Science.gov

Sample records for lithium lead breeding

  1. Properties of lead-lithium solutions

    SciTech Connect

    Hoffman, N.J.; Darnell, A.; Blink, J.A.

    1980-10-01

    Lead-lithium solutions are of interest to liquid metal wall ICF reactor designers because Pb may be present to some extent in both heavy ion beam and laser-driven ICF targets; therefore, Pb will be present as an impurity in a flowing lithium wall. In addition, Pb-Li solutions containing approx. 80 a/o Pb are a strong candidate for a heavy ion beam driven HYLIFE converter and a viable alternative to a pure Li wall for a laser driven converter. The properties of Pb-Li solutions including the effect of hydrogen impurities are reviewed, and the reactor design implications are discussed.

  2. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2011-01-01

    In 2010, lithium consumption in the United States was estimated to have been about 1 kt (1,100 st) of contained lithium, a 23-percent decrease from 2009. The United States was estimated to be the fourth largest consumer of lithium. It remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2010, world lithium consumption was estimated to have been about 21 kt (22,000 st) of lithium contained in minerals and compounds, a 12-percent increase from 2009.

  3. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2010-01-01

    In 2009, lithium consumption in the United States was estimated to have been about 1.2 kt (1,300 st) of contained lithium, a 40-percent decrease from 2008. The United States was estimated to be the fourth largest consumer of lithium, and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2009, world lithium consumption was estimated to have been about 18.7 kt (20,600 st) of lithium contained in minerals and compounds.

  4. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2012-01-01

    In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.

  5. Lithium-based oxide ceramics for tritium-breeding applications

    SciTech Connect

    Suiter, D J

    1983-06-01

    Material preparation techniques, crystallographic data, phase diagrams, metal compatibility, and thermal properties have been assembled for the lithium-based oxide ceramics designated as potential solid tritium breeders for fusion devices. The materials discussed in this report include: Li/sub 2/O, ..beta..-Li/sub 5/AlO/sub 4/, ..gamma..-LiAlO/sub 2/, Li/sub 4/SiO/sub 4/, Li/sub 2/SiO/sub 3/, Li/sub 4/TiO/sub 4/, Li/sub 2/TiO/sub 3/, Li/sub 8/ZrO/sub 6/, Li/sub 4/ZrO/sub 4/, and Li/sub 2/ZrO/sub 3/. The thermal properties covered were vaporization, thermal conductivity, specific heat, and linear thermal expansion. There has been no attempt to rank the above mentioned candidates, but rather to merely indicate points that must be considered when using the various materials as solid breeders. These encompass low lithium atom densities, destructive phase transformations, a higher thermal expansion, low thermal conductivity, excessive vaporization at low temperatures, corrosive nature toward metals and difficulty in sample preparation.

  6. Subfertility Problems Leading to Disposal of Breeding Bulls

    PubMed Central

    Khatun, Marzina; Kaur, Simarjeet; Kanchan; Mukhopadhyay, C. S.

    2013-01-01

    Subfertility problems are encountered frequently in the cattle and buffalo bulls commercially maintained for semen production in dairy farms and under field conditions for natural insemination. Reports are scarce on the incidence of subfertility in breeding bulls, especially in India. The objective of the present study was to assess the incidence of the male reproductive anomalies leading to disposal of bovine bulls at GADVASU dairy farm, Ludhiana, Punjab (India). Data on frequency of various subfertility and disposal pattern of bulls maintained at the dairy farm, GADVASU, were collected for 12 yrs (1999 to 2010) and compiled from different record registers. Percentage of bulls that produced freezable semen (out of reserved ones) was less in cattle (25.641%) as compared to that of buffalo (30.4%). Various subfertility traits like poor libido and unacceptable seminal profile were found to be the significant reasons (p<0.01) for culling of the breeding bulls. Inadequate sex drive and poor semen quality were the main contributing factors for bull disposal in cattle whereas poor semen freezability was most frequently observed in buffalo bulls. All the male reproductive traits were significantly different (p<0.05) for the periods of birth, except for semen volume, initial motility (IM), age at last semen collection (ALSC) and age at disposal. The ages at first and last semen collection as well as freezing (i.e. AFSC, ALSC and AFSF, ALSF, respectively) and age at disposal (AD) were higher in buffalo. The spermatological parameters and semen production period (SPP) were higher in cattle. The age at first semen donation and breeding period could be reduced by introducing the bulls to training at an early age. The results revealed an increasing trend in individual motility (IM) while semen volume, AFSC, AFSF, AD, FSPP, SPP, ALSC and ALSF showed a decreasing, however, not a definite trend, over the periods. The semen donation traits like, AFSF, of the cattle and buffalo

  7. Development of advanced tritium breeding material with added lithium for ITER-TBM

    NASA Astrophysics Data System (ADS)

    Hoshino, Tsuyoshi; Kato, Kenichi; Natori, Yuri; Oikawa, Fumiaki; Nakano, Natsuko; Nakamura, Mutsumi; Sasaki, Kazuya; Suzuki, Akihiro; Terai, Takayuki; Tatenuma, Katsuyoshi

    2011-10-01

    Lithium titanate (Li 2TiO 3) is one of the most promising candidates among tritium breeding materials because of its good tritium release characteristics. However, the mass of Li 2TiO 3 decreased with time in a hydrogen atmosphere by the reduction of Ti and Li evaporation. In order to prevent the mass decrease at high temperatures, advanced tritium breeding material with added Li (Li 2+xTiO 3+y) should be developed. For this purpose, an advanced Li 2TiO 3 with added Li was synthesized from proportionally mixed LiOH·H 2O and H 2TiO 3 with a Li/Ti ratio of 2.2. The results of X-ray diffraction measurement showed that this advanced tritium breeding material existed as the non-stoichiometric compound Li 2+xTiO 3+y. The desired molar ratio of Li/Ti was achieved by appropriate mixing of LiOH·H 2O and H 2TiO 3. Therefore, synthesis by mixing LiOH·H 2O and H 2TiO 3 is a promising mass production method for the advanced tritium breeding material with added Li for the test blanket module of ITER.

  8. Lithium attenuates lead induced toxicity on mouse non-adherent bone marrow cells.

    PubMed

    Banijamali, Mahsan; Rabbani-Chadegani, Azra; Shahhoseini, Maryam

    2016-07-01

    Lead is a poisonous heavy metal that occurs in all parts of environment and causes serious health problems in humans. The aim of the present study was to investigate the possible protective effect of lithium against lead nitrate induced toxicity in non-adherent bone marrow stem cells. Trypan blue and MTT assays represented that exposure of the cells to different concentrations of lead nitrate decreased viability in a dose dependent manner, whereas, pretreatment of the cells with lithium protected the cells against lead toxicity. Lead reduced the number and differentiation status of bone marrow-derived precursors when cultured in the presence of colony stimulating factor (CSF), while the effect was attenuated by lithium. The cells treated with lead nitrate exhibited cell shrinkage, DNA fragmentation, anion superoxide production, but lithium prevented lead action. Moreover, apoptotic indexes such as PARP cleavage and release of HMGB1 induced by lead, were protected by lithium, suggesting anti-apoptotic effect of lithium. Immunoblot analysis of histone H3K9 acetylation indicated that lithium overcame lead effect on acetylation. In conclusion, lithium efficiently reduces lead toxicity suggesting new insight into lithium action which may contribute to increased cell survival. It also provides a potentially new therapeutic strategy for lithium and a cost-effective approach to minimize destructive effects of lead on bone marrow stem cells. PMID:27259346

  9. Effect of Lithium Enrichment on the Tritium Breeding Characteristics of Various Breeders in a Fusion Driven Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Übeyli, Mustafa

    2009-09-01

    Selection of lithium containing materials is very important in the design of a deuterium-tritium (DT) fusion driven hybrid reactor in order to supply its tritium self-sufficiency. Tritium, an artificial isotope of hydrogen, can be produced in the blanket by using the neutron capture reactions of lithium in the coolants and/or blanket materials which consist of lithium. This study presents the effect of lithium-6 enrichment in the coolant of the reactor on the tritium breeding of the hybrid blanket. Various liquid-solid breeder couples were investigated to determine the effective breeders. Numerical results pointed out that the tritium production increased with increasing lithium-6 enrichment for all cases.

  10. Tritium breeding measurements in a lithium blanket module with Pb/Be multipliers at the LOTUS facility

    SciTech Connect

    Azam, S.; Kumar, A.

    1987-01-01

    The lithium blanket module (LBM) was lent for a fixed duration in 1985 to Ecole Polytechnique Federale de Lausanne under an agreement with the Electric Power Research Institute and Princeton Plasma Physics Laboratory. The first tritium breeding measurements in the central rod of the LBM and their analysis have been reported previously. Some time ago, we carried out additional experiments wherein the Li/sub 2/O sample disk, each having a theoretical density of /approx/85% and dimensions of 17.8-mm diam x 0.9-mm thickness, were placed in four removable rods. In addition to the central rod, the other rods were at /approx/6-, 18-, and 39-cm radial distances from the axis of the central one. The sample disks wee kept at every 3 cm inside each of these rods up to a length of 30 cm in the Li/sub 2/O part of the LBM. The choice of the off-axis rods resulted from our interest in investigating the effect of room return on tritium breeding in the LBM. We chose two of the leading neutron multipliers: (a) a 5-cm-thick (/approx/100- x 110-cm) lead slab and (b) a 6-cm-thick (/approx/66- x 66-cm) beryllium slab. The experimental assembly, consisting of the multiplier followed by the LBM, was kept at 10 cm from the generator. A packet of three foils, zirconium, indium, and aluminum, was placed at the center of the flat face of the generator to monitor the source intensity during the 10-h operation for the experiments with each multiplier. The source intensity is deduced to be /approx/1.9 x 10/sup 12/ n/s for both the experiments. 5 refs., 3 figs.

  11. Blood lead concentrations in Alaskan tundra swans: linking breeding and wintering areas with satellite telemetry

    USGS Publications Warehouse

    Ely, Craig R.; Franson, Christian

    2014-01-01

    Tundra swans (Cygnus columbianus) like many waterfowl species are susceptible to lead (Pb) poisoning, and Pb-induced mortality has been reported from many areas of their wintering range. Little is known however about Pb levels throughout the annual cycle of tundra swans, especially during summer when birds are on remote northern breeding areas where they are less likely to be exposed to anthropogenic sources of Pb. Our objective was to document summer Pb levels in tundra swans throughout their breeding range in Alaska to determine if there were population-specific differences in blood Pb concentrations that might pose a threat to swans and to humans that may consume them. We measured blood Pb concentrations in tundra swans at five locations in Alaska, representing birds that winter in both the Pacific Flyway and Atlantic Flyway. We also marked swans at each location with satellite transmitters and coded neck bands, to identify staging and wintering sites and determine if winter site use correlated with summer Pb concentrations. Blood Pb levels were generally low (<0.2 μg/ml) in swans across all breeding areas. Pb levels were lower in cygnets than adults, suggesting that swans were likely exposed to Pb on wintering areas or on return migration to Alaska, rather than on the summer breeding grounds. Blood Pb levels varied significantly across the five breeding areas, with highest concentrations in birds on the North Slope of Alaska (wintering in the Atlantic Flyway), and lowest in birds from the lower Alaska Peninsula that rarely migrate south for winter.

  12. Lithium

    USGS Publications Warehouse

    Ober, J.A.

    2006-01-01

    In 2005, lithium consumption in the United States was at 2.5 kt of contained lithium, nearly 32% more than the estimate for 2004. World consumption was 14.1 kt of lithium contained in minerals and compounds in 2003. Exports from the US increased slightly compared with 2004. Due to strong demand for lithium compounds in 2005, both lithium carbonate plants in Chile were operating at or near capacity.

  13. Lithium

    USGS Publications Warehouse

    Ober, J.

    1998-01-01

    The lithium industry can be divided into two sectors: ore concentrate producers and chemical producers. Ore concentrate producers mine lithium minerals. They beneficiate the ores to produce material for use in ceramics and glass manufacturing.

  14. Results of R and D for lithium/vanadium breeding blanket design

    SciTech Connect

    Mattas, R.F.; Smith, D.L.; Reed, C.B.; Park, J.H.; Kirillov, I.R.; Strebkov, Yu.S.; Rusanov, A.E.; Votinov, S.N.

    1997-04-01

    The self-cooled lithium/vanadium blanket concept has several attractive features for fusion power systems, including reduced activation, resistance to radiation damage, accommodation of high heat loads and operating to temperatures of 650--700 C. The primary issue associated with the lithium/vanadium concept is the potentially high MHD pressure drop experienced by the lithium as it flows through the high magnetic field of the tokamak. The solution to this issue is to apply a thin insulating coating to the inside of the vanadium alloy to prevent the generation of eddy currents within the structure that are responsible for the high MHD forces and pressure drop. This paper presents progress in the development of an insulator coating that is capable of operating in the severe fusion environment, progress in the fabrication development of vanadium alloys, and a summary of MHD testing. A large number of small scale tests of vanadium alloy specimens coated with CaO and AlN have been conducted in liquid lithium to determine the resistivity and stability of the coating. In-situ measurements in lithium have determined that CaO coatings, {approximately} 5 {micro}m thick, have resistivity times thickness values exceeding 10{sup 6} {Omega}-cm{sup 2}. These results have been used to identify fabrication procedures for coating a large vanadium alloy (V-4Cr-4Ti) test section that was tested in the ALEX (Argonne Liquid metal Experiment) facility. Similar test sections have been produced in both Russia and the US.

  15. The Return of Rare Breeds: How Heritage Livestock Can Lead Us to Greener Pastures.

    ERIC Educational Resources Information Center

    Jacques, Ben

    2002-01-01

    Several New England groups are breeding and marketing "heritage livestock"--older, multipurpose breeds that are hardier and more disease resistant than modern livestock bred for specialized uses. Hancock Shaker Village (Massachusetts)--a historical museum and working farm--will teach visitors about heritage breeds and sustainable agriculture. A…

  16. Thermo-fluid dynamics and corrosion analysis of a self cooled lead lithium blanket for the HiPER reactor

    NASA Astrophysics Data System (ADS)

    Juárez, R.; Zanzi, C.; Hernández, J.; Sanz, J.

    2015-09-01

    The HiPER reactor is the HiPER project phase devoted to power production. To reach a preliminary reactor design, tritium breeding schemes need to be adapted to the HiPER project technologies selection: direct drive ignition, 150 \\text{MJ}/\\text{shot}× 10 Hz of power released through fusion reactions, and the dry first wall scheme. In this paper we address the main challenge of the HiPER EUROFER-based self cooled lead lithium blanket, which is related to the corrosive behavior of Pb-15.7Li in contact with EUROFER. We evaluate the cooling and corrosion behavior of the so-called separated first wall blanket (SFWB) configuration by performing thermo-fluid dynamics simulations using a large eddy simulation approach. Despite the expected improvement over the integrated first wall blanket, we still find an unsatisfactory cooling performance, expressed as a low outlet Pb-15.7Li temperature plus too high corrosion rates derived from local Pb-15.7Li high temperature and velocity, which can mainly be attributed to the geometry of the channels. Nevertheless, the analysis allowed us to devise future modifications of the SFWB to overcome the limitations found with the present design.

  17. Lithium

    MedlinePlus

    ... bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal moods). Lithium ... Lithium is also sometimes used to treat depression, schizophrenia (a mental ... emotions), disorders of impulse control (inability to resist the urge ...

  18. Susceptibility of 2 1/4 Cr-1Mo steel to liquid metal induced embrittlement by lithium-lead solutions

    SciTech Connect

    Eberhard, B.A.; Edwards, G.R.

    1984-08-01

    An investigation has been conducted on the liquid metal induced embrittlement susceptibility of 2 1/4Cr-1Mo steel exposed to lithium and 1a/o lead-lithium at temperatures between 190/sup 0/C and 525/sup 0/C. This research was part of an ongoing effort to evaluate the compatibility of liquid lithium solutions with potential fusion reactor containment materials. Of particular interest was the microstructure present in a weld heat-affected zone, a microstructure known to be highly susceptible to corrosive attack by liquid lead-lithium solutions. Embrittlement susceptibility was determined by conducting tension tests on 2 1/4Cr-1Mo steel exposed to an inert environment as well as to a lead-lithium liquid and observing the change in tensile behavior. The 2 1/4Cr-1Mo steel was also given a base plate heat treatment to observe its embrittlement susceptibility to 1a/o lead-lithium. The base plate microstructure was severely embrittled at temperatures less than 500/sup 0/C. Tempering the base plate was effective in restoring adequate ductility to the steel.

  19. Effect of copper oxide on structure and physical properties of lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Kashif, I.; Ratep, A.

    2015-09-01

    Copper-doped Lead lithium borate glass samples with the composition of (35- x) Pb3O4- xCuO-65Li2B4O7, where x = 5, 10, 15 or 20 mol%, have been prepared by melt quenching technique. Glass-forming ability, density, electrical conductivity, magnetic susceptibility and structural properties of lead lithium borate glasses have been investigated. IR spectroscopic data show that the copper ions play the role of glass modifier. Addition of CuO influences BO3 ↔ BO4 conversion. Density is expressed in terms of the structural modifications that take place in glass matrix. The increase in Tg reflects an increase in bond strength, and samples obtain more rigid glass structure. Electrical conductivity and magnetic susceptibility χ data show a variable behavior with the increase in the copper content in two valance states Cu+ and Cu+2. In addition, optical properties depend on the change of the role of copper ions in the samples' structure. Optical energy band gap E opt and Urbach energy E tail are determined. The increase in E opt and UV cutoff with an increase in CuO content is due to the decrease in non-bridging oxygen concentration. The decrease in E tail at higher concentrations is attributed to the copper ion accumulation in the interstitial positions and to the formation of orthoborate groups. These samples are suitable for the green light longpass filters.

  20. Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    DOE PAGESBeta

    Pawelko, R. J.; Shimada, M.; Katayama, K.; Fukada, S.; Humrickhouse, P. W.; Terai, T.

    2015-11-28

    This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determinemore » operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.« less

  1. Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    SciTech Connect

    Pawelko, R. J.; Shimada, M.; Katayama, K.; Fukada, S.; Humrickhouse, P. W.; Terai, T.

    2015-11-28

    This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determine operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.

  2. Preliminary corrosion studies of P-91 in flowing lead-lithium with and without magnetic field for Indian lead-lithium ceramic breeder test blanket module

    NASA Astrophysics Data System (ADS)

    Sarada Sree, Atchutuni; Tanaji, Kamble; Poulami, Chakraborty; Fotedar, R. K.; Rajendra Kumar, E.; Suri, A. K.; Platacis, E.; Ziks, A.; Bucenieks, I.; Poznjaks, A.; Shisko, A.

    2014-08-01

    To study the corrosion of P-91 (9% chromium and 1% molybdenum) material with lead-lithium (Pb-Li) eutectic, two experiments were carried out in a forced convection loop, at eutectic temperature of 550 °C. The first experiment was carried out at a velocity of 15 cm s-1 for 1000 h and the second experiment, at a velocity of 30 cm s-1 for 2700 h. In both the experiments, P-91 sample coupons were exposed to Pb-Li flow in the presence and absence of magnetic field. Samples were analyzed using an optical microscope, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). Micro-Vickers hardness testing was also carried out. Dissolution of elements into liquid metal is the main corrosion mechanism. Iron and chromium were selectively getting leached out from the near-surface region (˜4 µm) in the first experiment and molybdenum and manganese were also found leaching from a greater depth in the second experiment. The samples kept in the magnetic field showed a higher corrosion rate (˜320 µm/year) as compared with the corrosion rate (˜200 µm/year) of the samples kept in non-magnetic field regions. Hardness of the exposed samples was lower than the unexposed samples in both the experiments. Hardness was found to be low in the near-surface region for all the samples in both the experiments.

  3. Physical, thermal, infrared and optical properties of Nd3+ doped lithium-lead-germanate glasses

    NASA Astrophysics Data System (ADS)

    Veeranna Gowda, V. C.

    2015-01-01

    The structure-property relationships of neodymium doped lithium-lead-germanate glasses were investigated. The density was found to increase with the increase of Nd2O3 concentration and its variation is explained in terms of its molecular mass, structural transformation and packing density. Addition of modifier oxide to lead-germanate glass suggests a decreased free space within the glass matrix, resulting in the formation of stiff network. The increase in glass transition temperature specifies strengthening of glass by forming bridging oxygens. The optical properties of glass were measured employing UV-visible spectroscopy. The refractive index values varied nonlinearly with Nd2O3 concentration and were speculated to depend on the electronic polarizability of oxide glasses. The frequencies of the infrared absorption bands were affected marginally and the absorption peaks revealed that the glass matrix consists of [GeO4/2], [GeO6/2] and [PbO4/2] structural units.

  4. Lithium

    MedlinePlus

    ... mania (frenzied, abnormally excited mood) in people with bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal moods). Lithium is in a ... antimanic agents. It works by decreasing abnormal activity in the brain.

  5. Lithium-antimony-lead liquid metal battery for grid-level energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J.; Boysen, Dane A.; Bradwell, David J.; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R.

    2014-10-01

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding

  6. Polonium aspects associated with the use of lead-lithium blankets in fusion applications

    SciTech Connect

    Hoffman, N.J.; Blink, J.A.; Meier, W.R.; Murray, K.A.; Vogelsang, W.F.

    1985-07-01

    Polonium, an alpha-emitting sulfur-like element, is formed by neutron irradiation of lead or bismuth impurity in lead. Design studies of both the Pulse*Star inertial confinement fusion (ICF) reactor and the MARS mirror fusion reactor postulated use of 83Pb-17Li melt as the tritium breeding blanket and coolant. Comparison of the amounts of polonium in the melt at plant shutdown indicated that Pulse*Star would have a far higher level of polonium in the melt. Neutronic considerations and the polonium distribution between the vacuum cleanup system and 83Pb-17Li melt for the two reactors are explored in this paper. Sample neutronics runs showed that the codes used by each design team were not the source of the difference in polonium content.

  7. Safety Analysis of the US Dual Coolant Liquid Lead-Lithium ITER Test Blanket Module

    SciTech Connect

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2006-07-01

    The US is proposing a prototype of a dual coolant liquid lead-lithium (DCLL) DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER Test Blanket Module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER International Team (IT) to address specific reactor safety concerns, such as VV pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system, and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  8. Lithium-antimony-lead liquid metal battery for grid-level energy storage.

    PubMed

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J; Boysen, Dane A; Bradwell, David J; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R

    2014-10-16

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this

  9. Study on hydrogen isotopes permeation in fluidized state of liquid lithium-lead

    SciTech Connect

    Yoshimura, S.; Yoshimura, R.; Okada, M.; Fukada, S.; Edao, Y.

    2015-03-15

    Lithium-lead (Li-Pb) is one of the most promising candidate materials for the liquid blanket of fusion reactors. Hydrogen transfer under a fluidized condition of Li-Pb is investigated experimentally to design a Li-Pb blanket system. Li-Pb eutectic alloy flows inside a Ni tube in the experimental system, where H{sub 2} permeates into and out of the forced Li-Pb flow. The overall H{sub 2} permeation rate is analyzed using a mass balance model. Hydrogen atoms diffuse in Ni and Li-Pb. The steady-state H{sub 2} permeation rate obtained by this experiment is smaller than the result of the calculation model. A resistance factor is introduced to the present analysis in order to evaluate the influence of other H{sub 2} transfer mechanisms, such as diffusion in Li-Pb and dissolution reaction between Ni and Li-Pb. The contribution of the resistance to the overall H{sub 2} permeation rate becomes large when the flow rate of Li-Pb is low. This is because the boundary layer thickness between Ni and Li-Pb affects the overall H{sub 2} permeation rate. When the flow velocity of Li-Pb increases, the thickness of the boundary layer becomes thin, and the driving force of H{sub 2} permeation through the Ni wall becomes bigger. (authors)

  10. "Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    A technology developed at the National Renewable Energy Laboratory has sparked a start-up company that has attracted funding from the Advanced Projects Research Agency-Energy (ARPA-E). Planar Energy, Inc. has licensed NREL's "buried-anode" technology and put it to work in solid-state lithium batteries. The company claims its large-format batteries can achieve triple the performance of today's lithium-ion batteries at half the cost, and if so, they could provide a significant boost to the emerging market for electric and plug-in hybrid vehicles.

  11. Lithium in 2012

    USGS Publications Warehouse

    Jaskula, B.W.

    2013-01-01

    In 2012, estimated world lithium consumption was about 28 kt (31,000 st) of lithium contained in minerals and compounds, an 8 percent increase from that of 2011. Estimated U.S. consumption was about 2 kt (2,200 st) of contained lithium, the same as that of 2011. The United States was thought to rank fourth in consumption of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Rockwood Lithium Inc., produced lithium compounds from domestic brine resources near Silver Peak, NV.

  12. Electrical properties of lead-free Fe-doped niobium-rich potassium lithium tantalate niobate single crystals

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Jun; Zhou, Zhongxiang; Guo, Ruyan; Bhalla, Amar S.

    2013-12-01

    Lead-free, 0.025 wt% Fe-doped niobium-rich potassium lithium tantalate niobate Fe: K0.95Li0.05Ta1-xNbxO3 single crystals have been grown by the top-seeded melt growth method. All the transition temperatures have been determined by the dielectric constant and loss-dependent temperature. The spontaneous polarizations computed by the integration of pyroelectric coefficients over all the temperatures are consistent with the results of the P-E hysteresis loops. The piezoelectric constants and electromechanical coupling factors are attractive among lead-free piezoelectric materials. With suitable Fe-doping, the electrical properties of KLTN single crystals have been improved overall and can be compared to those of the current important lead-based piezoelectric materials.

  13. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding

    PubMed Central

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network. PMID:27602231

  14. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding.

    PubMed

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network. PMID:27602231

  15. Breeding on the leading edge of a northward range expansion: differences in morphology and the stress response in the arctic Gambel's white-crowned sparrow.

    PubMed

    Krause, Jesse S; Chmura, Helen E; Pérez, Jonathan H; Quach, Lisa N; Asmus, Ashley; Word, Karen R; McGuigan, Michaela A; Sweet, Shannan K; Meddle, Simone L; Gough, Laura; Boelman, Natalie; Wingfield, John C

    2016-01-01

    Individuals at the forefront of a range shift are likely to exhibit phenotypic traits that distinguish them from the population breeding within the historic range. Recent studies have examined morphological, physiological and behavioral phenotypes of individuals at the edge of their range. Several studies have found differences in the hypothalamic-pituitary-adrenal (HPA) axis activity in response to acute restraint stress in individuals at the range limits. HPA axis activation leads to elevations in glucocorticoids that regulate physiology and behavior. Here we compare the hormonal profiles and morphometrics from Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) breeding at the northern limit of the population's range to those birds breeding within the historic population range. Birds breeding at the northern limit experienced a harsher environment with colder temperatures; however, we found no differences in arthropod prey biomass between the northern limit and more southern (historic) sites. Males at the northern limit had higher body condition scores (mass corrected for body size) compared to individuals within the historic range, but no differences were found in beak and tarsus lengths, wing chord, muscle profile or fat stores. In males during the pre-parental stage, before breeding commenced, HPA axis activity was elevated in birds at the northern limit of the range, but no differences were found during the parental or molt stages. Females showed no differences in HPA axis activity during the parental stage. This study suggests that "pioneering" individuals at the limits of their breeding range exhibit physiology and morphology that are distinct from individuals within the historic range. PMID:26423267

  16. Physiological breeding.

    PubMed

    Reynolds, Matthew; Langridge, Peter

    2016-06-01

    Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Physiological approaches have already demonstrated significant genetic gains in Australia and several developing countries of the International Wheat Improvement Network. The techniques involved (see Graphical Abstract) also provide platforms for research and refinement of breeding methodologies. Recent examples of these include screening genetic resources for novel expression of Calvin cycle enzymes, identification of common genetic bases for heat and drought adaptation, and genetic dissection of trade-offs among yield components. Such information, combined with results from physiological crosses designed to test novel trait combinations, lead to more precise breeding strategies, and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. PMID:27161822

  17. Active maternal phenotype is established before breeding and leads offspring to align growth trajectory outcomes and reflex ontogeny.

    PubMed

    Santana Muniz, Gisélia; Beserra, Renata; da Silva, Giselle de Paula; Fragoso, Jéssica; Lira, Allan de Oliveira; Nascimento, Elizabeth; Manhães de Castro, Raul; Leandro, Carol Góis

    2014-04-22

    The main goals of this study were to classify dams according to the level of voluntary physical activity before breeding and during pregnancy/lactation and to evaluate the effects on growth trajectory and reflex ontogenesis of offspring. Voluntary physical activity was ranked by traveled distance, time and daily estimated calorie burned. Thirty-five female Wistar rats were classified as control (C, n=5), inactive (I, n=10), active (A, n=8) and very active (VA, n=12). During 30d before breeding, traveled distance, average speed, time and calorie burned were daily recorded for active and very active groups. Traveled distance was recorded each 2h every day of adaptation. Body weight, food intake and fasting glycemia were measured throughout the experiment. During lactation, litters were evaluated in terms of physical features and reflex ontogeny. VA showed a progressive increase in the traveled distance and time while A dams presented constant values. VA rats showed lower body weight and higher food intake. During pregnancy, both groups performed less than 1km/day. Pups from A and VA dams showed higher lateral-lateral axis of the skull, longitudinal axis, tail length, and anticipation of the pavilion and auditory canal opening, and erupting incisors. I, A and VA groups showed a delay of righting, cliff aversion and vibrissae placing reflexes. In conclusion, active maternal phenotype is established before breeding allowing mothers to fit ecological and influencing growth trajectory outcomes and reflex ontogeny of the offspring based on matrilineal experience. PMID:24560842

  18. Enrichment of orange emission of Er3+ ion with Sn4+ ion as sensitizer in lithium lead phosphate glass system

    NASA Astrophysics Data System (ADS)

    Rajanikanth, P.; Gandhi, Y.; Veeraiah, N.

    2015-10-01

    Lithium lead phosphate glasses doped with 1.0 mol% of Er2O3 and mixed with varying concentrations of SnO2 (from 0 to 7.0 mol%) have been synthesized. Optical absorption and luminescence spectra of the prepared glasses were recorded at ambient temperature. The radiative lifetimes were measured from the luminescence decay profiles recorded at room temperature. Similar studies have also been carried out for the SnO2 singly doped glasses. The absorption and luminescence spectra of Er3+ ions doped glasses were characterized using Judd-Ofelt theory. The radiative parameters viz., transition probability A, branching ratio β and the radiative lifetime τ of principal emission transitions of these glasses have been evaluated. The energy transfer mechanism between Sn4+ and Er3+ in co-doped glasses has been explored as a function of SnO2 concentration with the help of rate equations. The results indicated a significant enhancement in the intensity of orange emission 4G11/2 → 4I11/2 of Er3+ ions due to co-doping with SnO2. The results were further analyzed with IR spectral data and ac conductivity studies. The analysis pointed out that about 3.0 mol% of SnO2 is the most favorable concentration for getting the highest quantum efficiency of orange emission and for the maximum energy transfer with low non-radiative transition probabilities.

  19. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    NASA Astrophysics Data System (ADS)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials.

  20. Transport properties of lithium- lead-vanadium-telluride glass and glass ceramics

    SciTech Connect

    Sathish, M.; Eraiah, B.

    2014-04-24

    Glasses with the chemical composition 35Li{sub 2}O-(45-x)V{sub 2}O{sub 5−}20PbO-xTeO{sub 2} (where x = 2.5, 5, 7.5, 10, 15 mol %) have prepared by conventional melt quenching method. The electrical conductivity of Li{sup +} ion conducting lead vanadium telluride glass samples has been carried out both as a function of temperature and frequency in the temperature range 503K-563K and over frequencies 40 Hz to 10 MHz. The electronic conduction has been observed in the present systems. When these samples annealed around 400°C for 2hour become the glass ceramic, which also shows increase tendency of conductivity. SEM confines glass and glass ceramic nature of the prepared samples.

  1. Properties of Lithium-11 and Carbon-22 at leading order in halo effective field theory

    NASA Astrophysics Data System (ADS)

    Acharya, Bijaya; Phillips, Daniel R.

    2016-03-01

    We study the 11Li and 22C nuclei at leading order (LO) in halo effective field theory (Halo EFT). Using the value of the 22C rms matter radius deduced in Ref. [1] as an input in a LO calculation, we simultaneously constrain the values of the two-neutron (2n) separation energy of 22C and the virtual-state energy of the 20C-neutron system (hereafter denoted 21C). The 1-σ uncertainty of the input rms matter radius datum, along with the theory error estimated from the anticipated size of the higher-order terms in the Halo EFT expansion, gives an upper bound of about 100 keV for the 2n separation energy. We also study the electric dipole excitation of 2n halo nuclei to a continuum state of two neutrons and the core at LO in Halo EFT. We first compare our results with the 11Li data from a Coulomb dissociation experiment and obtain good agreement within the theoretical uncertainty of a LO calculation. We then obtain the low-energy spectrum of B(E1) of this transition at several different values of the 2n separation energy of 22C and the virtual-state energy of 21C. Our predictions can be compared to the outcome of an ongoing experiment on the Coulomb dissociation of 22C to obtain tighter constraints on the two- and three-body energies in the 22C system.

  2. A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Doerffel, Dennis; Sharkh, Suleiman Abu

    In many applications it is essential to predict the remaining capacity of a battery reliably, accurately and simply. Several existing techniques for predicting the remaining capacity of a lead-acid battery discharged with a variable current are based on variants of Peukert's empirical equation, which relates the available capacity to a constant discharge current. This paper presents a critical review of these techniques in the light of experimental tests that were carried out on two lead-acid commercial batteries. The relevance of these Peukert's equation based techniques to lithium-ion batteries is also discussed in the light of tests carried on a lithium-ion power battery. The basic conclusion of the paper is that Peukert's equation cannot be used to predict the state of charge of a battery accurately unless it is discharged at a constant current and constant temperature.

  3. ITER breeding blanket design

    SciTech Connect

    Gohar, Y.; Cardella, A.; Ioki, K.; Lousteau, D.; Mohri, K.; Raffray, R.; Zolti, E.

    1995-12-31

    A breeding blanket design has been developed for ITER to provide the necessary tritium fuel to achieve the technical objectives of the Enhanced Performance Phase. It uses a ceramic breeder and water coolant for compatibility with the ITER machine design of the Basic Performance Phase. Lithium zirconate and lithium oxide am the selected ceramic breeders based on the current data base. Enriched lithium and beryllium neutron multiplier are used for both breeders. Both forms of beryllium material, blocks and pebbles are used at different blanket locations based on thermo-mechanical considerations and beryllium thickness requirements. Type 316LN austenitic steel is used as structural material similar to the shielding blanket. Design issues and required R&D data are identified during the development of the design.

  4. Lead

    MedlinePlus

    ... Lead Share Facebook Twitter Google+ Pinterest Contact Us Lead Poisoning is Preventable If your home was built before ... of the RRP rule. Read more . Learn about Lead Poisoning Prevention Week . Report Uncertified Contractors and Environmental Violations ...

  5. Lead

    MedlinePlus

    ... obvious symptoms, it frequently goes unrecognized. CDC’s Childhood Lead Poisoning Prevention Program is committed to the Healthy People ... Lead Levels Information for Parents Tips for preventing lead poisoning About Us Overview of CDC’s Childhood Lead Poisoning ...

  6. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    SciTech Connect

    Jolodosky, A.; Fratoni, M.

    2015-09-22

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within a low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding

  7. Process for recovering tritium from molten lithium metal

    DOEpatents

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  8. Low temperature synthesis of lead germanate (PbGeO{sub 3})/polypyrrole (PPy) nanocomposites and their lithium storage performance

    SciTech Connect

    Feng, Jinkui; Ci, Lijie; Qi, Yongxin; Lun, Ning; Xiong, Shenglin; Qian, Yitai

    2014-09-15

    Highlights: • PbGeO{sub 3}/PPy nanocomposites are successfully fabricated for the first time. • PbGeO{sub 3} nanowire and PbGeO{sub 3}/PPy nanocomposites were characterized as anode materials in lithium ion batteries for the first time. • PPy coating can improve the electrochemical performance of PbGeO{sub 3} by increasing the electronic conductivity and buffering the volume changes during cycling. • The PbGeO{sub 3}/PPy nanocomposites deliver a capacity of 662 mA h g{sup −1} after 50 cycles. - Abstract: PGO/PPy nanocomposites were prepared via a low temperature chemical coating method for the first time. Electrochemical measurements demonstrate that the PbGeO{sub 3} electrodes retain a capacity of 657 mA h g{sup −1} after 100 cycles and possess excellent rate capability indicating that the PGO/PPy nanocomposites could be used as a candidate as high-capacity anode for lithium batteries.

  9. Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes.

    PubMed

    Liu, Yuping; He, Xiaoyun; Hanlon, Damien; Harvey, Andrew; Khan, Umar; Li, Yanguang; Coleman, Jonathan N

    2016-06-28

    Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage properties of solution-processed MoS2/carbon nanotube anodes. Nanotube addition gives up to 10(10)-fold and 40-fold increases in electrical conductivity and mechanical toughness, respectively. The increased conductivity results in up to a 100× capacity enhancement to ∼1200 mAh/g (∼3000 mAh/cm(3)) at 0.1 A/g, while the improved toughness significantly boosts cycle stability. Composites with 20 wt % nanotubes combine high reversible capacity with excellent cycling stability (e.g., ∼950 mAh/g after 500 cycles at 2 A/g) and high rate capability (∼600 mAh/g at 20 A/g). The conductivity, toughness, and capacity scale with nanotube content according to percolation theory, while the stability increases sharply at the mechanical percolation threshold. We believe that the improvements in conductivity and toughness obtained after addition of nanotubes can be transferred to other electrode materials, such as silicon nanoparticles. PMID:27203558

  10. Nitrogen-Doped Hollow Amorphous Carbon Spheres@Graphitic Shells Derived from Pitch: New Structure Leads to Robust Lithium Storage.

    PubMed

    Ma, Qingtao; Wang, Luxiang; Xia, Wei; Jia, Dianzeng; Zhao, Zongbin

    2016-02-12

    Nitrogen-doped mesoporous hollow carbon spheres (NHCS) consisting of hybridized amorphous and graphitic carbon were synthesized by chemical vapor deposition with pitch as raw material. Treatment with HNO3 vapor was performed to incorporate oxygen-containing groups on NHCS, and the resulting NHCS-O showed excellent rate capacity, high reversible capacity, and excellent cycling stability when tested as the anode material in lithium-ion batteries. The NHCS-O electrode maintained a reversible specific capacity of 616 mAh g(-1) after 250 cycles at a current rate of 500 mA g(-1) , which is an increase of 113 % compared to the pristine hollow carbon spheres. In addition, the NHCS-O electrode exhibited a reversible capacity of 503 mAh g(-1) at a high current density of 1.5 A g(-1) . The superior electrochemical performance of NHCS-O can be attributed to the hybrid structure, high N and O contents, and rich surface defects. PMID:26751009

  11. Apricot Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apricot orchard area and fruit production are increasing worldwide. Breeding programs engage in apricot development to provide new varieties to meet needs of producers and consumers. Over the last 20 years, breeders have used new techniques to assist in variety development and to increase breeding...

  12. Secondary lithium batteries for space applications

    NASA Technical Reports Server (NTRS)

    Carter, B.; Khanna, S. K.; Yen, S. P. S.; Shen, D.; Somoano, R. B.

    1981-01-01

    Secondary lithium cells which use a LiAsF6-2-Me-THF electrolyte and a TiS2 intercalatable cathode exhibit encouraging cycle life at ambient temperature. Electrochemical and surface analytical studies indicate that the electrolyte is unstable in the presence of metallic lithium, leading to the formation of a lithium passivating film composed of lithium arsenic oxyfluorides and lithium fluorsilicates. The lithium cyclability remains as the most important problem to solve. Different electrolyte solvents, such as sulfolane, exhibit promising characteristics but lead to new compatibility problems with the other cell component materials.

  13. In-situ One-step Hydrothermal Synthesis of a Lead Germanate-Graphene Composite as a Novel Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Chuan-Qi; Sun, Zi-Qi; Chou, Shu-Lei; Liu, Hua-Kun; Wang, Jia-Zhao

    2014-11-01

    Lead germanate-graphene nanosheets (PbGeO3-GNS) composites have been prepared by an efficient one-step, in-situ hydrothermal method and were used as anode materials for Li-ion batteries (LIBs). The PbGeO3 nanowires, around 100-200 nm in diameter, are highly encapsulated in a graphene matrix. The lithiation and de-lithiation reaction mechanisms of the PbGeO3 anode during the charge-discharge processes have been investigated by X-ray diffraction and electrochemical characterization. Compared with pure PbGeO3 anode, dramatic improvements in the electrochemical performance of the composite anodes have been obtained. In the voltage window of 0.01-1.50 V, the composite anode with 20 wt.% GNS delivers a discharge capacity of 607 mAh g-1 at 100 mA g-1 after 50 cycles. Even at a high current density of 1600 mA g-1, a capacity of 406 mAh g-1 can be achieved. Therefore, the PbGeO3-GNS composite can be considered as a potential anode material for lithium ion batteries.

  14. Development of a chemical kinetic measurement apparatus and the determination of the reaction rate constants for lithium-lead/water interaction

    SciTech Connect

    Biney, P.O.

    1993-04-01

    An experimental set-up for accurate measurement of hydrogen generation rate in Lithium-Lead (Li[sub 17]Pb[sub 83]) Steam or water interactions has been designed. The most important features of the design include a pneumatic actuated quick opening and closing high temperature all stainless steel valve used to control the reaction time and the placement of most measuring devices below a water line to minimize leakage of the hydrogen collected. A PC based data acquisition and control system provides remote process sequencing, acquisition and control of all major components of the set-up. Initial tests indicate that the first design objective of maintaining leakproof gas collection chamber has been achieved. Initial pressure tests indicated that the pressure drop over a time span of 30 minutes was within the tolerance of the pressure transducer used to measure the pressure (within 0.690 kPa) at a nominal system pressure of 685 kPa. The experimental system hardware, data acquisition and control programs and data analysis program have been completed, tested and are currently functional.

  15. Fine mapping of Msv1, a major QTL for resistance to Maize Streak Virus leads to development of production markers for breeding pipelines.

    PubMed

    Nair, Sudha K; Babu, Raman; Magorokosho, Cosmos; Mahuku, George; Semagn, Kassa; Beyene, Yoseph; Das, Biswanath; Makumbi, Dan; Lava Kumar, P; Olsen, Michael; Boddupalli, Prasanna M

    2015-09-01

    Msv1 , the major QTL for MSV resistance was delimited to an interval of 0.87 cM on chromosome 1 at 87 Mb and production markers with high prediction accuracy were developed. Maize streak virus (MSV) disease is a devastating disease in the Sub-Saharan Africa (SSA), which causes significant yield loss in maize. Resistance to MSV has previously been mapped to a major QTL (Msv1) on chromosome 1 that is germplasm and environment independent and to several minor loci elsewhere in the genome. In this study, Msv1 was fine-mapped through QTL isogenic recombinant strategy using a large F 2 population of CML206 × CML312 to an interval of 0.87 cM on chromosome 1. Genome-wide association study was conducted in the DTMA (Drought Tolerant Maize for Africa)-Association mapping panel with 278 tropical/sub-tropical breeding lines from CIMMYT using the high-density genotyping-by-sequencing (GBS) markers. This study identified 19 SNPs in the region between 82 and 93 Mb on chromosome 1(B73 RefGen_V2) at a P < 1.00E-04, which coincided with the fine-mapped region of Msv1. Haplotype trend regression identified a haplotype block significantly associated with response to MSV. Three SNPs in this haplotype block at 87 Mb on chromosome 1 had an accuracy of 0.94 in predicting the disease reaction in a collection of breeding lines with known responses to MSV infection. In two biparental populations, selection for resistant Msv1 haplotype demonstrated a reduction of 1.03-1.39 units on a rating scale of 1-5, compared to the susceptible haplotype. High-throughput KASP assays have been developed for these three SNPs to enable routine marker screening in the breeding pipeline for MSV resistance. PMID:26081946

  16. Lithium to the Rescue.

    PubMed

    Jope, Richard S; Nemeroff, Charles B

    2016-01-01

    Lithium, an element that Mother Nature has put in some drinking water sources, has been used for its curative powers for centuries. Today, it's given in capsule form as a mood stabilizer for bipolar disorder and depression. New research, however, reveals its role as a neuroprotector, and suggests that a better understanding of the role enzymes modulated by lithium play could lead to new treatments for Alzheimer's disease, Parkinson's disease, multiple sclerosis, and other neurodegenerative disorders. PMID:27408673

  17. Formation of Li3O4 nano particles in the discharge products of non-aqueous lithium-oxygen batteries leads to lower charge overvoltage.

    PubMed

    Shi, L; Xu, A; Zhao, T S

    2015-11-28

    Density functional theory calculations are made for bulk thermodynamic properties and surface energies of Li2O2, a primary discharge product, and Li3O4, a possible byproduct in the discharge products, of the non-aqueous lithium-oxygen batteries. Results show that the standard formation Gibbs free energy of bulk Li3O4 is marginally higher than that of Li2O2, but the surface energy of Li3O4 is much lower. Low surface energy results in both lowered nucleation energy and formation Gibbs free energy in the nanometer regime, allowing the Li3O4 nano particles to nucleate ahead of Li2O2 during the discharge process and to exist stably when particle sizes are smaller than about 40 nm. The scanning transmission electron microscopy (STEM) image of Li3O4 crystals is simulated and compared with the measured STEM image of the discharge product particles. The consistency between the simulated and measured STEM images suggests that the Li3O4 phase can exist stably as a discharge product. The energy profile of the oxygen evolution reaction (OER) occurring on the most abundant surfaces of Li3O4 is also calculated. The predicted overpotential for the OER on the {0001} surface (0.30 V) shows a good agreement with experimental data. The presence of more electronically conductive Li3O4 nano particles in the primary discharge product Li2O2 tends to decrease the charge overvoltage of the batteries, explaining why the lower voltage area (<3.5 V) was widely observed during the charging of the batteries. An increase in the oxygen pressure or a decrease in temperature enhances the stability of the Li3O4 phase and increase the proportion of the Li3O4 phase in the discharge products, consequently leading to a lower overall charge overvoltage. PMID:26486991

  18. Lithium sputtering from lithium-coated plasma facing components in the NSTX divertor

    NASA Astrophysics Data System (ADS)

    Scotti, F.; Soukhanovskii, V. A.; Ahn, J.-W.; Bell, R. E.; Gerhardt, S. P.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; McLean, A. G.; Meier, E. T.; Podestà, M.; Roquemore, A. L.

    2015-08-01

    Lithium sputtering yields and gross impurity influxes from lithium-coated graphite and molybdenum plasma facing components (PFCs) have been analyzed for the first time in the National Spherical Torus Experiment (NSTX) divertor during H-mode NBI-heated discharges. Motivated by the beneficial effects of lithium conditioning on discharge performance and reproducibility, evaporative lithium coatings were the routine wall conditioning technique in NSTX. Neutral lithium sputtering yields from solid lithium coatings in NSTX were found to be consistent with values reported from test stand experiments from deuterium-saturated lithium (with sputtering yields YLi ∼ 0.03- 0.07). Temperature-enhanced lithium sputtering was observed on lithium-coated graphite and molybdenum as a result of PFC heating by both embedded heaters and incident plasma heat flux, leading to YLi ∼ 0.1- 0.2 for surface temperatures above the lithium melting point.

  19. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    DOE PAGESBeta

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; DeMuth, James; Reyes, Susana; Fratoni, Massimiliano

    2016-04-09

    Here we report that an attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys inmore » the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as lead, tin, and strontium, perform well with those that have high neutron multiplication such as lead and bismuth. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with tin, zinc, and gallium were in

  20. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.

    2015-12-01

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is -0.349% for the HCPB blanket and -0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.

  1. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    SciTech Connect

    Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.

    2015-12-10

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is −0.349% for the HCPB blanket and −0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.

  2. Hydrogen, lithium, and lithium hydride production

    SciTech Connect

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  3. Assortative mating and fragmentation within dog breeds

    PubMed Central

    2008-01-01

    Background There are around 400 internationally recognized dog breeds in the world today, with a remarkable diversity in size, shape, color and behavior. Breeds are considered to be uniform groups with similar physical characteristics, shaped by selection rooted in human preferences. This has led to a large genetic difference between breeds and a large extent of linkage disequilibrium within breeds. These characteristics are important for association mapping of candidate genes for diseases and therefore make dogs ideal models for gene mapping of human disorders. However, genetic uniformity within breeds may not always be the case. We studied patterns of genetic diversity within 164 poodles and compared it to 133 dogs from eight other breeds. Results Our analyses revealed strong population structure within poodles, with differences among some poodle groups as pronounced as those among other well-recognized breeds. Pedigree analysis going three generations back in time confirmed that subgroups within poodles result from assortative mating imposed by breed standards as well as breeder preferences. Matings have not taken place at random or within traditionally identified size classes in poodles. Instead, a novel set of five poodle groups was identified, defined by combinations of size and color, which is not officially recognized by the kennel clubs. Patterns of genetic diversity in other breeds suggest that assortative mating leading to fragmentation may be a common feature within many dog breeds. Conclusion The genetic structure observed in poodles is the result of local mating patterns, implying that breed fragmentation may be different in different countries. Such pronounced structuring within dog breeds can increase the power of association mapping studies, but also represents a serious problem if ignored. In dog breeding, individuals are selected on the basis of morphology, behaviour, working or show purposes, as well as geographic population structure. The same

  4. Lithium nephrotoxicity.

    PubMed

    Azab, Abed N; Shnaider, Alla; Osher, Yamima; Wang, Dana; Bersudsky, Yuly; Belmaker, R H

    2015-12-01

    Reports of toxic effects on the kidney of lithium treatment emerged very soon after lithium therapy was introduced. Lithium-induced nephrogenic diabetes insipidus is usually self-limiting or not clinically dangerous. Some reports of irreversible chronic kidney disease and renal failure were difficult to attribute to lithium treatment since chronic kidney disease and renal failure exist in the population at large. In recent years, large-scale epidemiological studies have convincingly shown that lithium treatment elevates the risk of chronic kidney disease and renal failure. Most patients do not experience renal side effects. The most common side effect of polyuria only weakly predicts increasing creatinine or reduced kidney function. Among those patients who do experience decrease in creatinine clearance, some may require continuation of lithium treatment even as their creatinine increases. Other patients may be able to switch to a different mood stabilizer medication, but kidney function may continue to deteriorate even after lithium cessation. Most, but not all, evidence today recommends using a lower lithium plasma level target for long-term maintenance and thereby reducing risks of severe nephrotoxicity. PMID:26043842

  5. Sugarcane Improvement Through Breeding and Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advancements in sugarcane breeding and the improvement of sugarcane through biotechnology have been reviewed by a team of leading sugarcane specialists from around the world. Topics covered in the breeding section include the evolution and origin of sugarcane, early history of conventional sugar...

  6. Advances in Japanese pear breeding in Japan.

    PubMed

    Saito, Toshihiro

    2016-01-01

    The Japanese pear (Pyrus pyrifolia Nakai) is one of the most widely grown fruit trees in Japan, and it has been used throughout Japan's history. The commercial production of pears increased rapidly with the successive discoveries of the chance seedling cultivars 'Chojuro' and 'Nijisseiki' around 1890, and the development of new cultivars has continued since 1915. The late-maturing, leading cultivars 'Niitaka' and 'Shinko' were released during the initial breeding stage. Furthermore, systematic breeding by the Horticultural Research Station (currently, NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NIFTS)) began in 1935, which mainly aimed to improve fruit quality by focusing on flesh texture and black spot disease resistance. To date, 22 cultivars have been released, including 'Kosui', 'Hosui', and 'Akizuki', which are current leading cultivars from the breeding program. Four induced mutant cultivars induced by gamma irradiation, which exhibit some resistance to black spot disease, were released from the Institute of Radiation Breeding. Among these cultivars, 'Gold Nijisseiki' has become a leading cultivar. Moreover, 'Nansui' from the Nagano prefectural institute breeding program was released, and it has also become a leading cultivar. Current breeding objectives at NIFTS mainly combine superior fruit quality with traits related to labor and cost reduction, multiple disease resistance, or self-compatibility. Regarding future breeding, marker-assisted selection for each trait, QTL analyses, genome-wide association studies, and genomic selection analyses are currently in progress. PMID:27069390

  7. Breeding Horticultural Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant breeding involves selection of plants with combinations of improved traits that are inherited in a predictable manner. Collecting, understanding, and incorporating genetic variation into a horticultural breeding program are critical to success. Clearly defined goals help plant breeders choose ...

  8. Chickpea Breeding and Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book presents the current status of chickpea breeding and management by experts from around the world. It thoroughly covers a wide array of subject on chickpea genetics and breeding ranging from cytogenetics, wild relatives and biodiversity, conventional and modern breeding techniques and achi...

  9. Blackberry Breeding and Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant Breeding Reviews has been published since the early 1980s and each edition presents a thorough review of the state of the are on breeding and genetics of specific crop plant. The extensive chapter on blackberry breeding and genetics is organized as follows: INTRODUCTION (Origin and Speciation...

  10. Lithium plating in a commercial lithium-ion battery - A low-temperature aging study

    NASA Astrophysics Data System (ADS)

    Petzl, Mathias; Kasper, Michael; Danzer, Michael A.

    2015-02-01

    The formation of metallic lithium on the negative graphite electrode in a lithium-ion (Li-ion) battery, also known as lithium plating, leads to severe performance degradation and may also affect the cell safety. This study is focused on the nondestructive characterization of the aging behavior during long-term cycling at plating conditions, i.e. low temperature and high charge rate. A commercial graphite/LiFePO4 Li-ion battery is investigated in order to elucidate the aging effects of lithium plating for real-world purposes. It is shown that lithium plating can be observed as a loss of cyclable lithium which affects the capacity balance of the electrodes. In this way, lithium plating counteracts its own occurrence during prolonged cycling. The capacity losses due to lithium plating are therefore decreasing at higher cycle numbers and the capacity retention curve exhibits an inflection point. It is further shown that the observed capacity fade is partly reversible. Electrochemical impedance spectroscopy (EIS) reveals a significant increase of the ohmic cell resistance due to electrolyte consumption during surface film formation on the plated lithium. Additional cell opening provides important quantitative information regarding the thickness of the lithium layer and the corresponding mass of the plated lithium.

  11. Breeding erect plant type sweetpotato lines using cross breeding and gamma-ray irradiation.

    PubMed

    Kuranouchi, Toshikazu; Kumazaki, Tadashi; Kumagai, Toru; Nakatani, Makoto

    2016-06-01

    Few sweetpotato (Ipomoea batatas Lam.) cultivars with erect plant type are available despite their advantages over spreading type, such as simplicity of cultivation and ability to adapt to limited space. One of the reasons is insufficiency of their agronomic characteristics for table use. So, it is important to overcome these drawbacks of ER-type lines. We attempted to breed new erect plant type sweetpotato lines having good agronomic traits using cross breeding and mutation breeding with gamma-ray irradiation. With cross breeding we successfully developed new erect plant type lines with almost equal levels of yield as compared to 'Beniazuma', one of the leading cultivars in Japan. However, mutation breeding failed to develop any promising lines because we could not obtain distinct erect plant type lines. In the future larger numbers of plants should be used for mutation breeding, and irradiation methods should be improved. PMID:27436957

  12. Breeding erect plant type sweetpotato lines using cross breeding and gamma-ray irradiation

    PubMed Central

    Kuranouchi, Toshikazu; Kumazaki, Tadashi; Kumagai, Toru; Nakatani, Makoto

    2016-01-01

    Few sweetpotato (Ipomoea batatas Lam.) cultivars with erect plant type are available despite their advantages over spreading type, such as simplicity of cultivation and ability to adapt to limited space. One of the reasons is insufficiency of their agronomic characteristics for table use. So, it is important to overcome these drawbacks of ER-type lines. We attempted to breed new erect plant type sweetpotato lines having good agronomic traits using cross breeding and mutation breeding with gamma-ray irradiation. With cross breeding we successfully developed new erect plant type lines with almost equal levels of yield as compared to ‘Beniazuma’, one of the leading cultivars in Japan. However, mutation breeding failed to develop any promising lines because we could not obtain distinct erect plant type lines. In the future larger numbers of plants should be used for mutation breeding, and irradiation methods should be improved. PMID:27436957

  13. Catastrophic event modeling. [lithium thionyl chloride batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  14. Lithium reprocessing technology for ceramic breeders

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi; Saito, Minoru; Tatenuma, Katuyashi; Kainose, Mitsuru

    1995-03-01

    Lithium ceramics have been receiving considerable attention as tritium breeding materials for fusion reactors. Reprocessing technology development for these materials is proposed to recover lithium, as an effective use of resources and to remove radioactive isotopes. Four potential ceramic breeders (Li 2O, LiAlO 2, Li 2ZrO 3 and Li 4SiO 4) were prepared in order to estimate their dissolution properties in water and various acids (HCl, HNO 3, H 2SO 4, HF and aqua regia). The dissolution rates were determined by comparing the weight of the residue with that of the starting powder (the weight method). Recovery properties of lithium were examined by the precipitation method.

  15. Review of Reactivity Experiments for Lithium Ternary Alloys

    SciTech Connect

    Jolodosky, A.; Bolind, A.; Fratoni, M.

    2015-09-28

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers high tritium breeding, excellent heat transfer and corrosion properties, and most importantly, it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium related hazards are of primary concern. Reducing chemical reactivity is the primary motivation for the development of new lithium alloys, and it is therefore important to come up with proper ways to conduct experiments that can physically study this phenomenon. This paper will start to explore this area by outlining relevant past experiments conducted with lithium/air reactions and lithium/water reactions. Looking at what was done in the past will then give us a general idea of how we can setup our own experiments to test a variety of lithium alloys.

  16. A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples

    NASA Astrophysics Data System (ADS)

    Piłatowicz, Grzegorz; Marongiu, Andrea; Drillkens, Julia; Sinhuber, Philipp; Sauer, Dirk Uwe

    2015-11-01

    The internal resistance (Ri) is one of the key parameters that determine the current state of electrochemical storage systems (ESS). It is crucial for estimating cranking capability in conventional cars, available power in modern hybrid and electric vehicles and for determining commonly used factors such as state-of-health (SoH) and state-of-function (SoF). However, ESS are complex and non-linear systems. Their Ri depends on many parameters such as current rate, temperature, SoH and state-of-charge (SoC). It is also a fact that no standardized methodologies exist and many different definitions and ways of Ri determination are being used. Nevertheless, in many cases authors are not aware of the consequences that occur when different Ri definitions are being used, such as possible misinterpretations, doubtful comparisons and false figures of merit. This paper focuses on an application-oriented separation between various Ri definitions and highlights the differences between them. The investigation was based on the following technologies: lead-acid, lithium-ion and nickel metal-hydride batteries as well as electrochemical double-layer capacitors. It is not the target of this paper to provide a standardized definition of Ri but to give researchers, engineers and manufacturers a possibility to understand what the term Ri means in their own work.

  17. Development of a chemical kinetic measurement apparatus and the determination of the reaction rate constants for lithium-lead/water interaction. Technical status progress report, October 1, 1991--March 15, 1993

    SciTech Connect

    Biney, P.O.

    1993-04-01

    An experimental set-up for accurate measurement of hydrogen generation rate in Lithium-Lead (Li{sub 17}Pb{sub 83}) Steam or water interactions has been designed. The most important features of the design include a pneumatic actuated quick opening and closing high temperature all stainless steel valve used to control the reaction time and the placement of most measuring devices below a water line to minimize leakage of the hydrogen collected. A PC based data acquisition and control system provides remote process sequencing, acquisition and control of all major components of the set-up. Initial tests indicate that the first design objective of maintaining leakproof gas collection chamber has been achieved. Initial pressure tests indicated that the pressure drop over a time span of 30 minutes was within the tolerance of the pressure transducer used to measure the pressure (within 0.690 kPa) at a nominal system pressure of 685 kPa. The experimental system hardware, data acquisition and control programs and data analysis program have been completed, tested and are currently functional.

  18. Sexual Reproduction and Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the second edition of Plant Propagation Concepts and Laboratory Exercises, we have combined the first edition chapters 36: Sexual Reproduction in Angiosperms and 37: Breeding Horticultural Plants into the present single chapter Sexual Reproduction and Breeding. These topics are so closely relate...

  19. Blackberry breeding and genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blackberry (Rubus L. subgenus Rubus Watson) improvement has made substantial progress with over 400 cultivars named originating from wild selections to many releases from breeding efforts. Public breeding has been ongoing for over 100 years. The result of these improvements is commercial production ...

  20. Lithium-associated hyperthyroidism.

    PubMed

    Siyam, Fadi F; Deshmukh, Sanaa; Garcia-Touza, Mariana

    2013-08-01

    Goiters and hypothyroidism are well-known patient complications of the use of lithium for treatment of bipolar disease. However, the occurrence of lithium-induced hyperthyroidism is a more rare event. Many times, the condition can be confused with a flare of mania. Monitoring through serial biochemical measurement of thyroid function is critical in patients taking lithium. Hyperthyroidism induced by lithium is a condition that generally can be controlled medically without the patient having to discontinue lithium therapy, although in some circumstances, discontinuation of lithium therapy may be indicated. We report on a patient case of lithium-associated hyperthyroidism that resolved after discontinuation of the medication. PMID:23948626

  1. Advances in Japanese pear breeding in Japan

    PubMed Central

    Saito, Toshihiro

    2016-01-01

    The Japanese pear (Pyrus pyrifolia Nakai) is one of the most widely grown fruit trees in Japan, and it has been used throughout Japan’s history. The commercial production of pears increased rapidly with the successive discoveries of the chance seedling cultivars ‘Chojuro’ and ‘Nijisseiki’ around 1890, and the development of new cultivars has continued since 1915. The late-maturing, leading cultivars ‘Niitaka’ and ‘Shinko’ were released during the initial breeding stage. Furthermore, systematic breeding by the Horticultural Research Station (currently, NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NIFTS)) began in 1935, which mainly aimed to improve fruit quality by focusing on flesh texture and black spot disease resistance. To date, 22 cultivars have been released, including ‘Kosui’, ‘Hosui’, and ‘Akizuki’, which are current leading cultivars from the breeding program. Four induced mutant cultivars induced by gamma irradiation, which exhibit some resistance to black spot disease, were released from the Institute of Radiation Breeding. Among these cultivars, ‘Gold Nijisseiki’ has become a leading cultivar. Moreover, ‘Nansui’ from the Nagano prefectural institute breeding program was released, and it has also become a leading cultivar. Current breeding objectives at NIFTS mainly combine superior fruit quality with traits related to labor and cost reduction, multiple disease resistance, or self-compatibility. Regarding future breeding, marker-assisted selection for each trait, QTL analyses, genome-wide association studies, and genomic selection analyses are currently in progress. PMID:27069390

  2. Can non-breeding be a cost of breeding dispersal?

    USGS Publications Warehouse

    Danchin, E.; Cam, E.

    2002-01-01

    Breeding habitat selection and dispersal are crucial processes that affect many components of fitness. Breeding dispersal entails costs, one of which has been neglected: dispersing animals may miss breeding opportunities because breeding dispersal requires finding a new nesting site and mate, two time- and energy-consuming activities. Dispersers are expected to be prone to non-breeding. We used the kittiwake (Rissa tridactyla) to test whether breeding dispersal influences breeding probability. Breeding probability was associated with dispersal, in that both were negatively influenced by private information (previous individual reproductive success) and public information (average reproductive success of conspecifics) about patch quality. Furthermore, the probability of skipping breeding was 1.7 times higher in birds that settled in a new patch relative to those that remained on the same patch. Finally, non-breeders that resumed breeding were 4.4 times more likely to disperse than birds that bred in successive years. Although private information may influence breeding probability directly, the link between breeding probability and public information may be indirect, through the influence of public information on breeding dispersal, non-breeding thus being a cost of dispersal. These results support the hypothesis that dispersal may result in not being able to breed. More generally, non-breeding (which can be interpreted as an extreme form of breeding failure) may reveal costs of various previous activities. Because monitoring the non-breeding portion of a population is difficult, non-breeders have been neglected in many studies of reproduction trade-offs.

  3. Lithium-mediated protection against ethanol neurotoxicity.

    PubMed

    Luo, Jia

    2010-01-01

    Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar) disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD) are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke-Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3) which has recently been identified as a mediator of ethanol neurotoxicity. Lithium's neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms. PMID:20661453

  4. Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery

    SciTech Connect

    Ferrese, A; Newman, J

    2014-04-11

    This paper builds on the work by Ferrese et al. [J. Electrochem., 159, A1615 (2012)], where a model of a lithium-metal battery with a LiyCoO2 positive electrode was created in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. In this paper, the model is expanded to study the movement of lithium along the lithium-metal anode over multiple cycles. From this model, it is found that when a low percentage of lithium at the negative electrode is utilized, the movement of lithium along the negative electrode/separator interface reaches a quasi steady state after multiple cycles. This steady state is affected by the slope of the open-circuit-potential function in the positive electrode, the rate of charge and discharge, the depth of discharge, and the length of the rest periods. However, when a high percent of the lithium at the negative electrode is utilized during cycling, the movement does not reach a steady state and pinching can occur, where the lithium nearest the negative tab becomes progressively thinner after cycling. This is another nonlinearity that leads to a progression of the movement of lithium over multiple cycles. (C) 2014 The Electrochemical Society.

  5. Lithium mass transport in ceramic breeder materials

    SciTech Connect

    Blackburn, P.E.; Johnson, C.E.

    1990-01-01

    The objective of this activity is to measure the lithium vaporization from lithium oxide breeder material under differing temperature and moisture partial pressure conditions. Lithium ceramics are being investigated for use as tritium breeding materials. The lithium is readily converted to tritium after reacting with a neutron. With the addition of 1000 ppM H{sub 2} to the He purge gas, the bred tritium is readily recovered from the blanket as HT and HTO above 400{degree}C. Within the solid, tritium may also be found as LiOT which may transport lithium to cooler parts of the blanket. The pressure of LiOT(g), HTO(g), or T{sub 2}O(g) above Li{sub 2}O(s) is the same as that for reactions involving hydrogen. In our experiments we were limited to the use of hydrogen. The purpose of this work is to investigate the transport of LiOH(g) from the blanket material. 8 refs., 1 fig., 3 tabs.

  6. Welfare in horse breeding

    PubMed Central

    Campbell, M. L. H.; Sandøe, P.

    2015-01-01

    Welfare problems related to the way horses are bred, whether by coitus or by the application of artificial reproduction techniques (ARTs), have been given no discrete consideration within the academic literature. This paper reviews the existing knowledge base about welfare issues in horse breeding and identifies areas in which data is lacking. We suggest that all methods of horse breeding are associated with potential welfare problems, but also that the judicious use of ARTs can sometimes help to address those problems. We discuss how negative welfare effects could be identified and limited and how positive welfare effects associated with breeding might be maximised. Further studies are needed to establish an evidence base about how stressful or painful various breeding procedures are for the animals involved, and what the lifetime welfare implications of ARTs are for future animal generations. PMID:25908746

  7. Brain oscillations in bipolar disorder and lithium-induced changes

    PubMed Central

    Atagün, Murat İlhan

    2016-01-01

    Electroencephalography (EEG) studies in patients with bipolar disorder have revealed lower amplitudes in brain oscillations. The aim of this review is to describe lithium-induced EEG changes in bipolar disorder and to discuss potential underlying factors. A literature survey about lithium-induced EEG changes in bipolar disorder was performed. Lithium consistently enhances magnitudes of brain oscillations in slow frequencies (delta and theta) in both resting-state EEG studies as well as event-related oscillations studies. Enhancement of magnitudes of beta oscillations is specific to event-related oscillations. Correlation between serum lithium levels and brain oscillations has been reported. Lithium-induced changes in brain oscillations might correspond to lithium-induced alterations in neurotransmitters, signaling cascades, plasticity, brain structure, or biophysical properties of lithium. Therefore, lithium-induced changes in brain oscillations could be promising biomarkers to assess the molecular mechanisms leading to variability in efficacy. Since the variability of lithium response in bipolar disorder is due to the genetic differences in the mechanisms involving lithium, it would be highly promising to assess the lithium-induced EEG changes as biomarkers in genetic studies. PMID:27022264

  8. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  9. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  10. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  11. Assisted Breeding in Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular insight and methods applied to plant breeding and germplasm enhancement is the goal of assisted breeding, also known as marker assisted breeding, marker assisted selection, molecular plant breeding, or genome-wide selection, among others. The basic idea is that most, if not all, heritable ...

  12. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket

    SciTech Connect

    Colon-Mercado, H.; Babineau, D.; Elvington, M.; Garcia-Diaz, B.; Teprovich, J.; Vaquer, A.

    2015-10-13

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed.  The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations.  This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. 

  13. To breed or not to breed: a seabird's response to extreme climatic events.

    PubMed

    Cubaynes, Sarah; Doherty, Paul F; Schreiber, E A; Gimenez, Olivier

    2011-04-23

    Intermittent breeding is an important life-history strategy that has rarely been quantified in the wild and for which drivers remain unclear. It may be the result of a trade-off between survival and reproduction, with individuals skipping breeding when breeding conditions are below a certain threshold. Heterogeneity in individual quality can also lead to heterogeneity in intermittent breeding. We modelled survival, recruitment and breeding probability of the red-footed booby (Sula sula), using a 19 year mark-recapture dataset involving more than 11,000 birds. We showed that skipping breeding was more likely in El-Niño years, correlated with an increase in the local sea surface temperature, supporting the hypothesis that it may be partly an adaptive strategy of birds to face the trade-off between survival and reproduction owing to environmental constraints. We also showed that the age-specific probability of first breeding attempt was synchronized among different age-classes and higher in El-Niño years. This result suggested that pre-breeders may benefit from lowered competition with experienced breeders in years of high skipping probabilities. PMID:20943677

  14. Genome-wide genetic changes during modern breeding of maize.

    PubMed

    Jiao, Yinping; Zhao, Hainan; Ren, Longhui; Song, Weibin; Zeng, Biao; Guo, Jinjie; Wang, Baobao; Liu, Zhipeng; Chen, Jing; Li, Wei; Zhang, Mei; Xie, Shaojun; Lai, Jinsheng

    2012-07-01

    The success of modern maize breeding has been demonstrated by remarkable increases in productivity over the last four decades. However, the underlying genetic changes correlated with these gains remain largely unknown. We report here the sequencing of 278 temperate maize inbred lines from different stages of breeding history, including deep resequencing of 4 lines with known pedigree information. The results show that modern breeding has introduced highly dynamic genetic changes into the maize genome. Artificial selection has affected thousands of targets, including genes and non-genic regions, leading to a reduction in nucleotide diversity and an increase in the proportion of rare alleles. Genetic changes during breeding happen rapidly, with extensive variation (SNPs, indels and copy-number variants (CNVs)) occurring, even within identity-by-descent regions. Our genome-wide assessment of genetic changes during modern maize breeding provides new strategies as well as practical targets for future crop breeding and biotechnology. PMID:22660547

  15. Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Hassoun, Jusef; Sun, Yang-Kook; Scrosati, Bruno

    In this work we investigate the electrochemical behavior of a new type of carbon-lithium sulfide composite electrode. Results based on cyclic voltammetry, charge (lithium removal)-discharge (lithium acceptance) demonstrate that this electrode has a good performance in terms of reversibility, cycle life and coulombic efficiency. XRD analysis performed in situ in a lithium cell shows that lithium sulfide can be converted into sulfur during charge and re-converted back into sulfide during the following discharge process. We also show that this electrochemical process can be efficiently carried out in polymer electrolyte lithium cells and thus, that the Li 2S-C composite can be successfully used as cathode for the development of novel types of rechargeable lithium-ion sulfur batteries where the reactive and unsafe lithium metal anode is replaced by a reliable, high capacity tin-carbon composite and the unstable organic electrolyte solution is replaced by a composite gel polymer membrane that is safe, highly conductive and able to control dendrite growth across the cell. This new Sn-C/Li 2S polymer battery operates with a capacity of 600 mAh g -1 and with an average voltage of 2 V, this leading to a value of energy density amounting to 1200 Wh kg -1.

  16. Halo Star Lithium Depletion

    SciTech Connect

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-12-10

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  17. Lithium use in batteries

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  18. Interconnected hollow carbon nanospheres for stable lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g-1) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm-2. The Coulombic efficiency improves to ˜99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes.

  19. Interconnected hollow carbon nanospheres for stable lithium metal anodes.

    PubMed

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g(-1)) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm(-2). The Coulombic efficiency improves to ∼ 99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes. PMID:25064396

  20. Analysis of lithium driven electron density peaking in FTU liquid lithium limiter experiments

    NASA Astrophysics Data System (ADS)

    Szepesi, G.; Romanelli, M.; Militello, F.; Peeters, A. G.; Camenen, Y.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Wágner, D.; the FTU Team

    2013-03-01

    The impact of lithium impurities on the microstability and turbulent transport characteristics in the core of a typical FTU liquid lithium limiter (LLL) (Mazzitelli et al 2011 Nucl. Fusion 51 073006) discharge during the density ramp-up phase is studied. A non-linear gyrokinetic analysis performed with GKW (Peeters et al 2009 Comput. Phys. Commun. 180 2650) accompanied by a quasi-linear fluid analysis is presented. We show that a centrally peaked, high concentration lithium profile contributes to the electron peaking by reducing the outward electron flux, and that it leads to inward turbulent deuterium transport through ion flux separation.

  1. The TFTR lithium blanket module program

    SciTech Connect

    Jassby, D.L.; Bertone, P.C.; Creedon, R.L.; File, J.; Graumann, D.W.

    1985-02-01

    The Lithium Blanket Module (LBM) is an approximately 80X80X80 cm cubic module, representative of a helium-cooled lithium oxide fusion reactor blanket module, that will be installed on the TFTR (Tokamak Fusion Test Reactor) in late 1986. The principal objective of the LBM Program is to perform a series of neutron transport and tritium-breeding measurements throughout the LBM when it is exposed to the TFTR toroidal fusion neutron source, and to compare these data with the predictions of Monte Carlo (MCNP) neutronics codes. The LBM consists of 920 2.5-cm diameter breeder rods constructed of lithium oxide (Li/sub 2/O) pellets housed in thin-walled stainless steel tubes. Procedures for mass-producing 25,000 Li/sub 2/O pellets with satisfactory reproducibility were developed using purified Li/sub 2/O powder, and fabrication of all the breeder rods was completed in early 1985. Tritium assay methods were investigated experimentally using both small lithium metal samples and LBM-type pellets. This work demonstrated that the thermal extraction method will be satisfactory for accurate evaluation of the minute concentrations of tritium expected in the LBM pellets (0.1-1nCi/g).

  2. 1980 breeding bird censuses

    SciTech Connect

    Raynor, G.S.

    1980-09-01

    As part of a program to characterize the plant and animal life of the Laboratory site and the surrounding region, the two breeding bird censuses originated in 1977 were continued in 1980. Coverage was below that of previous years due to illness and travel of some participants, but 11 trips were made to the BNL plot and 8 to the Westhampton plot. Each was censused by separate teams of three volunteer observers. The number of breeding species and number of territorial males on the BNL plot have progressively declined since 1977 but little change has taken place in either number of territories or species composition on the Westhampton plot.

  3. Overview of the TFTR Lithium Blanket Module program

    SciTech Connect

    Jassby, D.L.

    1986-11-01

    The LBM (Lithium Blanket Module) is an approximately cubic module, about 80 cm on each side, with construction representative of a helium-cooled lithium oxide fusion reactor blanket module. Measurements of neutron transport and tritium breeding in the LBM will be made in irradiation programs first with a point-neutron source, and subsequently with the D-D and D-T fusion-neutron sources of the TFTR. This paper summarizes the objectives of the LBM program, the design, development and construction of the LBM, and progress in the experimental tests.

  4. Breeding Cold Hardy Begonias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hardy begonia cultivars have potential as a new crop for Southern nurseries. Current begonia breeding efforts are focused on sections Begonia and Pritzelia. Diverse begonia germplasm has been collected to study fertility and hardiness.To date cold hardy germplasm which has produced viable seeds inc...

  5. Raspberry Breeding and Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the origin, speciation, and history of improvement of the raspberries, Rubus section idaeobatus. The world industry in North America, Australasia, China, Europe, Eastern Europe, Africa, and South America and the breeding objectives of programs in those areas are discussed. Ger...

  6. Red Clover Breeding Progress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover (Trifolium pratense L.) is an important forage legume grown on approximately 4 million hectares worldwide. It has a long and varied history in agriculture. Active breeding efforts began at the end of the 19th century. Since this time significant improvement in red clover cultivar for a...

  7. Hop Cultivars and Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest management decision making in hops varies among cultivars. Historically, the primary objective of hop breeding programs has been to increase the yield or characteristics associated with either bittering (high alpha-acids) or aroma (unique volatile oil profiles) cultivars. Other factors consid...

  8. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth.

    PubMed

    Li, Weiyang; Yao, Hongbin; Yan, Kai; Zheng, Guangyuan; Liang, Zheng; Chiang, Yet-Ming; Cui, Yi

    2015-01-01

    Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium and lithium polysulfide, which has long been considered as a critical flaw in lithium-sulfur batteries. We show that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition. Our findings allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes. PMID:26081242

  9. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth

    NASA Astrophysics Data System (ADS)

    Li, Weiyang; Yao, Hongbin; Yan, Kai; Zheng, Guangyuan; Liang, Zheng; Chiang, Yet-Ming; Cui, Yi

    2015-06-01

    Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium and lithium polysulfide, which has long been considered as a critical flaw in lithium-sulfur batteries. We show that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition. Our findings allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes.

  10. Method of recycling lithium borate to lithium borohydride through diborane

    DOEpatents

    Filby, Evan E.

    1976-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

  11. Growth energizes lithium ion interest

    SciTech Connect

    D`Amico, E.

    1996-03-20

    The prospects for big growth in the US for lithium ion batteries (LIBs) has sparked the interest of potential domestic suppliers. {open_quotes}The money that can be made in this market is staggering,{close_quotes} says one industry expert. {open_quotes}Everybody who is remotely related to this industry is interested.{close_quotes} The size of the market, still in its infancy, is difficult to gauge, say consultants, who estimate that leading Japanese producers are each making millions of lithium ion cells/month. {open_quotes}The market is not too measurable right now because the only production is really limited to prototypes being sampled,{close_quotes} says Ward Seitz, a consultant with SRI International (Menlo Park, CA), {open_quotes}but there is phenomenal interest.{close_quotes}

  12. Lithium pinacolone enolate solvated by hexamethylphosphoramide.

    PubMed

    Guang, Jie; Liu, Qiyong Peter; Hopson, Russell; Williard, Paul G

    2015-06-17

    We report the crystal structure of a substoichiometric, HMPA-trisolvated lithium pinacolone enolate tetramer (LiOPin)4·HMPA3 abbreviated as T3. In this tetramer one HMPA binds to lithium more strongly than the other two causing a reduction in spatial symmetry with corresponding loss of C3 symmetry. A variety of NMR experiments, including HMPA titration, diffusion coefficient-formula weight (D-FW) analysis, and other multinuclear one- and two-dimensional NMR techniques reveal that T3 is the major species in hydrocarbon solution when more than 0.6 equiv of HMPA is present. Due to a small amount of moisture from HMPA or air leaking into the solution, a minor complex was identified and confirmed by X-ray diffraction analysis as a mixed aggregate containing enolate, lithium hydroxide, and HMPA in a 4:2:4 ratio, [(LiOPin)4·(LiOH)2·HMPA4], that we refer to as pseudo-T4. A tetra-HMPA-solvated lithium cyclopentanone enolate tetramer was also prepared and characterized by X-ray diffraction, leading to the conclusion that steric effects dominate the formation and solvation of the pinacolone aggregates. An unusual mixed aggregate consisting of pinacolone enolate, lithium diisopropyl amide, lithium oxide, and HMPA in the ratio 5:1:1:2 is also described. PMID:25933508

  13. Ionic liquid based lithium battery electrolytes: charge carriers and interactions derived by density functional theory calculations.

    PubMed

    Angenendt, Knut; Johansson, Patrik

    2011-06-23

    The solvation of lithium salts in ionic liquids (ILs) leads to the creation of a lithium ion carrying species quite different from those found in traditional nonaqueous lithium battery electrolytes. The most striking differences are that these species are composed only of ions and in general negatively charged. In many IL-based electrolytes, the dominant species are triplets, and the charge, stability, and size of the triplets have a large impact on the total ion conductivity, the lithium ion mobility, and also the lithium ion delivery at the electrode. As an inherent advantage, the triplets can be altered by selecting lithium salts and ionic liquids with different anions. Thus, within certain limits, the lithium ion carrying species can even be tailored toward distinct important properties for battery application. Here, we show by DFT calculations that the resulting charge carrying species from combinations of ionic liquids and lithium salts and also some resulting electrolyte properties can be predicted. PMID:21591707

  14. Lithium Redistribution in Lithium-Metal Batteries

    SciTech Connect

    Ferrese, A; Albertus, P; Christensen, J; Newman, J

    2012-01-01

    A model of a lithium-metal battery with a CoO2 positive electrode has been modeled in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. A finite-element approach was used to incorporate an intercalation positive electrode using superposition, electrode tabbing, transport using concentrated solution theory, as well as the net movement of the lithium electrode during cycling. From this model, it has been found that movement of lithium along the negative electrode/separator interface does occur during cycling and is affected by three factors: the cell geometry, the slope of the open-circuit-potential function of the positive electrode, and concentration gradients in both the solid and liquid phases in the cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.027210jes] All rights reserved.

  15. Haploids: Constraints and opportunities in plant breeding.

    PubMed

    Dwivedi, Sangam L; Britt, Anne B; Tripathi, Leena; Sharma, Shivali; Upadhyaya, Hari D; Ortiz, Rodomiro

    2015-11-01

    The discovery of haploids in higher plants led to the use of doubled haploid (DH) technology in plant breeding. This article provides the state of the art on DH technology including the induction and identification of haploids, what factors influence haploid induction, molecular basis of microspore embryogenesis, the genetics underpinnings of haploid induction and its use in plant breeding, particularly to fix traits and unlock genetic variation. Both in vitro and in vivo methods have been used to induce haploids that are thereafter chromosome doubled to produce DH. Various heritable factors contribute to the successful induction of haploids, whose genetics is that of a quantitative trait. Genomic regions associated with in vitro and in vivo DH production were noted in various crops with the aid of DNA markers. It seems that F2 plants are the most suitable for the induction of DH lines than F1 plants. Identifying putative haploids is a key issue in haploid breeding. DH technology in Brassicas and cereals, such as barley, maize, rice, rye and wheat, has been improved and used routinely in cultivar development, while in other food staples such as pulses and root crops the technology has not reached to the stage leading to its application in plant breeding. The centromere-mediated haploid induction system has been used in Arabidopsis, but not yet in crops. Most food staples are derived from genomic resources-rich crops, including those with sequenced reference genomes. The integration of genomic resources with DH technology provides new opportunities for the improving selection methods, maximizing selection gains and accelerate cultivar development. Marker-aided breeding and DH technology have been used to improve host plant resistance in barley, rice, and wheat. Multinational seed companies are using DH technology in large-scale production of inbred lines for further development of hybrid cultivars, particularly in maize. The public sector provides support to

  16. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium

    NASA Astrophysics Data System (ADS)

    Steiger, Jens; Kramer, Dominik; Mönig, Reiner

    2014-09-01

    Batteries with metallic lithium anodes offer improved volumetric and gravimetric energy densities; therefore, future batteries including the promising lithium-sulfur and lithium-air systems would benefit from them. The electrodeposition of lithium metal - which is an unwanted incident in lithium ion systems - often results in fine filaments or moss, called dendritic lithium, which leads to strong capacity fading and the danger of internal short circuiting. To study the mechanisms of dendritic growth and the behavior during lithium dissolution, lithium deposits have been observed in situ in 1 M LiPF6 in EC:DMC by light microscopy. The high resolution optical microscopy provided information on the growth and electrodissolution of single lithium filaments. The growth areas could be identified in detail: The lithium wires can grow either from the substrate-lithium interface, at kinks or in a region at or close to the tip. Based on these observations, we suggest a growth model for lithium filaments predicated on defect-based insertion of lithium at the aforementioned locations. This type of growth is not compatible with previous models of dendritic growth, for example, it is hardly influenced by electric fields at the tip and does not depend on the direction of the electric field.

  17. Reprocessing of lithium titanate pebbles by graphite bed method

    NASA Astrophysics Data System (ADS)

    Hong, Ming; Zhang, Yingchun; Xiang, Maoqiao; Zhang, Yun

    2015-04-01

    Lithium titanate enriched by 6Li isotope is considered as a candidate of tritium breeding materials for fusion reactors due to its excellent performance. The reuse of burned Li2TiO3 pebbles is an important issue because of the high costs of 6Li-enriched materials and waste considerations. For this purpose, reprocessing of Li2TiO3 pebbles by graphite bed method was developed. Simulative Li2TiO3 pebbles with low-lithium content according to the expected lithium burn-up were fabricated. After that, Li2TiO3 pebbles were re-fabricated with lithium carbonate as lithium additives, in order to gain the composition of lithium titanate with a Li/Ti ratio of 2. The process was optimized to obtain reprocessed Li2TiO3 pebbles that were suitable for reuse as ceramic breeder. Density, porosity, grain size and crushing load of the reprocessed pebbles were characterized. This process did not deteriorate the properties of the reprocessed pebbles and was almost no waste generation.

  18. Locus minimization in breed prediction using artificial neural network approach.

    PubMed

    Iquebal, M A; Ansari, M S; Sarika; Dixit, S P; Verma, N K; Aggarwal, R A K; Jayakumar, S; Rai, A; Kumar, D

    2014-12-01

    Molecular markers, viz. microsatellites and single nucleotide polymorphisms, have revolutionized breed identification through the use of small samples of biological tissue or germplasm, such as blood, carcass samples, embryos, ova and semen, that show no evident phenotype. Classical tools of molecular data analysis for breed identification have limitations, such as the unavailability of referral breed data, causing increased cost of collection each time, compromised computational accuracy and complexity of the methodology used. We report here the successful use of an artificial neural network (ANN) in background to decrease the cost of genotyping by locus minimization. The webserver is freely accessible (http://nabg.iasri.res.in/bisgoat) to the research community. We demonstrate that the machine learning (ANN) approach for breed identification is capable of multifold advantages such as locus minimization, leading to a drastic reduction in cost, and web availability of reference breed data, alleviating the need for repeated genotyping each time one investigates the identity of an unknown breed. To develop this model web implementation based on ANN, we used 51,850 samples of allelic data of microsatellite-marker-based DNA fingerprinting on 25 loci covering 22 registered goat breeds of India for training. Minimizing loci to up to nine loci through the use of a multilayer perceptron model, we achieved 96.63% training accuracy. This server can be an indispensable tool for identification of existing breeds and new synthetic commercial breeds, leading to protection of intellectual property in case of sovereignty and bio-piracy disputes. This server can be widely used as a model for cost reduction by locus minimization for various other flora and fauna in terms of variety, breed and/or line identification, especially in conservation and improvement programs. PMID:25183434

  19. Lithium and symptomatic hyperparathyroidism.

    PubMed Central

    Ananth, J; Dubin, S E

    1983-01-01

    Hyperparathyroidism with or without adenoma has occasionally been reported in association with lithium treatment, and in symptomatic patients depression, psychosis and an exacerbation of existing psychopathology may occur. Three lithium-treated patients with hyperparathyroidism are reported, in whom discontinuation of lithium in one and removal of parathyroid adenomata in two led to both a reduction in plasma calcium levels and an improvement in their psychopathology. PMID:6423822

  20. Lithium purification technique

    DOEpatents

    Keough, R.F.; Meadows, G.E.

    1984-01-10

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  1. Lithium purification technique

    DOEpatents

    Keough, Robert F.; Meadows, George E.

    1985-01-01

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  2. Is violence in part a lithium deficiency state?

    PubMed

    Goldstein, Mark R; Mascitelli, Luca

    2016-04-01

    Violence, particularly firearm violence, leading to suicide and homicide is a significant problem worldwide. A majority of suicidal and homicidal violence involves males; homicidal violence is prevalent among young men and suicide is the leading cause of violence worldwide. Lithium, in pharmacological doses, has been used successfully for decades in treating bipolar disorders, and has been shown to decrease violent crime in this situation. Interestingly, lithium, in trace amounts, as occurs in some drinking water, has been inversely related to aggression, and suicidal and homicidal violence. Lithium is naturally found in vegetables, grains and drinking water, and dietary intake varies from nearly zero to 3mg daily. Elemental lithium, in trace doses, has been shown to improve mood in weeks. Moreover, lithium, in trace amounts, has no toxicity. In order to ensure adequate dietary intakes of elemental lithium daily for the purpose of decreasing aggression and violence, we propose considering the fortification of cereal grain products with lithium and also the addition of lithium to vitamin preparations for adults. Importantly, randomized trials in various populations are needed to test this hypothesis. PMID:26968907

  3. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    SciTech Connect

    Choi, B. William; Chiu, Ing L.

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  4. Lithium-associated primary hyperparathyroidism complicated by nephrogenic diabetes insipidus

    PubMed Central

    Aksakal, Nihat; Erçetin, Candaş; Özçınar, Beyza; Aral, Ferihan; Erbil, Yeşim

    2015-01-01

    Lithium-associated hyperparathyroidism is the leading cause of hypercalcemia in lithium-treated patients. Lithium may lead to exacerbation of pre-existing primary hyperparathyroidism or cause an increased set-point of calcium for parathyroid hormone suppression, leading to parathyroid hyperplasia. Lithium may cause renal tubular concentration defects directly by the development of nephrogenic diabetes insipidus or indirectly by the effects of hypercalcemia. In this study, we present a female patient on long-term lithium treatment who was evaluated for hypercalcemia. Preoperative imaging studies indicated parathyroid adenoma and multinodular goiter. Parathyroidectomy and thyroidectomy were planned. During the postoperative course, prolonged intubation was necessary because of agitation and delirium. During this period, polyuria, severe dehydration, and hypernatremia developed, which responded to controlled hypotonic fluid infusions and was unresponsive to parenteral desmopressin. A diagnosis of nephrogenic diabetes insipidus was apparent. A parathyroid adenoma and multifocal papillary thyroid cancer were detected on histopathological examination. It was thought that nephrogenic diabetes insipidus was masked by hypercalcemia preoperatively. A patient on lithium treatment should be carefully followed up during or after surgery to prevent life-threatening complications of previously unrecognized nephrogenic diabetes insipidus, and the possibility of renal concentrating defects on long-term lithium use should be sought, particularly in patients with impaired consciousness. PMID:26504422

  5. Laminar Multicell Lithium Batteries

    SciTech Connect

    Bruder, A. H.

    1984-01-31

    Laminar batteries of series connected cells comprising lithium anodes and an electrolyte containing a passivating solvent reactive with lithium in which the cells are electrically connected in series by intercell barriers comprising outer layers of electrochemically inert electronically conducting material in contact with the electrochemically active anode and cathode of adjacent cells and a layer of metal foil between the electrochemically inert layers.

  6. Materials for breeding blankets

    SciTech Connect

    Mattas, R.F.; Billone, M.C.

    1995-09-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified.

  7. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  8. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  9. Lithium and autophagy.

    PubMed

    Motoi, Yumiko; Shimada, Kohei; Ishiguro, Koichi; Hattori, Nobutaka

    2014-06-18

    Lithium, a drug used to treat bipolar disorders, has a variety of neuroprotective mechanisms, including autophagy regulation, in various neuropsychiatric conditions. In neurodegenerative diseases, lithium enhances degradation of aggregate-prone proteins, including mutated huntingtin, phosphorylated tau, and α-synuclein, and causes damaged mitochondria to degrade, while in a mouse model of cerebral ischemia and Alzheimer's disease autophagy downregulation by lithium is observed. The signaling pathway of lithium as an autophagy enhancer might be associated with the mammalian target of rapamycin (mTOR)-independent pathway, which is involved in myo-inositol-1,4,5-trisphosphate (IP3) in Huntington's disease and Parkinson's disease. However, the mTOR-dependent pathway might be involved in inhibiting glycogen synthase kinase-3β (GSK3β) in other diseases. Lithium's autophagy-enhancing property may contribute to the therapeutic benefit of patients with neuropsychiatric disorders. PMID:24738557

  10. Lithium: a versatile tool for understanding renal physiology

    PubMed Central

    Ecelbarger, Carolyn M.

    2013-01-01

    By virtue of its unique interactions with kidney cells, lithium became an important research tool in renal physiology and pathophysiology. Investigators have uncovered the intricate relationships of lithium with the vasopressin and aldosterone systems, and the membrane channels or transporters regulated by them. While doing so, their work has also led to 1) questioning the role of adenylyl cyclase activity and prostaglandins in lithium-induced suppression of aquaporin-2 gene transcription; 2) unraveling the role of purinergic signaling in lithium-induced polyuria; and 3) highlighting the importance of the epithelial sodium channel (ENaC) in lithium-induced nephrogenic diabetes insipidus (NDI). Lithium-induced remodeling of the collecting duct has the potential to shed new light on collecting duct remodeling in disease conditions, such as diabetes insipidus. The finding that lithium inhibits glycogen synthase kinase-3β (GSK3β) has opened an avenue for studies on the role of GSK3β in urinary concentration, and GSK isoforms in renal development. Finally, proteomic and metabolomic profiling of the kidney and urine in rats treated with lithium is providing insights into how the kidney adapts its metabolism in conditions such as acquired NDI and the multifactorial nature of lithium-induced NDI. This review provides state-of-the-art knowledge of lithium as a versatile tool for understanding the molecular physiology of the kidney, and a comprehensive view of how this tool is challenging some of our long-standing concepts in renal physiology, often with paradigm shifts, and presenting paradoxical situations in renal pathophysiology. In addition, this review points to future directions in research where lithium can lead the renal community. PMID:23408166

  11. Application of Genomic Tools in Plant Breeding

    PubMed Central

    Pérez-de-Castro, A.M.; Vilanova, S.; Cañizares, J.; Pascual, L.; Blanca, J.M.; Díez, M.J.; Prohens, J.; Picó, B.

    2012-01-01

    Plant breeding has been very successful in developing improved varieties using conventional tools and methodologies. Nowadays, the availability of genomic tools and resources is leading to a new revolution of plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. Next Generation Sequencing (NGS) technologies are allowing the mass sequencing of genomes and transcriptomes, which is producing a vast array of genomic information. The analysis of NGS data by means of bioinformatics developments allows discovering new genes and regulatory sequences and their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Genomic approaches include TILLING and EcoTILLING, which make possible to screen mutant and germplasm collections for allelic variants in target genes. Re-sequencing of genomes is very useful for the genome-wide discovery of markers amenable for high-throughput genotyping platforms, like SSRs and SNPs, or the construction of high density genetic maps. All these tools and resources facilitate studying the genetic diversity, which is important for germplasm management, enhancement and use. Also, they allow the identification of markers linked to genes and QTLs, using a diversity of techniques like bulked segregant analysis (BSA), fine genetic mapping, or association mapping. These new markers are used for marker assisted selection, including marker assisted backcross selection, ‘breeding by design’, or new strategies, like genomic selection. In conclusion, advances in genomics are providing breeders with new tools and methodologies that allow a great leap forward in plant breeding, including the ‘superdomestication’ of crops and the genetic dissection and breeding for complex traits. PMID:23115520

  12. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  13. Mechanochemistry of lithium nitride under hydrogen gas.

    PubMed

    Li, Z; Zhang, J; Wang, S; Jiang, L; Latroche, M; Du, J; Cuevas, F

    2015-09-14

    Hydrogen uptake during the mechanochemistry of lithium nitride under 9 MPa hydrogen pressure has been analyzed by means of in situ solid-gas absorption and ex situ X-ray diffraction (XRD) measurements. In situ hydrogenation curves show two H-sorption steps leading to an overall hydrogen uptake of 9.8 wt% H after 3 hours of milling. The milled end-products consist of nanocrystalline (∼10 nm) LiNH2 and LiH phases. The first reaction step comprises the transformation of the polymorph α-Li3N (S.G. P6/mmm) into the β-Li3N (S.G. P63/mmc) metastable phase and the reaction of the latter with hydrogen to form lithium imide: β-Li3N + H2→ Li2NH + LiH. Reaction kinetics of the first step is zero-order. Its rate-limiting control is assigned to the collision frequency between milling balls and Li3N powder. In the second absorption step, lithium imide converts to lithium amide following the reaction scheme Li2NH + H2→ LiNH2 + LiH. Reaction kinetics is here limited by one-dimensional nucleation and the growth mechanism, which, in light of structural data, is assigned to the occurrence of lithium vacancies in the imide compound. This study provides new insights into the reaction paths and chemical kinetics of light hydrogen storage materials during their mechanochemical synthesis. PMID:26234206

  14. Size effects in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hu-Rong, Yao; Ya-Xia, Yin; Yu-Gao, Guo

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. Project supported by the National Natural Science Foundation of China (Grant Nos. 51225204 and 21303222), the Shandong Taishan Scholarship, China, the Ministry of Science and Technology, China (Grant No. 2012CB932900), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010000).

  15. RosBREED: Enabling Marker-Assisted Breeding In Rosaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RosBREED will create a national, dynamic, sustained effort in research, infrastructure establishment, training, and extension for applying marker-assisted breeding (MAB) to deliver improved plant materials more efficiently and rapidly. The Rosaceae family (including apple, peach, sweet and tart cher...

  16. The development of Sn-Li coolant/breeding material for APEX/ALPS applications.

    SciTech Connect

    Sze, D.-K.

    1999-07-08

    A Sn-Li alloy has been identified to be a coolant/breeding material for D-T fusion applications. The key feature of this material is its very low vapor pressure, which will be very useful for free surface concepts employed in APEX, ALPS and inertial confinement fission. The vapor is dominated by lithium, which has very low Z. Initial assessment of the material indicates acceptable tritium breeding capability, high thermal conductivity, expected low tritium volubility, and expected low chemical reactivities with water and air. Some key concerns are the high activation and material compatibility issues. The initial assessment of this material, for fission applications, is presented in this paper.

  17. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    SciTech Connect

    Jolodosky, A.; Fratoni, M.

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  18. THE USDA PECAN BREEDING PROGRAM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper outlines how the USDA Pecan Breeding Program is operated to produce superior new cultivars that are given names of Native American peoples, and released for planting in new pecan orchards. The USDA conducts the largest pecan breeding and genetics program in the world. The program is div...

  19. Breeding, Genetics, and Cultivar Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato breeding is a challenge due to the tetraploid nature of the potato, limited variability for economically important traits in adapted breeding clones, and a complex set of requirements necessary for the successful adoption of new cultivars. However, rich germplasm resources are readily availa...

  20. Lithium cell test results

    NASA Technical Reports Server (NTRS)

    Bragg, B. J.

    1977-01-01

    Three lithium SO2 cells, two lithium CF cells, and a vinyl chloride cell, all with crimped seals, and all strictly experimental, were independently discharged on resistors. Three temperatures were used and several different storage temperatures. Discharge rate generally on the nominal discharges were 0.1 amp, 0.5 amp, and 1 amp. Tests results show that the crimp seals are inadequate, especially for the SO2 cells. Normal discharges present no hazards. All cells discharge to zero. The problem of lithium cell explosions, such as occurred during off-limits testing, is discussed.

  1. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  2. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  3. Lithium drifted germanium system

    NASA Technical Reports Server (NTRS)

    Fjarlie, E. J.

    1969-01-01

    General characteristics of the lithium-drifted germanium photodiode-Dewar-preamplifier system and particular operating instructions for the device are given. Information is included on solving operational problems.

  4. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    DOEpatents

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  5. A lithium-oxygen battery based on lithium superoxide

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Jung Lee, Yun; Luo, Xiangyi; Chun Lau, Kah; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J.; Sub Jeong, Yo; Park, Jin-Bum; Zak Fang, Zhigang; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A.; Amine, Khalil

    2016-01-01

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  6. A lithium-oxygen battery based on lithium superoxide.

    PubMed

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J; Jeong, Yo Sub; Park, Jin-Bum; Fang, Zhigang Zak; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A; Amine, Khalil

    2016-01-21

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage. PMID:26751057

  7. Where Will LEAD Lead?

    ERIC Educational Resources Information Center

    Wildman, Louis

    After setting forth eight assumptions concerning the education of educational administrators, findings about the Leadership in Educational Administration Development (LEAD) program are discussed. The analysis is based on the first-year applications, telephone conversations with staff at a majority of the project sites, and additional material…

  8. Failure Mechanism of Fast-Charged Lithium Metal Batteries in Liquid Electrolyte

    SciTech Connect

    Lu, Dongping; Shao, Yuyan; Lozano, Terence J.; Bennett, Wendy D.; Graff, Gordon L.; Polzin, Bryant; Zhang, Jiguang; Engelhard, Mark H.; Saenz, Natalio T.; Henderson, Wesley A.; Bhattacharya, Priyanka; Liu, Jun; Xiao, Jie

    2015-02-01

    In recent years, lithium anode has re-attracted broad interest because of the necessity of employing lithium metal in the next-generation battery technologies such as lithium sulfur (Li-S) and lithium oxygen (Li-O2) batteries. Fast capacity degradation and safety issue associated with rechargeable lithium metal batteries have been reported, although the fundamental understanding on the failure mechanism of lithium metal at high charge rate is still under debate due to the complicated interfacial chemistry between lithium metal and electrolyte. Herein, we demonstrate that, at high current density, the quick growth of porous solid electrolyte interphase towards bulk lithium, instead of towards the separator, dramatically builds up the cell impedance that directly leads to the cell failure. Understanding the lithium metal failure mechanism is very critical to gauge the various approaches used to address the stability and safety issues associated with lithium metal anode. Otherwise, all cells will fail quickly at high rates before the observation of any positive effects that might be brought from adopting the new strategies to protect lithium.

  9. Scoping studies: behavior and control of lithium and lithium aerosols

    SciTech Connect

    Jeppson, D W

    1982-01-01

    The HEDL scoping studies examining the behavior of lithium and lithium aerosols have been conducted to determine and examine potential safety and environmental issues for postulated accident conditions associated with the use of lithium as a fusion reactor blanket and/or coolant. Liquid lithium reactions with air, nitrogen, carbon dioxide and concretes have been characterized. The effectiveness of various powder extinguishing agents and methods of application were determined for lithium-air reactions. The effectiveness of various lithium aerosol collection methods were determined and the volatilization and transport of radioactive metals potentially associated with lithium-air reactions were evaluated. Liquid lithium atmosphere reactions can be safely controlled under postulated accident conditions, but special handling practices must be provided. Lithium-concrete reactions should be avoided because of the potential production of high temperatures, corrosive environment and hydrogen. Carbon microspheres are effective in extinguishing well established lithium-air reactions for the lithium quantities tested (up to 10 kg). Large mass loading of lithium aerosols can be efficiently collected with conventional air cleaning systems. Potentially radioactive species (cobalt, iron and manganese) will be volatilized in a lithium-air reaction in contact with neutron activated stainless steel.

  10. Lithium battery management system

    DOEpatents

    Dougherty, Thomas J.

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  11. Solid-state lithium battery

    SciTech Connect

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  12. A Car-Parrinello and path integral molecular dynamics study of the intramolecular lithium bond in the lithium 2-pyridyl-N-oxide acetate

    NASA Astrophysics Data System (ADS)

    Durlak, Piotr; Latajka, Zdzisław; Berski, Sławomir

    2009-07-01

    Lithium bonding in lithium 2-pyridyl-N-oxide acetate has been investigated using classic Car-Parrinello molecular dynamics (CPMD) and the path integral approach [path integrals molecular dynamics (PIMD)]. The simulations have been performed in 300 K. Structures, energies, and lithium trajectories have been determined. The CPMD results show that the lithium atom is generally equidistant between heavy atoms in the (O⋯Li⋯O) bridge. Applying quantum effects through the PIMD leads to similar conclusion. The theoretical lithium 2-pyridyl-N-oxide acetate infrared spectrum has also been determined using the CPMD calculations. This shows very good agreement with available experimental results and reproduces well the broad low-frequency band observed experimentally. In order to gain deeper understanding of the nature of the lithium bonding topological analysis of the electron localization function has been applied.

  13. LEADING WITH LEADING INDICATORS

    SciTech Connect

    PREVETTE, S.S.

    2005-01-27

    This paper documents Fluor Hanford's use of Leading Indicators, management leadership, and statistical methodology in order to improve safe performance of work. By applying these methods, Fluor Hanford achieved a significant reduction in injury rates in 2003 and 2004, and the improvement continues today. The integration of data, leadership, and teamwork pays off with improved safety performance and credibility with the customer. The use of Statistical Process Control, Pareto Charts, and Systems Thinking and their effect on management decisions and employee involvement are discussed. Included are practical examples of choosing leading indicators. A statistically based color coded dashboard presentation system methodology is provided. These tools, management theories and methods, coupled with involved leadership and employee efforts, directly led to significant improvements in worker safety and health, and environmental protection and restoration at one of the nation's largest nuclear cleanup sites.

  14. Stereoselective synthesis of tetrasubstituted alkenes via a sequential carbocupration and a new sulfur–lithium exchange

    PubMed Central

    Unsinn, Andreas; Dunst, Cora

    2012-01-01

    Summary We have designed a new sequential carbocupration and sulfur–lithium exchange that leads stereo- and regioselectively to trisubstituted alkenyllithiums. Subsequent trapping with various electrophiles yields tetrasubstituted olefins with good control of the double-bond geometry (E/Z ratio up to 99:1). The novel sulfur–lithium exchange could be extended to the stereoselective preparation of Z-styryl lithium derivatives with almost complete retention of the double-bond geometry. PMID:23365630

  15. RosBREED: Enabling Marker-Assisted Breeding in Rosaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomics research has not yet been translated into routine practical application in breeding Rosaceae fruit crops (peach, apple, strawberry, cherry, apricot, pear, raspberry, etc.). Through dedicated efforts of many researchers worldwide, a wealth of genomics resources has accumulated, including ES...

  16. Hydrogen Outgassing from Lithium Hydride

    SciTech Connect

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  17. Mutation breeding by ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Zengliang; Deng, Jianguo; He, Jianjun; Huo, Yuping; Wu, Yuejin; Wang, Xuedong; Lui, Guifu

    1991-07-01

    Ion implantation as a new mutagenic method has been used in the rice breeding program since 1986, and for mutation breeding of other crops later. It has been shown, in principle and in practice, that this method has many outstanding advantages: lower damage rate; higher mutation rate and wider mutational spectrum. Many new lines of rice with higher yield rate; broader disease resistance; shorter growing period but higher quality have been bred from ion beam induced mutants. Some of these lines have been utilized for the intersubspecies hybridization. Several new lines of cotton, wheat and other crops are now in breeding. Some biophysical effects of ion implantation for crop seeds have been studied.

  18. Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling.

    PubMed

    Yang, Lijie; Cheng, Xinqun; Gao, Yunzhi; Zuo, Pengjian; Ma, Yulin; Du, Chunyu; Shen, Bin; Cui, Yingzhi; Guan, Ting; Yin, Geping

    2014-08-13

    Lithium compound deposition on mesocarbon microbead (MCMB) anode after long-term cycling was studied in LiCoO2/MCMB battery. Lithium compound deposition did not generate on the activated MCMB anode, but it generated unevenly on the long-term cycled anode. Gray deposition composed of dendrites and particles was formed on the lower surface of the MCMB layer first, then on the upper surface. The deposition and MCMB layer peeled off from the current collector, and a bump was formed in the cycled anode. The exfoliation and thick deposition increased the ohmic resistance, film resistance, and charge transfer resistance of the cell and decreased the capacity significantly. Metallic lithium did not exist in either the upper or the lower deposition layer according to the results of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), the discharge curve, and anode potential. The outer region of both the lower and the upper deposition layers consisted of Li2CO3, LiOH, ROCO2Li, and ROLi. The inner region of the etched lower deposition layer mainly consisted of Li2O, LiF, and Li2CO3, and that of the etched upper deposition layer mainly consisted of Li2CO3, ROCO2Li, ROLi, and LiF. Solid electrolyte interphase (SEI) film hindering the intercalation of lithium ions into carbon layers and LiCoO2 cathode providing lithium source for the deposition were the two reasons leading to the formation of lithium compound deposition during long-term cycles. Because SEI film on the lower surface of MCMB layer was thicker than that on the upper surface, lithium compound deposition generated on the lower surface first. PMID:25020035

  19. Best of Breed

    NASA Technical Reports Server (NTRS)

    Lohn, Jason

    2004-01-01

    No team of engineers, no matter how much time they took or how many bottles of cabernet they consumed, would dream up an antenna that looked like a deer antler on steroids. Yet that's what a group at NASA Ames Research Center came up with-thanks to a little help from Darwin. NASA's Space Technology 5 nanosatellites, which are scheduled to start measuring Earth's magnetosphere in late 2004, requires an antenna that can receive a wide range of frequencies regardless of the spacecraft's orientation. Rather than leave such exacting requirements in the hands of a human, the engineers decided to breed a design using genetic algorithms and 32 Linux PCs. The computers generated small antenna-constructing programs (the genotypes) and executed them to produce designs (the phenotypes). Then the designs were evaluated using an antenna simulator. The team settled on the form pictured here. You won't find this kind of antenna in any textbook, design guide, or research paper. But its innovative structure meets a challenging set of specifications. If successfully deployed, it will be the first evolved antenna to make it out of the lab and the first piece of evolved hardware ever to fly in space.

  20. Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides: A Review

    SciTech Connect

    Yang, Zhenguo; Choi, Daiwon; Kerisit, Sebastien N.; Rosso, Kevin M.; Wang, Donghai; Zhang, Jiguang; Graff, Gordon L.; Liu, J.

    2009-07-15

    Being inherently safe and chemically compatible with the electrolyte, titanium oxidebased materials, including both Li-titanites and various TiO2-polymorphs, are considered alternatives to carbonaceous anodes in Li-ion batteries. Given the commercial success of the spinel lithium titanites, TiO2-polymorphs, in particular in nanostructured forms, have been fabricated and investigated for the applications. Nanostructuring leads to increased reaction areas, shortened Li+ diffusion and potentially enhanced solubility/capacity. Integration with an electron conductive second phase into the TiO2-based nanostructures eases the electron transport, resulting in further improved lithium electrochemical activity and the overall electrochemical performance. This paper reviews structural characteristics and Li-electrochemical reactivity, along with synthetic approaches, of nanostructures and nano-composites based on lithium titanites and TiO2-polymorphs that include rutile, anatase, bronze and brookite.

  1. Rechargeable ambient temperature lithium cells

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1980-01-01

    The cycling performance of a secondary lithium cell with a 2-methyl THF lithium hectofluorarsenate electrolyte is discussed. Stripping efficiency, dendritization, passivation on standing, and discharge efficiency are considered.

  2. Lithium: for harnessing renewable energy

    USGS Publications Warehouse

    Bradley, Dwight; Jaskula, Brian

    2014-01-01

    Lithium, which has the chemical symbol Li and an atomic number of 3, is the first metal in the periodic table. Lithium has many uses, the most prominent being in batteries for cell phones, laptops, and electric and hybrid vehicles. Worldwide sources of lithium are broken down by ore-deposit type as follows: closed-basin brines, 58%; pegmatites and related granites, 26%; lithium-enriched clays, 7%; oilfield brines, 3%; geothermal brines, 3%; and lithium-enriched zeolites, 3% (2013 statistics). There are over 39 million tons of lithium resources worldwide. Of this resource, the USGS estimates there to be approximately 13 million tons of current economically recoverable lithium reserves. To help predict where future lithium supplies might be located, USGS scientists study how and where identified resources are concentrated in the Earth’s crust, and they use that knowledge to assess the likelihood that undiscovered resources also exist.

  3. The development of a chemical kinetic measurement apparatus and the determination of the reaction rate constants for lithium-lead/steam interaction. Final report 9-21-90--3-31-95

    SciTech Connect

    Biney, P.O.

    1995-03-01

    The objective of this research to experimentally determine the hydrogen generation rate during the beginning and subsequent stages of liquid metal (Li{sub 17}Pb{sub 83}) and water reaction. The experimental set-up has been built. It includes a metal sample preparation apparatus, a reaction system, a measurement system and a PC based data acquisition and control system. The most important feature of the reaction system is a pneumatic actuated quick opening and closing high temperature, all stainless steel valve used the system for reaction time control. The PC system provides remote process sequencing, acquisition and control of all the systems except the metal preparation apparatus. Due to the reactivity of the lithium, all the metal sampling, preparation and loading procedures are executed in a glove box under argon protection. The metal temperature was varied between 350{degrees}C-650{degrees}C and water temperature fixed at 60{degrees}C during the experiments. A set of experimental procedures and two analyses methods: (1) thermodynamics method and (2) heat transfer method are discussed. All the measurements and data collections are executed under the PC system control. A data analysis program is used to calculate both the partial pressure of hydrogen and the hydrogen generation rate. The experiment results indicate that the amount of hydrogen generated is relate to the initial liquid metal temperature when the reaction surface is fixed. The mass of hydrogen generated as a function of initial liquid metal temperature and time of reaction is presented, The hydrogen generation over a time period of 240 seconds and the calculated errors are summarized in Table 1.

  4. Opposing selection and environmental variation modify optimal timing of breeding.

    PubMed

    Tarwater, Corey E; Beissinger, Steven R

    2013-09-17

    Studies of evolution in wild populations often find that the heritable phenotypic traits of individuals producing the most offspring do not increase proportionally in the population. This paradox may arise when phenotypic traits influence both fecundity and viability and when there is a tradeoff between these fitness components, leading to opposing selection. Such tradeoffs are the foundation of life history theory, but they are rarely investigated in selection studies. Timing of breeding is a classic example of a heritable trait under directional selection that does not result in an evolutionary response. Using a 22-y study of a tropical parrot, we show that opposing viability and fecundity selection on the timing of breeding is common and affects optimal breeding date, defined by maximization of fitness. After accounting for sampling error, the directions of viability (positive) and fecundity (negative) selection were consistent, but the magnitude of selection fluctuated among years. Environmental conditions (rainfall and breeding density) primarily and breeding experience secondarily modified selection, shifting optimal timing among individuals and years. In contrast to other studies, viability selection was as strong as fecundity selection, late-born juveniles had greater survival than early-born juveniles, and breeding later in the year increased fitness under opposing selection. Our findings provide support for life history tradeoffs influencing selection on phenotypic traits, highlight the need to unify selection and life history theory, and illustrate the importance of monitoring survival as well as reproduction for understanding phenological responses to climate change. PMID:24003118

  5. Dairy Cattle: Breeding and Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five primary factors affect breeding genetically improved dairy cattle: 1) identification, 2) pedigree, 3) performance recording, 4) artificial insemination, and 5) genetic evaluation systems (traditional and genomic). Genetic progress can be measured as increased efficiency (higher performance with...

  6. A genetic investigation of isle of Jersey cattle, the foundation of the Jersey breed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jersey, one of the oldest dairy breeds, was founded nearly 200 years ago on the Channel Island of Jersey. As early as 1763, legislation banned cattle importation to the island, leading to the development of the Jersey breed. Records indicate considerable cattle exportation from Jersey Island from t...

  7. Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases on wheat in China. To assess resistance in wheat cultivars and breeding lines in China, 330 leading cultivars and 164 advanced breeding lines were evaluated with stripe rust. In the greenhouse tes...

  8. Integrating genomic selection into dairy cattle breeding programmes: a review.

    PubMed

    Bouquet, A; Juga, J

    2013-05-01

    Extensive genetic progress has been achieved in dairy cattle populations on many traits of economic importance because of efficient breeding programmes. Success of these programmes has relied on progeny testing of the best young males to accurately assess their genetic merit and hence their potential for breeding. Over the last few years, the integration of dense genomic information into statistical tools used to make selection decisions, commonly referred to as genomic selection, has enabled gains in predicting accuracy of breeding values for young animals without own performance. The possibility to select animals at an early stage allows defining new breeding strategies aimed at boosting genetic progress while reducing costs. The first objective of this article was to review methods used to model and optimize breeding schemes integrating genomic selection and to discuss their relative advantages and limitations. The second objective was to summarize the main results and perspectives on the use of genomic selection in practical breeding schemes, on the basis of the example of dairy cattle populations. Two main designs of breeding programmes integrating genomic selection were studied in dairy cattle. Genomic selection can be used either for pre-selecting males to be progeny tested or for selecting males to be used as active sires in the population. The first option produces moderate genetic gains without changing the structure of breeding programmes. The second option leads to large genetic gains, up to double those of conventional schemes because of a major reduction in the mean generation interval, but it requires greater changes in breeding programme structure. The literature suggests that genomic selection becomes more attractive when it is coupled with embryo transfer technologies to further increase selection intensity on the dam-to-sire pathway. The use of genomic information also offers new opportunities to improve preservation of genetic variation. However

  9. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries.

    PubMed

    Shui, Jiang-Lan; Okasinski, John S; Kenesei, Peter; Dobbs, Howard A; Zhao, Dan; Almer, Jonathan D; Liu, Di-Jia

    2013-01-01

    Non-aqueous lithium-air batteries represent the next-generation energy storage devices with very high theoretical capacity. The benefit of lithium-air batteries is based on the assumption that the anodic lithium is completely reversible during the discharge-charge process. Here we report our investigation on the reversibility of the anodic lithium inside of an operating lithium-air battery using spatially and temporally resolved synchrotron X-ray diffraction and three-dimensional micro-tomography technique. A combined electrochemical process is found, consisting of a partial recovery of lithium metal during the charging cycle and a constant accumulation of lithium hydroxide under both charging and discharging conditions. A lithium hydroxide layer forms on the anode separating the lithium metal from the separator. However, numerous microscopic 'tunnels' are also found within the hydroxide layer that provide a pathway to connect the metallic lithium with the electrolyte, enabling sustained ion-transport and battery operation until the total consumption of lithium. PMID:23929396

  10. Antihypertensive therapy in patients on chronic lithium treatment for bipolar disorders.

    PubMed

    Bisogni, Valeria; Rossitto, Giacomo; Reghin, Francesco; Padrini, Roberto; Rossi, Gian Paolo

    2016-01-01

    Bipolar disorders are chronic conditions treated with lithium, which exerts deleterious effects on the kidney, among which nephrogenic diabetes insipidus, tubular acidosis and ultimately chronic kidney disease. Conversely, drugs that alter renal function can modify its serum levels and lead to the potentially fatal lithium intoxication. A search in the main library databases from 1975 to 2015 to identify interactions between antihypertensive drugs and lithium using the Population Intervention Comparison Outcome strategy provided only 30 reports of lithium intoxication. A regression analysis showed that the severity of lithium intoxication was significantly predicted by female, age, and use of certain classes of antihypertensive agents. A model including certain albeit not all diuretics and/or inhibitors of the renin-angiotensin system, but not age, serum lithium or creatinine levels at baseline and/or on admission to the hospital, predicted lithium toxicity. The true incidence of lithium intoxication is unknown but probably low, albeit underestimated. Nonetheless, in patients treated with lithium, monitoring of the serum lithium levels and clinical conditions is mandatory after the introduction of antihypertensive drugs, as diuretics and renin-aldosterone system inhibitors. PMID:26630207

  11. Measurements of the Absorption of Atmospheric Gases in Bulk Lithium Metal using a Mass Balance

    NASA Astrophysics Data System (ADS)

    Hart, Connor A.; Skinner, Charles H.; Capece, Angela M.; Koel, Bruce E.

    2014-10-01

    Lithium conditioning of plasma facing components has enhanced the performance of several fusion devices. However, metallic lithium is very reactive and it is important to quantify the processes leading to the passivation of lithium upon exposure to air. Passivation, as used here, refers to the absorption of atmospheric gases by lithium to ultimately form lithium species including lithium hydroxide, carbonate, and oxide. The current work uses a mass balance with microgram sensitivity to measure the mass gain during the absorption of atmospheric gases by bulk lithium. Metallic lithium films with thicknesses of 0.3 and 1.0 mm are exposed to humid air as well as dry synthetic air at atmospheric conditions in order to reproduce the environment of a tokamak exposed to air during maintenance activities and venting. The data yield the reaction rates and interdiffusion of these lithium species as functions of thickness and time. These results provide critical insight into the chemical state of a lithiated surface after air exposure. In addition, the depth of passivation versus time is of interest in determining the length of exposure required to completely passivate a lithium layer of a given thickness, making it safe to handle. Science Undergraduate Laboratory Internship funded by Department of Energy.

  12. Structural factors affecting lithium transport in lithium-excess layered cathode materials

    NASA Astrophysics Data System (ADS)

    Fell, Christopher R.

    Lithium ion batteries have drawn significant attention as the principle energy storage device powering today's mobile electronic equipment. Despite the increased usage, the performance of current lithium ion battery technology falls short of the requirements needed for large format applications such as electric vehicles. The layered lithium-excess oxide compounds Li[NixLi1/3-2x/3Mn2/3-x/3]O2 are of interest as a new generation of cathode materials for high energy density lithium ion batteries. Efforts to achieve a better understanding of the electrochemistry of lithium-excess materials require the connection of crystal structure to electrochemical properties. In this dissertation, a combination of advanced characterization techniques was used as a tool to understand the intercalation mechanism of the layered lithium-excess transition metal oxide Li[NixLi1/3-2x/3Mn 2/3-x/3]O2. The research identified that synthesis influences the structure of the material specifically the surface of the particles. The formation of a hydroxide rich surface film decreases the electrochemical performance. Post synthesis modifications including high pressure and high temperature leads to the formation of a second layered phase in the bulk; however, the treated samples display good electrochemical properties. This result underlines the flexibility of the structure of Li[NixLi1/3-2x/3Mn 2/3-x/3]O2, a feature uncommon to other layered transition metal oxides. Surface characterization of the layered lithium-excess cathodes following electrochemical cycling revealed the formation of a new surface phase 1 to 5 nm thick as well as insight to the complex cation rearrangement process and phase transformation. This part of the research identified that significant changes occurred during electrochemical cycling; however did not identify when the transformations occurred. Investigation using in situ techniques during the first electrochemical cycle shows that the structure undergoes irreversible

  13. The Success-Breeds-Success Phenomenon and Bibliometric Processes.

    ERIC Educational Resources Information Center

    Tague, Jean

    1981-01-01

    Describes success-breeds-success phenomenon by single and multiple-urn models, and shows that these models lead to a negative binomial distribution for the total number of successes and to a Zipf-Mandelbrot law for the number of sources contributing a specified number of successes. Ten references are cited. (FM)

  14. A review of lithium deposition in lithium-ion and lithium metal secondary batteries

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Huang, Jun; Yann Liaw, Bor; Metzler, Viktor; Zhang, Jianbo

    2014-05-01

    Major aspects related to lithium deposition in lithium-ion and lithium metal secondary batteries are reviewed. For lithium-ion batteries with carbonaceous anode, lithium deposition may occur under harsh charging conditions such as overcharging or charging at low temperatures. The major technical solutions include: (1) applying electrochemical models to predict the critical conditions for deposition initiation; (2) preventions by improved battery design and material modification; (3) applying adequate charging protocols to inhibit lithium deposition. For lithium metal secondary batteries, the lithium deposition is the inherent reaction during charging. The major technical solutions include: (1) the use of mechanistic models to elucidate and control dendrite initiation and growth; (2) engineering surface morphology of the lithium deposition to avoid dendrite formation via adjusting the composition and concentration of the electrolyte; (3) controlling battery working conditions. From a survey of the literature, the areas that require further study are proposed; e.g., refining the lithium deposition criteria, developing an effective AC self pre-heating method for low-temperature charging of lithium-ion batteries, and clarifying the role the solid electrolyte interphase (SEI) plays in determining the deposition morphology; to facilitate a refined control of the lithium deposition.

  15. Space use by Forster's Terns breeding in South San Francisco Bay

    USGS Publications Warehouse

    Bluso-Demers, J.; Colwell, M.A.; Takekawa, J.Y.; Ackerman, J.T.

    2008-01-01

    Parental care behaviors often differ in dimorphic seabirds, leading to sex-specific differences in foraging behaviors. However, few studies have examined sex-specific foraging behaviors in monomorphic seabirds. Using radio-telemetry, we studied Forster's Terns (Sterna forsteri) - a monomorphic and socially monogamous seabird - breeding in the South San Francisco Bay, California. Space use did not differ between males and females. Instead, space use varied by breeding stage and colony affiliation. Forster's Terns were located farthest from the nest during pre-breeding and post-breeding time periods, and closest to the nest during incubation and chick-rearing. Home-range size and core-use areas decreased as the breeding season progressed and were most concentrated in the post-breeding stage. The results of this and other studies indicate that tems, unlike other monomorphic seabirds studied, do not exhibit sex-specific differences in space use.

  16. Modifications of impurity transport and divertor sources by lithium wall conditioning in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Scotti, Filippo

    In the National Spherical Torus Experiment (NSTX), lithium coatings are evaporated on graphite plasma facing components (PFCs) for wall conditioning. In lithium-conditioned H-mode discharges, carbon accumulation is observed with core concentrations ≤10%, leading to a lack of density control, while lithium ions have concentrations ≤0.1%. In this thesis, modifications of carbon and lithium divertor sources as well as scrape-off layer (SOL) and core transport due to lithium conditioning are studied. Spectroscopic impurity influxes (measured by filtered cameras) and 2D multi-fluid edge transport simulations via the UEDGE code are employed to study divertor impurity sources and SOL transport, respectively. Core transport of carbon and lithium is analyzed using the impurity transport code MIST and the neoclassical transport codes NEO and NCLASS. A reduction of the carbon sputtering yield in the lower divertor is observed with lithium evaporation. However, weaker divertor impurity retention resulting from reduced recycling (inferred from UEDGE simulations) and the possible importance of wall sources can counteract this reduction in divertor carbon influxes. The suppression of edge-localized-modes (ELMs) is the primary cause of the increased carbon inventories in lithium-conditioned discharges, leading to lack of density control. Deviations from neoclassical predictions for carbon transport are observed at the pedestal top in lithium-conditioned discharges, indicating the presence of anomalous outward convection. While the lithium sputtering yield from lithium-coated graphite in the divertor is consistent with physical and temperature-enhanced sputtering, a strong reduction in ionized lithium influxes is observed, possibly due to prompt re-deposition. The different poloidal source distribution and the stronger divertor retention for lithium (inferred from UEDGE simulations) contribute to a lower edge lithium source with respect to carbon. The latter is due to the

  17. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating.

    PubMed

    Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi

    2016-03-15

    Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium-scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with "lithiophilic" coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm(2) over 80 cycles. PMID:26929378

  18. Lithium Dinitramide as an Additive in Lithium Power Cells

    NASA Technical Reports Server (NTRS)

    Gorkovenko, Alexander A.

    2007-01-01

    Lithium dinitramide, LiN(NO2)2 has shown promise as an additive to nonaqueous electrolytes in rechargeable and non-rechargeable lithium-ion-based electrochemical power cells. Such non-aqueous electrolytes consist of lithium salts dissolved in mixtures of organic ethers, esters, carbonates, or acetals. The benefits of adding lithium dinitramide (which is also a lithium salt) include lower irreversible loss of capacity on the first charge/discharge cycle, higher cycle life, lower self-discharge, greater flexibility in selection of electrolyte solvents, and greater charge capacity. The need for a suitable electrolyte additive arises as follows: The metallic lithium in the anode of a lithium-ion-based power cell is so highly reactive that in addition to the desired main electrochemical reaction, it engages in side reactions that cause formation of resistive films and dendrites, which degrade performance as quantified in terms of charge capacity, cycle life, shelf life, first-cycle irreversible capacity loss, specific power, and specific energy. The incidence of side reactions can be reduced through the formation of a solid-electrolyte interface (SEI) a thin film that prevents direct contact between the lithium anode material and the electrolyte. Ideally, an SEI should chemically protect the anode and the electrolyte from each other while exhibiting high conductivity for lithium ions and little or no conductivity for electrons. A suitable additive can act as an SEI promoter. Heretofore, most SEI promotion was thought to derive from organic molecules in electrolyte solutions. In contrast, lithium dinitramide is inorganic. Dinitramide compounds are known as oxidizers in rocket-fuel chemistry and until now, were not known as SEI promoters in battery chemistry. Although the exact reason for the improvement afforded by the addition of lithium dinitramide is not clear, it has been hypothesized that lithium dinitramide competes with other electrolyte constituents to react with

  19. Lithium overdosage and related tests.

    PubMed

    Pigatto, Paolo D; Dell'Osso, Bernardo; Guzzi, Gianpaolo

    2016-12-01

    Lithium acts biochemically through the inositol depletion in brain cortex. At low doses, however, it is partly effective and/or ineffective, whereas in high concentrations is toxic. We would like to make one point about this review. In fact, in our view, the patient should be given a support to correct hypernatremia and even sodium levels should be tested serially-along with serum lithium concentrations-because high sodium levels reduce the rate of elimination of lithium. Lithium is mainly a neurotoxicant. Lithium-related central nervous system toxicity as well as the cardiovascular and thyroid changes are most likely due to the cations (Na2 (+) and K(+)) competition. PMID:26753697

  20. Lead Poisoning

    MedlinePlus

    ... Experiments Stories Lessons Topics Games Activities Lessons MENU Lead Poisoning Kids Homepage Topics Pollution Lead Poisoning What is ... you can avoid contact with it! Sources of Lead Poisoning HOUSE PAINTS: Before1950, lead-based paint was used ...

  1. Lead Test

    MedlinePlus

    ... to determine lead sources, educating family members about lead poisoning , and instituting follow-up testing to monitor the ... high levels of lead, see the article on Lead Poisoning . The Occupational Safety and Health Administration (OSHA) has ...

  2. Lead Poisoning

    MedlinePlus

    Lead Poisoning What is it and who is affected? Lead is a highly toxic substance, exposure to which ... and children can suffer from the effects of lead poisoning, but childhood lead poisoning is much more frequent. ...

  3. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures.

    PubMed

    Huang, Cheng; Xiao, Jie; Shao, Yuyan; Zheng, Jianming; Bennett, Wendy D; Lu, Dongping; Saraf, Laxmikant V; Engelhard, Mark; Ji, Liwen; Zhang, Jiguang; Li, Xiaolin; Graff, Gordon L; Liu, Jun

    2014-01-01

    Lithium-sulphur batteries have high theoretical energy density and potentially low cost, but significant challenges such as severe capacity degradation prevent its widespread adoption. Here we report a new design of lithium-sulphur battery using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on lithium. Lithiated graphite placed in front of the lithium metal functions as an artificial, self-regulated solid electrolyte interface layer to actively control the electrochemical reactions and minimize the deleterious side reactions, leading to significant performance improvements. Lithium-sulphur cells incorporating this hybrid anodes deliver capacities of >800 mAh g(-1) for 400 cycles at a high rate of 1,737 mA g(-1), with only 11% capacity fade and a Coulombic efficiency >99%. This simple hybrid concept may also provide scientific strategies for protecting metal anodes in other energy-storage devices. PMID:24402522

  4. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures

    SciTech Connect

    Huang, C; Xiao, J; Shao, YY; Zheng, JM; Bennett, WD; Lu, DP; Saraf, LV; Engelhard, M; Ji, LW; Zhang, J; Li, XL; Graff, GL; Liu, J

    2014-01-09

    Lithium-sulphur batteries have high theoretical energy density and potentially low cost, but significant challenges such as severe capacity degradation prevent its widespread adoption. Here we report a new design of lithium-sulphur battery using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on lithium. Lithiated graphite placed in front of the lithium metal functions as an artificial, self-regulated solid electrolyte interface layer to actively control the electrochemical reactions and minimize the deleterious side reactions, leading to significant performance improvements. Lithium-sulphur cells incorporating this hybrid anodes deliver capacities of >800 mAhg(-1) for 400 cycles at a high rate of 1,737mAg(-1), with only 11% capacity fade and a Coulombic efficiency >99%. This simple hybrid concept may also provide scientific strategies for protecting metal anodes in other energy-storage devices.

  5. Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lithium ion batteries, which use a new battery chemistry, are being developed under cooperative agreements between Lockheed Martin, Ultralife Battery, and the NASA Lewis Research Center. The unit cells are made in flat (prismatic) shapes that can be connected in series and parallel to achieve desired voltages and capacities. These batteries will soon be marketed to commercial original-equipment manufacturers and thereafter will be available for military and space use. Current NiCd batteries offer about 35 W-hr/kg compared with 110 W-hr/kg for current lithium ion batteries. Our ultimate target for these batteries is 200 W-hr/kg.

  6. LITHIUM PROPHYLAXIS IN AFFECTIVE DISORDER

    PubMed Central

    Rao, A. Venkoba; Hariharasubramanian, N.; Devi, S. Parvathi; Sugumar, A.; Srinivasan, V.

    1982-01-01

    SUMMARY Out of 108 patients on the rolls in the Lithium clinic, Madurai Medical College and Govt. Rajaji Hospital, Madurai, India, 47 patients suffering from affective disorders receiving lithium continuously for more than three years were analysed with a view to study the recurrences. Thirteen suffered no relapses while on lithium while nineteen experienced them while on lithium. Four were free from recurrences after lithium was withdrawn- Seven defaulted but suffered recurrences while in four the drug was withdrawn and in both the groups remission was achieved with re-administration of lithium. The study reveals that lithium besides averting the recurrences can reduce the frequency, number, duration, intensity of episodes and improve the amenability to drugs. Among the symptoms, suicidal ideas and behaviour and insight were found to be influenced favourably by lithium. Among the factors that help favourable response to lithium were a positive family history of affective disorder, in the first degree relatives and lesser frequency and number of episodes in the pre-lithium period. A reappraisal of the natural history of the illness is called for in the light of lithium prophylaxis of manic depressive psychosis. PMID:21965880

  7. Cassava Breeding I: The Value of Breeding Value

    PubMed Central

    Ceballos, Hernán; Pérez, Juan C.; Joaqui Barandica, Orlando; Lenis, Jorge I.; Morante, Nelson; Calle, Fernando; Pino, Lizbeth; Hershey, Clair H.

    2016-01-01

    Breeding cassava relies on several selection stages (single row trial-SRT; preliminary; advanced; and uniform yield trials—UYT). This study uses data from 14 years of evaluations. From more than 20,000 genotypes initially evaluated only 114 reached the last stage. The objective was to assess how the data at SRT could be used to predict the probabilities of genotypes reaching the UYT. Phenotypic data from each genotype at SRT was integrated into the selection index (SIN) used by the cassava breeding program. Average SIN from all the progenies derived from each progenitor was then obtained. Average SIN is an approximation of the breeding value of each progenitor. Data clearly suggested that some genotypes were better progenitors than others (e.g., high number of their progenies reaching the UYT), suggesting important variation in breeding values of progenitors. However, regression of average SIN of each parental genotype on the number of their respective progenies reaching UYT resulted in a negligible coefficient of determination (r2 = 0.05). Breeding value (e.g., average SIN) at SRT was not efficient predicting which genotypes were more likely to reach the UYT stage. Number of families and progenies derived from a given progenitor were more efficient predicting the probabilities of the progeny from a given parent reaching the UYT stage. Large within-family genetic variation tends to mask the true breeding value of each progenitor. The use of partially inbred progenitors (e.g., S1 or S2 genotypes) would reduce the within-family genetic variation thus making the assessment of breeding value more accurate. Moreover, partial inbreeding of progenitors can improve the breeding value of the original (S0) parental material and sharply accelerate genetic gains. For instance, homozygous S1 genotypes for the dominant resistance to cassava mosaic disease (CMD) could be generated and selected. All gametes from these selected S1 genotypes would carry the desirable allele and

  8. Cassava Breeding I: The Value of Breeding Value.

    PubMed

    Ceballos, Hernán; Pérez, Juan C; Joaqui Barandica, Orlando; Lenis, Jorge I; Morante, Nelson; Calle, Fernando; Pino, Lizbeth; Hershey, Clair H

    2016-01-01

    Breeding cassava relies on several selection stages (single row trial-SRT; preliminary; advanced; and uniform yield trials-UYT). This study uses data from 14 years of evaluations. From more than 20,000 genotypes initially evaluated only 114 reached the last stage. The objective was to assess how the data at SRT could be used to predict the probabilities of genotypes reaching the UYT. Phenotypic data from each genotype at SRT was integrated into the selection index (SIN) used by the cassava breeding program. Average SIN from all the progenies derived from each progenitor was then obtained. Average SIN is an approximation of the breeding value of each progenitor. Data clearly suggested that some genotypes were better progenitors than others (e.g., high number of their progenies reaching the UYT), suggesting important variation in breeding values of progenitors. However, regression of average SIN of each parental genotype on the number of their respective progenies reaching UYT resulted in a negligible coefficient of determination (r (2) = 0.05). Breeding value (e.g., average SIN) at SRT was not efficient predicting which genotypes were more likely to reach the UYT stage. Number of families and progenies derived from a given progenitor were more efficient predicting the probabilities of the progeny from a given parent reaching the UYT stage. Large within-family genetic variation tends to mask the true breeding value of each progenitor. The use of partially inbred progenitors (e.g., S1 or S2 genotypes) would reduce the within-family genetic variation thus making the assessment of breeding value more accurate. Moreover, partial inbreeding of progenitors can improve the breeding value of the original (S0) parental material and sharply accelerate genetic gains. For instance, homozygous S1 genotypes for the dominant resistance to cassava mosaic disease (CMD) could be generated and selected. All gametes from these selected S1 genotypes would carry the desirable allele and

  9. 77 FR 28259 - Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... for mailpieces containing lithium metal or lithium-ion cells or batteries and applies regardless of...'' instead of ``lithium content'' for secondary lithium-ion batteries when describing maximum quantity limits...-ion (Rechargeable) Cells and Batteries Small consumer-type lithium-ion cells and batteries like...

  10. Breeding potential of elite Pee Dee germplasm in Upland cotton breeding programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successful plant breeding programs begin with parental line selection. Effective parental line selection is facilitated when the breeding potential of candidate parental lines is known. Using topcross families involving germplasm representing eight US public cotton breeding programs, we evaluated th...

  11. Fabrication of Lead-Free Lithium-Doped Na0.5K0.5NbO3 Piezoelectric Ceramics with Dense Grain Structure Using Sol-Gel Surface Coating

    NASA Astrophysics Data System (ADS)

    Lim, Sun Kyung; Han, Jeong Seon; Yoo, Ae Ri; Lee, Seong Eui; Lee, Hee Chul

    2013-10-01

    Lead-free piezoelectric 0.06(LiNbO3)-0.94(Na0.5K0.5)NbO3 (LNKN) ceramics in disc form were fabricated and characterized to acquire good electromechanical properties. A molding method including cold isostatic pressing (CIP) was used to form a dense and regular microstructure and suppress the cracking problems of LNKN ceramics during the following high-temperature sintering. The LNKN ceramic sintered at 1040 °C showed a high piezoelectric constant d33 of 170 pC/N owing to its high density. Furthermore, perovskite LNKN films with the same composition as the ceramics were fabricated using 2-methoxyethanol-based sol-gel solution. The sol-gel surface coating on the LNKN ceramics was found to be very effective for increasing the piezoelectric constant because of the interface stabilization effect leading to a uniform electric field in piezoelectric elements. As a result, we obtained the highest piezoelectric constant d33 of 183 pC/N. The lead-free LNKN ceramics are promising for applications in eco-friendly ferroelectric and piezoelectric devices.

  12. Bioavailability of lithium from lithium citrate syrup versus conventional lithium carbonate tablets.

    PubMed

    Guelen, P J; Janssen, T J; De Witte, T C; Vree, T B; Benson, K

    1992-10-01

    The bioavailability of lithium citrate syrup was compared with that of regular lithium carbonate tablets in 18 healthy male human volunteers. Blood samples were collected up to 48 h after dosing. Lithium serum concentrations were determined by means of AAS. The absorption rate following oral administration of the syrup was greater (tmax 0.8 h) than following administration of regular tablets (tmax 1.4 h). Maximum lithium serum concentrations, however, were only about 10 per cent higher after syrup dosing and serum concentrations resulting from syrup and tablets were almost superimposable from 2 h after dosing. The terminal half-life of lithium was found to be 22 h after syrup as well as after tablet dosing. No side-effects were observed during the study. The bioavailability of lithium from syrup relative to tablets was found to be bioequivalent with respect to the maximum lithium serum concentration and the extent of drug absorption (AUC). PMID:1489941

  13. Diet of canvasbacks during breeding

    USGS Publications Warehouse

    Austin, J.E.; Serie, J.R.; Noyes, J.H.

    1990-01-01

    We examined diets of canvasbacks (Aythya valisineria) breeding in southwestern Manitoba during 1977-81. Percent volume of animal foods consumed did not differ between males and females nor among prenesting, rapid follicle growth, laying, incubation, and renesting periods in females (mean = 50.1%). Tubers and shoots of fennelleaf pondweed (Potamogeton pectinatus) and midge larvae (Chironomidae) were the predominant foods, comprising on average 45% and 23% of the diet volume, respectively. Continued importance of plant foods to canvasbacks throughout reproduction contrasts with the mostly invertebrate diets of other prairie-breeding ducks, and does not fit current theories of nutritional ecology of breeding anatids (i.e., females meet the protein requirements of reproduction by consuming a high proportion of animal foods).

  14. Lithium disulfide battery

    DOEpatents

    Kaun, Thomas D.

    1988-01-01

    A negative electrode limited secondary electrochemical cell having dense FeS.sub.2 positive electrode operating exclusively on the upper plateau, a Li alloy negative electrode and a suitable lithium-containing electrolyte. The electrolyte preferably is 25 mole percent LiCl, 38 mole percent LiBr and 37 mole percent KBr. The cell may be operated isothermally.

  15. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C. Austen; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  16. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C.A.; Liu, C.

    1996-04-09

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  17. Lithium and Pregnancy

    MedlinePlus

    ... role in the rate of miscarriage, which include maternal age, gestational age, and history of previous miscarriage that ... Studies on children up to seven years of age who were exposed to lithium during pregnancy did not find significant physical, mental, or behavioral ...

  18. Lithium thionyl chloride battery

    SciTech Connect

    Saathoff, D.J.; Venkatasetty, H.V.

    1982-10-19

    The discharge rate and internal conductivity of electrochemical cell including a lithium anode, and a cathode and an electrolyte including LiAlCl4 and SOC2 is improved by the addition of an amount of a mixture containing AlCl3 and butyl pyridinium chloride.

  19. Lithium battery discharge tests

    NASA Technical Reports Server (NTRS)

    Johnson, C. J.

    1980-01-01

    The long term discharge of a variety of lithium cells was characterized and the susceptibility of the cells to chemical variation during the slow discharge was tested. A shunt resistor was set across the terminals to monitor the voltage as a function of time. Failures were identified by premature voltage drops.

  20. Definition of animal breeding goals for sustainable production systems.

    PubMed

    Olesen, I; Groen, A F; Gjerde, B

    2000-03-01

    What we do is determined by the way we "view" a complex issue and what sample of issues or events we choose to deal with. In this paper, a model based on a communal, cultural, or people-centered worldview, informed by a subjective epistemology and a holistic ontology, is considered. Definitions and interpretations of sustainable agriculture are reviewed. Common elements in published definitions of sustainable agriculture and animal production among those who seek long-term and equitable solutions for food production are resource efficiency, profitability, productivity, environmental soundness, biodiversity, social viability, and ethical aspects. Possible characteristics of future sustainable production systems and further development are presented. The impact of these characteristics on animal breeding goals is reviewed. The need for long-term biologically, ecologically, and sociologically sound breeding goals is emphasized, because animal breeding determined only by short-term market forces leads to unwanted side effects. Hence, a procedure for defining animal breeding goals with ethical priorities and weighing of market and non-market values is suggested. Implementation of non-market as well as market economic trait values in the aggregate genotype, as suggested, may allow for breeding programs that contribute to sustainable production systems. Examples of breeding goals in salmon, cattle, and pigs are given, and the resulting genetic responses are evaluated with respect to economic profit (or costs) and other criteria of sustainability. Important prerequisites for breeding programs for sustainable production are appropriate governmental policies, awareness of our way of thinking, and a more communal worldview informed by a subjective epistemology and a holistic ontology. PMID:10764063

  1. Emperor penguins breeding on iceshelves.

    PubMed

    Fretwell, Peter T; Trathan, Phil N; Wienecke, Barbara; Kooyman, Gerald L

    2014-01-01

    We describe a new breeding behaviour discovered in emperor penguins; utilizing satellite and aerial-survey observations four emperor penguin breeding colonies have been recorded as existing on ice-shelves. Emperors have previously been considered as a sea-ice obligate species, with 44 of the 46 colonies located on sea-ice (the other two small colonies are on land). Of the colonies found on ice-shelves, two are newly discovered, and these have been recorded on shelves every season that they have been observed, the other two have been recorded both on ice-shelves and sea-ice in different breeding seasons. We conduct two analyses; the first using synthetic aperture radar data to assess why the largest of the four colonies, for which we have most data, locates sometimes on the shelf and sometimes on the sea-ice, and find that in years where the sea-ice forms late, the colony relocates onto the ice-shelf. The second analysis uses a number of environmental variables to test the habitat marginality of all emperor penguin breeding sites. We find that three of the four colonies reported in this study are in the most northerly, warmest conditions where sea-ice is often sub-optimal. The emperor penguin's reliance on sea-ice as a breeding platform coupled with recent concerns over changed sea-ice patterns consequent on regional warming, has led to their designation as "near threatened" in the IUCN red list. Current climate models predict that future loss of sea-ice around the Antarctic coastline will negatively impact emperor numbers; recent estimates suggest a halving of the population by 2052. The discovery of this new breeding behaviour at marginal sites could mitigate some of the consequences of sea-ice loss; potential benefits and whether these are permanent or temporary need to be considered and understood before further attempts are made to predict the population trajectory of this iconic species. PMID:24416381

  2. Comparison of molecular breeding values based on within- and across-breed training in beef cattle

    PubMed Central

    2013-01-01

    Background Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized to predict genetic merit in differing breeds based on simulation studies have been reported, as have the efficacies of predictors trained using data from multiple breeds to predict the genetic merit of purebreds. However, comparable studies using beef cattle field data have not been reported. Methods Molecular breeding values for weaning and yearling weight were derived and evaluated using a database containing BovineSNP50 genotypes for 7294 animals from 13 breeds in the training set and 2277 animals from seven breeds (Angus, Red Angus, Hereford, Charolais, Gelbvieh, Limousin, and Simmental) in the evaluation set. Six single-breed and four across-breed genomic predictors were trained using pooled data from purebred animals. Molecular breeding values were evaluated using field data, including genotypes for 2227 animals and phenotypic records of animals born in 2008 or later. Accuracies of molecular breeding values were estimated based on the genetic correlation between the molecular breeding value and trait phenotype. Results With one exception, the estimated genetic correlations of within-breed molecular breeding values with trait phenotype were greater than 0.28 when evaluated in the breed used for training. Most estimated genetic correlations for the across-breed trained molecular breeding values were moderate (> 0.30). When molecular breeding values were evaluated in breeds that were not in the training set, estimated genetic correlations clustered around zero. Conclusions Even for closely related breeds, within- or across-breed trained molecular breeding values have limited prediction accuracy for breeds that were not in the training set. For breeds in the training

  3. Terror breeds terrorists.

    PubMed

    de Zulueta, Felicity

    2006-01-01

    Terrorism can be carried out by the state or by its citizens. The latter may be labelled 'freedom fighters' or 'terrorists' depending on the political context. One of the most important aetiological factors driving Islamic terrorists is the experience of alienation and shame. This sense of being made to feel totally invalidated, of feeling worthless in the eyes of the other, is at the root of rage and violent revenge, implying that the way the current 'War on Terror' is being fought by the United States and the United Kingdom can only lead to more terrorism and danger for our society. PMID:16594374

  4. Breeding monkeys for biomedical research

    NASA Technical Reports Server (NTRS)

    Bourne, G. H.; Golarzdebourne, M. N.; Keeling, M. E.

    1973-01-01

    Captive bred rhesus monkeys show much less pathology than wild born animals. The monkeys may be bred in cages or in an outdoor compound. Cage bred animals are not psychologically normal which makes then unsuited for some types of space related research. Compound breeding provides contact between mother and infant and an opportunity for the infants to play with their peers which are important requirements to help maintain their behavioral integrity. Offspring harvested after a year in the compound appear behaviorally normal and show little histopathology. Compound breeding is also an economical method for the rapid production of young animals. The colony can double its size about every two and a half years.

  5. Breed base representation in dairy animals of 5 breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inheritance of DNA from different dairy breeds can be determined by genotyping, just as individual ancestors such as parents, grandparents, or even great grandparents can be identified correctly in a high percentage of the cases by genotyping even if not reported or reported incorrectly in pedigrees...

  6. Proximate drivers of spatial segregation in non-breeding albatrosses

    PubMed Central

    Clay, Thomas A.; Manica, Andrea; Ryan, Peter G.; Silk, Janet R. D.; Croxall, John P.; Ireland, Louise; Phillips, Richard A.

    2016-01-01

    Many animals partition resources to avoid competition, and in colonially-breeding species this often leads to divergent space or habitat use. During the non-breeding season, foraging constraints are relaxed, yet the patterns and drivers of segregation both between and within populations are poorly understood. We modelled habitat preference to examine how extrinsic (habitat availability and intra-specific competition) and intrinsic factors (population, sex and breeding outcome) influence the distributions of non-breeding grey-headed albatrosses Thalassarche chrysostoma tracked from two major populations, South Georgia (Atlantic Ocean) and the Prince Edward Islands (Indian Ocean). Spatial segregation was greater than expected, reflecting distinct seasonal differences in habitat selection and accessibility, and avoidance of intra-specific competition with local breeders. Previously failed birds segregated spatially from successful birds during summer, when they used less productive waters, suggesting a link between breeding outcome and subsequent habitat selection. In contrast, we found weak evidence of sexual segregation, which did not reflect a difference in habitat use. Our results indicate that the large-scale spatial structuring of albatross distributions results from interactions between extrinsic and intrinsic factors, with important implications for population dynamics. As habitat preferences differed substantially between colonies, populations should be considered independently when identifying critical areas for protection. PMID:27443877

  7. Proximate drivers of spatial segregation in non-breeding albatrosses.

    PubMed

    Clay, Thomas A; Manica, Andrea; Ryan, Peter G; Silk, Janet R D; Croxall, John P; Ireland, Louise; Phillips, Richard A

    2016-01-01

    Many animals partition resources to avoid competition, and in colonially-breeding species this often leads to divergent space or habitat use. During the non-breeding season, foraging constraints are relaxed, yet the patterns and drivers of segregation both between and within populations are poorly understood. We modelled habitat preference to examine how extrinsic (habitat availability and intra-specific competition) and intrinsic factors (population, sex and breeding outcome) influence the distributions of non-breeding grey-headed albatrosses Thalassarche chrysostoma tracked from two major populations, South Georgia (Atlantic Ocean) and the Prince Edward Islands (Indian Ocean). Spatial segregation was greater than expected, reflecting distinct seasonal differences in habitat selection and accessibility, and avoidance of intra-specific competition with local breeders. Previously failed birds segregated spatially from successful birds during summer, when they used less productive waters, suggesting a link between breeding outcome and subsequent habitat selection. In contrast, we found weak evidence of sexual segregation, which did not reflect a difference in habitat use. Our results indicate that the large-scale spatial structuring of albatross distributions results from interactions between extrinsic and intrinsic factors, with important implications for population dynamics. As habitat preferences differed substantially between colonies, populations should be considered independently when identifying critical areas for protection. PMID:27443877

  8. Network Candidate Genes in Breeding for Drought Tolerant Crops

    PubMed Central

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-01-01

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance. PMID:26193269

  9. Lead Poisoning

    MedlinePlus

    Lead is a metal that occurs naturally in the earth's crust. Lead can be found in all parts of our ... from human activities such as mining and manufacturing. Lead used to be in paint; older houses may ...

  10. Lead poisoning

    MedlinePlus

    ... swallows a lead object or breathes in lead dust, some of the poison can stay in the ... a health problem. Lead is everywhere, including dirt, dust, new toys, and old house paint. Unfortunately, you ...

  11. Lead Toxicity

    MedlinePlus

    ... homes. • Most people, especially children, who suffer from lead poisoning are exposed through lead-contaminated household dust or ... and six if they are at risk of lead poisoning (see: ). Who can I call to get more ...

  12. Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations

    PubMed Central

    Collard, Bert C. Y.; Vera Cruz, Casiana M.; McNally, Kenneth L.; Virk, Parminder S.; Mackill, David J.

    2008-01-01

    Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs. PMID:18528527

  13. Population-Wide Failure to Breed in the Clark’s Nutcracker (Nucifraga columbiana)

    PubMed Central

    Schaming, Taza D.

    2015-01-01

    In highly variable environments, conditions can be so stressful in some years that entire populations forgo reproduction in favor of higher likelihood of surviving to breed in future years. In two out of five years, Clark’s nutcrackers (Nucifraga Columbiana) in the Greater Yellowstone Ecosystem exhibited population-wide failure to breed. Clark’s nutcrackers at the study site experienced substantial interannual differences in food availability and weather conditions, and the two nonbreeding years corresponded with low whitebark pine (Pinus albicaulis) cone crops the previous autumn (≤ an average of 8 ± 2 cones per tree versus ≥ an average of 20 ± 2 cones per tree during breeding years) and high snowpack in early spring (≥ 61.2 ± 5.5 cm versus ≤ 51.9 ± 4.4 cm during breeding years). The average adult body condition index during the breeding season was significantly lower in 2011 (-1.5 ± 1.1), a nonbreeding year, as compared to 2012 (6.2 ± 2.0), a breeding year. The environmental cues available to the birds prior to breeding, specifically availability of cached whitebark pine seeds, may have allowed them to predict that breeding conditions would be poor, leading to the decision to skip breeding. Alternatively, the Clark’s nutcrackers may have had such low body energy stores that they chose not to or were unable to breed. Breeding plasticity would allow Clark’s nutcrackers to exploit an unpredictable environment. However, if large-scale mortality of whitebark pines is leading to an increase in the number of nonbreeding years, there could be serious population-level and ecosystem-wide consequences. PMID:25970294

  14. Forage Breeding and New Varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At Agriculture and Agri-Food Canada, the focus of the forage breeding program is to identify and develop novel germplasm and cultivars. The main objective is to produce cultivars with superior persistence, nutritive value and forage yield. This program also emphasizes two other objectives, namely:...

  15. Genomic selection in plant breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor ...

  16. USDA lettuce breeding and genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lettuce industry of California requires continued development of improved, adapted cultivars to meet new disease and insect problems, changes in the market, and changes in growing procedures. The USDA lettuce breeding and genetics project aims to incorporate valuable traits into crisphead, mixed...

  17. The evolution of potato breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato cultivars in most regions of the world are tetraploid and clonally propagated. For over a century, the breeding strategy has been phenotypic recurrent selection. However, the polyploid nature of the crop prevents breeders from eliminating deleterious alleles and assembling positive alleles fo...

  18. Forage breeding and new varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At Agriculture and Agri-Food Canada, the focus of the forage breeding program is to identify and develop novel germplasm and cultivars. The main objective is to produce cultivars with superior persistence, nutritive value and forage yield. This program also emphasizes two other objectives, namely:...

  19. Breeding and propagating oakleaf hydrangeas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An oakleaf hydrangea breeding program at the U.S. National Arboretum’s worksite in McMinnville, Tenn. was started in 1996 for the purpose of developing attractive, compact oakleaf hydrangea cultivars suitable for use in small residential gardens. ‘Ruby Slippers’ and ‘Munchkin’ oakleaf hydrangeas we...

  20. Experimental lithium system. Final report

    SciTech Connect

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m/sup 3/ lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion.

  1. The history of lithium therapy

    PubMed Central

    Shorter, Edward

    2013-01-01

    The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. Meanwhile, interest in lithium for the prophylaxis of depression was growing apace and today the agent is widely prescribed for that indication, even though it has not been accepted by the Food and Drug Administration. Lithium was almost derailed by a small group of opponents from the Maudsley Hospital and its status today is threatened by the “mood stabilizers.” PMID:19538681

  2. Modeling of Spherical Torus Plasmas for Liquid Lithium Wall Experiments

    SciTech Connect

    R. Kaita; S. Jardin; B. Jones; C. Kessel; R. Majeski; J. Spaleta; R. Woolley; L. Zakharo; B. Nelson; M. Ulrickson

    2002-01-29

    Liquid metal walls have the potential to solve first-wall problems for fusion reactors, such as heat load and erosion of dry walls, neutron damage and activation, and tritium inventory and breeding. In the near term, such walls can serve as the basis for schemes to stabilize magnetohydrodynamic (MHD) modes. Furthermore, the low recycling characteristics of lithium walls can be used for particle control. Liquid lithium experiments have already begun in the Current Drive eXperiment-Upgrade (CDX-U). Plasmas limited with a toroidally localized limiter have been investigated, and experiments with a fully toroidal lithium limiter are in progress. A liquid surface module (LSM) has been proposed for the National Spherical Torus Experiment (NSTX). In this larger ST, plasma currents are in excess of 1 MA and a typical discharge radius is about 68 cm. The primary motivation for the LSM is particle control, and options for mounting it on the horizontal midplane or in the divertor region are under consideration. A key consideration is the magnitude of the eddy currents at the location of a liquid lithium surface. During plasma start up and disruptions, the force due to such currents and the magnetic field can force a conducting liquid off of the surface behind it. The Tokamak Simulation Code (TSC) has been used to estimate the magnitude of this effect. This program is a two dimensional, time dependent, free boundary simulation code that solves the MHD equations for an axisymmetric toroidal plasma. From calculations that match actual ST equilibria, the eddy current densities can be determined at the locations of the liquid lithium. Initial results have shown that the effects could be significant, and ways of explicitly treating toroidally local structures are under investigation.

  3. METAPOPULATION STRUCTURE AND DYNAMICS OF POND BREEDING

    EPA Science Inventory

    Our review indicates that pond breeding amphibians exhibit highly variable spatial and temporal population dynamics, such that no single generalized model can realistically describe these animals. We propose that consideration of breeding pond permanence, and adaptations to pond ...

  4. Membranes in Lithium Ion Batteries

    PubMed Central

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  5. Lead Poisoning

    MedlinePlus

    ... our environment. Much of it comes from human activities such as mining and manufacturing. Lead used to be in paint; older houses may still have lead paint. You could be exposed to lead by Eating food or drinking water that contains lead. Water pipes in older homes ...

  6. Lead poisoning

    SciTech Connect

    Rekus, J.F.

    1992-08-01

    Construction workers who weld, cut or blast structural steel coated with lead-based paint are at significant risk of lead poisoning. Although technology to control these exposures may not have existed when the lead standard was promulgated, it is available today. Employers who do not take steps to protect their employees from lead exposure may be cited and fined severely for their failure.

  7. Lithium batteries with laminar anodes

    SciTech Connect

    Bruder, A.H.

    1986-11-04

    This patent describes a laminar electrical cell, comprising an anode, a cathode, and an electrolyte permeable separator between the anode and the cathode. The anode consists essentially of a layer of lithium having at least one surface of unreacted lithium metal in direct contact with and adhered to a layer of conductive plastic with no intermediate adhesive promoting adjuncts. The cathode comprises a slurry of MnO/sub 2/ and carbon particles in a solution of a lithium salt in an organic solvent, the solution permeating the separator and being in contact with the lithium.

  8. LITHIUM TOXICITY - A DESCRIPTIVE STUDY

    PubMed Central

    Kumar, Ratanendra; Deb, Jayant Kumar; Sinha, Baxi Neeraj Prasad; Sinha, Vinod Kumar

    2001-01-01

    Lithium is the treatment for acute mania and bipolar disorders. Ever since its introduction in the psychiatric arsenal, case reports of toxicity have been appearing in the literature at regular intervals. This study was thus carried out to study the presentation and associated features of lithium toxicity. In this retrospective study, case record files of all patients suspected to have developed lithium toxicity during a five year period were retrieved. It was found that toxicity presented most commonly with cerebellar symptoms and appeared at lower serum levels. Lithium could be restarted albeit at a lower dose and with a gradual titration in a number of cases. PMID:21407839

  9. Considerations related to breed or biological type.

    PubMed

    Van Eenennaam, Alison L

    2013-11-01

    This article reviews the literature on breed, biological type, and breeding system and their impact on female fertility, especially as they relate to heifer development. The attributes of different breeding systems and their appropriate use is discussed. In addition, the extant and emerging selection tools that are available for replacement heifer selection are reviewed. PMID:24182431

  10. Genetic Diversity of US Sheep Breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the genetic relationships between US sheep breeds is useful in developing conservation strategies and actions. A broad sampling of individual sheep from 28 breeds was performed. Breed types included: fine wool, meat types, long wool, hair, prolific, and fat tailed. Blood and semen samp...

  11. Emperor Penguins Breeding on Iceshelves

    PubMed Central

    Fretwell, Peter T.; Trathan, Phil N.; Wienecke, Barbara; Kooyman, Gerald L.

    2014-01-01

    We describe a new breeding behaviour discovered in emperor penguins; utilizing satellite and aerial-survey observations four emperor penguin breeding colonies have been recorded as existing on ice-shelves. Emperors have previously been considered as a sea-ice obligate species, with 44 of the 46 colonies located on sea-ice (the other two small colonies are on land). Of the colonies found on ice-shelves, two are newly discovered, and these have been recorded on shelves every season that they have been observed, the other two have been recorded both on ice-shelves and sea-ice in different breeding seasons. We conduct two analyses; the first using synthetic aperture radar data to assess why the largest of the four colonies, for which we have most data, locates sometimes on the shelf and sometimes on the sea-ice, and find that in years where the sea-ice forms late, the colony relocates onto the ice-shelf. The second analysis uses a number of environmental variables to test the habitat marginality of all emperor penguin breeding sites. We find that three of the four colonies reported in this study are in the most northerly, warmest conditions where sea-ice is often sub-optimal. The emperor penguin’s reliance on sea-ice as a breeding platform coupled with recent concerns over changed sea-ice patterns consequent on regional warming, has led to their designation as “near threatened” in the IUCN red list. Current climate models predict that future loss of sea-ice around the Antarctic coastline will negatively impact emperor numbers; recent estimates suggest a halving of the population by 2052. The discovery of this new breeding behaviour at marginal sites could mitigate some of the consequences of sea-ice loss; potential benefits and whether these are permanent or temporary need to be considered and understood before further attempts are made to predict the population trajectory of this iconic species. PMID:24416381

  12. International strategic minerals inventory summary report; lithium

    USGS Publications Warehouse

    Anstett, T.F.; Krauss, U.H.; Ober, J.A.; Schmidt, H.W.

    1990-01-01

    Major world resources of lithium are described in this summary report of information in the International Strategic Minerals Inventory (ISMI). ISMI is a cooperative data-collection effort of earth-science and mineral-resource agencies in Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, the United Kingdom, and the United States of America. Part I of this report presents an overview of the resources and potential supply of lithium on the basis of inventory information; Part II contains tables of some of the geologic information and mineral-resource information and production data collected by ISMI participants. In terms of lithium-resource availability, present economically viable resources are more than sufficient to meet likely demand in the foreseeable future. In times of excess capacity such as currently exist, some pegmatite operations cannot compete with brine operations, which are less costly. A further production shift from pegmatites to brines will result in the concentration of supply in a few countries such as Chile and the United States. This shift would lead to the dependence of industrialized countries on deliveries from these sources.

  13. Lithium intercalation in porous carbon electrodes

    SciTech Connect

    Tran, T.D.; Feikert, J.; Pekala, R.W.

    1995-04-01

    Carbons derived from the phase separation of polyacrylonitrile/solvent mixtures were investigated as lithium intercalation anodes for rechargeable lithium-ion batteries. The carbon electrodes have a bulk density of 0.35-0.5 g/cm{sup 3}, relatively low surface areas (< 10 m{sup 2}/g), and micron-size cells. Pyrolysis temperature influences the reversible lithium intercalation and the irreversible capacity (associated with the formation of the passivating layer). Carbon electrodes pyrolyzed at 600{degrees}C have first-cycle capacity as high as 550 mAh/g as well as large irreversible capacity, 440 mAh/g. Electrodes prepared at 1050{degrees}C have reversible capacities around 270 mAh/g with relatively lower capacity losses (120 mAh/g). Doping the organic precursors with phosphoric acid, prior to pyrolysis at 1050{degrees}C, leads to carbon electrodes with reversible capacities as high as 450 mAh/g. The capacity of doped carbon increased with increasing phosphorus concentration in the samples. The doped carbon anodes exhibited good cycleability and excellent coulombic efficiency. The electrochemical performance is related to morphology, chemical composition, and local structural order.

  14. Solid electrolyte: The key for high-voltage lithium batteries

    SciTech Connect

    Li, Juchuan; Ma, Cheng; Chi, Miaofang; Liang, Chengdu; Dudney, Nancy J.

    2014-10-14

    A solid-state high-voltage (5 V) lithium battery is demonstrated to deliver a cycle life of 10 000 with 90% capacity retention. Furthermore, the solid electrolyte enables the use of high-voltage cathodes and Li anodes with minimum side reactions, leading to a high Coulombic efficiency of 99.98+%.

  15. Separator for lithium batteries and lithium batteries including the separator

    SciTech Connect

    Foster, D.L.

    1989-03-14

    A multilayer separator is described for preventing the internal shorting of lithium batteries, the multilayer separator including porous membranes and an electroactive polymeric material contained within the separator layers wherein the polymer is one that will react with any lithium dendrites that could penetrate the separator thus preventing an internal short circuit of the cell.

  16. Brain lithium, N-acetyl aspartate and myo-inositol levels in older adults with bipolar disorder treated with lithium: a lithium-7 and proton magnetic resonance spectroscopy study

    PubMed Central

    Forester, Brent P; Finn, Chelsea T; Berlow, Yosef A; Wardrop, Megan; Renshaw, Perry F; Moore, Constance M

    2014-01-01

    Objectives We investigated the relationship between brain lithium levels and the metabolites N-acetyl aspartate (NAA) and myo-inositol (myo-Ino) in the anterior cingulate cortex of a group of older adults with bipolar disorder (BD). Methods This cross-sectional assessment included nine subjects (six males and three females) with bipolar I disorder and currently treated with lithium, who were examined at McLean Hospital’s Geriatric Psychiatry Research Program and Brain Imaging Center. The subjects’ ages ranged from 56 to 85 years (66.0 ± 9.7 years) and all subjects had measurements of serum and brain lithium levels. Brain lithium levels were assessed using lithium magnetic resonance spectroscopy. All subjects also had proton magnetic resonance spectroscopy to obtain measurements of NAA and myo-Ino. Results Brain lithium levels were associated with higher NAA levels [df = (1, 8), B = 12.53, t = 4.09, p < 0.005] and higher myo-Ino levels [df = (1, 7), F = 16.81, p < 0.006]. There were no significant effects of serum lithium levels on any of the metabolites. Conclusion Our findings of a relationship between higher brain lithium levels and elevated NAA levels in older adult subjects with BD may support previous evidence of lithium’s neuroprotective, neurotrophic, and mitochondrial function-enhancing effects. Elevated myo-Ino related to elevated brain lithium levels may reflect increased inositol monophosphatase (IMPase) activity, which would lead to an increase in myo-Ino levels. This is the first study to demonstrate alterations in NAA and myo-Ino in a sample of older adults with BD treated with lithium. PMID:18837863

  17. Ionic liquid-based electrolyte with binary lithium salts for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Zhu, Qizhen; Chen, Renjie; Chen, Nan; Chen, Yan; Ye, Yusheng; Qian, Ji; Li, Li

    2015-11-01

    Rechargeable Li-S batteries have suffered several technical obstacles, such as rapid capacity fading and low coulombic efficiency. To overcome these problems, we design new electrolytes containing N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide (Pyr1,2O1TFSI) and tri(ethylene glycol)dimethyl ether (TEGDME) in mass ratio of 7:3. Moreover, Lithium difluoro(oxalate)borate (LiODFB) is introduced for the modification. Although the addition of LiODFB as additive lead to extremely high viscosity of electrolyte and inferior performance of the cells, the electrolyte containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, 0.84 nm) and LiODFB (0.60 nm) mixture with a total molar concentration of 0.4 mol kg-1 as binary lithium salt shows excellent electrochemical performance. The Pyr1,2O1TFSI/TEGDME electrolyte with LiTFSI/LiODFB binary lithium salts in mole ratio of 6:4 is obtained after optimizing ratio. The Li-S cells containing this electrolyte system show excellent capacity and cycle performance, whose initial discharge capacity is 1264.4 mAh g-1, and retains 911.4 mAh g-1 after 50 cycles with the coulombic efficiency more than 95%. It can be attributed the solid-electrolyte interphase (SEI)-forming ability of LiODFB which protect Li anode from suffering lithium dendrites and prevent the shuttle phenomenon. The novel electrolytes provide good cycling stability and high coulombic efficiency for the Li-S batteries, which is suggested as a promising electrolyte for Li-S batteries.

  18. Lead poisoning

    MedlinePlus

    ... lead is still found in some modern faucets. Soil contaminated by decades of car exhaust or years ... house paint scrapings. Lead is more common in soil near highways and houses. Hobbies involving soldering, stained ...

  19. Migratory double breeding in Neotropical migrant birds

    PubMed Central

    Rohwer, Sievert; Hobson, Keith A.; Rohwer, Vanya G.

    2009-01-01

    Neotropical migratory songbirds typically breed in temperate regions and then travel long distances to spend the majority of the annual cycle in tropical wintering areas. Using stable-isotope methodology, we provide quantitative evidence of dual breeding ranges for 5 species of Neotropical migrants. Each is well known to have a Neotropical winter range and a breeding range in the United States and Canada. However, after their first bout of breeding in the north, many individuals migrate hundreds to thousands of kilometers south in midsummer to breed a second time during the same summer in coastal west Mexico or Baja California Sur. They then migrate further south to their final wintering areas in the Neotropics. Our discovery of dual breeding ranges in Neotropical migrants reveals a hitherto unrealized flexibility in life-history strategies for these species and underscores that demographic models and conservation plans must consider dual breeding for these migrants. PMID:19858484

  20. Unconventional methods in plant breeding.

    PubMed

    Melchers, G

    There are three wass whereby unconventional methods of plant genetics can be used for applied plant breeding. 1. The time necessary for breeding by recombination can be shortened, making use of the discovery that plants can be obtained directly from the products of meiosis, the "Gonen." Two new cultivars bred in tobacco by this method already exist. 2. Microbiological methods may be applied to mutation and selection in haploid or dihaploid cell cultures. New cultivars bred by this method have not yet been published, but it should be possible to make use of this technique in plant breeding. 3. Somatic hybridization of plants by fusions of protoplasts or by uptake of nuclei and other organelles (plastids, mitochondria) or pure nucleic acids is another useful method. There exist up to now somatic hybrid plants (a) between mutants of the liverwort Sphaerocarpos donnellii, (b) some varieties of tobacco, and (c) two species of Nicotiana. All these hybrids can also be produced by conventional sexual hybridization. It is impossible to predict how often incompatibility for cross-fertilization can be surmounted by somatic hybridization, as incompatibility between two genomes must be restricted to the fertilization process, but it can work on any stage of the development of the hybrid. PMID:1032113

  1. Temperature changes in spectral characteristics of electrons in metallic lithium

    SciTech Connect

    Popov, V.A.

    1995-12-01

    Self-consistent calculations of the electron energy structure in metallic lithium are performed taking into account atomic vibrations in the crystal lattice. A satisfactory agreement between the results of calculations and experimental data is achieved. The most significant changes in the electron spectrum of lithium revealed with rising temperature are as follows: (1) shift and broadening of core states of the 1s-asymmetry and (2) transition of outer electrons of the 2s-symmetry to the states of the 2p-symmetry leading to strengthening of the directional bonds. 10 refs., 1 fig., 1 tab.

  2. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  3. Intercell connector for lithium batteries

    SciTech Connect

    Bruder, A.H.

    1984-10-16

    Laminar batteries of series connected cells comprising lithium anodes and an electrolyte containing a passivating solvent reactive with lithium in which the cells are electrically connected in series by intercell barriers comprising outer layers of electrochemically inert electronically conducting material in contact with the electrochemically active anode and cathode of adjacent cells and a layer of metal foil between the electrochemically inert layers.

  4. Progress in secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1982-01-01

    The lithium/molybdenum trisulfide system is discussed. This system has a higher potential energy density than that of lithium/titanium disulfide. Possible energy densities and performance values for cells, projected from preliminary data obtained on small cells, are summarized. The electrode structure is emphasized as an important factor in the decreasing of capacity upon cycling.

  5. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  6. Synthesis and Characterization of Polyphosphazene Materials for Advanced Lithium-Water Batteries

    SciTech Connect

    Mason K. Harrup; Thomas A. Luther; Frederick F. Stewart; Christopher J. Orme; Mark L. Stone; William F. Bauer

    2007-08-01

    Development of long-lived high-energy lithium-water batteries hinges upon developing solid polymer electrolytes (SPEs) with the appropriate properties. These polymer membranes paradoxically must allow lithium atoms to pass from the metallic surface, oxidize to the ionic form, and then pass through the membrane to the water outside. At the same time, the membrane must exclude all water, tramp ions, and deleterious gases such as oxygen and carbon dioxide. SPE membranes are the leading choice for lithium-water batteries however, because current non-membrane approaches being pursued by other research groups suffer from two insurmountable problems - storage and non-productive energy loss via direct lithium/water reaction. In this paper, we present the results of our latest investigations into the transport of water and permanent gasses, such as carbon dioxide, through polyphosphazene SPE materials designed to address the challenges inherent in lithium water batteries.

  7. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.).

    PubMed

    Breseghello, Flavio; Coelho, Alexandre Siqueira Guedes

    2013-09-01

    Plant breeding can be broadly defined as alterations caused in plants as a result of their use by humans, ranging from unintentional changes resulting from the advent of agriculture to the application of molecular tools for precision breeding. The vast diversity of breeding methods can be simplified into three categories: (i) plant breeding based on observed variation by selection of plants based on natural variants appearing in nature or within traditional varieties; (ii) plant breeding based on controlled mating by selection of plants presenting recombination of desirable genes from different parents; and (iii) plant breeding based on monitored recombination by selection of specific genes or marker profiles, using molecular tools for tracking within-genome variation. The continuous application of traditional breeding methods in a given species could lead to the narrowing of the gene pool from which cultivars are drawn, rendering crops vulnerable to biotic and abiotic stresses and hampering future progress. Several methods have been devised for introducing exotic variation into elite germplasm without undesirable effects. Cases in rice are given to illustrate the potential and limitations of different breeding approaches. PMID:23551250

  8. Improved Carbon Anodes For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Surampudi, Subbarao; Attia, Alan; Halpert, Gerald

    1994-01-01

    Carbon anodes for rechargeable lithium cells improved by choosing binder contents and fabrication conditions to achieve maximum porosity, uniform loading, and maximum reversible lithium capacity. Stacking electrodes under pressure during assembly of cells increases cyclability of lithium. Rechargeable, high-energy-density lithium cells containing improved carbon anodes find use in spacecraft, military, communications, automotive, and other demanding applications.

  9. Lithium Treatment for Psychiatric Disorders

    PubMed Central

    Maletzky, Barry M.; Shore, James H.

    1978-01-01

    Although used around the world since 1949, lithium has come into extensive use in psychiatry in the United States only within the past decade. Before initiating treatment with this drug, physicians must be familiar with the diagnostic scheme of the major affective disorders, the indications and contraindications to lithium's use, and its principles of treatment, including evaluation before lithium therapy, criteria for monitoring blood levels and signs of impending toxicity. Despite earlier reports about the toxicity of lithium when it was promoted as a salt substitute, lithium is a safe drug. Its use not only has revolutionized the treatment of the major affective disorders, but has opened up new and broad avenues of research into the regulation of man's emotions. PMID:664651

  10. Lithium metaborate flux in silicate analysis

    USGS Publications Warehouse

    Ingamells, C.O.

    1970-01-01

    Lithium metaborate is an effective flux for silicates and other rock-forming minerals. The glass resulting from fusion is mechanically strong, reasonably nonhygroscopic, and is readily soluble in dilute acids. These characteristics lead to its use in X-ray spectrography and in methods which require whole-rock solutions, such as atomic absorption and emission spectrometry. Difficulties have been encountered in the use of such techniques : a high-quality reagent has been difficult to obtain ; fusion conditions must be rather closely controlled; graphite crucibles used in the fusions need special treatment. Methods for overcoming these difficulties are outlined. Selected procedures for various instrumental methods of analysis are described. ?? 1970.