Anglin, C.D.

    1985-01-01

    This report describes the methods utilized in the fabrication of a collimator from 0.001 inch thick beryllium and tantalum foil. The laser welding process proved to be an acceptable method for joining the beryllium in a standing edge joint configuration.

  10. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR BERYLLIUM AND COMPOUNDS

    EPA Science Inventory

    EPA's assessment of the noncancer health effects and carcinogenic potential of Beryllium was added to the IRIS database in 1998. The IRIS program is updating the IRIS assessment for Beryllium. This update will incorporate health effects information published since the last assess...

  11. 2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  12. Electron topological transitions of 3½ kind in beryllium

    NASA Astrophysics Data System (ADS)

    Mikitik, G. P.; Sharlai, Yu. V.

    2015-12-01

    An analysis of known experimental literature data on the temperature dependence of magnetic susceptibility of beryllium. It is shown that this dependence can be explained if we take into account that beryllium has an electron topological transition of 3½ kind near the Fermi level.

  13. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy... Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of the... inventory, the responsible employer must: (1) Review current and historical records; (2) Interview...

  14. 75 FR 80734 - Chronic Beryllium Disease Prevention Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ...The Department of Energy (DOE or the Department) requests information and comments on issues related to its current chronic beryllium disease prevention program. The Department solicits comment and information on the permissible exposure level, establishing surface action levels, the use of warning labels to release items that are free of removable surface levels of beryllium to other DOE......

  15. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  16. Lithium target for accelerator based BNCT neutron source: Influence by the proton irradiation on lithium

    NASA Astrophysics Data System (ADS)

    Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.

    2012-12-01

    The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.

  17. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    SciTech Connect

    Yi, S. A. Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H.; Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J.

    2014-09-15

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  18. Method for fabricating beryllium-based multilayer structures

    DOEpatents

    Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.

    2003-02-18

    Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).

  19. New decade of shaped beryllium blanks

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Don H.; Heberling, Jody; Campbell, Jeffrey; Morales, Amanda; Sayer, Aaron

    2015-09-01

    Near-net-shape powder consolidation technology has been developing over the past 30+ years. One relatively recent example is production of hexagonal shaped beryllium mirror blanks made for the James Webb Space Telescope. More cost saving examples, specifically from the past decade, utilizing growing experience and lesson's learned whether from a mirror substrate or structure will be discussed to show the latitude of production technology. Powder consolidation techniques include Hot Isostatic Pressing (HIP) for either round or shaped blanks and Vacuum Hot Pressing (VHP) consolidation for round blanks. The range of sizes will be presented to further illustrate the latitude of current production capability.

  20. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  1. Thick beryllium coatings by magnetron sputtering

    SciTech Connect

    Wu, H; Nikroo, A; Youngblood, K; Moreno, K; Wu, D; Fuller, T; Alford, C; Hayes, J; Detor, A; Wong, M; Hamza, A; van Buuren, T; Chason, E

    2011-04-14

    Thick (>150 {micro}m) beryllium coatings are studied as an ablator material of interest for fusion fuel capsules for the National Ignition Facility (NIF). As an added complication, the coatings are deposited on mm-scale spherical substrates, as opposed to flats. DC magnetron sputtering is used because of the relative controllability of the processing temperature and energy of the deposits. We used ultra small angle x-ray spectroscopy (USAXS) to characterize the void fraction and distribution along the spherical surface. We investigated the void structure using a combination focused ion beam (FIB) and scanning electron microscope (SEM), along with transmission electron microscopy (TEM). Our results show a few volume percent of voids and a typical void diameter of less than two hundred nanometers. Understanding how the stresses in the deposited material develop with thickness is important so that we can minimize film cracking and delamination. To that end, an in-situ multiple optical beam stress sensor (MOSS) was used to measure the stress behavior of thick Beryllium coatings on flat substrates as the material was being deposited. We will show how the film stress saturates with thickness and changes with pressure.

  2. Peculiarities of spall fracture of beryllium

    NASA Astrophysics Data System (ADS)

    Skokov, Viktor; Arinin, V.; Kryuchkov, D.; Malyshev, A.; Ogorodnikov, V.; Panov, K.; Peshkov, V.; Raevsky, V.

    2013-06-01

    Authors of this work performed investigations of spall fracture in a beryllium sample with diameter 90 mm and thickness 20 mm when loading HE charge made of TG 5/5 with thicknesses of 12 and 100 mm, HMX with thickness of 100 mm by detonation wave. Spall fracture was formed in the sample during its release into air gap. Laser interferometer Visar was used to measure velocity profile at the free boundary, thickness of the spall layer was measured by the technique of two-frame pulse X-ray radiography, the manganin gauge technique was used to measure profile of the shock-wave pulse in the fluoroplastic base when decelerating the beryllium spall layer, the technique of electrocontact gauge was used for determination of location of the spall layer at two times. When TG 5/5 thicknesses were 12 and 100 mm, it was revealed that the spall layer thickness, which was measured after its traveling the distance of 8 mm, was nearly unchanged. It was equal to 1.8 and 2.1 mm, respectively. It was observed in the test with a charge made of HMX that, depending on traveled distance x, thickness of the spall layer δ under the condition of absence of tensile stresses is continuously decreasing.

  3. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-01-01

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  4. Boron nitride housing cools transistors

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Boron nitride ceramic heat sink cools transistors in r-f transmitter and receiver circuits. Heat dissipated by the transistor is conducted by the boron nitride housing to the metal chassis on which it is mounted.

  5. Boronated liposome development and evaluation

    SciTech Connect

    Hawthorne, M.F.

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  6. Boron-Based Layered Structures for Energy Storage

    SciTech Connect

    Zhao, Y.; Wei, S. H.

    2012-01-01

    Based on Density Functional Theory simulations, we have studied the boron-based graphite-like materials, i.e., LiBC and MgB2 for energy storage. First, when half of the Li-ions in the LiBC are removed, the BC layered structure is still preserved. The Li intercalation potential (equilibrium lithium-insertion voltage of 2.3-2.4 V relative to lithium metal) is significantly higher than that in graphite, allowing Li0.5BC to function as a cathode material. The reversible electrochemical reaction, LiBC = Li0.5BC + 0.5Li, enables a specific energy density of 1088 Wh/kg and a volumetric energy density of 2463 Wh/L. Second, 75% of the Mg ions in MgB2 can be removed and reversibly inserted with the layered boron structures being preserved through an in-plane topological transformation between the hexagonal lattice domains and triangular domains. The mechanism of such a charge-driven transformation originates from the versatile valence state of boron in its planar form.

  7. Electrolyte compositions for lithium ion batteries

    DOEpatents

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  8. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  9. Mineral of the month: boron

    USGS Publications Warehouse

    Lyday, Phyllis A.

    2005-01-01

    What does boron have to do with baseball, apple pie, motherhood and Chevrolet? Boron minerals and chemicals are used in the tanning of leather baseballs and gloves; in micro-fertilizer to grow apples and in the glass and enamels of bakewares to cook apple pie; in boron detergents for soaking baby clothes and diapers; and in fiberglass parts for the Chevrolet Corvette.

  10. Increased radiation resistance in lithium-counterdoped silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Mehta, S.

    1984-01-01

    Lithium-counterdoped n(+)p silicon solar cells are found to exhibit significantly increased radiation resistance to 1-MeV electron irradiation when compared to boron-doped n(+)p silicon solar cells. In addition to improved radiation resistance, considerable damage recovery by annealing is observed in the counterdoped cells at T less than or equal to 100 C. Deep level transient spectroscopy measurements are used to identify the defect whose removal results in the low-temperature aneal. It is suggested that the increased radiation resistance of the counterdoped cells is primarily due to interaction of the lithium with interstitial oxygen.

  11. Measurement of Beryllium in Biological Samples by Accelerator Mass Spectrometry: Applications for Studying Chronic Beryllium Disease

    SciTech Connect

    Chiarappa-Zucca, M L; Finkel, R C; Martinelli, R E; McAninch, J E; Nelson, D O; Turtletaub, K W

    2004-04-15

    A method using accelerator mass spectrometry (AMS) has been developed for quantifying attomoles of beryllium (Be) in biological samples. This method provides the sensitivity to trace Be in biological samples at very low doses with the purpose of identifying the molecular targets involved in chronic beryllium disease. Proof of the method was tested by administering 0.001, 0.05, 0.5 and 5.0 {micro}g {sup 9}Be and {sup 10}Be by intraperitoneal injection to male mice and removing spleen, liver, femurs, blood, lung, and kidneys after 24 h exposure. These samples were prepared for AMS analysis by tissue digestion in nitric acid, followed by further organic oxidation with hydrogen peroxide and ammonium persulfate and lastly, precipitation of Be with ammonium hydroxide, and conversion to beryllium oxide at 800 C. The {sup 10}Be/{sup 9}Be ratio of the extracted beryllium oxide was measured by AMS and Be in the original sample was calculated. Results indicate that Be levels were dose-dependent in all tissues and the highest levels were measured in the spleen and liver. The measured {sup 10}Be/{sup 9}Be ratios spanned 4 orders of magnitude, from 10{sup -10} to 10{sup -14}, with a detection limit of 3.0 x 10{sup -14}, which is equivalent to 0.8 attomoles of {sup 10}Be. These results show that routine quantification of nanogram levels of Be in tissues is possible and that AMS is a sensitive method that can be used in biological studies to understand the molecular dosimetry of Be and mechanisms of toxicity.

  12. A Novel Biomarker for Beryllium Sensitization in Humans - Final Report

    SciTech Connect

    Albertini, R. J.

    2001-04-16

    This research project will determine the T-cell receptor (TCR) gene usages of beryllium reactive T-lymphocytes isolated directly from the peripheral blood of individuals exposed at a U.S. Department of Energy site. The objective is to develop a sensitive and novel biomarker for identifying early human sensitization to environmental beryllium. This is a collaborative project involving the Genetics Laboratory of the University of Vermont and both the Center for Epidemiological Research and the scientific staff of the Cytogenetics Program at the Oak Ridge Institute for Science and Education (ORISE). The > 2000 beryllium exposed workers who have been contacted for participation in the ORISE study ''Follow-up of Beryllium Workers at the Y-12 Plant/Efficacy of the Peripheral Blood Lymphocyte Proliferation (LPT) and other Non-Invasive Procedures for Diagnosis of Chronic Beryllium Disease'' will provide the pool of potential participants for the proposed study. Beryllium reactive T-lymphocytes will be directly isolated from peripheral blood using a novel antigen-independent method of surrogate selection for in vivo arising hprt mutants as representatives of clones that are undergoing chronic proliferation. The T-cells undergoing chronic proliferation in beryllium sensitized individuals will be enriched for beryllium reactive cells. The TCR gene usage of these T-cell isolates will be determined and their junctional (CDR3) regions sequenced. Beryllium reactive T-cell clones will also be recovered following in vitro beryllium stimulation of peripheral blood lymphocytes from these same individuals and the TCR gene CDR3 region sequences similarly determined. The TCR genes used by the beryllium reactive isolates and their CRD3 region sequences will be compared within (in vivo vs. in vitro derived) and among individuals with attention to kinds and durations of beryllium exposure and HPA DPB Glu 69 status. A method for quantitating total body loads of these antigen reactive T-cells in individuals will be developed using quantitative polymerase chain reaction (Q-PCR) amplification of specific TCR gene sequences. Successful achievement of this overall objective will permit future studies aimed at the elucidation of the immunological mechanisms underlying sensitization, the comparison of cells involved in pulmonary and systemic sensitization and the definition of potential targets for immunotherapy.

  13. Ab initio study of hydrogen on beryllium surfaces

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.; Vladimirov, P. V.

    2015-11-01

    Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy.

  14. Analysis of surface contaminants on beryllium and aluminum windows

    SciTech Connect

    Gmur, N.F.

    1987-06-01

    An effort has been made to document the types of contamination which form on beryllium window surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive x-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined.

  15. Beryllium Health and Safety Committee Data Reporting Task Force

    SciTech Connect

    MacQueen, D H

    2007-02-21

    On December 8, 1999, the Department of Energy (DOE) published Title 10 CFR 850 (hereafter referred to as the Rule) to establish a chronic beryllium disease prevention program (CBDPP) to: {sm_bullet} reduce the number of workers currently exposed to beryllium in the course of their work at DOE facilities managed by DOE or its contractors, {sm_bullet} minimize the levels of, and potential for, expos exposure to beryllium, and {sm_bullet} establish medical surveillance requirements to ensure early detection of the disease.

  16. Tungsten-beryllium multilayer mirrors for soft x rays.

    PubMed

    Utsumi, Y; Kyuragi, H; Urisu, T; Maezawa, H

    1988-09-15

    Multilayer structures of tungsten and beryllium were synthesized onto flat silicon single-crystal substrates by the neutral atom beam sputtering technique. Structures of constituent tungsten and beryllium thin films were evaluated. The standard deviation of the interface roughness of the multilayer was estimated to be ~2.5 A. Reflectivities of multilayer mirrors were measured at a grazing incidence of 5.0 degrees . The observed reflectivity of 30% at 1055 eV was in good agreement with the calculated value considering the interface roughness and oxygen contamination for a tungsten-beryllium structure having a period of 77.0 A. PMID:20539492

  17. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    SciTech Connect

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We present results from an investigation of boron uptake in vivo by the synovium.

  18. Minerals Yearbook 1989: Boron

    SciTech Connect

    Lyday, P.A.

    1990-08-01

    U.S. production and sales of boron minerals and chemicals decreased during the year. Domestically, glass fiber insulation was the largest use for borates, followed by sales to distributors, textile-grade glass fibers, and borosilicate glasses. California was the only domestic source of boron minerals. The United States continued to provide essentially all of its own supply while maintaining a strong position as a source of sodium borate products and boric acid exported to foreign markets. Supplementary U.S. imports of Turkish calcium borate and calcium-sodium borate ores, borax, and boric acid, primarily for various glass uses, continued.

  19. Producing boron carbide

    SciTech Connect

    Rafaniello, W.; Moore, W.G.

    1989-01-14

    A method is described for producing boron carbide. A particulate reactive mixture of a boric oxide source and a carbon source is passed through a hot zone such that substantially all of the particles of the reactive mixture are separately and individually heated at a heating rate of at least about 70/sup 0/C/second to a sufficient temperature and for a sufficient length of time to form boron carbide crystals, of which at least about 25 percent by weight are of submicron size.

  20. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  1. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  2. Boron Requirement in Cyanobacteria 1

    PubMed Central

    Bonilla, Ildefonso; Garcia-González, Mercedes; Mateo, Pilar

    1990-01-01

    The effect of boron on heterocystous and nonheterocystous dinitrogen fixing Cyanobacteria was examined. The absence of boron in culture media inhibited growth and nitrogenase activity in Nodularia sp., Chlorogloeopsis sp., and Nostoc sp. cultures. Examinations of boron-deficient cultures showed changes in heterocyst morphology. However, cultures of nonheterocystous Cyanobacteria, Gloeothece sp. and Plectonema sp., grown in the absence of boron did not show any alteration in growth or nitrogenase activity. These results suggest a requirement of boron only by heterocystous Cyanobacteria. A possible role for this element in the early evolution of photosynthetic organisms is proposed. Images Figure 4 Figure 5 Figure 6 PMID:16667889

  3. Polarizabilities of the beryllium clock transition

    SciTech Connect

    Mitroy, J.

    2010-11-15

    The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s{sup 2} {sup 1}S{sup e} ground state (37.73a{sub 0}{sup 3}) and the 2s2p {sup 3}P{sub 0}{sup o} metastable state (39.04a{sub 0}{sup 3}) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s{sup 2} {sup 1}S{sup e}-2s2p {sup 3}P{sub 0}{sup o} clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.

  4. Primordial beryllium as a big bang calorimeter.

    PubMed

    Pospelov, Maxim; Pradler, Josef

    2011-03-25

    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of nonthermal energy. The hadronic energy injection in these decays leads to the formation of ⁹Be via the chain of nonequilibrium transformations: Energy(h)→T, ³He→⁶He, ⁶Li→⁹Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours the release of O(10 MeV) per baryon can be sufficient for obtaining a sizable ⁹Be abundance. The absence of a plateau structure in the ⁹Be/H abundance down to a O(10⁻¹⁴) level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles. PMID:21517297

  5. Primordial Beryllium as a Big Bang Calorimeter

    SciTech Connect

    Pospelov, Maxim; Pradler, Josef

    2011-03-25

    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of nonthermal energy. The hadronic energy injection in these decays leads to the formation of {sup 9}Be via the chain of nonequilibrium transformations: Energy{sub h}{yields}T, {sup 3}He{yields}{sup 6}He, {sup 6}Li{yields}{sup 9}Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours the release of O(10 MeV) per baryon can be sufficient for obtaining a sizable {sup 9}Be abundance. The absence of a plateau structure in the {sup 9}Be/H abundance down to a O(10{sup -14}) level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles.

  6. Chemistry and biology of boron.

    PubMed

    Loomis, W D; Durst, R W

    1992-04-01

    Boron is an essential nutrient for certain organisms, notably vascular plants and diatoms. Cyanobacteria require boron for formation of nitrogen-fixing heterocysts and boron may be beneficial to animals. Boron deficiency in plants produces manifold symptoms: many functions have been postulated. Deficiency symptoms first appear at growing points, within hours in root tips and within minutes or seconds in pollen tube tips, and are characterized by cell wall abnormalities. Boron-deficient tissues are brittle or fragile, while plants grown on high boron levels may have unusually flexible or resilient tissues. Borate forms cyclic diesters with appropriate diols or polyols. The most stable are formed with cis-diols on a furanoid ring. Two compounds have this structure physiologically: ribose in ribonucleotides and RNA, and apiose in the plant cell wall. Germanium can substitute for boron in carrot cell cultures. Both boron and germanium are localized primarily in the cell wall. We postulate that borate-apiofuranose ester cross-links are the auxin-sensitive acid-growth link in vascular plants, that the cyanobacterial heterocyst envelope depends on borate cross-linking of mannopyranose and/or galactopyranose residues in a polysaccharide-lipid environment, and that boron in diatoms forms ester cross-links in the polysaccharide cell wall matrix rather than boron-silicon interactions. Complexing of ribonucleotides is probably a factor in boron toxicity. PMID:1605832

  7. Density functional theory and conductivity studies of boron-based anion receptors

    SciTech Connect

    Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan B.; Fenton, Kyle R.; Pratt, III, Harry D.; Staiger, Chad L.; Nagasubramanian, Ganesan

    2015-07-10

    Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor is sufficiently electrophilic that organic solvent molecules compete with F for boron-site binding, and specific solvent effects must be considered when predicting its F affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F and organic solvent molecules. After accounting for specific solvent effects, however, its net F affinity is about the same as the simple oxalate-based anion receptor. Lastly, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F ions.

  8. Density functional theory and conductivity studies of boron-based anion receptors

    DOE PAGESBeta

    Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan B.; Fenton, Kyle R.; Pratt, III, Harry D.; Staiger, Chad L.; Nagasubramanian, Ganesan

    2015-07-10

    Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor ismore » sufficiently electrophilic that organic solvent molecules compete with F– for boron-site binding, and specific solvent effects must be considered when predicting its F– affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F– and organic solvent molecules. After accounting for specific solvent effects, however, its net F– affinity is about the same as the simple oxalate-based anion receptor. Lastly, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F– ions.« less

  9. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1995-02-28

    A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.

  10. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1995-01-01

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  11. Is Boron Nutritionally Relevant?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence from numerous laboratories using a variety of experimental models, including humans, shows that boron is a bioactive beneficial element. Much evidence has come from studies that did not require nutritional or environmental stressors or fastidious methods in diet preparation or environmental...

  12. Boron and Compounds

    Integrated Risk Information System (IRIS)

    Boron and Compounds ; CASRN 7440 - 42 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  13. Mortality study of beryllium industry workers' occupational lung cancer

    SciTech Connect

    Mancuso, T.F.

    1980-02-01

    A cohort of 3685 white males employed during 1937 to 1948 in two major industries manufacturing beryllium was followed to the end of 1976 to evaluate lung cancer mortality experience. Lung cancer mortality among beryllium-exposed workers was contrasted with that of workers employed in the viscose rayon industry. Study results demonstrated that lung cancer mortality among berylliumm-exposed workers was significantly greater than that expected on the basis of lung cancer mortality experience of workers in the viscose rayon industry having similar employment patterns. The results of the present study are consistent with earlier animal bioassay studies and recent epidemiologic studies indicating that beryllium is carcinogenic. The results of the present study are not consistent with speculation attributing the excessive lung cancer mortality among beryllium-exposed workers to personal characteristics of individuals having unstable employment patterns.

  14. Beryllium based multilayers for normal incidence extreme ultraviolet reflectance

    SciTech Connect

    Skulina, K.; Alford, C.; Bionta, R.; Makowiecki, D.; Gullikson, E.; Soufli, R.; Kortright, J.; Underwood, J.

    1994-11-01

    We report the experimental results of beryllium based multilayer mirrors for use in the 11.4 nm region. Mirrors using molybdenum as the high-Z material have demonstrated 68.7% peak reflectance at 11.3 nm.

  15. Plans and status of the Beryllium ablator campaign on NIF

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Krasheninnikova, N. S.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Dewald, E. L.; Edwards, M. J.; MacKinnon, A. J.; Meezan, N. B.

    2014-10-01

    Beryllium has long been known to have excellent properties for indirectly driven ICF implosions including enhanced ablation pressure, implosion velocity, and mass ablation rate. The high ablation velocity leads to stabilization of ablative hydrodynamic instabilities and higher ablation pressures. Recent ``high foot'' experiments have shown ablative Rayleigh-Taylor to be a leading cause of degraded performance for ICF implosions. While Beryllium ablators have these advantages, there are also risks associated with Beryllium target designs. A campaign is underway to design and to test these advantages for comparison with other ablator options and determine which provides the best path forward for ICF. Experiments using Beryllium ablators are expected to start in the late summer of 2014. This presentation will discuss the status of the experiments and layout the plans/goals for the campaign. This work is supported by the US DOE.

  16. The mechanical behavior of cross-rolled beryllium sheet

    NASA Technical Reports Server (NTRS)

    Henkener, J. A.; Spiker, I. K.; Castner, W. L.

    1992-01-01

    In response to the failure of a conical section of the Insat C satellite during certification testing, the use of beryllium for payload structures, particularly in sheet product form, is being reevaluated. A test program was initiated to study the tensile, shear, and out-of-plane failure modes of beryllium cross-rolled sheet and to apply data to the development of an appropriate failure criterion. Tensile test results indicated that sanding the surface of beryllium sheet has no significant effect on yield strength but can produce a profound reduction in ultimate strength and results obtained by finite element analysis. Critical examination of these test results may contribute to the modification of a JSC policy for the use of beryllium in orbiter and payload structures.

  17. Boron-Lined Multichamber and Conventional Neutron Proportional Counter Tests

    SciTech Connect

    Woodring, Mitchell L.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2010-09-07

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of a boron-lined, multichamber proportional counter manufactured by LND, Inc. Also reported are results obtained with an earlier design of conventional, boron-lined, proportional counters from LND. This testing measured the required performance for neutron detection efficiency and gamma-ray rejection capabilities of the detectors.

  18. Development of Biomarkers for Chronic Beryllium Disease in Mice

    SciTech Connect

    Gordon, Terry

    2013-01-25

    Beryllium is a strategic metal, indispensable for national defense programs in aerospace, telecommunications, electronics, and weaponry. Exposure to beryllium is an extensively documented occupational hazard that causes irreversible, debilitating granulomatous lung disease in as much as 3 - 5% of exposed workers. Mechanistic research on beryllium exposure-disease relationships has been severely limited by a general lack of a sufficient CBD animal model. We have now developed and tested an animal model which can be used for dissecting dose-response relationships and pathogenic mechanisms and for testing new diagnostic and treatment paradigms. We have created 3 strains of transgenic mice in which the human antigen-presenting moiety, HLA-DP, was inserted into the mouse genome. Each mouse strain contains HLA-DPB1 alleles that confer different magnitude of risk for chronic beryllium disease (CBD): HLA-DPB1*0401 (odds ratio = 0.2), HLA-DPB1*0201 (odds ratio = 15), HLA-DPB1*1701 (odds ratio = 240). Our preliminary work has demonstrated that the *1701 allele, as predicted by human studies, results in the greatest degree of sensitization in a mouse ear swelling test. We have also completed dose-response experiments examining beryllium-induced lung granulomas and identified susceptible and resistant inbred strains of mice (without the human transgenes) as well as quantitative trait loci that may contain gene(s) that modify the immune response to beryllium. In this grant application, we propose to use the transgenic and ˜normal inbred strains of mice to identify biomarkers for the progression of beryllium sensitization and CBD. To achieve this goal, we propose to compare the sensitivity and accuracy of the lymphocyte proliferation test (blood and bronchoalveolar lavage fluid) with the ELISPOT test in the three HLA-DP transgenic mice strains throughout a 6 month treatment with beryllium particles. Because of the availability of high-throughput proteomics, we will also identify changes in potential protein biomarkers in beryllium-treated mice. We will correlate these findings with the ability of the transgenic mice to develop a beryllium-specific adaptive immune response in blood and bronchoalveolar lavage (BAL) fluid. We will also determine whether beryllium-responsive CD4+ T cells in blood and BAL correlate with the onset of granuloma formation. Thus, we will provide the scientific community with biomarkers of sensitization and disease progression for CBD. These biomarkers will serve as critical tools for development of improved industrial hygiene and therapeutic interventions.

  19. Plasma boron and the effects of boron supplementation in males.

    PubMed

    Green, N R; Ferrando, A A

    1994-11-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p < 0.01), lean body mass (p < 0.01), and one repetition maximum (RM) squat (p < 0.001) and one RM bench press (p < 0.01). The findings suggest that 7 weeks of bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all. PMID:7889885

  20. Actinide/beryllium neutron sources with reduced dispersion characteristics

    DOEpatents

    Schulte, Louis D.

    2012-08-14

    Neutron source comprising a composite, said composite comprising crystals comprising BeO and AmBe.sub.13, and an excess of beryllium, wherein the crystals have an average size of less than 2 microns; the size distribution of the crystals is less than 2 microns; and the beryllium is present in a 7-fold to a 75-fold excess by weight of the amount of AmBe.sub.13; and methods of making thereof.

  1. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  2. Effects of Beryllium on Human Serum Immunoglobulin and Lymphocyte Subpopulation

    PubMed Central

    Kim, DaeSeong; Won, Yong Lim; Kang, Seong-Kyu

    2013-01-01

    To investigate the effects of short-term exposure of beryllium on the human immune system, the proportion of T-lymphocytes such as CD3+, CD4+, CD8+, CD95, and NK cells, andthe proportion of B cells and TNFα level in peripheral blood and immunoglobulins in the serum of 43 exposed workers and 34 healthy control subjects were studied. External exposure to beryllium was measured by atomic absorption spectrometer as recommended by the NIOSH analytical method 7300. T lymphocyte subpopulation analysis was carried out with flow cytometer. The working duration of exposed workers was less than 3 months and the mean ambient beryllium level was 3.4 μg/m3, 112.3 μg/m3, and 2.3 μg/m3 in molding (furnace), deforming (grinding), and sorting processes, respectively (cited from Kim et al., 2008). However, ambient beryllium level after process change was non-detectable (< 0.1 μg/m3). The number of T lymphocytes and the amount of immunoglobulins in the beryllium-exposed workers and control subjects were not significantly different, except for the total number of lymphocytes and CD95 (APO1/FAS). The total number of lymphocytes was higher in the beryllium-exposed individuals than in the healthy control subjects. Multiple logistic regression analysis showed lymphocytes to be affected by beryllium exposure (odd ratio = 7.293; p < 0.001). These results show that short-term exposure to beryllium does not induce immune dysfunction but is probably associated with lymphocytes proliferation. PMID:24278637

  3. Nothing Boring About Boron.

    PubMed

    Pizzorno, Lara

    2015-08-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body's use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD(+)); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin's lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron's beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron-only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis; osteoarthritis (OA); or breast, prostate, or lung cancer. PMID:26770156

  4. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  5. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, Cressie E.; Morrow, Marvin S.

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  6. Removing tritium and other impurities during industrial recycling of beryllium from a fusion reactor

    SciTech Connect

    Dylst, K.; Seghers, J.; Druyts, F.; Braet, J.

    2008-07-15

    Recycling beryllium used in a fusion reactor might be a good way to overcome problems related to the disposal of neutron irradiated beryllium. The critical issues for the recycling of used first wall beryllium are the presence of tritium and (transuranic) impurities. High temperature annealing seems to be the most promising technique for detritiation. Purification of the de-tritiated beryllium can be achieved by chlorination of the irradiated beryllium and the subsequent reduction of beryllium chloride to highly pure metallic beryllium. After that, the beryllium can be re-fabricated into first wall tiles via powder metallurgy which is already a mature industrial practice. This paper outlines the path to define the experimental needs for beryllium recycling and tackles problems related to the detritiation and the purification via the chlorine route. (authors)

  7. The Halo Nuclei BERYLLIUM-11 and BORON-8 Studied by Fragmentation Reactions.

    NASA Astrophysics Data System (ADS)

    Kelley, John Henry

    The discovery of anomalously large matter radii in some weakly bound nuclei on the neutron dripline has led to measurements of breakup fragment momentum distributions aimed at obtaining a qualitative understanding of these nuclei. The valence nucleons in halo nuclei penetrate the low barrier of the core potential, and form a diffuse layer around a normal sized core. Momentum distributions of core fragments following a direct breakup are related to the spatial distribution of the halo nucleon, via Fourier Transform, and offer a straightforward method to study halo nuclei. The momentum distribution in the direction parallel with the beam direction (p_{ |}) is less affected by reaction mechanism effects than the distribution perpendicular to the beam direction (p_{bot}), and is expected to most accurately reflect the halo neutron momentum wavefunction. The nucleus, ^{11}Be, has a one-neutron halo and core fragment momentum distributions should permit a simple determination of halo characteristics. We measured the p_{|} distribution of ^{10}Be core fragments in Be, Nb, Ta and U targets and found that the p_{|} distributions on all targets are in excellent agreement with a projection (onto the p| axis) of the momentum wavefunction of a 2s_{1/2} neutron bound by 500 keV in a Woods-Saxon potential. This is taken to indicate that reaction mechanism effects do not significantly influence the ^{10 }Be core fragment p_{| } distributions. The corresponding root-mean -square radius of the halo neutron is 6.5 fm. Finally, there is a controversy concerning the existence of a proton halo in ^8B. We approached the issue assuming that the p_ {|} distributions of ^7Be breakup fragments would reflect the spatial distribution of the valence proton, as we had shown for ^{11}Be. Both p _{|} and p_ {bot} were measured. The p _{|} distributions are narrow, but are only about half of the width of a prediction for a proton bound by 140 keV in a Woods-Saxon potential with a rms radius of 4.24 fm. In this case, it appears that for the smaller halo of the p-orbital proton the breakup momenta are influenced by both the nuclear and Coulomb reaction mechanism effects. When these effects are included, the predictions agree with the data.

  8. Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions

    NASA Astrophysics Data System (ADS)

    Bernhardt, D.; Becker, A.; Brandau, C.; Grieser, M.; Hahn, M.; Krantz, C.; Lestinsky, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Spruck, K.; Wolf, A.; Müller, A.; Schippers, S.

    2016-04-01

    We report measured rate coefficients for electron-ion recombination of Si10+ forming Si9+ and of Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ (Orban et al 2010 Astrophys. J. 721 1603) to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.

  9. Significance of the blood beryllium lymphocyte proliferation test

    SciTech Connect

    Newman, L.S.

    1996-10-01

    The blood beryllium lymphocyte proliferation test (BeLPT) is an in vitro measure of the beryllium antigen-specific cell-mediated immune response. This response to beryllium is now understood to play a central role in the immunopathogenesis of chronic beryllium disease (CBD). Although there remain some unresolved methodologic issues with testing, the blood BeLPT has already undergone sufficient development and field assessment to lead to a number of important conclusions: (a) The BeLPT identifies beryllium sensitization and CBD earlier and better than any other clinical test presently available. (b) The CBD cases identified with the blood test are clinically significant. (c) A subset of the people identified by the BeLPT who do not yet have clinical disease will progress and require treatment with corticosteroids for impairing illness. (d) The BeLPT can be used to improve clinical diagnostic accuracy and to correct mistaken diagnoses. (e) The blood test can be used in screening large numbers of exposed workers because it is sensitive and specific and has high positive and negative predictive value for CBD. (f) In every workforce studied to date, the BeLPT has identified beryllium sensitization and CBD that had been missed by conventional screening efforts. (g) Worker populations that have been characterized using the BeLPT can help to elucidate the role of exposure genetics and dysregulated inflammation in the genesis of occupational lung disease. 28 refs., 1 tab.

  10. Pulmonary function in beryllium workers: assessment of exposure.

    PubMed Central

    Kriebel, D; Sprince, N L; Eisen, E A; Greaves, I A

    1988-01-01

    The inhalation of beryllium causes a serious lung disease characterised by pronounced radiographic and functional impairments and occurs in workers engaged in the extraction and manufacture of the metal. This paper describes the beryllium exposure levels and refining processes in a large beryllium factory operating since the 1930s. Lifetime beryllium exposure histories were estimated for the 309 workers present at a health survey conducted in 1977. Beryllium exposure levels in the plant were high for many years, with some estimated exposure levels in excess of 100 micrograms/m3. As late as 1975, there were exposures to beryllium above 10 micrograms/m3 in some jobs. After about 1977, the plant was in compliance with the permissible exposure limit of 2.0 micrograms/m3. The median cumulative exposure in this cohort was 65 micrograms/m3-years and the median duration of exposure was 17 years. From these data a series of exposure parameters, functions of the exposure histories that characterise biologically important dimensions of exposure were calculated for each worker. PMID:3342199

  11. Determination of beryllium by using X-ray fluorescence spectrometry.

    PubMed

    Zawisza, Beata

    2008-03-01

    X-ray fluorescence spectrometry method is subject to certain difficulties and inconveniences for the elements having the atomic number 9 or less. These difficulties become progressively more severe as the atomic number decreases, and are quite serious for beryllium, which is practically indeterminable directly by XRF. Therefore, an indirect determination of beryllium that is based on the evaluation of cobalt in the precipitate is taken into consideration. In the thesis below, there is a description of a new, simple, and precise method by selective precipitation using hexamminecobalt(III) chloride and ammonium carbonate-EDTA solution as a complexing agent for the determining of a trace amount of beryllium using X-ray fluorescence spectrometry. The optimum conditions for [Co(NH(3))(6)][Be(2)(OH)(3)(CO(3))(2)(H(2)O)(2)].(3)H(2)O complex formation were studied. The complex was collected on the membrane filter, and the Co Kalpha line was measured by XRF. The method presents the advantages of the sample preparation and the elimination of the matrix effects due to the thin film obtained. The detection limit of the proposed method is 0.2 mg of beryllium. The method was successfully applied to beryllium determination in copper/ beryllium/cobalt alloys. PMID:18247483

  12. Beryllium pressure vessels for creep tests in magnetic fusion energy

    SciTech Connect

    Neef, W.S.

    1990-07-20

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

  13. Significance of the blood beryllium lymphocyte proliferation test.

    PubMed Central

    Newman, L S

    1996-01-01

    The blood beryllium lymphocyte proliferation test (BeLPT) is an in vitro measure of the beryllium antigen-specific cell-mediated immune response. This response to beryllium is now understood to play a central role in the immunopathogenesis of chronic beryllium disease (CBD). Although there remain some unresolved methodologic issues with testing, the blood BeLPT has already undergone sufficient development and field assessment to lead to a number of important conclusions: a) The BeLPT identifies beryllium sensitization and CBD earlier and better than any other clinical test presently available. b) The CBD cases identified with the blood test are clinically significant. c) A subset of the people identified by the BeLPT who do not yet have clinical disease will progress and require treatment with corticosteroids for impairing illness. d) The BeLPT can be used to improve clinical diagnostic accuracy and to correct mistaken diagnoses. e) The blood test can be used in screening large numbers of exposed workers because it is sensitive and specific and has high positive and negative predictive value for CBD. f) In every workforce studied to date, the BeLPT has identified beryllium sensitization and CBD that had been missed by conventional screening efforts. g) Worker populations that have been characterized using the BeLPT can help to elucidate the role of exposure genetics and dysregulated inflammation in the genesis of occupational lung disease. PMID:8933041

  14. Methods of producing continuous boron carbide fibers

    SciTech Connect

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  15. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  16. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  17. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  18. Synthesis of hexagonal boron nitride graphene-like few layers.

    PubMed

    Yuan, S; Toury, B; Journet, C; Brioude, A

    2014-07-21

    Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li₃N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li₃N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction. PMID:24914881

  19. Thermal neutron scintillators using unenriched boron nitride and zinc sulfide

    NASA Astrophysics Data System (ADS)

    McMillan, J. E.; Cole, A. J.; Kirby, A.; Marsden, E.

    2015-06-01

    Thermal neutron detectors based on powdered zinc sulfide intimately mixed with a neutron capture compound have a history as long as scintillation technique itself. We show that using unenriched boron nitride powder, rather than the more commonly used enriched lithium fluoride, results in detection screens which produce less light but which are very considerably cheaper. Methods of fabricating large areas of this material are presented. The screens are intended for the production of large area low cost neutron detectors as a replacement for helium-3 proportional tubes.

  20. Lithium Resources for the 21st Century

    NASA Astrophysics Data System (ADS)

    Kesler, S.; Gruber, P.; Medina, P.; Keolian, G.; Everson, M. P.; Wallington, T.

    2011-12-01

    Lithium is an important industrial compound and the principal component of high energy-density batteries. Because it is the lightest solid element, these batteries are widely used in consumer electronics and are expected to be the basis for battery electric vehicles (BEVs), hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) for the 21st century. In view of the large incremental demand for lithium that will result from expanded use of various types of EVs, long-term estimates of lithium demand and supply are advisable. For GDP growth rates of 2 to 3% and battery recycling rates of 90 to 100%, total demand for lithium for all markets is expected to be a maximum of 19.6 million tonnes through 2100. This includes 3.2 million tonnes for industrial compounds, 3.6 million tonnes for consumer electronics, and 12.8 million tonnes for EVs. Lithium-bearing mineral deposits that might supply this demand contain an estimated resource of approximately 39 million tonnes, although many of these deposits have not been adequately evaluated. These lithium-bearing mineral deposits are of two main types, non-marine playa-brine deposits and igneous deposits. Playa-brine deposits have the greatest immediate resource potential (estimated at 66% of global resources) and include the Salar de Atacama (Chile), the source of almost half of current world lithium production, as well as Zabuye (China/Tibet) and Hombre Muerto (Argentina). Additional important playa-brine lithium resources include Rincon (Argentina), Qaidam (China), Silver Peak (USA) and Uyuni (Bolivia), which together account for about 35% of the estimated global lithium resource. Information on the size and continuity of brine-bearing aquifers in many of these deposits is limited, and differences in chemical composition of brines from deposit to deposit require different extraction processes and yield different product mixes of lithium, boron, potassium and other elements. Numerous other brines in playas (Great Salt Lake, Searles Lake), geothermal systems (Salton Sea) and oil fields contain lithium, but in low concentrations that add relatively little to estimated global resources. Igneous deposits, which constitute 26% of estimated global resources, consist largely of pegmatites, including past and present producers at Kings Mountain-Bessemer City (USA), Greenbushes (Australia) and Bikita (Zimbabwe), as well as numerous active prospects, especially in Canada and China. Amenability of these deposits to economic extraction is controlled by mineralogy and zoning of lithium, which vary considerably from deposit to deposit. An additional 8% of global lithium resources is estimated to be present in unusual deposits including largely hectorite clays in volcaniclastic rocks at Kings Valley (USA) and jadarite in lacustrine evaporite deposits (Serbia), which present new challenges to both mining and processing. If this highly varied population of deposits can be converted to reserves, lithium supplies for the 21st century EV market are relatively secure.

  1. Boron isotopic compositions of some boron minerals

    NASA Astrophysics Data System (ADS)

    Oi, Takao; Nomura, Masao; Musashi, Masaaki; Ossaka, Tomoko; Okamoto, Makoto; Kakihana, Hidetake

    1989-12-01

    Boron minerals that have different structural formulae but are supposed to have the same geologic origin have been collected and analyzed for the 11B /10B isotopic ratio. It has been reconfirmed that minerals of marine origin have higher 11B /10B ratios than those of nonmarine origin. It has been found that the sequence of decreasing 11B /10B values among the minerals with the same geologic origin is; borax, tincal, kernite (Na borates) > ulexite ( Na/Ca borate) > colemanite, iyoite, meyerhofferite (Ca borates). This sequence is explainable on the basis of the difference in crystal structure among the minerals. That is, minerals with higher BO 3/BO 4 ratios, (the ratio of the number of the BO 3 triangle units to the number of the BO 4 tetrahedron units in the structural formula of a mineral) have higher 11B /10B ratios.

  2. Method of making alloys of beryllium with plutonium and the like

    DOEpatents

    Runnals, O J.C.

    1959-02-24

    The production or alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium is described. A halide salt or the metal to be alloyed with the beryllium is heated at l3O0 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  3. METHOD OF MAKING ALLOYS OF BERYLLIUM WITH PLUTONIUM AND THE LIKE

    DOEpatents

    Runnals, O.J.C.

    1959-02-24

    The production of alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium are described. A halide salt of the metal to be alloyed with the beryllium is heated at 1300 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  4. Impact of boron dilution accidents on low boron PWR safety

    SciTech Connect

    Papukchiev, A.; Liu, Y.; Schaefer, A.

    2006-07-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. As an inadvertent reduction of the boron concentration during a boron dilution accident could introduce positive reactivity and have a negative impact on PWR safety, design changes to reduce boron concentration in the reactor coolant are of general interest. In the framework of an investigation into the feasibility of low boron design, a PWR core configuration based on fuel with higher gadolinium (Gd) load has been developed which permits to reduce the natural boron concentration at begin of cycle (BOC) to 518 ppm. For the assessment of the potential safety advantages, a boron dilution accident due to small break loss-of-coolant-accident (SBLOCA) has been simulated with the system code ATHLET for two PWR core designs: a low boron design and a standard core design. The results from the comparative analyses showed that the impact of the boron dilution accident on the new PWR design safety is significantly lower in comparison with the standard design. The new reactor design provided at least 4, 4% higher reactivity margin to recriticality during the whole accident which is equivalent to the negative reactivity worth of additional 63% of all control rods fully inserted in to the core. (authors)

  5. Testing of Liquid Lithium Limiters in CDX-U

    SciTech Connect

    R. Majeski; R. Kaita; M. Boaz; P. Efthimion; T. Gray; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Seraydarian; R. Maingi; M. Maiorano; S. Smith; D. Rodgers

    2004-07-30

    Part of the development of liquid metals as a first wall or divertor for reactor applications must involve the investigation of plasma-liquid metal interactions in a functioning tokamak. Most of the interest in liquid-metal walls has focused on lithium. Experiments with lithium limiters have now been conducted in the Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory. Initial experiments used a liquid-lithium rail limiter (L3) built by the University of California at San Diego. Spectroscopic measurements showed some reduction of impurities in CDX-U plasmas with the L3, compared to discharges with a boron carbide limiter. While no reduction in recycling was observed with the L3, which had a plasma-wet area of approximately 40 cm2, subsequent experiments with a larger area fully toroidal lithium limiter demonstrated significant reductions in both recycling and in impurity levels. Two series of experiments with the toroidal limiter have now be en performed. In each series, the area of exposed, clean lithium was increased, until in the latest experiments the liquid-lithium plasma-facing area was increased to 2000 cm2. Under these conditions, the reduction in recycling required a factor of eight increase in gas fueling in order to maintain the plasma density. The loop voltage required to sustain the plasma current was reduced from 2 V to 0.5 V. This paper summarizes the technical preparations for lithium experiments and the conditioning required to prepare the lithium surface for plasma operations. The mechanical response of the liquid metal to induced currents, especially through contact with the plasma, is discussed. The effect of the lithium-filled toroidal limiter on plasma performance is also briefly described.

  6. Complexation of thorium and beryllium with xylenol orange

    SciTech Connect

    Tikhonov, V.N.; Smirnova, S.N.

    1986-10-01

    The interaction of thorium and beryllium with Xylenol Orange, which was purified by gel filtration on Molselect G-10, has been studied. Thorium forms a complex with a component ratio M:R = 2:1, = (1.11 +/- 0.02).10/sup 5/, and K/sub st/ = (3.25 +/- 0.89)/sup ./ 10/sup 13/ at pH 2 and a complex with a 1:1 component ratio and = (6.9 +/- 0.1).10/sup 4/ at pH 4. Beryllium forms a complex with a component ratio M:R = 1:1, = (3.6 +/- 0.1)/sup ./ 10/sup 4/, and K/sub st/ = (1.65 + or - 0.06)/sup ./ 10/sup 13/. For both thorium complexes lambda/sub max/ = 565 NM, and for the beryllium complex lambda/sub max/ = 475 nm. The study of the reaction mechanism has shown that the thorium complex with M:R = 2:1 forms when thorium in the form of Th/sup 4 +/ and the reagent in the form of H/sub 5/R/sup -/ interact. In the case of beryllium, the complex forms between BeOH/sup +/ and H/sub 3/R/sup 3 -/. Acetates have little influence on the formation of the thorium complex and a strong influence on the formation of the beryllium complex. Beer's law holds up to thorium and beryllium concentrations equal to 5 x 10/sup -5/ M when the concentration of Xylenol Orange is equal to 6 x 10/sup -5/M. Fluorides, citrates, tartrates, and EDTA interfere with the formation of the complexes of thorium and beryllium with Xylenol Orange.

  7. Occurrence model for volcanogenic beryllium deposits: Chapter F in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R., II; Jaskula, Brian; Piatak, Nadine M.

    2012-01-01

    Current global and domestic mineral resources of beryllium (Be) for industrial uses are dominated by ores produced from deposits of the volcanogenic Be type. Beryllium deposits of this type can form where hydrothermal fluids interact with fluorine and lithophile-element (uranium, thorium, rubidium, lithium, beryllium, cesium, tantalum, rare earth elements, and tin) enriched volcanic rocks that contain a highly reactive lithic component, such as carbonate clasts. Volcanic and hypabyssal high-silica biotite-bearing topaz rhyolite constitutes the most well-recognized igneous suite associated with such Be deposits. The exemplar setting is an extensional tectonic environment, such as that characterized by the Basin and Range Province, where younger topaz-bearing igneous rock sequences overlie older dolomite, quartzite, shale, and limestone sequences. Mined deposits and related mineralized rocks at Spor Mountain, Utah, make up a unique economic deposit of volcanogenic Be having extensive production and proven and probable reserves. Proven reserves in Utah, as reported by the U.S. Geological Survey National Mineral Information Center, total about 15,900 tons of Be that are present in the mineral bertrandite (Be4Si2O7(OH)2). At the type locality for volcanogenic Be, Spor Mountain, the tuffaceous breccias and stratified tuffs that host the Be ore formed as a result of explosive volcanism that brought carbonate and other lithic fragments to the surface through vent structures that cut the underlying dolomitic Paleozoic sedimentary rock sequences. The tuffaceous sediments and lithic clasts are thought to make up phreatomagmatic base surge deposits. Hydrothermal fluids leached Be from volcanic glass in the tuff and redeposited the Be as bertrandite upon reaction of the hydrothermal fluid with carbonate clasts in lithic-rich sections of tuff. The localization of the deposits in tuff above fluorite-mineralized faults in carbonate rocks, together with isotopic evidence for the involvement of magmatic water in an otherwise meteoric water-dominated hydrothermal system, indicate that magmatic volatiles contributed to mineralization. At the type locality, hydrothermal alteration of dolomite clasts formed layered nodules of calcite, opal, fluorite, and bertrandite, the latter occurring finely intergrown with fluorite. Alteration assemblages and elemental enrichments in the tuff and surrounding volcanic rocks include regional diagenetic clays and potassium feldspar and distinctive hydrothermal halos of anomalous fluorine, lithium, molybdenum, niobium, tin, and tantalum, and intense potassium feldspathization with sericite and lithium-smectite in the immediate vicinity of Be ore. Formation of volcanogenic Be deposits is due to the coincidence of multiple factors that include an appropriate Be-bearing source rock, a subjacent pluton that supplied volatiles and heat to drive convection of meteoric groundwater, a depositional site characterized by the intersection of normal faults with permeable tuff below a less permeable cap rock, a fluorine-rich ore fluid that facilitated Be transport (for example, BeF42- complex), and the existence of a chemical trap that caused fluorite and bertrandite to precipitate at the former site of carbonate lithic clasts in the tuff.

  8. Fivefold twinned boron carbide nanowires.

    PubMed

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties. PMID:19687534

  9. Beryllium abundances in stars hosting giant planets

    NASA Astrophysics Data System (ADS)

    Santos, N. C.; García López, R. J.; Israelian, G.; Mayor, M.; Rebolo, R.; García-Gil, A.; Pérez de Taoro, M. R.; Randich, S.

    2002-05-01

    We have derived beryllium abundances in a wide sample of stars hosting planets, with spectral types in the range F7V-K0V, aimed at studying in detail the effects of the presence of planets on the structure and evolution of the associated stars. Predictions from current models are compared with the derived abundances and suggestions are provided to explain the observed inconsistencies. We show that while still not clear, the results suggest that theoretical models may have to be revised for stars with Teff<5500 K. On the other hand, a comparison between planet host and non-planet host stars shows no clear difference between both populations. Although preliminary, this result favors a ``primordial'' origin for the metallicity ``excess'' observed for the planetary host stars. Under this assumption, i.e. that there would be no differences between stars with and without giant planets, the light element depletion pattern of our sample of stars may also be used to further investigate and constraint Li and Be depletion mechanisms. Based on observations collected with the VLT/UT2 Kueyen telescope (Paranal Observatory, ESO, Chile) using the UVES spectrograph (Observing runs 66.C-0116 A and 66.D-0284 A), and with the William Herschel and Nordic Optical Telescopes, operated at the island of La Palma by the Isaac Newton Group and jointly by Denmark, Finland, Iceland, and Norway, respectively, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  10. Structure and vibrational assignment of beryllium acetylacetonate.

    PubMed

    Tayyari, Sayyed Faramarz; Bakhshi, Tayyebeh; Ebrahimi, Maryam; Sammelson, Robert Erik

    2009-07-15

    The structure of beryllium acetylacetonate, Be(acac)(2), was fully optimized at the B3LYP (using the 6-31G*, 6-311G*, and 6-311++G(3df,2p) basis sets), Hartree-Fock, and the Mller-Plesset (using the 6-31G* basis set) levels. The frequency and intensity of the vibrational bands of Be(acac)(2) and its 1,3,5-(13)C; 2,4-(13)C; 3-(2)H; 3-(2)H-2,4-(18)O derivatives were obtained at the B3LYP level using 6-311G* basis set. We also calculated the anharmonic frequencies at the B3LYP/6-311G* level of theory for Be(acac). The calculated frequencies are compared with the experimental Fourier transform IR and Raman spectra. All of the measured IR and Raman bands were interpreted in terms of the calculated vibrational modes. The scaled theoretical frequencies and the structural parameters are in excellent agreement with the experimental data. Analysis of the vibrational spectra indicates a strong coupling between the chelated ring modes. Four bands at the 1042, 826, 748, and 480cm(-1) are found to be mainly due to the metal-oxygen stretching motions. PMID:19321382

  11. The unusual properties of beryllium surfaces

    SciTech Connect

    Stumpf, R. ||; Hannon, J.B. |; Plummer, E.W. |

    1994-12-31

    Be is a ``marginal metal.`` The stable phase, hcp-Be, has a low Fermi-level density of states and very anisotropic structural and elastic properties, similar to a semiconductor`s. At the Be(0001) surface, surface states drastically increase the Fermi-level density of states. The different nature of bonding in bulk-Be and at the Be(0001) surface explains the large outward relaxation. The presence of surface states causes large surface core-level shifts by inducing a higher electrostatic potential in the surface layers and by improving the screening at the surface. The authors experimental and theoretical investigations of atomic vibrations at the Be(0001) surface demonstrate clearly that Be screening of atomic motion by the surface states makes the surface phonon dispersion fundamentally different from that of the bulk. Properties of Be(0001) are so different from those of the bulk that the surface can be considered a new ``phase`` of beryllium with unique electronic and structural characteristics. For comparison they also study Be(11{bar 2}0), a very open surface without important surface states. Be(11{bar 2}0) is the only clean s-p metal surface known to reconstruct (1 {times} 3 missing row reconstruction).

  12. Beryllium parabolic refractive x-ray lenses

    NASA Astrophysics Data System (ADS)

    Lengeler, B.; Schroer, C. G.; Kuhlmann, M.; Benner, B.; Günzler, T. F.; Kurapova, O.; Somogyi, A.; Snigirev, A.; Snigireva, I.

    2004-05-01

    Parabolic refractive x-ray lenses are novel optical components for the hard x-ray range from about 5 keV to about 120 keV. They focus in both directions. They are compact, robust, and easy to align and to operate. They can be used like glass lenses are used for visible light, the main difference being that the numerical aperture N.A. is much smaller than 1 (of order 10-4 to 10-3). Their main applications are in micro- and nanofocusing, in imaging by absorption and phase contrast and in fluorescence mode. In combination with tomography they allow for 3-dimensional imaging of opaque media with submicrometer resolution. Finally, they can be used in speckle spectroscopy by means of coherent x-ray scattering. Beryllium as lens material strongly enhances the transmission and the field of view as compared to aluminium. With increased N.A. the lateral resolution is also considerably improved with Be lenses. References to a number of applications are given.

  13. Structures, stability, mechanical and electronic properties of α-boron and α∗-boron

    NASA Astrophysics Data System (ADS)

    He, Chaoyu; Zhong, J. X.

    2013-04-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of "3S-6D-3S" and "2S-6D-4S", respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and α*-boron are confirmed dynamically and mechanically stable. The mechanical and electronic properties of α-boron and α*-boron indicate that they are potential superhard semiconducting phases of element boron.

  14. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease

    PubMed Central

    Falta, Michael T.; Mack, Douglas G.; Tinega, Alex N.; Crawford, Frances; Giulianotti, Marc; Santos, Radleigh; Clayton, Gina M.; Wang, Yuxiao; Zhang, Xuewu; Maier, Lisa A.; Marrack, Philippa; Kappler, John W.

    2013-01-01

    Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4+ T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4+ T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4+ T cells specific for these ligands in all HLA-DP2+ CBD patients tested. Thus, our findings identify the first ligand for a CD4+ T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD. PMID:23797096

  15. Parabolic lithium refractive optics for x rays

    NASA Astrophysics Data System (ADS)

    Pereira, N. R.; Dufresne, E. M.; Clarke, R.; Arms, D. A.

    2004-01-01

    Excellent x-ray optics for photons at around 10 keV can be expected with lithium metal. One of the best compound refractive lens designs [Lengeler et al., J. Appl. Phys. 84, 5855 (1998)] is now produced routinely in aluminum, and more recently has been demonstrated using beryllium [M. Kuhlmann et al. (unpublished)]. Here, we report a similar refractive lens made from lithium. At 10.87 keV, this lens has a ≃2 m focal length, more than 90% peak transmission, and an average transmission of 49%. The lens shows a very useful gain of up to 40. The full widths at half maximum (FWHM) of the focus are blurred by roughly 20 μm, resulting in a horizontal and vertical FWHM of 33 and 17 μm for an image distance of 2.13 m. The lens produces speckle on the x-ray beam, which is likely due to the inhomogeneities of the lens surface: Coherent x-ray scattering is useful in understanding imperfections in x-ray optics, such as mirrors and lenses. Better molding techniques should result in improved performance and enable microbeam techniques with this type of Li lens.

  16. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    SciTech Connect

    Jolodosky, A.; Fratoni, M.

    2015-09-22

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within a low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding, low electrical conductivity and therefore low MHD pressure drop, low chemical reactivity, and extremely low tritium inventory; the addition of sodium (FLiNaBe) has been considered because it retains the properties of FliBe but also lowers the melting point. Although many of these blanket concepts are promising, challenges still remain. The limited amount of beryllium available poses a problem for ceramic breeders such as the HCPB. FLiBe and FLiNaBe are highly viscous and have a low thermal conductivity. Lithium lead possesses a poor thermal conductivity which can cause problems in both DCLL and LiPb blankets. Additionally, the tritium permeation from these two blankets into plant components can be a problem and must be reduced. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium-related hazards are of primary concern. Although reducing chemical reactivity is the primary motivation for the development of new lithium alloys, the successful candidates will have to guarantee acceptable performance in all their functions. The scope of this study is to evaluate the neutronics performance of a large number of lithium-based alloys in the blanket of the IFE engine and assess their properties upon activation. This manuscript is organized as follows: Section 12 presents the models and methodologies used for the analysis; Section 3 discusses the results; Section 4 summarizes findings and future work.

  17. Lithium and boron based semiconductors for thermal neutron counting

    NASA Astrophysics Data System (ADS)

    Kargar, Alireza; Tower, Joshua; Hong, Huicong; Cirignano, Leonard; Higgins, William; Shah, Kanai

    2011-09-01

    Thermal neutron detectors in planar configuration were fabricated from LiInSe2 and B2Se3 crystals grown at RMD Inc. All fabricated semiconductor devices were characterized for the current-voltage (I-V) characteristic and neutron counting measurement. Pulse height spectra were collected from 241AmBe (neutron source on all samples), as well as 137Cs and 60Co gamma ray sources. In this study, the resistivity of all crystals is reported and the collected pulse height spectra are presented for fabricated devices. Note that, the 241AmBe neutron source was custom designed with polyethylene around the source as the neutron moderator, mainly to thermalize the fast neutrons before reaching the detectors. Both LiInSe2 and B2Se3 devices showed response to thermal neutrons of the 241AmBe source.

  18. Lithium use in batteries

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  19. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    SciTech Connect

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.

    1995-09-01

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H{sub 2} gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m{sup 2}.

  20. Formation of New Beryllium Phosphide in Au(Be)/GaP Thin-Film System

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chun; Lin, Hsin-Li

    2006-11-01

    A new beryllium phosphide was discovered in a Au/AuBe/Au/p-GaP(111) thin-film system annealed at 500 °C by rapid thermal annealing (RTA). The beryllium phosphide appeared in the shape of a plate in a gold metallization layer near the GaP substrate after RTA. The crystal structure of the beryllium phosphide belongs to the fcc Bravais lattice. The lattice constant of the beryllium phosphide is about 0.4996 nm. The formation of beryllium phosphide was confined to the cubic-to-cubic orientation relationships with that of GaP. The crystal structure of the beryllium phosphide does not pertain to those of any known binary beryllium phosphide systems. Thus, it was concluded that this beryllium phosphide, accordingly, is a new discovery.

  1. Chronic beryllium pneumonitis: first case accepted by U.K. register from Scotland.

    PubMed

    Monie, R D; Roberts, G H

    1991-12-01

    We report the first case from Scotland of chronic beryllium pneumonitis to be accepted into the UK Beryllium Case Register. The exposure was due to 'spot welding' and this source causing disease has not been described previously. PMID:1805382

  2. Beryllium processing technology review for applications in plasma-facing components

    SciTech Connect

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  3. Validation of cleaning method for various parts fabricated at a Beryllium facility

    SciTech Connect

    Davis, Cynthia M.

    2015-12-15

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic beryllium disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.

  4. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  5. Erosion of beryllium under ITER - Relevant transient plasma loads

    NASA Astrophysics Data System (ADS)

    Kupriyanov, I. B.; Nikolaev, G. N.; Kurbatova, L. A.; Porezanov, N. P.; Podkovyrov, V. L.; Muzichenko, A. D.; Zhitlukhin, A. M.; Gervash, A. A.; Safronov, V. M.

    2015-08-01

    Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2-0.5 MJ/m2 at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  6. Structure/property relationships in multipass GMA welding of beryllium.

    SciTech Connect

    Hochanadel, P. W.; Hults, W. L.; Thoma, D. J.; Dave, V. R.; Kelly, A. M.; Pappin, P. A.; Cola, M. J.; Burgardt, P.

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  7. Boron isotopic compositions of some boron minerals

    SciTech Connect

    Oi, Takao; Musashi, Masaaki; Ossaka, Tomoko; Kakihana, Hidetake ); Nomura, Masao; Okamoto, Makoto )

    1989-12-01

    Boron minerals that have different structural formulae but are supposed to have the same geologic origin have been collected and analyzed for the {sup 11}B/{sup 10}B isotopic ratio. It has been reconfirmed that minerals of marine origin have higher {sup 11}B/{sup 10}B ratios than those of nonmarine origin. It has been found that the sequence of decreasing {sup 11}B/{sup 10}B values among the minerals with the same geologic origin is; borax, tincal, kernite (Na borates) > ulexite (Na/Ca borate) > colemanite, iyoite, meyerhofferite (Ca borates). This sequence is explainable on the basis of the difference in crystal structure among the minerals. That is, minerals with high BO{sub 3}/BO{sub 4} ratios, (the ratio of the number of the BO{sub 3} triangle units to the number of the BO{sub 4} tetrahedron units in the structural formula of a mineral) have higher {sup 11}B/{sup 10}B ratios.

  8. Investigation of Zeff and impurity behaviour in lithium coating experiments with full metallic first wall in HT-7 tokamak

    NASA Astrophysics Data System (ADS)

    Chen, Yingjie; Wu, Zhenwei; Liu, Xiaoju; Wang, Dongsheng; Duan, Yanmin; Gao, Wei; Zhang, Ling; Huang, Juan; Sun, Zhen; Jie, Yinxian; Zhao, Junyu

    2015-02-01

    The control of the impurity level in magnetically confined plasmas is a critical issue for future fusion devices. All the graphite tiles have been replaced by molybdenum tiles as limiter materials in the 2011 spring campaign in order to further reduce the recycling and hydrogen content of the plasma. A lithium coating technique has been applied as an important wall conditioning method to the HT-7 tokamak. The effective ion charge Zeff and impurity behavior with full metallic first walls of high-Z materials and lower hydrogen recycling have been investigated in a series of lithium coating experiments in this paper. Plasma performance and impurity behavior without wall coatings are studied in the early stage of the campaign. Comparison of Zeff with different plasma-facing components has been made. A typical lithium coating experiment has been analyzed in order to understand the effect of lithium coating. The evolution of main impurity line radiation, Zeff and the H/(H + D) ratio is analyzed in detail as lithium coating is repeated, indicating that lithium coating is a very effective tool to control impurity level and reduce hydrogen recycling. Furthermore, a boronization is conducted at the end of this campaign in order to make comparison with lithium coating. Experimental results show that lithium coating has much more advantages in edge recycling control, though it does not reduce impurity level as effectively as boronization.

  9. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    SciTech Connect

    Ulrickson, M.A.; Manly, W.D.; Dombrowski, D.E.

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  10. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  11. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  12. Lithium-induced nephropathies.

    PubMed

    Raedler, Thomas J; Wiedemann, Klaus

    2007-01-01

    Lithium, an alkali metal, remains the gold-standard of the pharmacological treatment of bipolar disorder. Over the past decades, the potential of lithium to cause renal damage has been an issue of debate. Polyuria, polydipsia, and, to a lesser degree, nephrogenic diabetes insipidus are frequently observed under treatment with lithium. The glomerular filtration rate (GFR) decreases progressively in a smaller proportion of subjects after several years of treatment with lithium. An even smaller number of patients continue to develop renal insufficiency, ultimately leading to hemodialysis in a small minority of subjects exposed to lithium. So far, no tests exist to identify subjects at risk of lithium-induced nephropathy at an early stage. Therefore, regular monitoring of creatinine and creatinine clearance are recommended in all subjects taking lithium. PMID:17514192

  13. Double helix boron-10 powder thermal neutron detector

    SciTech Connect

    Wang, Zhehui; Morris, Christopher L.; Bacon, Jeffrey D.

    2015-06-02

    A double-helix Boron-10 powder detector having intrinsic thermal neutron detection efficiency comparable to 36'' long, 2-in diameter, 2-bar Helium-3 detectors, and which can be used to replace such detectors for use in portal monitoring, is described. An embodiment of the detector includes a metallic plate coated with Boron-10 powder for generating alpha and Lithium-7 particles responsive to neutrons impinging thereon supported by insulators affixed to at least two opposing edges; a grounded first wire wound in a helical manner around two opposing insulators; and a second wire having a smaller diameter than that of the first wire, wound in a helical manner around the same insulators and spaced apart from the first wire, the second wire being positively biased. A gas, disposed within a gas-tight container enclosing the plate, insulators and wires, and capable of stopping alpha and Lithium-7 particles and generating electrons produces a signal on the second wire which is detected and subsequently related to the number of neutrons impinging on the plate.

  14. Synthesis of hexagonal boron nitride graphene-like few layers

    NASA Astrophysics Data System (ADS)

    Yuan, S.; Toury, B.; Journet, C.; Brioude, A.

    2014-06-01

    Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction.Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr01017e

  15. Titanium reinforced boron polyimide composite

    NASA Technical Reports Server (NTRS)

    Clark, G. A.

    1972-01-01

    Program involves development of process technique for boron-polyimide prepeg, lay-up and curing procedures for prepegs when processed under vacuum bag pressure, and development and evaluation of titanium hard points for smooth transition of loads from titanium attach points into boron reinforced body of structure.

  16. Boron Clusters Come of Age

    ERIC Educational Resources Information Center

    Grimes, Russell N.

    2004-01-01

    Boron is the only element other than carbon that can build molecules of unlimited size by covalently boding to itself, a property known as catenation. In contrast to the chains and rings favored by carbon, boron arguably adopts a cluster motif that is reflected in the various forms of the pure element and in the huge area of polyhedral borane…

  17. Skin as a route of exposure and sensitization in chronic beryllium disease.

    PubMed Central

    Tinkle, Sally S; Antonini, James M; Rich, Brenda A; Roberts, Jenny R; Salmen, Rebecca; DePree, Karyn; Adkins, Eric J

    2003-01-01

    Chronic beryllium disease is an occupational lung disease that begins as a cell-mediated immune response to beryllium. Although respiratory and engineering controls have significantly decreased occupational beryllium exposures over the last decade, the rate of beryllium sensitization has not declined. We hypothesized that skin exposure to beryllium particles would provide an alternative route for sensitization to this metal. We employed optical scanning laser confocal microscopy and size-selected fluorospheres to demonstrate that 0.5- and 1.0- micro m particles, in conjunction with motion, as at the wrist, penetrate the stratum corneum of human skin and reach the epidermis and, occasionally, the dermis. The cutaneous immune response to chemical sensitizers is initiated in the skin, matures in the local lymph node (LN), and releases hapten-specific T cells into the peripheral blood. Topical application of beryllium to C3H mice generated beryllium-specific sensitization that was documented by peripheral blood and LN beryllium lymphocyte proliferation tests (BeLPT) and by changes in LN T-cell activation markers, increased expression of CD44, and decreased CD62L. In a sensitization-challenge treatment paradigm, epicutaneous beryllium increased murine ear thickness following chemical challenge. These data are consistent with development of a hapten-specific, cell-mediated immune response following topical application of beryllium and suggest a mechanistic link between the persistent rate of beryllium worker sensitization and skin exposure to fine and ultrafine beryllium particles. PMID:12842774

  18. Risk-based approach for controlling beryllium exposure in a manufacturing environment

    SciTech Connect

    Gilmore, W. E.; Clawson, C. D.; Ellis, K. K.

    2003-01-01

    There are many diverse uses for beryllium in both military and industrial applications. Unfortunately, there are certain worker health risks associated with the manufacture and production of beryllium products. Respiratory illnesses due to prolonged contact with beryllium particulate are of paramount concern. However, these health risks can be controlled provided that the appropriate protective measures to prevent worker exposure from beryllium are in place. But it is no1 always a straightforward process to identify exactly what the beryllium protective measures should be in order to realize a true risk savings. Without prudent attention to a systematic inquiry and suitable evaluative criteria, a program for controlling beryllium health risks can be lacking in completeness and overall effectiveness. One approach that took into account the necessary ingredients for risk-based determination of beryllium protective measures was developed for a beryllium operation at a Department of Energy (DOE) facility. The methodological framework that was applied at this facility, as well as a discussion of the final beryllium protective measures that were determined by this approach will be presented. Regulatory aspects for working with beryllium, as well as a risk-assessment strategy for ranking beryllium-handling activities with respect to exposure potential will also be discussed. The presentation will conclude with a synopsis of lessons-learned as gleaned from this case study, as well as providing the participants with a constructive blueprint that can be adapted to other processes involving beryllium.

  19. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium...

  20. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium...

  1. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium...

  2. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION... physician will discuss the matter with me, whether or not the result is related to my work with beryllium....

  3. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper...

  4. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper...

  5. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program...

  6. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program...

  7. Radiation damage and defect behavior in proton irradiated lithium-counterdoped n+p silicon solar cells

    NASA Technical Reports Server (NTRS)

    Stupica, John; Goradia, Chandra; Swartz, Clifford K.; Weinberg, Irving

    1987-01-01

    Two lithium-counterdoped n+p silicon solar cells with different lithium concentrations were irradiated by 10-MeV protons. Cell performance was measured as a function of fluence, and it was found that the cell with the highest concentration of lithium had the highest radiation resistance. Deep level transient spectroscopy which showed two deep level defects that were lithium related. Relating the defect energy levels obtained from this study with those from earlier work using 1-MeV electron irradiation shows no correlation of the defect energy levels. There is one marked similarity: the absence of the boron-interstitial-oxygen-interstitial defect. This consistency strengthens the belief that lithium interacts with oxygen to prevent the formation of the boron interstitial-oxygen interstitial defect. The results indicate that, in general, addition of lithium in small amounts to the p-base of a boron doped silicon solar cell such that the base remains p-type, tends to increase the radiation resistance of the cell.

  8. Surface binding energies of beryllium/tungsten alloys

    NASA Astrophysics Data System (ADS)

    Gyoeroek, Michael; Kaiser, Alexander; Sukuba, Ivan; Urban, Jan; Hermansson, Kersti; Probst, Michael

    2016-04-01

    Binding energies of beryllium and tungsten atoms on surfaces of the alloys Be2W and Be12W were obtained from density functional theory calculations. Values of 4.08-5.63 eV for beryllium and 6.81-10.04 eV for tungsten were obtained. An analytical force field agrees for beryllium, but its tungsten surface atoms are too strongly bound. The surface binding energies of Be and W on Be12W surfaces is slightly smaller than on the pure Be and W surfaces, respectively. For higher tungsten content, i.e. for Be2W, the situation is more complicated. For some surfaces of this alloy the surface binding energies are enhanced while for others they are diminished, compared to the pure metal surfaces. The dependency of the cohesive energy on the mole fraction follows a linear relationship.

  9. RCRA designation of discarded americium/beryllium sealed sources

    SciTech Connect

    Kirner, N.P.

    1994-09-01

    Many sealed sources containing americium and beryllium are used throughout construction, industry, and research, and will eventually require disposal. For planning purposes it is necessary to determine whether these sources, when disposed, constitute a mixed waste, i.e., a waste containing hazardous constituents regulated under the Resource Conservation and Recovery Act and radioactive constituents regulated under the Atomic Energy Act. Waste designation criteria contained in 40 CFR 261 are evaluated in detail in this report. It is determined that discarded americium/beryllium sealed sources do not contain any wastes listed in Subpart D of 40 CFR 261, nor do the discarded sources exhibit any hazardous characteristics. Therefore, it is concluded that discarded americium/beryllium sealed sources are not a mixed waste under regulations established by the US Environmental Protection Agency. Hazardous waste regulatory programs delegated to States, however, may have regulations that differ from those of the Federal government.

  10. Ab Initio Simulation Beryllium in Solid Molecular Hydrogen: Elastic Constant

    NASA Astrophysics Data System (ADS)

    Guerrero, Carlo L.; Perlado, Jose M.

    2016-03-01

    In systems of inertial confinement fusion targets Deuterium-Tritium are manufactured with a solid layer, it must have specific properties to increase the efficiency of ignition. Currently there have been some proposals to model the phases of hydrogen isotopes and hence their high pressure, but these works do not allow explaining some of the structures present at the solid phase change effect of increased pressure. By means of simulation with first principles methods and Quantum Molecular Dynamics, we compare the structural difference of solid molecular hydrogen pure and solid molecular hydrogen with beryllium, watching beryllium inclusion in solid hydrogen matrix, we obtain several differences in mechanical properties, in particular elastic constants. For C11 the difference between hydrogen and hydrogen with beryllium is 37.56%. This may produce a non-uniform initial compression and decreased efficiency of ignition.

  11. Crack toughness evaluation of hot pressed and forged beryllium

    NASA Technical Reports Server (NTRS)

    Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.

    1971-01-01

    Beryllium fracture toughness test specimens were fatigue cracked using reversed cycling with a compression load two to three times the tension load. In worked beryllium, textures may be produced which result in fatigue cracks that are out of plane with the starter notch. Specimens of hot pressed stock exhibited load displacement records which were nonlinear throughout their course. Fracture specimens of both hot pressed and forged stock showed essentially no reduction of thickness and the fracture surfaces were flat and normal to the load axis. However, the stress intensity factor at maximum load increased with decreasing thickness. Load-displacement and electric potential records for the hot pressed beryllium specimens exhibited several anomalies such as negative residual crack mouth displacements and a decrease in electrical potential with increasing load.

  12. Process for producing boron nitride

    SciTech Connect

    Parrish, L.N.; Chase, C.C.

    1988-06-07

    A process for producing boron nitride is described which comprises mixing boron oxide, orthoboric acid and melamine to form a reaction composition which comprises from about 45 to about 50 weight percent, based on the weight of the reaction composition, of melamine and from about 50 to about 55 weight percent, based on the weight of the reaction composition, of a combination of boron oxide and orthoboric acid. The weight ratio of boron oxide to orthoboric acid is from about 3:1 to about 4:1; and heating the composition to temperature of about 700/sup 0/C to about 1200/sup 0/C under a non-oxidizing atmosphere to form boron nitride.

  13. Functionalized boron nitride nanotubes

    DOEpatents

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  14. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth.

    PubMed

    Li, Weiyang; Yao, Hongbin; Yan, Kai; Zheng, Guangyuan; Liang, Zheng; Chiang, Yet-Ming; Cui, Yi

    2015-01-01

    Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium and lithium polysulfide, which has long been considered as a critical flaw in lithium-sulfur batteries. We show that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition. Our findings allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes. PMID:26081242

  15. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth

    NASA Astrophysics Data System (ADS)

    Li, Weiyang; Yao, Hongbin; Yan, Kai; Zheng, Guangyuan; Liang, Zheng; Chiang, Yet-Ming; Cui, Yi

    2015-06-01

    Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium and lithium polysulfide, which has long been considered as a critical flaw in lithium-sulfur batteries. We show that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition. Our findings allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes.

  16. Comparison of Cleaning Methods for Analysis of Underground Beryllium Corrosion

    SciTech Connect

    M. K. Adler Flitton; T. S. Yoder

    2006-03-01

    The subsurface radioactive disposal site located at the Idaho National Laboratory contains neutronactivated beryllium metals from non-fuel nuclear-reactor-core components. A long-term underground corrosion test is being conducted to obtain site-specific corrosion rates of the disposed beryllium to support efforts to more accurately estimate the transfer of activated elements in the surrounding arid vadose zone environment. During the corrosion analysis, two cleaning methods were used. This paper describes the cleaning methods and presents a comparison of the results.

  17. CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS

    SciTech Connect

    Ekechukwu, A

    2009-04-20

    The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

  18. Failure prediction of thin beryllium sheets used in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Roschke, Paul N.; Papados, Photios; Mascorro, Edward

    1991-01-01

    In an attempt to predict failure for cross-rolled beryllium sheet structures, high order macroscopic failure criteria are used. These require the knowledge of in-plane uniaxial and shear strengths. Test results are included for in-plane biaxial tension, uniaxial compression for two different material orientations, and shear. All beryllium specimens have the same chemical composition. In addition, all experimental work was performed in a controlled laboratory environment. Numerical simulation complements these tests. A brief bibliography supplements references listed in a previous report.

  19. Elemental composition in sealed plutonium-beryllium neutron sources.

    PubMed

    Xu, N; Kuhn, K; Gallimore, D; Martinez, A; Schappert, M; Montoya, D; Lujan, E; Garduno, K; Tandon, L

    2014-10-22

    Five sealed plutonium-beryllium (PuBe) neutron sources from various manufacturers were disassembled. Destructive chemical analyses for recovered PuBe materials were conducted for disposition purposes. A dissolution method for PuBe alloys was developed for quantitative plutonium (Pu) and beryllium (Be) assay. Quantitation of Be and trace elements was performed using plasma based spectroscopic instruments, namely inductively coupled plasma mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES). Pu assay was accomplished by an electrochemical method. Variations in trace elemental contents among the five PuBe sources are discussed. PMID:25464182

  20. Fluorometric study of the beryllium-morin system

    USGS Publications Warehouse

    Fletcher, M.H.

    1965-01-01

    Three principal beryllium-morin complexes, a (1 + 1) monomer, a (1 + 1) dimer, and a (1 + 2) complex are found and conditional equilibrium constants for their formation are evaluated. Approximate ionization constants, absorption spectra, and the relative fluorescence intensities for five ionic species of morin are also determined in a spectrophotometric and fluorometric study of morin. The following interrelationships are discussed: pH, ionization of morin, absorption spectra of the various ionic species of morin and of the berylliummorin complexes, equilibria for the reactions between beryllium and morin, the period of time between preparation of the solution and measurement of the fluorescence, and fluorescence intensity.

  1. Method for removal of beryllium contamination from an article

    DOEpatents

    Simandl, Ronald F.; Hollenbeck, Scott M.

    2012-12-25

    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  2. Characterization of Beryllium Windows for Coherent X-ray Optics

    SciTech Connect

    Goto, Shunji; Yabashi, Makina

    2007-01-19

    Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications.

  3. X-ray focusing with compound lenses made from beryllium.

    PubMed

    Beguiristain, H R; Cremer, J T; Piestrup, M A; Gary, C K; Pantell, R H

    2002-05-01

    We have measured the intensity profile and transmission of x rays focused by a series of biconcave spherical unit lenses fabricated from beryllium. The use of beryllium extends the range of operation of compound refractive lenses, improving transmission, aperture size, and gain. The compound refractive lens was composed of 160 biconcave unit lenses, each with a radius of curvature of 1.9 mm. Two-dimensional focusing with a gain of 1.5 was obtained at 6.5 keV with a focal length of 93 cm. The effective aperture of the compound refractive lens was measured as 600 mum , with 9% peak transmission. PMID:18007930

  4. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  5. Boron-Lined Multitube Neutron Proportional Counter Test

    SciTech Connect

    Woodring, Mitchell L.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2010-09-07

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of a boron-lined, “multitube” proportional counter manufactured by Centronic Ltd. (Surry, U.K. and Houston, TX). This testing measured the required performance for neutron detection efficiency and gamma-ray rejection capabilities of the detector.

  6. Consolidation of cubic and hexagonal boron nitride composites

    SciTech Connect

    Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; Kuntz, J. D.

    2015-12-08

    When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that in some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.

  7. Method of recycling lithium borate to lithium borohydride through diborane

    DOEpatents

    Filby, Evan E.

    1976-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

  8. Lithium Redistribution in Lithium-Metal Batteries

    SciTech Connect

    Ferrese, A; Albertus, P; Christensen, J; Newman, J

    2012-01-01

    A model of a lithium-metal battery with a CoO2 positive electrode has been modeled in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. A finite-element approach was used to incorporate an intercalation positive electrode using superposition, electrode tabbing, transport using concentrated solution theory, as well as the net movement of the lithium electrode during cycling. From this model, it has been found that movement of lithium along the negative electrode/separator interface does occur during cycling and is affected by three factors: the cell geometry, the slope of the open-circuit-potential function of the positive electrode, and concentration gradients in both the solid and liquid phases in the cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.027210jes] All rights reserved.

  9. Beryllium and titanium cost-adjustment report

    NASA Astrophysics Data System (ADS)

    Owen, John; Ulph, Eric, Sr.

    1991-09-01

    This report summarizes cost adjustment factors for beryllium (Be, S200) and titanium (Ti, 6Al-4V) that were derived relative to aluminum (Al, 7075-T6). Aluminum is traditionally the material upon which many of the Cost Analysis Office, Missile Division cost estimating relationships (CERs) are based. The adjustment factors address both research and development and production (Q > 100) quantities. In addition, the factors derived include optical elements, normal structure, and structure with special requirements for minimal microcreep, such as sensor assembly parts and supporting components. Since booster cost per payload pound is an even larger factor in total missile launch costs than was initially presumed, the primary cost driver for all materials compared was the missiles' booster cost per payload pound for both R&D and production quantities. Al and Ti are 1.5 and 2.4 times more dense, respectively, than Be, and the cost to lift the heavier materials results in greater booster expense. In addition, Al and Ti must be 2.1 and 2.8, respectively, times the weight of a Be component to provide equivalent stiffness, based on the example component addressed in the report. These factors also increase booster costs. After review of the relative factors cited above, especially the lower costs for Be when stiffness and booster costs are taken into consideration, affordability becomes an important issue. When this study was initiated, both government and contractor engineers said that Be was the material to be used as a last resort because of its prohibitive cost and extreme toxicity. Although the initial price of Be may lead one to believe that any Be product would be extremely expensive, the total cost of Be used for space applications is actually competitive with or less costly than either Al or Ti. Also, the Be toxicity problem has turned out to be a non-issue for purchasers of finished Be components since no machining or grinding operations are required on the finished components. Several new costing techniques are developed which provide quantitative measures of the cost of material stiffness, costs related to payload weight, and costs associated with the relative temperature stability of different materials. In addition, use is made of the Design/Cost Trade Model developed by Applied Research, Inc., to determine the booster cost differential relative to changes in payload weight, and a mirror fabrication cost model, developed by OCA Applied Optics, was used for mirror costing. This report is a summary of an extensive study done by the U.S. Army Strategic Defense Command, Huntsville, Alabama.

  10. METHOD OF COATING SURFACES WITH BORON

    DOEpatents

    Martin, G.R.

    1949-10-11

    A method of forming a thin coating of boron on metallic, glass, or other surfaces is described. The method comprises heating the article to be coated to a temperature of about 550 d C in an evacuated chamber and passing trimethyl boron, triethyl boron, or tripropyl boron in the vapor phase and under reduced pressure into contact with the heated surface causing boron to be deposited in a thin film.

  11. Sputter deposited beryllium fuel capsules for NIF

    SciTech Connect

    Alford, C.S.

    1998-02-12

    The objective of our effort is to systematically study the properties of films produced under different conditions, with an emphasis on improving surface morphology and microstructure while studying permeability and capsule strength. We have made extensive use of atomic force and electron microscopy to determine the microstructure of the films, along with composition probes (mainly x-ray fluorescence) to quantify the chemical structure. Our studies can be roughly divided into three categories. First, there are those in which the effects of substrate biasing have been investigated. This includes varying the substrate voltage from 0 to 120 V and applying an intermittent bias. Next there are studies of Be combined with boron, a non-soluble dopant Because of it`s low Z this dopant is of particular interest for x-ray related applications. Finally, there are experiments in which pulses of nitrogen are admitted to the vacuum chamber during deposition. The layers of nitride formed tended to disrupt the growth of Be grains, leading to a more fine-grained microstructure. For all these studies, we have most often used hollow plastic spheres for our substrate material. However, there have been some samples deposited on glass spheres or silicon flats.

  12. Beryllium solubility in occupational airborne particles: Sequential extraction procedure and workplace application.

    PubMed

    Rousset, Davy; Durand, Thibaut

    2016-01-01

    Modification of an existing sequential extraction procedure for inorganic beryllium species in the particulate matter of emissions and in working areas is described. The speciation protocol was adapted to carry out beryllium extraction in closed-face cassette sampler to take wall deposits into account. This four-step sequential extraction procedure aims to separate beryllium salts, metal, and oxides from airborne particles for individual quantification. Characterization of the beryllium species according to their solubility in air samples may provide information relative to toxicity, which is potentially related to the different beryllium chemical forms. Beryllium salts (BeF(2), BeSO(4)), metallic beryllium (Bemet), and beryllium oxide (BeO) were first individually tested, and then tested in mixtures. Cassettes were spiked with these species and recovery rates were calculated. Quantitative analyses with matched matrix were performed using inductively coupled plasma mass spectrometry (ICP-MS). Method Detection Limits (MDLs) were calculated for the four matrices used in the different extraction steps. In all cases, the MDL was below 4.2 ng/sample. This method is appropriate for assessing occupational exposure to beryllium as the lowest recommended threshold limit values are 0.01 µg.m(-3) in France([) (1) (]) and 0.05 µg.m(-3) in the USA.([ 2 ]) The protocol was then tested on samples from French factories where occupational beryllium exposure was suspected. Beryllium solubility was variable between factories and among the same workplace between different tasks. PMID:26327570

  13. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    SciTech Connect

    Castro, R.G.; Stanek, P.W.; Jacobson, L.A.; Cowgill, D.F.; Snead, L.L.

    1993-10-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1--5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits.

  14. Lithium purification technique

    DOEpatents

    Keough, Robert F.; Meadows, George E.

    1985-01-01

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  15. Lithium purification technique

    DOEpatents

    Keough, R.F.; Meadows, G.E.

    1984-01-10

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  16. REACTOR CORE SURROUNDED BY BERYLLIUM MODERATOR. CAMERA LOOKS DOWN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTOR CORE SURROUNDED BY BERYLLIUM MODERATOR. CAMERA LOOKS DOWN AND TOWARD NORTH INTO LOWER GRID CASTING. HOLES OF VARIOUS SIZES ACCOMMODATE COOLANT WATER AND EXPERIMENTAL POSITIONS. INL NEGATIVE NO. 4197. Unknown Photographer, 2/11/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. 18. VIEW OF ENGINEERING CONTROLS USED IN THE BERYLLIUM SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF ENGINEERING CONTROLS USED IN THE BERYLLIUM SHOP TO REDUCE EMPLOYEE EXPOSURE. THE LATHE IS COVERED BY A HOOD WITH A SEPARATE AIR-HANDLING SYSTEM. PRECISION EQUIPMENT IS CONTROLLED DIGITALLY. (11/13/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  18. The acute toxicity of inhaled beryllium metal in rats

    SciTech Connect

    Haley, P.J.; Finch, G.L.; Hoover, M.D.; Cuddihy, R.G. )

    1990-01-01

    The authors exposed rats once by nose only for 50 min to a mean concentration of 800 [mu]g/m[sup 3] of beryllium metal to characterize the acute toxic effects within the lung. Histological changes within the lung and enzyme changes within bronchoalveolar lavage (BAL) fluid were evaluated at 3, 7, 10, 14, 31, 59, 115, and 171 days postexposure (dpe). Beryllium metal-exposed rats developed acute, necrotizing, hemorrhagic, exudative pneumonitis and intraalveolar fibrosis that peaked at 14 dpe. By 31 dpe, inflammatory lesions were replaced by minimal interstitial and intraalveolar fibrosis. Necrotizing inflammation was observed again at 59 dpe which progressed to chronic-active inflammation by 115 dpe. Low numbers of diffusely distributed lymphocytes were also present but they were not associated with granulomas as is observed in beryllium-induced disease in man. Lymphocytes were not elevated in BAL samples collected from beryllium-exposed rats at any time after exposure. Lactate dehydrogenase (LDH), [beta]-glucuronidase, and protein levels were elevated in BAL fluid from 3 through 14 dpe but returned to near normal levels by 31 dpe. LDH increased once again at 59 dpe and remained elevated at 171 dpe. [beta]-Glucuronidase and protein levels were slightly, but not significantly, elevated from 31 through 171 dpe.

  19. 9. VIEW OF FOUNDRY FURNACE, DEPLETED URANIUM INGOTS, BERYLLIUM INGOTS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF FOUNDRY FURNACE, DEPLETED URANIUM INGOTS, BERYLLIUM INGOTS, AND ALUMINUM SHAPES WERE PRODUCED IN THE FOUNDRY. (10/30/56) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  20. A NOVEL BIOMARKER FOR BERYLLIUM SENSITIZATION IN HUMANS

    EPA Science Inventory

    This research project will determine the T-cell receptor (TCR) gene usages of beryllium reactive T-lymphocytes isolated directly from the peripheral blood of individuals exposed at a U.S. Department of Energy site. The objective is to develop a sensitive and novel biomarker for i...

  1. Beryllium deposits of the western Seward Peninsula, Alaska

    USGS Publications Warehouse

    Sainsbury, C.L.

    1963-01-01

    Deposits of beryllium ore in the Lost River area of the western Seward Peninsula, Alaska, consist of replacement veins, pipes, and stringer lodes is limestone in a zone about 7 miles long and 2 to 3 miles wide which is faulted and intruded by dikes and stocks. The ores are remarkably alike and typically consist of the following minerals, in percent: fluorite, 45-65; diaspore, 5-10; tourmaline, 0-10; chrysoberyl, 3-10; white mica, 0-5; small amounts of hematite, sulfide minerals, manganese oxide, other beryllium minerals; and traces of minerals not yet identified. The ores generally are cut by late veinlets which are of the same mineralogy as the groundmass ore, or which consist of fluorite, white mica, and euclase. The ores are fine grained, and many of the individual mineral grains, except fluorite, are less than 1 mm in size. The beryllium content of bulk samples of ore ranges from 0.11 to 0.54 percent (0.31 to 1.50 percent BeO). High-grade nodules, composed principally of chrysoberyl, diaspore, fluorite, and mica, contain as much as 6 percent BeO. Geochemical reconnaissance has disclosed other areas of anomalous beryllium in stream sediments elsewhere on the Seward Peninsula, generally around biotite granites that have them associated with tin deposits; additional exploration probably will disclose other deposits.

  2. Subscale Beryllium Mirrors Demonstrator (SBMD) Program Summary and Ball Modeling

    NASA Technical Reports Server (NTRS)

    Kendrick, Stephen; Brown, Robert; Stahl, Philip (Technical Monitor)

    2001-01-01

    The SBMD Program was to design, fabricate, and test a 0.5-m beryllium lightweighted mirror applicable to space deployable systems with demanding optical and areal density requirements. This presentation summarizes the program's objectives and the mirror's tested technical performance along with lessons learned. In addition, test results are compared to modeling predictions. The SBMD Program was funded by NASA MSFC.

  3. THORIUM-BERYLLIUM ALLOYS AND METHOD OF PRODUCING SAME

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1959-09-01

    >The preparation is described of thorium-berylium alloys from halides of the metals by stmultaneously reducing thorium fluoride and beryllium fluoride with calcium at approximately 650 deg C and maintaining the temperature until the thorium-beryhltum alloy separates from the slag.

  4. Be-Cu-Mg (Beryllium-Copper-Magnesium)

    NASA Astrophysics Data System (ADS)

    Materials Science International Team MSIT

    This document is part of Subvolume C2 'Non-Ferrous Metal Systems. Part 2: Selected Copper Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Beryllium-Copper-Magnesium.

  5. Be-Cu-Si (Beryllium-Copper-Silicon)

    NASA Astrophysics Data System (ADS)

    Materials Science International Team MSIT

    This document is part of Subvolume C2 'Non-Ferrous Metal Systems. Part 2: Selected Copper Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Beryllium-Copper-Silicon.

  6. Be-Cu-Ni (Beryllium-Copper-Nickel)

    NASA Astrophysics Data System (ADS)

    Materials Science International Team MSIT

    This document is part of Subvolume C2 'Non-Ferrous Metal Systems. Part 2: Selected Copper Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Beryllium-Copper-Nickel.

  7. Biological Exposure Metrics of Beryllium-Exposed Dental Technicians

    PubMed Central

    Stark, Moshe; Lerman, Yehuda; Kapel, Arik; Pardo, Asher; Schwarz, Yehuda; Newman, Lee; Maier, Lisa; Fireman, Elizabeth

    2015-01-01

    Beryllium is commonly used in the dental industry. This study investigates the association between particle size and shape in induced sputum (IS) with beryllium exposure and oxidative stress in 83 dental technicians. Particle size and shape were defined by laser and video, whereas beryllium exposure data came from self-reports and beryllium lymphocyte proliferation test (BeLPT) results. Heme oxygenase-1 (HO1) gene expression in IS was evaluated by quantitative polymerase chain reaction. A high content of particles (92%) in IS > 5 µ in size is correlated to a positive BeLPT risk (odds ratio [OR] = 3.4, 95% confidence interval [CI]: 0.9–13). Use of masks, hoods, and type of exposure yielded differences in the transparency of IS particles (gray level) and modulate HO1 levels. These results indicate that parameters of size and shape of particles in IS are sensitive to workplace hygiene, affect the level of oxidative stress, and may be potential markers for monitoring hazardous dust exposures. PMID:24205960

  8. SESAME equation of state number 7611, beryllium oxide

    SciTech Connect

    Boettger, J.C.; Willis, J.M.

    1990-04-01

    A new equation of state (EOS) for beryllium oxide (BeO) has been constructed for the SESAME library as material number 7611. Unlike the existing EOS for BeO in the library (7610), this new EOS incorporates the effect of a structural phase transition which has been predicted by two independent theoretical calculations. 9 refs., 1 fig.

  9. Beryllium Wipe Sampling (differing methods - differing exposure potentials)

    SciTech Connect

    Kerr, Kent

    2005-03-09

    This research compared three wipe sampling techniques currently used to test for beryllium contamination on room and equipment surfaces in Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling without a wetting agent, with water-moistened wipe materials, and by methanol-moistened wipes. Analysis indicated that methanol-moistened wipe sampling removed about twice as much beryllium/oil-film surface contamination as water-moistened wipes, which removed about twice as much residue as dry wipes. Criteria at 10 CFR 850.30 and .31 were established on unspecified wipe sampling method(s). The results of this study reveal a need to identify criteria-setting method and equivalency factors. As facilities change wipe sampling methods among the three compared in this study, these results may be useful for approximate correlations. Accurate decontamination decision-making depends on the selection of appropriate wetting agents for the types of residues and surfaces. Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced removal efficiency such as methanol when surface contamination includes oil mist residue.

  10. Anisotropic swelling behavior of hot-extruded beryllium

    NASA Astrophysics Data System (ADS)

    Kang, Suk Hoon; Jang, Jinsung; Kim, Tae Kyu; Jung, Myung Hwan; Lee, Jae Sang

    2016-04-01

    The lifetime of beryllium reflector assemblies is usually determined by neutron irradiation induced swelling, which results in mechanical interferences or fractures of the beryllium elements. Therefore, the dimensional stability and microstructure variations of beryllium during irradiation are important issues to study. In this paper, the microstructure characteristics of S-200-F and EHP-56 beryllium blocks, which were manufactured by using vacuum hot pressing (VHP) and hot extrusion (HE), respectively, were investigated. BeO distributions, grain shapes, and preferred orientations were investigated by using SEM-EPMA and SEM-EBSD systems. Dissimilarly to S-200-F, a strong fiber texture developed in the EHP-56 during the HE process; the basal planes in the majority of grains were arranged along the extrusion direction. To emulate the microstructure evolution during neutron irradiation, we irradiated the electro-polished surface of EHP-56 with protons at room temperature, where the acceleration voltage and the number of protons were 120 keV and 2.0 × 1018 ions/cm2, respectively. Irradiation-induced cavities were observed to be considerably longer along the basal plane in the EHP-56 specimen. Correspondingly, the amount of dimensional change was smaller along the direction parallel to the basal plane.

  11. The uses and adverse effects of beryllium on health

    PubMed Central

    Cooper, Ross G.; Harrison, Adrian P.

    2009-01-01

    Context: This review describes the health effects of beryllium exposure in the workplace and the environment. Aim: To collate information on the consequences of occupational and environmental exposure to beryllium on physiological function and well being. Materials and Methods: The criteria used in the current review for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability, and Health. Articles were classified based on acute and chronic exposure and toxicity of beryllium. Results: The proportions of utilized and nonutilized articles were tabulated. Years 2001–10 gave the greatest match (45.9%) for methodological parameters, followed by 27.71% for 1991–2000. Years 1971–80 and 1981–90 were not significantly different in the information published and available whereas years 1951–1960 showed a lack of suitable articles. Some articles were published in sources unobtainable through requests at the British Library, and some had no impact factor and were excluded. Conclusion: Beryllium has some useful but undoubtedly harmful effects on health and well-being. Measures need to be taken to prevent hazardous exposure to this element, making its biological monitoring in the workplace essential. PMID:20386622

  12. PREPARATION OF COMPACTS MADE FROM URANIUM AND BERYLLIUM BY SINTERING

    DOEpatents

    Angier, R.P.

    1961-04-11

    A powder metallurgical method for making high-density compacts of uranium and beryllium is reported. Powdered UBe/sub 9/ and powdered Be are blended, compacted, and then sintered by rapidly heating to a temperature of approximately 1220 to 1280 deg C in an inert atmosphere.

  13. TEM study of impurity segregations in beryllium pebbles

    NASA Astrophysics Data System (ADS)

    Klimenkov, M.; Chakin, V.; Moeslang, A.; Rolli, R.

    2014-12-01

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  14. Lithium nephrotoxicity revisited.

    PubMed

    Grünfeld, Jean-Pierre; Rossier, Bernard C

    2009-05-01

    Lithium is widely used to treat bipolar disorder. Nephrogenic diabetes insipidus (NDI) is the most common adverse effect of lithium and occurs in up to 40% of patients. Renal lithium toxicity is characterized by increased water and sodium diuresis, which can result in mild dehydration, hyperchloremic metabolic acidosis and renal tubular acidosis. The concentrating defect and natriuretic effect develop within weeks of lithium initiation. After years of lithium exposure, full-blown nephropathy can develop, which is characterized by decreased glomerular filtration rate and chronic kidney disease. Here, we review the clinical and experimental evidence that the principal cell of the collecting duct is the primary target for the nephrotoxic effects of lithium, and that these effects are characterized by dysregulation of aquaporin 2. This dysregulation is believed to occur as a result of the accumulation of cytotoxic concentrations of lithium, which enters via the epithelial sodium channel (ENaC) on the apical membrane and leads to the inhibition of signaling pathways that involve glycogen synthase kinase type 3beta. Experimental and clinical evidence demonstrates the efficacy of the ENaC inhibitor amiloride for the treatment of lithium-induced NDI; however, whether this agent can prevent the long-term adverse effects of lithium is not yet known. PMID:19384328

  15. Lithium batteries: Future batteries

    NASA Astrophysics Data System (ADS)

    Reiche, Harald

    The main characteristics and applications of lithium batteries are reviewed. Miniature batteries for quartz crystal watches have been developed and fabricated in Switzerland since 1970. High technology systems like lithium batteries are largely used for their low auto-discharge during storage and for their high energy density. Two kinds of lithium batteries can be distinguished concerning their place in the watch: integrated batteries; and batteries placed between motion parts and the bottom of the watchcase. Lithium batteries are also used in pocket calculators, electronic modules for integrated circuits, telephone, control systems, electronic games, bank cards, and heart stimulators.

  16. Risks of beryllium disease related to work processes at a metal, alloy, and oxide production plant.

    PubMed Central

    Kreiss, K; Mroz, M M; Zhen, B; Wiedemann, H; Barna, B

    1997-01-01

    OBJECTIVES: To describe relative hazards in sectors of the beryllium industry, risk factors of beryllium disease and sensitisation related to work process were sought in a beryllium manufacturing plant producing pure metal, oxide, alloys, and ceramics. METHODS: All 646 active employees were interviewed; beryllium sensitisation was ascertained with the beryllium lymphocyte proliferation blood test on 627 employees; clinical evaluation and bronchoscopy were offered to people with abnormal test results; and industrial hygiene measurements related to work processes taken in 1984-93 were reviewed. RESULTS: 59 employees (9.4%) had abnormal blood tests, 47 of whom underwent bronchoscopy. 24 new cases of beryllium disease were identified, resulting in a beryllium disease prevalence of 4.6%, including five known cases (29/632). Employees who had worked in ceramics had the highest prevalence of beryllium disease (9.0%). Employees in the pebble plant (producing beryllium metal) who had been employed after 1983 also had increased risk, with a prevalence of beryllium disease of 6.4%, compared with 1.3% of other workers hired in the same period, and a prevalence of abnormal blood tests of 19.2%. Logistic regression modelling confirmed these two risk factors for beryllium disease related to work processes and the dependence on time of the risk at the pebble plant. The pebble plant was not associated with the highest gravimetric industrial hygiene measurements available since 1984. CONCLUSION: Further characterisation of exposures in beryllium metal production may be important to understanding how beryllium exposures confer high contemporary risk of beryllium disease. PMID:9326165

  17. Hanford Site Beryllium Program: Past, Present, and Future - 12428

    SciTech Connect

    Fisher, Mark; Garcia, Pete; Goeckner, Julie; Millikin, Emily; Stoner, Mike

    2012-07-01

    The U.S. Department of Energy (DOE) has a long history of beryllium use because of the element's broad application to many nuclear operations and processes. At the Hanford Site beryllium alloy was used to fabricate parts for reactors, including fuel rods for the N-Reactor during plutonium production. Because of continued confirmed cases of chronic beryllium disease (CBD), and data suggesting CBD occurs at exposures to low-level concentrations, the DOE decided to issue a rule to further protect federal and contractor workers from hazards associated with exposure to beryllium. When the beryllium rule was issued in 1999, each of the Hanford Site contractors developed a Chronic Beryllium Disease Prevention Program (CBDPP) and initial site wide beryllium inventories. A new site-wide CBDPP, applicable to all Hanford contractors, was issued in May, 2009. In the spring of 2010 the DOE Headquarters Office of Health, Safety, and Security (HSS) conducted an independent inspection to evaluate the status of implementation of the Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP). The report identified four Findings and 12 cross-cutting Opportunities for Improvement (OFIs). A corrective action plan (CAP) was developed to address the Findings and crosscutting OFIs. The DOE directed affected site contractors to identify dedicated resources to participate in development of the CAP, along with involving stakeholders. The CAP included general and contractor-specific recommendations. Following initiation of actions to implement the approved CAP, it became apparent that additional definition of product deliverables was necessary to assure that expectations were adequately addressed and CAP actions could be closed. Consequently, a supplement to the original CAP was prepared and transmitted to DOE-HQ for approval. Development of the supplemental CAP was an eight month effort. From the onset a core group of CAP development members were identified to develop a mechanism for assuring that consensus was achieved on products developed as part of the CAP and the closure process. The original CAP was developed based on a large number of actions developed from the HSS report. This was essentially a 'bottoms up' approach. The revised CAP development team concluded that a more holistic, process-based approach was appropriate to assure that the resulting deliverable resulted in a best-in-class product. Consequently, issues and recommendations contained in the HSS report were grouped into 11 program areas, specific product deliverables were identified within each of the program areas, and a work breakdown structure (WBS) was logically applied to number the groupings. While the revised approach to product development utilizes a more holistic, 'top down' approach, the intent was still to incorporate specific recommendations and address specific issues contained in the HSS report. Through implementation of this new approach, a collaborative team has been established that works together using a consensus process for ensuring product completion. Benefits of the new approach include building a level of trust amongst all parties, quality of the products have improved, and acceptance by all parties of what action will truly meet the intent of the deficiency and make the beryllium program stronger. Open dialogue occurs amongst the core Be CAP team members, Hanford contractors, and DOE. It has been a learning process and will continue to be one, but everyone shares the common goal of reducing worker exposure to beryllium. (authors)

  18. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    PubMed

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents. PMID:26877036

  19. Synthesis and crystal structure of lithium beryllium deuteride Li2BeD4.

    PubMed

    Bulychev, Boris M; Shpanchenko, Roman V; Antipov, Evgeny V; Sheptyakov, Denis V; Bushmeleva, Svetlana N; Balagurov, Anatoly M

    2004-10-01

    Single-phase ternary deuteride Li(2)BeD(4) was synthesized by a high-pressure high-temperature technique from LiD and BeD(2). The crystal structure of Li(2)BeD(4) was solved from X-ray and neutron powder diffraction data. The compound crystallizes in the monoclinic space group P2(1)/c with lattice parameters a = 7.06228(9) A, b = 8.3378(1) A, c = 8.3465(1) A, beta =93.577(1) degrees, and Z = 8. Its structure contains isolated BeD(4) tetrahedra and Li atoms that are located in the structure interstices. Li(2)BeD(4) does not undergo any structural phase transitions at temperatures down to 8 K. PMID:15446886

  20. Vapor liquid equilibria on the ternary lithium fluoride-sodium fluoride-beryllium fluoride system

    NASA Astrophysics Data System (ADS)

    Fukuda, Grant Takeshi

    Molten mixtures of LiF, NaF, and BeF2 (FLiNaBe) have been proposed as a liquid first wall for selected fusion reactor designs. Because currently envisaged reactor technologies for igniting and/or sustaining a, fusion reaction require vacuum conditions, the volatility of these liquids is an issue for concern. Many physical properties of the ternary LiF-NaF-BeF 2 (FLiNaBe) system have already been studied as part of the molten salt reactor program, but the vapor pressure has not been measured. A study of the vapor liquid equilibrium of FLiNaBe by Thermogravimetric Analysis (TGA) and Knudsen Cell Mass Spectrometry (KCMS) is presented. The ternary system is treated as a pseudo-binary system by fixing the ratio of LiF:NaF and varying the amount of BeF2. Measurements have been performed over a composition range of 0.3--0.8 mole fraction BeF2 and from 875--975K. Experimental data, are correlated in terms of the BeF 2 activity coefficient. Measurements were also carried out on the binary systems LiF-BeF2 and NaF-BeF2. Measured values of the BeF2 activity coefficient in the binary LiF-BeF2 and NaF-BeF2 systems compare satisfactorily with previous results published in the research literature. The vapor phase of FLiNaBe was found to consist of primarily the species BeF2, LiBeF3, and NaBeF 3 over the temperature and composition range studied. Mixtures of BeF2-containing fluoride salts are highly non-ideal; the BeF2 activity coefficient exhibits both positive and negative deviations from ideality over the composition range studied. An associated solution model with 3 adjustable parameters is used to fit the BeF2 activity coefficient data of the LiF-BeF2 and NaF-BeF2 systems. The parameters obtained from fitting binary data are then used to fit the ternary system. The extension of the model to the ternary system results in a single additional parameter that can only be determined from fitting ternary data. Overall the agreement between the model and experimental data is within ˜30% and the model can be used to predict the vapor pressure over a wide composition range.

  1. Boron diffusion in silicon devices

    DOEpatents

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  2. Neutron detectors comprising boron powder

    DOEpatents

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  3. Reducing Boron Toxicity by Microbial Sequestration

    SciTech Connect

    Hazen, T.; Phelps, T.J.

    2002-01-01

    While electricity is a clean source of energy, methods of electricity-production, such as the use of coal-fired power plants, often result in significant environmental damage. Coal-fired electrical power plants produce air pollution, while contaminating ground water and soils by build-up of boron, which enters surrounding areas through leachate. Increasingly high levels of boron in soils eventually overcome boron tolerance levels in plants and trees, resulting in toxicity. Formation of insoluble boron precipitates, mediated by mineral-precipitating bacteria, may sequester boron into more stable forms that are less available and toxic to vegetation. Results have provided evidence of microbially-facilitated sequestration of boron into insoluble mineral precipitates. Analyses of water samples taken from ponds with high boron concentrations showed that algae present contained 3-5 times more boron than contained in the water in the samples. Boron sequestration may also be facilitated by the incorporation of boron within algal cells. Experiments examining boron sequestration by algae are in progress. In bacterial experiments with added ferric citrate, the reduction of iron by the bacteria resulted in an ironcarbonate precipitate containing boron. An apparent color change showing the reduction of amorphous iron, as well as the precipitation of boron with iron, was more favorable at higher pH. Analysis of precipitates by X-ray diffraction, scanning electron microscopy, and inductively coupled plasma mass spectroscopy revealed mineralogical composition and biologicallymediated accumulation of boron precipitates in test-tube experiments.

  4. Characterization of electrodeposited elemental boron

    SciTech Connect

    Jain, Ashish; Anthonysamy, S. Ananthasivan, K.; Ranganathan, R.; Mittal, Vinit; Narasimhan, S.V.; Vasudeva Rao, P.R.

    2008-07-15

    Elemental boron was produced through electrowinning from potassium fluoroborate dissolved in a mixture of molten potassium fluoride and potassium chloride. The characteristics of the electrodeposited boron (raw boron) as well as the water and acid-leached product (processed boron) were studied. The chemical purity, specific surface area, size distribution of particles and X-ray crystallite size of the boron powders were investigated. The morphology of the deposits was examined using scanning electron microscopy (SEM). The chemical state of the matrix, as well as the impurity phases present in them, was established using X-ray photoelectron spectroscopy (XPS). In order to interpret and understand the results obtained, a thermodynamic analysis was carried out. The gas-phase corrosion in the head space as well as the chemistry behind the leaching process were interpreted using this analysis. The ease of oxidation of these powders in air was investigated using differential thermal analysis (DTA) coupled with thermogravimetry (TG). From the results obtained in this study it was established that elemental boron powder with a purity of 95-99% could be produced using a high temperature molten salt electrowinning process. The major impurities were found to be oxygen, carbon, iron and nickel.

  5. Chronic beryllium disease and cancer risk estimates with uncertainty for beryllium released to the air from the Rocky Flats Plant.

    PubMed Central

    McGavran, P D; Rood, A S; Till, J E

    1999-01-01

    Beryllium was released into the air from routine operations and three accidental fires at the Rocky Flats Plant (RFP) in Colorado from 1958 to 1989. We evaluated environmental monitoring data and developed estimates of airborne concentrations and their uncertainties and calculated lifetime cancer risks and risks of chronic beryllium disease to hypothetical receptors. This article discusses exposure-response relationships for lung cancer and chronic beryllium disease. We assigned a distribution to cancer slope factor values based on the relative risk estimates from an occupational epidemiologic study used by the U.S. Environmental Protection Agency (EPA) to determine the slope factors. We used the regional atmospheric transport code for Hanford emission tracking atmospheric transport model for exposure calculations because it is particularly well suited for long-term annual-average dispersion estimates and it incorporates spatially varying meteorologic and environmental parameters. We accounted for model prediction uncertainty by using several multiplicative stochastic correction factors that accounted for uncertainty in the dispersion estimate, the meteorology, deposition, and plume depletion. We used Monte Carlo techniques to propagate model prediction uncertainty through to the final risk calculations. We developed nine exposure scenarios of hypothetical but typical residents of the RFP area to consider the lifestyle, time spent outdoors, location, age, and sex of people who may have been exposed. We determined geometric mean incremental lifetime cancer incidence risk estimates for beryllium inhalation for each scenario. The risk estimates were < 10(-6). Predicted air concentrations were well below the current reference concentration derived by the EPA for beryllium sensitization. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10464074

  6. Evaluation of historical beryllium abundance in soils, airborne particulates and facilities at Lawrence Livermore National Laboratory.

    PubMed

    Sutton, Mark; Bibby, Richard K; Eppich, Gary R; Lee, Steven; Lindvall, Rachel E; Wilson, Kent; Esser, Bradley K

    2012-10-15

    Beryllium has been historically machined, handled and stored in facilities at Lawrence Livermore National Laboratory (LLNL) since the 1950s. Additionally, outdoor testing of beryllium-containing components has been performed at LLNL's Site 300 facility. Beryllium levels in local soils and atmospheric particulates have been measured over three decades and are comparable to those found elsewhere in the natural environment. While localized areas of beryllium contamination have been identified, laboratory operations do not appear to have increased the concentration of beryllium in local air or water. Variation in airborne beryllium correlates to local weather patterns, PM10 levels, normal sources (such as resuspension of soil and emissions from coal power stations) but not to LLNL activities. Regional and national atmospheric beryllium levels have decreased since the implementation of the EPA's 1990 Clean-Air-Act. Multi-element analysis of local soil and air samples allowed for the determination of comparative ratios for beryllium with over 50 other metals to distinguish between natural beryllium and process-induced contamination. Ten comparative elemental markers (Al, Cs, Eu, Gd, La, Nd, Pr, Sm, Th and Tl) that were selected to ensure background variations in other metals did not collectively interfere with the determination of beryllium sources in work-place samples at LLNL. Multi-element analysis and comparative evaluation are recommended for all workplace and environmental samples suspected of beryllium contamination. The multi-element analyses of soils and surface dusts were helpful in differentiating between beryllium of environmental origin and beryllium from laboratory operations. Some surfaces can act as "sinks" for particulate matter, including carpet, which retains entrained insoluble material even after liquid based cleaning. At LLNL, most facility carpets had beryllium concentrations at or below the upper tolerance limit determined by sampling facilities with no history of beryllium work. Some facility carpets had beryllium concentrations above the upper tolerance limits but can be attributed to tracking of local soils, while other facilities showed process-induced contamination from adjacent operations. In selected cases, distinctions were made as to the source of beryllium in carpets. Guidance on the determination of facility beryllium sources is given. PMID:22960112

  7. Lithium Battery Diaper Ulceration.

    PubMed

    Maridet, Claire; Taïeb, Alain

    2016-03-01

    We report a case of lithium battery diaper ulceration in a 16-month-old girl. Gastrointestinal and ear, nose, and throat lesions after lithium battery ingestion have been reported, but skin involvement has not been reported to our knowledge. PMID:26646677

  8. Beryllium Alters Lipopolysaccharide-Mediated Intracellular Phosphorylation and Cytokine Release in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Silva, Shannon; Ganguly, Kumkum; Fresquez, Theresa M.; Gupta, Goutam; McCleskey, T. Mark; Chaudhary, Anu

    2013-01-01

    Beryllium exposure in susceptible individuals leads to the development of chronic beryllium disease, a lung disorder marked by release of inflammatory cytokine and granuloma formation. We have previously reported that beryllium induces an immune response even in blood mononuclear cells from healthy individuals. In this study, we investigate the effects of beryllium on lipopolysaccharide - mediated cytokine release in blood mononuclear and dendritic cells from healthy individuals. We find that in vitro treatment of beryllium sulfate inhibits the secretion of lipopolysaccharide-mediated interleukin 10, while the release of interleukin 1β is enhanced. Additionally, not all lipopolysaccharide - mediated responses are altered, as interleukin 6 release in unaffected upon beryllium treatment. Beryllium sulfate treated cells show altered phosphotyrosine levels upon lipopolysaccharide stimulation. Significantly, beryllium inhibits the phosphorylation of signal transducer and activator of transducer 3, induced by lipopolysaccharide. Finally, inhibitors of phosphoinositide-3 kinase mimic the effects of beryllium in inhibition of interleukin 10 release, while they have no effect on interleukin 1β secretion. This study strongly suggests that prior exposures to beryllium could alter host immune responses to bacterial infections in healthy individuals, by altering intracellular signaling. PMID:19894180

  9. Fallout beryllium-7 as a soil and sediment tracer in river basins: current status and needs

    NASA Astrophysics Data System (ADS)

    Taylor, Alex; Blake, Will H.; Smith, Hugh G.; Mabit, Lionel; Keith-Roach, Miranda J.

    2013-04-01

    Beryllium-7 is a cosmogenic radionuclide formed in the upper atmosphere by cosmic ray spallation of nitrogen and oxygen. Its constant natural production and fallout via precipitation coupled with its ability to bind to soil particles have underpinned its application as a sediment tracer. The short half-life of beryllium-7 (53.3 days) lends itself to tracing sediment dynamics over short time periods, thus, enabling assessment of the effect of land use change upon soil redistribution. Although beryllium-7 has been widely applied as a tracer to date, there remain crucial gaps in understanding relating to the assumptions for its use. To further support the application of beryllium-7 as a tracer across a range of environments requires consideration of both the current strengths and shortcomings of the technique to direct research needs. Here we review research surrounding the assumptions underpinning beryllium-7 use as a tracer and identify key knowledge gaps relating to i) the effects of rain shadowing and vegetation interception upon beryllium-7 fallout uniformity at the hillslope-scale; ii) the effect of preferential flow pathways upon beryllium-7 depth distribution in soil and overland flow upon beryllium-7 inventory uniformity and iii) the potential for beryllium-7 desorption in saline and reducing environments. To provide continued support for the use of beryllium-7 as a hillslope and catchment-scale tracer, there is an urgent need to undertake further research to quantify the effect of these factors upon tracer estimates.

  10. Initial boronization of PBX-M using ablation from solid boronized probes

    SciTech Connect

    Kugel, H.W.; Timberlake, J.; Bell, R.; Kaita, R.; Kaye, S.; Okabayashi, M.; Paul, S.; Takahashi, H.; Tighe, W.; Von Goeler, S. )

    1994-07-01

    Boronization was performed by plasma ablation of two solid boronized target probes. Probe-1, in a mushroom shape, consisted of a 10.7% boronized two-dimensional carbon-carbon composite containing 3.6 g of boron in a B[sub 4]C binder. Probe-2, in a rectangular shape, consisted of an 86% boronized graphite felt composite containing 19.5 g of 40-[mu]m boron particles. Probe-1 boronization deposited [approximately]26 monolayers of boron. After boronization with Probe-1, the loop voltage in 1-MW neutral-beam-heated plasmas decreased 27%, and volt-second consumption decreased 20%. Strong peripheral spectral lines from low-Z elements decreased by factors of [approximately]5. The central oxygen density decreased 15 to 20%. Carbon levels initially increased during boronization but were significantly reduced after boronization. The total radiated power during neutral beam injection decreased by 43%. Probe-2 boronization deposited [approximately]70 monolayers. Probe-2 boronization exhibited similar improved plasma conditions, but for some parameters, a smaller percentage change occurred because of the previous boronization with Probe-1. The ablation rates of both probes were consistent with front-face temperatures above the boron melting point. The results demonstrate the performance of two different boronized probe materials and the relative simplicity and effectiveness of solid target boronization as a convenient, real-time impurity control technique. 20 refs., 10 figs., 1 tab.

  11. Application of beryllium antibodies in risk assessment and health surveillance: two case studies.

    PubMed

    Clarke, S M; Thurlow, S M; Hilmas, D E

    1995-01-01

    This paper demonstrates that current standards used by the Occupational Safety and Health Administration (OSHA) to establish an area free from potential beryllium contamination may be inadequate. Using the Beryllium Antibody Assay, it was shown that workers exposed to former beryllium work areas, thought to be sanitized and to meet OSHA standards, experienced statistically significant rises in blood beryllium antibody titers. This finding raises the question of whether the equipment currently required to protect workers in beryllium-laden environments is sufficient. The project mission of decommissioning/decontaminating the former nuclear weapons plant at Rocky Flats Environmental Technology Site (RFETS), instituted in 1992, has necessitated development of new technology directed toward safe and responsible cleanup. Challenges have been posed not only by the need to dispose of radioactive and chemical waste, but also by the problem of cleaning up hazardous metals such as the element beryllium. Beryllium was used extensively in research and the manufacture of nuclear weapons components at Rocky Flats for over 40 years. Since inhalation of this element can induce chronic beryllium disease (Eisenbud and Lisson, 1983), an antibody assay was developed to screen workers for internal exposure to beryllium. Exposure is indicated by a titer of antibodies greater than two standard deviations above a normal population control (defined as the mean titer of pooled samples from 51 individuals with no known exposure to beryllium) and a p-value of < 0.05. This paper describes two new applications for the assay: risk assessment and health surveillance. Case study 1 involves a team of three workers who cleaned a beryllium plenum and whose beryllium antibody titers provided a quantitative assessment of their exposure. Case study 2 describes the use of the antibody assay to determine the probable manner in which one worker was exposed to beryllium while performing his duties as an architectural engineer. PMID:8748421

  12. Cathode material for lithium batteries

    SciTech Connect

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  13. Cathode material for lithium batteries

    SciTech Connect

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  14. A mortality study of workers at seven beryllium processing plants

    SciTech Connect

    Ward, E.; Okun, A.; Ruder, A.; Fingerhut, M.; Steenland, K. )

    1992-01-01

    The International Agency for Research on Cancer (IARC) has found that the evidence for the carcinogenicity of beryllium is sufficient based on animal data but limited based on human data. This analysis reports on a retrospective cohort mortality study among 9,225 male workers employed at seven beryllium processing facilities for at least 2 days between January 1, 1940, and December 31, 1969. Vital status was ascertained through December 31, 1988. The standardized mortality ratio (SMR) for lung cancer in the total cohort was 1.26 (95% confidence interval [CI] = 1.12-1.42); significant SMRs for lung cancer were observed for two of the oldest plants located in Lorain, Ohio (SMR = 1.69; 95% CI = 1.28-2.19) and Reading, Pennsylvania (SMR = 1.24; 95% CI = 1.03-1.48). For the overall cohort, significantly elevated SMRs were found for all deaths (SMR = 1.05; 95% CI = 1.01-1.08), ischemic heart disease (SMR = 1.08; 95% CI = 1.01-1.14), pneumoconiosis and other respiratory diseases (SMR = 1.48; 95% CI = 1.21-1.80), and chronic and unspecified nephritis, renal failure, and other renal sclerosis (SMR = 1.49; 95% CI = 1.00-2.12). Lung cancer SMRs did not increase with longer duration of employment, but did increase with longer latency (time since first exposure). Lung cancer was particularly elevated (SMR = 3.33; 95% CI = 1.66-5.95) among workers at the Lorain plant with a history of (primarily) acute beryllium disease, which is associated with very high beryllium exposure. The lung cancer excess was not restricted to plants operating in the 1940s, when beryllium exposures were known to be extraordinarily high. Elevated lung cancer SMRs were also observed for four of the five plants operating in the 1950s for workers hired during that decade. Neither smoking nor geographic location fully explains the increased lung cancer risk. Occupational exposure to beryllium compounds is the most plausible explanation for the increased risk of lung cancer observed in this study.

  15. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  16. Boron doped nanostructured diamond films

    NASA Astrophysics Data System (ADS)

    Liang, Qi

    A chemical vapor deposition hydrogen/methane/nitrogen feed-gas mixture with unconventionally high methane (15% CH4 by volume) normally used to grow ultra-hard and smooth nanostructured diamond films on Ti-6Al-4V alloy substrates was modified to include diborane B2H6 for boron-doping of diamond films. The flow rates for B2H 6 and N2 were varied to investigate their effect on plasma chemistry, film structure, boron incorporation, and mechanical properties. It was found that boron atoms can easily be incorporated into diamond films and change the lattice constant and film structure. Nitrogen, on the other hand, competes with boron in the plasma and acts to prevent boron incorporation into the diamond structure. In addition, with the appropriate choice of deposition conditions, the film structure can be tailored to range from highly crystalline, well faceted diamond to nanocrystalline diamond. Glancing angle X-ray diffraction and Micro-Raman were used as the main tools to investigate the relation between processing and structure. An optimal N2/CH4 ratio of 0.4 was found to result in a film with a minimum in grain size and surface roughness, along with high boron incorporation (˜4 x 1020 cm-3). Mechanical properties and thermal stability of boron doped nanostructured diamond films were examined by means of nanoindentation, open air thermal annealing, and nanotribometry. It was found that the films have high hardness close to that of undoped nanostructured diamond films. Thermal stability of these films was evaluated by heating in an oxygen environment above 700°C. Improved thermal stability of boron doped nanostructured diamond films was observed. Tribological tests show that although both undoped and boron doped nanostructured diamond films show extremely low coefficient of friction and wear rate as compared with uncoated titanium alloys (Ti-6Al-4V) and cobalt chrome alloy (Co-Cr-Mo), a critical failure max stress of 2.2 GPa was observed for boron doped nanostructured diamond films. A FORTRAN Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, gas-phase thermodynamic equilibrium calculations involving H 2/CH4/N2/B2H6 mixtures was employed to investigate the chemical interactions leading to boron incorporation and crystalline structure variations. The strong influence of the BH 3 in causing the boron incorporation and the role of CN radical in causing the nanocrystallinity are confirmed by the correlation of their modeled compositions in the gas phase with boron content and degree of nanocrystallinity as determined experimentally. A good degree of agreement was obtained between the theoretically predicted gas phase concentration of species and the experimental concentration trends as measured by the optical emission spectroscopy of the microwave plasma. Overall, high film hardness and toughness, combined with good thermal stability and low surface roughness, indicate that nanostructured boron doped diamond films can be used as wear resistant coatings that are able to withstand high temperature oxidizing environments.

  17. Improving the electrochemical properties of carbon anodes in lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Wu, Yuping; Fang, Shibi; Ju, Weigang; Jiang, Yingyan

    The electrochemical properties of carbon anodes in lithium secondary batteries are improved by the addition of vanadium as V 2O 5. The action of the added V 2O 5 is different from that obtained by incorporating a nonmetallic element such as nitrogen, boron, phosphorous or silicon. Because it can increase the distance between the 002 planes of the carbon and act as nucleating agent that promotes the formation of a layer-like carbon structure, V 2O 5, not only enlarges the carbon anode's reversible capacity of lithium storage but also improves the cycling behavior.

  18. A preliminary assessment of beryllium dust oxidation during a wet bypass accident in a fusion reactor

    SciTech Connect

    Brad J. Merrill; Richard L. Moore; J. Phillip Sharp

    2008-09-01

    A beryllium dust oxidation model has been developed at the Idaho National Laboratory (INL) by the Fusion Safety Program (FSP) for the MELCOR safety computer code. The purpose of this model is to investigate hydrogen production from beryllium dust layers on hot surfaces inside a fusion reactor vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). This beryllium dust oxidation model accounts for the diffusion of steam into a beryllium dust layer, the oxidation of the dust particles inside this layer based on the beryllium-steam oxidation equations developed at the INL, and the effective thermal conductivity of this beryllium dust layer. This paper details this oxidation model and presents the results of the application of this model to a wet bypass accident scenario in the ITER device.

  19. Purfication kinetics of beryllium during vacuum induction melting

    NASA Technical Reports Server (NTRS)

    Mukherjee, J. L.; Gupta, K. P.; Li, C. H.

    1972-01-01

    The kinetics of evaporation in binary alloys were quantitatively treated. The formalism so developed works well for several systems studied. The kinetics of purification of beryllium was studied through evaporation data actually acquired during vacuum induction melting. Normal evaporation equations are shown to be generally valid and useful for understanding the kinetics of beryllium purification. The normal evaporation analysis has been extended to cover cases of limited liquid diffusion. It was shown that under steady-state evaporation, the solute concentration near the surface may be up to six orders of magnitude different from the bulk concentration. Corrections for limited liquid diffusion are definitely needed for the highly evaporative solute elements, such as Zn, Mg, and Na, for which the computed evaporation times are improved by five orders of magnitude. The commonly observed logarithmic relation between evaporation time and final concentration further supports the validity of the normal evaporation equations.

  20. Elastic scattering of Beryllium isotopes near the Coulomb barrier

    SciTech Connect

    Di Pietro, A.; Figuera, P.; Amorini, F.; Fisichella, M.; Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Randisi, G.; Rizzo, F.; Santonocito, D.; Scalia, G.; Scuderi, V.; Strano, E.; Torresi, D.; Papa, M.; Acosta, L.; Martel, I.; Perez-Bernal, F.; Borge, M. J. G.; Tengblad, O.

    2011-10-28

    In this contribution, results of experiments performed with the three Beryllium isotopes {sup 9,10,11}Be on a medium mass {sup 64}Zn target, at a center of mass energy of {approx_equal}1.4 the Coulomb barrier, will be discussed. Elastic scattering angular distributions have been measured for the {sup 9,10}Be reactions. In the {sup 11}Be case the quasielastic scattering angular distribution was obtained. In the halo nucleus case, the angular distribution exhibit a non-Fresnel-type pattern with a strong damping of the Coulomb-nuclear interference peak. Moreover, it is found that the total reaction cross-section for the halo nucleus induced collision is more than double the ones extracted in the collisions induced by the non-halo Beryllium isotopes. A large contribution to the total-reaction cross-section in the {sup 11}Be case could be attributed to transfer and/or break-up events.

  1. Final Results of the Ball AMSD Beryllium Mirror

    NASA Technical Reports Server (NTRS)

    Chaney, David M.

    2004-01-01

    The 1.4-meter semi-rigid, beryllium Advanced Mirror System Demonstrator (AMSD) mirror completed initial cryogenic testing at Marshall's X-ray Calibration Facility (XRCF) in August of 2003. Results of this testing show the mirror to have very low cryogenic surface deformation and possess exceptional figure stability. Subsequent to this cryogenic testing beryllium was selected as the material of choice for the James Webb Space Telescope (JWST) multi-segment primary mirror. Therefore, the AMSD mirror was sent back to SSG-Tinsley for additional ambient polishing to JWST requirements. The mirror was successfully polished to less than 22nm rms of low frequency error. Those additional results are presented with comparisons to the JWST requirements.

  2. A joint fracture toughness evaluation of hot-pressed beryllium

    NASA Technical Reports Server (NTRS)

    Conrad, H.; Sargent, G. A.; Brown, W. F., Jr.

    1977-01-01

    Fracture toughness tests at room temperature were made on three-point bend specimens cut from hot-pressed beryllium obtained from two suppliers. The test specimens had dimensions conforming to ASTM fracture toughness standard E399-72. A total of 42 specimens were machined from each batch of material. Six specimens from each batch were then distributed to seven independent laboratories for testing. The test data from the laboratories were collected and analyzed for differences between the laboratories and the two batches of material. It is concluded that ASTM 399-72 can be used as a valid test procedure for determining the fracture toughness of beryllium, providing that Kf(max) in fatigue cracking could be up to 80 percent of the K(0) value.

  3. Beryllium reflected cavity reactor for UF6 critical experiments

    NASA Technical Reports Server (NTRS)

    Jarvis, G. A.; Bernard, W.; Helmick, H. H.; White, R.

    1975-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with one-meter diam by one-meter long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17-cm-thick by 89-cm-diam beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF6 container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials are available. These results will be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

  4. Ultrasonic evaluation of beryllium-copper diffusion bonds

    SciTech Connect

    Jamieson, E.E.

    2000-06-08

    A study was performed to compare the effectiveness of several advanced ultrasonic techniques when used to determine the strength of diffusion bonded beryllium-copper, which heretofore have each been applied to only a few material systems. The use of integrated backscatter calculations, frequency domain reflection coefficients, and time-of-flight variance was compared in their ability to characterize the bond strength in a series of beryllium-copper diffusion bond samples having a wide variation in bond quality. Correlation of integrated backscatter calculations and time-of-flight variance with bond strength was good. Some correlation of the slope of the frequency based reflection coefficient was shown for medium and high strength bonds, while its Y-intercept showed moderate correlation for all bond strengths.

  5. Evolution of Crystallographic Texture and Strength in Beryllium

    NASA Astrophysics Data System (ADS)

    Blumenthal, W. R.; Brown, D. W.; Tomé, C. N.

    2004-07-01

    The evolution of the dynamic mechanical behavior and crystallographic texture in polycrystalline beryllium with different initial textures was measured and compared to a polycrystalline plasticity model. The split-Hopkinson pressure bar compression behavior and the activity of deformation mechanisms were found to be highly dependent on the initial texture and the loading orientation. Neutron diffraction measurements of the bulk texture as a function of strain were made at the Manuel Lujan Jr. Neutron Scattering Center. The activation of deformation twinning at high strain rates in beryllium was observed to cause both anisotropy in the mechanical behavior and rapid evolution of the texture compared to slip deformation alone. A visco-plastic self-consistent (VPSC) polycrystalline plasticity model was used to closely simulate the texture and flow strength evolution by accounting for contributions from both slip deformation and twinning mechanisms.

  6. Beryllium dimer: a bond based on non-dynamical correlation.

    PubMed

    El Khatib, Muammar; Bendazzoli, Gian Luigi; Evangelisti, Stefano; Helal, Wissam; Leininger, Thierry; Tenti, Lorenzo; Angeli, Celestino

    2014-08-21

    The bond nature in beryllium dimer has been theoretically investigated using high-level ab initio methods. A series of ANO basis sets of increasing quality, going from sp to spdf ghi contractions, has been employed, combined with HF, CAS-SCF, CISD, and MRCI calculations with several different active spaces. The quality of these calculations has been checked by comparing the results with valence Full-CI calculations, performed with the same basis sets. It is shown that two quasi-degenerated partly occupied orbitals play a crucial role to give a qualitatively correct description of the bond. Their nature is similar to that of the edge orbitals that give rise to the quasi-degenerated singlet-triplet states in longer beryllium chains. PMID:24866399

  7. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    SciTech Connect

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Maingi; M. Maiorano; S. Smith

    2002-01-18

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance.

  8. Inorganic chemistry: Peculiar boron startles again

    NASA Astrophysics Data System (ADS)

    Frenking, Gernot

    2015-06-01

    Boron's unusual properties inspired big advances in chemistry. A compound in which boron binds two carbon monoxide molecules reveals another oddity -- the element forms bonds similar to those of transition metals. See Letter p.327

  9. Boronated porhyrins and methods for their use

    DOEpatents

    Miura, M.; Shelnutt, J.A.; Slatkin, D.N.

    1999-03-02

    The present invention covers boronated porphyrins containing multiple carborane cages which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies such as boron neutron capture therapy and photodynamic therapy. 3 figs.

  10. Boronated porhyrins and methods for their use

    DOEpatents

    Miura, Michiko; Shelnutt, John A.; Slatkin, Daniel N.

    1999-03-02

    The present invention covers boronated porphyrins containing multiple carborane cages which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies such as boron neutron capture therapy and photodynamic therapy.

  11. Synthesis and Utility of Dihydropyridine Boronic Esters.

    PubMed

    Panda, Santanu; Coffin, Aaron; Nguyen, Q Nhu; Tantillo, Dean J; Ready, Joseph M

    2016-02-01

    When activated by an acylating agent, pyridine boronic esters react with organometallic reagents to form a dihydropyridine boronic ester. This intermediate allows access to a number of valuable substituted pyridine, dihydropyridine, and piperidine products. PMID:26694785

  12. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    SciTech Connect

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  13. Statistical methods for the blood beryllium lymphocyte proliferation test

    SciTech Connect

    Frome, E.L.; Smith, M.H.; Littlefield, L.G.

    1996-10-01

    The blood beryllium lymphocyte proliferation test (BeLPT) is a modification of the standard lymphocyte proliferation test that is used to identify persons who may have chronic beryllium disease. A major problem in the interpretation of BeLPT test results is outlying data values among the replicate well counts ({approx}7%). A log-linear regression model is used to describe the expected well counts for each set of Be exposure conditions, and the variance of the well counts is proportional to the square of the expected count. Two outlier-resistant regression methods are used to estimate stimulation indices (SIs) and the coefficient of variation. The first approach uses least absolute values (LAV) on the log of the well counts as a method for estimation; the second approach uses a resistant regression version of maximum quasi-likelihood estimation. A major advantage of these resistant methods is that they make it unnecessary to identify and delete outliers. These two new methods for the statistical analysis of the BeLPT data and the current outlier rejection method are applied to 173 BeLPT assays. We strongly recommend the LAV method for routine analysis of the BeLPT. Outliers are important when trying to identify individuals with beryllium hypersensitivity, since these individuals typically have large positive SI values. A new method for identifying large SIs using combined data from the nonexposed group and the beryllium workers is proposed. The log(SI)s are described with a Gaussian distribution with location and scale parameters estimated using resistant methods. This approach is applied to the test data and results are compared with those obtained from the current method. 24 refs., 9 figs., 8 tabs.

  14. Cleaning and activation of beryllium-copper electron multiplier dynodes.

    NASA Technical Reports Server (NTRS)

    Pongratz, M. B.

    1972-01-01

    Description of a cleaning and activation procedure followed in preparing beryllium-copper dynodes for electron multipliers used in sounding-rocket experiments to detect auroral electrons. The initial degreasing step involved a 5-min bath in trichloroethylene in an ultrasonic cleaner. This was followed by an ultrasonic rinse in methanol and by a two-step acid pickling treatment to remove the oxides. Additional rinsing in water and methanol was followed by activation in a stainless-steel RF induction oven.

  15. Creating σ-holes through the formation of beryllium bonds.

    PubMed

    Brea, Oriana; Mó, Otilia; Yáñez, Manuel; Alkorta, Ibon; Elguero, José

    2015-09-01

    Through the use of ab initio theoretical models based on MP2/aug-cc-pVDZ-optimized geometries and CCSD(T)/aug-cc-pVTZ and CCSD(T)/aug-c-pVDZ total energies, it has been shown that the significant electron density rearrangements that follow the formation of a beryllium bond may lead to the appearance of a σ-hole in systems that previously do not exhibit this feature, such as CH3 OF, NO2 F, NO3 F, and other fluorine-containing systems. The creation of the σ-hole is another manifestation of the bond activation-reinforcement (BAR) rule. The appearance of a σ-hole on the F atoms of CH3 OF is due to the enhancement of the electronegativity of the O atom that participates in the beryllium bond. This atom recovers part of the charge transferred to Be by polarizing the valence density of the F into the bonding region. An analysis of the electron density shows that indeed this bond becomes reinforced, but the F atom becomes more electron deficient with the appearance of the σ-hole. Importantly, similar effects are also observed even when the atom participating in the beryllium bond is not directly attached to the F atom, as in NO2 F, NO3 F, or NCF. Hence, whereas the isolated CH3 OF, NO2 F, and NO3 F are unable to yield F⋅⋅⋅Base halogen bonds, their complexes with BeX2 derivatives are able to yield such bonds. Significant cooperative effects between the new halogen bond and the beryllium bond reinforce the strength of both noncovalent interactions. PMID:26212472

  16. Fracture in hexagonal closed packed metals, zinc and beryllium

    NASA Technical Reports Server (NTRS)

    Kamdar, M. H.

    1973-01-01

    It is shown that fracture in zinc and beryllium is nucleation controlled and is independent of the nature of the barrier from which fracture nucleates. The double cantilever cleavage technique was used to determine the energy required to propagate a crack on the basal plane (0001) in single crystals. Tensile fracture data from single and asymmetric bicrystals were used to calculate the energy needed to initiate a cleavage crack on the (0001) plane.

  17. Thermal fatigue behavior of US and Russian grades of beryllium

    SciTech Connect

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-02-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 KW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ``spike`` of 750{degrees}C for each pass of the beam. Large thermal stress in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m{sup 2}. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S-65H, S-200F, S-300F-H, Sr-200, I-400, extruded high purity. HIP`d sperical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe{sub 12}. Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be(SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis.

  18. Determination of beryllium in ores and rocks by a dilution-fluorometric method with morin

    USGS Publications Warehouse

    May, R.; Grimaldi, F.S.

    1961-01-01

    Beryllium in concentrations as little as a few parts per million is determined fluorometrically with morin in low grade ores by a dilution method without separations. A high sensitivity is obtained by the adoption of instrumental and reaction conditions that give a satisfactory ratio of beryllium to blank fluorescence and at the same time minimize iron interference. Data on the behavior of 47 ions are given. The method is applied to ores containing bertrandite and beryl as the beryllium minerals.

  19. Hydrogen retention in beryllium: concentration effect and nanocrystalline growth.

    PubMed

    Pardanaud, C; Rusu, M I; Martin, C; Giacometti, G; Roubin, P; Ferro, Y; Allouche, A; Oberkofler, M; Köppen, M; Dittmar, T; Linsmeier, Ch

    2015-12-01

    We herein report on the formation of BeD2 nanocrystalline domes on the surface of a beryllium sample exposed to energetic deuterium ions. A polycrystalline beryllium sample was exposed to D ions at 2 keV/atom leading to laterally averaged deuterium areal densities up to 3.5 10(17) D cm(-2), and studied using nuclear reaction analysis, Raman microscopy, atomic force microscopy, optical microscopy and quantum calculations. Incorporating D in beryllium generates a tensile stress that reaches a plateau at  ≈1.5 10(17) D cm(-2). For values higher than 2.0 10(17) cm(-2), we observed the growth of  ≈90 nm high dendrites, covering up to 10% of the surface in some zones of the sample when the deuterium concentration was 3  ×  10(17) D cm(-2). These dendrites are composed of crystalline BeD2, as evidenced by Raman microscopy and quantum calculations. They are candidates to explain low temperature thermal desorption spectroscopy peaks observed when bombarding Be samples with D ions with fluencies higher than 1.2 10(17) D cm(-2). PMID:26558478

  20. Hydrogen retention in beryllium: concentration effect and nanocrystalline growth

    NASA Astrophysics Data System (ADS)

    Pardanaud, C.; Rusu, M. I.; Martin, C.; Giacometti, G.; Roubin, P.; Ferro, Y.; Allouche, A.; Oberkofler, M.; Köppen, M.; Dittmar, T.; Linsmeier, Ch

    2015-12-01

    We herein report on the formation of BeD2 nanocrystalline domes on the surface of a beryllium sample exposed to energetic deuterium ions. A polycrystalline beryllium sample was exposed to D ions at 2 keV/atom leading to laterally averaged deuterium areal densities up to 3.5 1017 D cm-2, and studied using nuclear reaction analysis, Raman microscopy, atomic force microscopy, optical microscopy and quantum calculations. Incorporating D in beryllium generates a tensile stress that reaches a plateau at  ≈1.5 1017 D cm-2. For values higher than 2.0 1017 cm-2, we observed the growth of  ≈90 nm high dendrites, covering up to 10% of the surface in some zones of the sample when the deuterium concentration was 3  ×  1017 D cm-2. These dendrites are composed of crystalline BeD2, as evidenced by Raman microscopy and quantum calculations. They are candidates to explain low temperature thermal desorption spectroscopy peaks observed when bombarding Be samples with D ions with fluencies higher than 1.2 1017 D cm-2.

  1. Elastic, micro- and macroplastic properties of polycrystalline beryllium

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Kupriyanov, I. B.

    2011-12-01

    The Young's modulus and the internal friction of beryllium polycrystals (size grain from 6 to 60 μm) prepared by the powder metallurgy method have been studied as functions of the amplitude and temperature in the range from 100 to 873 K. The measurements have been performed using the composite piezoelectric vibrator method for longitudinal vibrations at frequencies about 100 kHz. Based on the acoustic measurements, the data have been obtained on the elastic and inelastic (microplastic) properties as functions of vibration stress amplitudes within the limits from 0.2 to 30-60 MPa. The microplastic deformation diagram is shown to become nonlinear at the amplitudes higher than 5 MPa. The beryllium mechanical characteristics (the yield strength σ 0.2, the ultimate strength σ u , and the conventional microscopic yield strength σ y ) obtained with various grain sizes are compared. At room temperature, all the parameters satisfactorily obey the Hall-Petch relationship, although there is no complete similarity. The temperature dependences are quite different, namely: σ 0.2( T) and σ u ( T) decrease monotonically during heating from room temperature to higher temperatures; however, σ y ( T) behaves unusually, and it has a minimum near 400 K. The different levels of stresses and the absence of similarity indicate that the scattering of the ultrasound energy and the formation of a level of the macroscopic flow stresses in beryllium occur on dislocation motion obstacles of different origins.

  2. Boron carbide nanolumps on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lao, J. Y.; Li, W. Z.; Wen, J. G.; Ren, Z. F.

    2002-01-01

    Boron carbide nanolumps are formed on the surface of multiwall carbon nanotubes by a solid-state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. Inner layers of multiwall carbon nanotubes are also bonded to boron carbide nanolumps. These multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal reinforcing fillers for high-performance composites because of the favorable morphology.

  3. Methods for boron delivery to mammalian tissue

    DOEpatents

    Hawthorne, M. Frederick; Feaks, Debra A.; Shelly, Kenneth J.

    2003-01-01

    Boron neutron capture therapy can be used to destroy tumors. This treatment modality is enhanced by delivering compounds to the tumor site where the compounds have high concentrations of boron, the boron compounds being encapsulated in the bilayer of a liposome or in the bilayer as well as the internal space of the liposomes. Preferred compounds, include carborane units with multiple boron atoms within the carborane cage structure. Liposomes with increased tumor specificity may also be used.

  4. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  5. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  6. The beryllium quandary: will the lower exposure limits spur new developments in sampling and analysis?

    SciTech Connect

    Brisson, Michael

    2013-06-03

    At the time this article was written, new rulemakings were under consideration at OSHA and the U.S. Department of Energy (DOE) that would propose changes to occupational exposure limits for beryllium. Given these developments, it’s a good time to review the tools and methods available to IHs for assessing beryllium air and surface contamination in the workplace—what’s new and different, and what’s tried and true. The article discusses limit values and action levels for beryllium, problematic aspects of beryllium air sampling, sample preparation, sample analysis, and data evaluation.

  7. Proteomic analysis of beryllium-induced genotoxicity in an Escherichia coli mutant model system.

    PubMed

    Taylor-McCabe, Kirsten J; Wang, Zaolin; Sauer, Nancy N; Marrone, Babetta L

    2006-03-01

    Beryllium is the second lightest metal, has a high melting point and high strength-to-weight ratio, and is chemically stable. These unique chemical characteristics make beryllium metal an ideal choice as a component material for a wide variety of applications in aerospace, defense, nuclear weapons, and industry. However, inhalation of beryllium dust or fumes induces significant health effects, including chronic beryllium disease and lung cancer. In this study, the mutagenicity of beryllium sulfate (BeSO(4)) and the comutagenicity of beryllium with a known mutagen 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) were evaluated using a forward mutant detection system developed in Escherichia coli. In this system, BeSO(4) was shown to be weakly mutagenic alone and significantly enhanced the mutagenicity of MNNG up to 3.5-fold over MNNG alone. Based on these results a proteomic study was conducted to identify the proteins regulated by BeSO(4). Using the techniques of 2-DE and oMALDI-TOF MS, we successfully identified 32 proteins being differentially regulated by beryllium and/or MNNG in the E. coli test system. This is the first study to describe the proteins regulated by beryllium in vitro, and the results suggest several potential pathways for the focus of further research into the mechanisms underlying beryllium-induced genotoxicity. PMID:16447159

  8. Beryllium Science: US-UK agreement on the use of Atomic Energy for mutual defense

    SciTech Connect

    Hanafee, J.E.

    1988-02-19

    Twenty-seven papers are presented on beryllium supply, production, fabrication, safe handling, analysis, powder technology, and coatings. Separate abstracts have been prepared for the individual papers. (DLC)

  9. Beryllium in soils of the Nevada Test Site: A preliminary assessment

    SciTech Connect

    Patton, S.E.

    1992-07-01

    A preliminary assessment of the occurrence and distribution of beryllium in soils of the Nevada Test Site (NTS) was conducted by identifying sites on the NTS where beryllium might have been used in past operations and measuring current soil beryllium concentrations at those sites. Eighty-one soil samples were collected from six sites on the NTS. The six sites were chosen after interviews with persons who are or were involved with NTS operations and stated that beryllium might have been used in operations at those sites. The soil samples were prepared for analysis using EPA procedures and analyzed by flame-atomic-absorption spectrophometry. Beryllium concentrations in the soil samples ranged from the analytical detection limit of 0.46 parts-per-million (ppM) to 4.65 ppM. The beryllium concentrations in NTS soils may be higher than estimated local background soil beryllium concentrations, but in concentrations that fall within the range found in surface soils of the United States. Air beryllium concentrations were conservatively estimated to be considerably lower than regulatory exposure limits. Further work is recommended in assessing the spatial distribution of beryllium in soils around several of the sites, with a sampling design that incorporates statistical procedures to ensure statistically valid results.

  10. Vacuum Brazing of Beryllium Copper Components for the National Ignition Facility

    SciTech Connect

    Tyhurst, C.C.; Cunningham, M.A.

    2002-06-04

    A process for vacuum brazing beryllium copper anode assemblies was required for the Plasma Electrode Pockels Cell System, or PEPC, a component for the National Ignition Facility (NIF). Initial problems with the joint design and wettability of the beryllium copper drove some minor design changes. Brazing was facilitated by plating the joint surface of the beryllium copper rod with silver 0.0006 inch thick. Individual air sampling during processing and swipe tests of the furnace interior after brazing revealed no traceable levels of beryllium.

  11. Optimizing the thermal conductivity of plasma-sprayed beryllium coatings for fusion applications

    SciTech Connect

    Castro, R.G.; Stanek, P.W.; Cotton, J.D.

    1994-12-31

    Plasma-spraying of beryllium is currently under investigation as a potential coating technique for regenerating damaged beryllium surfaces in the divertor region of ITER. Investigations to optimize the thermal conductivity of plasma-sprayed beryllium coatings are currently being performed at the Los Alamos National Laboratory`s Beryllium Atomization and Thermal Spray Facility (BATSF). Parametric studies are being done to evaluate the effects of processing conditions to minimize the splat morphology present in the beryllium plasma-sprayed deposits. Earlier investigations have shown that this splat morphology, which is characteristic of plasma-sprayed coatings, contains incomplete bonding between individual splat layers which reduces the thermal conductivity of the beryllium spray deposits. Thermal conductivity of plasma-sprayed beryllium which is on the order of 70 W/m{sm_bullet}K is only one-third that of hot pressed beryllium block. Results will be presented on the effects of hydrogen gas addition to the plasma spray torch, higher substrate temperatures and the use of a low velocity laminar flow nozzle to improve the as-deposited density and thermal conductivity of the beryllium plasma-sprayed deposits.

  12. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  13. Mineral resource of the month: boron

    USGS Publications Warehouse

    Lyday, Phyllis A.

    2005-01-01

    What does boron have to do with baseball, apple pie, motherhood and Chevrolet? Boron minerals and chemicals are used in the tanning of leather baseballs and gloves; in micro-fertilizer to grow apples and in the glass and enamels of bakewares to cook apple pie; in boron detergents for soaking baby clothes and diapers; and in fiberglass parts for the Chevrolet Corvette.

  14. Boron doping a semiconductor particle

    DOEpatents

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  15. Boron doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.; Brown, L.K.

    1998-06-09

    A method of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried, with the boron film then being driven into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out into piles and melted/fused with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements. 2 figs.

  16. Anelastic deformation of boron fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1975-01-01

    The flexural deformation behavior of vapor-deposited boron fibers is investigated in the temperature range from 100 to 1100 K by stress-relaxation and internal friction methods. Strong thermally-activated anelasticity is uniquely observed, and no evidence of plasticity is found up to surface strains of 0.006. The parameters governing the relaxation processes within the anelastic spectra of untreated and annealed fibers are determined and correlated with the results of X-ray structural studies to develop preliminary models for the possible causes of boron's anelasticity. The large relaxation strengths of the dominant Ia processes together with their relaxation times and energies are shown to suggest a sliding mechanism between certain basic structural subunits common to both the beta-rhombohedral and vapor-deposited boron structures.

  17. Lithium drifted germanium system

    NASA Technical Reports Server (NTRS)

    Fjarlie, E. J.

    1969-01-01

    General characteristics of the lithium-drifted germanium photodiode-Dewar-preamplifier system and particular operating instructions for the device are given. Information is included on solving operational problems.

  18. Thermal conductivity of boron carbides

    NASA Technical Reports Server (NTRS)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  19. First-Principles Investigation on Boron Nanostructures

    NASA Astrophysics Data System (ADS)

    Tang, Hui

    2011-12-01

    First-principles calculations based on density functional theory are employed to study and predict the properties of boron and Mg boride nanostructures. For boron nanostructures, two-dimensional boron sheets are found to be metallic and made of mixtures of triangles and hexagons which benefit from the balance of two-center bonding and three-center bonding. This unusual bonding in boron sheets results in a self-doping picture where adding atoms to the hexagon centers does not change the number of bonding states but merely increases the electron count. Boron sheets can be either flat or buckled depending on the ratio between hexagons and triangles. Formed by stacking two identical boron sheets, double-layered boron sheets can form interlayer bonds, and the most stable one is semiconducting. Built from single-layered boron sheets, single-walled boron nanotubes have smaller curvature energies than carbon nanotubes and undergo a metal-to-semiconductor transition once the diameter is smaller than ˜20 A. Optimal double-walled boron nanotubes with inter-walled bonds formed are metallic and always more stable than single-walled ones. For Mg boride nanostructures, certain Mg boride sheets prefer to curve themselves into nanotubes, which is explained via Mg-Mg interactions governed by the charge state of Mg. In addition, optimal Mg boride sheet structures are explored with a genetic algorithm. Phase diagrams for Mg boride sheet structures are constructed and stable phases under boron-rich environments are identified. Curvature effects on the phase diagram of Mg boride nanotubes are also discussed. As a natural extension to boron sheets, layered boron crystals based on boron sheets are then presented and are shown to be stable under high pressure. Finally, this thesis ends with an investigation of hydrogen-storage properties of pristine and metal doped boron nanostructures.

  20. Scoping studies: behavior and control of lithium and lithium aerosols

    SciTech Connect

    Jeppson, D W

    1982-01-01

    The HEDL scoping studies examining the behavior of lithium and lithium aerosols have been conducted to determine and examine potential safety and environmental issues for postulated accident conditions associated with the use of lithium as a fusion reactor blanket and/or coolant. Liquid lithium reactions with air, nitrogen, carbon dioxide and concretes have been characterized. The effectiveness of various powder extinguishing agents and methods of application were determined for lithium-air reactions. The effectiveness of various lithium aerosol collection methods were determined and the volatilization and transport of radioactive metals potentially associated with lithium-air reactions were evaluated. Liquid lithium atmosphere reactions can be safely controlled under postulated accident conditions, but special handling practices must be provided. Lithium-concrete reactions should be avoided because of the potential production of high temperatures, corrosive environment and hydrogen. Carbon microspheres are effective in extinguishing well established lithium-air reactions for the lithium quantities tested (up to 10 kg). Large mass loading of lithium aerosols can be efficiently collected with conventional air cleaning systems. Potentially radioactive species (cobalt, iron and manganese) will be volatilized in a lithium-air reaction in contact with neutron activated stainless steel.