Science.gov

Sample records for lithium fluoride crystals

  1. Luminescence from Edge Fracture in Shocked Lithium Fluoride Crystals

    SciTech Connect

    Turley, W. D.; Stevens, G. D.; Capelle, G. A.; Grover, M.; Holtkamp, D. B.; LaLone, B. M.; Veeser, L. R.

    2013-01-01

    Light emitted from a [100] lithium fluoride crystal was characterized under shock wave compression to 28GPa followed by complete stress release at the edges. The light was examined using time-gated optical spectrometry and imaging, time-resolved optical emission measurements, and hydrodynamic modeling. The shock arrival at the circumference of the crystal was delayed relative to the center so that the two regions could be studied at different times. The majority of the light emission originated when the shock waves released at the circumference of the crystal. Unlike previously reported results for shocked lithium fluoride, we found that the light spectrum is not strictly broad band, but has spectral lines associated with atomic lithium in addition to a broad band background. Also, the emission spectrum depends strongly on the gas surrounding the sample. Based on our observations, the line emission appears to be related to fracture of the lithium fluoride crystal from the shock wave releasing at the edges. Experimenters frequently utilize lithium fluoride crystals as transparent windows for observing shock compressed samples. Because of the experimental geometries used, the shock wave in such cases often reaches the circumference of the window at nearly the same moment as when it reaches the center of the sample-window interface. Light generated at the circumference could contaminate the measurement at the interface when this light scatters into the observed region. This background light may be reduced or avoided using experimental geometries which delay the arrival of the shock wave at the edges of the crystal.

  2. Reduction of precursor decay anomaly in single crystal lithium fluoride

    NASA Astrophysics Data System (ADS)

    Sano, Yukio

    2000-08-01

    The purpose of this study is to reveal that the precursor decay anomaly in single crystal lithium fluoride is reduced by Sano's decay curve [Y. Sano, J. Appl. Phys. 85, 7616 (1999)], which is much smaller in slope than Asay's decay curve [J. R. Asay, G. R. Fowles, G. E. Duvall, M. H. Miles, and R. F. Tinder, J. Appl. Phys. 43, 2132 (1972)]. To this end, strain, particle, velocity, and stress in a precursor and near the leading edge of the follower changing with time along Sano's decay curve are first analyzed quantitatively. The analysis verified the existence of degenerate contraction waves I and II and a subrarefaction wave R', and the decay process [Y. Sano, J. Appl. Phys. 77, 3746 (1995)] caused in sequence by evolving followers C, I, II, R', Rb. Next, inequalities relating decay rates qualitatively to plastic strain rates at the leading edge of the follower, which are derived using the properties of the followers, are incorporated into the analysis. Calculation results showed that the plastic strain rates were reduced by low decay rates. This indicates that the precursor decay anomaly might be greatly reduced by Sano's decay curve.

  3. Void control in the crystallization of lithium fluoride

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Perry, William D.

    1991-01-01

    The effect of tungsten-coated graphite fibers on the radiant heat transfer characteristics of salt-fiber composites was studied by measuring the onset of melting as a function of applied furnace power. As the fiber concentration was increased from 0 to 5.40 percent fiber by weight, the furnace temperature required to melt the lithium fluoride also increased. Upon cooling, each of the crystalline salt-fiber composites were cut open with a diamond saw to expose the void. Optical photographs of the voids revealed a trend in void location and size, with the largest void, and the least change in the outer dimension of the boule upon cooling, occurring in the sample with the most fiber.

  4. Shock Induced Birefringence in Lithium Fluoride

    SciTech Connect

    Holmes, N C

    2001-06-01

    We have used an ellipsometer to measure the birefringence of lithium fluoride in shock compression experiments. In previous x-ray diffraction experiments, single crystal [100] LiF has been reported to remain cubic at moderate pressures.

  5. Factors Affecting the Plasticity of Sodium Chloride, Lithium Fluoride, and Magnesium Oxide Single Crystals. 1

    NASA Technical Reports Server (NTRS)

    Stearns, Carl A.; Pack, Ann E.; Lad, Robert A.

    1959-01-01

    A study was made of the relative magnitude of the effects of various factors on the ductility of single crystals of sodium chloride (NaCl), lithium fluoride (LiF), and magnesium oxide (MgO). Specimen treatments included water-polishing, varying cleavage rate, annealing, quenching, X-irradiation, surface coating, aging, and combinations of some of these treatments. The mechanical behavior of the crystals was studied in flexure and in compression, the latter study being performed at both constant strain rate and constant load. Etch-pit studies were carried out to provide some pertinent information on the results of pretreatment on the dislocation concentration and distribution in the vicinity of the surface. The load deformation curves for these ionic single crystals show an initial region of very low slope which proved to be due to anelastic deformation. The extent of initial anelastic deformation is modified by specimen pretreatment in a way that suggests that this deformation is the result of expansion of cleaved-in dislocation loops, which can contract on the removal of the stress. The effects of the various pretreatments on the load and deflection at fracture are in accord with the prediction one might make with regard to their effect on the nucleation of fatal surface cracks. For NaCl, increases in ductility are always accompanied by increases in strength. The creep constants for NaCl are a function of treatments which affect the bulk structure but are not a function of treatments which only affect the surface.

  6. A study of the structure and scattering mechanisms of subterahertz phonons in lithium fluoride single crystals and optical ceramics

    SciTech Connect

    Khazanov, E. N. Taranov, A. V.; Gainutdinov, R. V.; Akchurin, M. Sh.; Basiev, T. T.; Konyushkin, V. A.; Fedorov, P. P.; Kuznetsov, S. V.; Osiko, V. V.

    2010-06-15

    The methods of optical, electron, and atomic force microscopy (AFM) are applied to the study of the real structure of optical lithium fluoride ceramic obtained by hot deformation of single crystals. A comparative analysis is carried out of the scattering mechanisms of weakly nonequilibrium thermal phonons at liquid helium temperatures in LiF single crystals and ceramics. It is demonstrated that the phonon scattering in the original single crystals is determined by the forced vibrations of dislocations in the stress field of an elastic plane wave (a phonon), i.e., by the flutter mechanism. As the degree of deformation of the original material increases, the ceramics exhibit a change in the plastic deformation mechanisms, which leads to a decrease in the average size of grains and to an ordered structure. In this case, the dominant scattering is that by intergrain boundaries. The thickness and the acoustic impedance of these boundaries are evaluated.

  7. Fabrication of Optoelectronic Devices in Lithium Fluoride Crystals by Interfering Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Kurobori, Toshio; Obayashi, Yoshihiro; Suzuki, Kenji; Hirose, Yukio; Sakai, Toshiaki; Aoshima, Shin-ichiro

    2008-01-01

    Fine-pitched microgratings either on or beneath surface of bulk lithium fluoride (LiF) are holographically fabricated by interfering with the second harmonic (400 nm) of a mode-locked Ti:sapphire oscillator-amplifier laser. The laser-active F2 and F3+ color centers in LiF are excellent candidates for producing visible laser action from the green-to-red spectral range when excited with a single wavelength. Here a green distributed feedback (DFB) laser action with a narrower oscillating linewidth is demonstrated by utilizing simultaneous formation of the F3+ color centers and waveguide with the microgratings encoded by interference of 400 nm femtosecond laser pulses. In addition, the possibility of a dual-beam DFB laser based on these color centers in LiF is discussed.

  8. Self-quenching of luminescence in concentrated lithium--erbium and lithium--holmium double fluoride crystals

    SciTech Connect

    Tkachuk, A.M.; Klokishner, S.I.; Petrov, M.V.

    1985-10-01

    For the radiative terms of holmium and erbium ions in concentrated LiErF/sub 4/ and LiHoF/sub 4/ crystals, numerical estimates were made of the microparameters and transfer rates on the basis of known experimental data on the structure of luminescence centers, probabilities of intracenter transitions, phonon spectrum of the crystals, and electron--phonon interaction. The schemes of the most important processes of cross-relaxation quenching and nonlinear (in excitation intensity) interaction have been determined. On the basis of an analysis of numerical values of the rates of intracenter relaxation and interionic transfer of energy, conclusions are reached concerning the processes which significantly affect the radiative characteristics of concentrated crystals. The role of the processes of cross-relaxation quenching and nonlinear interaction in the formation of an inverse population of excited multiplets and the influences of these processes on the characteristics of stimulated emission are discussed.

  9. Optical characterization of femtosecond laser induced active channel waveguides in lithium fluoride crystals

    SciTech Connect

    Chiamenti, I.; Kalinowski, H. J.; Bonfigli, F.; Montereali, R. M.; Gomes, A. S. L.; Michelotti, F.

    2014-01-14

    We successfully realized broad-band light-emitting color center waveguides buried in LiF crystals by using femtosecond laser pulses. The characterization of the waveguides was performed by optical microscopy, photoluminescence spectra, loss measurements and near-field profiling. The experimental results show that the direct-writing fabrication process induces low-index contrast active channel waveguides: their wavelength-dependent refractive index changes, estimated from 10{sup −3} to 10{sup −4} depending on the writing conditions, allow supporting few modes at visible and near-infrared wavelengths.

  10. Fluoride glass: Crystallization, surface tension

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1988-01-01

    Fluoride glass was levitated acoustically in the ACES apparatus on STS-11, and the recovered sample had a different microstructure from samples cooled in a container. Further experiments on levitated samples of fluoride glass are proposed. These include nucleation, crystallization, melting observations, measurement of surface tension of molten glass, and observation of bubbles in the glass. Ground experiments are required on sample preparation, outgassing, and surface reactions. The results should help in the development and evaluation of containerless processing, especially of glass, in the development of a contaminent-free method of measuring surface tensions of melts, in extending knowledge of gas and bubble behavior in fluoride glasses, and in increasing insight into the processing and properties of fluoride glasses.

  11. Dynamic yielding in lithium fluoride and aluminum

    NASA Astrophysics Data System (ADS)

    Sano, Yukio; Sano, Tomokazu

    2010-02-01

    At a time immediately after shock loading, a kink (a weak discontinuity or a discontinuity in slope) occurs at a position in an unsteady portion in a smooth plane wave front in a lithium fluoride single crystal (material IIIb) or in 1060-0 aluminum due to the instability of the wave front. After the occurrence of the kink, a zone is produced and broadened with time between a near steady precursor ahead of the kink and a plastic wave behind it in a weak-discontinuity plane wave by the difference in the propagation velocity between them. Stress relaxes in the zone, which is called a follower, and the precursor decay takes place due to the stress relaxation. During the decay process, the large increase in plastic flow occurs in the vicinity of the leading edge of the follower, causes yielding at the leading edge, and stabilizes the weak-discontinuity wave. The stress-strain (σ-ε) history caused by the follower rotates clockwise with time around the yield point. The rotation yields different σ-ε histories behind the point and therefore different types of the dynamic σ-ε relation. Dynamic yield phenomena are illustrated by showing the schematic diagrams of three different types of the dynamic σ-ε relation, which are caused by weak-discontinuity plane waves composed of a precursor C, a follower (i) C, (ii) I or II, or (iii) R' or Rb, and a plastic wave C behind the follower. Here C is the contraction (compression) wave, I and II are the degenerate contraction waves I and II, R' is the subrarefaction wave, and Rb is the rarefaction wave.

  12. Study of the internal structure of lithium fluoride single crystal by laboratory X-ray topo-tomography

    SciTech Connect

    Zolotov, D. A. Buzmakov, A. V.; Asadchikov, V. E.; Voloshin, A. E.; Shkurko, V. N.; Smirnov, I. S.

    2011-05-15

    Defects in a synthetic LiF crystal have been studied by X-ray topo-tomography on laboratory X-ray sources with a spatial resolution of {approx}10 {mu}m. An algebraic reconstruction method was applied to reconstruct the defect 3D structure of the crystal based on the diffraction data. The results presented in this study are in good agreement with the topographic data obtained by the Lang method.

  13. Probabilities for nonradiative intermultiplet transitions in the holmium ion in lithium-yttrium double fluoride crystals and stimulated emission

    SciTech Connect

    Tkachuk, A.M.; Khilko, A.V.; Petrov, M.V.

    1985-02-01

    Nonradiative transition probabilities have been studied as functions of the energy difference between the closest-lying multiplets of the Ho/sup 3 +/ ion in the LiYF/sub 4/ crystal. The efficiencies of emission from terms of the holmium ion have been determined. The cross sections for stimulated emission for emission lines corresponding to the transition /sup 5/S/sub 2/ ..-->.. /sup 5/I/sub 7/ have also been determined. Some characteristics of the stimulated emission of LiYF/sub 4/:Ho/sup 3 +/ crystals are reported for several wavelengths in the 0.75--3.9-..mu..m spectral interval.

  14. Fluoride laser crystals: old and new

    NASA Astrophysics Data System (ADS)

    Jenssen, Hans P.; Cassanho, Arlete

    2006-02-01

    The development of oxide and fluoride materials as gain materials of choice for solid state lasers ranges from early materials such as Calcium Fluoride and Calcium Tungstate crystals to the now ubiquitous Nd hosts YLF, YAG and Vanadate. Among Tunable laser materials, MgF II - an early favorite, gave way to superior oxides such as Alexandrite and Ti:Sapphire only to be followed by development of still newer tunable fluoride media, notably, fluoride colquiriites such as Cr-doped LiSAF and LiCaF. Newer fluoride crystals, such as Barium Yttrium Fluoride BaY II F 8 (BYF), KY 3F 10 (KYF) and the tunable Cr doped LiCaGaF 6 are attractive laser materials, but their growth has not been optimized. Key advantages of two of these new crystals are discussed. Crystal growth results for BYF and Cr:LiCaGaF 6 as well as some material characterization are presented.

  15. Surface crystallization of a fluoride glass

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Doremus, Robert H.

    1983-01-01

    Growth of crystals on the surface of a Zr-Ba-La fluoride glass was observed by optical and scanning electron microscopy. Small, dark crystal nucleated rapidly and grew to a size of about 10 microns; then they stopped growing, and wrinkled regions emerged, covering the entire crystal surface.

  16. Density and surface tension of melts of zirconium and hafnium fluorides with lithium fluoride

    SciTech Connect

    Katyshev, S.F.; Artemov, V.V.; Desyatnik, V.N.

    1988-06-01

    A study was conducted to determine the temperature dependence of the density and surface tension of melts of LiF-ZrF/sub 4/ and LiF-HfF/sub 4/. Density and surface tension were determined by the method of maximum pressure in an argon bubble. On the basis of experimental data over the entire concentration range the molar volumes and their relative deviations from the additive molar volumes were calculated for 1100/sup 0/K. The positive deviations of the molar volumes from additivity in the LiF-HfF/sub 4/ system (22.45%) were greater than in the LiF-ZrF/sub 4/ system (15.75%). This indicated that the reaction with lithium fluoride is intensified with the switch to the hafnium fluoride. Results also demonstrated that the fluorides are surface-active components in the molten mixtures.

  17. Optical Restoration of Lead Fluoride Crystals

    SciTech Connect

    Spilker, A.; Cole, P. L.; Forest, T. A.; Mestari, M.; Naeem, S.; LeBaron, N.; Bertin, P.; Camacho, C. Munoz; Roche, J.

    2009-03-10

    Due to its relatively high resistance to high radiation, lead fluoride (PbF{sub 2}) crystals are becoming an increasingly popular material of choice for electromagnetic calorimetry, such as for experiments requiring the measurement of high-energy photons in Hall A of Jefferson Lab. For our studies we irradiated the PbF{sub 2} crystals using an electron linear accelerator (LINAC) followed by exposing the crystals to blue light so as to restore the nominal optical properties. This technique of optical bleaching with blue light affords an efficient and low-cost means for reversing the deleterious effects of optical transmission loss in radiation-damaged lead fluoride crystals. Whereas earlier experiments irradiated the PbF{sub 2} samples with 1.1 and 1.3 MeV gammas from {sup 60}Co, we used pulsed beams of energetic electrons from the tunable 25-MeV LINAC at Idaho Accelerator Center of Idaho State University in Pocatello, Idaho. A 20-MeV beam of electrons was targeted onto four separate 19 cm length samples of lead fluoride over periods of 1, 2, and 4 hours yielding doses between 7 kGy and 35 kGy. Samples were then bleached with blue light of wavelength 410-450 nm for periods between 19.5 and 24 hours. We performed this process twice - radiation, bleaching, radiation, and then followed by bleaching again - for each of these four PbF{sub 2} samples. We shall discuss the efficacy of blue light curing on samples that have undergone two cycles of electron irradiation and optical bleaching.

  18. Crystallization of heavy metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Bruce, Allan J.; Doremus, R. H.; Moynihan, C. T.

    1984-01-01

    The kinetics of crystallization of a number of fluorozirconate glasses were studied using isothermal and dynamic differential scanning calorimetry and X-ray diffraction. The addition of the fluorides LiF, NaF, AlF3, LaF3 to a base glass composition of ZrF4-BaF2 reduced the tendency to crystallize, probably by modifying the viscosity-temperature relation. ZrF4-BaF2-LaF3-AlF3-NaF glass was the most stable against devitrification and perhaps is the best composition for optical fibers with low scattering loss. Some glasses first crystallize out into metastable beta-BaZr2F10 and beta-BaZrF6 phases, which transform into the most stable alpha-phases when heated to higher temperatures. The size of the crystallites was estimated to be about 600 A from X-ray diffraction.

  19. Formation of lithium fluoride/metal nanocomposites for energy storage through solid state reduction of metal fluorides

    SciTech Connect

    Amatucci, GG; Pereira, N; Badway, F; Sina, M; Cosandey, F; Ruotolo, M; Cao, C

    2011-12-01

    In order to utilize high energy metal fluoride electrode materials as direct replacement electrode materials for lithium ion batteries in the future, a methodology to prelithiate the cathode or anode must be developed. Herein, we introduce the use of a solid state Li(3)N route to achieve the lithiation and mechanoreduction of metal fluoride based nanocomposites. The resulting prelithiation was found to be effective with the formation of xLiF:Me structures of very fine nanodimensions analogous to what is found by electrochemical lithiation. Physical and electrochemical properties of these nanocomposites for the bismuth and iron lithium fluoride systems are reported. (C) 2011 Elsevier B.V. All rights reserved.

  20. Crystallization of lithium borate glasses

    NASA Technical Reports Server (NTRS)

    Goktas, A. A.; Neilson, G. F.; Weinberg, M. C.

    1992-01-01

    The glass-forming ability and crystallization behavior of lithium borate compositions, in the diborate-to-metaborate-range, were studied. In particular, the nature and sequence of formation of crystalline phases and the tendency toward devitrification were investigated as functions of temperature, thermal history and batch composition. It was found that the sequence of crystalline phase formation was sensitive to all of the three latter factors, and it was observed that under certain conditions metastable defect structures of the metaborate can appear.

  1. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  2. Crystal-field effects in fluoride crystals for optical refrigeration

    SciTech Connect

    Hehlen, Markus P

    2010-01-01

    performance of Yb3+-doped fluoride crystals. It is shown that the total crystal-field splitting of the {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2} multiplets of Yb3+ can be estimated from crystal-field splittings of other rare-earth-doped fluoride crystals. This approach takes advantage of an extensive body of experimental work from which Yb3+ doped fluoride crystals with favorable laser cooling properties might be identified. Section 2 reviews the crystal-field splitting of the 4f electronic states and introduces the crystal-field strength as a means to predict the total crystal-field splitting of the {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2} multiplets. Section 3 illustrates the effect of the total {sup 2}F{sub 7/2} crystal field splitting on the laser cooling power. Finally, Section 4 compiles literature data on crystal-field splittings in fluoride crystals from which the {sup 2}F{sub 7/2} splitting is predicted.

  3. Materials corrosion in molten lithium fluoride-sodium fluoride-potassium fluoride eutectic salt

    NASA Astrophysics Data System (ADS)

    Olson, Luke Christopher

    Static corrosion studies were undertaken to determine the compatibility of several candidate high temperature materials for a heat transfer loop in a molten alkali fluoride eutectic salt, LiF-NaF-KF: 46.5-11.5-42 mol % (commonly referred to as FLiNaK), as well as a molten chloride near eutectic salt, KCl-MgCl2: 68-32 mol %. Several high temperature alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, Nb-1Zr, a nearly pure Ni alloy Ni-201, and a C/SiSiC ceramic were exposed to molten FLiNaK at 850°C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion occurred predominantly from dealloying of Cr from the Cr bearing alloys, an effect that was particularly pronounced at the grain boundaries. Corrosion was noted to occur from selective attack of the Si phase in the C/SiSiC ceramic. Alloy weight-loss/area due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys' weight-loss/area was also found to correlate to the concentration of carbon present in the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. The corrosion mechanisms for the chloride based salt were found to be similar to those observed in FLiNaK, but the chemical attack was found to be less aggressive. Sulfamate Ni electroplating and Mo plasma spraying of Fe-Ni-Cr alloy coupons was investigated to mitigate Cr dissolution. A chemical vapor deposited pyrolytic carbon and SiC coating was also investigated to protect the C/SiSiC composites. Results indicate that Ni-plating has the potential to provide protection against alloy corrosion in molten fluoride salts. Furthermore, the presence of a chromium-oxide interlayer at the interface of the Ni-plating and alloy substrate can further improve the efficacy of the Ni-plating. The pyrolytic carbon and SiC coating on the C/SiSiC composites

  4. High-resolution X-ray imaging by polycapillary optics and lithium fluoride detectors combination

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Della Ventura, G.; Bellatreccia, F.; Magi, M.; Bonfigli, F.; Montereali, R. M.

    2011-12-01

    Novel results on high-resolution X-ray imaging by a table-top laboratory system based on lithium fluoride (LiF) imaging radiation detectors and a X-ray tube combined with polycapillary optics are reported for the first time. In this paper, imaging experiments of reference objects, as well as thick geological samples, show some of the potentialities of this approach for the development of a compact laboratory X-ray microscopy apparatus. The high spatial resolution and dynamic range of versatile LiF imaging detectors, based on optical reading of photoluminescence from X-ray-induced color centers in LiF crystals and films, allow us to use very simple contact imaging techniques. Promising applications can be foreseen in the fields of bio-medical imaging diagnostics, characterization of X-ray sources and optical elements, material science and photonics.

  5. Radiation and phase change of lithium fluoride in an annulus

    NASA Technical Reports Server (NTRS)

    Lund, Kurt O.

    1993-01-01

    A one-dimensional thermal model is developed to evaluate the effect of radiation on the phase change of lithium-fluoride (LiF) in an annular canister under gravitational and microgravitational conditions. Specified heat flux at the outer wall of the canister models focused solar flux; adiabatic and convective conditions are considered for the inner wall. A two-band radiation model is used for the combined-mode heat transfer within the canister, and LiF optical properties relate metal surface properties in vacuum to those in LiF. For axial gravitational conditions, the liquid LiF remains in contact with the two bounding walls, whereas a void gap is used at the outer wall to model possible microgravitational conditions. For the adiabatic cases, exact integrals are obtained for the time required for complete melting of the LiF. Melting was found to occur primarily from the outer wall in the 1-g model, whereas it occurred primarily from the inner wall in the mu-g model. For the convective cases, partially melted steady-state conditions and fully melted conditions are determined to depend on the source flux level, with radiation extending the melting times.

  6. Crystallization, Optical and Chemical Properties of Fluoride Glasses

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1985-01-01

    Fluoride glasses have great promise as infrared optical components, especially fibers, because they are transparent to 8 micrometers and higher. In order to optimize properties, different glass compositions are needed. Some are hard to form in a container, and may possibly be formable in a containerless furnace. Understanding of crystallization with and without a container could lead to glasses with optimum properties. Chemical durability (attack by water) can limit or extend the applicability of fluoride glasses. Progress to date is given.

  7. Hot filament technique for measuring the thermal conductivity of molten lithium fluoride

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Perry, William D.

    1990-01-01

    Molten salts, such as lithium fluoride, are attractive candidates for thermal energy storage in solar dynamic space power systems because of their high latent heat of fusion. However, these same salts have poor thermal conductivities which inhibit the transfer of heat into the solid phase and out of the liquid phase. One concept for improving the thermal conductivity of the thermal energy storage system is to add a conductive filler material to the molten salt. High thermal conductivity pitch-based graphite fibers are being considered for this application. Although there is some information available on the thermal conductivity of lithium fluoride solid, there is very little information on lithium fluoride liquid, and no information on molten salt graphite fiber composites. This paper describes a hot filament technique for determining the thermal conductivity of molten salts. The hot filament technique was used to find the thermal conductivity of molten lithium fluoride at 930 C, and the thermal conductivity values ranged from 1.2 to 1.6 W/mK. These values are comparable to the slightly larger value of 5.0 W/mK for lithium fluoride solid. In addition, two molten salt graphite fiber composites were characterized with the hot filament technique and these results are also presented.

  8. In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes.

    PubMed

    Sun, Yongming; Lee, Hyun-Wook; Zheng, Guangyuan; Seh, Zhi Wei; Sun, Jie; Li, Yanbin; Cui, Yi

    2016-02-10

    The initial lithium loss during the formation stage is a critical issue that significantly reduces the specific capacity and energy density of current rechargeable lithium-ion batteries (LIBs). An effective strategy to solve this problem is using electrode prelithiation additives that can work as a secondary lithium source and compensate the initial lithium loss. Herein we show that nanocomposites of lithium fluoride and metal (e.g., LiF/Co and LiF/Fe) can be efficient cathode prelithiation materials. The thorough mixing of ultrafine lithium fluoride and metal particles (∼5 nm) allows lithium to be easily extracted from the nanocomposites via an inverse conversion reaction. The LiF/Co nanocomposite exhibits an open circuit voltage (OCV, 1.5 V) with good compatibility with that of existing cathode materials and delivers a high first-cycle "donor" lithium-ion capacity (516 mA h g(-1)). When used as an additive to a LiFePO4 cathode, the LiF/Co nanocomposite provides high lithium compensation efficiency. Importantly, the as-formed LiF/metal nanocomposites possess high stability and good compatibility with the regular solvent, binder, and existing battery processing conditions, in contrast with the anode prelithiation materials that usually suffer from issues of high chemical reactivity and instability. The facile synthesis route, high stability in ambient and battery processing conditions, and high "donor" lithium-ion capacity make the LiF/metal nanocomposites ideal cathode prelithiation materials for LIBs. PMID:26784146

  9. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect

    Wilkins, David M.; Manolopoulos, David; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the water exchange reactions are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium, and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium. LXD was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  10. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect

    Wilkins, David M.; Manolopoulos, David E.; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium.

  11. Observations of the freeze/thaw performance of lithium fluoride by motion picture photography

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Perry, W. D.

    1991-01-01

    To gain direct observation of the molten salt phase change, a novel containerless technique was developed where the high surface tension of lithium fluoride was used to suspend a bead of the molten salt inside a specially designed wire cage. By varying the current passing through the wire, the cage also served as a variable heat source. In this way, the freeze/thaw performance of the lithium fluoride could be photographed by motion picture photography without the influence of container walls. The motion picture photography of the lithium fluoride sample revealed several zones during the phase change, a solid zone and a liquid zone, as expected, and a slush zone that was predicted by thermal analysis modeling.

  12. Material properties of lithium fluoride for predicting XUV laser ablation rate and threshold fluence

    NASA Astrophysics Data System (ADS)

    Blejchař, Tomáś; Nevrlý, Václav; Vašinek, Michal; Dostál, Michal; Pečínka, Lukáś; Dlabka, Jakub; Stachoň, Martin; Juha, Libor; Bitala, Petr; Zelinger, Zdeněk.; Pira, Peter; Wild, Jan

    2015-05-01

    This paper deals with prediction of extreme ultraviolet (XUV) laser ablation of lithium fluoride at nanosecond timescales. Material properties of lithium fluoride were determined based on bibliographic survey. These data are necessary for theoretical estimation of surface removal rate in relevance to XUV laser desorption/ablation process. Parameters of XUV radiation pulses generated by the Prague capillary-discharge laser (CDL) desktop system were assumed in this context. Prediction of ablation curve and threshold laser fluence for lithium fluoride was performed employing XUV-ABLATOR code. Quasi-random sampling approach was used for evaluating its predictive capabilities in the means of variance and stability of model outputs in expected range of uncertainties. These results were compared to experimental data observed previously.

  13. Zero-gravity growth of a sodium chloride-lithium fluoride eutectic mixture

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yeh, C. W.; Yue, B. K.

    1982-01-01

    Continuous and discontinuous lithium fluoride fibers embedded in a sodium chloride matrix were produced in space and on Earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convective current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and Earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of lithium fluoride fibers along the growth direction.

  14. Effects of light exposure on irradiated barium fluoride crystals

    SciTech Connect

    Wuest, C.R.; Mauger, G.J.

    1993-04-20

    Small barium fluoride crystals have been irradiated using cobalt-60 gamma rays under various illumination conditions to establish the effect of photo-bleaching of the radiation-induced color centers. This paper describes results of a few different experiments conducted at LLNL over the past few weeks.

  15. Photoluminescence excitation of lithium fluoride films by surface plasmon resonance in Kretschmann configuration

    NASA Astrophysics Data System (ADS)

    Bulíř, Jiří; Zikmund, Tomáš; Novotný, Michal; Lančok, Ján; Fekete, Ladislav; Juha, Libor

    2016-04-01

    We report on excitation of the photoluminescence of lithium fluoride by means of the surface plasmon resonance of Al layer. Advantage of this method is high efficiency of the excitation, which is applicable to ultra-thin films. P-polarized UV diode laser light is coupled to the surface plasmon resonance using a fused silica prism in Kretschmann configuration. The angular dependence of the reflected intensity is measured using a theta-2theta goniometer. The surface plasmon at resonance condition induces photoluminescence in the adjacent lithium fluoride layer. The fluoride layers were deposited on Al-coated fused silica substrates by electron beam evaporation. For the experiment, we prepared several samples with thickness ranging from 20 to 71 nm. We studied the effect of the luminescence enhancement by the surface plasmon resonance effect. Strong quenching effect was observed in the thinnest LiF layer. Influence of X-ray irradiation on the photoluminescence was studied.

  16. Crystal optical studies of lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Kushnir, O. S.; Burak, Y. V.; Bevz, O. A.; Polovinko, I. I.

    1999-10-01

    Using the HAUP-type universal polarimeter and the Senarmont technique, detailed crystal optical studies of Li2B4O7, lithium tetraborate, are carried out. It is shown that the optical indicatrix rotation and the optical activity are absent from the crystal, in accordance with symmetry considerations. Measurements of optical birefringence reveal the existence of a regular staircase-like temperature behaviour in the whole range under investigation (290-480 K), a hysteresis character of the birefringence under cycling temperature and a pronounced thermooptical memory effect. The origins of the above phenomena are analysed, in particular the possible influence of the pyroelectric effect and systematic errors of the optical equipment. A conclusion is drawn that the main features of the birefringence are well explained by an incommensurately modulated super-structure which is at present a matter of debate. The peculiarities of the optical properties of lithium tetraborate are compared with those of incommensurate crystals known from the literature.

  17. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  18. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  19. F 3 - molecular ions in fluoride crystals

    NASA Astrophysics Data System (ADS)

    Radzhabov, E. A.

    2016-02-01

    The UV absorption spectra of F 3 - molecular ions in LaF3, SrF2, CaF2, and BaF2 crystals doped with rare-earth elements are studied. Comparison of radiation-colored and additively colored crystals reveals the absorption bands of F 3 - hole centers in the region near 6 eV. Nonempirical calculations of optical transitions agree well with experimental results.

  20. Anharmonic thermal oscillations of the electron momentum distribution in lithium fluoride.

    PubMed

    Erba, A; Maul, J; Itou, M; Dovesi, R; Sakurai, Y

    2015-09-11

    Anharmonic thermal effects on the electron momentum distribution of a lithium fluoride single crystal are experimentally measured through high-resolution Compton scattering and theoretically modeled with ab initio simulations, beyond the harmonic approximation to the lattice potential, explicitly accounting for thermal expansion. Directional Compton profiles are measured at two different temperatures, 10 and 300 K, with a high momentum space resolution (0.10 a.u. in full width at half maximum), using synchrotron radiation. The effect of temperature on measured directional Compton profiles is clearly revealed by oscillations extending almost up to |p|=4  a.u., which perfectly match those predicted from quantum-mechanical simulations. The wave-function-based Hartree-Fock method and three classes of the Kohn-Sham density functional theory (local-density, generalized-gradient, and hybrid approximations) are adopted. The lattice thermal expansion, as described with the quasiharmonic approach, is found to entirely account for the effect of temperature on the electron momentum density within the experimental accuracy. PMID:26406853

  1. Anharmonic Thermal Oscillations of the Electron Momentum Distribution in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Erba, A.; Maul, J.; Itou, M.; Dovesi, R.; Sakurai, Y.

    2015-09-01

    Anharmonic thermal effects on the electron momentum distribution of a lithium fluoride single crystal are experimentally measured through high-resolution Compton scattering and theoretically modeled with ab initio simulations, beyond the harmonic approximation to the lattice potential, explicitly accounting for thermal expansion. Directional Compton profiles are measured at two different temperatures, 10 and 300 K, with a high momentum space resolution (0.10 a.u. in full width at half maximum), using synchrotron radiation. The effect of temperature on measured directional Compton profiles is clearly revealed by oscillations extending almost up to |p |=4 a .u . , which perfectly match those predicted from quantum-mechanical simulations. The wave-function-based Hartree-Fock method and three classes of the Kohn-Sham density functional theory (local-density, generalized-gradient, and hybrid approximations) are adopted. The lattice thermal expansion, as described with the quasiharmonic approach, is found to entirely account for the effect of temperature on the electron momentum density within the experimental accuracy.

  2. Spectroscopic Investigation of Ce(3+) Doped Fluoride Crystals

    NASA Technical Reports Server (NTRS)

    Reinhart, Donald H.; Armagan, Guzin; Marsh, Waverly; Barnes, James; Chai, B. H. T.

    1995-01-01

    Doping of the trivalent rare-earth cerium ion into fluoride crystals is of interest in producing turnable ultra-violet solid state lasers. These lasers are desirable for many applications in medicine, industry, and scientific research, including remote sensing. High absorption and stimulated emission cross sections of the dipole allowed 4f-5d transitions show promise in cerium as a laser ion in crystals. Several research groups have already reported the observation of stimulated emission of cerium in LiYF4, LiSrAlF6, and LiCaAlF6. However, the color center formation in the crystals due to the excited state absorption of ultra-violet pump light adds difficulty to achieving laser action. We have investigated the spectroscopic properties of cerium such as absorption and emission spectra, and lifetimes in four different fluoride crystals, including LiCaAlF6, LiSrAlF6, KyF4 and LiYF4. We have derived the polarized absorption and stimulated emission cross sections from transmission and fluorescence emission measurements for each of the host crystals. we have measured the lifetime of the lowest 5d level; moreover, investigated the temperature dependence of this lifetime and color center formation. Our results on absorption and stimulated emission cross sections for LiCaAlF6 and LiSrAlF6 are similar to the results already published.

  3. Quantum monte carlo study of the energetics of small hydrogenated and fluoride lithium clusters.

    PubMed

    Moreira, N L; Brito, B G A; Rabelo, J N Teixeira; Cândido, Ladir

    2016-06-30

    An investigation of the energetics of small lithium clusters doped either with a hydrogen or with a fluorine atom as a function of the number of lithium atoms using fixed-node diffusion quantum Monte Carlo (DMC) simulation is reported. It is found that the binding energy (BE) for the doped clusters increases in absolute values leading to a more stable system than for the pure ones in excellent agreement with available experimental measurements. The BE increases for pure, remains almost constant for hydrogenated, and decreases rapidly toward the bulk lithium for the fluoride as a function of the number of lithium atoms in the clusters. The BE, dissociation energy as well as the second difference in energy display a pronounced odd-even oscillation with the number of lithium atoms. The electron correlation inverts the odd-even oscillation pattern for the doped in comparison with the pure clusters and has an impact of 29%-83% to the BE being higher in the pure cluster followed by the hydrogenated and then by the fluoride. The dissociation energy and the second difference in energy indicate that the doped cluster Li3 H is the most stable whereas among the pure ones the more stable are Li2 , Li4 , and Li6 . The electron correlation energy is crucial for the stabilization of Li3 H. © 2016 Wiley Periodicals, Inc. PMID:26992447

  4. Crystallization And Phase Separation In Fluoride Glasses

    NASA Astrophysics Data System (ADS)

    Boehm, L.; Chung, K.-H.; Crichton, S. N.; Moynihan, C. T.

    1987-01-01

    We report here two studies relevant to these phenomena. Phase separation was unambiguously shown to occur in a ZrF4-based glass containing a small amount of PbF2 and prepared under a chloride-containing reactive atmosphere. Partial replacement of ZrF4 by HfF4 in a ZBLAN glass appears to improve the resistance to crystallization. The reason for this improvement seems to be a change in the crystalline phases and compositions first appearing on reheating.

  5. Optical microcavities based on F2 color centers in lithium fluoride films: modification of spontaneous emission

    NASA Astrophysics Data System (ADS)

    Bonfigli, Francesca; Jacquier, Bernard; Montereali, Rosamaria; Moretti, Paul; Nichelatti, Enrico; Piccinini, M.; Rigneault, Herve; Somma, F.

    2003-04-01

    Lithium fluoride (LiF) films irradiated by low energy electrons were employed as active spacers in all-solid, dielectric optical microcavities emitting in the visible spectral range. We present the results of optical characterization of the spontaneous emission from F2 color centers embedded in a LiF layer confined inside a planar microcavity. These structures seem promising for the realization of novel kinds of solid-state miniaturized emitting devices.

  6. SNOM characterization of micro-radiographs stored in lithium fluoride thin films

    NASA Astrophysics Data System (ADS)

    Ustione, A.; Cricenti, A.; Bonfigli, Francesca; Flora, Francesco; Lai, Antonella; Marolo, Tiziana; Montereali, Rosa Maria; Baldacchini, Giuseppe; Faenov, Anatoly; Pikuz, Tatiana; Reale, Lucia

    2005-12-01

    Nowadays the possibility to obtain micro-radiographs is limited in resolution by the detection properties of the used technique. Here we show a new method to create and observe micro-radiographs. A thin film of Lithium Fluoride works as image detector, storing the micro-radiograph obtained exposing biological material to Extreme Ultra-Violet and soft X-ray radiations. To read the stored image, collecting the optically stimulated luminescence of the active color centers produced by the X-rays, a Scanning Near-Field Optical Microscope (SNOM) is used, for its peculiarity to overcome the diffraction limit, showing details smaller than the wavelength of the collected light. The samples were illuminated with 458 nm laser light and an uncoated tapered optical fiber was collecting the fluorescent signal emitted by the Lithium Fluoride color centers. The SNOM images of these micro-radiographs stored in Lithium Fluoride films showed an optical resolution of 50 nm, corresponding to /12, where is the wavelength of the collected light.

  7. Lithium-cation conductivity and crystal structure of lithium diphosphate

    SciTech Connect

    Voronin, V.I.; Sherstobitova, E.A.; Blatov, V.A.; Shekhtman, G.Sh.

    2014-03-15

    The electrical conductivity of lithium diphosphate Li{sub 4}P{sub 2}O{sub 7} has been measured and jump-like increasing of ionic conductivity at 913 K has been found. The crystal structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction at 300–1050 K. At 913 K low temperature triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one, space group P2{sub 1}/n, a=8.8261(4) Å, b=5.2028(4) Å, c=13.3119(2) Å, β=104.372(6)°. The migration maps of Li{sup +} cations based on experimental data implemented into program package TOPOS have been explored. It was found that lithium cations in both low- and high temperature forms of Li{sub 4}P{sub 2}O{sub 7} migrate in three dimensions. Cross sections of the migrations channels extend as the temperature rises, but at the phase transition point have a sharp growth showing a strong “crystal structure – ion conductivity” correlation. -- Graphical abstract: Crystal structure of Li{sub 4}P{sub 2}O{sub 7} at 950 K. Red balls represent oxygen atoms; black lines show Li{sup +} ion migration channels in the layers perpendicular to [001] direction. Highlights: • Structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction. • At 913 K triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one. • The migration maps of Li{sup +} implemented into program package TOPOS have been explored. • Cross sections of the migrations channels at the phase transition have a sharp growth.

  8. PHz current switching in calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Kwon, Ojoon; Kim, D.

    2016-05-01

    We demonstrate that a current can be induced and switched in a sub-femtosecond time-scale in an insulating calcium fluoride single crystal by an intense optical field. This measurement indicates that a sizable current can be generated and also controlled by an optical field in a dielectric medium, implying the capability of rapid current switching at a rate of optical frequency, PHz (1015 Hz), which is a couple of orders of magnitude higher than that of contemporary electronic signal processing. This demonstration may serve to facilitate the development of ultrafast devices in PHz frequency.

  9. Shrinkage void formation and its effect on freeze and thaw processes of lithium and lithium-fluoride for space applications

    NASA Technical Reports Server (NTRS)

    Yang, Jae Y.; El-Genk, Mohamed S.

    1991-01-01

    The effects of shrinkage void forming during freezing of lithium and lithium fluoride on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is concluded that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.

  10. Crystal nucleation in lithium borate glass

    NASA Technical Reports Server (NTRS)

    Smith, Gary L.; Neilson, George F.; Weinberg, Michael C.

    1988-01-01

    Crystal nucleation measurements were made on three lithium borate compositions in the vicinity of Li2O-2Br2O3. All nucleation measurements were performed at 500 C. Certain aspects of the nucleation behavior indicated (tentatively) that it proceeded by a homogeneous mechanism. The steady state nucleation rate was observed to have the largest value when the Li2O concentration was slightly in excess of the diborate composition. The change in nucleation rate with composition is controlled by the variation of viscosity as well as the change in free energy with composition. The variation of nucleation rate is explained qualitatively in these terms.

  11. Carbon Nanohorns Carried Iron Fluoride Nanocomposite with ultrahigh rate lithium ion storage properties

    PubMed Central

    Fan, Lishuang; Li, Bingjiang; Zhang, Naiqing; Sun, Kening

    2015-01-01

    Novel hierarchical carbon nanohorns (CNHs) carried iron fluoride nanocomposites have been constructed by direct growth of FeF3·0.33H2O nanoparticles on CNHs. In the FeF3·0.33H2O@CNHs nanocomposite, the mesopore CNHs play the role as conductive matrix and robust carrier to support the FeF3·0.33H2O nanoparticles. The intimate conductive contact between the two components can build up an express way of electron transfer for rapid Li+ insertion/extraction. The CNHs can not only suppress the growth and agglomeration of FeF3·0.33H2O during the crystallization process, but also sever as an “elastic confinement” to support FeF3·0.33H2O. As was to be expected, the hierarchical FeF3·0.33H2O@CNHs nanocomposite exhibits impressive rate capability and excellent cycle performance. Markedly, the nanocomposite proves stable, ultrahigh rate lithium ion storage properties of 81 mAh g−1 at charge/discharge rate of 50 C (a discharge/charge process only takes 72 s). The integration of high electron conductivity, confined nano sized FeF3·0.33H2O (~5 nm), hierarchical mesopores CNHs and the “elastic confinement” support, the FeF3·0.33H2O@CNHs nanocomposite demonstrates excellent ultrahigh rate capability and good cycling properties. PMID:26173994

  12. Carbon Nanohorns Carried Iron Fluoride Nanocomposite with ultrahigh rate lithium ion storage properties

    NASA Astrophysics Data System (ADS)

    Fan, Lishuang; Li, Bingjiang; Zhang, Naiqing; Sun, Kening

    2015-07-01

    Novel hierarchical carbon nanohorns (CNHs) carried iron fluoride nanocomposites have been constructed by direct growth of FeF3·0.33H2O nanoparticles on CNHs. In the FeF3·0.33H2O@CNHs nanocomposite, the mesopore CNHs play the role as conductive matrix and robust carrier to support the FeF3·0.33H2O nanoparticles. The intimate conductive contact between the two components can build up an express way of electron transfer for rapid Li+ insertion/extraction. The CNHs can not only suppress the growth and agglomeration of FeF3·0.33H2O during the crystallization process, but also sever as an “elastic confinement” to support FeF3·0.33H2O. As was to be expected, the hierarchical FeF3·0.33H2O@CNHs nanocomposite exhibits impressive rate capability and excellent cycle performance. Markedly, the nanocomposite proves stable, ultrahigh rate lithium ion storage properties of 81 mAh g-1 at charge/discharge rate of 50 C (a discharge/charge process only takes 72 s). The integration of high electron conductivity, confined nano sized FeF3·0.33H2O (~5 nm), hierarchical mesopores CNHs and the “elastic confinement” support, the FeF3·0.33H2O@CNHs nanocomposite demonstrates excellent ultrahigh rate capability and good cycling properties.

  13. Fluoride

    MedlinePlus

    Fluoride is used to prevent tooth decay. It is taken up by teeth and helps to strengthen ... and block the cavity-forming action of bacteria. Fluoride usually is prescribed for children and adults whose ...

  14. Fluoride

    MedlinePlus

    Fluoride is used to prevent tooth decay. It is taken up by teeth and helps to strengthen teeth, resist acid, and block the cavity-forming action of bacteria. Fluoride usually is prescribed for children ...

  15. An investigation of voids formation mechanisms and their effects on freeze and thaw processes of lithium and lithium fluoride

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Yang, Jae-Young

    1991-01-01

    The mechanisms of void formation during the cooldown and freezing of lithium coolant within the primary loop of SP-100 type systems are investigated. These mechanisms are: (1) homogeneous nucleation; (2) heterogeneous nucleation; (3) normal segregation of helium gas dissolved in liquid lithium; and (4) shrinkage of lithium during freezing. To evaluate the void formation potential due to segregation, a numerical scheme that couples the freezing and mass diffusion processes in both the solid and liquid regions is developed. The results indicated that the formation of He bubbles is unlikely by either homogeneous or heterogeneous nucleation during the cooldown process. However, homogeneous nucleation of He bubbles following the segregation of dissolved He in liquid lithium ahead of the solid-liquid interface is likely to occur. Results also show that total volume of He void is insignificant when compared to that of shrinkage voids. In viewing this, the subsequent research focuses on the effects of shrinkage void forming during freezing of lithium on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. The cases of lithium-fluoride are also investigated to show the effect of larger volume shrinkage upon freezing on the freeze and thaw processes. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is included that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.

  16. Magnesium oxide doping reduces acoustic wave attenuation in lithium metatantalate and lithium metaniobate crystals

    NASA Technical Reports Server (NTRS)

    Croft, W.; Damon, R.; Kedzie, R.; Kestigian, M.; Smith, A.; Worley, J.

    1970-01-01

    Single crystals of lithium metatantalate and lithium metaniobate, grown from melts having different stoichiometries and different amounts of magnesium oxide, show that doping lowers temperature-independent portion of attenuation of acoustic waves. Doped crystals possess optical properties well suited for electro-optical and photoelastic applications.

  17. An experimental analysis of a doped lithium fluoride direct absorption solar receiver

    NASA Technical Reports Server (NTRS)

    Kesseli, James; Pollak, Tom; Lacy, Dovie

    1988-01-01

    An experimental analysis of two key elements of a direct absorption solar receiver for use with Brayton solar dynamic systems was conducted. Experimental data are presented on LiF crystals doped with dysprosium, samarium, and cobalt fluorides. In addition, a simulation of the cavity/window environment was performed and a posttest inspection was conducted to evaluate chemical reactivity, transmissivity, and condensation rate.

  18. Fluoride Inhibition of Enolase: Crystal Structure and Thermodynamics

    SciTech Connect

    Qin, Jie; Chai, Geqing; Brewer, John M.; Lovelace, Leslie L.; Lebioda, Lukasz

    2010-12-03

    Enolase is a dimeric metal-activated metalloenzyme which uses two magnesium ions per subunit: the strongly bound conformational ion and the catalytic ion that binds to the enzyme-substrate complex inducing catalysis. The crystal structure of the human neuronal enolase-Mg{sub 2}F{sub 2}P{sub i} complex (enolase fluoride/phosphate inhibitory complex, EFPIC) determined at 1.36 {angstrom} resolution shows that the combination of anions effectively mimics an intermediate state in catalysis. The phosphate ion binds in the same site as the phosphate group of the substrate/product, 2-phospho-d-glycerate/phosphoenolpyruvate, and induces binding of the catalytic Mg{sup 2+} ion. One fluoride ion bridges the structural and catalytic magnesium ions while the other interacts with the structural magnesium ion and the ammonio groups of Lys 342 and Lys 393. These fluoride ion positions correspond closely to the positions of the oxygen atoms of the substrate's carboxylate moiety. To relate structural changes resulting from fluoride, phosphate, and magnesium ions binding to those that are induced by phosphate and magnesium ions alone, we also determined the structure of the human neuronal enolase-Mg{sub 2}Pi complex (enolase phosphate inhibitory complex, EPIC) at 1.92 {angstrom} resolution. It shows the closed conformation in one subunit and a mixture of open and semiclosed conformations in the other. The EPFIC dimer is essentially symmetric while the EPIC dimer is asymmetric. Isothermal titration calorimetry data confirmed binding of four fluoride ions per dimer and yielded K{sub b} values of 7.5 x 10{sup 5} {+-} 1.3 x 10{sup 5}, 1.2 x 10{sup 5} {+-} 0.2 x 10{sup 5}, 8.6 x 10{sup 4} {+-} 1.6 x 10{sup 4}, and 1.6 x 10{sup 4} {+-} 0.7 x 10{sup 4} M{sup -1}. The different binding constants indicate negative cooperativity between the subunits; the asymmetry of EPIC supports such an interpretation.

  19. Efficient holmium:yttrium lithium fluoride laser longitudinally pumped by a semiconductor laser array

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1987-01-01

    Optical pumping of a holmium:yttrium lithium floride (Ho:YLF) crystal with a 790-nm continuous-wave diode-laser array has generated 56 mW of 2.1-micron laser radiation with an optical-to-optical conversion slope efficiency of 33 percent while the crystal temperature is held at 77 K. The lasing threshold occurs at 7 mW of input power, and laser operation continues up to a crystal temperature of 124 K.

  20. Crystal chemistry of hydrothermally grown ternary alkali rare earth fluorides.

    PubMed

    McMillen, Colin D; Comer, Sara; Fulle, Kyle; Sanjeewa, Liurukara D; Kolis, Joseph W

    2015-12-01

    The structural variations of several alkali metal rare earth fluoride single crystals are summarized. Two different stoichiometric formulations are considered, namely those of ARE2F7 and ARE3F10 (A = K, Rb, Cs; RE = Y, La-Lu), over a wide range of ionic radii of both the alkali and rare earth (RE) ions. Previously reported and several new single-crystal structures are considered. The new single crystals are grown using hydrothermal methods and the structures are compared with literature reports of structures grown from both melts and hydrothermal fluids. The data reported here are combined with the literature data to gain a greater understanding of structural subtleties surrounding these systems. The work underscores the importance of the size of the cations to the observed structure type and also introduces synthetic technique as a contributor to the same. New insights based on single-crystal structure analysis in the work introduce a new disordered structure type in the case of ARE2F7, and examine the trends and boundaries of the ARE3F10 stoichiometry. Such fundamental structural information is useful in understanding the potential applications of these compounds as optical materials. PMID:26634734

  1. Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cao, Chengying; Tan, Lei; Liu, Weiwei; Ma, Jiquan; Li, Lei

    2014-02-01

    In this study, polydopamine (PDA) coated electrospun poly(vinyldiene fluoride) (PVDF) nanofibrous membranes used as separator for lithium-ion batteries are successfully prepared. Their morphology, chemical and electrochemical characterization are investigated. The morphology and porosity measurements of the membranes show that the PDA coating does not harm to the structure of the electrospun PVDF nanofibrous membranes. Due to the PDA coating, it makes the PVDF surface hydrophilic and thus increases the electrolyte uptake and ionic conductivity, resulting in the enhanced performance of batteries. The battery using the PDA coated PVDF nanofibrous separator exhibits better cycling performance and higher power capability than that the battery using the bare PVDF nanofibrous separator. This study underlines that the PDA-coating treatment provides a promising process for the fabrication of advanced electrospun nanofibers separator in the lithium-ion battery applications.

  2. Polyethylene-supported polyvinylidene fluoride-cellulose acetate butyrate blended polymer electrolyte for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Liu, Jiansheng; Li, Weishan; Zuo, Xiaoxi; Liu, Shengqi; Li, Zhao

    2013-03-01

    The polyethylene (PE)-supported polymer membranes based on the blended polyvinylidene fluoride (PVDF) and cellulose acetate butyrate (CAB) are prepared for gel polymer electrolyte (GPE) of lithium ion battery. The performances of the prepared membranes and the resulting GPEs are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, linear potential sweep, and charge-discharge test. The effect of the ratio of PVDF to CAB on the performance of the prepared membranes is considered. It is found that the GPE based on the blended polymer with PVDF:CAB = 2:1 (in weight) has the largest ionic conductivity (2.48 × 10-3 S cm-1) and shows good compatibility with anode and cathode of lithium ion battery. The LiCoO2/graphite battery using this GPE exhibits superior cyclic stability at room temperature, storage performance at elevated temperature, and rate performance.

  3. Special Temperature Features of the Birefringence of Lithium Tetraborate Crystals

    NASA Astrophysics Data System (ADS)

    Kushnir, O. S.; Burak, Ya. V.; Bevz, A. A.; Shopa, Ya. I.

    2000-05-01

    Using the Senarmont polarimetric method, the optical birefringence of lithium tetraborate crystals Li2B4O7 in the 290 480 K range was measured. The steplike temperature dependence of birefringence, the thermal hysteresis, and the thermooptic memory effect were observed, which are most likely associated with the presence of incommensurate phase modulation in lithium tetraborate.

  4. Pulsed laser deposited iron fluoride thin films for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Makimura, Yoshinari; Rougier, Aline; Tarascon, Jean-Marie

    2006-04-01

    Iron fluoride thin films were successfully grown by Pulsed Laser Deposition (PLD), and their physico-chemical properties and electrochemical behaviours were examined by adjusting the deposition conditions, such as the target nature (FeF 2 or FeF 3), the substrate temperature ( Ts ≤ 600 °C), the gas pressure (under vacuum or in oxygen atmosphere) and the repetition rates (2 and 10 Hz). Irrespective of the FeF 2 or FeF 3 target nature, iron fluoride thin films, deposited at 600 °C under vacuum, showed X-ray diffraction (XRD) patterns corresponding to the FeF 2 phase. On the other hand, iron fluoride thin films deposited at room temperature (RT) from FeF 2 target were amorphous, whereas the thin films deposited from FeF 3 target consisted of a two-phase mixture of FeF 3 and FeF 2 showing sharp and broad diffraction peaks by XRD, respectively. Their electrochemical behaviour in rechargeable lithium cells was investigated in the 0.05-3.60 V voltage window. Despite a large irreversible capacity on the first discharge, good cycling life was observed up to 30 cycles. Finally, their electrochemical properties were compared to the ones of iron oxide thin films.

  5. Photorefractive properties of iron-doped lithium tantalate crystals

    NASA Astrophysics Data System (ADS)

    Imbrock, J.; Bäumer, C.; Hesse, H.; Kip, D.; Krätzig, E.

    Iron-doped lithium tantalate crystals are grown by the Czochralski method and their photorefractive properties are examined with holographic methods. Dynamic range, holographic sensitivity, photoconductivity, and dark storage time are measured in dependence on the iron concentration and light intensity. The largest refractive-index change for ordinarily polarized light is 3.5×10-4, in comparison with 6.2×10-4 for iron-doped lithium niobate. Due to a small mobility of protons the dark storage time of holograms in lithium tantalate is larger than that in lithium niobate.

  6. Birefringence simulation of annealed ingot of calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Ogino, H.; Miyazaki, N.; Mabuchi, T.; Nawata, T.

    2008-01-01

    We developed a method for simulating birefringence of an annealed ingot of calcium fluoride single crystal caused by the residual stress after annealing process. The method comprises the heat conduction analysis that provides the temperature distribution during the ingot annealing, the elastic thermal stress analysis using the assumption of the stress-free temperature that provides the residual stress after annealing, and the birefringence analysis of an annealed ingot induced by the residual stress. The finite element method was applied to the heat conduction analysis and the elastic thermal stress analysis. In these analyses, the temperature dependence of material properties and the crystal anisotropy were taken into account. In the birefringence analysis, the photoelastic effect gives the change of refractive indices, from which the optical path difference in the annealed ingot is calculated by the Jones calculus. The relation between the Jones calculus and the approximate method using the stress components averaged along the optical path is discussed theoretically. It is found that the result of the approximate method agrees very well with that of the Jones calculus in birefringence analysis. The distribution pattern of the optical path difference in the annealed ingot obtained from the present birefringence calculation methods agrees reasonably well with that of the experiment. The calculated values also agree reasonably well with those of the experiment, when a stress-free temperature is adequately selected.

  7. The preparation of hierarchical SAPO-34 crystals via post-synthesis fluoride etching.

    PubMed

    Chen, Xiaoxin; Vicente, Aurélie; Qin, Zhengxing; Ruaux, Valérie; Gilson, Jean-Pierre; Valtchev, Valentin

    2016-02-28

    SAPO-34 crystals are etched in fluoride medium. The interface between crystalline domains is dissolved and yields a hierarchical material with a system of straight intersecting mesopores that improve the access to micropore space. PMID:26839923

  8. Crystal structures of a double-barrelled fluoride ion channel

    PubMed Central

    Stockbridge, Randy B.; Kolmakova-Partensky, Ludmila; Shane, Tania; Koide, Akiko; Koide, Shohei; Miller, Christopher; Newstead, Simon

    2016-01-01

    To contend with hazards posed by environmental fluoride, microorganisms export this anion through F--specific ion channels of the Fluc family1–4. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including extreme selectivity for F- over Cl- and dual-topology dimeric assembly5–6. To understand the chemical basis for F- permeation and how the antiparallel subunits convene to form a F--selective pore, we solved crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F- present, to a maximum resolution of 2.1 Å. The structures reveal a surprising “double-barrelled” channel architecture in which two F- ion pathways span the membrane and the dual-topology arrangement includes a centrally coordinated cation, most likely Na+. F- selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings. PMID:26344196

  9. Crystal structures of a double-barrelled fluoride ion channel.

    PubMed

    Stockbridge, Randy B; Kolmakova-Partensky, Ludmila; Shane, Tania; Koide, Akiko; Koide, Shohei; Miller, Christopher; Newstead, Simon

    2015-09-24

    To contend with hazards posed by environmental fluoride, microorganisms export this anion through F(-)-specific ion channels of the Fluc family. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including strong selectivity for F(-) over Cl(-) and dual-topology dimeric assembly. To understand the chemical basis for F(-) permeation and how the antiparallel subunits convene to form a F(-)-selective pore, here we solve the crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F(-) present, to a maximum resolution of 2.1 Å. The structures reveal a surprising 'double-barrelled' channel architecture in which two F(-) ion pathways span the membrane, and the dual-topology arrangement includes a centrally coordinated cation, most likely Na(+). F(-) selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings. PMID:26344196

  10. Investigation of properties of lithium niobate crystals in confined geometries

    NASA Astrophysics Data System (ADS)

    Veenhuizen, Keith; Stone, Greg; Knabe, Bastian; McAnany, Sean; Buse, Karsten; Jain, Himanshu; Dierolf, Volkmar

    The properties of ferroelectric materials in confined geometries, specifically lithium niobate nanocrystals and crystal lines in glass, were studied. Batches of LiNbO3 nanocrystals have been synthesized from various initial ratios of lithium to niobium using the sol-gel method. The batches were analyzed via Raman spectroscopy and SEM imaging to gain information about their size, morphology, stoichiometry, and defect content. The nanocrystals are very sensitive to the initial stoichiometric ratio in the synthesis step. Raman spectra reveal the resultant nanocrystal stoichiometry depends on the initial stoichiometry of the batch, the spectra also reveal an extra phase is present besides LiNbO3 in some batches, and high quality spherical nanocrystals can be synthesized at certain initial stoichiometric ratios. In addition, lines of LiNbO3 were crystallized in lithium-niobo-silica glass systems with varying amounts of silica to understand and control the nucleation and crystallization of the crystals in glass.

  11. Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes

    SciTech Connect

    Wang, Feng; Robert, Rosa; Chernova, Natasha A.; Pereira, Nathalie; Omenya, Fredrick; Badway, Fadwa; Hua, Xiao; Ruotolo, Michael; Zhang, Ruigang; Wu, Lijun; Volkov, Vyacheslav; Su, Dong; Key, Baris; Whittingham, M. Stanley; Grey, Clare P.; Amatucci, Glenn G.; Zhu, Yimei; Graetz, Jason

    2015-10-15

    Materials that undergo a conversion reaction with lithium (e.g., metal fluorides MF{sub 2}: M = Fe, Cu, ...) often accommodate more than one Li atom per transition-metal cation, and are promising candidates for high-capacity cathodes for lithium ion batteries. However, little is known about the mechanisms involved in the conversion process, the origins of the large polarization during electrochemical cycling, and why some materials are reversible (e.g., FeF{sub 2}) while others are not (e.g., CuF{sub 2}). In this study, we investigated the conversion reaction of binary metal fluorides, FeF{sub 2} and CuF{sub 2}, using a series of local and bulk probes to better understand the mechanisms underlying their contrasting electrochemical behavior. X-ray pair-distribution-function and magnetization measurements were used to determine changes in short-range ordering, particle size and microstructure, while high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) were used to measure the atomic-level structure of individual particles and map the phase distribution in the initial and fully lithiated electrodes. Both FeF{sub 2} and CuF{sub 2} react with lithium via a direct conversion process with no intercalation step, but there are differences in the conversion process and final phase distribution. During the reaction of Li{sup +} with FeF{sub 2}, small metallic iron nanoparticles (<5 nm in diameter) nucleate in close proximity to the converted LiF phase, as a result of the low diffusivity of iron. The iron nanoparticles are interconnected and form a bicontinuous network, which provides a pathway for local electron transport through the insulating LiF phase. In addition, the massive interface formed between nanoscale solid phases provides a pathway for ionic transport during the conversion process. These results offer the first experimental evidence explaining the origins of the high lithium reversibility in FeF{sub 2}. In contrast

  12. New UV instrumentation enabled by enhanced broadband reflectivity lithium fluoride coatings

    NASA Astrophysics Data System (ADS)

    Fleming, Brian T.; Quijada, Manuel A.; France, Kevin; Hoadley, Keri; Del Hoyo, Javier; Kruczek, Nicholas

    2015-08-01

    We present the results of a preliminary aging study of new enhanced broadband reflectivity lithium fluoride mirror coatings under development at the thin films laboratory at GSFC. These coatings have demonstrated greater than 80% reflectivity from the Lyman ultraviolet (~1020 Å) to the optical, and have the potential to revolutionize far-ultraviolet instrument design and capabilities. This work is part of a concept study in preparation for the fight qualification of these new coatings in a working astronomical environment. We outline the goals for TRL advancement, and discuss the instrument capabilities enabled by these high reflectivity broadband coatings on potential future space missions. We also present the early design of the first space experiment to utilize these coatings, the proposed University of Colorado sounding rocket payload SISTINE, and show how these new coatings make the science goals of SISTINE attainable on a suborbital platform.

  13. Directionality of extruded lithium fluoride thermoluminescent dosemeters in a cobalt-60 beam.

    PubMed

    Wagner, G S; Batey, S E; Mosleh-Shirazi, M A

    2000-09-01

    An experimental investigation of the directionality of commercially available extruded lithium fluoride (LiF:Mg,Ti) thermoluminescent dosemeters was carried out in a cobalt-60 beam at a water depth of 5 cm. One-half of a batch of 60 chips (3.1 x 3.1 x 0.9 mm3) was exposed face-on (faces perpendicular to the beam central axis), and the other half was exposed in an edge-on orientation (two edges perpendicular and faces parallel to the beam axis). Measurements show that an edge-on exposure results in a thermoluminescence reading approximately 0.9% lower than a face-on exposure. Although this is of minor importance in every day patient dosimetry, it is relevant in evaluating errors in in-phantom dosimetric measurements where greater accuracy is required. PMID:11064657

  14. Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers

    PubMed Central

    Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I

    2014-01-01

    We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436

  15. Effect of Copper Oxide, Titanium Dioxide, and Lithium Fluoride on the Thermal Behavior and Decomposition Kinetics of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Vargeese, Anuj A.; Mija, S. J.; Muralidharan, Krishnamurthi

    2014-07-01

    Ammonium nitrate (AN) is crystallized along with copper oxide, titanium dioxide, and lithium fluoride. Thermal kinetic constants for the decomposition reaction of the samples were calculated by model-free (Friedman's differential and Vyzovkins nonlinear integral) and model-fitting (Coats-Redfern) methods. To determine the decomposition mechanisms, 12 solid-state mechanisms were tested using the Coats-Redfern method. The results of the Coats-Redfern method show that the decomposition mechanism for all samples is the contracting cylinder mechanism. The phase behavior of the obtained samples was evaluated by differential scanning calorimetry (DSC), and structural properties were determined by X-ray powder diffraction (XRPD). The results indicate that copper oxide modifies the phase transition behavior and can catalyze AN decomposition, whereas LiF inhibits AN decomposition, and TiO2 shows no influence on the rate of decomposition. Possible explanations for these results are discussed. Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Energetic Materials to view the free supplemental file.

  16. New zirconium phosphate fluorides: Hydrothermal synthesis and crystal structures

    SciTech Connect

    Wloka, M.; Troyanov, S.I.; Kemnitz, E.

    1998-02-01

    A series of zirconium phosphate fluorides were synthesized and structurally characterized using different amines as templates. The compounds have the general formulas [amH{sub n}]{sub 1/n}[Zr{sub 2}(HPO{sub 4})(PO{sub 4}){sub 2}F]{center_dot}H{sub 2}O (1, am = ethylenediamine, n = 2; 2. am = N-methylethylenediamine, n = 2; 3, am = 1,3-diaminopropane, n = 2; 4, am = diethylenetriamine, n = 3) and [amH{sub 2}]{sub 0.5}[Zr{sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})F{sub 2}]{center_dot}0.5H{sub 2}O (5, am = N,N,N{prime},N{prime}-tetramethylethylenediamine). In the structures of 2--4 with a Zr:F ratio of 2:1, there exists a three-dimensional arrangement of zirconium octahedra (one ZrO{sub 6} and one ZrO{sub 5}F) and phosphate tetrahedra (two PO{sub 4} and one HPO{sub 4}) connected via common oxygen atoms, whereas fluorine atoms and OH groups are terminal. These compounds crystallize in the ZrPO-1 structure type, which contains channels along the b axis formed by eight-membered rings of alternating PO{sub 4} tetrahedra and ZrO{sub 6} or ZrO{sub 5}F octahedra, respectively. The protonated disordered templates occupy the channels. Half the water molecules are situated in the positions alternatively left free by the disordered templates and the other half are bonded via hydrogen bridges to the terminal OH groups of the HPO{sub 4} tetrahedra. In contrast, the structure of 5 reveals a Zr:F ratio of 1:1, consequently forming a layer structure. The layers formed by ZrO{sub 5}F octahedra and PO{sub 4} or HPO{sub 4} tetrahedra, respectively, are linked by hydrogen bridges of type O{single_bond}H{hor_ellipsis}F and by weak H bonds over the protonated template. The similarities in connectivity pattern between Zr octahedra and P tetrahedra in all known zirconium phosphate fluorides and some zirconium phosphates are discussed.

  17. Improving Lithium Therapeutics by Crystal Engineering of Novel Ionic Cocrystals

    PubMed Central

    2013-01-01

    Current United States Food and Drug Administration (FDA)-approved lithium salts are plagued with a narrow therapeutic window. Recent attempts to find alternative drugs have identified new chemical entities, but lithium’s polypharmacological mechanisms for treating neuropsychiatric disorders are highly debated and are not yet matched. Thus, re-engineering current lithium solid forms in order to optimize performance represents a low cost and low risk approach to the desired therapeutic outcome. In this contribution, we employed a crystal engineering strategy to synthesize the first ionic cocrystals (ICCs) of lithium salts with organic anions. We are unaware of any previous studies that have assessed the biological efficacy of any ICCs, and encouragingly we found that the new speciation did not negatively affect established bioactivities of lithium. We also observed that lithium ICCs exhibit modulated pharmacokinetics compared to lithium carbonate. Indeed, the studies detailed herein represent an important advancement in a crystal engineering approach to a new generation of lithium therapeutics. PMID:24191685

  18. Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Tan, Jinli; Liu, Li; Hu, Hai; Yang, Zhenhua; Guo, Haipeng; Wei, Qiliang; Yi, Xin; Yan, Zichao; Zhou, Qian; Huang, Zhifeng; Shu, Hongbo; Yang, Xiukang; Wang, Xianyou

    2014-04-01

    Hollow prismatic/cylindric iron fluoride with a wall thickness of 0.1-0.5 μm and a length of 1-3 μm has been synthesized by a simple and mild solvothermal method. This compound with a mixed crystal structure of FeF3·3H2O and FeF3·0.33H2O, has an initial discharge capacities of 106.7 mAh g-1 and a capacity retention of 60% after 100 cycles at the rate of 0.5C (1 C is 237 mA g-1) in the voltage of 2.0-4.5 V. To overcome the poor electronic conductivity of fluorides, the as-prepared iron fluoride has been ball-milled with 15 wt.% acetylene black (AB) and heat-treated to obtain FeF3·0.33H2O/C nanocomposites. The nanocomposites deliver discharge capacity of 160.2 mAh g-1 at the rate of 0.5C. Even at the high rate of 5 C, the initial discharge capacity is still as high as 137.5 mAh g-1. The capacity retentions reach up to 85.0% and 75.7% after 100 cycles at 0.5 C and 5 C, respectively.

  19. In situ AFM crystal growth and dissolution study of calcite in the presence of aqueous fluoride

    NASA Astrophysics Data System (ADS)

    Vavouraki, A.; Putnis, C. V.; Putnis, A.; Koutsoukos, P. G.

    2009-04-01

    Fluoride is naturally abundant, encountered in rocks, soil and fresh and ocean water. Calcite crystals, during crystal growth may incorporate fluoride ions into their lattice (Okumura et al., 1983). In situ atomic force microscopy (AFM) has been used to study the growth and dissolution of calcite {104} surfaces in aqueous solutions in the presence of fluoride, using a fluid cell in which the supersaturated and the understaturated solutions respectively, flow over a freshly cleaved calcite crystal. For growth experiments, supersaturation index (S.I.) with respect to calcite was equal to 0.89 and the initial solution pH 10.2. The crystal growth rates were measured from the closure of the rhombohedral etch pits along the [010] direction induced by an initial dissolution step using pure water. The spreading rate of 2-dimensional nuclei was also measured along the same direction. In the presence of low fluoride concentrations (≤0.33 mM), the crystal growth rate of calcite was unaffected. At higher concentrations (up to 5 mM) growth rate decreased substantially to 50% of the rate in the absence of fluoride. Potential fluoride sorption over the calcite surface may ascribe the decrease of growth rates. Dissolution experiments were conducted at pH= 7.2 and dissolution rates of calcite were measured from the spreading of rhombohedral etch pits along both [010] and [42] directions. The presence of low concentrations of fluoride (≤1.1 mM) in the undersaturated solutions enhanced the dissolution rate along the [42] direction by 50% in comparison with pure water. The morphology of rhombohedral etch pits changed to hexagonal in the presence of fluoride in the undersaturated solutions. The AFM dissolution experiments suggested that the fluoride ions adsorbed onto the calcite surface. Further increase of fluoride concentrations (up to 1.6 mM) resulted in the decrease of the calcite dissolution rate by 60% in both [010] and [42] directions. Reference: Okumura, M, Kitano, Y

  20. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing

    NASA Astrophysics Data System (ADS)

    Kubasov, I. V.; Kislyuk, A. M.; Bykov, A. S.; Malinkovich, M. D.; Zhukov, R. N.; Kiselev, D. A.; Ksenich, S. V.; Temirov, A. A.; Timushkin, N. G.; Parkhomenko, Yu. N.

    2016-03-01

    The bidomain structures produced by light external heating in z-cut lithium niobate and lithium tantalate single crystals are formed and studied. Interdomain regions about 200 and 40 μm wide in, respectively, LiNbO3 and LiTaO3 bidomain crystals are visualized and studied by optical microscopy and piezoresponse force microscopy. Extended chains and lines of domains in the form of thin layers with a width less than 10 μm in volume, which penetrate the interdomain region and spread over distances of up to 1 mm, are found.

  1. The influence of lithium fluoride on in vitro biocompatibility and bioactivity of calcium aluminate-pMMA composite cement.

    PubMed

    Oh, S H; Choi, S Y; Choi, S H; Lee, Y K; Kim, K N

    2004-01-01

    The objective of this study is to assess the influence of lithium fluoride on in vitro biocompatibility and bioactivity of calcium aluminate (CA)-polymethylmethacrylate (PMMA) composite cement exhibiting quick setting time ( < 15 min), low exothermic temperature (< 47 degrees C), and high compressive strength (> 100 MPa). The biocompatibility was measured by examining cytotoxicity tests such as the agar diffusion test with L929 cell line and the hemolysis test with fresh rabbit blood. To estimate the bioactivity of CA-PMMA composite cement, we determined hydroxyapatite (HAp) formation on the surface of composite cement in the simulated body (SBF) solution by using thin-film XRD, XPS, SEM, EPMA and ICP-AES. The results of biocompatibility tests indicated that all experimental compositions of this study had no cytotoxicity and no hemolysis so that there was no cytotoxicity with regard to non-reacted monomers (MMA and TEGDMA) and lithium fluoride. The results of bioactivity tests revealed that CA-PMMA composite cement without lithium fluoride did not form HAp on its surface after 60 days of soaking in the SBF. On the other hand, LiAl2(OH)7 . 2H2O and HAp were formed on the surface of CA-PMMA composite cement including 1.0% by weight of lithium fluoride after 7 and 15 days of soaking in the SBF, respectively. The 5 microm of LiAl2(OH)7 . 2H2O and HAp mixed layers were formed on the surface of specimen after 60 days of soaking in the SBF. PMID:15338588

  2. F center in lithium fluoride revisited: Comparison of solid-state physics and quantum-chemistry approaches

    NASA Astrophysics Data System (ADS)

    Karsai, Ferenc; Tiwald, Paul; Laskowski, Robert; Tran, Fabien; Koller, David; Gräfe, Stefanie; Burgdörfer, Joachim; Wirtz, Ludger; Blaha, Peter

    2014-03-01

    We revisit the theoretical description of the F color center in lithium fluoride employing advanced complementary ab initio techniques. We compare the results from periodic supercell calculations involving density-functional theory (DFT) and post-DFT techniques with those from the embedded-cluster approach involving quantum-chemical many-electron wave-function techniques. These alternative approaches yield results in good agreement with each other and with the experimental data provided that correlation effects are properly taken into account.

  3. Note: Accuracy of velocity correction for impact of a laser-accelerated miniature flyer with lithium fluoride shock-compressed along the [100] axis

    SciTech Connect

    Wakabayashi, Kunihiko; Matsumura, Tomoharu; Nakayama, Yoshio; Koshi, Mitsuo

    2011-02-15

    We performed miniature flyer impact experiments to investigate the relationship between the apparent (u{sub a}) and actual (u{sub A}) particle velocities measured by a velocity interferometer in single-crystal lithium fluoride (LiF) that was shock-compressed along the [100] axis. The miniature flyer was accelerated to velocities in the range 652.5-1937.6 m/s by a tabletop pulsed laser. An empirical relationship of u{sub a}= (1.2749 {+-} 0.0102)u{sub A} was obtained. The obtained relationship agreed well with the results of a previous study within the experimental errors and its uncertainty was less than {+-}1%. This result indicates that the present experimental technique is effective for measuring the relationship between u{sub a} and u{sub A} of shocked transparent materials with a comparable accuracy to conventional methods.

  4. Reactions of p-toluenesulfonyl chloride with inorganic fluorides in heterogeneous systems

    SciTech Connect

    Krylov, E.N.; Mashkevich, I.V.

    1986-10-20

    The formation of p-toluenesulfonyl fluoride in the heterogeneous reactions of p-toluenesulfonyl chloride with inorganic fluorides in dipolar aprotic solvents becomes faster in the series of alkali metals from lithium to rubidium in parallel with the decrease in the crystal-lattice energies of the fluorides. In media if DMF and dimethylacetamide, even at 0/sup 0/C, after a relatively short reaction time p-toluenesulfonyl chloride is converted practically completely in the corresponding fluoride.

  5. A lithium-fluoride flashover ion source cleaned with a glow discharge and irradiated with vacuum-ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Burns, E. J. T.; Woodworth, J. R.; Bieg, K. W.; Mehlhorn, T. A.; Stygar, W. A.; Sweeney, M. A.

    1988-01-01

    We have studied methods of varying the ion species generated by a lithium-fluoride overcoated anode in a 0.5-MV magnetically insulated ion diode. We found that cleaning the anode surface with a 13.6-MHz rf glow discharge or illuminating the anode with a pulsed soft x-ray, vacuum-ultraviolet (XUV) radiation source just before the accelerator pulse significantly altered the ion species of the ion beam produced by the diode. The glow-discharge plasma removed adsorbates (carbon, hydrogen, and oxygen) from the surface of the LiF flashover source. The ions seen were lithium and hydrogen. Unfortunately, the diode impedance with a lithium-fluoride anode was high and the ion efficiency was low; however, XUV irradiation of the surface dramatically lowered the impedance by desorbing neutrals from the ion source via photon-stimulated desorption. Current densities of ten times the Child-Langmuir space-charge limit were achieved under XUV irradiation. In particular, ion currents increased by over a factor of 3 when 12 mJ/cm2 of XUV radiation was used. However, with XUV irradiation the largest fraction of ions were fluorine, oxygen, carbon, and hydrogen, not lithium.

  6. Problems associated with large scale personnel monitoring of photons using lithium-fluoride TLD-100

    SciTech Connect

    Not Available

    1985-01-01

    The dosimetric properties of a large batch of lithium fluoride TLD-100 dosimeters when exposed to photons for total absorbed doses in the region from 0.1-10 mGy (10-100 mr) have been examined in this work. This region is of particular importance because in many operational health physics situations the majority (>90%) of all recorded absorbed doses to personnel lie in this region. With the possibility that occupational radiation dose limits may be reduced in the future accurate monitoring of individuals in this region will be of prime importance. The purpose of this thesis was to point out several effects which could compromise accurate dosimetric measurements in this region and to suggest some methods to minimize them. These effects include the effect of TLD batch composition, overresponse of the dosimeter to low energy photons, dose rate effects, the effects of storing the dosimeter before readout, and possible interference from ultraviolet and radiofrequency radiation. Each of these items can cause errors which can range up to 70%, depending on the total absorbed dose and the particulars of the radiation exposure. One effect which is of extreme interest is the induction of a thermoluminescent signal by radiofrequency radiation. Although this effect can cause gross errors in estimating the ionizing dose, it opens the possibility that LiF or another phosphor may have an application as a non-ionizing radiation dosimeter.

  7. Precise, reproducible nano-domain engineering in lithium niobate crystals

    SciTech Connect

    Boes, Andreas Sivan, Vijay; Ren, Guanghui; Yudistira, Didit; Mitchell, Arnan; Mailis, Sakellaris; Soergel, Elisabeth

    2015-07-13

    We present a technique for domain engineering the surface of lithium niobate crystals with features as small as 100 nm. A film of chromium (Cr) is deposited on the lithium niobate surface and patterned using electron beam lithography and lift-off and then irradiated with a wide diameter beam of intense visible laser light. The regions patterned with chromium are domain inverted while the uncoated regions are not affected by the irradiation. With the ability to realize nanoscale surface domains, this technique could offer an avenue for fabrication of nano-photonic and phononic devices.

  8. Precise, reproducible nano-domain engineering in lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Boes, Andreas; Sivan, Vijay; Ren, Guanghui; Yudistira, Didit; Mailis, Sakellaris; Soergel, Elisabeth; Mitchell, Arnan

    2015-07-01

    We present a technique for domain engineering the surface of lithium niobate crystals with features as small as 100 nm. A film of chromium (Cr) is deposited on the lithium niobate surface and patterned using electron beam lithography and lift-off and then irradiated with a wide diameter beam of intense visible laser light. The regions patterned with chromium are domain inverted while the uncoated regions are not affected by the irradiation. With the ability to realize nanoscale surface domains, this technique could offer an avenue for fabrication of nano-photonic and phononic devices.

  9. Lithium niobate single-crystal and photo-functional device

    DOEpatents

    Gopalan, Venkatraman; Mitchell, Terrence E.; Kitamura, Kenji; Furukawa, Yasunori

    2001-01-01

    Provided are lithium niobate single-crystal that requires a low voltage of not larger than 10 kV/nm for its ferroelectric polarization inversion and of which the polarization can be periodically inverted with accuracy even at such a low voltage, and a photo-functional device comprising the crystal. The crystal has a molar fraction of Li.sub.2 O/(Nb.sub.2 O.sub.5 +Li.sub.2 O) of falling between 0.49 and 0.52. The photo-functional device can convert a laser ray being incident thereon.

  10. Characterization of the terbium-doped calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Zheleznov, Dmitry S.; Starobor, Aleksey V.; Palashov, Oleg V.

    2015-08-01

    Optical, thermo-optical and magneto-optical characteristics of the terbium-doped (10 at.%) calcium fluoride sample were investigated. It was made the analysis, confirmed the possibility of development of a Faraday isolator and a cryogenic Faraday isolator based on the studied medium, which will provide more than 30 dB isolation ratio of laser radiation in the "eye-safe" wavelength range (1530-1620 nm) at the 5 and 20 kW power, respectively.

  11. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  12. Effect of chloride incorporation on the crystallization of zirconium-barium-lanthanum-aluminum fluoride glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Smith, G. L.; Weinberg, M. C.

    1985-01-01

    One aspect of the influence of preparation procedure on the crystallization behavior of a zirconium-barium-lanthanum-aluminum fluoride glass was studied. The crystallization pattern of this glass may be affected by the chlorine concentration within it. In particular, when such glasses are heated at low temperatures, the alpha-Ba-Zr-F6 crystalline phase forms only in those glasses which contain chloride.

  13. Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes.

    PubMed

    Li, Linsen; Jacobs, Ryan; Gao, Peng; Gan, Liyang; Wang, Feng; Morgan, Dane; Jin, Song

    2016-03-01

    Metal fluorides and oxides can store multiple lithium ions through conversion chemistry to enable high-energy-density lithium-ion batteries. However, their practical applications have been hindered by an unusually large voltage hysteresis between charge and discharge voltage profiles and the consequent low-energy efficiency (<80%). The physical origins of such hysteresis are rarely studied and poorly understood. Here we employ in situ X-ray absorption spectroscopy, transmission electron microscopy, density functional theory calculations, and galvanostatic intermittent titration technique to first correlate the voltage profile of iron fluoride (FeF3), a representative conversion electrode material, with evolution and spatial distribution of intermediate phases in the electrode. The results reveal that, contrary to conventional belief, the phase evolution in the electrode is symmetrical during discharge and charge. However, the spatial evolution of the electrochemically active phases, which is controlled by reaction kinetics, is different. We further propose that the voltage hysteresis in the FeF3 electrode is kinetic in nature. It is the result of ohmic voltage drop, reaction overpotential, and different spatial distributions of electrochemically active phases (i.e., compositional inhomogeneity). Therefore, the large hysteresis can be expected to be mitigated by rational design and optimization of material microstructure and electrode architecture to improve the energy efficiency of lithium-ion batteries based on conversion chemistry. PMID:26847657

  14. Photorefractive effect at 775 nm in doped lithium niobate crystals

    SciTech Connect

    Nava, G.; Minzioni, P.; Cristiani, I.; Degiorgio, V.; Argiolas, N.; Bazzan, M.; Ciampolillo, M. V.; Pozza, G.; Sada, C.

    2013-07-15

    The photorefractive effect induced by 775-nm laser light on doped lithium niobate crystals is investigated by the direct observation in the far field of the transmitted-beam distortion as a function of time. Measurements performed at various Zr-doping concentrations and different light intensities show that the 775-nm light beam induces a steady-state photorefractive effect comparable to that of 532-nm light, but the observed build-up time of the photovoltaic field is longer by three-orders of magnitude. The 775-nm photorefractivity of lithium niobate crystals doped with 3 mol. % ZrO{sub 2} or with 5.5 mol. % MgO is found to be negligible.

  15. Origin of electronic transport of lithium phthalocyanine iodine crystal

    SciTech Connect

    Koike, Noritake; Oda, Masato; Shinozuka, Yuzo

    2013-12-04

    The electronic structures of Lithium Phthalocyanine Iodine are investigated using density functional theory. Comparing the band structures of several model crystals, the metallic conductivity of highly doped LiPcI{sub x} can be explained by the band of doped iodine. These results reveal that there is a new mechanism for electronic transport of doped organic semiconductors that the dopant band plays the main role.

  16. Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility

    SciTech Connect

    Rigg, P. A. Scharff, R. J.; Hixson, R. S.; Knudson, M. D.

    2014-07-21

    Lithium fluoride (LiF) is a common window material used in shock- and ramp-compression experiments because it displays a host of positive attributes in these applications. Most commonly, it is used to maintain stress at an interface and velocimetry techniques are used to record the particle velocity at that interface. In this application, LiF remains transparent to stresses up to 200 GPa. In this stress range, LiF has an elastic-plastic response with a very low (<0.5 GPa) elastic precursor and exhibits no known solid-solid phase transformations. However, because the density dependence of the refractive index of LiF does not follow the Gladstone-Dale relation, the measured particle velocity at this interface is not the true particle velocity and must be corrected. For that reason, the measured velocity is often referred to as the apparent velocity in these types of experiments. In this article, we describe a series of shock-compression experiments that have been performed to determine the refractive index of LiF at the two most commonly used wavelengths (532 nm and 1550 nm) between 35 and 200 GPa to high precision. A modified form of the Gladstone-Dale relation was found to work best to fit the determined values of refractive index. In addition, we provide a direct relationship between the apparent and true particle velocity to correct experimentally obtained wave profiles by others using these velocimetry techniques.

  17. Optical cleaning of congruent lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Kösters, M.; Sturman, B.; Werheit, P.; Haertle, D.; Buse, K.

    2009-09-01

    Lithium niobate (LiNbO3), also called the `silicon of photonics', is indispensable in advanced photonics and nonlinear optics. For many applications, however, the material is too polluted by transition metals, which are unavoidable at the parts per million level. These impurities serve as sources and traps for photoelectrons, causing optical damage and hampering the usability of LiNbO3. Efforts have therefore been made to get rid of the photoexcitable electrons. Here we introduce a method termed `optical cleaning'. We show theoretically and experimentally that, if the material is heated to moderate temperatures, allowing ions to migrate and to maintain charge neutrality, an appropriately moving light beam pushes photoexcitable electrons out of the illuminated region like a brush, and provides exponential cleaning. This promises purification levels that are beyond the reach of current technologies.

  18. Structural changes of conversion metal fluoride cathodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sina, Mahsa

    Currently, cathode materials for Li-ion batteries are based on intercalation processes where, during charge and discharge processes, Li intercalates into the crystal lattice while maintaining the host crystal structure. More recently, new cathode materials have been introduced based on conversion reactions involving phase transformation and complete reduction of the host transition metal. In addition, conversion reactions involve two or more Li ions with a resulting much higher capacity than obtainable for intercalation materials. However, mechanism of phase transformation and cycling reversibility are at present still poorly understood. In this study transmission electron microscopy (TEM) techniques including selected area electron diffraction (SAED) pattern, annular dark field (ADF) STEM image, and electron energy loss spectroscopy (EELS) with nanoscale spatial resolution were used to study the phase evolution and structural changes of iron fluorides (FeFe2, FeO0.7F 1.3, FeF3) after various discharge/charge cycles. Additionally, the changes of the Fe valence states upon cycling were determined using EELS by measuring the L3/L2 intensity ratio of Fe-L edge. The structural transformations of FeO0.7F1.3 during the first lithiation show that litiahation contains two regions. The first region, lithiation is an intercalation reaction with reduction of Fe 3+ to Fe2+. The second region of lithiation involves a conversion reaction, with the formation of metallic Fe, LiF, and Li 0.7Fe2+0.5O0.7F0.3 (rocksalt type) phases. The first delithiation process follows a different conversion reaction path compared to the first lithiation reaction involving the formation an amorphous rutile-type phase along with with the rocksalt-type phase. Interestingly, upon full recharge (delithiated electrode), the measured average Fe valence state returns back to its initial value of Fe2.7+. The growth of a solid electrolyte interphase (SEI) layer formation at the electrode

  19. Anchoring Nanostructured Manganese Fluoride on Few-Layer Graphene Nanosheets as Anode for Enhanced Lithium Storage.

    PubMed

    Rui, Kun; Wen, Zhaoyin; Lu, Yan; Shen, Chen; Jin, Jun

    2016-01-27

    Manganese fluoride (MnF2)/few-layer graphene nanosheets (GNS) composites are successfully prepared via a facile solvothermal method. It is found that in situ formed tetragonal MnF2 submicron crystals (50-200 nm) with good crystallinity anchoring homogeneously onto conducting GNS, allows the electrically insulating MnF2 particles to be wired up to the current collector with enhanced electron transport pathway. The MnF2/GNS composites act as anode in LIBs and display prominently improved electrochemical performance in comparison to that of pure MnF2, on account of the close interactions between the underlying graphene nanosheets and MnF2 particles grown atop. Distinctly enhanced capacity as high as 489 mAh g(-1) after 100 cycles can be obtained at 600 mA g(-1), while the self-activation process can be greatly accelerated at 6000 mA g(-1) with a maximum specific capacity of 530 mAh g(-1). With long cycling stability for 4000 cycles at 6000 mA g(-1), the MnF2/GNS composite can be deemed as an attractive candidate anode for high-capacity, long cycle life, and environmentally friendly LIBs. PMID:26727406

  20. Vertical Bridgman growth of calcium lithium niobium gallium garnet crystals

    NASA Astrophysics Data System (ADS)

    Xu, Xuewu; Chong, Tow-Chong; Zhang, Guangyu; Li, Minghua; Soo, Lay Hiok; Xu, Wei; Freeman, Bill

    2003-03-01

    The growth of calcium lithium niobium gallium garnet (CLNGG) crystal has been carried out using platinum crucibles in a vertical Bridgman (VB) furnace with three resistance-heating zones. Transparent CLNGG crystals grown from the congruent melts with and without weight loss compensation are different in color and are 25 mm in diameter and about 70 mm in length. The phase identification of the sintered raw materials, grown crystals and white compound formed on the side surface of the grown crystal has been done using the powder X-ray diffraction method. The formation of the white compound is related to the {1 0 0} facet growth near the side surface. The naturally selected growth direction of the CLNGG crystal grown without a seed is near <1 1 1> , which is in good agreement with the morphological importance analysis according to the BFDH law. The VB-grown CLNGG also shows a cleavable feature parallel to {1 1 0} face and no absorption peaks in the wavelength range of 1100-1600 nm. The linear thermal-expansion coefficient of the CLNGG crystal along <1 1 1> direction is also reported and compared with that of CNGG, GGG and platinum crucible.

  1. Structural examination of lithium niobate ferroelectric crystals by combining scanning electron microscopy and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Efremova, P. V.; Ped'ko, B. B.; Kuznecova, Yu. V.

    2016-02-01

    The structure of lithium niobate single crystals is studied by a complex technique that combines scanning electron microscopy and atomic force microscopy. By implementing the piezoresponse force method on an atomic force microscope, the domain structure of lithium niobate crystals, which was not revealed without electron beam irradiation, is visualized

  2. Conductivity degradation of polyvinylidene fluoride composite binder during cycling: Measurements and simulations for lithium-ion batteries

    DOE PAGESBeta

    Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.; Roberts, Scott A.; Barringer, David A.; Snyder, Chelsea M.; Janvrin, Madison R.; Apblett, Christopher A.

    2016-07-02

    The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45–75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling ofmore » lithium cobalt oxide (LiCoO2) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30–40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Lastly, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation – electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.« less

  3. Photoemission of Doped Lithium Tetraborate Crystals Being Developed for Neutron Dosimetry

    NASA Astrophysics Data System (ADS)

    Dugan, Christina; Hengehold, Robert; McHale, Stephen; McClory, John; Petrosky, James

    2010-10-01

    Lithium tetraborate or LTB crystals are being developed for possible use in solid state neutron detectors. Already used in thermo luminescence dosimeters, LTB is of interest due to its large cross section for neutron capture by lithium and boron. The reaction between lithium and a neutron produces an alpha particle and tritium. When boron interacts with a neutron an alpha particle and lithium are produced. These reactions are the basis for neutron detection, and an LTB crystal enriched with Mn should show improved efficiency for neutron detection. There is, however, a lack of fundamental characterization information regarding this useful material, particularly with regard to its electronic configuration. In this study, photoemission spectroscopy has been used to determine the energy level structure of manganese doped Lithium Tetraborate crystals. Measurements were made using UV photons from the storage ring of the synchrotron at Louisiana State University. Comparison will be made between Mn doped LTB crystals and undoped crystals.

  4. The OH - absorption spectra of low doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Kong, Yongfa; Zhang, Wanlin; Xu, Jingjun; Yan, Wenbo; Liu, Hongde; Xie, Xiang; Li, Xiaochun; Shi, Lihong; Zhang, Guangyin

    2004-07-01

    The OH - absorption spectra of low doped lithium niobate (LiNbO 3) crystals have been investigated. Though no apparent band shift is observed in these absorption spectra, their shapes are quite different. In order to analyze the information on the defect structure underlying these OH - absorption bands, the normalization and difference methods were employed. It was found that although the doping concentrations are under the thresholds the doping ions have apparent affect to the site occupation of OH - ions. The OH - vibrations related to Mg Li+ (Mg 2+ occupying Li-site) and In Li2+ are 3483 and 3484 cm -1 in LiNbO 3:Mg and LiNbO 3:In crystals, respectively. The absorption peak of LiNbO 3:Ti (2.5 mol%) crystal at 3487 cm -1 is mainly related to Ti Li3+-OH - and the 3489 cm -1 peak of LiNbO 3:Mg (5.0 mol%), Ti (10.0 mol%) related to Mg Li+-OH -, Ti Nb--OH - and Ti Li3+-OH -. Doping with Na improves the peak intensity near 3466 cm -1 and induces a new absorption peak at 3470 cm -1. The absorption bands of LiNbO 3 crystals codoped with trivalent ions are associated with the co-effect of the doped ions and have some different characteristics from mono-doped crystals.

  5. ac conductance of surface layer in lithium tetraborate single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Chung-Sik; Park, Jong-Ho; Moon, Byung Kee; Seo, Hyo-Jin; Choi, Byung-Chun; Hwang, Yoon-Hwae; Kim, Hyung Kook; Kim, Jung Nam

    2003-12-01

    ac conductance for the electrode effect in Li2B4O7 single crystal was investigated by use of a coplanar electrode applied on the surface of a (001) plate. A coplanar electrode in this material more clearly shows conduction of the electrode effect than a conventional parallel planar electrode. The electrode effect in ac conductance is likely to be controlled by the surface layer, which is a poorly conductive depletion layer possibly filled with vacancies of lithium ions. We found that the surface layer is not locally distributed near the electrodes, but, rather, on the broad area of the surface (001) plane of the material. So we conclude that the electrode effect in ac conduction of Li2B4O7 single crystal is mainly due to the poor conductive surface layer distributed over the whole surface of the (001) plane and is not a secondary phase formed by reaction with the electrode material.

  6. Crystallization And Viscosity Of Heavy Metal Fluoride Glasses

    NASA Astrophysics Data System (ADS)

    Moynihan, C. T.; Mossadegh, R.; Crichton, S. N.; Gupta, P. K.; Drexhage, M. G.

    1986-05-01

    Shear viscosity data for a glassforming ZrF4-BaF2-LaF3-A1F3 composition covering the range from the highly fluid melt down to the glass transition (10-1 to 1013 P) have been collected from five sources. The viscosity temperature dependence is highly non-Arrhenius and cannot be described by three parameter expressions such as the Fulcher equation. The four parameter Cohen-Grest equation, however, does give a good fit to the data, possibly allowing interpolation in the range of intermediate viscosity important for fiber drawing where data is currently lacking. The viscosity data are compared with crystallization temperatures obtained by DSC during heating and cooling at 10K/min.

  7. Cesium iodide crystals fused to vacuum tube faceplates

    NASA Technical Reports Server (NTRS)

    Fleck, H. G.

    1964-01-01

    A cesium iodide crystal is fused to the lithium fluoride faceplate of a photon scintillator image tube. The conventional silver chloride solder is then used to attach the faceplate to the metal support.

  8. Neutron-induced defects in the lithium tetraborate single crystals

    NASA Astrophysics Data System (ADS)

    Burak, Y. V.; Padlyak, B. V.; Shevel, V. M.

    The X-band (nucongruent to9.4 GHz) electron spin resonance (ESR) spectra of the un-doped isotopically enriched lithium tetraborate (LTB) Li2B4O7 single crystals, irradiated by thermal neutrons (fluences Phi(n) =2.74x 10(15) divided by 1.79 x 10(18) cm(-2) ) were investigated at 300 and 77 K. The LTB crystals of high chemical purity and optical quality with different isotope compositions (Li-6(2) (B4O7)-B-10 , Li-6(2) (B4O7)-B-11 , Li-7(2) (B4O7)-B-10 and Li-7(2) (B4O7)-B-11) were grown by Czochralski technique. The thermal neutrons (the total quantity >90%) with fluence near 10(18) cm(-2) induce at least 4 different types of stable paramagnetic centers in the Li and B isotopically enriched LTB crystals. The ESR spectra, electron structure and efficiency of generation for centers, induced by thermal neutrons, essentially depend on neutron fluence and isotope composition of the LTB crystals. The local symmetry and the spin Hamiltonian parameters of the observed paramagnetic centers were determined and their electron structure were established. The possible models and formation mechanism of the radiation defects, induced by thermal neutrons in the LTB lattice, are proposed.

  9. Micro- and nanostructures in lithium niobate single crystals doped with lanthanides

    SciTech Connect

    Palatnikov, M. N. Shcherbina, O. B.; Sidorov, N. V.; Bormanis, K.

    2010-09-15

    Lithium niobate single crystals doped with lanthanides (Gd, Er) and nominally pure single crystals of congruent and stoichiometric compositions have been grown under time-dependent thermal conditions. Regular growth domain microstructures and periodic nanostructures have been investigated by optical microscopy and atomic force microscopy with a step from 10 to 100 nm. Comparative investigations of the Raman spectra of lithium niobate single crystals of different compositions have been performed.

  10. The Effects of Gravity on the Crystallization Behavior of Heavy Metal Fluoride Glasses

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Smith, Guy A.

    2004-01-01

    Heavy metal fluoride glasses are used in such applications as fiber lasers and laser amplifiers. ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) is one of the more commonly used heavy metal fluoride glasses. ZBLAN is an infrared transmitter and has a theoretical attenuation coefficient of 0.002 db/km. However, due to impurities and small crystallites this attenuation coefficient has not been achieved to date. ZBLAN is a fragile glass which can lead to rapid crystallization, if the glass is not cooled rapidly to below the glass transition temperature or if the glass is reheated near the crystallization temperature for any period of time. Studies carried on at Marshall Space Flight Center and the University of Alabama in Huntsville since 1993 have shown that heating ZBLAN glass at the crystallization temperature in reduced gravity results in a suppression of crystallization when compared to ZBLAN processed in unit gravity. These studies utilized NASA's KC-135 aircraft and the Conquest sounding rocket. In the first series of experiments, short lengths of ZBLAN fiber were heated to the crystallization temperature in reduced gravity on board the KC- 135 and the Conquest sounding rocket and compared with fibers heated in unit gravity. The fibers processed in reduced gravity showed no evidence of crystallization when studied with x-ray diffraction and scanning electron microscopy. However, the fibers processed in unit gravity were completely crystallized. Subsequent experiments included heating small pieces of ZBLAN glass at the crystallization temperature while viewing with a video camera to follow the crystallization phenomenon. In this experiment crystallization was observed in reduced gravity, however, it was suppressed when compared to heating in unit gravity. In the most recent experiment on board the KC-135, rapid thermal analysis of ZBLAN was performed. A mechanism to explain the observations has been proposed. This mechanism is based on shear thinning whereby, the glass

  11. Time-resolved study of the plasma-plume emission during the nanosecond ablation of lithium fluoride

    NASA Astrophysics Data System (ADS)

    Camacho, J. J.; Diaz, L.; Cid, J. P.; Poyato, J. M. L.

    2013-10-01

    The properties of the plasma-plume accompanying the pulsed laser ablation of lithium fluoride (LiF) at medium-vacuum conditions (4 Pa) were studied by a combination of spatially and temporally resolved optical emission spectroscopy. The laser-induced plasma at CO2 laser intensities ranging from 0.18 to 4.7 GW × cm- 2 was found strongly ionized in F+, Li+, F2 +, and F3 + species and rich in neutral lithium and fluorine atoms. The temporal behavior of excited Li atoms and ionized excited species F+, Li+, F2 +, and F3 + is reported. The results show a faster decay of the continuum emission and Li+, F3 +, and F2 + ionic species than in the case of F+ and neutral Li atoms. The velocity distributions of atomic and ionic species are obtained from time-of-flight measurements. Electron density and excitation temperature in the laser-induced plasma were estimated from the analysis of spectral data at various delay times from the CO2 laser pulse incidence. From the intensity decay of Li+, F+, F2 + and F3 + with the delay time, we have estimated the three-body electron-ion recombination rate constants for these species.

  12. Fluoride Binding and Crystal-Field Analysis of Lanthanide Complexes of Tetrapicolyl-Appended Cyclen.

    PubMed

    Blackburn, Octavia A; Kenwright, Alan M; Jupp, Andrew R; Goicoechea, Jose M; Beer, Paul D; Faulkner, Stephen

    2016-06-20

    Lanthanide complexes of tetrapicolyl cyclen displayed remarkably high affinities for fluoride (log K≈5) in water, and were shown to form 1:1 complexes. The behaviour of these systems can be rationalised by changes to the magnitude of the crystal-field parameter, B20 . However, such changes are not invariably accompanied by a change in sign of this parameter: for early lanthanides, the N8 donor set with a coordinated axial water molecule ensures that the magnetic anisotropy has the opposite sense to that observed in the analogous dehydrated lanthanide complexes. PMID:27167830

  13. Radiation effects and defects in lithium borate crystals

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, Igor N.; Poryvay, Nikita E.; Pustovarov, Vladimir A.

    2010-11-01

    The paper presents the results of a study of the formation and decay of lattice defects in wide band-gap optical crystals of LiB3O5 (LBO), Li2B4O7 (LTB) and Li6Gd(BO3)3 (LGBO) with a sublattice of mobile lithium cations. By means of thermoluminescence techniques, and luminescent and absorption optical spectroscopy with a nanosecond time resolution under excitation with an electron beam, it was revealed that the optical absorption in these crystals in the visible and ultraviolet spectral ranges is produced by optical hole-transitions from the local defect level to the valence band states. The valence band density of the states determines mainly the optical absorption spectral profile, and the relaxation kinetics is rated by the interdefect non-radiative tunnel recombination between the trapped-hole center and the Li0 trapped-electron centers. At 290 K, the Li0 centers are subject to thermally stimulated migration. Based on experimental results, the overall picture of thermally stimulated recombination processes with the participation of shallow traps was established for these crystals.

  14. Lithium containing chalcogenide single crystals for neutron detection

    NASA Astrophysics Data System (ADS)

    Tupitsyn, E.; Bhattacharya, P.; Rowe, E.; Matei, L.; Cui, Y.; Buliga, V.; Groza, M.; Wiggins, B.; Burger, A.; Stowe, A.

    2014-05-01

    Lithium containing semiconductor-grade chalcogenide single crystals were grown using the vertical Bridgman method. The source material was synthesized from elementary precursors in two steps, (i) preparing the metal alloy LiIn or LiGa, and (ii) reaction with chalcogen - Se or Te. In a number of experiments, enriched 6Li isotope was used for synthesis and growth. The composition and structure of the synthesized materials was verified using powder X-Ray diffraction. The energy band gaps of the crystals were determined using optical absorption measurements. The resistivity of LiInSe2 and LiGaSe2, obtained using current-voltage measurements is on the order of 108-1011 Ω cm. Photoconductivity measurement of a yellow LiInSe2 sample showed a peak in the photocurrent around 445 nm. Nuclear radiation detectors were fabricated from single crystal wafers and the responses to alpha particles, neutrons and gammas were measured and presented. It suggests that this material is a promising candidate for neutron detection applications.

  15. Shock compression experiments on Lithium Deuteride single crystals.

    SciTech Connect

    Knudson, Marcus D.; Desjarlais, Michael Paul; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  16. Electrical conduction in nanodomains in congruent lithium tantalate single crystal

    SciTech Connect

    Cho, Yasuo

    2014-01-27

    The electrical current flow behavior was investigated for nanodomains formed in a thin congruent lithium tantalate (LiTaO{sub 3}) single-crystal plate. When the nanodomains were relatively large, with diameters of about 100 nm, current flow was detected along the domain wall. However, when they were about 40 nm or smaller, the current flowed through the entire nanodomain. Schottky-like rectifying behavior was observed. Unlike the case of LiNbO{sub 3}, optical illumination was not required for current conduction in LiTaO{sub 3}. A clear temperature dependence of the current was found indicating that the conduction mechanism for nanodomains in LiTaO{sub 3} may involve thermally activated carrier hopping.

  17. In-Situ Crystallization of a Lithium Disilicate Glass--Effect of Pressure on Crystal Growth Rate

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Ray, C. S.; Lesher, C. E.; Day, D. E.

    2006-01-01

    Crystallization of a Li2O.2SiO2 (LS2) glass subjected to a uniform hydrostatic pressure of 4.5 GPa and 6 GPa was investigated up to a temperature of 750 C. The density of the compressed glass is about 2% greater at 4.5 GPa than at 1 atm and, depending upon the processing temperature, up to 10% greater at 6 GPa. Crystal growth rates investigated as a function of temperature and pressure show that lithium disilicate crystal growth is an order of magnitude slower at 4.5 GPa than 1 atm resulting in a shift of +45 C (plus or minus 10 C) in the growth rate curve at high pressure compared to 1 atm condition. At 6 GPa lithium disilicate crystallization is suppressed entirely, while a new high pressure lithium metasilicate crystallizes at temperatures 95 C (plus or minus 10 C) higher than those reported for lithium disilicate crystallization at 1 atm. The decrease in crystal growth rate with increasing pressure for lithium disilicate glass up to 750 C is related to an increase in viscosity with pressure associated with fundamental changes in glass structure accommodating densification.

  18. Impact of Nanosilicates on Poly(vinylidene fluoride) Crystal Polymorphism: Part 1. Melt-crystallization at High Supercooling

    SciTech Connect

    Ince-Gunduz, B.; Alpern, R; Amare, D; Crawford, J; Dolan, B; Jones, S; Kobylarz, R; Reveley, M; Cebe, P

    2010-01-01

    Polymorphism of poly(vinylidene fluoride), PVDF, in the presence of Lucentite STN organically modified silicate (OMS) is investigated for PVDF nanocomposites melt-crystallized at high supercooling temperatures where neat PVDF crystallizes exclusively in the alpha crystalline phase. Nanocomposites were prepared from solution with 0-1.0 wt% OMS composition. Here we observed that clay addition promotes gamma phase formation in nanocomposites melt-crystallized at high supercooling (i.e., at low crystallization temperature), whereas previously we showed that even small amount of nanosilicates resulted in beta phase formation in cold-crystallized PVDF nanocomposites. Wide-angle X-ray scattering (WAXS), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) studies showed that {alpha}- and {gamma}-phases co-existed in nanocomposites containing up to 0.1 wt% OMS, and the amount of {alpha}-crystals substantially diminished for higher OMS content. Formation of {gamma}-crystal phase was confirmed with morphologic observation of spherulites of low-birefringence using polarizing optical and atomic force microscopies, and their crystalline structures were verified by FTIR and Raman microscopic spectroscopy. We also address in this work the ambiguities in assessing PVDF crystallographic phases, and correct the phase identification errors which have persisted up to this point in the literature based on melting point confusion. The crystal phase identification for PVDF nanocomposites is discussed and clarified, based on X-ray scattering, vibrational spectra, and thermal analysis. For reference, we provide a vibrational band list, indicating the close, or overlapping bands, of the three phases of PVDF: {alpha}, {beta} and {gamma}.

  19. Ferroelectric properties of vinylidene fluoride/tetrafluoroethylene copolymer thin films consisting of needle-like crystals

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yuuta; Hashizume, Yoichiro; Nakajima, Takashi; Okamura, Soichiro

    2016-05-01

    Unique ferroelectric vinylidene fluoride (VDF)/tetrafluoroethylene (TeFE) copolymer thin films consisting of needle-like crystals were formed using Au-sputtered substrates. The VDF/TeFE films with a mixing ratio of 80:20 mol % were melted at 170 °C for 30 min and then recrystallized at 116 °C for 300 min. The molecules in the resultant needle-like crystals had a β-phase form and showed 200/110 orientation, while the direction of each needle-like crystal was random in-plane. The remanent polarization of the 450-nm-thick VDF/TeFE films consisting of the needle-like crystals were estimated to be 62 mC/m2 from the electric displacement vs electric field (D–E) hysteresis measurement at the applied field of 156 MV/m and the frequency of 10 Hz. The remanent polarization of 62 mC/m2 was approximately 50% larger than that of conventional VDF/TeFE films consisting of plate-like crystals.

  20. Refinement of the crystal structure of lithium-bearing uvite

    SciTech Connect

    Rozhdestvenskaya, I. V. Frank-Kamenetskaya, O. V.; Kuznetsova, L. G.; Bannova, I. I.; Bronzova, Yu. M.

    2007-03-15

    The crystal structure of a natural calcium tourmaline, i.e., uvite with a high lithium content (0.51 au per formula (aupf) at the Y site, is refined to R = 0.019, R{sub w} = 0.020, and S = 1.11. It is shown that, in nature, there exist uvites in which the charge balance in the case where the Z site is occupied by trivalent cations is provided by the replacement of part of the divalent magnesium cations at the Y site by univalent cations, divalent calcium cations at the X site by sodium cations, and univalent anions at the W site by oxygen anions. The W site is found to be split into two sites, namely, the W1 and W11 sites (the W1-W11 distance is 0.14 A), which are partially occupied by the fluorine and oxygen anions, respectively. An analysis of the results obtained in this study and the data available in the literature on the crystal structure of uvites allows the conclusion that uvite can be considered a superspecies and that the nomenclature of this mineral group needs refinement with the use of structural data.

  1. Growth and characterization of Cu (II) doped negatively soluble lithium sulfate monohydrate crystals

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Ramasamy, P.; Bhagavannarayana, G.

    2014-01-01

    Single crystals of pure and Cu (II) doped negatively soluble lithium sulfate monohydrate have been grown by slow evaporation solution technique. In the present work, to improve the crystalline quality of lithium sulfate monohydrate crystal, metal dopant was incorporated into the pure crystals. The as grown crystals are clear, transparent and the sizes of the crystals were up to 18×12×3 mm3 and 50×15×5 mm3. The presence of metal dopant has been confirmed by energy dispersive spectroscopy, atomic absorption spectroscopy analysis. Single crystal and powder X-ray diffraction studies were carried out to ascertain lattice parameters and identify different phase nature. Optical transmission spectrum of the grown crystals was recorded. FT-IR and thermal analysis were carried out to investigate the functional group and thermal behavior of the grown crystals respectively. The grown crystal was subjected to Vickers micro hardness, HRXRD, piezoelectric, laser damage threshold measurements and second harmonic generation efficiency studies.

  2. Crystal and Electronic Structures of Neptunium Nitrides Synthesized Using a Fluoride Route

    SciTech Connect

    Silva, G W Chinthaka M; Weck, Dr. Phil F.; Eunja, Dr. Kim; Yeamans, Dr. Charles B.; Cerefice, Gary S.; Sattelberger, Alfred P; Czerwinski, Ken R.

    2012-01-01

    A low-temperature fluoride route was utilized to synthesize neptunium mononitride, NpN. Through the development of this process, two new neptunium nitride species, NpN{sub 2} and Np{sub 2}N{sub 3}, were identified. The NpN{sub 2} and Np{sub 2}N{sub 3} have crystal structures isomorphous to those of UN{sub 2} and U{sub 2}N{sub 3}, respectively. NpN{sub 2} crystallizes in a face-centered cubic CaF{sub 2}-type structure with a space group of Fm3m and a refined lattice parameter of 5.3236(1) {angstrom}. The Np{sub 2}N{sub 3} adopts the body-centered cubic Mn{sub 2}O{sub 3}-type structure with a space group of Ia{bar 3}. Its refined lattice parameter is 10.6513(4) {angstrom}. The NpN synthesis at temperatures {le} 900 C using the fluoride route discussed here was also demonstrated. Previous computational studies of the neptunium nitride system have focused exclusively on the NpN phase because no evidence was reported experimentally on the presence of NpN{sub x} systems. Here, the crystal structures of NpN{sub 2} and Np{sub 2}N{sub 3} are discussed for the first time, confirming the experimental results by density functional calculations (DFT). These DFT calculations were performed within the local-density approximation (LDA+U) and the generalized-gradient approximation (GGA+U) corrected with an effective Hubbard parameter to account for the strong on-site Coulomb repulsion between Np 5f electrons. The effects of the spin-orbit coupling in the GGA+U calculations have also been investigated for NpN{sub 2} and NpN.

  3. Crystal and electronic structures of neptunium nitrides synthesized using a fluoride route.

    PubMed

    Silva, G W Chinthaka; Weck, Philippe F; Kim, Eunja; Yeamans, Charles B; Cerefice, Gary S; Sattelberger, Alfred P; Czerwinski, Kenneth R

    2012-02-15

    A low-temperature fluoride route was utilized to synthesize neptunium mononitride, NpN. Through the development of this process, two new neptunium nitride species, NpN(2) and Np(2)N(3), were identified. The NpN(2) and Np(2)N(3) have crystal structures isomorphous to those of UN(2) and U(2)N(3), respectively. NpN(2) crystallizes in a face-centered cubic CaF(2)-type structure with a space group of Fm3m and a refined lattice parameter of 5.3236(1) Å. The Np(2)N(3) adopts the body-centered cubic Mn(2)O(3)-type structure with a space group of Ia3. Its refined lattice parameter is 10.6513(4) Å. The NpN synthesis at temperatures ≤900 °C using the fluoride route discussed here was also demonstrated. Previous computational studies of the neptunium nitride system have focused exclusively on the NpN phase because no evidence was reported experimentally on the presence of NpN(x) systems. Here, the crystal structures of NpN(2) and Np(2)N(3) are discussed for the first time, confirming the experimental results by density functional calculations (DFT). These DFT calculations were performed within the local-density approximation (LDA+U) and the generalized-gradient approximation (GGA+U) corrected with an effective Hubbard parameter to account for the strong on-site Coulomb repulsion between Np 5f electrons. The effects of the spin-orbit coupling in the GGA+U calculations have also been investigated for NpN(2) and NpN. PMID:22280303

  4. Sulfonic Acid- and Lithium Sulfonate-Grafted Poly(Vinylidene Fluoride) Electrospun Mats As Ionic Liquid Host for Electrochromic Device and Lithium-Ion Battery.

    PubMed

    Zhou, Rui; Liu, Wanshuang; Leong, Yew Wei; Xu, Jianwei; Lu, Xuehong

    2015-08-01

    Electrospun polymer nanofibrous mats loaded with ionic liquids (ILs) are promising nonvolatile electrolytes with high ionic conductivity. The large cations of ILs are, however, difficult to diffuse into solid electrodes, making them unappealing for application in some electrochemical devices. To address this issue, a new strategy is used to introduce proton conduction into an IL-based electrolyte. Poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) copolymer is functionalized with sulfonic acid through covalent attachment of taurine. The sulfonic acid-grafted P(VDF-HFP) electrospun mats consist of interconnected nanofibers, leading to remarkable improvement in dimensional stability of the mats. IL-based polymer electrolytes are prepared by immersing the modified mats in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)). It is found that the SO3(-) groups can have Lewis acid-base interactions with the cations (BMIM(+)) of IL to promote the dissociation of ILs, and provide additional proton conduction, resulting in significantly improved ionic conductivity. Using this novel electrolyte, polyaniline-based electrochromic devices show higher transmittance contrast and faster switching behavior. Furthermore, the sulfonic acid-grafted P(VDF-HFP) electrospun mats can also be lithiated, giving additional lithium ion conduction for the IL-based electrolyte, with which Li/LiCoO2 batteries display enhanced C-rate performance. PMID:26167794

  5. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes.

    PubMed

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-01-01

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites. PMID:24957064

  6. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes

    PubMed Central

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-01-01

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites. PMID:24957064

  7. High-performance lithium storage in an ultrafine manganese fluoride nanorod anode with enhanced electrochemical activation based on conversion reaction.

    PubMed

    Rui, Kun; Wen, Zhaoyin; Huang, Xiao; Lu, Yan; Jin, Jun; Shen, Chen

    2016-02-01

    A facile, one-step solvothermal reaction route for the preparation of manganese fluoride nanorods is successfully developed using manganese(II) chloride tetrahydrate (MnCl2·4H2O) as the manganese source and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) as the fluorine source. X-ray diffraction, field-emission scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) are conducted to characterize the structural and microstructural properties of the synthesized MnF2. The pure-phase tetragonal MnF2 displays nanorod-like morphology with a diameter of about 20 nm and a length of several hundreds of nanometers. The electrochemical performance of the MnF2 nanorod anode for rechargeable lithium batteries is investigated. A reversible discharge capacity as high as 443 mA h g(-1) at 0.1 C is obtained for the lithium uptake reaction with an initial discharge plateau around 0.7 V. The striking enhancement in electrochemical Li storage performance in ultrafine MnF2 nanorods can be attributed to the small diameters of the nanorods and efficient one-dimensional electron transport pathways. Long cycle performance for 2000 cycles at 10 C with a stabilized capacity of about 430 mA h g(-1) after activation is also achieved. Furthermore, lithiated and delithiated MnF2 anodes are analyzed with HRTEM to elucidate the conversion mechanism for the electrochemical reaction of MnF2 nanorods with Li at a microscopic level. PMID:26766389

  8. Instability of Polyvinylidene Fluoride-Based Polymeric Binder in Lithium-Ion Cells: Final Report

    SciTech Connect

    Garcia, M.; Nagasubramanian, G.; Tallant, D.R.; Roth, E.P.

    1999-05-01

    Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100 degree C involving the solid electrolyte interface (SEI) layer and the LiPF(6) salt in the electrolyte (EC-PC:DEC/IM LiPF(6)). These reactions could account for the thermal runaway observed in these cells beginning at 100 degree C. Exothermic reactions were also observed in the 200 degree C to 300 degree C region between the intercalated lithium anodes, the LiPF(6) salt, and the PVDF. These reactions were followed by a high-temperature reaction region, 300 degree C to 400 degree C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medium. Cathode exothermic reactions with the PVDF binder were observed above 200 degree C and increased with the state of charge (decreasing Li content). The stability of the PVDF binder as a function of electrochemical cycling was studied using FTIR. The infrared spectra from the extracts of both electrodes indicate that PVDF is chemically modified by exposure to the lithium cell electrolyte (as well as electrochemical cycling) in conjunction with NMP extraction. Preconditioning of PVDF to dehydrohalogenation, which may be occurring by reaction with LiPf(6), makes the PVDF susceptible to attack by a range of nucleophiles.

  9. Twin defects in thick stoichiometric lithium tantalate crystals prepared by a vapor transport equilibration method

    NASA Astrophysics Data System (ADS)

    Yang, Jinfeng; Sun, Jun; Xu, Jingjun; Li, Qinglian; Shang, Jifang; Zhang, Ling; Liu, Shiguo; Huang, Cunxin

    2016-01-01

    The twins were observed and investigated in vapor transport equilibration (VTE) treated lithium tantalate crystals by burying congruent lithium tantalate crystals (CLT) in a Li-rich polycrystalline powder. Twins and their etched patterns were observed under an optical polarizing microscope, and the geometry of the twins was discussed. Twin composition planes were the { 01 1 bar 2 } planes. The cause of twinning was analyzed and verified by experiment. The results indicate that the emergence of twins is due to sintering stress, which arises from sintered Li-rich polycrystalline powders at high temperature. 3.2 mm thick stoichiometric lithium tantalate (SLT) crystals without twins were obtained by setting corundum crucibles over the top of the crystals to make crystals free from the sintering stress. In addition, cracks were observed at the intersection of twin bands, and the stress caused by the dislocation pile-up was considered to be the reason for the formation of cracks.

  10. Growth of high quality bulk size single crystals of inverted solubility lithium sulphate monohydrate

    NASA Astrophysics Data System (ADS)

    Silambarasan, A.; Rajesh, P.; Ramasamy, P.

    2015-06-01

    The paper summarizes the processes of growing large lithium sulfate monohydrate (LSMH) single crystals. We have established a procedure to grow high quality bulk size single crystals of inverted solubility LSMH by a newly developed unidirectional crystallization technique called the Sankeranarayenan - Ramasamy (SR) method. The convective flow of crystal growth processes from solution and the conditions of growing crystals of various aspects were discussed. Good quality LSMH single crystal is grown of the size 20 mmX80 mm without cracks, localized-defects and inclusions. The as-grown crystals are suitable for piezoelectric and nonlinear optical applications.

  11. Growth of high quality bulk size single crystals of inverted solubility lithium sulphate monohydrate

    SciTech Connect

    Silambarasan, A.; Rajesh, P. Ramasamy, P.

    2015-06-24

    The paper summarizes the processes of growing large lithium sulfate monohydrate (LSMH) single crystals. We have established a procedure to grow high quality bulk size single crystals of inverted solubility LSMH by a newly developed unidirectional crystallization technique called the Sankeranarayenan - Ramasamy (SR) method. The convective flow of crystal growth processes from solution and the conditions of growing crystals of various aspects were discussed. Good quality LSMH single crystal is grown of the size 20 mmX80 mm without cracks, localized-defects and inclusions. The as-grown crystals are suitable for piezoelectric and nonlinear optical applications.

  12. Growth of Crack-Free 3-Inch-Diameter Lithium Tetraborate Single Crystals by Czochralski Method

    NASA Astrophysics Data System (ADS)

    Komatsu, Ryuichi; Sugihara, Tadashi; Uda, Satoshi

    1994-09-01

    The growth of crack-free 3-inch-diameter lithium tetraborate ( Li2B4O7) single crystals by the Czochralski method has been studied. The relationships between crystal cracking rate during growth and the crystal rotation rate and the position of the work-coil have been examined. It is concluded that crystal cracking at a later stage of growth is related to the temperature fluctuation in melt.

  13. Optical properties and radiation damages of cerium fluoride crystals doped with alkali-earth and rare-earth elements

    SciTech Connect

    Gusev, Y.I.; Melchakov, E.N.; Mironov, I.A.; Panteleev, L.A.; Reiterov, V.M.; Rodnyi, P.A.; Seliverstov, D.M.; Shchetkowsky, A.I.; Yazikov, D.M.; Zakharov, N.G.

    1994-12-31

    The most essential contribution in the investigation of CeF{sub 3} crystals having the goal to construct high precision electromagnetic calorimeters has been done by Crystal Clear Collaboration. Study of optical properties and radiation damages of Cerium Fluoride crystals doped with Ca, Ba, Sr, La, Nd, Zr and Hf in the wide range of concentrations has been performed with the goal to obtain high optical transparency of crystals at different cumulative doses under {gamma}-irradiation. Time decay curves and relative light yields of scintillators as a function of doping level were measured using X-ray excitation of samples and single photon counting method.

  14. Positioning Vise for Crystal Cleavage

    NASA Technical Reports Server (NTRS)

    Hallberg, F. C.; Morgan, C. J.

    1984-01-01

    Vise manipulates brittle crystals, such as lithium fluoride, so they are in proper position for cleaving. Vise allows crystals as thin as 2 millimeters or less positioned so that cleaved without breakage. Vise holds workpiece firmly but gently. Bushings, shafts and adjusting screw designed to move jaws smoothly and uniformly with great tactile sensitivity.

  15. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    SciTech Connect

    Piccinini, M. Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M. A.; Montereali, R. M.; Ambrosini, F.; Nichelatti, E.

    2015-06-29

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 10{sup 11} to 10{sup 15} protons/cm{sup 2}. The visible photoluminescence spectra of radiation-induced F{sub 2} and F{sub 3}{sup +} laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 10{sup 3} to about 10{sup 6 }Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  16. Low operating voltage n-channel organic field effect transistors using lithium fluoride/PMMA bilayer gate dielectric

    SciTech Connect

    Kumar, S.; Dhar, A.

    2015-10-15

    Highlights: • Alternative to chemically crosslinking of PMMA to achieve low leakage in provided. • Effect of LiF in reducing gate leakage through the OFET device is studied. • Effect of gate leakage on transistor performance has been investigated. • Low voltage operable and low temperature processed n-channel OFETs were fabricated. - Abstract: We report low temperature processed, low voltage operable n-channel organic field effect transistors (OFETs) using N,N′-Dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C{sub 8}) organic semiconductor and poly(methylmethacrylate) (PMMA)/lithium fluoride (LiF) bilayer gate dielectric. We have studied the role of LiF buffer dielectric in effectively reducing the gate leakage through the device and thus obtaining superior performance in contrast to the single layer PMMA dielectric devices. The bilayer OFET devices had a low threshold voltage (V{sub t}) of the order of 5.3 V. The typical values of saturation electron mobility (μ{sub s}), on/off ratio and inverse sub-threshold slope (S) for the range of devices made were estimated to be 2.8 × 10{sup −3} cm{sup 2}/V s, 385, and 3.8 V/decade respectively. Our work thus provides a potential substitution for much complicated process of chemically crosslinking PMMA to achieve low leakage, high capacitance, and thus low operating voltage OFETs.

  17. Elastic properties of poly(vinyldene fluoride) (PVDF) crystals: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Pei, Yong; Zeng, Xiao Cheng

    2011-05-01

    We computed structural and elastic properties of totally nine phases of poly(vinyldene fluoride) (PVDF) crystals using the density-functional theory (DFT) method with and without inclusion of the dispersion corrections. In addition to the four known crystalline forms, mechanic properties of five theoretically predicted crystalline forms of PVDF are also investigated. The all-trans form Ip exhibits the largest cohesive energy, bulk, and Young's modulus among the nine crystalline forms. The DFT calculations suggest that the δ crystalline forms (IIIau, IIIpu, IIIpd, and IIIad) possess poor chain rigidity among the nine PVDF crystalline forms. In contrast, a change of relative orientation of PVDF chains does not lead to significant change in cohesive energy and mechanic properties. A comparison of the cohesive energies of nine crystalline forms of PVDF suggests that the theoretically proposed crystalline forms of PVDF are quite stable.

  18. Radiation Induced Optical Absorption of Cubic Lead Fluoride Crystals and the Effect of Annealing

    NASA Astrophysics Data System (ADS)

    Ren, Guo-Hao; Chen, Xiao-Feng; Li, Huan-Ying; Wu, Yun-Tao; Shi, Hong-Sheng; Qin, Lai-Shun

    2014-08-01

    Transparent and colorless lead fluoride crystals with sizes of 20 × 20 × 20 (mm3) are irradiated with several doses of γ-rays from a 60 Co source. Their transmittance spectra before and after irradiation are measured, and a new parameter ΔT = Tb - Ta is defined to evaluate the irradiation damage. Three optical absorption bands peaking at 270 nm, 370 nm and 500 nm are found in the plots of ΔT versus wavelength, and their intensities increase with the irradiation dose. These optical absorption bands, except the one at 270 nm, can recover spontaneously with time. Thermal annealing treatment can enhance this recovery of the transmittance, while the optimum annealing temperature for different samples depends on the irradiation dose.

  19. Microporous gel electrolytes based on amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene) for lithium batteries

    NASA Astrophysics Data System (ADS)

    Yu, Shicheng; Chen, Lie; Chen, Yiwang; Tong, Yongfen

    2012-03-01

    Poly(vinylidene fluoride-co-hexafluoropropylene) grafted poly(poly(ethylene glycol) methyl ether methacrylate) (PVDF-HFP-g-PPEGMA) is simply prepared by single-step synthesis directly via atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA) from poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Thermal, mechanical, swelling and electrochemical properties, as well as microstructures of the prepared polymer electrolytes, are evaluated and the effects of the various contents and average molecular weights of PEGMA on those properties are also been investigated. By phase inversion technique, the copolymer membranes tend to form well-defined microporous morphology with the increase of content and average molecular weight of PEGMA, due to the competition and cooperation between the hydrophilic PEGMA segments and hydrophobic PVDF-HFP. When these membranes are gelled with 1 M LiCF3SO3 in ethylene carbonate (EC)/propylene carbonate (PC) (1:1, v/v), their saturated electrolyte uptakes (up to 323.5%) and ion conductivities (up to 2.01 × 10-3 S cm-1) are dramatically improved with respect to the pristine PVDF-HFP, ascribing to the strong affinity of the hydrophilic PEGMA segments with the electrolytes. All the polymer electrolytes are electrochemically stable up to 4.7 V versus Li/Li+, and show good mechanical properties. Coin cells based on the polymer electrolytes show stable charge-discharge cycles and deliver discharge capacities to LiFePO4 is up to 156 mAh g-1.

  20. Mesoporous NiO crystals with dominantly exposed {110} reactive facets for ultrafast lithium storage

    PubMed Central

    Su, Dawei; Ford, Mike; Wang, Guoxiu

    2012-01-01

    Faceted crystals with exposed highly reactive planes have attracted intensive investigations for applications such as hydrogen production, enhanced catalytic activity, and electrochemical energy storage and conversion. Herein, we report the synthesis of mesoporous NiO crystals with dominantly exposed {110} reactive facets by the thermal conversion of hexagonal Ni(OH)2 nanoplatelets. When applied as anode materials in lithium-ion batteries, mesoporous NiO crystals exhibit a high reversible lithium storage capacity of 700 mAh g−1 at 1 C rate in 100 cycles and an excellent cyclability. In particular, the dominantly exposed {110} reactive facets and mesoporous nanostructure of NiO crystals lead to ultrafast lithium storage, which mimics the high power delivery of supercapacitors. PMID:23226591

  1. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    SciTech Connect

    Thiede, Christian Schmidt, Anke B.; Donath, Markus

    2015-08-15

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination, temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters.

  2. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2011-01-01

    In 2010, lithium consumption in the United States was estimated to have been about 1 kt (1,100 st) of contained lithium, a 23-percent decrease from 2009. The United States was estimated to be the fourth largest consumer of lithium. It remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2010, world lithium consumption was estimated to have been about 21 kt (22,000 st) of lithium contained in minerals and compounds, a 12-percent increase from 2009.

  3. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2010-01-01

    In 2009, lithium consumption in the United States was estimated to have been about 1.2 kt (1,300 st) of contained lithium, a 40-percent decrease from 2008. The United States was estimated to be the fourth largest consumer of lithium, and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2009, world lithium consumption was estimated to have been about 18.7 kt (20,600 st) of lithium contained in minerals and compounds.

  4. Spectral separation of Cr3+ optical centers in stoichiometric magnesium-doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Galutskii, V. V.; Stroganova, E. V.; Yakovenko, N. A.

    2011-03-01

    The broadband luminescence of chromium optical centers with strongly overlapping spectral lines and similar emission probabilities from excited 4 T 2 states of red and green Cr3+ centers in stoichiometric magnesium-doped lithium niobate crystals has been separated for the first time. The spectral-luminescence characteristics and parameters of intracenter interaction between red and green optical Cr3+ centers in stoichiometric lithium niobate have been calculated. The luminescence quantum efficiencies of red and green chromium centers are determined.

  5. Design of nanobeam photonic crystal resonators for a silicon-on-lithium-niobate platform

    NASA Astrophysics Data System (ADS)

    Witmer, Jeremy D.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2016-03-01

    We outline the design for a photonic crystal resonator made in a hybrid Silicon/Lithium Niobate material system. Using the index contrast between silicon and lithium niobate, it is possible to guide and confine photonic resonances in a thin film of silicon bonded on top of lithium niobate. Quality factors greater than $10^6$ at optical wavelength scale mode volumes are achievable. We show that patterning electrodes on such a system can yield an electro-optic coupling rate of 0.6 GHz/V (4 pm/V).

  6. Design of nanobeam photonic crystal resonators for a silicon-on-lithium-niobate platform.

    PubMed

    Witmer, Jeremy D; Hill, Jeff T; Safavi-Naeini, Amir H

    2016-03-21

    We outline the design for a photonic crystal resonator made in a hybrid Silicon/Lithium Niobate material system. Using the index contrast between silicon and lithium niobate, it is possible to guide and confine photonic resonances in a thin film of silicon bonded on top of lithium niobate. Quality factors greater than 106 at optical wavelength scale mode volumes are achievable. We show that patterning electrodes on such a system can yield an electro-optic coupling rate of 0.6 GHz/V (4 pm/V). PMID:27136784

  7. Freestanding manganese dioxide nanosheet network grown on nickel/polyvinylidene fluoride coaxial fiber membrane as anode materials for high performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Luo, Zhongping; Xiao, Qizhen; Sun, Tianlei; Lei, Gangtie; Li, Zhaohui; Li, Xiaojing

    2015-11-01

    A novel manganese dioxide (MnO2) nanosheet network grown on nickel/polyvinylidene fluoride (Ni/PVDF) coaxial fiber membrane is successfully fabricated by a three-step route: the polyvinylidene fluoride fiber membrane is prepared by electrospinning method, and then the Ni(shell)/PVDF(core) coaxial fiber membrane with core-shell structure can be obtained by the electroless deposition, and finally the manganese dioxide nanosheet network grown on Ni/PVDF coaxial fiber membrane can be achieved by using a simple hydrothermal treatment. This as-prepared binder-free and flexible composite membrane is directly used as anode for lithium ion batteries. The excellent electrochemical performance of the composite membrane can be attributed to the unique combinative effects of nanosized MnO2 network and conductive Ni/PVDF fiber matrix as well as the porous structure of composite fiber membrane.

  8. Growth of lithium triborate single crystals from molten salt solution under various temperature gradients

    NASA Astrophysics Data System (ADS)

    Guretskii, S. A.; Ges, A. P.; Zhigunov, D. I.; Ignatenko, A. A.; Kalanda, N. A.; Kurnevich, L. A.; Luginets, A. M.; Milovanov, A. S.; Molchan, P. V.

    1995-12-01

    Single crystals of lithium triborate LiB 3O 5 (LBO) have been grown by the top-seeded solution growth method with B 2O 3 as a solvent using different temperature gradients in the zone of crystallization. Optical and nonlinear optical properties of LBO single crystals have been investigated. The influence of post-growth thermal treatment in oxygen atmosphere on the optical properties has been studied.

  9. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2012-01-01

    In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.

  10. Lithium

    USGS Publications Warehouse

    Ober, J.A.

    2006-01-01

    In 2005, lithium consumption in the United States was at 2.5 kt of contained lithium, nearly 32% more than the estimate for 2004. World consumption was 14.1 kt of lithium contained in minerals and compounds in 2003. Exports from the US increased slightly compared with 2004. Due to strong demand for lithium compounds in 2005, both lithium carbonate plants in Chile were operating at or near capacity.

  11. Investigations on growth and property of mid-infrared lithium selenoindate single crystals

    NASA Astrophysics Data System (ADS)

    Dai, Li; Tan, Chao; Yan, Zhehua; Xu, Yuheng

    2016-08-01

    Lithium selenoindate (LiInSe2) crystals with high optical quality are successfully grown by small-angle inclined horizontal temperature gradient condensation. In order to evaluate the various characteristics, the powder X-ray diffraction (XRD) spectrum, optical damage resistance ability and Vickers hardness in lithium selenoindate crystals were studied. The growth crystals have orthorhombic nature, a = 6.184 Å, b = 7.092 Å and c = 8.207 Å. The damage thresholds of LiInSe2 crystal with the front face and back face were 224 mW/cm2 and 165 mW/cm2. Also the Vickers hardness number of LiInSe2 crystal was found to be 342.4 kg/mm2.

  12. Lattice vibrations and phase-transition soft mode in near stoichiometric lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Xia, H. R.; Sun, S. Q.; Cheng, X. F.; Dong, S. M.; Xu, H. Y.; Gao, L.; Cui, D. L.

    2005-08-01

    At room temperature, Raman-scattering investigations of near stoichiometric lithium niobate (S-LN) crystals theoretically and experimentally reveal an effect of the lattice vacant positions on the Raman spectra. At high temperature, Raman peaks of the mode ν5 vary sensitively and intensely with the increase of the temperature. A condensed soft optical-phonon mode originates from the triply degenerate symmetric in-plane O-Nb-O bending. The paraelectric-ferroelectric structural transition occurs at about 1170°C. The composition homogeneity and optical uniformity of the S-LN crystals are demonstrated to be excellent compared with those of the congruent lithium niobate.

  13. Influence of sodium fluoride (NaF) on the crystallization and spectral properties of L-tyrosine

    NASA Astrophysics Data System (ADS)

    Thenmozhi, M.; Suguna, K.; Sekar, C.

    2011-12-01

    L-Tyrosine (C 9H 11NO 3) is an essential amino acid in living organisms. It is also a building unit in protein, takes part in bio-synthesis of hormones, neurotransmitters, pigments and one of the organic chemical constituents of urinary stones. L-Tyrosine has been crystallized in silica gel by double diffusion technique with and without the addition of NaF. The crystals had rosette-like shape. In case of fluoride addition, two types of crystals have formed: rosette like crystallites, at the gel-solution interface and reticulate type crystallites beneath the interface. XRD results confirmed that both the products are of L-tyrosine with identical crystal structures. Crystal structure, morphology, thermal and spectral properties are analyzed using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FTIR) and UV-vis transmittance studies. The TG-DTA results suggest that the thermal stability of L-tyrosine has markedly improved due to fluoride doping. Optical band gap energy of NaF grown L-tyrosine crystallite is estimated as 4.28 eV. Second harmonic generation efficiency test indicates that L-tyrosine crystals can be used for application in nonlinear optical devices.

  14. Optical and structural properties of single-crystal lithium niobate thin film

    NASA Astrophysics Data System (ADS)

    Han, Huangpu; Cai, Lutong; Hu, Hui

    2015-04-01

    High-refractive-index contrast, single-crystal lithium niobate thin films are emerging as a new platform for integrated optics. Such lithium niobate thin films are prepared using ion implantation and direct-wafer bonding to a SiO2 layer deposited on a LN substrate. However, the ion-implantation process can cause changes in the refractive index and result in lattice damage, and there are few studies on the optical and structural properties of lithium niobate thin film to compensate for this. In this paper, we reported that the refractive index of lithium niobate thin film can reach that of the bulk material by annealing in an oxygen atmosphere at 500 °C for 5 h. The experimental results of high-resolution X-ray diffraction (HRXRD) and Rutherford back-scattering spectrum (RBS) showed a good crystal lattice arrangement in the LN thin film. These experimental results confirmed that the refractive index and crystal-lattice structural properties of the lithium niobate thin film were similar to that of the bulk material. To demonstrate the application on integrated optics, a 1 μm wide photonic wire was fabricated and the near-field intensity profile at 1.55 μm wavelength was obtained and compared with the simulation result.

  15. Growth, Structural And Optical Studies On Bis L-alanine Lithium Chloride (BLALC) Single Crystal

    NASA Astrophysics Data System (ADS)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Bis L-alanine Lithium Chloride (BLALC) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 15 x 9 x 4 mm3 have been obtained in 28 days. The grown crystals were colourless and transparent. Single crystal X-ray diffraction (XRD) study showed that BLALC belongs to orthorhombic system with a non-centro-symmetric space group P212121. The crystallinity of BLALC crystal was confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. The functional groups of the grown crystals have been identified by FTIR studies. UV-visible transmittance spectrum was recorded to study the optical transparency of BLALC crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique.

  16. EPR and ENDOR studies of point defects in lithium tetraborate crystals

    NASA Astrophysics Data System (ADS)

    Buchanan, Douglas A.

    Lithium tetraborate (Li2B4O7 or LTB) is a promising material for both radiation dosimetry and neutron detection applications. LTB crystals can be grown pure or doped with different impurities including transition-metal and rare-earth ions. Research in this dissertation focuses on undoped LTB crystals and LTB crystals doped with copper and silver. Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to characterize point defects in the lithium tetraborate crystals. Thermoluminescence (TL), photoluminescence (PL), photoluminescence excitation (PLE), and optical absorption (OA) are also used. An intrinsic hole trap associated with lithium vacancies is characterized with EPR and ENDOR and its thermal stability is determined using thermoluminescence. A "perturbed" hole trap due to Ag2+ ions is characterized in doped crystals using EPR data alone. This method is tested on a previously studied hole center where both EPR and ENDOR were used. New x-ray induced centers are identified in copper-doped crystals. These include two Cu 2+ hole centers and two Cu0 electron centers. These centers are characterized with EPR and their thermal stability explains TL peaks in glow curves. Finally, a comprehensive study utilizing EPR, OA, PL, and PLE data provide convincing explanations for the absorption and emission features of silver-doped crystals.

  17. A large-area lithium-fluoride Bragg spectrometer for stellar X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Stockman, H. S., Jr.; Woodgate, B. E.; Nidey, R. A.; Angel, J. R. P.

    1975-01-01

    A large-area Bragg spectrometer used to search for the Fe XXV X-ray emission lines of Sco X-1 is described. The device has 3400 sq cm of LiF on nine crystal panels aligned perpendicular to the longitudinal axis of the rocket. X rays satisfying the Bragg condition reflect into an array of nine companion proportional counters. A pointing system incorporating a free gyroscope with 2 degrees of freedom assures that target X rays are reflected at the required angle and produces repeated spectral scans of the X-ray continuum, which are later superimposed to correct temporal effects. The instrument is capable of detecting a narrow line flux from Sco X-1 of about .01 photons/sq cm/sec.

  18. RETRACTED: Crystal growth and spectroscopic characterization of Aloevera amino acid added lithium sulfate monohydrate: A non-linear optical crystal

    NASA Astrophysics Data System (ADS)

    Manimekalai, R.; Antony Joseph, A.; Ramachandra Raja, C.

    2014-03-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of authors. According to the author we have reported Aloevera Amino Acid added Lithium sulphate monohydrate [AALSMH] crystal is a new nonlinear optical crystal. From the recorded high performance liquid chromatography spectrum, by matching the retention times with the known compounds, the amino acids present in our extract are identified as homocystine, isoleucine, serine, leucine and tyrosine. From the thin layer chromatography and colorimetric estimation techniques, presence of isoleucine was identified and it was also confirmed by NMR spectrum. From the above studies, we came to conclude that AALSMH is new nonlinear optical crystal. After further investigation, lattice parameter values of AALSMH are coinciding with lithium sulphate. Therefore we have decided to withdraw our paper. Sorry for the inconvenience and time spent.

  19. Lithium

    USGS Publications Warehouse

    Ober, J.

    1998-01-01

    The lithium industry can be divided into two sectors: ore concentrate producers and chemical producers. Ore concentrate producers mine lithium minerals. They beneficiate the ores to produce material for use in ceramics and glass manufacturing.

  20. Non-Isothermal Calorimetric Studies of the Crystallization of Lithium Disilicate Glass

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Day, D. E.; Huang, W.; Narayan, K. Lakshmi; Cull, T. S.; Kelton, K. F.

    1996-01-01

    The influence of preannealing treatments on the polymorphic crystallization of lithium disilicate glasses is examined. As expected, glasses heated at different rates through the temperature range where there is significant nucleation develop widely different numbers of nuclei. This can dramatically influence the stability and transformation characteristics of the annealed glass. Non-isothermal differential scanning calorimetry (DSC) and differential thermal analysis (DTA) measurements are demonstrated to be useful to probe the nucleation behavior. The first systematic investigations of particle size effects on the non-isothermal transformation behavior are presented and discussed. Based on DTA and microscopy experiments, we show that small particles of lithium disilicate glasses crystallize primarily by surface crystallization. The relative importance of surface versus volume crystallization is examined by varying particle size, by introducing nucleating agents and by exposing glasses to atmospheres of different water content. These data are analyzed quantitatively using a numerical model developed in a second paper following in this volume.

  1. One-Step Synthesis of Titanium Oxyhydroxy-Fluoride Rods and Research on the Electrochemical Performance for Lithium-ion Batteries and Sodium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Li, Biao; Gao, Zhan; Wang, Dake; Hao, Qiaoyan; Wang, Yan; Wang, Yongkun; Tang, Kaibin

    2015-10-01

    Titanium oxyhydroxy-fluoride, TiO0.9(OH)0.9F1.2 · 0.59H2O rods with a hexagonal tungsten bronze (HTB) structure, was synthesized via a facile one-step solvothermal method. The structure, morphology, and component of the products were characterized by X-ray powder diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), ion chromatograph, energy-dispersive X-ray (EDX) analyses, and so on. Different rod morphologies which ranged from nanoscale to submicron scale were simply obtained by adjusting reaction conditions. With one-dimension channels for Li/Na intercalation/de-intercalation, the electrochemical performance of titanium oxyhydroxy-fluoride for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) was also studied. Electrochemical tests revealed that, for LIBs, titanium oxyhydroxy-fluoride exhibited a stabilized reversible capacity of 200 mAh g-1 at 25 mA g-1 up to 120 cycles in the electrode potential range of 3.0-1.2 V and 140 mAh g-1 at 250 mA g-1 up to 500 cycles, especially; for SIBs, a high capacity of 100 mAh g-1 was maintained at 25 mA g-1 after 115 cycles in the potential range of 2.9-0.5 V.

  2. Spectral diversity crystalline fluoride lasers

    SciTech Connect

    Jenssen, H.P.; Gabbe, D.R.; Linz, A.; Naiman, C.S.

    1981-01-01

    Within the realm of crystalline laser materials, the class of fluorides distinguishes itself mostly by the wide variety of laser wavelengths displayed. Laser operation has now been reported from 3.9 micrometers in the infrared to 286 nm in the ultraviolet. Many are operated flash-lamp pumped, while others have shown high utility as linear down conversion lasers and rare earth ion, while others are sensitized by other co-dopants which absorb the pump energy and transfer it to the active laser ions. The potential of large spectral diversity for laser operation is due both to the wide window of transparency that fluorides possess and the lower rates of nonradiative decay. The high band gap in the ultraviolet also leads to low linear absorption, low nonlinear refractive indices and multiphoton absorption. Additionally, the good chemical stability displayed by high-purity stoichiometric fluoride compounds allows their use with ultraviolet pump sources at high energies, without incurring UV-induced damage. The most recent research associated with such materials, particularly the host crystal, lithium yttrium fluoride, LiYF4 (YLF) is reviewed.

  3. Method of forming single crystals of beta silicon carbide using liquid lithium as a solvent

    DOEpatents

    Lundberg, Lynn B.

    1982-01-01

    A method of growing single crystals of beta SiC from solution using molten lithium as a solvent for polycrystalline SiC feed material. Reasonable growth rates are accomplished at temperatures in the range of about 1330.degree. C. to about 1500.degree. C.

  4. Zirconium dioxide nanofilled poly(vinylidene fluoride-hexafluoropropylene) complexed with lithium trifluoromethanesulfonate as composite polymer electrolyte for electrochromic devices

    SciTech Connect

    Puguan, John Marc C.; Chinnappan, Amutha; Kostjuk, Sergei V.; Kim, Hern

    2015-09-15

    Highlights: • Successful synthesis of electrolyte by blending PVdF-HFP, ZrO{sub 2} and LiCF{sub 3}SO{sub 3}. • ZrO{sub 2} increased electrolyte conductivity by two orders of magnitude. • ZrO{sub 2} doubled bulk mechanical strength of electrolyte in terms of Young’s modulus. • Electrolytes gave a optimum optical transmittance of 52.6%. - Abstract: Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) polymer electrolyte containing zirconium dioxide nanocrystals (ZrO{sub 2}-NC) and lithium trifluoromethanesulfonate (LiCF{sub 3}SO{sub 3}) has been synthesized using the conventional solution casting method. The addition of ZrO2-NC into the polymeric substrate gave remarkable properties in terms of the electrolyte’s ionic conductivity as well as its bulk mechanical strength. The enhanced amorphicity of the polymeric substrate due to ZrO{sub 2} and the nanofiller’s high dielectric constant make an excellent combination to increase the ionic conductivity (above 10{sup −4} S cm{sup −1}). Increasing the nanofiller content raises the ionic conductivity of the electrolyte by two orders of magnitude of which the optimum is 2.65 × 10{sup −4} S cm{sup −1} at 13.04 wt% ZrO{sub 2}-NC loading. Also, the Young’s modulus, an indicator of electrolyte’s mechanical stability, dramatically increased to 207 MPa upon loading 13.04 wt% ZrO{sub 2}-NC. Using UV–vis spectroscopy, the electrolytes with 13.04% ZrO{sub 2}-NC scanned from 200–800 nm wavelengths exhibited a maximum optical transmittance of 52.6% at 10 μm film thickness. The enhanced conductivity, high mechanical strength and reasonable optical transmittance shown by our composite polymer electrolyte make an excellent electrolyte for future energy saving smart windows such as electrochromic devices.

  5. Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals

    NASA Astrophysics Data System (ADS)

    Liu, Youwen; Kitamura, Kenji; Takekawa, Shunji; Nakamura, Masaru; Furukawa, Yasunori; Hatano, Hideki

    2004-06-01

    The two-color photorefractive properties in undoped as-grown near-stoichiometric lithium tantalate crystals were investigated, where a near-infrared laser and a cw ultraviolet beam were used for writing and gating, respectively. The key parameters in characterizing two-color photorefractive effect, light-induced absorption change, two-color sensitivity, refractive index change, readout characteristics, and dark decay were measured by changing intensities of gating and writing beams, wavelengths of gating and writing beams for the crystals with different near-stoichiometric crystal compositions, and proton concentrations. The results showed that there exists an optimal crystal composition of around 49.65% for both sensitivity and refractive index change together with moderate lifetime of small polarons. The achieved refractive index change was on the order of 10-4, and the obtained maximum sensitivity was 0.18 cm/J. The extrapolated lifetime of holograms at room temperature in the crystals without observable OH- absorption was longer than 50 yr. The measurements of UV-induced absorption change at room temperature and low temperature of 77.3 K suggested that the unintentional impurity of Fe and intrinsic defects were responsible for two-color photorefractive effect. The excellent two-color photorefractive properties of undoped as-grown near-stoichiometric lithium tantalate crystals were discussed based on this mechanism and the physical properties of lithium tantalate.

  6. Growth of negative solubility lithium sulfate monohydrate crystal by slow evaporation and Sankaranarayanan-Ramasamy method

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Rajesh, P.; Ramasamy, P.

    2012-04-01

    Single crystals of negatively soluble lithium sulfate monohydrate (LSMH) have been grown by conventional and Sankaranarayanan-Ramasamy (SR) methods. A negatively soluble material has been grown for the first time by the SR method. The size of the grown crystal is 40 mm length and 15 mm diameter. The solubility of the material has been found at different temperatures. The grown crystals were subjected to high resolution X-ray diffraction studies, UV-vis analysis, dielectric measurements, Vickers micro-hardness, piezoelectric measurements, laser damage threshold and second harmonic generation studies. Crystalline perfection of the grown crystals was analyzed using HRXRD. The grown crystals were found to be transparent in the entire visible region. The SR method grown crystal has higher hardness, lower dielectric loss, higher piezoelectric charge coefficient and higher laser stability compared to the conventional method grown crystal. The powder Kurtz method confirms that LSMH has SHG efficiency.

  7. Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Meng, Qinglong; Zhang, Bin; Zhong, Sencheng; Zhu, Liguo

    2016-06-01

    The damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses has been studied theoretically and experimentally. Firstly, the model for the damage threshold prediction of crystal materials based on the improved rate equation has been proposed. Then, the experimental measure method of the damage threshold of crystal materials has been given in detail. On the basis, the variation of the damage threshold of lithium niobate crystal with the pulse duration has also been analyzed quantitatively. Finally, the damage threshold of lithium niobate crystal under multiple laser pulses has been measured and compared to the theoretical results. The results show that the transmittance of lithium niobate crystal is almost a constant when the laser pulse fluence is relative low, whereas it decreases linearly with the increase in the laser pulse fluence below the damage threshold. The damage threshold of lithium niobate crystal increases with the increase in the duration of the femtosecond laser pulse. And the damage threshold of lithium niobate crystal under multiple laser pulses is obviously lower than that irradiated by a single laser pulse. The theoretical data fall in good agreement with the experimental results.

  8. Growth and characterization of pure and semiorganic nonlinear optical Lithium Sulphate admixtured l-alanine crystal

    NASA Astrophysics Data System (ADS)

    Vela, T.; Selvarajan, P.; Freeda, T. H.; Balasubramanian, K.

    2013-04-01

    Lithium sulphate admixtured l-alanine (LSLA) salt was synthesized and the solubility of the commercially available l-alanine and the synthesized LSLA sample was determined in de-ionized water at various temperatures. In accordance with the solubility data, the saturated aqueous solutions of l-alanine and lithium admixtured l-alanine were prepared separately and the single crystals of the samples were grown by the solution method with a slow evaporation technique. Studying single x-ray diffraction shows that pure and LSLA crystal belong to the orthorhombic system with a non-centrosymmetric space group P212121. Using the powder x-ray diffraction study, the crystallinity of the grown crystals is confirmed and the diffraction peaks are indexed. The various functional groups present in the pure and LSLA crystal are elucidated from Fourier transform infrared spectroscopy study. UV-visible transmittance is recorded to study the optical transmittance range for the grown crystals. The powder second harmonic generation test confirms the nonlinear optical property of the grown crystals. From the microhardness test, the hardness of the grown crystals is estimated. The dielectric behaviour, such as the dielectric constant and the loss of the sample, are measured as a function of temperature and frequency. The ac conductivity of the grown crystals is also studied and the activation energy is calculated.

  9. Shape of isolated domains in lithium tantalate single crystals at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Chezganov, D. S.; Lobov, A. I.; Baturin, I. S.; Smirnov, M. M.

    2013-12-01

    The shape of isolated domains has been investigated in congruent lithium tantalate (CLT) single crystals at elevated temperatures and analyzed in terms of kinetic approach. The obtained temperature dependence of the growing domain shape in CLT including circular shape at temperatures above 190 °C has been attributed to increase of relative input of isotropic ionic conductivity. The observed nonstop wall motion and independent domain growth after merging in CLT as opposed to stoichiometric lithium tantalate have been attributed to difference in wall orientation. The computer simulation has confirmed applicability of the kinetic approach to the domain shape explanation.

  10. Shape of isolated domains in lithium tantalate single crystals at elevated temperatures

    SciTech Connect

    Shur, V. Ya. Akhmatkhanov, A. R.; Baturin, I. S.; Chezganov, D. S.; Lobov, A. I.; Smirnov, M. M.

    2013-12-09

    The shape of isolated domains has been investigated in congruent lithium tantalate (CLT) single crystals at elevated temperatures and analyzed in terms of kinetic approach. The obtained temperature dependence of the growing domain shape in CLT including circular shape at temperatures above 190 °C has been attributed to increase of relative input of isotropic ionic conductivity. The observed nonstop wall motion and independent domain growth after merging in CLT as opposed to stoichiometric lithium tantalate have been attributed to difference in wall orientation. The computer simulation has confirmed applicability of the kinetic approach to the domain shape explanation.

  11. Change in the structural imperfection of lithium niobate crystals doped with zinc

    SciTech Connect

    Litvinova, V. A. Litvinova, M. N.

    2015-01-15

    The changes in the degree of structural imperfection of lithium niobate (LiNbO{sub 3}) single crystals with an increase in the Li content and doping with zinc (to 1 wt %) have been investigated by the nonlinear optics methods and Raman spectroscopy. The conversion of broadband IR radiation in LiNbO{sub 3} crystals under noncritical (90°) phase-matching condition with vector interactions implemented is investigated. It is shown that the conversion efficiency, spectral width, and the position of maximum in the converted radiation spectrum depend on the ratio R = Li/Nb in LiNbO{sub 3} crystal and the impurity concentration.

  12. Growth and characterization of new semiorganic nonlinear optical and piezoelectric lithium sulfate monohydrate oxalate single crystals

    SciTech Connect

    Yadav, Harsh; Sinha, Nidhi; Kumar, Binay

    2015-04-15

    Highlights: • A new semiorganic single crystal of LSO grown by slow evaporation technique. • Morphological studies of the LSO crystal deduced by BFDH law. • In the UV–vis spectrum wide transparent region and large band gap were found. • SHG is equal to KDP crystal and d{sub 33} was found to be equal to 6pC/N. • Grown crystal belongs to softer category. - Abstract: New semiorganic crystal of lithium sulfate monohydrate oxalate (LSO) for nonlinear application was synthesized by controlled slow evaporation method. The growth rate of various planes of the grown crystal was estimated by morphological study. Single crystal XRD analysis confirmed that the crystal belongs to triclinic lattice with space group P1. High transparency (∼95%) with large band gap (4.57 eV) was analyzed by UV–vis studies. FTIR and Raman spectroscopy were used to identify various functional groups present in the LSO crystal. SHG efficiency was found to be equal to the KDP crystal. Thermal stability (up to 117.54 °C) and melting point (242 °C) of the crystal were studied by TG-DTA. In dielectric measurements, the value of dielectric constant decreases with increase in frequency. Hardness studies confirmed soft nature of crystals. The piezoelectric coefficient was found to be 6pC/N along [0 0 1].

  13. Mechanical stresses and crystallization of lithium phosphorous oxynitride-coated germanium electrodes during lithiation and delithiation

    NASA Astrophysics Data System (ADS)

    Al-Obeidi, Ahmed; Kramer, Dominik; Mönig, Reiner; Thompson, Carl V.

    2016-02-01

    The evolution of mechanical stresses during the cycling of lithium phosphorous oxynitride (LiPON) coated germanium thin film electrodes was monitored using substrate curvature measurements. By coating germanium thin films with LiPON, morphology evolution, e.g. crack and island formation, can be strongly suppressed. LiPON-coated germanium thin film electrodes can retain their planar form during cycling, resulting in a clear and reproducible stress response originating primarily from the electrochemical processes occurring during lithiation and delithiation. Together with the electrochemical data, stress measurements were used to infer mechanisms underlying the alloying of lithium with germanium. The stress signatures associated with individual phases, crystallization, and amorphization of lithium-germanium alloys are reported and discussed.

  14. Towards an ab initio description of the charge transfer between a proton and a lithium fluoride surface: A quantum chemistry approach

    NASA Astrophysics Data System (ADS)

    Tiwald, P.; Gräfe, S.; Burgdörfer, J.; Wirtz, L.

    2013-12-01

    We study the non-adiabatic charge transfer dynamics during the collision of a slow proton with a lithium fluoride surface employing a quantum-chemistry based dynamics approach. The surface is modeled by an Li5F1 + H+ cluster embedded in a large matrix of point charges. Going beyond the adiabatic (or Born-Oppenheimer) approximation, we apply multi-reference configuration-interaction methods that allow for the calculation of ground and excited states of the embedded cluster as well as of the non-adiabatic couplings between them. This information serves as input for the determination of the neutralization probability of a proton scattered off a LiF surface using Tully's semi-classical surface hopping algorithm.

  15. Lithium

    MedlinePlus

    ... bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal moods). Lithium ... Lithium is also sometimes used to treat depression, schizophrenia (a mental ... emotions), disorders of impulse control (inability to resist the urge ...

  16. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode.

    PubMed

    Yan, Kai; Lee, Hyun-Wook; Gao, Teng; Zheng, Guangyuan; Yao, Hongbin; Wang, Haotian; Lu, Zhenda; Zhou, Yu; Liang, Zheng; Liu, Zhongfan; Chu, Steven; Cui, Yi

    2014-10-01

    Stable cycling of lithium metal anode is challenging due to the dendritic lithium formation and high chemical reactivity of lithium with electrolyte and nearly all the materials. Here, we demonstrate a promising novel electrode design by growing two-dimensional (2D) atomic crystal layers including hexagonal boron nitride (h-BN) and graphene directly on Cu metal current collectors. Lithium ions were able to penetrate through the point and line defects of the 2D layers during the electrochemical deposition, leading to sandwiched lithium metal between ultrathin 2D layers and Cu. The 2D layers afford an excellent interfacial protection of Li metal due to their remarkable chemical stability as well as mechanical strength and flexibility, resulting from the strong intralayer bonds and ultrathin thickness. Smooth Li metal deposition without dendritic and mossy Li formation was realized. We showed stable cycling over 50 cycles with Coulombic efficiency ∼97% in organic carbonate electrolyte with current density and areal capacity up to the practical value of 2.0 mA/cm(2)and 5.0 mAh/cm(2), respectively, which is a significant improvement over the unprotected electrodes in the same electrolyte. PMID:25166749

  17. Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study.

    PubMed

    Okuno, Yukihiro; Ushirogata, Keisuke; Sodeyama, Keitaro; Tateyama, Yoshitaka

    2016-03-28

    Additives in the electrolyte solution of lithium-ion batteries (LIBs) have a large impact on the performance of the solid electrolyte interphase (SEI) that forms on the anode and is a key to the stability and durability of LIBs. We theoretically investigated effects of fluoroethylene carbonate (FEC), a representative additive, that has recently attracted considerable attention for the enhancement of cycling stability of silicon electrodes and the improvement of reversibility of sodium-ion batteries. First, we intensively examined the reductive decompositions by ring-opening, hydrogen fluoride (HF) elimination to form a vinylene carbonate (VC) additive and intermolecular chemical reactions of FEC in the ethylene carbonate (EC) electrolyte, by using density functional theory (DFT) based molecular dynamics and the blue-moon ensemble technique for the free energy profile. The results show that the most plausible product of the FEC reductive decomposition is lithium fluoride (LiF), and that the reactivity of FEC to anion radicals is found to be inert compared to the VC additive. We also investigated the effects of the generated LiF on the SEI by using two model systems; (1) LiF molecules distributed in a model aggregate of organic SEI film components (SFCs) and (2) a LiF aggregate interfaced with the SFC aggregate. DFT calculations of the former system show that F atoms form strong bindings with the Li atoms of multiple organic SFC molecules and play as a joint connecting them. In the latter interface system, the LiF aggregate adsorbs the organic SFCs through the F-Li bindings. These results suggest that LiF moieties play the role of glue in the organic SFC within the SEI film. We also examined the interface structure between a LiF aggregate and a lithiated silicon anode, and found that they are strongly bound. This strong binding is likely to be related to the effectiveness of the FEC additive in the electrolyte for the silicon anode. PMID:26948716

  18. Identification of electron and hole traps in lithium tetraborate (Li2B4O7) crystals: Oxygen vacancies and lithium vacancies

    NASA Astrophysics Data System (ADS)

    Swinney, M. W.; McClory, J. W.; Petrosky, J. C.; Yang, Shan; Brant, A. T.; Adamiv, V. T.; Burak, Ya. V.; Dowben, P. A.; Halliburton, L. E.

    2010-06-01

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to identify and characterize electrons trapped by oxygen vacancies and holes trapped by lithium vacancies in lithium tetraborate (Li2B4O7) crystals. Our study includes a crystal with the natural abundances of B10 and B11 and a crystal highly enriched with B10. The as-grown crystals contain isolated oxygen vacancies, lithium vacancies, and copper impurities, all in nonparamagnetic charge states. During an irradiation at 77 K with 60 kV x-rays, doubly ionized oxygen vacancies trap electrons while singly ionized lithium vacancies and monovalent copper impurities trap holes. The vacancies return to their preirradiation charge states when the temperature of the sample is increased to approximately 90 K. Hyperfine interactions with B10 and B11 nuclei, observed between 13 and 40 K in the radiation-induced EPR and ENDOR spectra, provide models for the two vacancy-related defects. The electron trapped by an oxygen vacancy is localized primarily on only one of the two neighboring boron ions while the hole stabilized by a lithium vacancy is localized on a neighboring oxygen ion with nearly equal interactions with the two boron ions adjacent to the oxygen ion.

  19. Effects of Nanoporous Anodic Alumina Oxide on the Crystallization and Melting Behavior of Poly(vinylidene fluoride).

    PubMed

    Dai, Xiying; Niu, Jiali; Ren, Zhongjie; Sun, Xiaoli; Yan, Shouke

    2016-02-01

    Poly(vinylidene fluoride) (PVDF) nanotubes were fabricated by melt-wetting into porous anodic aluminum oxide (AAO) templates with two different interfacial properties: one is pristine AAO, and the other is modified by FOTS (AAO-F). Their crystallization and melting behaviors are compared with those of a bulk sample. For the PVDF in AAO-F, the nonisothermal crystallization temperature is slightly lower than that of bulk, and the melting temperature is similar to that of bulk. For the PVDF in pristine AAO, when the pore diameter is 200 nm, the crystallization is induced by two kinds of nucleation: heterogeneous nucleation and interface-induced nucleation. On the contrary, in the AAO template with pore diameter smaller than 200 nm, only interface-induced nucleation occurs. The melting temperature of PVDF crystals in the pristine AAO is much higher than that of bulk which can be attributed to the presence of an interfacial layer of PVDF on the template inner surface. The interaction between PVDF and AAO template produces the interfacial layer. Such an interfacial layer plays an important role in enhancing the melting temperature of PVDF crystals. The higher melting peak is always observed when the PVDF is nonisothermally crystallized in the AAO template irrespective of the thermal erasing temperature suggesting the interfacial layer is very stable on the AAO template surface. If the PVDF nanostructures are released from AAO template, the higher melting peak disappears with the enhancement of thermal erasing temperature. PMID:26745857

  20. Synthesis, structure, crystal growth and characterization of a novel semiorganic nonlinear optical l-proline lithium bromide monohydrate single crystal.

    PubMed

    Sathiskumar, S; Balakrishnan, T; Ramamurthi, K; Thamotharan, S

    2015-03-01

    l-Proline lithium bromide monohydrate (LPLBM), a promising semiorganic nonlinear optical material, was synthesized and single crystals of LPLBM were grown from solution by slow evaporation technique. Single crystal X-ray structure solution reveals that the grown crystal belongs to monoclinic system with space group P21. Presence of various functional groups was identified by FT-IR and FT-Raman spectral analyses. UV-Vis-NIR spectroscopic study shows that the LPLBM crystal possesses 90% of transmittance in the range of 250-1100nm. Vickers microhardness values, the dielectric constant and dielectric loss of the LPLBM crystal were reported. Elemental analysis by energy dispersive X-ray analysis shows the presence of carbon, nitrogen, oxygen and bromine. The surface morphology of the crystal was investigated using scanning electron microscopic study. The thermal stability of the LPLBM crystal was studied from TGA and DSC analysis. Second harmonic generation efficiency of the LPLBM crystal measured by Kurtz and Perry powder technique using Nd:YAG laser is about 0.3 times that of urea. PMID:25498813

  1. Synthesis, structure, crystal growth and characterization of a novel semiorganic nonlinear optical L-proline lithium bromide monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Sathiskumar, S.; Balakrishnan, T.; Ramamurthi, K.; Thamotharan, S.

    2015-03-01

    L-Proline lithium bromide monohydrate (LPLBM), a promising semiorganic nonlinear optical material, was synthesized and single crystals of LPLBM were grown from solution by slow evaporation technique. Single crystal X-ray structure solution reveals that the grown crystal belongs to monoclinic system with space group P21. Presence of various functional groups was identified by FT-IR and FT-Raman spectral analyses. UV-Vis-NIR spectroscopic study shows that the LPLBM crystal possesses 90% of transmittance in the range of 250-1100 nm. Vickers microhardness values, the dielectric constant and dielectric loss of the LPLBM crystal were reported. Elemental analysis by energy dispersive X-ray analysis shows the presence of carbon, nitrogen, oxygen and bromine. The surface morphology of the crystal was investigated using scanning electron microscopic study. The thermal stability of the LPLBM crystal was studied from TGA and DSC analysis. Second harmonic generation efficiency of the LPLBM crystal measured by Kurtz and Perry powder technique using Nd:YAG laser is about 0.3 times that of urea.

  2. One-Step Synthesis of Titanium Oxyhydroxy-Fluoride Rods and Research on the Electrochemical Performance for Lithium-ion Batteries and Sodium-ion Batteries.

    PubMed

    Li, Biao; Gao, Zhan; Wang, Dake; Hao, Qiaoyan; Wang, Yan; Wang, Yongkun; Tang, Kaibin

    2015-12-01

    Titanium oxyhydroxy-fluoride, TiO0.9(OH)0.9F1.2 · 0.59H2O rods with a hexagonal tungsten bronze (HTB) structure, was synthesized via a facile one-step solvothermal method. The structure, morphology, and component of the products were characterized by X-ray powder diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), ion chromatograph, energy-dispersive X-ray (EDX) analyses, and so on. Different rod morphologies which ranged from nanoscale to submicron scale were simply obtained by adjusting reaction conditions. With one-dimension channels for Li/Na intercalation/de-intercalation, the electrochemical performance of titanium oxyhydroxy-fluoride for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) was also studied. Electrochemical tests revealed that, for LIBs, titanium oxyhydroxy-fluoride exhibited a stabilized reversible capacity of 200 mAh g(-1) at 25 mA g(-1) up to 120 cycles in the electrode potential range of 3.0-1.2 V and 140 mAh g(-1) at 250 mA g(-1) up to 500 cycles, especially; for SIBs, a high capacity of 100 mAh g(-1) was maintained at 25 mA g(-1) after 115 cycles in the potential range of 2.9-0.5 V. PMID:26474890

  3. Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film

    SciTech Connect

    Wang, Jun Gou, Jun; Li, Weizhi

    2014-02-15

    Research on room temperature terahertz (THz) detector is essential for promoting the application of THz science and technology. Both lithium tantalate crystal (LiTaO{sub 3}) and lithium tantalate thin film were used to fabricate the THz detector in this paper. Polishing process were used to reduce the thickness of LiTaO{sub 3} crystal slice by chemical mechanical polishing techniques and an improved sol-gel process was used to obtain high concentration LiTaO{sub 3} precursor solution to fabricate LiTaO{sub 3} thin film. Three dimension models of two THz detectors were set up and the temperature increasing map of two devices were simulated using finite element method. The lowest noise equivalent power value for terahertz detector using pyroelectric material reaches 6.8 × 10{sup −9} W at 30 Hz operating frequency, which is suitable for THz imaging application.

  4. Growth and characterization of lithium yttrium borate single crystals

    SciTech Connect

    Singh, A. K.; Singh, S. G.; Tyagi, M.; Desai, D. G.; Sen, Shashwati

    2014-04-24

    Single crystals of 0.1% Ce doped Li{sub 6}Y(BO{sub 3}){sub 3} have been grown using the Czochralski technique. The photoluminescence study of these crystals shows a broad emission at ∼ 420 nm corresponding to Ce{sub 3+} emission from 5d→4f energy levels. The decay profile of this emission shows a fast response of ∼ 28 ns which is highly desirable for detector applications.

  5. Spectroscopic and Crystal Field Consequences of Fluoride Binding by [Yb⋅DTMA]3+ in Aqueous Solution

    PubMed Central

    Blackburn, Octavia A; Chilton, Nicholas F; Keller, Katharina; Tait, Claudia E; Myers, William K; McInnes, Eric J L; Kenwright, Alan M; Beer, Paul D; Timmel, Christiane R; Faulkner, Stephen

    2015-01-01

    Yb⋅DTMA forms a ternary complex with fluoride in aqueous solution by displacement of a bound solvent molecule from the lanthanide ion. [Yb⋅DTMA⋅F]2+ and [Yb⋅DTMA⋅OH2]3+ are in slow exchange on the relevant NMR timescale (<2000 s−1), and profound differences are observed in their respective NMR and EPR spectra of these species. The observed differences can be explained by drastic modification of the ligand field states due to the fluoride binding. This changes the magnetic anisotropy of the YbIII ground state from easy-axis to easy-plane type, and this change is easily detected in the observed magnetic anisotropy despite thermal population of more than just the ground state. The spectroscopic consequences of such drastic changes to the ligand field represent important new opportunities in developing fluoride-responsive complexes and contrast agents. PMID:26223970

  6. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing

    SciTech Connect

    Kubasov, I. V. Timshina, M. S.; Kiselev, D. A.; Malinkovich, M. D.; Bykov, A. S.; Parkhomenko, Yu. N.

    2015-09-15

    The interdomain region of a bidomain strucrture formed in 127°-cut lithium niobate single crystals using light annealing has been studied by optical and scanning probe microscopies. A periodic subdomain structure on the 180° macrodomain wall is visualized by piezoresponse force microscopy. The piezoresponse signal (polarization) is shown to be a power-law function of the domain width with an exponent n = 0.53.

  7. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  8. Novel electrospun poly(vinylidene fluoride- co-hexafluoropropylene)-in situ SiO 2 composite membrane-based polymer electrolyte for lithium batteries

    NASA Astrophysics Data System (ADS)

    Raghavan, Prasanth; Choi, Jae-Won; Ahn, Jou-Hyeon; Cheruvally, Gouri; Chauhan, Ghanshyam S.; Ahn, Hyo-Jun; Nah, Changwoon

    Composite membranes of poly(vinylidene fluoride- co-hexafluoropropylene) {P(VdF-HFP)} and different composition of silica have been prepared by electrospinning polymer solution containing in situ generated silica. These membranes are made up of fibers of 1-2 μm diameters. These fibers are stacked in layers to produce fully interconnected pores that results in high porosity. Polymer electrolytes were prepared by immobilizing 1 M LiPF 6 in ethylene carbonate (EC)/dimethyl carbonate (DMC) in the membranes. The composite membranes exhibit a high electrolyte uptake of 550-600%. The optimum electrochemical properties have been observed for the polymer electrolyte containing 6% in situ silica to show ionic conductivity of 8.06 mS cm -1 at 20 °C, electrolyte retention ratio of 0.85, anodic stability up to 4.6 V versus Li/Li +, and a good compatibility with lithium metal resulting in low interfacial resistance. A first cycle specific capacity of 170 mAh g -1 was obtained when the polymer electrolyte was evaluated in a Li/lithium iron phosphate (LiFePO 4) cell at 0.1 C-rate at 25 °C, corresponding to 100% utilization of the cathode material. The properties of composite membrane prepared with in situ silica were observed to be comparatively better than the one prepared by direct addition of silica.

  9. Closely packed x-poly(ethylene glycol diacrylate) coated polyetherimide/poly(vinylidene fluoride) fiber separators for lithium ion batteries with enhanced thermostability and improved electrolyte wettability

    NASA Astrophysics Data System (ADS)

    Zhai, Yunyun; Xiao, Ke; Yu, Jianyong; Ding, Bin

    2016-09-01

    The x-polyethylene glycol diacrylate (x-PEGDA) coated polyetherimide/polyvinylidene fluoride (PEI/PVdF) membranes are obtained by the facile combination of dip-coating and free radical polymerization of PEGDA on the electrospun PEI/PVdF fiber membranes. Successful cross-linking of PEGDA increases the average fibers diameter from 553 to 817 nm and reduces the packing density, which not only increases the tensile strength of x-PEGDA coated PEI/PVdF membranes, but also decreases the average pore diameter. Besides, the x-PEGDA coated PEI/PVdF membranes are endowed with good wettability, high electrolyte uptake, high ionic conductivity and improved electrochemical stability window because of the good affinity of PEI and PEGDA with liquid electrolyte. Benefiting from the synergetic effect of PEI and PVdF, the x-PEGDA coated PEI/PVdF membranes exhibit excellent thermal stability and nonflammability, which are beneficial for enhancing the safety of lithium ion batteries. More importantly, the x-PEGDA coated PEI/PVdF membranes based Li/LiFePO4 cell exhibits comparable cycling stability with capacity retention of 95.9% after 70 cycles and better rate capability compared with the Celgard membrane based cell. The results clearly demonstrate that the x-PEGDA coated PEI/PVdF membranes are the promising separator candidate with improved wettability and safety for next-generation lithium ion batteries.

  10. Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals

    SciTech Connect

    Ying, C. Y. J.; Mailis, S.; Daniell, G. J.; Steigerwald, H.; Soergel, E.

    2013-08-28

    The impact of UV laser irradiation on the distribution of lithium ions in ferroelectric lithium niobate single crystals has been numerically modelled. Strongly absorbed UV radiation at wavelengths of 244–305 nm produces steep temperature gradients which cause lithium ions to migrate and result in a local variation of the lithium concentration. In addition to the diffusion, here the pyroelectric effect is also taken into account which predicts a complex distribution of lithium concentration along the c-axis of the crystal: two separated lithium deficient regions on the surface and in depth. The modelling on the local lithium concentration and the subsequent variation of the coercive field are used to explain experimental results on the domain inversion of such UV treated lithium niobate crystals.

  11. Fluoridation Basics

    MedlinePlus

    ... Water Fluoridation Journal Articles for Community Water Fluoridation Water Fluoridation Basics Recommend on Facebook Tweet Share Compartir ... because of tooth decay. History of Fluoride in Water In the 1930s, scientists examined the relationship between ...

  12. Synthesis, growth, optical, dielectric and thermal studies of lithium hydrogen phthalate dihydrate crystals

    NASA Astrophysics Data System (ADS)

    Senthil, A.; Ramasamy, P.; Bhagavannarayana, G.

    2009-04-01

    The semi-organic lithium hydrogen phthalate dihydrate (LHP dihydrate) was synthesized. The LHP dihydrate single crystal was grown by slow evaporation solution technique with water as solvent. Transparent, colourless crystal of size 10 mm×10 mm×50 mm with well-defined morphology was grown. The grown crystals were characterized by powder and single-crystal X-ray diffraction, FT-IR, UV-vis, fluorescence, dielectric, TG/DTA and micro hardness studies. The crystal structure and the unit cell parameters were analyzed from the X-ray diffraction studies. The structural perfection of the grown crystal has been analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. The FT-IR spectrum analysis has confirmed the functional group in the LHP dihydrate single crystals. The range and percentage of optical transmission are ascertained by recording the UV-vis spectrum. The thermal behavior of the crystals has been investigated by TG/DTA analysis.

  13. Kinetics effects in lithium-potassium tantalate crystals

    NASA Astrophysics Data System (ADS)

    Doussineau, P.; Levelut, A.; Ziolkiewicz, S.

    1996-03-01

    The study of the dielectric and acoustic constants, performed in a K0.99Li0.01TaO3 crystal between 4 and 30 K, puts in evidence a strong analogy between the kinetics of these two susceptibilities. In particular, the two characteristic times measured for each of them have near values and they are roughly constant in all the temperature range. An explanation in terms of tetragonal domains, with quadrupolar order and dipolar disorder, is suggested.

  14. Growth and properties of Lithium Salicylate single crystals

    SciTech Connect

    Zaitseva, N; Newby, J; Hull, G; Saw, C; Carman, L; Cherepy, N; Payne, S

    2009-02-13

    An attractive feature of {sup 6}Li containing fluorescence materials that determines their potential application in radiation detection is the capture reaction with slow ({approx}< 100 keV) neutrons: {sup 6}Li + n = {sup 4}He + {sup 3}H + 4.8MeV. The use of {sup 6}Li-salicylate (LiSal, LiC{sub 6}H{sub 5}O{sub 3}) for thermal neutron detection was previously studied in liquid and polycrystalline scintillators. The studies showed that both liquid and polycrystalline LiSal scintillators could be utilized in pulse shape discrimination (PSD) techniques that enable separation of neutrons from the background gamma radiation. However, it was found that the efficiency of neutron detection using LiSal in liquid solutions was severely limited by its low solubility in commonly used organic solvents like, for example, toluene or xylene. Better results were obtained with neutron detectors containing the compound in its crystalline form, such as pressed pellets, or microscopic-scale (7-14 micron) crystals dispersed in various media. The expectation drown from these studies was that further improvement of pulse height, PSD, and efficiency characteristics could be reached with larger and more transparent LiSal crystals, growth of which has not been reported so far. In this paper, we present the first results on growth and characterization of relatively large, a cm-scale size, single crystals of LiSal with good optical quality. The crystals were grown both from aqueous and anhydrous (methanol) media, mainly for neutron detection studies. However, the results on growth and structural characterization may be interesting for other fields where LiSal, together with other alkali metal salicylates, is used for biological, medical, and chemical (as catalyst) applications.

  15. Fluoride-modified electrical properties of lead borate glasses and electrochemically induced crystallization in the glassy state

    SciTech Connect

    M'Peko, Jean-Claude; Souza, Jose E. de; Rojas, Seila S.; Hernandes, Antonio C.

    2008-02-15

    Lead fluoroborate glasses were prepared by the melt-quenching technique and characterized in terms of (micro)structural and electrical properties. The study was conducted on as prepared as well as temperature- and/or electric field-treated glass samples. The results show that, in the as-prepared glassy-state materials, electrical conductivity improved with increasing the PbF{sub 2} glass content. This result involves both an increase of the fluoride charge carrier density and, especially, a decrease of the activation energy from a glass structure expansion improving charge carrier mobility. Moreover, for the electric field-treated glass samples, surface crystallization was observed even below the glass transition temperature. As previously proposed in literature, and shown here, the occurrence of this phenomenon arose from an electrochemically induced redox reaction at the electrodes, followed by crystallite nucleation. Once nucleated, growth of {beta}-PbF{sub 2} crystallites, with the indication of incorporating reduced lead ions (Pb{sup +}), was both (micro)structurally and electrically detectable and analyzed. The overall crystallization-associated features observed here adapt well with the floppy-rigid model that has been proposed to further complete the original continuous-random-network model by Zachariasen for closely addressing not only glasses' structure but also crystallization mechanism. Finally, the crystallization-modified kinetic picture of the glasses' electrical properties, through application of polarization/depolarization measurements originally combined with impedance spectroscopy, was extensively explored.

  16. The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride).

    PubMed

    Wu, Ying; Hsu, Shaw Ling; Honeker, Christian; Bravet, David J; Williams, Darryl S

    2012-06-21

    The effect of the surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride) (PVDF) has been investigated. Ion-dipole interaction between the positive surface of nucleation agents and the partially negative CF(2) dipoles of PVDF is established as a main factor for further lowering the free energy barrier for nucleation, and thus increasing significantly the crystallization kinetics. This is in contrast to the behavior observed for nucleation agents possessing either negative surface or neutral charges. Positive nucleation agents led to a remarkable increase in the crystallization temperature of PVDF (lower supercooling) as compared with that of neat PVDF. The dispersion of each type of nucleation agent is also important. The melting temperatures of nucleation agents need to be higher than the melting temperature of PVDF. The melting point and degree of crystallinity of PVDF can also be raised by using specific nucleation agents. The detailed crystallization kinetics and conformational changes of the PVDF chain have been investigated. With the addition of positive nucleation agents, the γ and β chain conformations, instead of the α phase, dominate. PMID:22646047

  17. Selective crystallization with preferred lithium-ion storage capability of inorganic materials

    PubMed Central

    2012-01-01

    Lithium-ion batteries are supposed to be a key method to make a more efficient use of energy. In the past decade, nanostructured electrode materials have been extensively studied and have presented the opportunity to achieve superior performance for the next-generation batteries which require higher energy and power densities and longer cycle life. In this article, we reviewed recent research activities on selective crystallization of inorganic materials into nanostructured electrodes for lithium-ion batteries and discuss how selective crystallization can improve the electrode performance of materials; for example, selective exposure of surfaces normal to the ionic diffusion paths can greatly enhance the ion conductivity of insertion-type materials; crystallization of alloying-type materials into nanowire arrays has proven to be a good solution to the electrode pulverization problem; and constructing conversion-type materials into hollow structures is an effective approach to buffer the volume variation during cycling. The major goal of this review is to demonstrate the importance of crystallization in energy storage applications. PMID:22353373

  18. Selective crystallization with preferred lithium-ion storage capability of inorganic materials.

    PubMed

    Liu, Fei; Song, Shuyan; Xue, Dongfeng; Zhang, Hongjie

    2012-01-01

    Lithium-ion batteries are supposed to be a key method to make a more efficient use of energy. In the past decade, nanostructured electrode materials have been extensively studied and have presented the opportunity to achieve superior performance for the next-generation batteries which require higher energy and power densities and longer cycle life. In this article, we reviewed recent research activities on selective crystallization of inorganic materials into nanostructured electrodes for lithium-ion batteries and discuss how selective crystallization can improve the electrode performance of materials; for example, selective exposure of surfaces normal to the ionic diffusion paths can greatly enhance the ion conductivity of insertion-type materials; crystallization of alloying-type materials into nanowire arrays has proven to be a good solution to the electrode pulverization problem; and constructing conversion-type materials into hollow structures is an effective approach to buffer the volume variation during cycling. The major goal of this review is to demonstrate the importance of crystallization in energy storage applications. PMID:22353373

  19. Spectroscopic and Crystal Field Consequences of Fluoride Binding by [Yb⋅DTMA]3+ in Aqueous Solution

    PubMed Central

    Blackburn, Octavia A.; Chilton, Nicholas F.; Keller, Katharina; Tait, Claudia E.; Myers, William K.; McInnes, Eric J. L.; Kenwright, Alan M.; Beer, Paul D.; Timmel, Christiane R.

    2015-01-01

    Abstract Yb⋅DTMA forms a ternary complex with fluoride in aqueous solution by displacement of a bound solvent molecule from the lanthanide ion. [Yb⋅DTMA⋅F]2+ and [Yb⋅DTMA⋅OH2]3+ are in slow exchange on the relevant NMR timescale (<2000 s−1), and profound differences are observed in their respective NMR and EPR spectra of these species. The observed differences can be explained by drastic modification of the ligand field states due to the fluoride binding. This changes the magnetic anisotropy of the YbIII ground state from easy‐axis to easy‐plane type, and this change is easily detected in the observed magnetic anisotropy despite thermal population of more than just the ground state. The spectroscopic consequences of such drastic changes to the ligand field represent important new opportunities in developing fluoride‐responsive complexes and contrast agents. PMID:27478267

  20. Growth and non-linear optical properties of lithium triborate crystals

    NASA Astrophysics Data System (ADS)

    Pylneva, N. A.; Kononova, N. G.; Yurkin, A. M.; Bazarova, G. G.; Danilov, V. I.

    1999-03-01

    The Li 2O-B 2O 3-MoO 3 ternary system was investigated to determine the region of growth of lithium triborate Li 2O·3B 2O 3 (LBO) crystals with good optical properties. The top-seeded solution growth method, the method of spontaneous crystallisation and solid-state reactions were used in this investigation. The phases were defined by the method of X-ray power diffraction. The data obtained in these experiments made it possible to choose the region of compositions of solutions in the Li 2O-B 2O 3-MoO 3 system for the successful growth of LBO single crystals. LBO single crystals, up to 100×82×45 mm 3 in size and 290 g in weight, were grown free of cracks, bubbles and inclusions. These single crystals were of high optical quality: wavefront distortion (fringe per mm for λ=0.633 μm) was lower than {1}/{150}, absorption losses (0.25 μm< λ<2.5 μm) in the resultant LBO single crystals were lower than 0.005 cm -1, and the damage threshold at λ=1.06 μm, τ=10 ns in the LBO single crystals was more than 10.0 GW/cm 2. High performance non-linear optical elements of various optical orientations, up to 20×20×20 mm 3 in size, were fabricated on our LBO crystals.

  1. Complex study of the structural and optical homogeneity of lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Sidorov, N. V.; Palatnikov, M. N.; Yanichev, A. A.; Gabain, A. A.; Makarova, O. V.; Pikul', O. Yu.

    2014-09-01

    Methods of Raman spectroscopy, laser conoscopy, optical microscopy, and electron spin resonance have been used to study the photorefractive properties and structural and optical homogeneity of the following lithium niobate (LiNbO3) crystals: nominally pure crystals of congruent composition (LiNbO3con); LiNbO3:Cu[0.015 wt %] crystals grown from a melt of congruent composition and nominally pure crystals of stoichiometric composition grown from a melt with 58.6 mol % Li2O (LiNbO3st). A small deformation of optical indicatrix and regular microdomain structures of fractal type are revealed for the LiNbO3:Cu[0.015 wt %]; the microdomain structures may be due to the nonuniform impurity incorporation into the structure. It is shown that oxygen octahedra in the LiNbO3:Cu[0.015 wt %] crystal are deformed in comparison with the octahedra in LiNbO3st and LiNbO3con crystals and that the main and impurity cations are clusterized along the polar axis. It is established that the LiNbO3:Cu[0.015 wt %] crystal exhibits photorefractive properties not only due to the presence of intrinsic defects with localized electrons, as in the case of LiNbO3st, but also due to the charge exchange in copper cations (Cu2+ → Cu+) under illumination.

  2. Multiplicity of europium centers in doped stoichiometric crystals of lithium niobate

    NASA Astrophysics Data System (ADS)

    Kaplyanskii, A. A.; Kapphan, S.; Kutsenko, A. B.; Polgar, K.; Skvortsov, A. P.

    2007-04-01

    The optical spectra of europium-doped stoichiometric lithium niobate (LiNbO3:Eu3+) crystals have been studied using combined excitation-luminescence spectroscopy in the range of 5D0 → 7F1, 7F0 optical transitions. Analysis of the results shows that Eu3+ ions can occupy 14 energetically nonequivalent positions in the LiNbO3 crystal lattice. This multiplicity of impurity centers is related to possible variants of the incorporation of Eu3+ ions into the LiNbO3 crystal lattice and the compensation of excess charge. Energy positions of the 5D0 level and the lowest sublevel of the 7F1 Stark multiplet are determined for Eu3+ centers of all 14 types.

  3. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals

    SciTech Connect

    Zheng, Dahuai; Yao, Jiaying; Kong, Yongfa; Liu, Shiguo; Zhang, Ling; Chen, Shaolin; Xu, Jingjun

    2015-01-15

    Bismuth-doped lithium niobate (LN:Bi) crystals were grown by Czochralski method and their optical damage resistance, photorefraction, absorption spectra, and defect energy levels were investigated. The experimental results indicate that the photorefractive properties of LN:Bi were enhanced as compared with congruent one, the photorefractive response time was greatly shortened, the photorefractive sensitivity was increased, and the diffraction efficiency of near-stoichiometric LN:Bi (SLN:Bi) reached 31.72% and 49.08% at 532 nm and 488 nm laser, respectively (light intensity of 400 mW/cm{sup 2}). An absorption peak at about 350 nm was observed in the absorption spectrum of LN:Bi. And the defect energy levels simulation indicates new defect levels appear in the forbidden gap of LN:Bi crystals. Therefore bismuth can act as photorefractive centers in LN crystals.

  4. Low-crystallized carbon materials for lithium-ion secondary batteries

    NASA Astrophysics Data System (ADS)

    Higuchi, Hayato; Uenae, Keiichiro; Kawakami, Akira

    The charge/discharge characteristics and mechanisms of low-crystallized carbons which have larger capacity than graphite have been investigated. Low-crystallized carbons have two principal types of charge curve versus Li metal. Hard carbons prepared at 1100 °C (H11) show charge curves with a low average potential, whereas soft carbons pyrolyzed at 700 °C (S7) show those with a high average potential. These results might depend on the lithium diffusion rate in their non-crystallized sites. The 18650-type Li-ion batteries using H11 have comparable capacity versus graphite, whereas the batteries using S7 have low capacity because of their low charge/discharge efficiency.

  5. Strong tendency of homeotropic alignment and anisotropic lithium ion conductivity of sulfonate functionalized zwitterionic imidazolium ionic liquid crystals.

    PubMed

    Rondla, Rohini; Lin, Joseph C Y; Yang, C T; Lin, Ivan J B

    2013-09-17

    Here, we report the first attempt to investigate the liquid crystal (LC) behavior of SO3(-) functionalized imidazolium zwitterionic (SO3(-)ImZI) salts, which display homeotropic alignment on a glass slide without the aid of any aligning approach. Doping lithium salt to ImZI salts lowers the melting temperatures and raises the clearing temperatures substantially to form room temperature ImZILCs. Excellent anisotropic lithium ion conductivity is achieved; which is strengthened by their tendency for homeotropic alignment. PMID:24010889

  6. Lithium

    MedlinePlus

    ... mania (frenzied, abnormally excited mood) in people with bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal moods). Lithium is in a ... antimanic agents. It works by decreasing abnormal activity in the brain.

  7. Resonance laser-plasma excitation of coherent terahertz phonons in the bulk of fluorine-bearing crystals under high-intensity femtosecond laser irradiation

    SciTech Connect

    Potemkin, F V; Mareev, E I; Khodakovskii, N G; Mikheev, P M

    2013-08-31

    The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)

  8. Crystallization process of a biomaterial, the lithium disilicate, obtained from rice husk silica

    NASA Astrophysics Data System (ADS)

    Santos, F. A.; Fernandes, M. H. F. V.; Davim, E.; Pinatti, D. G.; Lazar, D. R. R.; Santos, C.

    2013-12-01

    In this work, the crystallization process of lithium disilicate glass-ceramic was investigated with SiO2 from rice husk silica replacing the high-purity SiO2 starting powder form commercial source. Glasses were developed at the stoichiometric composition of 66%.molSiO2:33%.molLiO2 using commercial SiO2 and the one obtained by thermochemical treatment of rice husk. To compare the SiO2 sources, the influence of the one from rice husk on crystallization process was measured using different granulometry, analyzing microstructure and the kinetic behavior. Investigations were carried out by means of differential thermal analysis (DTA), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Amorphous glasses were obtained after melting at 1550°C. The position of lithium disilicate glass-ceramic crystallization peaks (Tp) are between 550 to 660°C to different granulometry (<63mm, 63mm < × < 250mm and 1mm < × < 2mm) and DTA heat rates (5; 10; 15; and 20°C/min) in both glasses, and the relevant formed crystalline phase after DTA analysis (verified for XRD) was Li2Si2O5. SEM images showed the increase of glass substitution for crystalline phase to both glass-ceramics from different silica sources.

  9. Dislocations and subgrain boundaries in highly magnesium-doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Kong, Yongfa; Wen, Jinke; Wang, Huafu

    1994-06-01

    The extension and distribution of dislocations and subgrain boundaries in highly magnesium-doped lithium niobate crystals at different stages of growth have been investigated using chemical etching and optical microscopy. The relations between dislocation densities, subgrain boundaries and optical quality of the crystals have been also studied. It was found that there is a core with relatively high dislocation density in the central region of the crystal shoulder. In the shouldering stage, the dislocations gathering in the core extend to its surrounding regions and the dislocation density tends to be homogeneous. Tailing increases the dislocation density in the bottom part of the crystal and causes inhomogeneous distribution of dislocations in that part. Subgrain boundaries are apt to form in high dislocation density regions, and neighbouring multiple subgrain boundaries tend to reform a more stable single subgrain boundary. The extinction ratios and conoscope images of crystals are worst in the dislocation gathering regions around the ends of subgrain boundaries, and dislocations are the basic cause of poor optical quality of crystals.

  10. Structuring of material parameters in lithium niobate crystals with low-mass, high-energy ion radiation

    NASA Astrophysics Data System (ADS)

    Peithmann, K.; Eversheim, P.-D.; Goetze, J.; Haaks, M.; Hattermann, H.; Haubrich, S.; Hinterberger, F.; Jentjens, L.; Mader, W.; Raeth, N. L.; Schmid, H.; Zamani-Meymian, M.-R.; Maier, K.

    2011-10-01

    Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41 MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index Δn, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of Δn as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He→Nb and 3He→O causing thermal spikes, are identified as origin for the material modifications.

  11. Infrared holographic recording in lithium tantalate crystals by means of the pyroelectric effect

    NASA Astrophysics Data System (ADS)

    Eggert, Helge A.; Imbrock, Jörg; Bäumer, Christoph; Hesse, Hartmut; Krätzig, Eckhard

    2003-10-01

    Infrared holographic recording in a two-step process is demonstrated in stoichiometric iron-doped lithium tantalate crystals. Through absorption of two intersecting infrared pulses (λ = 1064 nm) a temperature grating and thus a modulated pyroelectric field build up. Free electrons, excited by homogeneous light of a shorter wavelength (λ = 532 nm) drift in this field, and a phase hologram is stored that can be read nondestructively. The change in refractive index depends mainly on the absorption coefficient at the wavelength of the recording light and on the intensity of the infrared light. The proposed method may be extended to telecommunication wavelengths by choice of suitable dopants.

  12. Infrared holographic recording in lithium tantalate crystals by means of the pyroelectric effect.

    PubMed

    Eggert, Helge A; Imbrock, Jörg; Bäumer, Christoph; Hesse, Hartmut; Krätzig, Eckhard

    2003-10-15

    Infrared holographic recording in a two-step process is demonstrated in stoichiometric iron-doped lithium tantalate crystals. Through absorption of two intersecting infrared pulses (A = 1064 nm) a temperature grating and thus a modulated pyroelectric field build up. Free electrons, excited by homogeneous light of a shorter wavelength (lambda = 532 nm) drift in this field, and a phase hologram is stored that can be read nondestructively. The change in refractive index depends mainly on the absorption coefficient at the wavelength of the recording light and on the intensity of the infrared light. The proposed method may be extended to telecommunication wavelengths by choice of suitable dopants. PMID:14587794

  13. Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes

    SciTech Connect

    Diziain, Séverine Geiss, Reinhard; Zilk, Matthias; Schrempel, Frank; Kley, Ernst-Bernhard; Pertsch, Thomas; Tünnermann, Andreas

    2013-12-16

    We report on a multimodal analysis of photonic crystal L3 cavities milled in lithium niobate free-standing membranes. The classical L3 cavity geometry is compared to an L3 cavity containing a second lattice superimposed on the primary one. Those two different geometries are investigated in terms of vertical radiation and quality (Q) factor for each mode of the cavities. Depending on the cavity geometry, some modes undergo an enhancement of their vertical radiation into small angles while other modes experience a higher Q factor. Experimental characterizations are corroborated by three-dimensional finite difference time domain simulations.

  14. Optical constants of lithium triborate crystals in the 55--71 eV region

    SciTech Connect

    Chen, T.; Zitter, R.N.; Tao, R.; Hunter, W.R.; Rife, J.C.

    1995-11-15

    The reflectances of lithium triborate (LBO) crystals in the range 55--71 eV have been measured and the principal values of the optical constants are derived. Five transitions in this spectral region are observed and their oscillator strengths and matrix elements {l_angle}{ital x}{r_angle},{l_angle}{ital y}{r_angle},{l_angle}{ital z}{r_angle} are determined. LBO is strongly anisotropic in this region and its energy levels are mainly determined by the Li ion.

  15. Isothermal Analysis of the Crystallization Kinetics in Lithium Disilicate Glass using Trans Temp Furnace

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Ray, C. S.; Day, D. E.

    2006-01-01

    Crystallization kinetics for lithium disilicate, Li2O2SiO2, (LS2) glass has been studied extensively by nonisothermal methods, but only a few studies on the isothermal crystallization kinetics of LS2 are available. In the present research, isothermal crystallization experiments or the LS2 glass were conducted in a Trans Temp furnace between 600 and 635 C, and selected properties such as the activation energy for crystallization (E), crystal growth index or Avrami parameter (n), the concentration of quenched-in nuclei in the starting glass (Ni) and the crystal nucleation rate (I) were measured. The crystal nucleation rate (I) was measured at only one selected temperature of 452 C, at this time. This commercial furnace has a 13 cm long isothermal heating zone (+/- 1 C) that allows precise heat treatment of relatively large samples. By placing a thermocouple within approx. 2 mm of the sample, it was possible to detect the heat of crystallization in the form of an isothermal crystallization exotherm during isothermal heat treatment of the sample. The values of E (318 plus or minus 10 kJ/mol), n (3.6 plus or minus 0.l), and N(sub i) (1.6 x 10(exp l2) m(sup -3)) calculated by analyzing these isotherms using the standard Johnson-Mehl-Avrami (JMA) equation were reproducible and in agreement with the literature values. The value of I, 1.9 x 10(exp 10) m(sup -3) s(sup -1) at 452 C, is an order of magnitude higher than the reported value for LS2.

  16. Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Zhang, Zhengxi; Li, Sijian; Yang, Li; Hirano, Shin-ichi

    2016-03-01

    In this work, composite polymer electrolytes (CPEs), that is, 80%[(1-x)PIL-(x)SN]-20%LiTFSI, are successfully prepared by using a pyrrolidinium-based polymeric ionic liquid (P(DADMA)TFSI) as a polymer host, succinonitrile (SN) as a plastic crystal, and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a lithium salt. XRD and DSC measurements confirm that the as-obtained CPEs have amorphous structures. The 80%[50%PIL-50%SN]-20%LiTFSI (50% SN) electrolyte reveals a high room temperature ionic conductivity of 5.74 × 10-4 S cm-1, a wide electrochemical window of 5.5 V, as well as good mechanical strength with a Young's modulus of 4.9 MPa. Li/LiFePO4 cells assembled with the 50% SN electrolyte at 0.1C rate can deliver a discharge capacity of about 150 mAh g-1 at 25 °C, with excellent capacity retention. Furthermore, such cells are able to achieve stable discharge capacities of 131.8 and 121.2 mAh g-1 at 0.5C and 1.0C rate, respectively. The impressive findings demonstrate that the electrolyte system prepared in this work has great potential for application in lithium ion batteries.

  17. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    PubMed Central

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  18. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries.

    PubMed

    Shi, Feifei; Song, Zhichao; Ross, Philip N; Somorjai, Gabor A; Ritchie, Robert O; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  19. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  20. The structural and electrochemical dynamics of the electrode-electrolyte interphase of metal fluoride nanocomposite positive electrodes for lithium batteries

    NASA Astrophysics Data System (ADS)

    Gmitter, Andrew John

    Metal fluorides are attractive for use as positive electrodes in Li and Li-ion batteries because of their high gravimetric and volumetric energy densities. When synthesized into nanocomposites, these materials undergo conversion reactions and exhibit near theoretical specific capacity and good rate capability. Despite these positive attributes, metal fluorides nanocomposites generally exhibit unacceptable rates of capacity loss during cycling. This stands as a significant barrier to their realization as a viable battery technology. This thesis explored a candidate material, BiF3, and for the first time, the mechanisms by which metal fluoride nanocomposite positive electrode materials fail during cycling have been investigated. The chemistry of the electrode / electrolyte interface and its influence on the BiF3 material were of greatest interest. Early in the course of study, it was discovered that the Bi0 metal produced through the discharge reaction of BiF3 was a catalytically active site for the electrochemical reduction of ethylene carbonate (EC) at potentials exceeding 2 V vs. Li/Li+. This potential range is well above the values typically observed on carbonaceous negative electrodes on which preferential reduction of electrolyte species yields insoluble phases. These ionically conducting layers are deemed solid-electrolyte interphases (SEI), and in the case of carbonaceous materials, they are necessary for enabling functionality of the electrode and preventing deleterious interactions with the electrolyte. Thorough electrochemical and spectroscopic examinations identified Li2CO3 as the predominant SEI species formed on Bi0 from EC. In stark contrast to carbonaceous materials, the presence of SEI on Bi0 was detrimental to the cycling performance of BiF3. Elaboration of this topic identified instability of the SEI during the charging process of the BiF3 and the formation of BiOxF3-2x in the fully charged state. Electrolytes composed of linear

  1. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.

    ERIC Educational Resources Information Center

    Hong, Y. S.; And Others

    1980-01-01

    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  2. Anomalous dielectric relaxation in lithium-potassium tantalate crystals

    NASA Astrophysics Data System (ADS)

    Doussineau, P.; Farssi, Y.; Frénois, C.; Levelut, A.; Toulouse, J.; Ziolkiewicz, S.

    1994-08-01

    In order to describe the unusual dielectric properties observed in Ki{1-χ}Li{χ}TaO3. crystals a new approchh is proposed. The dynamical Glauber theory, previously applied to spinglasses, is modifiéd by the introduction of the spectral distribution of the random interactions between the dipoles associated with the Li+ ions. Moreover, the dipole corrélations are taken into account by the Onsager réaction field. As a result, the calculated dielectric constant reproduces well the unusual features of the Argand diagrams and, in particular, their finite slope at low frequencies and infinite slope at high frequencies (strophoidal shape). The temperature dépendance of some parameters shows, however, the limits of a spin-glass type model in describing the collective behaviour of randomly distributed dipoles in a highly polarizable medium. Une nouvelle approche est présentée qui permet de décrire les propriétés diélectriques particulières de cristaux mixtes de Ki{1-χ}Li{χ}TaO3. Elle s'appuie sur la théorie dynamique de Glauber, déjà utilisée pour les verres de spins, et modifiée par l'introduction d'une distribution spectrale spécifique aux interactions aléatoires des dipôles électriques associés aux ions Li+. En outre, les corrélations entre dipôles sont prises en compte par le champ de réaction d'Onsager. II s'ensuit que la constante diélectrique complexe ainsi calculée reproduit fidèlement les particularités des diagrammes d'Argand, telles que la pente finie aux basses fréquences et la pente infinie aux hautes fréquences (forme strophoïdale). La dépendance en température de certains paramètres déterminés par le calcul montre les limites de l'analogie avec les verres de spins et met en évidence le rôle d'un réseau très polarisable dans le comportement collectif d'une assemblée de dipôles électriques.

  3. Effect of the Crystallization Process on the Marginal and Internal Gaps of Lithium Disilicate CAD/CAM Crowns.

    PubMed

    Kim, Jae-Hong; Oh, Seunghan; Uhm, Soo-Hyuk

    2016-01-01

    The aim of this study is to quantify the effect of the crystallization process on lithium disilicate ceramic crowns fabricated using a computer-aided design/computer-aided manufacturing (CAD/CAM) system and to determine whether the effect of crystallization is clinically acceptable by comparing values of fit before and after the crystallization process. The mandibular right first molar was selected as the abutment for the experiments. Fifteen working models were prepared. Lithium disilicate crowns appropriate for each abutment were prepared using a commercial CAD/CAM system. Gaps in the marginal area and 4 internal areas of each crown were measured twice-before and after crystallization-using the silicone replica technique. The mean values of fit before and after crystallization were analyzed using a paired t-test to examine whether the conversion that occurred during crystallization affected marginal and internal gaps (α = 0.05). Gaps increased in the marginal area and decreased in the internal areas after crystallization. There were statistically significant differences in all of the investigated areas (P < 0.05). None of the values for marginal and internal fit of lithium disilicate CAD/CAM crowns after crystallization exceeded 120 μm, which is the clinically acceptable threshold. PMID:27123453

  4. Electro-Spun Poly(vinylidene fluoride) Nanofiber Web as Separator for Lithium Ion Batteries: Effect of Pore Structure and Thickness.

    PubMed

    Lim, Seung-Gyu; Jo, Hye-Dam; Kim, Chan; Kim, Hee-Tak; Chang, Duck-Rye

    2016-01-01

    Electro-spun nanofiber web is highly attractive as a separator for lithium ion batteries because of its high electrical properties. In moving toward wider battery applications of the nanofiber separators, a deeper understanding on the structure and property relationship is highly meaningful. In this regard, we prepared electro-spun poly(vinylidene fluoride) (PVdF) webs with various thicknesses (10.5~100 µm) and investigated their structures and electrochemical performances. As the thickness of the web is decreased, a decrease of porosity and an increase of pore size are resulted in. For the 10.5 µm-thick separator, a minor short-circuit was detected, stressing the importance of reducing pore-size on prevention of short-circuit. However, above the thickness of 21 µm, well-connected, submicron-sized pores are generated, and, with lowering the separator thickness, discharge capacity and rate capability are enhanced owing to the lowered area-specific resistance. PMID:27398553

  5. Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(methyl methacrylate).

    PubMed

    Gebreyesus, Merhawi Abreha; Purushotham, Y; Kumar, J Siva

    2016-07-01

    Ion conducting polymer electrolytes composed of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), poly(methyl methacrylate) (PMMA) and lithium triflate (LiTf) were prepared using the solution casting method. Structural change and complex formation in the blend electrolyte systems were confirmed from the X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) studies. Thermal properties of the samples were investigated by the differential scanning calorimetry (DSC) technique. The ionic conductivity of these polymer electrolytes was studied by impedance spectroscopy at various temperatures ranging from 303-393 K. The results reveal that the ionic conductivity of the polymer blend electrolytes depends on the PVdF-HFP:PMMA composition as well as the temperature. Maximum room temperature conductivity of [Formula: see text] S cm(-1) was achieved with 22.5 wt.% PMMA. The blending of PVdF-HFP with PMMA improved the thermal stability and ionic conductivity of the polymer electrolyte. Estimated transference numbers suggest the charge transport is predominantly ionic. PMID:27512728

  6. Synthesis, structure characterization and fluorescence property of a new fluoride borate crystal, CdZn{sub 2}KB{sub 2}O{sub 6}F

    SciTech Connect

    Jiao Zhiwei; Zhang Fan; Yan Qingfeng; Shen Dezhong; Shen Guangqiu

    2009-11-15

    A new fluoride borate crystal, CdZn{sub 2}KB{sub 2}O{sub 6}F, has been synthesized by flux-supported solid-state reaction. The crystal structure has been determined by single-crystal X-ray diffraction. It crystallizes in the trigonal space group P3-barc1 with a=5.0381(6) A, b=5.0381(6) A, c=15.1550(19) A, alpha=90.00{sup o}, beta=90.00{sup o}, gamma=120.00{sup o}, Z=2. The crystal represents a new structure type in which ZnBO{sub 3} layers are connected through bridging fluorine and cadmium atoms alternately along the c-axis. K{sup +} cations are filled in the intralayer open channels to balance charge. IR and Raman spectra further confirm the crystal structure. Photoluminescent measurement reveals that CdZn{sub 2}KB{sub 2}O{sub 6}F exhibits blue fluorescence at room temperature in the solid-state. - Graphical abstract: Preparation, structure and fluorescence property of a new fluoride borate crystal, CdZn{sub 2}KB{sub 2}O{sub 6}F are descripted. The crystal represents a new structure type in which ZnBO{sub 3} layers are connected through bridging fluorine and cadmium atoms alternately to form a 3D open framework.

  7. Resistance degradation due to interstitial hydrogen in photorefractive potassium lithium tantalate niobate single crystals

    NASA Astrophysics Data System (ADS)

    Ivker, M.; Agranat, A. J.

    2004-12-01

    Resistance degradation in potassium lithium tantalate niobate (KLTN) doped with iron and titanium was measured in a single sample containing various concentrations of interstitial hydrogen. In this crystal the degradation arose from the migration of interstitial hydrogen and not oxygen vacancies, as reported in previous research. Interstitial hydrogen and oxygen vacancy defects both arise to compensate the valence shortfall of the substitutional iron impurities and the thermodynamic balance between the two compensation mechanisms can be controlled using reaction chemistry techniques. Through appropriate annealing treatments a single crystal of KLTN was prepared in three states: hydrogen-rich oxidized, hydrogen-poor reduced, and hydrogen-rich reduced. The characteristic degradation times for the three cases were 29, 2710, and 26min, respectively. The degradation rate is correlated with hydrogen concentration and not oxidation state of the crystal. Infrared absorption from near the two electrodes of the hydrogen-rich reduced crystal after degradation confirmed polarization of the hydrogen concentration. Electrocoloration was also found to correlate with hydrogen—it was observed in both hydrogen-rich states, but was absent from the hydrogen-poor crystal.

  8. Crystallization Temperature of Aqueous Lithium Bromide Solutions at Low Evaporation Temperature

    SciTech Connect

    Kisari, Padmaja; Wang, Kai; Abdelaziz, Omar; Vineyard, Edward Allan

    2010-01-01

    Water- aqueous Lithium Bromide (LiBr) solutions have shown superior performance as working fluid pairs for absorption refrigeration cycles. Most of the available literature (e.g. ASHRAE Handbook of Fundamentals, etc.) provide crystallization behavior down to only 10 C. The typical evaporating temperature for an absorption chiller system is usually lower than 10 C. Hence, it is essential to have an accurate prediction of the crystallization temperature in this range in order to avoid crystallization during the design phase. We have therefore conducted a systematic study to explore the crystallization temperatures of LiBr/Water solutions that fall below an evaporating temperature of 10 C. Our preliminary studies revealed that the rate of cooling of the sample solution influences the crystallization temperature; therefore we have performed a quasi steady test where the sample was cooled gradually by reducing the sample temperature in small steps. Results from this study are reported in this paper and can be used to extend the data available in open literature.

  9. Photorefractive properties of paraelectric potassium lithium tantalate niobate crystal doped with iron

    NASA Astrophysics Data System (ADS)

    Tian, Hao; Zhou, Zhongxiang; Gong, Dewei; Wang, Haifeng; Jiang, Yongyuan; Hou, Chunfeng

    2008-03-01

    We report the successful growth of paraelectric potassium lithium tantalate niobate (KLTN) single crystal doped with iron. Detailed investigations have been made on the photorefractive properties of the as-grown crystal. The key parameters such as space-charge field, grating response time, photorefractive sensitivity and sign of the dominant charge carrier were obtained by two-wave mixing technique. 1.7 mm thick sample exhibits a high diffraction efficiency of 78% at the external field of 3.3 kV/cm and a sensitivity of 1.49 × 10-10E0 cm2/J. The two-wave mixing gain coefficient increases linearly with external field, and reaches a large value of 19.4 cm-1 at 4 kV/cm. Based on experimental results, iron is an effective dopant to KLTN which shows high diffraction efficiency and two-wave mixing gain coefficient.

  10. A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire

    NASA Astrophysics Data System (ADS)

    Cai, Lutong; Zhang, Shaomei; Hu, Hui

    2016-03-01

    The properties of the guided modes, including the single-mode conditions and the coupling of different polarized modes in the single-crystal lithium niobate photonic wires, were analyzed in detail. One-dimensional photonic crystal micro-cavities with several different patterns, which could be used as an ultra-compact optical filter, were designed and simulated in order to get high transmission at the resonant wavelength and the best preferment. The designed structure, with the whole size of 6.5 × 0.7 μm2, was fabricated on a single-mode photonic wire. A measured peak transmission of 0.34 at 1400 nm, an extinction ratio of 12.5 dB and a Q factor of 156 were obtained. The measured transmission spectrum was basically consistent with the simulation, although a slight shift of resonant wavelength occurred due to the fabrication errors.

  11. A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications

    DOE PAGESBeta

    Ozturk, Birol; Yavuzcetin, Ozgur; Sridhar, Srinivas

    2015-01-01

    High-aspect-ratio photonic crystal air-hole fabrication on bulk Lithium Niobate (LN) substrates is extremely difficult due to its inherent resistance to etching, resulting in conical structures and high insertion losses. Here, we propose a novel coupled resonator photonic crystal (CRPC) design, combining a coupled resonator approach with that of Bragg gratings. CRPC design parameters were optimized by analytical calculations and FDTD simulations. CRPC structures with optimized parameters were fabricated and electrooptically tested on bulk LN annealed proton exchange waveguides. Low insertion loss and large electrooptic effect were observed with the fabricated devices, making the CRPC design a promising structure for electroopticmore » device applications.« less

  12. Electric Modulus Spectroscopy of Lithium Tetraborate (Li2B4O7) Single Crystal

    NASA Astrophysics Data System (ADS)

    Kim, Jin

    2001-10-01

    The lithium tetraborate (Li2B4O7; LBO) crystals were successfully grown by Czochralski technique. The frequency and temperature dependences of dielectric constant and ac conductivity were investigated in the frequency from 100 Hz to 10 MHz along c-axis. The dielectric anomaly with broad peak about 300°C was observed in the temperature from 200°C to 500°C. The ac conductivity is frequency independent at high temperature and low frequencies, and shows a frequency dispersion at low temperature. The relaxation in ionically conducting LBO crystal analysed in terms of modulus formalism. The electric modulus which describes the dielectric relaxation behavior is fitted to the Kohlrausch Williams Watts (KWW) exponential function. The activation energy with 0.34 eV was estimated by Arrhenius plot of relaxation frequency, which is related to ionic hopping conduction. The temperature dependence of the electric relaxation of modulus was studied and the results were discussed.

  13. [Study on the vacuum ultraviolet transmittance of barium fluoride crystals at different temperature].

    PubMed

    Peng, Ru-Yi; Fu, Li-Ping; Tao, Ye

    2014-03-01

    Two VUV-grade BaF2 windows with 0.5 mm-thick and 1 mm-thick respectively were selected to study the transmittance variety with the temperature. The results show that the cutoff wavelength of BaF2 crystals will shift towards the long wave with the increase in temperature. In a certain temperature range, BaF2 crystals can depress 130.4 nm radiation well, and also has a high transmittance at 135.6 nm. Compared with the reported method in which SrF2 crystals can be applied to suppress 130.4 nm stray light by heating, BaF2 crystal can inhibit the 130. 4 nm emission line completely, and thus reduce the power consumption of the device at the same time. This indicates that BaF2 crystals can play an important role in the ionosphere optical remote sensing detection. PMID:25208398

  14. Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites

    SciTech Connect

    Gmitter, Andrew J.; Badway, Fadwa; Rangan, Sylvie; Bartynski, Robert A.; Halajko, Anna; Pereira, Nathalie; Amatucci, Glenn G.

    2010-01-01

    Metal fluoride nanocomposites are uniquely suited as an alternative pathway to provide very high energy density cathodes for lithium batteries. Contrasted with modern intercalation compounds, they undergo conversion upon discharge into nanodomains of lithium fluoride and highly active metal. The nanosized metal formed during the discharge process along with the dynamic nature of the crystal structure may have considerable impact on the stability of any solid state interphase formed through reaction with the electrolyte. This is in contrast to the more macrocrystalline and stable crystal structure of traditional intercalation compounds. It has been found that the cyclic carbonates are susceptible to decomposition on the nanometal surfaces at potentials as high as 2.00 V vs. Li, and the products have been identified with Field Emission Scanning Electron Microscopy (FESEM), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and X-ray Photoelectron Spectroscopy (XPS) as lithium carbonate species. Of greater importance is the impact of these decomposition products on the reversible cycling of the metal fluoride. Through a series of potentiodynamic and galvanostatic cycling trials, a clear relationship has been developed for the bismuth fluoride nanocomposites, the decomposition of the electrolyte solvent, and the cycle life. Acyclic organic carbonate solvents have been found to have minimal interaction and exhibited better long-term cycling performance than cyclic solvents.

  15. Lithium vanadyl oxalatophosphite: Influence of the water content on the crystal structures and the dehydration scheme

    NASA Astrophysics Data System (ADS)

    Auguste, S.; Alonzo, V.; Bataille, T.; Le Pollès, L.; Cañón-Mancisidor, W.; Venegas-Yazigi, D.; Le Fur, E.

    2014-03-01

    Two new lithium vanadyl oxalatophosphites have been synthesized by hydrothermal treatment. The respective formula are Li2(VOHPO3)2C2O4 6H2O (1) and Li2(VOHPO3)2C2O4 4H2O (2). The structures of the compounds have been determined by single crystal X-ray diffraction. Compound 1 crystallizes in triclinic symmetry in space group P-1, a=6.3592(2) Å, b=8.0789(3) Å, c=9.1692(3) Å, α=64.390(2), β=87.277(2)°, γ=67.624(2) and, compound 2 in monoclinic symmetry, space group P21/a, a=6.3555(2) Å b=12.6368(7) Å c=9.0242(4) Å β=105.167(3)°. The vanadium phosphite framework consists of infinite chains of corner-sharing vanadium octahedra and hydrogenophosphite tetrahedra. The oxalate groups ensure the connection between the chains. The lithium ions and the water molecules are located between the anionic [(VO)2(HPO3)2C2O4]2- layers. Thermal behavior of both compounds was carefully studied by combining thermogravimetric analyses and thermal dependant X-ray diffraction in order to study the thermal stability of the layered oxalatophosphites and to see the influence of the decomposition of the carbon-based anions into the final lithium vanadyl phosphate. Various intermediate phases were evidenced and for both compounds the final product was LiVOPO4.

  16. Bending waveguides made in x-cut lithium niobate crystals for technological applications

    NASA Astrophysics Data System (ADS)

    Guarepi, V.; Perrone, C.; Aveni, M.; Videla, F.; Torchia, GA

    2015-12-01

    In this paper we analyse the performance of several designs of integrated optical deviators made in x-cut lithium niobate crystals by means of femtosecond laser writing using the double line approach. Straight and bent guiding structures have been designed and implemented using this technique. Well-confined propagation modes at communication wavelengths (1.55 μm) were conducted in these structures with acceptable overall losses (less than 2 dB cm-1). Further, a discussion about the optical propagation losses for curved and straight deviators devices is included in this work. At a low aperture angle (less than 0.2°), as expected, low losses were determined for both structures; however, a weak output light was observed for large angles (greater than 0.2°) in the straight optical circuits. In contrast, a smooth variation of the output was measured for the bent structures. The results presented in this paper support the possibility of the technological implementation of integrated optical circuits for optical communications fabricated with ultrashort laser writing in lithium niobate crystals. In addition, some hypotheses of loss mechanisms that are normally not considered are discussed in order to explain the differences between the measured values and predictions obtained by calculating with the usual models.

  17. Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery

    SciTech Connect

    Fulvio, Pasquale F; Dai, Sheng; Guo, Bingkun; Mahurin, Shannon Mark; Mayes, Richard T; Sun, Xiao-Guang; Veith, Gabriel M; Brown, Suree; Adcock, Jamie

    2011-01-01

    Soft-templated mesoporous carbons and activated mesoporous carbons were fluorinated using elemental fluorine between room temperature and 235 C. The mesoporous carbons were prepared via self-assembly synthesis of phloroglucinol formaldehyde as a carbon precursor in the presence of triblock ethylene oxide propylene oxide ethylene oxide copolymer BASF Pluronic F127 as the template. The F/C ratios ranged from 0.15 to 0.75 according to gravimetric, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis. Materials have mesopore diameters up to 11 nm and specific surface areas as high as 850 m2 g 1 after fluorination as calculated from nitrogen adsorption isotherms at 196 C. Furthermore, the materials exhibit higher discharge potentials and energy and power densities as well as faster reaction kinetics under high current densities than commercial carbon fluorides with similar fluorine contents when tested as cathodes for Li/CFx batteries.

  18. Synthesis, structure characterization and fluorescence property of a new fluoride borate crystal, CdZn 2KB 2O 6F

    NASA Astrophysics Data System (ADS)

    Jiao, Zhi-Wei; Zhang, Fan; Yan, Qing-Feng; Shen, De-Zhong; Shen, Guang-Qiu

    2009-11-01

    A new fluoride borate crystal, CdZn 2KB 2O 6F, has been synthesized by flux-supported solid-state reaction. The crystal structure has been determined by single-crystal X-ray diffraction. It crystallizes in the trigonal space group P3¯c1 with a=5.0381(6) Å, b=5.0381(6) Å, c=15.1550(19) Å, α=90.00°, β=90.00°, γ=120.00°, Z=2. The crystal represents a new structure type in which ZnBO 3 layers are connected through bridging fluorine and cadmium atoms alternately along the c-axis. K + cations are filled in the intralayer open channels to balance charge. IR and Raman spectra further confirm the crystal structure. Photoluminescent measurement reveals that CdZn 2KB 2O 6F exhibits blue fluorescence at room temperature in the solid-state.

  19. Effect of the Crystallization Process on the Marginal and Internal Gaps of Lithium Disilicate CAD/CAM Crowns

    PubMed Central

    Kim, Jae-Hong; Oh, Seunghan; Uhm, Soo-Hyuk

    2016-01-01

    The aim of this study is to quantify the effect of the crystallization process on lithium disilicate ceramic crowns fabricated using a computer-aided design/computer-aided manufacturing (CAD/CAM) system and to determine whether the effect of crystallization is clinically acceptable by comparing values of fit before and after the crystallization process. The mandibular right first molar was selected as the abutment for the experiments. Fifteen working models were prepared. Lithium disilicate crowns appropriate for each abutment were prepared using a commercial CAD/CAM system. Gaps in the marginal area and 4 internal areas of each crown were measured twice—before and after crystallization—using the silicone replica technique. The mean values of fit before and after crystallization were analyzed using a paired t-test to examine whether the conversion that occurred during crystallization affected marginal and internal gaps (α = 0.05). Gaps increased in the marginal area and decreased in the internal areas after crystallization. There were statistically significant differences in all of the investigated areas (P < 0.05). None of the values for marginal and internal fit of lithium disilicate CAD/CAM crowns after crystallization exceeded 120 μm, which is the clinically acceptable threshold. PMID:27123453

  20. Growth and Ultraviolet Transparency of Nanosized-Scatterer-Free Lithium Tetraborate Single Crystals by the Czochralski Method

    NASA Astrophysics Data System (ADS)

    Komatsu, Ryuichi; Shiro, Yusuke; Fujiwara, Yukifumi; Fujino, Shigeru

    2008-11-01

    Scatterers observed in lithium tetraborate (Li2B4O7) crystals grown by the Czochralski (CZ) method, were examined. It was revealed that the scattering source may decrease transparency in the ultraviolet (UV) region, which is an important property for application in nonlinear devices in the UV region. Parameters necessary for the reproducible growth of scatterer-free Li2B4O7 crystals were also investigated and scatterer-free Li2B4O7 crystals were successfully grown in dry air flow. Particles forming the scattering source were evaluated and the H concentration of the crystals was also examined.

  1. Effects of copper, iron and fluoride co-crystallized with sugar on caries development and acid formation in deslivated rats.

    PubMed

    Rosalen, P L; Pearson, S K; Bowen, W H

    1996-11-01

    The purpose was to explore the effects of combinations of copper, iron and fluoride (Cu, Fe and F) incorporated in sucrose by co-crystallization on caries development in the deslivated rat model and to examine acid formation by bacteria in the rat mouth. Ninety-six Sprague-Dawley rats were infected with Streptococcus sobrinus 6715 and desalivated when aged 26 days. Eight groups were placed in a König-Höfer programmed feeder and received 17 meals daily at hourly intervals, and essential nutrition (NCP No. 2) by gavage twice daily for 21 days. The groups received (1) plain sucrose, (2) F (8 parts/10(6)) co-crystallized with sucrose, (3) Fe (88 parts/10(6)) sucrose, (4) Cu (75 parts/10(6)) sucrose, (5) Cu + F sucrose, (6) Cu + L Fe sucrose, (7) F + Fe sucrose, and (8) Cu + Fe + F sucrose. At death the jaws were removed and sonicated in 0.9% saline solution for microbial assessment. In addition, organic acid assays were performed for each animal. Keyes smooth-surface and sulcal caries scores were lowest in the Cu + Fe + F sucrose group, but not statistically significantly different from those of the other Cu groups. The numbers of Strep. sobrinus found in the groups that received Cu, Cu + Fe, Cu + F, F + Fe and Cu + Fe + F sugar were lower than in the control group. Lactic acid was found in lower concentrations in Fe, Cu, Cu + F, Cu + Fe and F + Fe groups than in the other groups. It appears that combinations of Cu; Fe and F co-crystallized with sugar may have an additive effect in reducing the cariogenic potential of sugar by affecting lactic acid formation and reducing bacterial colonization. PMID:9068864

  2. Optimal Fluoridation

    PubMed Central

    Lee, John R.

    1975-01-01

    Optimal fluoridation has been defined as that fluoride exposure which confers maximal cariostasis with minimal toxicity and its values have been previously determined to be 0.5 to 1 mg per day for infants and 1 to 1.5 mg per day for an average child. Total fluoride ingestion and urine excretion were studied in Marin County, California, children in 1973 before municipal water fluoridation. Results showed fluoride exposure to be higher than anticipated and fulfilled previously accepted criteria for optimal fluoridation. Present and future water fluoridation plans need to be reevaluated in light of total environmental fluoride exposure. PMID:1130041

  3. Crystal structure of a lithium salt of a glucosyl derivative of lithocholic acid.

    PubMed

    Gubitosi, Marta; Meijide, Francisco; D'Annibale, Andrea; Vázquez Tato, José; Jover, Aida; Galantini, Luciano; Travaglini, Leana; di Gregorio, Maria Chiara; Pavel, Nicolae V

    2016-09-01

    The crystal structure of a Li(+) salt of a glucosyl derivative of lithocholic acid (lithium 3α-(α-d-glucopyranosyl)-5β-cholan-24-oate) has been solved. The crystal belongs to the orthorhombic system, P212121 spatial group, and includes acetone and water in the structure with a 1:1:2 stoichiometry. Monolayers, having a hydrophobic interior and hydrophilic edges, are recognized in the crystal structure. Li(+) is coordinated to three hydroxyl groups of three different glucose residues, with two of them belonging to the same monolayer. A fourth molecule, located in this monolayer, is involved in the coordination of the cation through the carboxylate ion by an electrostatic interaction, thus completing a distorted tetrahedron. All Li(+)-oxygen distances values are very close to the sum of the ionic radius of Li(+) and van der Waals radius of oxygen. Each steroid molecule is linked to other five steroid molecules through hydrogen bonds. Water and acetone are also involved in the hydrogen bond network. A hierarchical organization can be recognized in the crystal, the helical assembly along 21 screw axes being left-handed. PMID:27394960

  4. Waveguides in single-crystal lithium niobate thin film by proton exchange.

    PubMed

    Cai, Lutong; Han, Shuang Li Huangpu; Hu, Hui

    2015-01-26

    The proton exchanged (PE) planar and channel waveguides in a 500 nm thick single-crystal lithium niobate thin film (lithium niobate on insulator, LNOI) were studied. The mature PE technique and strong confinement of light in the LN single-crystal thin film were used. The single mode and cut-off conditions of the channel waveguides were obtained by finite difference simulation. The results showed that the single mode channel waveguide would form if the width of the PE region was between 0.75 μm and 2.1 μm in the β(4) phase. The channel waveguide in LNOI had a much smaller mode size than that in the bulk material due to the high-refractive-index contrast. The mode size reached as small as 0.6 μm(2). in simulation. In the experiment, the refractive index and phase transition after PE in LNOI were analyzed using the prism coupling method and X-ray diffraction. Three different width waveguides (5 μm, 7 μm and 11 μm) were optically characterized. Near-field intensity distribution showed that their mode sizes were 3.3 μm(2).,5 μm(2). and 7 μm(2). The propagation losses were evaluated to be about 16 dB/cm, 12 dB/cm and 11 dB/cm, respectively. The results indicate that PE is a promising method for building more complicated photonic integrated circuits in single-crystal LN thin film. PMID:25835882

  5. Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery

    SciTech Connect

    Fulvio, Pasquale F.; Brown, Suree S.; Adcock, Jamie; Mayes, Richard T.; Guo, Bingkun; Sun, Xiao-Guang; Mahurin, Shannon M.; Veith, Gabriel M.; Dai, Sheng

    2011-09-29

    Soft-templated mesoporous carbons and activated mesoporous carbons were fluorinated using elemental fluorine between room temperature and 235 °C. The mesoporous carbons were prepared via self-assembly synthesis of phloroglucinol–formaldehyde as a carbon precursor in the presence of triblock ethylene oxide–propylene oxide–ethylene oxide copolymer BASF Pluronic F127 as the template. The F/C ratios ranged from ~0.15 to 0.75 according to gravimetric, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis. Materials have mesopore diameters up to 11 nm and specific surface areas as high as 850 m² g⁻¹ after fluorination as calculated from nitrogen adsorption isotherms at -196 °C. Furthermore, the materials exhibit higher discharge potentials and energy and power densities as well as faster reaction kinetics under high current densities than commercial carbon fluorides with similar fluorine contents when tested as cathodes for Li/CFx batteries.

  6. Uniaxial growth of nonlinear optical active lithium para-nitrophenolate trihydrate single crystal by Sankaranarayanan Ramasamy (SR) method

    NASA Astrophysics Data System (ADS)

    Dinakaran, S.; Jerome Das, S.

    2008-01-01

    Optically transparent bulk single crystal of lithium para-nitrophenolate trihydrate has been grown along (1 1 0) plane using the uniaxial crystal growth method of Sankaranarayanan-Ramasamy with a slight modification in the growth assembly. The crystal was grown with a growth rate of 7 mm per day up to a dimensions of 80 mm length and 12 mm diameter with in a period of 12 days having cylindrical morphology. The grown crystal was confirmed by single crystal X-ray diffraction analysis. The optical transparency of the crystal was observed by UV-Vis-NIR spectral analysis. The mechanical strength of the grown crystal was tested by Vickers microhardness test along the growth plane (1 1 0). Frequency dependent dielectric studies were carried out along the growth axis.

  7. Lithium vanadyl oxalatophosphite: Influence of the water content on the crystal structures and the dehydration scheme

    SciTech Connect

    Auguste, S.; Alonzo, V.; Bataille, T.; Le Pollès, L.; Cañón-Mancisidor, W.; Venegas-Yazigi, D.; Le Fur, E.

    2014-03-15

    Two new lithium vanadyl oxalatophosphites have been synthesized by hydrothermal treatment. The respective formula are Li{sub 2}(VOHPO{sub 3}){sub 2}C{sub 2}O{sub 4} 6H{sub 2}O (1) and Li{sub 2}(VOHPO{sub 3}){sub 2}C{sub 2}O{sub 4} 4H{sub 2}O (2). The structures of the compounds have been determined by single crystal X-ray diffraction. Compound 1 crystallizes in triclinic symmetry in space group P-1, a=6.3592(2) Å, b=8.0789(3) Å, c=9.1692(3) Å, α=64.390(2), β=87.277(2)°, γ=67.624(2) and, compound 2 in monoclinic symmetry, space group P2{sub 1}/a, a=6.3555(2) Å b=12.6368(7) Å c=9.0242(4) Å β=105.167(3)°. The vanadium phosphite framework consists of infinite chains of corner-sharing vanadium octahedra and hydrogenophosphite tetrahedra. The oxalate groups ensure the connection between the chains. The lithium ions and the water molecules are located between the anionic [(VO){sub 2}(HPO{sub 3}){sub 2}C{sub 2}O{sub 4}]{sup 2−} layers. Thermal behavior of both compounds was carefully studied by combining thermogravimetric analyses and thermal dependant X-ray diffraction in order to study the thermal stability of the layered oxalatophosphites and to see the influence of the decomposition of the carbon-based anions into the final lithium vanadyl phosphate. Various intermediate phases were evidenced and for both compounds the final product was LiVOPO{sub 4}. -- Graphical abstract: Two new lithium vanadyl oxalatophosphites layered compounds, Li{sub 2} (VOHPO{sub 3}){sub 2}C{sub 2}O{sub 4} 6H{sub 2}O (1) and Li{sub 2} (VOHPO{sub 3}){sub 2}C{sub 2}O{sub 4} 4H{sub 2}O (2) have been hydrothermally synthesized. Lithium ions and water molecules are located between the anionic [(VO){sub 2}(HPO{sub 3}){sub 2}C{sub 2}O{sub 4}]{sup 2−} layers. Thermal behaviors were carefully studied by thermogravimetric and thermal dependant X-ray diffraction. Various intermediate phases were evidenced and for both compounds the final product was LiVOPO{sub 4}. Highlights: • The first

  8. EPR and optical absorption studies of Cu2+ doped lithium maleate dihydrate single crystal

    NASA Astrophysics Data System (ADS)

    Kripal, Ram; Pandey, Shri Devi

    Electron paramagnetic resonance (EPR) study of Cu2+ doped lithium maleate dihydrate single crystal is done at liquid nitrogen temperature (LNT). Four hyperfine lines are observed in all directions, i.e. only a single site is observed. The spin Hamiltonian parameters are determined from EPR spectra: gx=2.100±0.002, gy=2.162±0.002, gz=2.215±0.002, Ax=(55±5)×10-4 cm-1, Ay=(52±5)×10-4 cm-1, Az=(50±5)×10-4 cm-1. The results indicate that the copper ion enters the lattice interstitially. Using the spin Hamiltonian parameters obtained from EPR study the ground state wave function of Cu2+ ion in the lattice is determined. The optical absorption study of Cu2+ doped lithium maleate dihydrate at room temperature is also performed. With the help of optical and EPR data, the nature of bonding in the complex is discussed.

  9. Lithium insertion into mesoscopic and single-crystal TiO{sub 2} (rutile) electrodes

    SciTech Connect

    Kavan, L.; Fattakhova, D.; Krtil, P.

    1999-04-01

    Electrochemical behavior of single-crystal and mesoscopic TiO{sub 2} (rutile) was studied in propylene carbonate solutions at potentials negative to the flatband potential. In electrolytic solutions containing sodium or tetrabutylammonium (Bu{sub 4}N{sup +}), the injected charge is compensated by protonization of the surface and/or by adsorption of cations in the double layer. In electrolytic solutions containing Li{sup +}, the insertion into the rutile lattice occurs at potentials below 1.5 V (Li/Li{sup +}). At higher potentials, the charge is compensated mainly by a nonfaradaic process. Lithium insertion into rutile proceeds at a potential ca. 0.4 V more negative than the insertion potential into anatase. The maximum insertion capacity of rutile is also lower than that of anatase. The insertion of lithium into rutile is accompanied by an increase of the electrode mass, while the mass/charge relations show hystereses between anodic and cathodic potential sweeps. This behavior is explained in terms of a free convection in the electrode vicinity.

  10. Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems

    NASA Astrophysics Data System (ADS)

    Costa, C. M.; Gomez Ribelles, J. L.; Lanceros-Méndez, S.; Appetecchi, G. B.; Scrosati, B.

    2014-01-01

    In the present paper we report and discuss the physicochemical properties of novel electrolyte membranes, based on poly(vinylidenefluoride-co-trifluoroethylene), PVdF-TrFE, and poly(vinylidenefluoride-co-hexafluoropropylene), PVdF-HFP, co-polymer hosts and the PVdF-TrFE/poly(ethylene oxide (PEO) blend as separators for lithium battery systems. The results have shown that the examined separator membranes, particularly those based on the PVdF co-polymers, are able to uptake large liquid amounts leading to high ionic conductivity values. Tests performed on Li/LiFePO4 and Li/Sn-C cells have revealed very good cycling performance even at high current rates and 100% of DOD, approaching the results achieved in liquid electrolytes. A capacity fading lower than 0.002% per cycle was observed. Particularly, the Li/LiFePO4 cathode cells have exhibited excellent rate capability, being still able to deliver at 2C above 89% of the capacity discharged at 0.1C. These results, in conjunction with the about 100% coulombic efficiency, suggest very good electrolyte/electrode compatibility, which results from the high purity and stability of the electrolyte and electrode materials and the cell manufacturing.