Science.gov

Sample records for lithium ion battery

  1. Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lithium ion batteries, which use a new battery chemistry, are being developed under cooperative agreements between Lockheed Martin, Ultralife Battery, and the NASA Lewis Research Center. The unit cells are made in flat (prismatic) shapes that can be connected in series and parallel to achieve desired voltages and capacities. These batteries will soon be marketed to commercial original-equipment manufacturers and thereafter will be available for military and space use. Current NiCd batteries offer about 35 W-hr/kg compared with 110 W-hr/kg for current lithium ion batteries. Our ultimate target for these batteries is 200 W-hr/kg.

  2. Membranes in Lithium Ion Batteries

    PubMed Central

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  3. Modeling the Lithium Ion Battery

    ERIC Educational Resources Information Center

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  4. Novel Electrolytes for Lithium Ion Batteries

    SciTech Connect

    Lucht, Brett L

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  5. Electrolytes for lithium ion batteries

    SciTech Connect

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  6. Lithium Ion Battery Design and Safety

    NASA Technical Reports Server (NTRS)

    Au, George; Locke, Laura

    2001-01-01

    This viewgraph presentation makes several recommendations to ensure the safe and effective design of Lithium ion cell batteries. Large lithium ion cells require pressure switches and small cells require pressure disconnects and other safety devices with the ability to instantly interrupt flow. Other suggestions include specifications for batteries and battery chargers.

  7. Anode materials for lithium-ion batteries

    DOEpatents

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  8. Lithium ion batteries based on nanoporous silicon

    DOEpatents

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  9. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  10. Lithium ion battery with improved safety

    DOEpatents

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  11. High-discharge-rate lithium ion battery

    DOEpatents

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  12. 78 FR 19024 - Lithium Ion Batteries in Transportation Public Forum

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... SAFETY BOARD Lithium Ion Batteries in Transportation Public Forum On Thursday and Friday, April 11-12, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Lithium Ion... Inquiry. The forum is organized into three topic areas: Lithium ion battery design, development, and...

  13. Size effects in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hu-Rong, Yao; Ya-Xia, Yin; Yu-Gao, Guo

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. Project supported by the National Natural Science Foundation of China (Grant Nos. 51225204 and 21303222), the Shandong Taishan Scholarship, China, the Ministry of Science and Technology, China (Grant No. 2012CB932900), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010000).

  14. Synthesis and characterization of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pradhan, A. K.; Zhang, K.; Mundle, R.; Arslan, M.; Amponsah, O.; Bahoura, M.

    2012-04-01

    Layered lithiated transition metal oxides have been extensively developed and investigated as a cathode materials for lithium ion batteries due to the following advantages, such as high output voltage of 3.6 V, high energy density larger than 450Wh/dm3, low self-discharge rate less than 10%, no memory effect resulting in long cycle lives for more than 1000 times charging and discharging, free maintenance and no environmental pollution. The cathode materials in lithium ion battery are generally in the form of LiMO2 (M= Co, Ni, Mn, etc). Currently, lithium vanadium oxides also were studied. It is well known that the synthetic condition and methods are closely related to the electrochemical properties of lithium ion batteries. In this work, the wet chemical sol gel techniques have been used to synthesize LiNiO2 and LiV3O8. In this study, the LiNiO2 particles and LiV3O8 nanorods were successfully synthesized by sol-gel wet chemical methods. Annealing heat treatment influence the crystallinity of the final product, which may be consequently affected their electrochemical performance.

  15. Pure inorganic separator for lithium ion batteries.

    PubMed

    He, Meinan; Zhang, Xinjie; Jiang, Kuiyang; Wang, Joe; Wang, Yan

    2015-01-14

    Battery safety is critical for many applications including portable electronics, hybrid and electric vehicles, and grid storage. For lithium ion batteries, the conventional polymer based separator is unstable at 120 °C and above. In this research, we have developed a pure aluminum oxide nanowire based separator; this separator does not contain any polymer additives or binders; additionally, it is a bendable ceramic. The physical and electrochemical properties of the separator are investigated. The separator has a pore size of about 100 nm, and it shows excellent electrochemical properties under both room and high temperatures. At room temperature, the ceramic separator shows a higher rate capability compared to the conventional Celgard 2500 separator and life cycle performance does not show any degradation. At 120 °C, the cell with the ceramic separator showed a much better cycle performance than the conventional Celgard 2500 separator. Therefore, we believe that this research is really an exciting scientific breakthrough for ceramic separators and lithium ion batteries and could be potentially used in the next generation lithium ion batteries requiring high safety and reliability. PMID:25459154

  16. Electrochemical Lithium Ion Battery Performance Model

    Energy Science and Technology Software Center (ESTSC)

    2007-03-29

    The Electrochemical Lithium Ion Battery Performance Model allows for the computer prediction of the basic thermal, electrical, and electrochemical performance of a lithium ion cell with simplified geometry. The model solves governing equations describing the movement of lithium ions within and between the negative and positive electrodes. The governing equations were first formulated by Fuller, Doyle, and Newman and published in J. Electrochemical Society in 1994. The present model solves the partial differential equations governingmore » charge transfer kinetics and charge, species, heat transports in a computationally-efficient manner using the finite volume method, with special consideration given for solving the model under conditions of applied current, voltage, power, and load resistance.« less

  17. Lithium-ion batteries having conformal solid electrolyte layers

    SciTech Connect

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  18. Cyanoethylated Compounds as Additives in Lithium/Lithium Ion Batteries

    SciTech Connect

    Nagasubramanian, Ganesan

    1998-05-08

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  19. Lithium-Ion Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.

    1999-01-01

    This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.

  20. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    SciTech Connect

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  1. Advances in lithium-ion batteries

    SciTech Connect

    Kerr, John B.

    2003-06-24

    The editors state in their introduction that this book is intended for lithium-ion scientists and engineers but they hope it may be of interest to scientists from other fields. Their main aim was to provide a snapshot of the state of the Lithium-ion art and in this they have largely succeeded. The book is comprised of a collection of very current reviews of the lithium ion battery literature by acknowledged experts that draw heavily on the authors' own research but are sufficiently general to provide the lithium ion researcher with enough guidance to the current literature and the current thinking in the field. Some of the literature references may be too current as there are numerous citations of conference proceedings which may be easily accessible to the lithium ion scientist or engineer but are not likely to be available to the interested chemist coming to the field for the first time. One author expresses the hope and expectation that properly peer-reviewed articles will appear in due course and the interested reader should look out for them in future. From the point of view of the lithium ion battery scientist and engineer, the book covers most of the topics that are of current interest. Two areas are treated by inference in the various chapters but are not specifically granted chapters of their own. One of these is safety and abuse tolerance and the other is cost. Since there are a number of groups active in the investigation of abuse tolerance of these batteries this is a curious omission and obviously the cost factor is a driver for commercial development. The book should be instructive to the chemical community provided the average chemist can obtain some guidance from an electrochemist or battery engineer. Many of the measurements and techniques referred to (e.g. impedance, capacities, etc.) may be somewhat unfamiliar and confusing in the context they are used. Chemists who persevere and can obtain some guidance will find some rich opportunities for the

  2. Advances of aqueous rechargeable lithium-ion battery: A review

    NASA Astrophysics Data System (ADS)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  3. Thermal characteristics of Lithium-ion batteries

    NASA Technical Reports Server (NTRS)

    Hauser, Dan

    2004-01-01

    Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter

  4. A review of lithium deposition in lithium-ion and lithium metal secondary batteries

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Huang, Jun; Yann Liaw, Bor; Metzler, Viktor; Zhang, Jianbo

    2014-05-01

    Major aspects related to lithium deposition in lithium-ion and lithium metal secondary batteries are reviewed. For lithium-ion batteries with carbonaceous anode, lithium deposition may occur under harsh charging conditions such as overcharging or charging at low temperatures. The major technical solutions include: (1) applying electrochemical models to predict the critical conditions for deposition initiation; (2) preventions by improved battery design and material modification; (3) applying adequate charging protocols to inhibit lithium deposition. For lithium metal secondary batteries, the lithium deposition is the inherent reaction during charging. The major technical solutions include: (1) the use of mechanistic models to elucidate and control dendrite initiation and growth; (2) engineering surface morphology of the lithium deposition to avoid dendrite formation via adjusting the composition and concentration of the electrolyte; (3) controlling battery working conditions. From a survey of the literature, the areas that require further study are proposed; e.g., refining the lithium deposition criteria, developing an effective AC self pre-heating method for low-temperature charging of lithium-ion batteries, and clarifying the role the solid electrolyte interphase (SEI) plays in determining the deposition morphology; to facilitate a refined control of the lithium deposition.

  5. Lithium ion batteries and their manufacturing challenges

    SciTech Connect

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, and solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.

  6. Lithium ion batteries and their manufacturing challenges

    DOE PAGESBeta

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less

  7. Energetics of lithium ion battery failure.

    PubMed

    Lyon, Richard E; Walters, Richard N

    2016-11-15

    The energy released by failure of rechargeable 18-mm diameter by 65-mm long cylindrical (18650) lithium ion cells/batteries was measured in a bomb calorimeter for 4 different commercial cathode chemistries over the full range of charge using a method developed for this purpose. Thermal runaway was induced by electrical resistance (Joule) heating of the cell in the nitrogen-filled pressure vessel (bomb) to preclude combustion. The total energy released by cell failure, ΔHf, was assumed to be comprised of the stored electrical energy E (cell potential×charge) and the chemical energy of mixing, reaction and thermal decomposition of the cell components, ΔUrxn. The contribution of E and ΔUrxn to ΔHf was determined and the mass of volatile, combustible thermal decomposition products was measured in an effort to characterize the fire safety hazard of rechargeable lithium ion cells. PMID:27420388

  8. Transparent lithium-ion batteries.

    PubMed

    Yang, Yuan; Jeong, Sangmoo; Hu, Liangbing; Wu, Hui; Lee, Seok Woo; Cui, Yi

    2011-08-01

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries. PMID:21788483

  9. Three-Dimensional Lithium-Ion Battery Model (Presentation)

    SciTech Connect

    Kim, G. H.; Smith, K.

    2008-05-01

    Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

  10. Carbon Nanotube Doped Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Raffaelle, Ryne P.; Difelice, Ron; van Derveer, William R.; Gennett, Tom; Maranchi, Jeff; Kumta, Prashant; Hepp, Aloysius F.

    2002-03-01

    We have characterized thin film lithium ion batteries that contain high purity single wall carbon nanotube-doped polymer anodes. Highly purified single-walled carbon nanotubes (SWCNT) were obtained through chemical refinement of soot generated by pulsed laser ablation. The purity of the nanotubes was determined via thermogravimetric analysis, two wavelength Raman spectroscopy, spectrophotometry, scanning electron microscopy and transmission electron microscopy. The specific surface area and lithium capacity of the SWCNT was compared to that of other conventional anode materials (i.e., carbon black, graphite, and multi-walled carbon nanotubes). The SWCNT exhibited a specific surface area that greatly exceeded the other carbonaceous materials. Anodes were prepared by casting thin films directly onto copper foil of several ionically conductive polymers (i.e., PAN, PVDF, PEO) doped with the SWCNT. The lithium-ion capacity of the materials was measured using a standard 3-electrode cell. The electrochemical discharge capacity of the purified single walled carbon nanotubes in PVDF was in excess of 1300 mAh/g after 30 charge/discharge cycles when tested using a current density of 20µA/cm^2. The SWCNT anodes were incorporated into all-polymer thin film batteries containing LiNiCoO_2-doped polymer cathodes. Cycling results on the various SWCNT polymer combinations will be presented.

  11. Materials for rechargeable lithium-ion batteries.

    PubMed

    Hayner, Cary M; Zhao, Xin; Kung, Harold H

    2012-01-01

    The lithium-ion battery is the most promising battery candidate to power battery-electric vehicles. For these vehicles to be competitive with those powered by conventional internal combustion engines, significant improvements in battery performance are needed, especially in the energy density and power delivery capabilities. Recent discoveries and advances in the development of electrode materials to improve battery performance are summarized. Promising substitutes for graphite as the anode material include silicon, tin, germanium, their alloys, and various metal oxides that have much higher theoretical storage capacities and operate at slightly higher and safer potentials. Designs that attempt to accommodate strain owing to volumetric changes upon lithiation and delithiation are presented. All known cathode materials have storage capacities inferior to those of anode materials. In addition to variations on known transition metal oxides and phosphates, other potential materials, such as metal fluorides, are discussed as well as the effects of particle size and electrode architecture. New electrolyte systems and additives as well as their effects on battery performance, especially with regard to safety, are described. PMID:22524506

  12. Parameter estimation for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Santhanagopalan, Shriram

    With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of

  13. Thermal analysis of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, S. C.; Wan, C. C.; Wang, Y. Y.

    A detailed three-dimensional thermal model has been developed to examine the thermal behaviour of a lithium-ion battery. This model precisely considers the layered-structure of the cell stacks, the case of a battery pack, and the gap between both elements to achieve a comprehensive analysis. Both location-dependent convection and radiation are adopted at boundaries to reflect different heat dissipation performances on all surfaces. Furthermore, a simplified thermal model is proposed according to the examination of various simplification strategies and validation from the detailed thermal model. Based on the examination, the calculation speed of the simplified model is comparable with that of a one-dimensional model with a maximum error less than 0.54 K. These models successfully describe asymmetric temperature distribution inside a battery, and they predict an anomaly of temperature distribution on the surface if a metal case is used. Based on the simulation results from the detailed thermal model, radiation could contribute 43-63% at most to the overall heat dissipation under natural convection. Forced convection is effective in depressing the maximum temperature, and the temperature uniformity does not necessarily decrease infinitely when the extent of forced convection is enhanced. The metal battery case serves as a heat spreader, and the contact layer provides extra thermal resistance and heat capacity for the system. These factors are important and should be considered seriously in the design of battery systems.

  14. Redox shuttles for safer lithium-ion batteries.

    SciTech Connect

    Chen, Z.; Qin, Y.; Amine, K.; Chemical Sciences and Engineering Division

    2009-10-01

    Overcharge protection is not only critical for preventing the thermal runaway of lithium-ion batteries during operation, but also important for automatic capacity balancing during battery manufacturing and repair. A redox shuttle is an electrolyte additive that can be used as intrinsic overcharge protection mechanism to enhance the safety characteristics of lithium-ion batteries. The advances on stable redox shuttles are briefly reviewed. Fundamental studies for designing stable redox shuttles are also discussed.

  15. Metal hydrides for lithium-ion batteries.

    PubMed

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries. PMID:18849978

  16. Ceramic and polymeric solid electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fergus, Jeffrey W.

    Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries.

  17. Electrolyte compositions for lithium ion batteries

    DOEpatents

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  18. New Horizons for Conventional Lithium Ion Battery Technology.

    PubMed

    Erickson, Evan M; Ghanty, Chandan; Aurbach, Doron

    2014-10-01

    Secondary lithium ion battery technology has made deliberate, incremental improvements over the past four decades, providing sufficient energy densities to sustain a significant mobile electronic device industry. Because current battery systems provide ∼100-150 km of driving distance per charge, ∼5-fold improvements are required to fully compete with internal combustion engines that provide >500 km range per tank. Despite expected improvements, the authors believe that lithium ion batteries are unlikely to replace combustion engines in fully electric vehicles. However, high fidelity and safe Li ion batteries can be used in full EVs plus range extenders (e.g., metal air batteries, generators with ICE or gas turbines). This perspective article describes advanced materials and directions that can take this technology further in terms of energy density, and aims at delineating realistic horizons for the next generations of Li ion batteries. This article concentrates on Li intercalation and Li alloying electrodes, relevant to the term Li ion batteries. PMID:26278438

  19. Bipolar and Monopolar Lithium-Ion Battery Technology at Yardney

    NASA Technical Reports Server (NTRS)

    Russell, P.; Flynn, J.; Reddy, T.

    1996-01-01

    Lithium-ion battery systems offer several advantages: intrinsically safe; long cycle life; environmentally friendly; high energy density; wide operating temperature range; good discharge rate capability; low self-discharge; and no memory effect.

  20. Use of lithium-ion batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Kennedy, B.; Patterson, D.; Camilleri, S.

    An account is given of the lithium-ion (Li-ion) battery pack used in the Northern Territory University's solar car, Fuji Xerox Desert Rose, which competed in the 1999 World Solar Challenge (WSC). The reasons for the choice of Li-ion batteries over silver-zinc batteries are outlined, and the construction techniques used, the management of the batteries, and the battery protection boards are described. Data from both pre-race trialling and race telemetry, and an analysis of both the coulombic and the energy efficiencies of the battery are presented. It is concluded that Li-ion batteries show a real advantage over other commercially available batteries for traction applications of this kind.

  1. Non-aqueous electrolytes for lithium ion batteries

    SciTech Connect

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  2. Doping-Enhanced Lithium Diffusion in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Wu, Shunnian; Wu, Ping

    2011-09-01

    We disclose a distortion-assisted diffusion mechanism in Li3N and Li2.5Co0.5N by first-principles simulations. A B2g soft mode at the Γ point is found in α-Li3N, and a more stable α'-Li3N (P3¯m1) structure, which is 0.71 meV lower in energy, is further derived. The same soft mode is inherited into Li2.5Co0.5N and is enhanced due to Co doping. Consequently, unlike the usual Peierls spin instability along Co-N chains, large lithium-ion displacements on the Li-N plane are induced by a set of soft modes. Such a distortion is expected to offer Li atoms a route to bypass the high diffusion barrier and promote Li-ion conductivity. In addition, we further illustrate abnormal Born effective charges along Co-N chains which result from the competition between the motions of electrons and ion cores. Our results provide future opportunities in both fundamental understanding and structural modifications of Li-ion battery materials.

  3. Model based condition monitoring in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Singh, Amardeep; Izadian, Afshin; Anwar, Sohel

    2014-12-01

    In this paper, a model based condition monitoring technique is developed for lithium-ion battery condition monitoring. Here a number of lithium-ion batteries are cycled using two separate over discharge test regimes and the resulting shift in battery parameters is recorded. The battery models are constructed using the equivalent circuit methodology. The condition monitoring setup consists of a model bank representing the different degree of parameter shift due to overdischarge in the lithium ion battery. Extended Kalman filters (EKF) are used to maintain increased robustness of the condition monitoring setup while estimating the terminal voltage of the battery cell. The information carrying residuals are generated and evaluation process is carried out in real-time using multiple model adaptive estimation (MMAE) methodology. The condition evaluation function is used to generate probabilities that indicate the presence of a particular operational condition. Using the test data, it is shown that the performance shift in lithium ion batteries due to over discharge can be accurately detected.

  4. Interphase Evolution of a Lithium-Ion/Oxygen Battery.

    PubMed

    Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2015-10-14

    A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode. PMID:26389522

  5. Materials issues in lithium ion rechargeable battery technology

    SciTech Connect

    Doughty, D.H.

    1995-07-01

    Lithium ion rechargeable batteries are predicted to replace Ni/Cd as the workhorse consumer battery. The pace of development of this battery system is determined in large part by the availability of materials and the understanding of interfacial reactions between materials. Lithium ion technology is based on the use of two lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells and in 1983 for ambient temperature systems, it was not until Sony Energytech announced a new lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these electrochemical cells have the high energy density, high voltage and light weight of metallic lithium, but without the disadvantages of dendrite formation on charge, improving their safety and cycle life.

  6. Nickel-Hydrogen and Lithium Ion Space Batteries

    NASA Technical Reports Server (NTRS)

    Reid, Robert O., II

    2004-01-01

    The tasks of the Electrochemistry Branch of NASA Glenn Research Center are to improve and develop high energy density and rechargeable, life-long batteries. It is with these batteries that people across the globe are able to power their cell phones, laptop computers, and cameras. Here, at NASA Glenn Research Center, the engineers and scientists of the Electrochemistry branch are leading the way in the development of more powerful, long life batteries that can be used to power space shuttles and satellites. As of now, the cutting edge research and development is being done on nickel-hydrogen batteries and lithium ion batteries. Presently, nickel-hydrogen batteries are common types of batteries that are used to power satellites, space stations, and space shuttles, while lithium batteries are mainly used to power smaller appliances such as portable computers and phones. However, the Electrochemistry Branch at NASA Glenn Research Center is focusing more on the development of lithium ion batteries for deep space use. Because of the limitless possibilities, lithium ion batteries can revolutionize the space industry for the better. When compared to nickel-hydrogen batteries, lithium ion batteries possess more advantages than its counterpart. Lithium ion batteries are much smaller than nickel-hydrogen batteries and also put out more power. They are more energy efficient and operate with much more power at a reduced weight than its counterpart. Lithium ion cells are also cheaper to make, possess flexibility that allow for different design modifications. With those statistics in hand, the Electrochemistry Branch of NASA Glenn has decided to shut down its Nickel-Hydrogen testing for lithium ion battery development. Also, the blackout in the summer of 2003 eliminated vital test data, which played a part in shutting down the program. from the nickel-hydrogen batteries and compare it to past data. My other responsibilities include superheating the electrolyte that is used in the

  7. Safer lithium ion batteries based on nonflammable electrolyte

    NASA Astrophysics Data System (ADS)

    Zeng, Ziqi; Wu, Bingbin; Xiao, Lifen; Jiang, Xiaoyu; Chen, Yao; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-04-01

    The safety of lithium ion batteries has long been a critical obstacle for their high-power and large-scale applications because of the flammable nature of their carbon anode and organic carbonate electrolytes. To eliminate the potential safety hazards, lithium ion batteries should be built up with thermal-stable electrodes and nonflammable electrolytes. Here we report safer lithium ion batteries using nonflammable phosphonate electrolyte, thermal-stable LiFePO4 cathode and alloy anodes. Benefiting from the electrochemical compatibility and strong fire-retardancy of the phosphonate electrolyte, the cathode and anode materials in the nonflammable phosphonate electrolyte demonstrate similar charge-discharge performances with those in the conventional carbonate electrolyte, showing a great prospect for large-scale applications in electric vehicles and grid-scale electric energy storage.

  8. Lithium Ion Batteries Used for Nuclear Forensics

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Stapels, Christopher J.; Chen, X. Jie; Whitney, Chad; Holbert, Keith E.; Christian, James F.

    2013-10-01

    Nuclear forensics includes the study of materials used for the attribution a nuclear event. Analysis of the nuclear reaction products resulting both from the weapon and the material in the vicinity of the event provides data needed to identify the source of the nuclear material and the weapon design. The spectral information of the neutrons produced by the event provides information on the weapon configuration. The lithium battery provides a unique platform for nuclear forensics, as the Li-6 content is highly sensitive to neutrons, while the battery construction consists of various layers of materials. Each of these materials represents an element for a threshold detector scheme, where isotopes are produced in the battery components through various nuclear reactions that require a neutron energy above a fundamental threshold energy. This study looks into means for extracting neutron spectral information by understanding the isotopic concentration prior to and after exposure. The radioisotopes decay through gamma and beta emission, and radiation spectrometers have been used to measure the radiation spectra from the neutron exposed batteries. The batteries were exposed to various known neutron fields, and analysis was conducted to reconstruct the incident neutron spectra. This project is supported by the Defense Threat Reduction Agency, grant number HDTRA1-11-1-0028.

  9. Testing Conducted for Lithium-Ion Cell and Battery Verification

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  10. Nanowire-graphene hybrids for lithium-ion-battery

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif Ishtiaque; Khan, Md Ashiqur Rahaman; Karim, Hasanul; Morton, Philip; Wilson, Tavis; Mendoza, Miguel; Lin, Yirong

    2013-04-01

    Lithium ion batteries (LIB) have been receiving extensive attention due to the high specific energy density for wide applications such as electronic vehicles, commercial mobile electronics, and military applications. In LIB, graphite is the most commonly used anode material; however, lithium ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To overcome this obstacle, nanostructured anode assembly has been extensively studied to increase the lithium ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown propitious results for enhanced lithium intercalation. Recently, nanowire/graphene hybrids were developed for the enhancement of LIB performance; however, almost all previous efforts employed nanowires on graphene in a random fashion, which limited lithium ion diffusion rate. Therefore, we demonstrate a new approach by hydrothermally growing uniform nanowires on graphene aerogel to further improve the performance. This nanowire/graphene aerogel hybrid not only uses the high surface area of the graphene aerogel but also increases the specific surface area for electrodeelectrolyte interaction. Therefore, this new nanowire/graphene aerogel hybrid anode material could enhance the specific capacity and charge-discharge rate. Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) are used for materials characterization. Battery Analyzer and Potentio-galvanostat are used for measuring the electrical performance of the battery. The testing results show that nanowire graphene hybrid anode gives significantly improved performance compared to graphene anode.

  11. Mitigating Thermal Runaway Risk in Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Jeevarajan, Judy; Russell, Samuel

    2014-01-01

    The JSC/NESC team has successfully demonstrated Thermal Runaway (TR) risk reduction in a lithium ion battery for human space flight by developing and implementing verifiable design features which interrupt energy transfer between adjacent electrochemical cells. Conventional lithium ion (li-Ion) batteries can fail catastrophically as a result of a single cell going into thermal runaway. Thermal runaway results when an internal component fails to separate electrode materials leading to localized heating and complete combustion of the lithium ion cell. Previously, the greatest control to minimize the probability of cell failure was individual cell screening. Combining thermal runaway propagation mitigation design features with a comprehensive screening program reduces both the probability, and the severity, of a single cell failure.

  12. Lithium-ion batteries: Runaway risk of forming toxic compounds

    NASA Astrophysics Data System (ADS)

    Hammami, Amer; Raymond, Nathalie; Armand, Michel

    2003-08-01

    Lithium-ion batteries are stabilized by an ultrathin protective film that is 10-50 nanometres thick and coats both electrodes. Here we artifically simulate the 'thermal-runaway' conditions that would arise should this coating be destroyed, which could happen in a battery large enough to overheat beyond 80 °C. We find that under these conditions the reaction of the battery electrolyte with the material of the unprotected positive electrode results in the formation of toxic fluoro-organic compounds. Although not a concern for the small units used in today's portable devices, this unexpected chemical hazard should be taken into account as larger and larger lithium-ion batteries are developed, for example for incorporation into electric-powered vehicles.

  13. Memory effect in a lithium-ion battery.

    PubMed

    Sasaki, Tsuyoshi; Ukyo, Yoshio; Novák, Petr

    2013-06-01

    Memory effects are well known to users of nickel-cadmium and nickel-metal-hydride batteries. If these batteries are recharged repeatedly after being only partially discharged, they gradually lose usable capacity owing to a reduced working voltage. Lithium-ion batteries, in contrast, are considered to have no memory effect. Here we report a memory effect in LiFePO4-one of the materials used for the positive electrode in Li-ion batteries-that appears already after only one cycle of partial charge and discharge. We characterize this memory effect of LiFePO4 and explain its connection to the particle-by-particle charge/discharge model. This effect is important for most battery uses, as the slight voltage change it causes can lead to substantial miscalculations in estimating the state of charge of batteries. PMID:23584142

  14. Renewable-Biomolecule-Based Full Lithium-Ion Batteries.

    PubMed

    Hu, Pengfei; Wang, Hua; Yang, Yun; Yang, Jie; Lin, Jie; Guo, Lin

    2016-05-01

    A renewable-biomolecule-based full lithium-ion battery is successfully fabricated for the first time. Naturally derivable emodin and humic acid based electrodes are used as cathode and anode, respectively. The as-assembled batteries exhibit superb specific capacity and substantial operating voltage capable of powering a wearable electronic watch, suggesting the great potential for practical applications with the significant merits of sustainability and biocompatibility. PMID:26989989

  15. Design modeling of lithium-ion battery performance

    NASA Astrophysics Data System (ADS)

    Nelson, Paul; Bloom, Ira; Amine, Khalil; Henriksen, Gary

    A computer design modeling technique has been developed for lithium-ion batteries to assist in setting goals for cell components, assessing materials requirements, and evaluating thermal management strategies. In this study, the input data for the model included design criteria from Quallion, LLC for Gen-2 18650 cells, which were used to test the accuracy of the dimensional modeling. Performance measurements on these cells were done at the electrochemical analysis and diagnostics laboratory (EADL) at Argonne National Laboratory. The impedance and capacity related criteria were calculated from the EADL measurements. Five batteries were designed for which the number of windings around the cell core was increased for each succeeding battery to study the effect of this variable upon the dimensions, weight, and performance of the batteries. The lumped-parameter battery model values were calculated for these batteries from the laboratory results, with adjustments for the current collection resistance calculated for the individual batteries.

  16. Design modeling of lithium-ion battery performance.

    SciTech Connect

    Nelson, P. A.; Bloom, I.; Amine, K.; Henriksen, G.; Chemical Engineering

    2002-08-22

    A computer design modeling technique has been developed for lithium-ion batteries to assist in setting goals for cell components, assessing materials requirements, and evaluating thermal management strategies. In this study, the input data for the model included design criteria from Quallion, LLC for Gen-2 18650 cells, which were used to test the accuracy of the dimensional modeling. Performance measurements on these cells were done at the electrochemical analysis and diagnostics laboratory (EADL) at Argonne National Laboratory. The impedance and capacity related criteria were calculated from the EADL measurements. Five batteries were designed for which the number of windings around the cell core was increased for each succeeding battery to study the effect of this variable upon the dimensions, weight, and performance of the batteries. The lumped-parameter battery model values were calculated for these batteries from the laboratory results, with adjustments for the current collection resistance calculated for the individual batteries.

  17. KOH etched graphite for fast chargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cheng, Qian; Yuge, Ryota; Nakahara, Kentaro; Tamura, Noriyuki; Miyamoto, Shigeyuki

    2015-06-01

    Graphite is the most widely used anode material for lithium ion (Li-ion) batteries, although it has limited power performance at high charging rates (Li-ion input). Alternative materials such as silicon and tin alloys, however, have an even more inferior rate capability. We describe here a multi-channel structure with a graphite surface etched with pores that can greatly increase the number of sites for Li-ion intercalation/de-intercalation and reduce the Li-ion diffusion distance for fast chargeable Li-ion batteries by etching the graphite surface with pores. As a result, the multi-channel structure graphite anode shows better charging and discharging rate capability, cyclability, and higher coulombic efficiency than pristine graphite materials. The multi-channel anode material is proposed for use in fast chargeable Li-ion batteries for electric vehicles and plug-in hybrid vehicles.

  18. Graphene composites as anode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, M.; Kovacevic, R.

    2013-03-01

    Since the world of mobile phones and laptops has significantly altered by a big designer named Steve Jobs, the electronic industries have strived to prepare smaller, thinner and lower weight products. The giant electronic companies, therefore, compete in developing more efficient hardware such as batteries used inside the small metallic or polymeric frame. One of the most important materials in the production lines is the lithium-based batteries which is so famous for its ability in recharging as many times as a user needs. However, this is not an indication of being long lasted, as many of the electronic devices are frequently being used for a long time. The performance, chemistry, safety and above all cost of the lithium ion batteries should be considered when the design of the compounds are at the top concern of the engineers. To increase the efficiency of the batteries a combination of graphene and nanoparticles is recently introduced and it has shown to have enormous technological effect in enhancing the durability of the batteries. However, due to very high electronic conductivity, these materials can be thought of as preparing the anode electrode in the lithiumion battery. In this paper, the various approaches to characterize different types of graphene/nanoparticles and the process of preparing the anode for the lithium-ion batteries as well as their electrical properties are discussed.

  19. Non-aqueous electrolyte for lithium-ion battery

    DOEpatents

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  20. Costs of lithium-ion batteries for vehicles

    SciTech Connect

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  1. Optimal charging profiles for mechanically constrained lithium-ion batteries

    SciTech Connect

    Suthar, B; Ramadesigan, V; De, S; Braatz, RD; Subramanian, VR

    2014-01-01

    The cost and safety related issues of lithium-ion batteries require intelligent charging profiles that can efficiently utilize the battery. This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery using a single-particle model while incorporating intercalation-induced stress generation. In this paper, we focus on the problem of maximizing the charge stored in a given time while restricting the development of stresses inside the particle. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage) were not derived by considering capacity fade mechanisms. These charging profiles are not only inefficient in terms of lifetime usage of the batteries but are also slower since they do not exploit the changing dynamics of the system. Dynamic optimization based approaches have been used to derive optimal charging and discharging profiles with different objective functions. The progress made in understanding the capacity fade mechanisms has paved the way for inclusion of that knowledge in deriving optimal controls. While past efforts included thermal constraints, this paper for the first time presents strategies for optimally charging batteries by guaranteeing minimal mechanical damage to the electrode particles during intercalation. In addition, an executable form of the code has been developed and provided. This code can be used to identify optimal charging profiles for any material and design parameters.

  2. High capacity anode materials for lithium ion batteries

    SciTech Connect

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  3. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    PubMed

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life. PMID:19739146

  4. Lithium ion batteries with titania/graphene anodes

    DOEpatents

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  5. Voltage hysteresis of lithium ion batteries caused by mechanical stress.

    PubMed

    Lu, Bo; Song, Yicheng; Zhang, Qinglin; Pan, Jie; Cheng, Yang-Tse; Zhang, Junqian

    2016-02-01

    The crucial role of mechanical stress in voltage hysteresis of lithium ion batteries in charge-discharge cycles is investigated theoretically and experimentally. A modified Butler-Volmer equation of electrochemical kinetics is proposed to account for the influence of mechanical stresses on electrochemical reactions in lithium ion battery electrodes. It is found that the compressive stress in the surface layer of active materials impedes lithium intercalation, and therefore, an extra electrical overpotential is needed to overcome the reaction barrier induced by the stress. The theoretical formulation has produced a linear dependence of the height of voltage hysteresis on the hydrostatic stress difference between lithiation and delithiation, under both open-circuit conditions and galvanostatic operation. Predictions of the electrical overpotential from theoretical equations agree well with the experimental data for thin film silicon electrodes. PMID:26799574

  6. A closed loop process for recycling spent lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gratz, Eric; Sa, Qina; Apelian, Diran; Wang, Yan

    2014-09-01

    As lithium ion (Li-ion) batteries continue to increase their market share, recycling Li-ion batteries will become mandatory due to limited resources. We have previously demonstrated a new low temperature methodology to separate and synthesize cathode materials from mixed cathode materials. In this study we take used Li-ion batteries from a recycling source and recover active cathode materials, copper, steel, etc. To accomplish this the batteries are shredded and processed to separate the steel, copper and cathode materials; the cathode materials are then leached into solution; the concentrations of nickel, manganese and cobalt ions are adjusted so NixMnyCoz(OH)2 is precipitated. The precipitated product can then be reacted with lithium carbonate to form LiNixMnyCozO2. The results show that the developed recycling process is practical with high recovery efficiencies (∼90%), and 1 ton of Li-ion batteries has the potential to generate 5013 profit margin based on materials balance.

  7. Chemical Shuttle Additives in Lithium Ion Batteries

    SciTech Connect

    Patterson, Mary

    2013-03-31

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher

  8. Safety focused modeling of lithium-ion batteries: A review

    NASA Astrophysics Data System (ADS)

    Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F.

    2016-02-01

    Safety issues pertaining to Li-ion batteries justify intensive testing all along their value chain. However, progress in scientific knowledge regarding lithium based battery failure modes, as well as remarkable technologic breakthroughs in computing science, now allow for development and use of prediction tools to assist designers in developing safer batteries. Subsequently, this paper offers a review of significant modeling works performed in the area with a focus on the characterization of the thermal runaway hazard and their relating triggering events. Progress made in models aiming at integrating battery ageing effect and related physics is also discussed, as well as the strong interaction with modeling-focused use of testing, and the main achievements obtained towards marketing safer systems. Current limitations and new challenges or opportunities that are expected to shape future modeling activity are also put in perspective. According to market trends, it is anticipated that safety may still act as a restraint in the search for acceptable compromise with overall performance and cost of lithium-ion based and post lithium-ion rechargeable batteries of the future. In that context, high-throughput prediction tools capable of screening adequate new components properties allowing access to both functional and safety related aspects are highly desirable.

  9. Guidelines on Lithium-ion Battery Use in Space Applications

    NASA Technical Reports Server (NTRS)

    Mckissock, Barbara; Loyselle, Patricia; Vogel, Elisa

    2009-01-01

    This guideline discusses a standard approach for defining, determining, and addressing safety, handling, and qualification standards for lithium-ion (Li-Ion) batteries to help the implementation of the technology in aerospace applications. Information from a variety of other sources relating to Li-ion batteries and their aerospace uses has been collected and included in this document. The sources used are listed in the reference section at the end of this document. The Li-Ion chemistry is highly energetic due to its inherent high specific energy and its flammable electrolyte. Due to the extreme importance of appropriate design, test, and hazard control of Li-ion batteries, it is recommended that all Government and industry users and vendors of this technology for space applications, especially involving humans, use this document for appropriate guidance prior to implementing the technology.

  10. Modified natural graphite as anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Y. P.; Jiang, C.; Wan, C.; Holze, R.

    A concentrated nitric acid solution was used as an oxidant to modify the electrochemical performance of natural graphite as anode material for lithium ion batteries. Results of X-ray photoelectron spectroscopy, electron paramagnetic resonance, thermogravimmetry, differential thermal analysis, high resolution electron microscopy, and measurement of the reversible capacity suggest that the surface structure of natural graphite was changed, a fresh dense layer of oxides was formed. Some structural imperfections were removed, and the stability of the graphite structure increased. These changes impede decomposition of electrolyte solvent molecules, co-intercalation of solvated lithium ions and movement of graphene planes along the a-axis direction. Concomitantly, more micropores were introduced, and thus, lithium intercalation and deintercalation were favored and more sites were provided for lithium storage. Consequently, the reversible capacity and the cycling behavior of the modified natural graphite were much improved by the oxidation. Obviously, the liquid-solid oxidation is advantageous in controlling the uniformity of the products.

  11. Metal-organic frameworks for lithium ion batteries and supercapacitors

    SciTech Connect

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  12. Modeling Diffusion Induced Stresses for Lithium-Ion Battery Materials

    NASA Astrophysics Data System (ADS)

    Chiu Huang, Cheng-Kai

    Advancing lithium-ion battery technology is of paramount importance for satisfying the energy storage needs in the U.S., especially for the application in the electric vehicle industry. To provide a better acceleration for electric vehicles, a fast and repeatable discharging rate is required. However, particle fractures and capacity loss have been reported under high current rate (C-rate) during charging/discharging and after a period of cycling. During charging and discharging, lithium ions extract from and intercalate into electrode materials accompanied with the volume change and phase transition between Li-rich phase and Li-poor phase. It is suggested that the diffusion-induced-stress is one of the main reasons causing capacity loss due to the mechanical degradation of electrode particles. Therefore, there is a fundamental need to provide a mechanistic understanding by considering the structure-mechanics-property interactions in lithium-ion battery materials. Among many cathode materials, the olivine-based lithium-iron-phosphate (LiFePO4) with an orthorhombic crystal structure is one of the promising cathode materials for the application in electric vehicles. In this research we first use a multiphysic approach to investigate the stress evolution, especially on the phase boundary during lithiation in single LiFePO4 particles. A diffusion-controlled finite element model accompanied with the experimentally observed phase boundary propagation is developed via a finite element package, ANSYS, in which lithium ion concentration-dependent anisotropic material properties and volume misfits are incorporated. The stress components on the phase boundary are used to explain the Mode I, Mode II, and Mode III fracture propensities in LiFePO4 particles. The elastic strain energy evolution is also discussed to explain why a layer-by-layer lithium insertion mechanism (i.e. first-order phase transformation) is energetically preferred. Another importation issue is how current

  13. Electrochemical model based charge optimization for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pramanik, Sourav; Anwar, Sohel

    2016-05-01

    In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.

  14. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  15. Lithium plating in a commercial lithium-ion battery - A low-temperature aging study

    NASA Astrophysics Data System (ADS)

    Petzl, Mathias; Kasper, Michael; Danzer, Michael A.

    2015-02-01

    The formation of metallic lithium on the negative graphite electrode in a lithium-ion (Li-ion) battery, also known as lithium plating, leads to severe performance degradation and may also affect the cell safety. This study is focused on the nondestructive characterization of the aging behavior during long-term cycling at plating conditions, i.e. low temperature and high charge rate. A commercial graphite/LiFePO4 Li-ion battery is investigated in order to elucidate the aging effects of lithium plating for real-world purposes. It is shown that lithium plating can be observed as a loss of cyclable lithium which affects the capacity balance of the electrodes. In this way, lithium plating counteracts its own occurrence during prolonged cycling. The capacity losses due to lithium plating are therefore decreasing at higher cycle numbers and the capacity retention curve exhibits an inflection point. It is further shown that the observed capacity fade is partly reversible. Electrochemical impedance spectroscopy (EIS) reveals a significant increase of the ohmic cell resistance due to electrolyte consumption during surface film formation on the plated lithium. Additional cell opening provides important quantitative information regarding the thickness of the lithium layer and the corresponding mass of the plated lithium.

  16. Model-based condition monitoring for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Taesic; Wang, Yebin; Fang, Huazhen; Sahinoglu, Zafer; Wada, Toshihiro; Hara, Satoshi; Qiao, Wei

    2015-11-01

    Condition monitoring for batteries involves tracking changes in physical parameters and operational states such as state of health (SOH) and state of charge (SOC), and is fundamentally important for building high-performance and safety-critical battery systems. A model-based condition monitoring strategy is developed in this paper for Lithium-ion batteries on the basis of an electrical circuit model incorporating hysteresis effect. It systematically integrates 1) a fast upper-triangular and diagonal recursive least squares algorithm for parameter identification of the battery model, 2) a smooth variable structure filter for the SOC estimation, and 3) a recursive total least squares algorithm for estimating the maximum capacity, which indicates the SOH. The proposed solution enjoys advantages including high accuracy, low computational cost, and simple implementation, and therefore is suitable for deployment and use in real-time embedded battery management systems (BMSs). Simulations and experiments validate effectiveness of the proposed strategy.

  17. Robust recursive impedance estimation for automotive lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fridholm, Björn; Wik, Torsten; Nilsson, Magnus

    2016-02-01

    Recursive algorithms, such as recursive least squares (RLS) or Kalman filters, are commonly used in battery management systems to estimate the electrical impedance of the battery cell. However, these algorithms can in some cases run into problems with bias and even divergence of the estimates. This article illuminates problems that can arise in the online estimation using recursive methods, and lists modifications to handle these issues. An algorithm is also proposed that estimates the impedance by separating the problem in two parts; one estimating the ohmic resistance with an RLS approach, and another one where the dynamic effects are estimated using an adaptive Kalman filter (AKF) that is novel in the battery field. The algorithm produces robust estimates of ohmic resistance and time constant of the battery cell in closed loop with SoC estimation, as demonstrated by both in simulations and with experimental data from a lithium-ion battery cell.

  18. Coupled Mechanical and Electrochemical Phenomena in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Cannarella, John

    Lithium-ion batteries are complee electro-chemo-mechanical systems owing to a number of coupled mechanical and electrochemical phenomena that occur during operation. In this thesis we explore these phenomena in the context of battery degradation, monitoring/diagnostics, and their application to novel energy systems. We begin by establishing the importance of bulk stress in lithium-ion batteries through the presentation of a two-year exploratory aging study which shows that bulk mechanical stress can significantly accelerate capacity fade. We then investigate the origins of this coupling between stress and performance by investigating the effects of stress in idealized systems. Mechanical stress is found to increase internal battery resistance through separator deformation, which we model by considering how deformation affects certain transport properties. When this deformation occurs in a spatially heterogeneous manner, local hot spots form, which accelerate aging and in some cases lead to local lithium plating. Because of the importance of separator deformation with respect to mechanically-coupled aging, we characterize the mechanical properties of battery separators in detail. We also demonstrate that the stress state of a lithium-ion battery cell can be used to measure the cell's state of health (SOH) and state of charge (SOC)--important operating parameters that are traditionally difficult to measure outside of a laboratory setting. The SOH is shown to be related to irreversible expansion that occurs with degradation and the SOC to the reversible strains characteristic of the cell's electrode materials. The expansion characteristics and mechanical properties of the constituent cell materials are characterized, and a phenomenological model for the relationship between stress and SOH/SOC is developed. This work forms the basis for the development of on-board monitoring of SOH/SOC based on mechanical measurements. Finally we study the coupling between mechanical

  19. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    SciTech Connect

    Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  20. Modeling thermal management of lithium-ion PNGV batteries

    NASA Astrophysics Data System (ADS)

    Nelson, Paul; Dees, Dennis; Amine, Khalil; Henriksen, Gary

    Batteries were designed with the aid of a computer modeling program to study the requirements of the thermal control system for meeting the goals set by the Partnership for a New Generation of Vehicles (PNGV). The battery designs were based upon the lithium-ion cell composition designated Gen-2 in the US Department of Energy Advanced Technology Development Program. The worst-case cooling requirement that would occur during prolonged aggressive driving was estimated to be 250 W or about 5 W per cell for a 48-cell battery. Rapid heating of the battery from a very low startup temperature is more difficult than cooling during driving. A dielectric transformer fluid is superior to air for both heating and cooling the battery. A dedicated refrigeration system for cooling the battery coolant would be helpful in maintaining low temperature during driving. The use of ample insulation would effectively slow the battery temperature rise when parking the vehicle in warm weather. Operating the battery at 10 °C during the first several years when the battery has excess power would extend the battery life.

  1. A metal-free, lithium-ion oxygen battery: a step forward to safety in lithium-air batteries.

    PubMed

    Hassoun, Jusef; Jung, Hun-Gi; Lee, Dong-Ju; Park, Jin-Bum; Amine, Khalil; Sun, Yang-Kook; Scrosati, Bruno

    2012-11-14

    A preliminary study of the behavior of lithium-ion-air battery where the common, unsafe lithium metal anode is replaced by a lithiated silicon-carbon composite, is reported. The results, based on X-ray diffraction and galvanostatic charge-discharge analyses, demonstrate the basic reversibility of the electrochemical process of the battery that can be promisingly cycled with a rather high specific capacity. PMID:23077970

  2. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    PubMed

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material. PMID:26726470

  3. Carbon Nanotube Anodes Being Evaluated for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Gennett, Tom; VanderWal, Randy L.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center is evaluating the use of carbon nanotubes as anode materials for thin-film lithium-ion (Li) batteries. The motivation for this work lies in the fact that, in contrast to carbon black, directed structured nanotubes and nanofibers offer a superior intercalation media for Li-ion batteries. Carbon lamellas in carbon blacks are circumferentially oriented and block much of the particle interior, rendering much of the matrix useless as intercalation material. Nanofibers, on the other hand, can be grown so as to provide 100-percent accessibility of the entire carbon structure to intercalation. These tubes can be visualized as "rolled-up" sheets of carbon hexagons (see the following figure). One tube is approximately 1/10,000th the diameter of a human hair. In addition, the high accessibility of the structure confers a high mobility to ion-exchange processes, a fundamental for the batteries to respond dynamically because of intercalation.

  4. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    Energy Science and Technology Software Center (ESTSC)

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less

  5. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    SciTech Connect

    and Ahmad Pesaran, Gi-Heon Kim

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data from accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.

  6. Multifunctional SA-PProDOT Binder for Lithium Ion Batteries.

    PubMed

    Ling, Min; Qiu, Jingxia; Li, Sheng; Yan, Cheng; Kiefel, Milton J; Liu, Gao; Zhang, Shanqing

    2015-07-01

    An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles. PMID:26061529

  7. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

    PubMed Central

    Reddy, Arava Leela Mohana; Nagarajan, Subbiah; Chumyim, Porramate; Gowda, Sanketh R.; Pradhan, Padmanava; Jadhav, Swapnil R.; Dubey, Madan; John, George; Ajayan, Pulickel M.

    2012-01-01

    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered. PMID:23233879

  8. Modified carbon black materials for lithium-ion batteries

    DOEpatents

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  9. Olivine Composite Cathode Materials for Improved Lithium Ion Battery Performance

    SciTech Connect

    Ward, R.M.; Vaughey, J.T.

    2006-01-01

    Composite cathode materials in lithium ion batteries have become the subject of a great amount of research recently as cost and safety issues related to LiCoO2 and other layered structures have been discovered. Alternatives to these layered materials include materials with the spinel and olivine structures, but these present different problems, e.g. spinels have low capacities and cycle poorly at elevated temperatures, and olivines exhibit extremely low intrinsic conductivity. Previous work has shown that composite structures containing spinel and layered materials have shown improved electrochemical properties. These types of composite structures have been studied in order to evaluate their performance and safety characteristics necessary for use in lithium ion batteries in portable electronic devices, particularly hybrid-electric vehicles. In this study, we extended that work to layered-olivine and spinel-olivine composites. These materials were synthesized from precursor salts using three methods: direct reaction, ball-milling, and a coreshell synthesis method. X-ray diffraction spectra and electrochemical cycling data show that the core-shell method was the most successful in forming the desired products. The electrochemical performance of the cells containing the composite cathodes varied dramatically, but the low overpotential and reasonable capacities of the spinel-olivine composites make them a promising class for the next generation of lithium ion battery cathodes.

  10. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  11. Kirigami-based stretchable lithium-ion batteries.

    PubMed

    Song, Zeming; Wang, Xu; Lv, Cheng; An, Yonghao; Liang, Mengbing; Ma, Teng; He, David; Zheng, Ying-Jie; Huang, Shi-Qing; Yu, Hongyu; Jiang, Hanqing

    2015-01-01

    We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces. PMID:26066809

  12. Kirigami-based stretchable lithium-ion batteries

    PubMed Central

    Song, Zeming; Wang, Xu; Lv, Cheng; An, Yonghao; Liang, Mengbing; Ma, Teng; He, David; Zheng, Ying-Jie; Huang, Shi-Qing; Yu, Hongyu; Jiang, Hanqing

    2015-01-01

    We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces. PMID:26066809

  13. Kirigami-based stretchable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Song, Zeming; Wang, Xu; Lv, Cheng; An, Yonghao; Liang, Mengbing; Ma, Teng; He, David; Zheng, Ying-Jie; Huang, Shi-Qing; Yu, Hongyu; Jiang, Hanqing

    2015-06-01

    We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces.

  14. Lithium ion secondary batteries; past 10 years and the future

    NASA Astrophysics Data System (ADS)

    Nishi, Yoshio

    Technologies of lithium ion secondary batteries (LIB) were pioneered by Sony. Since the introduction of LIB on the market first in the world in 1991, the LIB has been applied to consumer products as diverse as cellular phones, video cameras, notebook computers, portable minidisk players and others. Years of assiduous efforts and researches to improve LIB performances enabled LIB to play a leading role in the portable secondary battery market. In this article, the past 10 years' technological achievement is traced and future possibilities are discussed.

  15. NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES

    SciTech Connect

    John Olson, PhD

    2004-07-21

    This project involved the synthesis of nanowire ã-MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing ã-MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ion batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the ã-MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the ã-MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into ã-MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the ã-MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating

  16. Evaluation of slurry characteristics for rechargeable lithium-ion batteries

    SciTech Connect

    Cho, Ki Yeon; Kwon, Young Il; Youn, Jae Ryoun; Song, Young Seok

    2013-08-01

    Graphical abstract: - Highlights: • Lithium-ion battery slurries are prepared for rechargeable batteries. • The dispersion state of slurry constituents is identified. • Thermal, morphological, rheological, and electrical properties of slurries are analyzed. - Abstract: A multi-component slurry for rechargeable batteries is prepared by dispersing LiCoO{sub 2}, conductive additives, and polymeric binders in a solvent. The physical properties, including rheological, morphological, electrical, and spectroscopic features of battery slurries are investigated. The relationship between the measured physical properties and the internal structure of the slurry is analyzed. It is found that the rheological behavior of the slurry is determined by the interaction of active materials and binding materials (e.g., network structure) and that the dispersion state of conductive additives (e.g., agglomeration) also depends on the binder–carbon interaction.

  17. Lithium-ion batteries with intrinsic pulse overcharge protection

    SciTech Connect

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  18. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  19. Nanostructured Molybdenum Oxides for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Lee, Se-Hee; Deshpande, Rohit; Parilla, Phil; Jones, Kim; To, Bobby; Mahan, Harv; Dillon, Anne

    2007-03-01

    Lithium-ion batteries are the current power sources of choice for portable electronics. Although such batteries are commercially successful, they are not keeping pace with the rapid advances in computing technologies. Also, further improvement of performance and simultaneous reduction in cost as well as material toxicity remain the subject of intensive research. Here we report the synthesis and electrochemical performance of a novel molybdenum oxide nanoparticle anode that dramatically improves current Li-ion battery technologies. Crystalline MoOx nanoparticles have been grown by an economical hot-wire chemical-vapor-deposition (HWCVD) technique and a recently developed electrophoresis technique is employed for the fabrication of porous nanoparticle anodes. Our material exhibits a high reversible capacity of ˜600 mAh/g in the range 0.005-3.0 V with excellent cycling characteristics as well as high-rate capability. Both cycling stability and rate capability issues are addressed by employing these porous molybdenum oxide films that consist of nanoscale active particles. These materials will impact the next generations of rechargeable lithium batteries, not only for applications in consumer electronics, but also for clean energy storage and use in hybrid electric vehicles.

  20. Graphene-based integrated electrodes for flexible lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Wen, Lei; Zhou, Guangmin; Chen, Jing; Pei, Songfeng; Huang, Kun; Cheng, Hui-Ming; Li, Feng

    2015-06-01

    We have prepared flexible free-standing electrodes with anode and cathode active materials deposited on a highly conductive graphene membrane by a two-step filtration method. Compared with conventional electrodes using metal as current collectors, these electrodes have displayed stronger adhesion, superior electrochemical performance, higher energy density, and better flexibility. A full lithium ion battery assembled by adopting these graphene-based electrodes has showed high rate capability and long cyclic life. We have also assembled a thin, lightweight, and flexible lithium ion battery with poly-(dimethyl siloxane) sheets as packaging material to light a red light-emitting diode. This flexible battery can be easily bent without structural failure or performance loss and operated well under a bent state. The fabrication process of these graphene-based integrated electrodes only has two filtration steps; thus it is easy to scale up. These results suggest great potential for these graphene-based flexible batteries in lightweight, bendable, and wearable electronic devices.

  1. Sustainability Impact of Nanomaterial Enhanced Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Ganter, Matthew

    Energy storage devices are becoming an integral part of sustainable energy technology adoption, particularly, in alternative transportation (electric vehicles) and renewable energy technologies (solar and wind which are intermittent). The most prevalent technology exhibiting near-term impact are lithium ion batteries, especially in portable consumer electronics and initial electric vehicle models like the Chevy Volt and Nissan Leaf. However, new technologies need to consider the full life-cycle impacts from material production and use phase performance to the end-of-life management (EOL). This dissertation investigates the impacts of nanomaterials in lithium ion batteries throughout the life cycle and develops strategies to improve each step in the process. The embodied energy of laser vaporization synthesis and purification of carbon nanotubes (CNTs) was calculated to determine the environmental impact of the novel nanomaterial at beginning of life. CNTs were integrated into lithium ion battery electrodes as conductive additives, current collectors, and active material supports to increase power, energy, and thermal stability in the use phase. A method was developed to uniformly distribute CNT conductive additives in composites. Cathode composites with CNT additives had significant rate improvements (3x the capacity at a 10C rate) and higher thermal stability (40% reduction in exothermic energy released upon overcharge). Similar trends were also measured with CNTs in anode composites. Advanced free-standing anodes incorporating CNTs with high capacity silicon and germanium were measured to have high capacities where surface area reduction improved coulombic efficiencies and thermal stability. A thermal stability plot was developed that compares the safety of traditional composites with free-standing electrodes, relating the results to thermal conductivity and surface area effects. The EOL management of nanomaterials in lithium ion batteries was studied and a novel

  2. Cold neutron depth profiling of lithium-ion battery materials

    NASA Astrophysics Data System (ADS)

    Lamaze, G. P.; Chen-Mayer, H. H.; Becker, D. A.; Vereda, F.; Goldner, R. B.; Haas, T.; Zerigian, P.

    We report the characterization of two thin-film battery materials using neutron techniques. Neutron depth profiling (NDP) has been employed to determine the distribution of lithium and nitrogen simultaneously in lithium phosphorous oxynitride (LiPON) deposited by ion beam assisted deposition (IBAD). The depth profiles are based on the measurement of the energy of the charged particle products from the 6Li(n,α) 3H and 14N(n,p) 14C reactions for lithium and nitrogen, respectively. Lithium at the level of 10 22 atoms/cm 3 and N of 10 21 atoms/cm 3, distributed in the film thickness on the order of 1 μm, have been determined. This information provides insights into nitrogen incorporation and lithium concentration in the films under various fabrication conditions. NDP of lithium has also been performed on IBAD LiCoO 2 films, in conjunction with instrumental neutron activation analysis (INAA) to determine the cobalt concentration. The Li/Co ratio thus obtained serves as an ex situ control for the thin-film evaporation process. The non-destructive nature of the neutron techniques is especially suitable for repeated analysis of these materials and for actual working devices.

  3. Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials

    SciTech Connect

    Wood, III, D. L.; Yoon, S.

    2012-10-25

    The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low-temperature heat treatment process for natural graphite based anode materials for high-capacity and long-cycle-life lithium ion batteries. Three major problems currently plague state-of-the-art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat-treated well in excess of 2000°C. Because of this high-temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state-of-the-art anodes based on artificial graphites, which is only about 200-350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell-voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat-treated to a substantially lower temperature (as low as 1000-1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post-treatment processes were developed that are amenable to scaling to automotive quantities.

  4. NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

  5. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  6. Lithium barium titanate: A stable lithium storage material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lin, Xiaoting; Li, Peng; Shao, Lianyi; Shui, Miao; Wang, Dongjie; Long, Nengbing; Ren, Yuanlong; Shu, Jie

    2015-03-01

    A series of Li2BaTi6O14 samples are synthesized by a traditional solid-state method by calcining at different temperatures from 800 to 1000 °C. Structural analysis and electrochemical evaluation suggest that the optimum calcining temperature for Li2BaTi6O14 is 950 °C. The Li2BaTi6O14 calcined at 950 °C exhibits a high purity phase with an excellent reversible capacity of 145.7 mAh g-1 for the first cycle at a current density of 50 mA g-1. After 50 cycles, the reversible capacity can be maintained at 137.7 mAh g-1, with the capacity retention of 94.51%. Moreover, this sample also shows outstanding rate property with a high reversible capacity of 118 mAh g-1 at 300 mA g-1. The excellent electrochemical performance is attributed to the stable lithium storage host structure, decreased electrochemical resistance and improved lithium-ion diffusion coefficient. In-situ and ex-situ structure analysis shows that the electrochemical reaction of Li2BaTi6O14 with Li is a highly reversible lithiation-delithiation process. Therefore, Li2BaTi6O14 may be a promising alternative anode material for lithium-ion batteries.

  7. lithium-ion battery during oven tests

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Sun, Yiqiong; Jiang, Fangming

    2014-10-01

    A three dimensional thermal abuse model for graphite/LiPF6/LiCoO2 batteries is established particularly for oven tests. To investigate the influence of heat release condition and oven temperature on battery thermal behaviors, we perform a series of simulations with respect to a unit cell during oven thermal abuses of various oven temperatures and under various heat release conditions. Simulation results enable detailed analyses to thermal behaviors of batteries. It is found that during oven thermal abuse processes that do not get into thermal runaway, the negative electrode is the maximum heat generation rate zone; during oven thermal abuse processes that do get into thermal runaway, the positive electrode is the maximum heat generation rate zone. The positive-solvent reaction is found to be the major heat generation source causing thermal runaway. It is also found that the heat release condition and the oven temperature are combined to dictate thermal behaviors of the battery. The critical oven temperature that causes thermal runaway rises if the heat release condition is better and the critical heat release coefficient that can effectively restrain the occurrence of thermal runaway increases with the increase of oven temperature.

  8. Lithium-Ion Battery Program Status

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Huang, C. K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.

    1996-01-01

    The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.

  9. Lithium-Ion Battery Program Status

    SciTech Connect

    Surampudi, S.; Huang, C.K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.

    1996-02-01

    The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.

  10. 77 FR 28259 - Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... for mailpieces containing lithium metal or lithium-ion cells or batteries and applies regardless of...'' instead of ``lithium content'' for secondary lithium-ion batteries when describing maximum quantity limits...-ion (Rechargeable) Cells and Batteries Small consumer-type lithium-ion cells and batteries like...

  11. Electrophoretic lithium iron phosphate/reduced graphene oxide composite for lithium ion battery cathode application

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Liu, Hao; Lu, Yi-Chun; Hou, Yanglong; Li, Quan

    2015-06-01

    A binder/additive free composite electrode of lithium iron phosphate/reduced graphene oxide with ultrahigh lithium iron phosphate mass ratio (91.5 wt% of lithium iron phosphate) is demonstrated using electrophoresis. The quasi-spherical lithium iron phosphate particles are uniformly connected to and/or wrapped by three-dimensional networks of reduced graphene oxide nanosheets, with intimate contact formed between the two. Enhanced capacity is achieved in the electrophoretic composite cathode, when compared to either the conventional one or composite cathode formed by mechanically mixing lithium iron phosphate and reduced graphene oxide. The present methodology is simple and does not disturb the active material growth process. It can be generally applied to a variety of active material systems for both cathode and anode applications in lithium ion batteries.

  12. Visualizing lithium-ion migration pathways in battery materials.

    PubMed

    Filsø, Mette Ø; Turner, Michael J; Gibbs, Gerald V; Adams, Stefan; Spackman, Mark A; Iversen, Bo B

    2013-11-11

    The understanding of lithium-ion migration through the bulk crystal structure is crucial in the search for novel battery materials with improved properties for lithium-ion conduction. In this paper, procrystal calculations are introduced as a fast, intuitive way of mapping possible migration pathways, and the method is applied to a broad range of lithium-containing materials, including the well-known battery cathode materials LiCoO2 , LiMn2 O4 , and LiFePO4 . The outcome is compared with both experimental and theoretical studies, as well as the bond valence site energy approach, and the results show that the method is not only a strong, qualitative visualization tool, but also provides a quantitative measure of electron-density thresholds for migration, which are correlated with theoretically obtained activation energies. In the future, the method may be used to guide experimental and theoretical research towards materials with potentially high ionic conductivity, reducing the time spent investigating nonpromising materials with advanced theoretical methods. PMID:24123661

  13. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    SciTech Connect

    Ramadesigan, V.; Northrop, P. W. C.; De, S.; Santhanagopalan, S.; Braatz, R. D.; Subramanian, Venkat R.

    2012-01-01

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined.

  14. Metal-organic frameworks for lithium ion batteries and supercapacitors

    NASA Astrophysics Data System (ADS)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-03-01

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100-1000 m2 g-1) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m2 g-1), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs.

  15. Characteristics of lithium-ion batteries during fire tests

    NASA Astrophysics Data System (ADS)

    Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Lorén, Anders; Mellander, Bengt-Erik

    2014-12-01

    Commercial lithium-ion battery cells are exposed to a controlled propane fire in order to evaluate heat release rate (HRR), emission of toxic gases as well as cell temperature and voltage under this type of abuse. The study includes six abuse tests on cells having lithium-iron phosphate (LFP) cathodes and, as a comparison, one test on conventional laptop battery packs with cobalt based cathode. The influence of different state of charge (SOC) is investigated and a limited study of the effect of water mist application is also performed. The total heat release (THR) per battery energy capacity are determined to be 28-75 kJ Wh-1 and the maximum HRR values to 110-490 W Wh-1. Hydrogen fluoride (HF) is found in the released gases for all tests but no traceable amounts of phosphorous oxyfluoride (POF3) or phosphorus pentafluoride (PF5) are detected. An extrapolation of expected HF emissions for a typical automotive 10 kWh battery pack exposed to fire gives a release of 400-1200 g HF. If released in a confined environment such emissions of HF may results in unacceptable exposure levels.

  16. Selective Recovery of Lithium from Cathode Materials of Spent Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Higuchi, Akitoshi; Ankei, Naoki; Nishihama, Syouhei; Yoshizuka, Kazuharu

    2016-07-01

    Selective recovery of lithium from four kinds of cathode materials, manganese-type, cobalt-type, nickel-type, and ternary-type, of spent lithium ion battery was investigated. In all cathode materials, leaching of lithium was improved by adding sodium persulfate (Na2S2O8) as an oxidant in the leaching solution, while the leaching of other metal ions (manganese, cobalt, and nickel) was significantly suppressed. Optimum leaching conditions, such as pH, temperature, amount of Na2S2O8, and solid/liquid ratio, for the selective leaching of lithium were determined for all cathode materials. Recovery of lithium from the leachate as lithium carbonate (Li2CO3) was then successfully achieved by adding sodium carbonate (Na2CO3) to the leachate. Optimum recovery conditions, such as pH, temperature, and amount of Na2CO3, for the recovery of lithium as Li2CO3 were determined for all cases. Purification of Li2CO3 was achieved by lixiviation in all systems, with purities of the Li2CO3 higher than 99.4%, which is almost satisfactory for the battery-grade purity of lithium.

  17. Electrolyte Suitable for Use in a Lithium Ion Cell or Battery

    NASA Technical Reports Server (NTRS)

    McDonald, Robert C. (Inventor)

    2014-01-01

    Electrolyte suitable for use in a lithium ion cell or battery. According to one embodiment, the electrolyte includes a fluorinated lithium ion salt and a solvent system that solvates lithium ions and that yields a high dielectric constant, a low viscosity and a high flashpoint. In one embodiment, the solvent system includes a mixture of an aprotic lithium ion solvating solvent and an aprotic fluorinated solvent.

  18. Redox shuttles for lithium ion batteries

    SciTech Connect

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  19. Analysis of capacity fade in a lithium ion battery

    NASA Astrophysics Data System (ADS)

    Stamps, Andrew T.; Holland, Charles E.; White, Ralph E.; Gatzke, Edward P.

    Two parameter estimation methods are presented for online determination of parameter values using a simple charge/discharge model of a Sony 18650 lithium ion battery. Loss of capacity and resistance increase are both included in the model. The first method is a hybrid combination of batch data reconciliation and moving-horizon parameter estimation. A discussion on the selection of tuning parameters for this method based on confidence intervals is included. The second method uses batch data reconciliation followed by application of discrete filtering of the resulting parameters. These methods are demonstrated using cycling data from an experimental cell with over 1600 charge-discharge cycles.

  20. Advances in Wearable Fiber-Shaped Lithium-Ion Batteries.

    PubMed

    Zhang, Ye; Zhao, Yang; Ren, Jing; Weng, Wei; Peng, Huisheng

    2016-06-01

    It is highly desirable to develop flexible and efficient energy-storage systems for widely used wearable electronic products. To this end, fiber-shaped lithium-ion batteries (LIBs) attract increasing interest due to their combined superiorities of miniaturization, adaptability, and weavability, compared with conventional bulky and planar structures. Recent advances in the fabrication, structure, mechanism, and properties of fiber-shaped LIBs are summarized here, with a focus on the electrode material. Remaining challenges and future directions are also highlighted to provide some useful insights from the viewpoint of practical applications. PMID:26643467

  1. UV and EB Curable Binder Technology for Lithium Ion Batteries and UltraCapacitors

    SciTech Connect

    Voelker, Gary

    2012-04-30

    the basic feasibility of using UV curing technology to produce Lithium ion battery electrodes at speeds over 200 feet per minute has been shown. A unique set of UV curable chemicals were discovered that were proven to be compatible with a Lithium ion battery environment with the adhesion qualities of PVDF.

  2. Capacity Fade Analysis and Model Based Optimization of Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Ramadesigan, Venkatasailanathan

    Electrochemical power sources have had significant improvements in design, economy, and operating range and are expected to play a vital role in the future in a wide range of applications. The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This dissertation contributes to the efforts in the modeling, simulation and optimization of lithium-ion batteries and their use in the design of better batteries for the future. While physics-based models have been widely developed and studied for these systems, the rigorous models have not been employed for parameter estimation or dynamic optimization of operating conditions. The first chapter discusses a systems engineering based approach to illustrate different critical issues possible ways to overcome them using modeling, simulation and optimization of lithium-ion batteries. The chapters 2-5, explain some of these ways to facilitate (i) capacity fade analysis of Li-ion batteries using different approaches for modeling capacity fade in lithium-ion batteries, (ii) model based optimal design in Li-ion batteries and (iii) optimum operating conditions (current profile) for lithium-ion batteries based on dynamic optimization techniques. The major outcomes of this thesis will be, (i) comparison of different types of modeling efforts that will help predict and understand capacity fade in lithium-ion batteries that will help design better batteries for the future, (ii) a methodology for the optimal design of next-generation porous electrodes for lithium-ion batteries, with spatially graded porosity distributions with improved energy efficiency and battery lifetime and (iii) optimized operating conditions of batteries for high energy and utilization efficiency, safer operation

  3. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect

    Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  4. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    DOE PAGESBeta

    Wan, Shun; Jiang, Xueguang; Guo, Bingkun; Dai, Sheng; Goodenough, John B.; Sun, Xiao-Guang

    2015-04-27

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  5. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM

    PubMed Central

    Zhang, Chaolong; He, Yigang; Yuan, Lifeng; Xiang, Sheng; Wang, Jinping

    2015-01-01

    Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery's remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately. PMID:26413090

  6. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM.

    PubMed

    Zhang, Chaolong; He, Yigang; Yuan, Lifeng; Xiang, Sheng; Wang, Jinping

    2015-01-01

    Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery's remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately. PMID:26413090

  7. Lithium-Ion rechargeable batteries on Mars Rover

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Smart, M. C.; Ewell, R. C.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.

    2004-01-01

    NASA's Mars Rovers, Spirit and Opportunity, have been roving on the surface of Mars, capturing impressive images of its terrain and analyzing the drillings from Martian rocks, to answer the ever -puzzling questions of life beyond Earth and origin of our planets. These rovers are being enabled by an advanced rechargeable battery system, lithium-ion, for the first time on a space mission of this scale, for keeping the rover electronics warm, and for supporting nighttime experimentation and communications. These rover Li-ion batteries are characterized by their unique low temperature capability, in addition to the usual advantages associated with Li-ion chemistry in terms of mass, volume and energy efficiency. To enable a rapid insertion of this advanced Li-ion chemistry into flight missions, we have performed several performance assessment studies on several prototype cells over the last few years. These tests mainly focused primarily on the long-term performance characteristics, such as cycling and storage, as described in our companion paper. In addition, various tests have been performed on MER cells and engineering and proto flight batteries; under conditions relevant to these missions. For example, we have examined the performance of the cells in: a) an inverted orientation, as during integration and launch, and b) conditions of low rate discharge, between 3.0-2.5 V to support the mission clock. Likewise, we have determined the impedance of the proto-flight Rover battery assembly unit in detail, with a view to asses whether a current-limiting resistor would be unduly stressed, in the event of a shorting induced by a failed pyro. In this paper we will describe these studies in detail, as well as the performance of Li-ion batteries in Spirit and Opportunity rovers, during cruise and on Mars.

  8. 76 FR 41142 - Special Conditions; Cessna Aircraft Company Model M680 Airplane; Lithium-ion Battery Installations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Aircraft Company Model M680 Airplane; Lithium-ion Battery Installations AGENCY: Federal Aviation... design feature associated with Lithium-ion batteries. The applicable airworthiness regulations do not...) T00012WI for installation of Lithium-ion batteries in the Model 680. The Model 680 is a twin-engine,...

  9. Dissecting anode swelling in commercial lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Ningxin; Tang, Huaqiong

    2012-11-01

    An innovative method is applied to investigate anode swelling during electrochemical processes in commercial lithium-ion batteries. Cathode surface is partially covered with a piece of paste to block the transportation of lithium ion from active material during charging/discharging, and the corresponding part on the anode film shows no formation of Li-graphite compounds during different electrochemical processes, which is confirmed by XRD analysis. The increases of anode thickness within and outside lithiated zone are measured, and defined as electrochemical swelling and physical swelling respectively. The microscopic lattice expansion of graphite due to lithiation process correlates to mesoscopic electrochemical swelling synchronically, while physical swelling tends to decrease steadily with time. The relationship among the microscopic stress due to lithium-ion intercalation, the mesoscopic stress resulting in anode swelling, and the macroscopic rippling of pouch cell after a large number of cycle test, is analyzed and correlated in terms of stress evolution across different scales, and suggestions for solving anode swelling are provided.

  10. Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Hassoun, Jusef; Sun, Yang-Kook; Scrosati, Bruno

    In this work we investigate the electrochemical behavior of a new type of carbon-lithium sulfide composite electrode. Results based on cyclic voltammetry, charge (lithium removal)-discharge (lithium acceptance) demonstrate that this electrode has a good performance in terms of reversibility, cycle life and coulombic efficiency. XRD analysis performed in situ in a lithium cell shows that lithium sulfide can be converted into sulfur during charge and re-converted back into sulfide during the following discharge process. We also show that this electrochemical process can be efficiently carried out in polymer electrolyte lithium cells and thus, that the Li 2S-C composite can be successfully used as cathode for the development of novel types of rechargeable lithium-ion sulfur batteries where the reactive and unsafe lithium metal anode is replaced by a reliable, high capacity tin-carbon composite and the unstable organic electrolyte solution is replaced by a composite gel polymer membrane that is safe, highly conductive and able to control dendrite growth across the cell. This new Sn-C/Li 2S polymer battery operates with a capacity of 600 mAh g -1 and with an average voltage of 2 V, this leading to a value of energy density amounting to 1200 Wh kg -1.

  11. Electroanalytical Evaluation of Lithium Ion Batteries and Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Crain, Daniel Jacob

    Efficient solar energy conversion and electrical energy storage have been studied widely for decades. However, as materials development and process engineering for these devices have advanced through the years, some of the traditional characterization techniques have gradually fallen short of providing quantitative information that is necessary for further significant advancements in these fields. In this work a modern electroanalytical framework for characterization of silicon solar cells and lithium ion batteries is presented. Electroanalytical characterization of lithium ion battery electrodes is achieved through a strategic combination of the D.C. techniques of slow scan cyclic voltammetry, galvanostatic charge/discharge, Ragone Analysis with the A.C. technique of impedance spectroscopy (IS) coupled with complex nonlinear least squares (CNLS) analysis of impedance spectra. Primarily this investigation focuses on characterization of intercalating composite electrodes where the active material is either lithium manganese oxide (cathode,LiMn2O4) or lithium titanate (anode, Li4Ti5O12). Aspects of high power limitations are studied in detail to elucidate physical parameters that control electrode performance under rapid charge/discharge conditions. Electroanalytical evaluation of the p-n junction silicon solar cell with a back surface field (BSF) is accomplished through the use of linear sweep voltammetry (LSV) and IS combined with CNLS analysis. Although LSV has been previously used for characterization of silicon solar cells the use of impedance techniques is relatively new. Temperature and voltage dependence of the series resistance (Rs), diode quality factor (m), minority carrier lifetime and BSF electrical parameters obtained through IS are examined. The temperature dependence of results obtained from LSV such as the open circuit potential (Voc), short circuit current (Jsc), fill factor (FF) and conversion efficiency are also explored. Finally, a parative

  12. Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery.

    PubMed

    Wang, Yuhang; Zeng, Jiren; Cui, Xiaoqi; Zhang, Lijuan; Zheng, Gengfeng

    2016-02-24

    A separator-integrated, reversely connectable, symmetric lithium-ion battery is developed based on carbon-coated Li3V2(PO4)3 nanoparticles and polyvinylidene fluoride-treated separators. The Li3V2(PO4)3 nanoparticles are synthesized via a facile solution route followed by calcination in Ar/H2 atmosphere. Sucrose solution is used as the carbon source for uniform carbon coating on the Li3V2(PO4)3 nanoparticles. Both the carbon and the polyvinylidene fluoride treatments substantially improve the cycling life of the symmetric battery by preventing the dissolution and shuttle of the electroactive Li3V2(PO4)3. The obtained symmetric full cell exhibits a reversible capacity of ≈ 87 mA h g(-1), good cycling stability, and capacity retention of ≈ 70% after 70 cycles. In addition, this type of symmetric full cell can be operated in both forward and reverse connection modes, without any influence on the cycling of the battery. Furthermore, a new separator integration approach is demonstrated, which enables the direct deposition of electroactive materials for the battery assembly and does not affect the electrochemical performance. A 10-tandem-cell battery assembled without differentiating the electrode polarity exhibits a low thickness of ≈ 4.8 mm and a high output voltage of 20.8 V. PMID:26725040

  13. Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries.

    PubMed

    Kalaga, Kaushik; Rodrigues, Marco-Tulio F; Gullapalli, Hemtej; Babu, Ganguli; Arava, Leela Mohana Reddy; Ajayan, Pulickel M

    2015-11-25

    Rechargeable batteries capable of operating at high temperatures have significant use in various targeted applications. Expanding the thermal stability of current lithium ion batteries requires replacing the electrolyte and separators with stable alternatives. Since solid-state electrolytes do not have a good electrode interface, we report here the development of a new class of quasi-solid-state electrolytes, which have the structural stability of a solid and the wettability of a liquid. Microflakes of clay particles drenched in a solution of lithiated room temperature ionic liquid forming a quasi-solid system has been demonstrated to have structural stability until 355 °C. With an ionic conductivity of ∼3.35 mS cm(-1), the composite electrolyte has been shown to deliver stable electrochemical performance at 120 °C, and a rechargeable lithium battery with Li4Ti5O12 electrode has been tested to deliver reliable capacity for over several cycles of charge-discharge. PMID:26535786

  14. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  15. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  16. Mechanics of high-capacity electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ting, Zhu

    2016-01-01

    Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research. Project support by the NSF (Grant Nos. CMMI 1100205 and DMR 1410936).

  17. Mesoporous Cladophora cellulose separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pan, Ruijun; Cheung, Ocean; Wang, Zhaohui; Tammela, Petter; Huo, Jinxing; Lindh, Jonas; Edström, Kristina; Strømme, Maria; Nyholm, Leif

    2016-07-01

    Much effort is currently made to develop inexpensive and renewable materials which can replace the polyolefin microporous separators conventionally used in contemporary lithium-ion batteries. In the present work, it is demonstrated that mesoporous Cladophora cellulose (CC) separators constitute very promising alternatives based on their high crystallinity, good thermal stability and straightforward manufacturing. The CC separators, which are fabricated using an undemanding paper-making like process involving vacuum filtration, have a typical thickness of about 35 μm, an average pore size of about 20 nm, a Young's modulus of 5.9 GPa and also exhibit an ionic conductivity of 0.4 mS cm-1 after soaking with 1 M LiPF6 EC: DEC (1/1, v/v) electrolyte. The CC separators are demonstrated to be thermally stable at 150 °C and electrochemically inert in the potential range between 0 and 5 V vs. Li+/Li. A LiFePO4/Li cell containing a CC separator showed good cycling stability with 99.5% discharge capacity retention after 50 cycles at a rate of 0.2 C. These results indicate that the renewable CC separators are well-suited for use in high-performance lithium-ion batteries.

  18. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  19. Efficiently photo-charging lithium-ion battery by perovskite solar cell.

    PubMed

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  20. Space Technology-5 Lithium-Ion Battery Design, Qualification and Integration and Testing

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakishna M.; Stewart, Karen; Ameen, Syed; Banfield, Peter K.

    2005-01-01

    This document is a viewgraph presentation that reviews the Lithium Ion Battery for the Space Technology-5 (ST-5) mission. Included in the document is a review of the ST-5 Mission, a review of the battery requirements, a description of the battery and the battery materials. The testing and the integration and qualification data is reviewed.

  1. Graphene-based nanocomposite anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Wang, Yong

    2014-09-01

    Graphene-based nanocomposites have been demonstrated to be promising high-capacity anodes for lithium ion batteries to satisfy the ever-growing demands for higher capacity, longer cycle life and better high-rate performance. Synergetic effects between graphene and the introduced second-phase component are generally observed. In this feature review article, we will focus on the recent work on four different categories of graphene-based nanocomposite anodes by us and others: graphene-transitional metal oxide, graphene-Sn/Si/Ge, graphene-metal sulfide, and graphene-carbon nanotubes. For the supported materials on graphene, we will emphasize the non-zero dimensional (non-particle) morphologies such as two dimensional nanosheet/nanoplate and one dimensional nanorod/nanofibre/nanotube morphologies. The synthesis strategies and lithium-ion storage properties of these highlighted electrode morphologies are distinct from those of the commonly obtained zero dimensional nanoparticles. We aim to stress the importance of structure matching in the composites and their morphology-dependent lithium-storage properties and mechanisms.

  2. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  3. Liquid Cooling of Tractive Lithium Ion Batteries Pack with Nanofluids Coolant.

    PubMed

    Li, Yang; Xie, Huaqing; Yu, Wei; Li, Jing

    2015-04-01

    The heat generated from tractive lithium ion batteries during discharge-charge process has great impacts on the performances of tractive lithium ion batteries pack. How to solve the thermal abuse in tractive lithium ion batteries pack becomes more and more urgent and important for future development of electrical vehicles. In this work, TiO2, ZnO and diamond nanofluids are prepared and utilized as coolants in indirect liquid cooling of tractive lithium ion batteries pack. The results show that nanofluids present superior cooling performance to that of pure fluids and the diamond nanofluid presents relatively excellent cooling abilities than that of TiO2 and ZnO nanofluids. During discharge process, the temperature distribution of batteries in batteries pack is uniform and stable, due to steady heat dissipation by indirect liquid cooling. It is expected that nanofluids could be considered as a potential alternative for indirect liquid cooling in electrical vehicles. PMID:26353564

  4. Prototype Lithium-Ion Battery Developed for Mars 2001 Lander

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2000-01-01

    In fiscal year 1997, NASA, the Jet Propulsion Laboratory, and the U.S. Air Force established a joint program to competitively develop high-power, rechargeable lithium-ion battery technology for aerospace applications. The goal was to address Department of Defense and NASA requirements not met by commercial battery developments. Under this program, contracts have been awarded to Yardney Technical Products, Eagle- Picher Technologies, LLC, BlueStar Advanced Technology Corporation, and SAFT America, Inc., to develop cylindrical and prismatic cell and battery systems for a variety of NASA and U.S. Air Force applications. The battery systems being developed range from low-capacity (7 to 20 A-hr) and low-voltage (14 to 28 V) systems for planetary landers and rovers to systems for aircraft that require up to 270 V and for Unmanned Aerial Vehicles that require capacities up to 200 A-hr. Low-Earth-orbit and geosynchronousorbit spacecraft pose additional challenges to system operation with long cycle life (>30,000 cycles) and long calendar life (>10 years), respectively.

  5. Failure propagation in multi-cell lithium ion batteries

    SciTech Connect

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; Spangler, Scott W.

    2014-10-22

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module. Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.

  6. An electrochemical modeling of lithium-ion battery nail penetration

    NASA Astrophysics Data System (ADS)

    Chiu, Kuan-Cheng; Lin, Chi-Hao; Yeh, Sheng-Fa; Lin, Yu-Han; Chen, Kuo-Ching

    2014-04-01

    Nail penetration into a battery pack, resulting in a state of short-circuit and thus burning, is likely to occur in electric car collisions. To demonstrate the behavior of a specific battery when subject to such incidents, a standard nail penetration test is usually performed; however, conducting such an experiment is money consuming. The purpose of this study is to propose a numerical electrochemical model that can simulate the test accurately. This simulation makes two accurate predictions. First, we are able to model short-circuited lithium-ion batteries (LIBs) via electrochemical governing equations so that the mass and charge transfer effect could be considered. Second, the temperature variation of the cell during and after nail penetration is accurately predicted with the help of simulating the temperature distribution of thermal runaway cells by thermal abuse equations. According to this nail penetration model, both the onset of battery thermal runaway and the cell temperature profile of the test are obtained, both of which are well fitted with our experimental results.

  7. USFOE: Extended Summary - Lithium ion batteries and their manufacturing challenges

    SciTech Connect

    Daniel, Claus

    2014-01-01

    There is no one lithium ion battery. With the variety of materials and electrochemical couples at our disposal as shown in the previous talks, we have the opportunity to design battery cells specific for their applications. Such applications require optimization of voltage, state of charge utilization, lifetime needs, and safety considerations. Electrochemical couples allow for designing power and energy ratios and available energy for the application. Integration in a large format cell requires optimized roll to roll electrode manufacturing and active material utilization. Electrodes are coated on a current collector in a composite structure comprised of active material, binders, and conductive additives which requires careful control of colloidal chemistry, adhesion, and solidification. These added inactive materials and the cell packaging reduce energy density. Degree of porosity and compaction in the electrode can impede or enhance battery performance. Pathways are explored to bring batteries from currently commercially available 100Wh/kg and 200Wh/L at $500/kWh to 250Wh/kg and 400Wh/L at $125/kWh.

  8. Failure propagation in multi-cell lithium ion batteries

    DOE PAGESBeta

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; Spangler, Scott W.

    2014-10-22

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module.more » Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.« less

  9. Fabrication and evaluation of 100 Ah cylindrical lithium ion battery for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Hyung, Yoo-Eup; Moon, Seong-In; Yum, Duk-Hyeng; Yun, Seong-Kyu

    A total of 100 Ah class lithium ion cells with C/LiCoO 2 cell system for electric vehicles (EVs) was developed. EV-size lithium ion battery was developed by Sony, KERI/STC, SAFT, VARTA, Sanyo and Matsushita. GS battery and Hitachi have developed also stationary type large scale (70-80 Ah) lithium ion batteries. Lithium ion battery module for EVs was demonstrated by Sony/Nissan and KERI/STC in 1996. At present, the performance of developed EV-cells was up to 115 Wh/kg and 286 W/kg of specific power at 80% DOD. We assume our EV cells to have 248 and 242 km driving distance per one charge with DST-120 mode and ECE-15 mode, respectively. Finally, we performed safety/abuse tests of developed lithium ion cell.

  10. Micromechanical Modeling of Storage Particles in Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Purkayastha, Rajlakshmi Tarun

    The effect of stress on storage particles within a lithium ion battery, while acknowledged, is not understood very well. In this work three non-dimensional parameters were identified which govern the stress response within a spherical storage particle. These parameters are developed using material properties such as the diffusion coefficient, particle radius, partial molar volume and Young's modulus. Stress maps are then generated for various values of these parameters for fixed rates of insertion, applying boundary conditions similar to those found in a battery. Stress and concentration profiles for various values of these parameters show the coupling between stress and concentration is magnified depending on the values of the parameters. These maps can be used for different materials, depending on the value of the dimensionless parameters. The value of maximum stress generated is calculated for extraction as well as insertion of lithium into the particle. The model was then used to study to ellipsoidal particles in order to ascertain the effect of geometry on the maximum stress within the particle. By performing a parameter study, we can identify those materials for which particular aspect ratios of ellipsoids are more beneficial, in terms of reducing stress. We find that the stress peaks at certain aspect ratios, mostly at 2 and 1/ 2 . A parameter study was also performed on cubic particle. The values of maximum stresses for both insertion and extraction of lithium were plotted as contour plots. It was seen that the material parameters influenced the location of the maximum stress, with the maximum stress occurring either at the center of the edge between two faces or the point at the center of a face. Newer materials such as silicon are being touted as new lithium storage materials for batteries due to their higher capacity. Their tendency to rapidly loose capacity in a short period of time has led to a variety designs such are the use of carbon nanotubes or

  11. Lithium use in batteries

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  12. Thigh burns from exploding e-cigarette lithium ion batteries: First case series.

    PubMed

    Nicoll, K J; Rose, A M; Khan, M A A; Quaba, O; Lowrie, A G

    2016-06-01

    E-cigarette (EC) use has risen meteorically over the last decade. The majority of these devices are powered by re-chargeable lithium ion batteries, which can represent a fire hazard if damaged, over-heated, over-charged or stored inappropriately. There are currently no reports in the medical literature of lithium ion battery burns related to EC use and no guidance on the appropriate management of lithium ion battery associated injuries. We report two individual cases of burn resulting from explosion of EC re-chargeable lithium ion batteries. Both patients required in-patient surgical management. We provide evidence that lithium ion battery explosions can be associated with mixed thermal and alkali chemical burns, resulting from the significant discharge of thermal energy and the dispersal of corrosive lithium ion compounds. We would recommend, as with other elemental metal exposures, caution in exposing lithium ion battery burns to water irrigation. Early and thorough cleaning and debridement of such burns, to remove residual lithium contamination, may limit the risk of burn wound extension and potentially improve outcomes. PMID:27118069

  13. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    PubMed Central

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  14. Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.

    SciTech Connect

    Hudak, Nicholas S.; Huber, Dale L.

    2010-12-01

    Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

  15. Nanodiamonds: a critical component of anodes for high performance lithium-ion batteries.

    PubMed

    Song, Yanpeng; Li, Hongdong; Wang, Liying; Qiu, Dongchao; Ma, Yibo; Pei, Kai; Zou, Guangtian; Yu, Kaifeng

    2016-08-18

    Detonation nanodiamonds (DNDs) have been introduced into a carbonaceous anode for improving the performance of lithium ion batteries (LIBs). The lithium storage capacity, cycling performance and stability of the LIBs are increased and this is related to the DNDs' unique characteristics of chemical inertness, a larger surface area, low expansion, and high lithium adsorption capacity. PMID:27488679

  16. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  17. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode.

    PubMed

    Hassoun, Jusef; Bonaccorso, Francesco; Agostini, Marco; Angelucci, Marco; Betti, Maria Grazia; Cingolani, Roberto; Gemmi, Mauro; Mariani, Carlo; Panero, Stefania; Pellegrini, Vittorio; Scrosati, Bruno

    2014-08-13

    We report an advanced lithium-ion battery based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode in the round of few cycles, we demonstrate an optimal battery performance in terms of specific capacity, that is, 165 mAhg(-1), of an estimated energy density of about 190 Wh kg(-1) and a stable operation for over 80 charge-discharge cycles. The components of the battery are low cost and potentially scalable. To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development. PMID:25026051

  18. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOEpatents

    Abraham, Kuzhikalail M.; Rohan, James F.; Foo, Conrad C.; Pasquariello, David M.

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  19. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOEpatents

    Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

    1999-01-12

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

  20. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries

    PubMed Central

    Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk

    2014-01-01

    Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg−1total electrode while also retaining a high energy density of 225 Wh kg−1total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices. PMID:24923290

  1. Construction and testing of coin cells of lithium ion batteries.

    PubMed

    Kayyar, Archana; Huang, Jiajia; Samiee, Mojtaba; Luo, Jian

    2012-01-01

    Rechargeable lithium ion batteries have wide applications in electronics, where customers always demand more capacity and longer lifetime. Lithium ion batteries have also been considered to be used in electric and hybrid vehicles or even electrical grid stabilization systems. All these applications simulate a dramatic increase in the research and development of battery materials, including new materials, doping, nanostructuring, coatings or surface modifications and novel binders. Consequently, an increasing number of physicists, chemists and materials scientists have recently ventured into this area. Coin cells are widely used in research laboratories to test new battery materials; even for the research and development that target large-scale and high-power applications, small coin cells are often used to test the capacities and rate capabilities of new materials in the initial stage. In 2010, we started a National Science Foundation (NSF) sponsored research project to investigate the surface adsorption and disordering in battery materials (grant no. DMR-1006515). In the initial stage of this project, we have struggled to learn the techniques of assembling and testing coin cells, which cannot be achieved without numerous help of other researchers in other universities (through frequent calls, email exchanges and two site visits). Thus, we feel that it is beneficial to document, by both text and video, a protocol of assembling and testing a coin cell, which will help other new researchers in this field. This effort represents the "Broader Impact" activities of our NSF project, and it will also help to educate and inspire students. In this video article, we document a protocol to assemble a CR2032 coin cell with a LiCoO2 working electrode, a Li counter electrode, and (the mostly commonly used) polyvinylidene fluoride (PVDF) binder. To ensure new learners to readily repeat the protocol, we keep the protocol as specific and explicit as we can. However, it is important

  2. Carbon nanotube film anodes for flexible lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yoon, Sora; Lee, Sehyun; Kim, Soyoung; Park, Kyung-Won; Cho, Daehwan; Jeong, Youngjin

    2015-04-01

    In this study, carbon nanotube (CNT) film anodes are prepared for use in flexible lithium ion batteries, and the electrochemical performance of the CNT film anodes is evaluated. The CNT films are synthesized via chemical vapor deposition and direct spinning. The films are heat-treated under a nitrogen atmosphere at a high temperature to study the effects of heat treatment on the battery performance. The electrodes made with the CNT films are characterized via charge-discharge test, cyclic voltammetry, and impedance measurement. The results indicate that batteries with films heat-treated under a nitrogen atmosphere show a higher capacity, which can be a result of their high crystalline perfection. The impedance analysis shows that a lower resistance at the interface can be obtained by using heat-treated films. The charge-discharge tests are carried out by adjusting the rate from C/2 to 10C, and when the rate slows from 10C to 1C, the capacity of the samples largely recovers. The nitrogen/heat-treated CNT film electrodes present a capacity that is twice as high, such as 2C, 5C, and 10C, than untreated CNT film electrodes. These results indicate that the carbon nanotube film anodes have high potential for use in portable and wearable computers due to their flexibility.

  3. Failure propagation in multi-cell lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; Spangler, Scott W.

    2015-06-01

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell. Cylindrical cells are observed to be less prone to propagate owing to the limited contact between neighboring cells. The electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 s for all configurations (parallel or series) tested.

  4. Nanocomposites with embedded structures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zichao

    Lithium-ion batteries (LIBs) have been widely employed in portable electronics and are rapidly expanding into emerging markets such as hybrid and electric vehicles and potentially electric grid storage. These new opportunities create new challenges for LIBs and further improvement of specific energy, cycling performance and rate capability are required. A major strategy in performance enhancement for the electrode materials involves the creation of carbon composites to provide mechanical buffering of active material and to improve electrical conductivity. In the current work, a platform is developed for creating functional hybrid materials by copolymerization of organic molecules and inorganic compounds followed by thermal pyrolysis, and the approach yields nanostructured composites in which nanoparticles are uniformly embedded in a porous, partially graphitic carbon matrix. Depending upon the chemistry of the starting materials, nanocomposites with embedded structures created using the approach are attractive as anode or cathode materials for next-generation rechargeable lithium battery systems. The platform is very versatile and through ex situ conversion or utilization of multiple precursors, can be applied to various classes of materials including metal oxides (single or mixed), metals, metal sulfides, alloys, metalloids, phosphates, etc. The approach also lends itself to the development of scalable processes for production of nanostructured battery materials. Mechanistic analysis was performed and reveals that the performance enhancement of the embedded nanocomposite configuration is mainly brought about by the mechanical buffering effect offered by the carbon matrix. The active material loading was shown to be an important factor in the design of the composites as electrode materials. In addition to the polymerization-based approach, other in situ methods such as one based on spray pyrolysis are also explored and demonstrate the versatility of the in situ

  5. Multiscale modeling of lithium ion batteries: thermal aspects

    PubMed Central

    Zausch, Jochen

    2015-01-01

    Summary The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory. PMID:25977870

  6. Cobalt silicate hierarchical hollow spheres for lithium-ion batteries.

    PubMed

    Yang, Jun; Guo, Yuanyuan; Zhang, Yufei; Sun, Chencheng; Yan, Qingyu; Dong, Xiaochen

    2016-09-01

    In this paper, the synthesis of cobalt silicate novel hierarchical hollow spheres via a facile hydrothermal method is presented. With a unique hollow structure, the Co2SiO4 provides a large surface area, which can shorten the lithium ions diffusion length and effectively accommodate the volumetic variation during the lithiation/de-lithiation process. Serving as an anode material in lithium-ion battery application, the Co2SiO4 electrode demonstrates a high reversible specific capacity (first-cycle charge capacity of 948.6 mAh g(-1) at 100 mA g(-1)), a cycling durability (specific capacity of 791.4 mAh g(-1) after 100 cycles at 100 mA g(-1)), and a good rate capability (specific capacity of 349.4 mAh g(-1) at 10 A g(-1)). The results indicate that the cobalt silicate hierarchical hollow sphere holds the potential applications in energy storage electrodes. PMID:27479691

  7. Bismuth Oxide: A New Lithium-Ion Battery Anode

    PubMed Central

    Li, Yuling; Trujillo, Matthias A.; Fu, Engang; Patterson, Brian; Fei, Ling; Xu, Yun; Deng, Shuguang; Smirnov, Sergei; Luo, Hongmei

    2013-01-01

    Bismuth oxide directly grown on nickel foam (p-Bi2O3/Ni) was prepared by a facile polymer-assisted solution approach and was used directly as a lithium-ion battery anode for the first time. The Bi2O3 particles were covered with thin carbon layers, forming network-like sheets on the surface of the Ni foam. The binder-free p-Bi2O3/Ni shows superior electrochemical properties with a capacity of 668 mAh/g at a current density of 800 mA/g, which is much higher than that of commercial Bi2O3 powder (c-Bi2O3) and Bi2O3 powder prepared by the polymer-assisted solution method (p-Bi2O3). The good performance of p-Bi2O3/Ni can be attributed to higher volumetric utilization efficiency, better connection of active materials to the current collector, and shorter lithium ion diffusion path. PMID:24416506

  8. Cobalt silicate hierarchical hollow spheres for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Guo, Yuanyuan; Zhang, Yufei; Sun, Chencheng; Yan, Qingyu; Dong, Xiaochen

    2016-09-01

    In this paper, the synthesis of cobalt silicate novel hierarchical hollow spheres via a facile hydrothermal method is presented. With a unique hollow structure, the Co2SiO4 provides a large surface area, which can shorten the lithium ions diffusion length and effectively accommodate the volumetic variation during the lithiation/de-lithiation process. Serving as an anode material in lithium-ion battery application, the Co2SiO4 electrode demonstrates a high reversible specific capacity (first-cycle charge capacity of 948.6 mAh g‑1 at 100 mA g‑1), a cycling durability (specific capacity of 791.4 mAh g‑1 after 100 cycles at 100 mA g‑1), and a good rate capability (specific capacity of 349.4 mAh g‑1 at 10 A g‑1). The results indicate that the cobalt silicate hierarchical hollow sphere holds the potential applications in energy storage electrodes.

  9. Advanced Lithium Ion Battery Materials Prepared with Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Cavanagh, Andrew S.

    As the world consumes the dwindling supply of fossil fuels, an alternative to gasoline powered vehicles will become necessary. Lithium ion batteries (LIBs) are emerging as the dominant power source for portable electronics, and are seen as a promising energy source in the development of electric vehicles. Current LIB technology is not well suited for vehicles, increases in the energy density, power density and durability are needed before LIB are ready for widespread use in electric vehicles. LiCoO2 and graphite are the dominant cathode and anode active materials, respectively in LIBs. On the cathode side, instabilities in LiCoO 2 can lead to the deterioration of the LIB. Decomposition of electrolyte on the graphite anode surface to form a solid-electrolyte interphase (SEI) consumes lithium from the cathode resulting in a lower battery capacity. Instabilities in the in the SEI can result in catastrophic battery failure. Previous studies have employed metal oxides films, typically grown with wet chemical techniques, to stabilize LiCoO2 and mitigate the formation of the SEI on graphite. The thicknesses of films grown with wet chemical techniques was typically ˜50--1000 A. In order to achieve higher power densities, the particle size of LIB active materials is being scaled down. As active materials get smaller the mass contribution of a protective film can become a significant fraction of the total mass. Atomic layer deposition (ALD) has been used to grow ultra thin films of Al2O3 on LiCoO2 and graphite. By altering the interaction between the active material and the battery electrolyte it was possible to improve the stability of both LiCoO2 and graphite electrodes in LIBs. In the case of graphite, the Al2O3 film may be thought of as an artificial SEI. During the initial charge-discharge cycle of a LIB, the electrolyte decomposes on the anode to form the SEI. The formation of the SEI is believed to prevent further decomposition of the electrolyte on the anode surface

  10. A lithium ion battery using an aqueous electrolyte solution.

    PubMed

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today's society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg(-1). It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  11. Lithium-Ion Battery Cycling for Magnetism Control.

    PubMed

    Zhang, Qingyun; Luo, Xi; Wang, Luning; Zhang, Lifang; Khalid, Bilal; Gong, Jianghong; Wu, Hui

    2016-01-13

    Magnetization and electric-field coupling is fundamentally interesting and important. Specifically, current- or voltage-driven magnetization switching at room temperature is highly desirable from scientific and technological viewpoints. Herein, we demonstrate that magnetization can be controlled via the discharge-charge cycling of a lithium-ion battery (LIB) with rationally designed electrode nanomaterials. Reversible manipulation of magnetism over 3 orders of magnitude was achieved by controlling the lithiation/delithiation of a nanoscale α-Fe2O3-based electrode. The process was completed rapidly under room-temperature conditions. Our results indicate that in addition to energy storage LIBs, which have been under continuous development for several decades, provide exciting opportunities for the multireversible magnetization of magnetic fields. PMID:26654117

  12. A lithium ion battery using an aqueous electrolyte solution

    PubMed Central

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg−1. It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  13. Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material

    SciTech Connect

    Chockla, Aaron M.; Harris, Justin T.; Akhavan, Vahid A.; Bogart, Timothy D.; Holmberg, Vincent C.; Steinhagen, Chet; Mullins, C. Buddie; Stevenson, Keith J.; Korgel, Brian A.

    2011-11-09

    A nonwoven fabric with paperlike qualities composed of silicon nanowires is reported. The nanowires, made by the supercritical-fluid–liquid–solid process, are crystalline, range in diameter from 10 to 50 nm with an average length of >100 μm, and are coated with a thin chemisorbed polyphenylsilane shell. About 90% of the nanowire fabric volume is void space. Thermal annealing of the nanowire fabric in a reducing environment converts the polyphenylsilane coating to a carbonaceous layer that significantly increases the electrical conductivity of the material. This makes the nanowire fabric useful as a self-supporting, mechanically flexible, high-energy-storage anode material in a lithium ion battery. Anode capacities of more than 800 mA h g{sup –1} were achieved without the addition of conductive carbon or binder.

  14. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  15. A lithium ion battery using an aqueous electrolyte solution

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg‑1. It will be a promising energy storage system with good safety and efficient cooling effects.

  16. Brief overview of electrochemical potential in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Jian, Gao; Si-Qi, Shi; Hong, Li

    2016-01-01

    The physical fundamentals and influences upon electrode materials’ open-circuit voltage (OCV) and the spatial distribution of electrochemical potential in the full cell are briefly reviewed. We hope to illustrate that a better understanding of these scientific problems can help to develop and design high voltage cathodes and interfaces with low Ohmic drop. OCV is one of the main indices to evaluate the performance of lithium ion batteries (LIBs), and the enhancement of OCV shows promise as a way to increase the energy density. Besides, the severe potential drop at the interfaces indicates high resistance there, which is one of the key factors limiting power density. Project supported by the National Natural Science Foundation of China (Grant Nos. 51325206 and 51372228), National Basic Research Program of China (Grant No. 2012CB932900), Shanghai Pujiang Program, China (Grant No. 14PJ1403900).

  17. Single potential electrodeposition of nanostructured battery materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mosby, James Matthew

    The increasing reliance on portable electronics is continuing to fuel research in the area of low power lithium-ion batteries, while a new surge in research for high power lithium-ion batteries has been sparked by the demand for plug-in hybrid electric vehicles (PHEV) and plug-in electric vehicles (PEV). To compete with current lead-acid battery chemistry, a few of the shortcomings of lithium-ion battery chemistry need to be addressed. The three main drawbacks of lithium-ion batteries for this application are: (1) low power density, (2) safety, and (3) the high cost of manufacturing. This dissertation covers the development of a low cost fabrication technique for an alternative anode material with high surface area geometries. The anode material is safer than the conventional anode material in lithium-ion batteries and the high surface area geometries permit higher power densities to be achieved. Electrodeposition is an inexpensive alternative method for synthesizing materials for electronics, energy conversion and energy storage applications relative to traditional solid state techniques. These techniques led to expensive device fabrication. Unlike most solid state synthesis routes, electrodeposition can usually be performed from common solutions and at moderate conditions. Three other benefits of using electrodeposition are: (1) it allows precise control of composition and crystallinity, (2) it provides the ability to deposit on complex shapes, and (3) it can deposit materials with nanoscale dimensions. The use of electrodeposition for alternative anode materials results in the deposition of the material directly onto the current collector that is used for the battery testing and applications without the need of additional binders and with excellent electrical contact. While this improves the characterization of the material and lowers the weight of the non-active materials within a battery, it also allows the anode to be deposited onto current collectors with

  18. Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries

    SciTech Connect

    Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

    2011-10-01

    There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

  19. Stress-induced Ageing of Lithium-Ion Batteries.

    PubMed

    Held, Marcel; Sennhauser, Urs

    2015-01-01

    Lithium-ion batteries are well established for use in portable consumer products and are increasingly used in high power electro-mobility and photovoltaic storage applications. In hybrid and plug-in electric vehicles degradation and useful lifetime at standard operation conditions are critical parameters in addition to performance and safety. Here stress-induced ageing of commercially available high power battery cells of the type A123 AHR32113M1 Ultra-B, consisting of a LiFePO(4) cathode and a graphite anode have been investigated. A usually accepted capacity loss for electric vehicles of 20% was reached after 8560 stress profiles corresponding to a driving distance of almost 200'000 km. Cycling with a stress profile applying constant power corresponding to the average power and energy of a full stress profile and starting at 60% state of charge showed a much faster capacity loss. Electric impedance measurements show the dependence of the capacity loss and constant phase element at low frequency, indicating Li-ion diffusion blocking in the cathode. Microscopic analysis of anode, separator, and cathode, shows defect formation in bulk material and at interfaces. PMID:26842322

  20. Redox-assisted Li+-storage in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Qizhao, Huang; Qing, Wang

    2016-01-01

    Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e- and h+) and ionic species (Li+) at the electrode-electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li+ storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. Project supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Competitive Research Program (CRP Award No. NRF-CRP8-2011-04).

  1. A rechargeable lithium-ion battery module for underwater use

    NASA Astrophysics Data System (ADS)

    Pendergast, David R.; DeMauro, Edward P.; Fletcher, Michael; Stimson, Eric; Mollendorf, Joseph C.

    Portable underwater electrical power is needed for many commercial, recreational and military applications. A battery system is currently not available to meet these needs, which was the aim of this project. Lithium-ion battery cells (Panasonic (CGR18650E)) were chosen, based on their high energy density and availability. To increase their voltage, 8 battery cells were connected in series ("sticks") and protected by encapsulating them into a polycarbonate tube; and 6 sticks were housed inside a triangular aluminum case (module). Testing was performed to determine the consistency of individual cells, sticks and module and during discharge/charging cycles. The effect of ambient temperature (T A) was determined by instrumenting them with thermocouples. In addition, voltage and current were measured and used to determine the heat generated within the battery cell and were compared to theory. From these data, a radial temperature profile was determined for two battery sticks in the battery module. Collapse pressure was determined and compared to theory. The Panasonic (CGR18650E) cells delivered 2291 mAh each over a wide range of T A and discharge/charge rates. The theoretical and experimental data showed that the temperature within the battery sticks and modules did not rise above or below their operating temperature range (-20 and 60 °C), in agreement with the models. The tubes encapsulating the sticks withstood pressures down to 305 m of sea water (msw) which was predicted by modeling. The Panasonic (CGR18650E) cells, sticks and module demonstrated that they provided sufficient electrical power, reliably and safely to be used in the underwater environment (1800-2000 kPa, 305 msw) over a wide range T A, including high power requirement systems like an active thermal protection system that keeps a diver comfortable in extreme temperature conditions. The concept developed here can be modified to meet specific power requirements by varying the number of cell in series to

  2. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter

    NASA Astrophysics Data System (ADS)

    Fu, Yangyang; Lu, Song; Li, Kaiyuan; Liu, Changchen; Cheng, Xudong; Zhang, Heping

    2015-01-01

    Numerous of lithium ion battery fires and explosions enhance the need of precise risk assessments on batteries. In the current study, 18650 lithium ion batteries at different states of charge are tested using a cone calorimeter to study the burning behaviors under an incident heat flux of 50 kW m-2. Several parameters are measured, including mass loss rate, time to ignition, time to explosion, heat release rate (HRR), the surface temperature and concentration of toxic gases. Although small quantities of oxygen are released from the lithium ion battery during burning, it is estimated that the energy, consuming oxygen released from the lithium ion battery, accounts for less than 13% of total energy released by a fully charged lithium ion battery. The experimental results show that the peak HRR and concentration of toxic gases rise with the increasing the states of charge, whereas the time to ignition and time to explosion decrease. The test results of the fully charged lithium ion batteries at three different incident heat fluxes show that the peak HRR increases from 6.2 to 9.1 kW and the maximum surface temperature increases from 662 to 934 °C as the incident heat flux increases from 30 to 60 kW m-2.

  3. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery.

    PubMed

    Nishimura, Shin-ichi; Nakamura, Megumi; Natsui, Ryuichi; Yamada, Atsuo

    2010-10-01

    A new pyrophosphate compound Li(2)FeP(2)O(7) was synthesized by a conventional solid-state reaction, and its crystal structure was determined. Its reversible electrode operation at ca. 3.5 V vs Li was identified with the capacity of a one-electron theoretical value of 110 mAh g(-1) even for ca. 1 μm particles without any special efforts such as nanosizing or carbon coating. Li(2)FeP(2)O(7) and its derivatives should provide a new platform for related lithium battery electrode research and could be potential competitors to commercial olivine LiFePO(4), which has been recognized as the most promising positive cathode for a lithium-ion battery system for large-scale applications, such as plug-in hybrid electric vehicles. PMID:20831186

  4. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ. PMID:22163735

  5. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.

    PubMed

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ. PMID:22163735

  6. High performance binderless TiO2 nanowire arrays electrode for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Li, Yueming; Lv, Xiaojun; Li, Jinghong

    2009-09-01

    Binderless lithium ion battery electrode fabricated by anodizing Ti foil, in which TiO2 nanowire serves as active materials and unreacted Ti foil as the current collector, exhibited high electrochemical performance.

  7. Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries.

    PubMed

    Miyazaki, Kohei; Shimada, Toshiki; Ito, Satomi; Yokoyama, Yuko; Fukutsuka, Tomokazu; Abe, Takeshi

    2016-04-11

    An efficient electrolyte solution containing organic sulfonates for use in aqueous rechargeable lithium-ion batteries (ARLBs) is shown to provide a wide potential window and enable a high operating voltage for ARLBs. PMID:26911197

  8. Effect of combinations of additives on the performance of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Santee, Stuart; Xiao, Ang; Yang, Li; Gnanaraj, Joe; Lucht, Brett L.

    Commercial lithium-ion batteries have excellent performance at room temperature for a few years. However, the calendar life and thermal stability (>50 °C) need to be improved for many applications, including electric vehicles. We have conducted an investigation of the effect of thermal stabilizing additives, including dimethyl acetamide, vinylene carbonate, and lithium bis(oxalato) borate, on the performance of lithium ion batteries stored at 70 °C for one month. The reactions of the lithium hexafluorophosphate/carbonate electrolyte, with and without electrolyte additives, with the surface of the electrodes after initial formation cycling have been analyzed via a combination of IR-ATR and XPS.

  9. Safety Evaluation of Two Commercial Lithium-ion Batteries for Space Applications

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Collins, Jacob; Cook, Joseph S.

    2004-01-01

    Lithium-ion batteries have been used for applications on the Shuttle and Station for the past six years. A majority of the li-ion batteries flown are Commercial-off-the-shelf (COTS) varieties. The COTS batteries and cells were tested under nominal and abusive conditions for performance and safety characterization. Within the past six months two batteries have been certified for flight and use on the Space Station. The first one is a Hand Spring PDA battery that had a single prismatic li-ion cell and the second is an Iridium satellite phone that had a two-cell pack with prismatic li-ion cells.

  10. Photovoltaic lithium-ion battery fabricated by molecular precursor method

    NASA Astrophysics Data System (ADS)

    Nagai, Hiroki; Suzuki, Tatsuya; Takahashi, Yoshihisa; Sato, Mitsunobu

    2016-06-01

    A novel thin-film lithium-ion battery (LIB) which can be charged by the light irradiation was fabricated by molecular precursor method. The unprecedented, translucent thin-film LIB, fabricated on a fluorine-doped tin oxide pre-coated glass substrate, was attained by using the active materials, titania for anode and LiCoO2 for cathode, respectively. The averaged potential at 2.04V was observed by applying a constant current of 0.2mA. Then, that at 1.82V was detected after 60s during the sequential self-discharge process. The charging voltage of the assembled battery was 1.38V with irradiation of 1-sun, the self-discharge voltage was 1.37V. Based on the calibration curve of the charging voltages over constant currents ranging from 0-1.0mA, the detected value can be theoretically reduced to the charging operation by applying a constant current of approximately 60μA. The charge and discharge of this device was stable voltage at least 30 cycles. The two-in-one device can simultaneously generate and store electricity from solar light, the renewable energy source, and may be applied in smart windows for distributed power system according to on-site demand.

  11. Nanostructured mesoporous materials for lithium-ion battery applications

    NASA Astrophysics Data System (ADS)

    Balaya, P.; Saravanan, K.; Hariharan, S.; Ramar, V.; Lee, H. S.; Kuezma, M.; Devaraj, S.; Nagaraju, D. H.; Ananthanarayanan, K.; Mason, C. W.

    2011-06-01

    The Energy crisis happens to be one of the greatest challenges we are facing today. In this view, much effort has been made in developing new, cost effective, environmentally friendly energy conversion and storage devices. The performance of such devices is fundamentally related to material properties. Hence, innovative materials engineering is important in solving the energy crisis problem. One such innovation in materials engineering is porous materials for energy storage. Porous electrode materials for lithium-ion batteries (LIBs) offer a high degree of electrolyte-electrode wettability, thus enhancing the electrochemical activity within the material. Among the porous materials, mesoporous materials draw special attention, owing to shorter diffusion lengths for Li+ and electronic movement. Nanostructured mesoporous materials also offer better packing density compared to their nanostructured counterparts such as nanopowders, nanowires, nanotubes etc., thus opening a window for developing electrode materials with high volumetric energy densities. This would directly translate into a scenario of building batteries which are much lighter than today's commercial LIBs. In this article, the authors present a simple, soft template approach for preparing both cathode and anode materials with high packing density for LIBs. The impact of porosity on the electrochemical storage performance is highlighted.

  12. Role of surface coating on cathode materials for lithium-ion batteries.

    SciTech Connect

    Chen, Z.; Qin, Y.; Amine, K.; Sun, Y.-K.

    2010-01-01

    Surface coating of cathode materials has been widely investigated to enhance the life and rate capability of lithium-ion batteries. The surface coating discussed here was divided into three different configurations which are rough coating, core shell structure coating and ultra thin film coating. The mechanism of surface coating in achieving improved cathode performance and strategies to carry out this surface modification is discussed. An outlook on atomic layer deposition for lithium ion battery is also presented.

  13. Reducing of internal resistance lithium ion battery using glucose addition

    NASA Astrophysics Data System (ADS)

    Salim, Andri Pratama; Hafidlullah, Noor; Purwanto, Agus

    2016-02-01

    There are two indicators of battery performance, i.e : capacity and the internal resistance of battery. In this research, the affect of glucose addition to decrease the internal resistance of lithium battery was investigated. The ratio of glucose addition were varied at weight ratio 1%, 3%, and 5% and one mixtures without glucose addition. Lithium ferri phosphate (LiFePO4), polyvinylidene fluoride (PVDF), acetylene black (AB) and glucose were materials that used in this study. Both of mixtures were mixed in the vacuum mixer until became homogeneous. The slurry was coated on an aluminium foil sheet and the coated thickness was 200 µm. The performance of battery lithium was examined by Eight Channel Battery Analyzer and the Internal resistance was examined by Internal Resistance of Battery Meter. The result from all analyzer were showed that the internal resistance reduced as well as the battery capacity. The best internal resistance value is owned by mixtures with 3wt% ratio glucose addition. It has an internal resistance value about 64 miliohm.

  14. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    NASA Astrophysics Data System (ADS)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  15. Phosphoryl-rich flame-retardant ions (FRIONs): towards safer lithium-ion batteries.

    PubMed

    Rectenwald, Michael F; Gaffen, Joshua R; Rheingold, Arnold L; Morgan, Alexander B; Protasiewicz, John D

    2014-04-14

    The functionalized catecholate, tetraethyl (2,3-dihydroxy-1,4-phenylene)bis(phosphonate) (H2 -DPC), has been used to prepare a series of lithium salts Li[B(DPC)(oxalato)], Li[B(DPC)2], Li[B(DPC)F2], and Li[P(DPC)3]. The phosphoryl-rich character of these anions was designed to impart flame-retardant properties for their use as potential flame-retardant ions (FRIONs), additives, or replacements for other lithium salts for safer lithium-ion batteries. The new materials were fully characterized, and the single-crystal structures of Li[B(DPC)(oxalato)] and Li[P(DPC)3] have been determined. Thermogravimetric analysis of the four lithium salts show that they are thermally stable up to around 200 °C. Pyrolysis combustion flow calorimetry reveals that these salts produce high char yields upon combustion. PMID:24615890

  16. Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries

    PubMed Central

    Thakur, Madhuri; Sinsabaugh, Steven L.; Isaacson, Mark J.; Wong, Michael S.; Biswal, Sibani Lisa

    2012-01-01

    One of the most exciting areas in lithium ion batteries is engineering structured silicon anodes. These new materials promise to lead the next generation of batteries with significantly higher reversible charge capacity than current technologies. One drawback of these materials is that their production involves costly processing steps, limiting their application in commercial lithium ion batteries. In this report we present an inexpensive method for synthesizing macroporous silicon particulates (MPSPs). After being mixed with polyacrylonitrile (PAN) and pyrolyzed, MPSPs can alloy with lithium, resulting in capacities of 1000 mAhg−1 for over 600+ cycles. These sponge-like MPSPs with pyrolyzed PAN (PPAN) can accommodate the large volume expansion associated with silicon lithiation. This performance combined with low cost processing yields a competitive anode material that will have an immediate and direct application in lithium ion batteries. PMID:23139860

  17. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  18. Lithium-ion batteries for hearing aid applications: I. Design and performance

    NASA Astrophysics Data System (ADS)

    Passerini, S.; Owens, B. B.; Coustier, F.

    Rechargeable batteries have been designed for powering hearing aid devices (HAD). The cells, based on the lithium-ion chemistry, were designed in a size that is compatible with the existing HAD. The 10 mA h batteries were tested to characterize the design and the electrochemical performance from the point of view of a typical HAD application. Results are presented for constant-current tests, first-cycle conditions, charge voltage cut-off, rate performance, and cycle life. The pulse capabilities and the preliminary safety tests of the batteries will be presented in a following report. The results of the lithium-ion HAD cells developed in this project are compared with other battery chemistries: lithium-alloy and nickel-metal hydride secondary batteries and Zn-air primary batteries.

  19. Fabricating high performance lithium-ion batteries using bionanotechnology

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Hou, Yukun; He, Wen; Yang, Guihua; Cui, Jingjie; Liu, Shikun; Song, Xin; Huang, Zhen

    2015-02-01

    Designing, fabricating, and integrating nanomaterials are key to transferring nanoscale science into applicable nanotechnology. Many nanomaterials including amorphous and crystal structures are synthesized via biomineralization in biological systems. Amongst various techniques, bionanotechnology is an effective strategy to manufacture a variety of sophisticated inorganic nanomaterials with precise control over their chemical composition, crystal structure, and shape by means of genetic engineering and natural bioassemblies. This provides opportunities to use renewable natural resources to develop high performance lithium-ion batteries (LIBs). For LIBs, reducing the sizes and dimensions of electrode materials can boost Li+ ion and electron transfer in nanostructured electrodes. Recently, bionanotechnology has attracted great interest as a novel tool and approach, and a number of renewable biotemplate-based nanomaterials have been fabricated and used in LIBs. In this article, recent advances and mechanism studies in using bionanotechnology for high performance LIBs studies are thoroughly reviewed, covering two technical routes: (1) Designing and synthesizing composite cathodes, e.g. LiFePO4/C, Li3V2(PO4)3/C and LiMn2O4/C; and (2) designing and synthesizing composite anodes, e.g. NiO/C, Co3O4/C, MnO/C, α-Fe2O3 and nano-Si. This review will hopefully stimulate more extensive and insightful studies on using bionanotechnology for developing high-performance LIBs.

  20. Fabricating high performance lithium-ion batteries using bionanotechnology.

    PubMed

    Zhang, Xudong; Hou, Yukun; He, Wen; Yang, Guihua; Cui, Jingjie; Liu, Shikun; Song, Xin; Huang, Zhen

    2015-02-28

    Designing, fabricating, and integrating nanomaterials are key to transferring nanoscale science into applicable nanotechnology. Many nanomaterials including amorphous and crystal structures are synthesized via biomineralization in biological systems. Amongst various techniques, bionanotechnology is an effective strategy to manufacture a variety of sophisticated inorganic nanomaterials with precise control over their chemical composition, crystal structure, and shape by means of genetic engineering and natural bioassemblies. This provides opportunities to use renewable natural resources to develop high performance lithium-ion batteries (LIBs). For LIBs, reducing the sizes and dimensions of electrode materials can boost Li(+) ion and electron transfer in nanostructured electrodes. Recently, bionanotechnology has attracted great interest as a novel tool and approach, and a number of renewable biotemplate-based nanomaterials have been fabricated and used in LIBs. In this article, recent advances and mechanism studies in using bionanotechnology for high performance LIBs studies are thoroughly reviewed, covering two technical routes: (1) Designing and synthesizing composite cathodes, e.g. LiFePO4/C, Li3V2(PO4)3/C and LiMn2O4/C; and (2) designing and synthesizing composite anodes, e.g. NiO/C, Co3O4/C, MnO/C, α-Fe2O3 and nano-Si. This review will hopefully stimulate more extensive and insightful studies on using bionanotechnology for developing high-performance LIBs. PMID:25640923

  1. SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties

    SciTech Connect

    Trulove, Paul C.; Foley, Matthew P.

    2012-09-30

    The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF3SO3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that could be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li+ ions in a Li-ion battery.

  2. In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    NASA Astrophysics Data System (ADS)

    Finegan, Donal P.; Scheel, Mario; Robinson, James B.; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J.; Millichamp, Jason; di Michiel, Marco; Offer, Gregory J.; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2015-04-01

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features.

  3. In-operando high-speed tomography of lithium-ion batteries during thermal runaway.

    PubMed

    Finegan, Donal P; Scheel, Mario; Robinson, James B; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J; Millichamp, Jason; Di Michiel, Marco; Offer, Gregory J; Hinds, Gareth; Brett, Dan J L; Shearing, Paul R

    2015-01-01

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features. PMID:25919582

  4. In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    PubMed Central

    Finegan, Donal P.; Scheel, Mario; Robinson, James B.; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J.; Millichamp, Jason; Di Michiel, Marco; Offer, Gregory J.; Hinds, Gareth; Brett, Dan J.L.; Shearing, Paul R.

    2015-01-01

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features. PMID:25919582

  5. An electrochemistry-based impedance model for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Shengbo Eben; Wang, Baojin; Peng, Huei; Hu, Xiaosong

    2014-07-01

    Accurate models of lithium-ion batteries are important for analyzing and predicting battery dynamics and aging. This paper presents an electrochemistry-based impedance model for lithium-ion batteries to better understand the relationship between battery internal dynamics and external measurement. The proposed impedance model is a modified single particle model which balances between simplicity and accuracy. The model includes electrochemical impedance due to charge-transfer reaction, diffusion dynamics in the electrodes, effects of ion concentration, capacitance dispersion in the double layer, and anode insulating film growth, etc. The impedance tests for model validation were performed on two lithium-ion cells at ambient temperature and at different SOC levels. A particle swarm optimization method is employed to identify model parameters. The model accuracy under different conditions is compared with that of conventional Randles model and the parameter variations at different stage of the aging process are studied.

  6. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    DOEpatents

    Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  7. Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling.

    PubMed

    Yang, Lijie; Cheng, Xinqun; Gao, Yunzhi; Zuo, Pengjian; Ma, Yulin; Du, Chunyu; Shen, Bin; Cui, Yingzhi; Guan, Ting; Yin, Geping

    2014-08-13

    Lithium compound deposition on mesocarbon microbead (MCMB) anode after long-term cycling was studied in LiCoO2/MCMB battery. Lithium compound deposition did not generate on the activated MCMB anode, but it generated unevenly on the long-term cycled anode. Gray deposition composed of dendrites and particles was formed on the lower surface of the MCMB layer first, then on the upper surface. The deposition and MCMB layer peeled off from the current collector, and a bump was formed in the cycled anode. The exfoliation and thick deposition increased the ohmic resistance, film resistance, and charge transfer resistance of the cell and decreased the capacity significantly. Metallic lithium did not exist in either the upper or the lower deposition layer according to the results of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), the discharge curve, and anode potential. The outer region of both the lower and the upper deposition layers consisted of Li2CO3, LiOH, ROCO2Li, and ROLi. The inner region of the etched lower deposition layer mainly consisted of Li2O, LiF, and Li2CO3, and that of the etched upper deposition layer mainly consisted of Li2CO3, ROCO2Li, ROLi, and LiF. Solid electrolyte interphase (SEI) film hindering the intercalation of lithium ions into carbon layers and LiCoO2 cathode providing lithium source for the deposition were the two reasons leading to the formation of lithium compound deposition during long-term cycles. Because SEI film on the lower surface of MCMB layer was thicker than that on the upper surface, lithium compound deposition generated on the lower surface first. PMID:25020035

  8. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hendricks, Christopher; Williard, Nick; Mathew, Sony; Pecht, Michael

    2015-11-01

    Lithium-ion batteries are popular energy storage devices for a wide variety of applications. As batteries have transitioned from being used in portable electronics to being used in longer lifetime and more safety-critical applications, such as electric vehicles (EVs) and aircraft, the cost of failure has become more significant both in terms of liability as well as the cost of replacement. Failure modes, mechanisms, and effects analysis (FMMEA) provides a rigorous framework to define the ways in which lithium-ion batteries can fail, how failures can be detected, what processes cause the failures, and how to model failures for failure prediction. This enables a physics-of-failure (PoF) approach to battery life prediction that takes into account life cycle conditions, multiple failure mechanisms, and their effects on battery health and safety. This paper presents an FMMEA of battery failure and describes how this process enables improved battery failure mitigation control strategies.

  9. Development of cooling strategy for an air cooled lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Sun, Hongguang; Dixon, Regan

    2014-12-01

    This paper describes a cooling strategy development method for an air cooled battery pack with lithium-ion pouch cells used in a hybrid electric vehicle (HEV). The challenges associated with the temperature uniformity across the battery pack, the temperature uniformity within each individual lithium-ion pouch cell, and the cooling efficiency of the battery pack are addressed. Initially, a three-dimensional battery pack thermal model developed based on simplified electrode theory is correlated to physical test data. An analytical design of experiments (DOE) approach using Optimal Latin-hypercube technique is then developed by incorporating a DOE design model, the correlated battery pack thermal model, and a morphing model. Analytical DOE studies are performed to examine the effects of cooling strategies including geometries of the cooling duct, cooling channel, cooling plate, and corrugation on battery pack thermal behavior and to identify the design concept of an air cooled battery pack to maximize its durability and its driving range.

  10. Rational material design for ultrafast rechargeable lithium-ion batteries.

    PubMed

    Tang, Yuxin; Zhang, Yanyan; Li, Wenlong; Ma, Bing; Chen, Xiaodong

    2015-10-01

    Rechargeable lithium-ion batteries (LIBs) are important electrochemical energy storage devices for consumer electronics and emerging electrical/hybrid vehicles. However, one of the formidable challenges is to develop ultrafast charging LIBs with the rate capability at least one order of magnitude (>10 C) higher than that of the currently commercialized LIBs. This tutorial review presents the state-of-the-art developments in ultrafast charging LIBs by the rational design of materials. First of all, fundamental electrochemistry and related ionic/electronic conduction theories identify that the rate capability of LIBs is kinetically limited by the sluggish solid-state diffusion process in electrode materials. Then, several aspects of the intrinsic materials, materials engineering and processing, and electrode materials architecture design towards maximizing both ionic and electronic conductivity in the electrode with a short diffusion length are deliberated. Finally, the future trends and perspectives for the ultrafast rechargeable LIBs are discussed. Continuous rapid progress in this area is essential and urgent to endow LIBs with ultrafast charging capability to meet huge demands in the near future. PMID:25857819

  11. Prospects for reducing the processing cost of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wood, David L.; Li, Jianlin; Daniel, Claus

    2015-02-01

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from 502.8 kW h-1-usable to 370.3 kW h-1-usable, a savings of 132.5/kWh (or 26.4%).

  12. Electrochromic & magnetic properties of electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zheng-Fei, Guo; Kun, Pan; Xue-Jin, Wang

    2016-01-01

    Progress in electrochromic lithium ion batteries (LIBs) is reviewed, highlighting advances and possible research directions. Methods for using the LIB electrode materials’ magnetic properties are also described, using several examples. Li4Ti5O12 (LTO) film is discussed as an electrochromic material and insertion compound. The opto-electrical properties of the LTO film have been characterized by electrical measurements and UV-Vis spectra. A prototype bi-functional electrochromic LIB, incorporating LTO as both electrochromic layer and anode, has also been characterized by charge- discharge measurements and UV-Vis transmittance. The results show that the bi-functional electrochromic LIB prototype works well. Magnetic measurement has proven to be a powerful tool to evaluate the quality of electrode materials. We introduce briefly the magnetism of solids in general, and then discuss the magnetic characteristics of layered oxides, spinel oxides, olivine phosphate LiFePO4, and Nasicon-type Li3Fe2(PO4)3. We also discuss what kind of impurities can be detected, which will guide us to fabricate high quality films and high performance devices. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201) and the Chinese Universities Scientific Fund (Grant No. 2015LX002).

  13. Neutron scattering for analysis of processes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Balagurov, A. M.; Bobrikov, I. A.; Samoylova, N. Yu; Drozhzhin, O. A.; Antipov, E. V.

    2014-12-01

    The review is concerned with analysis and generalization of information on application of neutron scattering for elucidation of the structure of materials for rechargeable energy sources (mainly lithium-ion batteries) and on structural rearrangements in these materials occurring in the course of electrochemical processes. Applications of the main methods including neutron diffraction, small-angle neutron scattering, inelastic neutron scattering, neutron reflectometry and neutron introscopy are considered. Information on advanced neutron sources is presented and a number of typical experiments are outlined. The results of some studies of lithium-containing materials for lithium-ion batteries, carried out at IBR-2 pulsed reactor, are discussed. The bibliography includes 50 references.

  14. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.

    PubMed

    Luo, Jia-Yan; Cui, Wang-Jun; He, Ping; Xia, Yong-Yao

    2010-09-01

    Aqueous lithium-ion batteries may solve the safety problem associated with lithium-ion batteries that use highly toxic and flammable organic solvents, and the poor cycling life associated with commercialized aqueous rechargeable batteries such as lead-acid and nickel-metal hydride systems. But all reported aqueous lithium-ion battery systems have shown poor stability: the capacity retention is typically less than 50% after 100 cycles. Here, the stability of electrode materials in an aqueous electrolyte was extensively analysed. The negative electrodes of aqueous lithium-ion batteries in a discharged state can react with water and oxygen, resulting in capacity fading upon cycling. By eliminating oxygen, adjusting the pH values of the electrolyte and using carbon-coated electrode materials, LiTi(2)(PO(4))(3)/Li(2)SO(4)/LiFePO(4) aqueous lithium-ion batteries exhibited excellent stability with capacity retention over 90% after 1,000 cycles when being fully charged/discharged in 10 minutes and 85% after 50 cycles even at a very low current rate of 8 hours for a full charge/discharge offering an energy storage system with high safety, low cost, long cycling life and appropriate energy density. PMID:20729897

  15. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    SciTech Connect

    Jha, Manis Kumar Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: • Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. • Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. • The mechanism of the dissolution of lithium and cobalt was studied. • Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. • After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 − (1 − X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 − 3(1 − X){sup 2/3} + 2(1 − X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  16. Performance and Comparison of Lithium-Ion Batteries Under Low-Earth-Orbit Mission Profiles

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Smart, Marshall C.; Bugga, Ratnakumar V.; Manzo, Michelle A.; Miller, Thomas B.; Gitzendanner, Rob

    2007-01-01

    The performance of two 28 V, 25 Ah lithium-ion batteries is being evaluated under low-Earth-orbit mission profiles for satellite and orbiter applications. The batteries are undergoing life testing and have achieved over 12,000 cycles to 40 percent depth-of-discharge.

  17. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    SciTech Connect

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  18. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.

    PubMed

    Zheng, Shiyou; Chen, Yvonne; Xu, Yunhua; Yi, Feng; Zhu, Yujie; Liu, Yihang; Yang, Junhe; Wang, Chunsheng

    2013-12-23

    Highly stable sulfur/microporous carbon (S/MC) composites are prepared by vacuum infusion of sulfur vapor into microporous carbon at 600 °C, and lithium sulfide/microporous carbon (Li2S/MC) cathodes are fabricated via a novel and facile in situ lithiation strategy, i.e., spraying commercial stabilized lithium metal powder (SLMP) onto a prepared S/MC film cathode prior to the routine compressing process in cell assembly. The in situ formed Li2S/MC film cathode shows high Coulombic efficiency and long cycling stability in a conventional commercial Li-ion battery electrolyte (1.0 M LiPF6 + EC/DEC (1:1 v/v)). The reversible capacities of Li2S/MC cathodes remain about 650 mAh/g even after 900 charge/discharge cycles, and the Coulombic efficiency is close to 100% at a current density of 0.1C, which demonstrates the best electrochemical performance of Li2S/MC cathodes reported to date. Furthermore, this Li2S/MC film cathode fabricated via our in situ lithiation strategy can be coupled with a Li-free anode, such as graphite, carbon/tin alloys, or Si nanowires to form a rechargeable Li-ion cell. As the Li2S/MC cathode is paired with a commercial graphite anode, the full cell of Li2S/MC-graphite (Li2S-G) shows a stable capacity of around 600 mAh/g in 150 cycles. The Li2S/MC cathodes prepared by high-temperate sulfur infusion and SLMP prelithiation before cell assembly are ready to fit into current Li-ion batteries manufacturing processes and will pave the way to commercialize low-cost Li2S-G Li-ion batteries. PMID:24251957

  19. Safe lithium-ion battery with ionic liquid-based electrolyte for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Damen, Libero; Lazzari, Mariachiara; Mastragostino, Marina

    2011-10-01

    A lithium-ion battery featuring graphite anode, LiFePO4-C cathode and an innovative, safe, ionic liquid-based electrolyte, was assembled and characterized in terms of specific energy and power after the USABC-DOE protocol for power-assist hybrid electric vehicle (HEV) application. The test results show that the battery surpasses the energy and power goals stated by USABC-DOE and, hence, this safe lithium-ion battery should be suitable for application in the evolving HEV market.

  20. A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries.

    PubMed

    Zhu, Xiaoming; Jiang, Xiaoyu; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-11-01

    The safety concern is a critical obstacle to large-scale energy storage applications of lithium-ion batteries. A thermostable separator is one of the most effective means to construct the safe lithium-ion batteries. Herein, we demonstrate a novel ceramic (SiO2)-grafted PE separator prepared by electron beam irradiation. The separator shows similar thickness and pore structure to the bare separator, while displaying strong dimensional thermostability, as the shrinkage ratio is only 20% even at an elevated temperature of 180 °C. Besides, the separator is highly electrochemically inert, showing no adverse effect on the energy and power output of the batteries. Considering the excellent electrochemical and thermal stability, the SiO2-grafted PE separator developed in this work is greatly beneficial for constructing safer lithium-ion batteries. PMID:26457445

  1. Innovative manufacturing and materials for low cost lithium ion batteries

    SciTech Connect

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator and any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability

  2. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.

    PubMed

    Zeng, Xianlai; Li, Jinhui; Shen, Bingyu

    2015-09-15

    With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L(-1) solid-liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO2) using oxalic acid, and the leaching order of the sampling LiCoO2 of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle. PMID:25897692

  3. Thermal properties of lithium-ion battery and components

    SciTech Connect

    Maleki, H.; Hallaj, S.A.; Selman, J.R.; Dinwiddie, R.B.; Wang, H.

    1999-03-01

    Experimental thermal property data of the Sony US-18650 lithium-ion battery and components are presented, as well as thermal property measuring techniques. The properties in question are specific heat capacity (C{sub p}), thermal diffusivity ({alpha}), and thermal conductivity ({kappa}), in the presence and absence of electrolyte [1 M LiPF{sub 6} in ethylene carbonate-dimethyl carbonate (EC:DMC, 1:1 wt %)]. The heat capacity of the battery, C{sub p}, is 0.96 {+-} 0.02 J/g K at an open-circuit voltage (OCV) of 2.75 V, and 1.04 {+-} 0.02 J/g K at 3.75 V. The thermal conductivity, {kappa}, was calculated from {kappa} {identical_to} {alpha}{rho}C{sub p} where {alpha} was measured by a xenon-flash technique. In the absence of electrolyte, {kappa} increases with OCV, for both the negative electrode (NE) and the positive electrode (PE). For the NE, the increase is 26% as the OCV increases from 2.75 to 3.75 V, whereas for the PE the increase is only 5 to 6%. The dependence of both C{sub p} and {kappa} on OCV is explained qualitatively by considering the effect of lithiation and delithiation on the electron carrier density, which leads to n-type semiconduction in the graphitic NE material, but a change from semiconducting to metallic character in Li{sub x}CoO{sub 2} PE material. The overall effect is an increase of C{sub p} and {kappa} with OCV. For {kappa} this dependence is eliminated by electrolyte addition, which, however, greatly increases the effective {kappa} of the layered battery components by lowering the thermal contact resistance. For both NE and PE, the in-plane {kappa} value (measured along layers) is nearly one order of magnitude higher than the cross-plane {kappa}. This is ascribed mostly to the high thermal conductivity of the current collectors and to a lesser extent to the orientation of particles in the layers of electrodes.

  4. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    NASA Astrophysics Data System (ADS)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  5. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  6. Simulation of passive thermal management system for lithium-ion battery packs

    NASA Astrophysics Data System (ADS)

    Mills, Andrew; Al-Hallaj, Said

    A passive thermal management system that uses a phase change material (PCM) is designed and simulated for a lithium-ion (Li-ion) laptop battery pack. The problem of low thermal conductivity of the PCM was significantly improved by impregnating an expanded graphite (EG) matrix with the PCM. The heat generation rate for a commercial 186502.2 Ah Li-ion battery was experimentally measured for various constant power discharges. Simulation of the battery pack, composed of six Li-ion batteries, shows that safe operation of the battery pack during the most extreme case requires the volume of the battery pack be almost doubled to fit sufficient PCM in the pack. Improving the properties of the PCM composite have the potential to significantly reduce the volume increase in comparison to the original battery pack volume.

  7. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification

    NASA Astrophysics Data System (ADS)

    Han, Xuebing; Ouyang, Minggao; Lu, Languang; Li, Jianqiu; Zheng, Yuejiu; Li, Zhe

    2014-04-01

    When lithium-ion batteries age with cycling, the battery capacity decreases and the resistance increases. The aging mechanism of different types of lithium-ion batteries differs. The loss of lithium inventory, loss of active material, and the increase in resistance may result in battery aging. Generally, analysis of the battery aging mechanism requires dismantling of batteries and using methods such as X-ray diffraction and scanning electron microscopy. These methods may permanently damage the battery. Therefore, the methods are inappropriate for the battery management system (BMS) in an electric vehicle. The constant current charging curves while charging the battery could be used to get the incremental capacity and differential voltage curves for identifying the aging mechanism; the battery state-of-health can then be estimated. This method can be potentially used in the BMS for online diagnostic and prognostic services. The genetic algorithm could be used to quantitatively analyze the battery aging offline. And the membership function could be used for onboard aging mechanism identification.

  8. Smart Multifunctional Fluids for Lithium Ion Batteries: Enhanced Rate Performance and Intrinsic Mechanical Protection

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Tian, Tongfei; Meng, Qing; Guo, Zaiping; Li, Weihua; Zhang, Peng; Ciacchi, Fabio T.; Huang, Jewel; Yang, Wenrong

    2013-08-01

    Lithium ion batteries are attractive power sources for the consumer electronics market and are being aggressively developed for road transportation. Nevertheless, issues with safety and reliability need to be solved prior to the large-scale uptake of these batteries. There have recently been significant development and assessment of materials with resistance to mechanical abuse, with the aims of reinforcing the battery and preventing puncturing during a crash. Most of the work on battery mechanical safety has concentrated on the external packaging of batteries, with little attention being paid to the enclosed electrolyte. We report on smart multifunctional fluids that act as both highly conductive electrolytes and intrinsic mechanical protectors for lithium ion batteries. These fluids exhibit a shear thickening effect under pressure or impact and thus demonstrate excellent resistance to crushing. Also, the fluids show higher ionic conductivities and comparable redox stability windows to the commercial liquid electrolytes.

  9. Smart multifunctional fluids for lithium ion batteries: enhanced rate performance and intrinsic mechanical protection.

    PubMed

    Ding, Jie; Tian, Tongfei; Meng, Qing; Guo, Zaiping; Li, Weihua; Zhang, Peng; Ciacchi, Fabio T; Huang, Jewel; Yang, Wenrong

    2013-01-01

    Lithium ion batteries are attractive power sources for the consumer electronics market and are being aggressively developed for road transportation. Nevertheless, issues with safety and reliability need to be solved prior to the large-scale uptake of these batteries. There have recently been significant development and assessment of materials with resistance to mechanical abuse, with the aims of reinforcing the battery and preventing puncturing during a crash. Most of the work on battery mechanical safety has concentrated on the external packaging of batteries, with little attention being paid to the enclosed electrolyte. We report on smart multifunctional fluids that act as both highly conductive electrolytes and intrinsic mechanical protectors for lithium ion batteries. These fluids exhibit a shear thickening effect under pressure or impact and thus demonstrate excellent resistance to crushing. Also, the fluids show higher ionic conductivities and comparable redox stability windows to the commercial liquid electrolytes. PMID:23962885

  10. A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation

    NASA Astrophysics Data System (ADS)

    Han, Xuebing; Ouyang, Minggao; Lu, Languang; Li, Jianqiu

    2014-12-01

    Now the lithium ion batteries are widely used in electric vehicles (EV). The cycle life is among the most important characteristics of the power battery in EV. In this report, the battery cycle life experiment is designed according to the actual working condition in EV. Five different commercial lithium ion cells are cycled alternatively under 45 °C and 5 °C and the test results are compared. Based on the cycle life experiment results and the identified battery aging mechanism, the battery cycle life models are built and fitted by the genetic algorithm. The capacity loss follows a power law relation with the cycle times and an Arrhenius law relation with the temperature. For automotive application, to save the cost and the testing time, a battery SOH (state of health) estimation method combined the on-line model based capacity estimation and regular calibration is proposed.

  11. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    PubMed

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. PMID:24623577

  12. Evaluation of lithium-ion synergetic battery pack as battery charger

    SciTech Connect

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-09-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and a battery charger. In this paper, the authors compare the performance of the Synergetic Battery Pack as a battery charger with several simple conventional battery charging circuits via computer simulation. The factors of comparison were power factor, harmonic distortion, and circuit efficiency. The simulations showed that the SBP is superior to the conventional charging circuits since the power factor is unity and harmonic distortion is negligible.

  13. Lithium-Ion Polymer Rechargeable Battery Developed for Aerospace and Military Applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, orman H.

    1999-01-01

    A recently completed 3 -year project funded by the Defense Advanced Research Projects Agency (DARPA) under the Technology Reinvestment Program has resulted in the development and scaleup of new lithium-ion polymer battery technology for military and aerospace applications. The contractors for this cost-shared project were Lockheed Martin Missiles & Space and Ultralife Batteries, Inc. The NASA Lewis Research Center provided contract management and technical oversight. The final products of the project were a portable 15-volt (V), 10-ampere-hour (A-hr) military radio battery and a 30-V, 50-A-hr marine/aerospace battery. Lewis will test the 50-A-hr battery. The new lithium-ion polymer battery technology offers a threefold or fourfold reduction in mass and volume, relative to today s commonly used nickel-cadmium, nickel-hydrogen, and nickel-metal hydride batteries. This is of special importance for orbiting satellites. It has been determined for a particular commercial communications satellite that the replacement of 1 kg of battery mass with 1 kg of transponder mass could increase the annual revenue flow by $100 000! Since this lithium-ion polymer technology offers battery mass reductions on the order of hundreds of kilograms for some satellites, the potential revenue increases are impressive.

  14. Hazards, Safety and Design Considerations for Commercial Lithium-ion Cells and Batteries

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2007-01-01

    This viewgraph presentation reviews the features of the Lithium-ion batteries, particularly in reference to the hazards and safety of the battery. Some of the characteristics of the Lithium-ion cell are: Highest Energy Density of Rechargeable Battery Chemistries, No metallic lithium, Leading edge technology, Contains flammable electrolyte, Charge cut-off voltage is critical (overcharge can result in fire), Open circuit voltage higher than metallic lithium anode types with similar organic electrolytes. Intercalation is a process that places small ions in crystal lattice. Small ions (such as lithium, sodium, and the other alkali metals) can fit in the interstitial spaces in a graphite lattice. These metallic ions can go farther and force the graphitic planes apart to fit two, three, or more layers of metallic ions between the carbon sheets. Other features of the battery/cell are: The graphite is conductive, Very high energy density compared to NiMH or NiCd, Corrosion of aluminum occurs very quickly in the presence of air and electrolyte due to the formation of HF from LiPF6 and HF is highly corrosive. Slides showing the Intercalation/Deintercalation and the chemical reactions are shown along with the typical charge/discharge for a cylindrical cell. There are several graphs that review the hazards of the cells.

  15. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery

    NASA Astrophysics Data System (ADS)

    Ohta, Shingo; Seki, Juntaro; Yagi, Yusuke; Kihira, Yuki; Tani, Takao; Asaoka, Takahiko

    2014-11-01

    We investigated the development of a novel lithium garnet-type oxide electrolyte, which is co-sinterable with a metal oxide cathode, for practical all-solid-state lithium ion batteries using metal oxide electrolytes. The sintering temperature of Li6.8(La2.95,Ca0.05)(Zr1.75,Nb0.25)O12 was found to significantly lower to 790 °C by addition of Li3BO3 and Al2O3, due to simultaneous interdiffusion of Al and Ca elements between garnet-type oxide and additives. The sintered electrolyte exhibited high lithium ion conductivity of 0.36 mS cm-1 at 25 °C despite of the low sintering temperature. An all-solid-state lithium ion battery was successfully prepared by co-sintering of the electrolyte and LiCoO2 (cathode), followed by coating of Li metal (anode), and confirmed to function well as a secondary battery with charge and discharge capacities of 98 and 78 mAh g-1, respectively. These results opened the potential for fabrication of all-solid-state lithium ion batteries by a simple and well-established co-sintering process.

  16. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    PubMed

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  17. Emulsion-derived lithium manganese oxide powder for positive electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Chung-Hsin; Lin, Shang-Wei

    Lithium manganese oxide (LiMn 2O 4) used as a positive-electrode material in lithium-ion batteries is prepared by a new water-in-oil emulsion process. An aqueous solution containing lithium and manganese cations is emulsified in kerosene by adding sorbitan monooleate as the surfactant. When the precursor solution is agitated by a magnetic mixer, impure products are obtained. LiMn 2O 4 is formed along with residual Mn 2O 3 at elevated temperatures because of insufficient dispersion and mixing of the reactive cations. When a homogenizer with a greater agitation speed is used, however, a well-mixed precursor solution is prepared, and pure LiMn 2O 4 with a Fd 3 m structure is synthesized after calcination at 800°C for 1 h. LiMn 2O 4 powder prepared by the homogenizer has higher crystallinity, smaller particle size, and narrower size distribution than that prepared by the magnetic stirrer. Compared with powder prepared by the solid-state method, the LiMn 2O 4 powder exhibits smaller particle size and less agglomeration. Moreover, the emulsion process significantly shortens the heating time required. The prepared LiMn 2O 4 powder has a high discharge capacity (120.4 mA h g -1) on the first cycle and good cycleability.

  18. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  19. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  20. 76 FR 57627 - Special Conditions: Cessna Aircraft Company Model M680 Airplane; Rechargeable Lithium-Ion Battery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... published in the Federal Register on July 1, 2011 (76 FR 41142). No comments were received, and the special... Airplane; Rechargeable Lithium-Ion Battery Installations AGENCY: Federal Aviation Administration (FAA), DOT... lithium-ion batteries. The applicable airworthiness regulations do not contain adequate or...

  1. Electrospun Nanofiber-Coated Membrane Separators for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Lee, Hun

    Lithium-ion batteries are widely used as a power source for portable electronic devices and hybrid electric vehicles due to their excellent energy and power densities, long cycle life, and enhanced safety. A separator is considered to be the critical component in lithium-ion rechargeable batteries. The separator is placed between the positive and negative electrodes in order to prevent the physical contact of electrodes while allowing the transportation of ions. In most commercial lithium-ion batteries, polyolefin microporous membranes are commonly used as the separator due to their good chemical stability and high mechanical strength. However, some of their intrinsic natures, such as low electrolyte uptake, poor adhesion property to the electrodes, and low ionic conductivity, can still be improved to achieve higher performance of lithium-ion batteries. In order to improve these intrinsic properties, polyolefin microporous membranes can be coated with nanofibers by using electrospinning technique. Electrospinning is a simple and efficient method to prepare nanofibers which can absorb a significant amount of liquid electrolyte to achieve low internal resistance and battery performance. This research presents the preparation and investigation of composite membrane separators prepared by coating nanofibers onto polyolefin microporous membranes via electrospinning technique. Polyvinylidene fluoride polymers and copolymers were used for the preparation of electrospun nanofiber coatings because they have excellent electrochemical stability, good adhesion property, and high temperature resistance. The nanofiber coatings prepared by electrospinning form an interconnected and randomly orientated structure on the surface of the polyolefin microporous membranes. The size of the nanofibers is on a scale that does not interfere with the micropores in the membrane substrates. The resultant nanofiber-coated membranes have the potential to combine advantages of both the polyolefin

  2. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    SciTech Connect

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  3. Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cao, Chengying; Tan, Lei; Liu, Weiwei; Ma, Jiquan; Li, Lei

    2014-02-01

    In this study, polydopamine (PDA) coated electrospun poly(vinyldiene fluoride) (PVDF) nanofibrous membranes used as separator for lithium-ion batteries are successfully prepared. Their morphology, chemical and electrochemical characterization are investigated. The morphology and porosity measurements of the membranes show that the PDA coating does not harm to the structure of the electrospun PVDF nanofibrous membranes. Due to the PDA coating, it makes the PVDF surface hydrophilic and thus increases the electrolyte uptake and ionic conductivity, resulting in the enhanced performance of batteries. The battery using the PDA coated PVDF nanofibrous separator exhibits better cycling performance and higher power capability than that the battery using the bare PVDF nanofibrous separator. This study underlines that the PDA-coating treatment provides a promising process for the fabrication of advanced electrospun nanofibers separator in the lithium-ion battery applications.

  4. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth; Elwasif, Wael R.; Kalnaus, Sergiy; Simunovic, Srdjan; Kumar, Abhishek; Billings, Jay Jay; Wang, Hsin; Nanda, Jagjit

    2015-08-19

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The model development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.

  5. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    DOE PAGESBeta

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth; Elwasif, Wael R.; Kalnaus, Sergiy; Simunovic, Srdjan; Kumar, Abhishek; Billings, Jay Jay; Wang, Hsin; Nanda, Jagjit

    2015-08-19

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The modelmore » development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.« less

  6. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  7. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  8. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  9. An approach to beneficiation of spent lithium-ion batteries for recovery of materials

    NASA Astrophysics Data System (ADS)

    Marinos, Danai

    Lithium ion batteries are one of the most commonly used batteries. A large amount of these have been used over the past 25 years and the use is expected to rise more due to their use in automotive batteries. Lithium ion batteries cannot be disposed into landfill due to safety reasons and cost. Thus, over the last years, there has been a lot of effort to find ways to recycle lithium ion batteries. A lot of valuable materials are present in a lithium ion battery making their recycling favorable. Many attempts, including pyrometallurgical and hydrometallurgical methods, have been researched and some of them are already used by the industry. However, further improvements are needed to the already existing processes, to win more valuable materials, use less energy and be more environmentally benign. The goal of this thesis is to find a low-temperature, low-energy method of recovering lithium from the electrolyte and to develop pathways for complete recycling of the battery. The research consists of the following parts: Pure LiPF6 powder, which is the electrolyte material, was characterized using x- ray diffraction analysis and DSC/TGA analysis. The LiPF6 powder was titrated using acid (HCl, HNO3, H2SO4), bases (NH4 OH) and distilled water. It was concluded that distilled water was the best solvent to selectively leach lithium from lithium-ion batteries. Leaching conditions were optimized including time, temperature, solid/liquid ratio and stirring velocity. All the samples were tested using ICP for chemical composition. Because leaching could be performed at room temperature, leaching was conducted in a flotation machine that was able to separate plastics by creating bubbles with no excess reagents use. The solution that contained lithium had to be concentrated more in order for lithium to be able to precipitate and it was shown that the solution could be concentrated by using the same solution over and over again. The next set of experiments was composed of battery

  10. Solid-state lithium battery

    SciTech Connect

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.