Science.gov

Sample records for lithium niobate waveguide

  1. Strip loaded waveguide on lithium niobate thin films

    NASA Astrophysics Data System (ADS)

    Roussey, Matthieu; Karvinen, Petri; Häyrinen, Markus; Honkanen, Seppo; Kuittinen, Markku

    2016-02-01

    We present the experimental demonstration of a strip loaded waveguide on crystalline lithium niobate thin film. The structure consists in a 1 μm-wide and 200 nm-thick titanium dioxide strip waveguide on a 700 nm lithium niobate slab waveguide. It operates at the telecom wavelength for a TE-polarized light.

  2. Optical waveguides in lithium niobate: Recent developments and applications

    NASA Astrophysics Data System (ADS)

    Bazzan, Marco; Sada, Cinzia

    2015-12-01

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In all cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.

  3. Optical waveguides in lithium niobate: Recent developments and applications

    SciTech Connect

    Bazzan, Marco Sada, Cinzia

    2015-12-15

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In all cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.

  4. Polarization behaviour of femtosecond laser written waveguides in lithium niobate

    NASA Astrophysics Data System (ADS)

    Tejerina, M. R.; Biasetti, D. A.; Torchia, G. A.

    2015-09-01

    In this work, we analysed the polarization of guided light in femtosecond laser written waveguides. The studied waveguides were performed with different laser pulse energies in an x-cut lithium niobate crystal. The guided intensities were experimentally measured and compared with numerical simulations reaching a qualitatively good accordance. This comparison allowed a verification of the "mechanical expansion theory" which is useful to compute the refractive index field. Also, information related to the modelling of waveguides generated with different laser pulse energies was obtained. Both of these facts are keys to design and manufacture optical circuits by using this technological approach.

  5. Nonlinear diffusion model for annealed proton-exchanged waveguides in zirconium-doped lithium niobate.

    PubMed

    Langrock, Carsten; Roussev, Rostislav V; Nava, Giovanni; Minzioni, Paolo; Argiolas, Nicola; Sada, Cinzia; Fejer, Martin M

    2016-08-20

    Photorefractive-damage- (PRD) resistant zirconium-oxide-doped lithium niobate is investigated as a substrate for the realization of annealed proton-exchanged (APE) waveguides. Its advantages are a favorable distribution coefficient, PRD resistance comparable to magnesium-oxide-doped lithium niobate, and a proton-diffusion behavior resembling congruent lithium niobate. A 1D model for APE waveguides was developed based on a previous model for congruently melting lithium niobate. Evidence for a nonlinear index dependence on concentration was found. PMID:27556972

  6. Lithium niobate integrated photonic crystal and waveguides

    NASA Astrophysics Data System (ADS)

    Lim, Soon Thor; Ang, Thomas Y.-L.; Png, Ching Eng; Deng, Jun; Danner, Aaron J.

    2016-02-01

    In this work we successfully fabricated and measured PhCs patterned on a LiNbO3 APE waveguide. SIMS data indicate that after 5 hours exchange time a PE layer of 3μm can be obtained. The depth of holes was 2μm by applying a large milling current. We presented experimental characterization of the PhC waveguide and a well-defined PBG was observed from the transmission spectra. An extinction ratio was estimated to be approximately 15dB. Optical transmission results indicate that deep air holes can lead to a sharp band edge. This PhC waveguide is a good candidate for further development of an ultra-compact, low-voltage LiNbO3 modulator.

  7. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate

    NASA Technical Reports Server (NTRS)

    Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg

    2011-01-01

    This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing

  8. Tailoring entanglement through domain engineering in a lithium niobate waveguide

    PubMed Central

    Ming, Yang; Tan, Ai-Hong; Wu, Zi-Jian; Chen, Zhao-Xian; Xu, Fei; Lu, Yan-Qing

    2014-01-01

    We propose to integrate the electro-optic (EO) tuning function into on-chip domain engineered lithium niobate (LN) waveguide. Due to the versatility of LN, both the spontaneously parametric down conversion (SPDC) and EO interaction could be realized simultaneously. Photon pairs are generated through SPDC, and the formation of entangled state is modulated by EO processes. An EO tunable polarization-entangled photon state is proposed. Orthogonally-polarized and parallel-polarized entanglements of photon pairs are instantly switchable by tuning the applied field. The characteristics of the source are theoretically investigated showing adjustable bandwidths and high entanglement degrees. Moreover, other kinds of reconfigurable entanglement are also achievable based on suitable domain-design. We believe tailoring entanglement based on domain engineering is a very promising solution for next generation function-integrated quantum circuits. PMID:24770555

  9. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing.

    PubMed

    Volk, Martin F; Suntsov, Sergiy; Rüter, Christian E; Kip, Detlef

    2016-01-25

    We report on the fabrication and characterization of ridge waveguides in lithium niobate thin films by diamond blade dicing. The lithium niobate thin films with a thickness of 1 µm were fabricated by bonding a He-implanted lithium niobate wafer to a SiO(2)-coated lithium niobate wafer and crystal ion slicing. Propagation losses of 1.2 dB/cm for TE and 2.8 dB/cm for TM polarization were measured at 1550 nm for a 9.28 mm long and 2.1 µm wide waveguide using the Fabry-Perot method. PMID:26832519

  10. Investigation of enhanced forward and backward anti-stokes Raman signals in lithium niobate waveguides

    SciTech Connect

    Li, Da; Hong, Pengda; Ding, Yujie J.; Liu, Zhaojun; Wang, Lei; Hua, Ping-Rang; Zhang, De-Long

    2015-07-07

    We have observed enhancements of the anti-Stokes Raman signals generated in lithium niobate waveguides in the forward and backward configurations by at least one order of magnitude under the pump power of the microwatt level. These output signals were measured using a single photon detector. The forward and backward propagating anti-Stokes signals exhibited different spectral features.

  11. SOLITONS: Dark photovoltaic spatial solitons in a planar waveguide obtained by proton implantation in lithium niobate

    NASA Astrophysics Data System (ADS)

    Kruglov, V. G.; Shandarov, V. M.; Tan, Ya; Chen, F.; Kip, D.

    2008-11-01

    A photovoltaic dark spatial soliton is generated in a planar waveguide produced by the implantation of protons into a copper-doped lithium niobate crystal. Stationary soliton regimes are achieved at powers 90 and 30 μW at wavelengths 633 and 532 nm, respectively.

  12. Optical investigation of nanophotonic lithium niobate-based optical waveguide

    NASA Astrophysics Data System (ADS)

    Fakhri, Makram A.; Al-Douri, Y.; Hashim, U.; Salim, Evan T.; Prakash, Deo; Verma, K. D.

    2015-10-01

    Lithium niobate (LiNbO3) nanophotonics are prepared on quartz substrate by sol-gel method. They have been deposited with different molarity concentrations and annealed at 500 °C. These samples are characterized and analyzed by scanning electron microscope, atomic force microscopy, X-ray diffraction and ultraviolet-visible. The measured results show an importance of increasing molarity that indicates the structure starts to crystallize to become more regular. The estimated lattice constants, energy gaps and refractive index give good accordance with experimental results. Also, the calculated refractive index and optical dielectric constant are in agreement with experimental data.

  13. Periodic domain patterning by electron beam of proton exchanged waveguides in lithium niobate

    NASA Astrophysics Data System (ADS)

    Chezganov, D. S.; Vlasov, E. O.; Neradovskiy, M. M.; Gimadeeva, L. V.; Neradovskaya, E. A.; Chuvakova, M. A.; Tronche, H.; Doutre, F.; Baldi, P.; De Micheli, M. P.; Shur, V. Ya.

    2016-05-01

    Formation of domain structure by electron beam irradiation in congruent lithium niobate covered by surface dielectric layer with planar and channel waveguides produced by Soft Proton Exchange (SPE) process has been studied. Formation of domains with arbitrary shapes as a result of discrete switching has been revealed. The fact was attributed to ineffective screening of depolarization field in the crystals with a surface layer modified by SPE process. The dependences of the domain sizes on the dose and the distance between irradiated areas have been revealed. Finally, we have demonstrated that electron beam irradiation of lithium niobate crystals with surface resist layer can produce high quality periodical domain patterns after channel waveguide fabrication. Second harmonic generation with normalized nonlinear conversion efficiency up to 48%/(W cm2) has been achieved in such waveguides.

  14. Characterization of active waveguides fabricated by ultralow-fluence swift heavy ion irradiation in lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Dong, Ningning; Chen, Feng; Jaque, Daniel; Benayas, Antonio; Qiu, Feng; Narusawa, Tadashi

    2011-03-01

    We report on the fabrication of neodymium-doped lithium niobate active planar waveguides based on the generation of non-overlapping nano-tracks by ultralow-fluence swift heavy ions. A combination of confocal luminescence, Raman and surface second harmonic investigations have evidenced the simultaneous presence of partial amorphization, damage and local compression of the lithium niobate network along the ion path, with these effects being at the basis of the refractive index modification. The potential application of the obtained waveguides in multi-functional laser devices has been discussed.

  15. 3D pseudospectral time domain for modeling second-harmonic generation in periodically poled lithium niobate ridge-type waveguides

    NASA Astrophysics Data System (ADS)

    Devaux, Fabrice; Lantz, Eric; Chauvet, Mathieu

    2016-04-01

    We report an application of the tri-dimensional pseudo-spectral time domain algorithm, that solves with accuracy the nonlinear Maxwell's equations, to predict second harmonic generation in lithium niobate ridge-type waveguides with high index contrast. Characteristics of the nonlinear process such as conversion efficiency as well as impact of the multimode character of the waveguide are investigated as a function of the waveguide geometry in uniformly and periodically poled medium.

  16. Waveguides in single-crystal lithium niobate thin film by proton exchange.

    PubMed

    Cai, Lutong; Han, Shuang Li Huangpu; Hu, Hui

    2015-01-26

    The proton exchanged (PE) planar and channel waveguides in a 500 nm thick single-crystal lithium niobate thin film (lithium niobate on insulator, LNOI) were studied. The mature PE technique and strong confinement of light in the LN single-crystal thin film were used. The single mode and cut-off conditions of the channel waveguides were obtained by finite difference simulation. The results showed that the single mode channel waveguide would form if the width of the PE region was between 0.75 μm and 2.1 μm in the β(4) phase. The channel waveguide in LNOI had a much smaller mode size than that in the bulk material due to the high-refractive-index contrast. The mode size reached as small as 0.6 μm(2). in simulation. In the experiment, the refractive index and phase transition after PE in LNOI were analyzed using the prism coupling method and X-ray diffraction. Three different width waveguides (5 μm, 7 μm and 11 μm) were optically characterized. Near-field intensity distribution showed that their mode sizes were 3.3 μm(2).,5 μm(2). and 7 μm(2). The propagation losses were evaluated to be about 16 dB/cm, 12 dB/cm and 11 dB/cm, respectively. The results indicate that PE is a promising method for building more complicated photonic integrated circuits in single-crystal LN thin film. PMID:25835882

  17. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    NASA Astrophysics Data System (ADS)

    Weigel, Peter O.; Savanier, Marc; Derose, Christopher T.; Pomerene, Andrew T.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

    2016-03-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.

  18. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    DOE PAGESBeta

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew T.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

    2016-03-01

    Here we demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneathmore » an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.« less

  19. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    PubMed Central

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew T.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

    2016-01-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost. PMID:26927022

  20. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides.

    PubMed

    Chen, Xin; Karpinski, Pawel; Shvedov, Vladlen; Boes, Andreas; Mitchell, Arnan; Krolikowski, Wieslaw; Sheng, Yan

    2016-06-01

    We demonstrate an all-optical fabrication method of quasi-phase matching structures in lithium niobate (LiNbO3) waveguides using a tightly focused femtosecond near-infrared laser beam (wavelength of 800 nm). In contrast to other all-optical schemes that utilize a periodic lowering of the nonlinear coefficient χ(2) by material modification, here the illumination of femtosecond pulses directly reverses the sign of χ(2) through the process of ferroelectric domain inversion. The resulting quasi-phase matching structures, therefore, lead to more efficient nonlinear interactions. As an experimental demonstration, we fabricate a structure with the period of 2.74 μm to frequency double 815 nm light. A maximum conversion efficiency of 17.45% is obtained for a 10 mm long waveguide. PMID:27244376

  1. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics.

    PubMed

    Weigel, Peter O; Savanier, Marc; DeRose, Christopher T; Pomerene, Andrew T; Starbuck, Andrew L; Lentine, Anthony L; Stenger, Vincent; Mookherjea, Shayan

    2016-01-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost. PMID:26927022

  2. Compositional characterisation of Zn-diffused lithium niobate waveguides

    NASA Astrophysics Data System (ADS)

    Nevado, R.; Sada, C.; Segato, F.; Caccavale, F.; Kling, A.; Soares, J. C.; Cantelar, E.; Cussó, F.; Lifante, G.

    2001-10-01

    Rutherford backscattering (RBS) and secondary-ion mass spectrometry techniques have been used to investigate the two-step process involved during waveguide fabrication in LiNbO3 using Zn-vapour diffusion. Compositional analysis (O, Nb, Li and Zn) in the two steps has been characterised. RBS analysis reveals that the first step, involving a heating of the substrate under a metallic Zn atmosphere, gives rise to a partial exchange between the Nb and Li ions from the crystals and the Zn from the vapour source. The second treatment at higher temperature in an open atmosphere diffuses the Zn deeper into the substrate, thus forming an optical waveguide, while the Nb and Li ions recover their bulk values.

  3. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe.

    PubMed

    Li, Shuang; Cai, Lutong; Wang, Yiwen; Jiang, Yunpeng; Hu, Hui

    2015-09-21

    Strip-loaded waveguides were fabricated by the direct oxidation of a titanium film based on the single-crystal lithium niobate. The method avoided the surface roughness problems that are normally introduced during dry etching of waveguide sidewalls. Propagation modes of the composite strip waveguide were analyzed by a full-vectorial finite difference method. The minimum dimensions of the propagation modes were calculated to be 0.7 μm(2) and 1.1 μm(2) for quasi-TM mode and quasi-TE mode at 1550 nm when the thickness of the LN layer and TiO(2) strip was 660 nm and 95 nm, respectively. The optical intensity was as high as 93% and was well confined in the LN layer for quasi-TM polarization. In this experiment, the propagation losses for the composite strip waveguide with 6 μm wide TiO(2) were 14 dB/cm for quasi-TM mode and 5.8 dB/cm for quasi-TE mode, respectively. The compact hybrid structures have the potential to be utilized for compact photonic integrated devices. PMID:26406627

  4. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application

    NASA Astrophysics Data System (ADS)

    Ulliac, G.; Calero, V.; Ndao, A.; Baida, F. I.; Bernal, M.-P.

    2016-03-01

    Lithium Niobate (LN) exhibits unique physical properties such as remarkable electro-optical coefficients and it is thus an excellent material for a wide range of fields like optic communications, lasers, nonlinear optical applications, electric field optical sensors etc. In order to further enhance the optical device performance and to be competitive with silicon photonics, sub-micrometric thickness lithium niobate films are crucial. A big step has been achieved with the development of LN thin films by using smart cut technology and wafer bonding and these films are nowadays available in the market. However, it is a challenge to obtain the requirements of the high quality thin LN film waveguide. In this letter, we show smooth ridge waveguides fabricated on 700 nm thickness thin film lithium niobate (TFLN). The fabrication has been done by developing and optimizing three steps of the technological process, the mask fabrication, the plasma etching, and a final cleaning wet etching step in order to remove the lithium niobate redeposition on the side walls. We have obtained single mode propagation with light overall losses of only 5 dB/cm.

  5. Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film.

    PubMed

    Cai, Lutong; Kong, Ruirui; Wang, Yiwen; Hu, Hui

    2015-11-01

    Proton exchanged channel waveguides in x-cut single-crystal lithium niobate thin film could avoid optical leakage loss which existed in the z-cut case. Indicated by simulations, the mechanism and condition of the optical leakage loss were studied. The light energy in the exchanged layer and the mode sizes were calculated to optimize the parameters for fabrication. By a very short time (3 minutes) proton exchange process without anneal, the channel waveguide with 2 μm width and 0.16 μm exchanged depth in the x-cut lithium niobate thin film had a propagation loss as low as 0.2 dB/cm at 1.55 μm. Furthermore, the Y-junctions based on the low-loss waveguide were designed and fabricated. For a Y-junction based on the 3 μm wide channel waveguide with 8000 μm bending radius, the total transmission could reach 85% ~90% and the splitting ratio maintained at a stable level around 1:1. The total length was smaller than 1 mm, much shorter than the conventional Ti-diffused and proton exchanged Y-junctions in bulk lithium niobate. PMID:26561191

  6. All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Sun, Junqiang; Sun, Qizhen; Wang, Dalin; Zhou, Minjuan; Zhang, Xinliang; Huang, Dexiu; Fejer, M. M.

    2007-07-01

    In the present letter, the authors report on the realization of all-optical format conversion by using the cascaded sum- and difference-frequency generation in a periodically poled lithium niobate waveguide and the active mode locking in a reflective-semiconductor-optical-amplifier-based fiber ring laser. Tunable format conversions from nonreturn-to-zero pseudorandom binary sequence (PRBS) signal to return-to-zero PRBS idler at 10 and 20Gbit/s are observed in the experiment.

  7. Structural and optical properties of rare-earth doped lithium niobate waveguides formed by MeV helium ion implantation

    SciTech Connect

    Herreros, B.; Lifante, G.; Cusso, F.; Kling, A.; Soares, J.C.; Silva, M.F. da; Townsend, P.D.; Chandler, P.J.

    1996-12-31

    Results of investigations of optical waveguides formed by high energy helium implantation into lithium niobate codoped with 5 mol% MgO and 1 mol% Tm{sup 3+} or 1 mol% Er{sup 3+} are reported. A comparative study of structural and luminescence properties between implanted and untreated samples has been performed by means of Rutherford backscattering (RBS) combined with channeling and photoluminescence methods, respectively in order to investigate residual lattice damage and the incorporation of the optical active rare earths. For the case of Tm a full substitutional incorporation of the optical active rare earths. For the case of Tm a full substitutional incorporation on the lithium site and a high crystal quality in both bulk and implanted waveguide material has been found. For Er doped lithium niobate the channeling results show a fraction of Er randomly incorporated or forming precipitates and a deterioration of the waveguide`s lattice. The optical investigations show in both cases only a slight broadening of the emission lines of the rare earths in the waveguides compared to the bulk material.

  8. Recording of self-induced waveguides in lithium niobate at 405 nm wavelength by photorefractive-pyroelectric effect

    NASA Astrophysics Data System (ADS)

    Popescu, S. T.; Petris, A.; Vlad, V. I.

    2013-06-01

    We characterize the process of soliton waveguides (SWGs) recording at 405 nm wavelength using pyroelectric effect in lithium niobate (LN) crystals. We experimentally study and discuss the influence of the input irradiance, the polarization of the signal beam, and the crystal temperature change on the waveguide writing time and mode-profile. These characteristics significantly change when changing the recording wavelength. The advantages of recording SWGs in LN by using blue-violet light and pyroelectric field are emphasised. The generation of radiation at 405 nm wavelength by inexpensive laser diodes, the fast recording at this wavelength, and the convenient way to produce a static electric field inside the crystal by heating it with few degrees leads to a next step in the soliton waveguides recording process with applications in 3D integrated optical circuits.

  9. Construction of waveguiding structures in potassium lithium tantalate niobate crystals by combined laser ablation and ion implantation

    NASA Astrophysics Data System (ADS)

    Yashar, Ayelet Badichi; Ilan, Harel; Agranat, Aharon J.

    2015-02-01

    A generic methodology for constructing complex integrated electro-optic circuits in waveguided configurations is presented. The method is based on combining two techniques, "laser ablation" and "refractive index engineering by ion implantations." The constructed circuits are side-cladded by air trenches that were produced using laser ablation and bottom-cladded by a layer with a reduced refractive index which is generated through the implantation of He+ ions. This fabrication technique enables the construction of circular structures with complex geometry featuring small radii of curvature, and further can be employed to construct microfluidic channels on the same substrate. The research demonstrates waveguides in both linear and circular configurations that were constructed in a potassium lithium tantalate niobate (KLTN) substrate using the aforementioned method, proving that this substrate is a suitable candidate for use in creating laboratories-on-a-chip with multifunctional capabilities. The proposed techniques used in the research are generic and applicable to a wide range of substrates.

  10. Electro-optic coefficient mapping and the design, fabrication and analysis of coplanar waveguide resonators in lithium niobate

    NASA Astrophysics Data System (ADS)

    Narayan, Raghuram

    1997-12-01

    The main topics in this dissertation are (a) Investigation of Electro-Optic (EO) coefficient variation in lithium niobate and (b) the design, fabrication and analysis of coplanar waveguide resonant electrodes for EO modulators. An optical sampling technique is used to determine the EO coefficient variations in lithium niobate processed using the titanium in-diffusion technique and the Annealed Proton Exchange (APE) technique. A spatial mapping of the EO coefficients in lithium niobate is presented. The measurements enable us to quantitatively estimate the reduction in the EO coefficient as a function of the processing conditions. The results clearly indicate that samples processed using titanium in-diffusion show no degradation of the EO coefficient. Samples processed using the APE technique display a dramatic drop in the processed region immediately after the proton exchange step. Thermal annealing is shown to restore the EO coefficient in the proton exchanged regions. But the efficacy of thermal annealing is dependent on the initial proton exchange process. Prolonged thermal annealing is effective in restoring the EO coefficients provided the initial proton exchange depth is less than 1.5/mu m. Coplanar Waveguide (CPW) is a popular planar transmission line because of its tight confinement and non-dispersive nature at high frequencies (>60 GHz). In this dissertation, several CPW resonant electrodes have been fabricated, tested and analyzed. The advantage of CPW resonant electrode structure is that there is an enhancement in the field strength by a factor proportional to /sqrt[Q], where Q is the quality factor of the resonator. The dis-advantage is that the device is narrow-band in its frequency response. The focus of this dissertation is to investigate the design and fabrication issues related to CPW resonators. The results indicate the need for better design tools to properly predict the performance of the resonator and in general CPW structures. The measurements

  11. Bending waveguides made in x-cut lithium niobate crystals for technological applications

    NASA Astrophysics Data System (ADS)

    Guarepi, V.; Perrone, C.; Aveni, M.; Videla, F.; Torchia, GA

    2015-12-01

    In this paper we analyse the performance of several designs of integrated optical deviators made in x-cut lithium niobate crystals by means of femtosecond laser writing using the double line approach. Straight and bent guiding structures have been designed and implemented using this technique. Well-confined propagation modes at communication wavelengths (1.55 μm) were conducted in these structures with acceptable overall losses (less than 2 dB cm-1). Further, a discussion about the optical propagation losses for curved and straight deviators devices is included in this work. At a low aperture angle (less than 0.2°), as expected, low losses were determined for both structures; however, a weak output light was observed for large angles (greater than 0.2°) in the straight optical circuits. In contrast, a smooth variation of the output was measured for the bent structures. The results presented in this paper support the possibility of the technological implementation of integrated optical circuits for optical communications fabricated with ultrashort laser writing in lithium niobate crystals. In addition, some hypotheses of loss mechanisms that are normally not considered are discussed in order to explain the differences between the measured values and predictions obtained by calculating with the usual models.

  12. Integrated source of tunable nonmaximally mode-entangled photons in a domain-engineered lithium niobate waveguide

    SciTech Connect

    Ming, Yang; Wu, Zi-jian; Xu, Fei Lu, Yan-qing; Cui, Guo-xin; Tan, Ai-hong

    2014-04-28

    The nonmaximally entangled state is a special kind of entangled state, which has important applications in quantum information processing. It has been generated in quantum circuits based on bulk optical elements. However, corresponding schemes in integrated quantum circuits have been rarely considered. In this Letter, we propose an effective solution for this problem. An electro-optically tunable nonmaximally mode-entangled photon state is generated in an on-chip domain-engineered lithium niobate (LN) waveguide. Spontaneous parametric down-conversion and electro-optic interaction are effectively combined through suitable domain design to transform the entangled state into our desired formation. Moreover, this is a flexible approach to entanglement architectures. Other kinds of reconfigurable entanglements are also achievable through this method. LN provides a very promising platform for future quantum circuit integration.

  13. Lithium niobate explosion monitor

    DOEpatents

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  14. Lithium niobate explosion monitor

    DOEpatents

    Bundy, Charles H.; Graham, Robert A.; Kuehn, Stephen F.; Precit, Richard R.; Rogers, Michael S.

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  15. Femtosecond laser-written lithium niobate waveguide laser operating at 1085 nm

    NASA Astrophysics Data System (ADS)

    Tan, Yang; de Aldana, Javier R. Vázquez; Chen, Feng

    2014-10-01

    We report on the channel waveguide lasers at 1085 nm in femtosecond laser written Type II waveguides in an Nd:MgO:LiNbO3 crystal. The waveguide was constructed in a typical dual-line approach. In the geometry, we found that four vicinal regions of the track pair could guide light propagation. In addition, these guiding cores support polarization-dependent-guided modes. The propagation losses of the waveguides were measured to be as low as 1 dB/cm. Under an optical pump at 808 nm, the continuous-wave waveguide lasing at 1085 nm was generated, reaching a slope efficiency of 27% and maximum output power of 8 mW. The lasing threshold was 71 mW. Our results show that with the femtosecond laser written Nd:MgO:LiNbO3 waveguide as the miniature light source, it was possible to construct all-LiNbO3-based integrated devices for diverse photonic applications.

  16. Performance Evaluation of Tunable Channel-Selective Wavelength Shift by Cascaded Sum- and Difference-Frequency Generation in Periodically Poled Lithium Niobate Waveguides

    NASA Astrophysics Data System (ADS)

    Gao, Shiming; Yang, Changxi; Xiao, Xiaosheng; Tian, Yu; You, Zheng; Jin, Guofan

    2007-03-01

    We theoretically evaluate the performance of tunable channel-selective wavelength shift based on cascaded sum- and difference-frequency generation by the use of two pump lights in periodically poled lithium niobate waveguides. In double-pass configurations, the functions of wavelength add/drop and wavelength shift are easy to integrate in the same waveguide. Analysis shows that a longer waveguide more competently adapts narrower channel spacing in wavelength-division-multiplexed (WDM) systems. This wavelength shifter is flexible due to the almost separable operations of the two pumps: The channel is selected by setting the first pump, and the wavelength-shifting value is tuned by adjusting the second pump. This wavelength shifter has a very large dynamic region. For a 2.56-cm-long waveguide, the maximum dynamic region is as broad as 67 nm in a 0.4-nm channel-spacing WDM system. The dynamic region is mainly dominated by the limitation of multiple-channel crosstalk in a dense WDM system. However, it is dominated by the limitation of single-channel efficiency fluctuation in a coarse one.

  17. Micro- and nano-domain engineering in lithium niobate

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Baturin, I. S.

    2015-12-01

    The physical basis of the domain engineering in ferroelectrics and its application to lithium niobate crystals were reviewed. The unified kinetic approach to the domain structure evolution in electric field was formulated and its validity for understanding the variety of observed domain evolution scenarios was demonstrated. The kinetics and statics of the domain structure in the crystals of lithium niobate family including congruent, stoichiometric, and MgO doped ones have been discussed. The main stages of the periodical poling process and related problems have been pointed out. The basic poling techniques applied for creation of the periodical domain structures in bulk crystals and waveguides were compared. The recent applications of the periodically poled lithium niobate for light frequency conversion using second harmonic generation and optical parametric oscillation, excitation of the surface acoustic waves, and generation of terahertz radiation have been discussed. The special attention has been paid for achievements in fabrication of high-power optical parametric oscillation and integrated optical devices with periodically poled lithium niobate. The future trends in periodical poling and development of the nanodomain engineering which will allow to create the nanoscale domain patterns necessary for utilization of the new nonlinear interactions were reviewed.

  18. Micro- and nano-domain engineering in lithium niobate

    SciTech Connect

    Shur, V. Ya.; Akhmatkhanov, A. R.; Baturin, I. S.

    2015-12-15

    The physical basis of the domain engineering in ferroelectrics and its application to lithium niobate crystals were reviewed. The unified kinetic approach to the domain structure evolution in electric field was formulated and its validity for understanding the variety of observed domain evolution scenarios was demonstrated. The kinetics and statics of the domain structure in the crystals of lithium niobate family including congruent, stoichiometric, and MgO doped ones have been discussed. The main stages of the periodical poling process and related problems have been pointed out. The basic poling techniques applied for creation of the periodical domain structures in bulk crystals and waveguides were compared. The recent applications of the periodically poled lithium niobate for light frequency conversion using second harmonic generation and optical parametric oscillation, excitation of the surface acoustic waves, and generation of terahertz radiation have been discussed. The special attention has been paid for achievements in fabrication of high-power optical parametric oscillation and integrated optical devices with periodically poled lithium niobate. The future trends in periodical poling and development of the nanodomain engineering which will allow to create the nanoscale domain patterns necessary for utilization of the new nonlinear interactions were reviewed.

  19. Integrated optic beam combiners in lithium niobate for stellar interferometer

    NASA Astrophysics Data System (ADS)

    Li, Guangyu; Eckhause, Tobias; Winick, Kim A.; Monnier, John D.; Berger, Jean-Philippe

    2006-06-01

    Integrated optics can provide compact and robust solutions for ground and space-based interferometry by integrating optical devices with different functionalities, such as spatial filters, combiners/nullers, and phase modulators, on a single chip. Lithium niobate (LiNbO 3) has two distinct advantages over silica-based technologies, including good transparency further into the near-infrared (covering J, H, K, and L bands) and the ability to support electrically-controlled phase modulation through the linear electro-optic (EO) effect. The design, fabrication and preliminary tests of integrated optic components on LiNbO 3 substrates for astronomical beam combiners operating in the H and L bands is reported. The components include single-mode waveguides of sufficient length for spatial filtering, symmetric junctions for wavelength insensitive power splitters/combiners, and electro-optic waveguide modulators for path-length control.

  20. Er + medium energy ion implantation into lithium niobate

    NASA Astrophysics Data System (ADS)

    Svecova, B.; Nekvindova, P.; Mackova, A.; Oswald, J.; Vacik, J.; Grötzschel, R.; Spirkova, J.

    2009-05-01

    Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at 1.5 μm, which could find its use chiefly as an optical amplifier or waveguide laser. In this study, we have focused on the properties of the optically active Er:LiNbO3 layers, which are fabricated by medium energy ion implantation under various experimental conditions. Erbium ions were implanted at energies of 330 and 500 keV with fluences of 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm-2 into LiNbO3 single-crystalline cuts of various orientations. The as-implanted samples were annealed in air at 350 °C for 5 h. The depth distribution and diffusion profiles of the implanted Er were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The projected range RP and projected range straggling ΔRP were calculated employing the SRIM code. The damage distribution and structural changes were described using the RBS/channelling method. Changes of the lithium concentration depth distribution were studied by Neutron Depth Profiling (NDP). The photoluminescence spectra of the samples were measured to determine whether the emission was in the desired region of 1.5 μm. The obtained data made it possible to reveal the relations between the structural changes of erbium-implanted lithium niobate and its luminescence properties important for photonics applications.

  1. Integrated Optical Heterodyne Interferometer in Lithium Niobate

    NASA Astrophysics Data System (ADS)

    Rubiyanto, A.; Herrmann, H.; Ricken, R.; Tian, F.; Sohler, W.

    A high performance integrated acousto-optical heterodyne interferometer has been developed for vibration measurement. All components including an acousto-optical TE-TM mode converters, two electro-optical TE-TM converters, two polarization splitters and two phase shifters are integrated on a X-cut Lithium Niobate substrate. The fully packaged optical integrated circuit (optical-IC) coupling with three fibers optics pigtails gave a signal-to-noise ratio of 69 dB with at 3 kHz bandwidth by using a commercial DFB laser diode as a light source with 1561 nm emission wavelength and a PIN-FET balanced receiver.

  2. Integrated optics on Lithium Niobate for sensing applications

    NASA Astrophysics Data System (ADS)

    Zaltron, A.; Bettella, G.; Pozza, G.; Zamboni, R.; Ciampolillo, M.; Argiolas, N.; Sada, C.; Kroesen, S.; Esseling, M.; Denz, C.

    2015-05-01

    In micro-analytical chemistry and biology applications, optofluidic technology holds great promise for creating efficient lab-on-chip systems where higher levels of integration of different stages on the same platform is constantly addressed. Therefore, in this work the possibility of integrating opto-microfluidic functionalities in lithium niobate (LiNbO3) crystals is presented. In particular, a T-junction droplet generator is directly engraved in a LiNbO3 substrate by means of laser ablation process and optical waveguides are realized in the same material by exploiting the Titanium in-diffusion approach. The coupling of these two stages as well as the realization of holographic gratings in the same substrate will allow creating new compact optical sensor prototypes, where the optical properties of the droplets constituents can be monitored.

  3. Erbium localized doping into various cuts of lithium niobate and sapphire: a comparative study

    NASA Astrophysics Data System (ADS)

    Nekvindova, Pavla; Mackova, Anna; Perina, Vratislav; Cervena, Jarmila; Capek, Pavel; Schroefel, Josef; Spirkova, Jarmila; Oswald, Jiri

    2003-07-01

    Medium temperature (350 °C) localized doping of Er3+ was studied in lithium niobate (LN) and sapphire single crystal wafers that were cut in various crystallographic directions. It was found that the efficiency of the doping was connected with orientations of the substrate wafers of both LN and sapphire, and with the presence of mobile lithium ions in the structure of LN. The basic interstitial mechanism of erbium incorporation into the structure of sapphire and LN is in the latter accompanied with erbium for lithium ion exchange. While the rate of the interstitial diffusion was higher in the wafers oriented perpendicularly towards the cleavage planes of the crystals, ion exchange process was significant in the wafers cut in cleavage planes. Waveguiding properties in erbium doped lithium niobate originated rather from presence of erbium in the structure of the crystals than being a consequence of a weak proton exchange. Luminescence properties of the fabricated samples are also presented.

  4. Micromachining Lithium Niobate for Rapid Prototyping of Resonant Biosensors

    NASA Astrophysics Data System (ADS)

    Abdoon Al-Shibaany, Zeyad Yousif; Hedley, John; Huo, Dehong; Hu, Zhongxu

    2014-07-01

    Lithium niobate material is widely used in MEMS application due to its piezoelectric properties. This paper presents the micromachining process of lithium niobate to rapid prototype a resonant biosensor design. A high precision CNC machine was used to machine a sample of lithium niobate material at 5 different spindle speeds to find out the best conditions to machine this brittle material. A qualitative visual check of the surface was performed by using scanning electron microscopy, surface roughness was quantitatively investigated using an optical surface profiler and Raman spectroscopy to check the strain of the surface. Results show that the surface quality of the lithium niobate was significantly affected by the spindle speed with optimum conditions at 70k rpm giving a strained surface with 500 nm rms roughness.

  5. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon.

    PubMed

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff; Malinowski, Marcin; Novak, Spencer; Richardson, Kathleen; Rabiei, Payam; Fathpour, Sasan

    2015-08-24

    Thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge(23)Sb(7)S(70), to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 10(5) quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scale dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes. PMID:26368243

  6. Study of multiple hologram recording in lithium niobate

    NASA Technical Reports Server (NTRS)

    Gaylord, T. K.; Callen, W. R.

    1976-01-01

    The results of a number of theoretical and experimental studies relating to multiple hologram recording in lithium niobate are reported. The analysis of holographic gratings stored in lithium niobate has been extended to cover a more realistic range of physical situations. A new successful dynamic (feedback) theory for describing recording, nondestructive reading, erasure, enhancement, and angular sensitivity has been developed. In addition, the possible architectures of mass data storage systems have been studied.

  7. Diamond turning of lithium niobate for optical applications

    SciTech Connect

    Fuchs, B.A.; Syn, C.; Velsko, S.P. )

    1992-09-20

    We have investigated the surfae finishing of lithium niobate by using the single-point diamond turning technique. Surface finishes of better than 5 nm rms on {ital z}-oriented samples have been achieved. However, tool wear and spalling are much more significant with lithium niobate than with materials such as the crystals KDP and LAP. We present preliminary results comparing the optical damage thresholds of polished and diamond-turned samples.

  8. Optical cleaning of congruent lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Kösters, M.; Sturman, B.; Werheit, P.; Haertle, D.; Buse, K.

    2009-09-01

    Lithium niobate (LiNbO3), also called the `silicon of photonics', is indispensable in advanced photonics and nonlinear optics. For many applications, however, the material is too polluted by transition metals, which are unavoidable at the parts per million level. These impurities serve as sources and traps for photoelectrons, causing optical damage and hampering the usability of LiNbO3. Efforts have therefore been made to get rid of the photoexcitable electrons. Here we introduce a method termed `optical cleaning'. We show theoretically and experimentally that, if the material is heated to moderate temperatures, allowing ions to migrate and to maintain charge neutrality, an appropriately moving light beam pushes photoexcitable electrons out of the illuminated region like a brush, and provides exponential cleaning. This promises purification levels that are beyond the reach of current technologies.

  9. Lithium niobate-on-insulator (LNOI): status and perspectives

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Yang, Jin; Gui, Li; Sohler, Wolfgang

    2012-06-01

    As optical components continue to replace electronics in ultrafast signal processing applications, a growing interest in further miniaturization and integration of photonic devices on a single chip is observed. Therefore, optical waveguides of high refractive index contrast of core and cladding materials are developed since a couple of years. They can have a very small cross section and also bending radius, enabling the development of ultra-compact photonic integrated devices and circuits. Silicon-On-Insulator (SOI) waveguides ("photonic wires") and devices are the most prominent examples. A corresponding technology for Lithium Niobate-On-Insulator (LNOI) waveguides is still in its infancy, though LN offers - in contrast to SOI - excellent electro-optic, acousto-optic, and nonlinear optical properties. Moreover, it can be easily doped with rare-earth ions to get a laser active material. Therefore, LNOI photonic wires will enable the development of a wide range of extremely compact, active integrated devices, including electro-optical modulators, tunable filters, nonlinear (periodically poled) wavelength converters, and amplifiers and lasers of different types. The state-of-the-art of LNOI films as platform for high-density integrated optics is reviewed. Using a full-wafer technology (3" diameter), sub-micrometer thin LN films are obtained by high-dose He+ ion implantations, crystal-bonding to a low-index substrate (preferably SiO2) and cleaving by a special annealing step ("ion-beam-slicing"). Various LNOI structures, also combined with metallic layers, are presented. Based on such platforms, photonic wires and micro-photonic devices are developed using different micro- and nano-structuring techniques. To be specific, the fabrication and characterization of LNOI photonic wires with cross-section < 1 μm2, and periodically poled LNOI photonic wires for second harmonic generation are reported in detail.

  10. Structuring of material parameters in lithium niobate crystals with low-mass, high-energy ion radiation

    NASA Astrophysics Data System (ADS)

    Peithmann, K.; Eversheim, P.-D.; Goetze, J.; Haaks, M.; Hattermann, H.; Haubrich, S.; Hinterberger, F.; Jentjens, L.; Mader, W.; Raeth, N. L.; Schmid, H.; Zamani-Meymian, M.-R.; Maier, K.

    2011-10-01

    Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41 MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index Δn, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of Δn as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He→Nb and 3He→O causing thermal spikes, are identified as origin for the material modifications.

  11. Self-Action of Light Fields in Waveguide Photon Structures Based on Electro-Optic Crystals

    NASA Astrophysics Data System (ADS)

    Shandarov, V. M.

    2016-02-01

    Special features of spatial self-action of light fields in nonlinear optical photonic waveguide structures formed in strontium barium niobate and lithium niobate electro-optic crystals are discussed. The main methods of forming such structures including photorefractive waveguide elements and systems are briefly considered. The formation of spatial optical solitons in planar waveguides based on lithium niobate and strontium barium niobate crystals as well as in one-dimensional photonic lattices in lithium niobate is demonstrated experimentally for light beams of microwatt power. In regimes of spatial optical solitons, channel optical waveguides are formed not only in the planar waveguides, but also in the volume of photorefractive lithium niobate.

  12. Precise, reproducible nano-domain engineering in lithium niobate crystals

    SciTech Connect

    Boes, Andreas Sivan, Vijay; Ren, Guanghui; Yudistira, Didit; Mitchell, Arnan; Mailis, Sakellaris; Soergel, Elisabeth

    2015-07-13

    We present a technique for domain engineering the surface of lithium niobate crystals with features as small as 100 nm. A film of chromium (Cr) is deposited on the lithium niobate surface and patterned using electron beam lithography and lift-off and then irradiated with a wide diameter beam of intense visible laser light. The regions patterned with chromium are domain inverted while the uncoated regions are not affected by the irradiation. With the ability to realize nanoscale surface domains, this technique could offer an avenue for fabrication of nano-photonic and phononic devices.

  13. Precise, reproducible nano-domain engineering in lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Boes, Andreas; Sivan, Vijay; Ren, Guanghui; Yudistira, Didit; Mailis, Sakellaris; Soergel, Elisabeth; Mitchell, Arnan

    2015-07-01

    We present a technique for domain engineering the surface of lithium niobate crystals with features as small as 100 nm. A film of chromium (Cr) is deposited on the lithium niobate surface and patterned using electron beam lithography and lift-off and then irradiated with a wide diameter beam of intense visible laser light. The regions patterned with chromium are domain inverted while the uncoated regions are not affected by the irradiation. With the ability to realize nanoscale surface domains, this technique could offer an avenue for fabrication of nano-photonic and phononic devices.

  14. Efficient high-power frequency doubling of distributed Bragg reflector tapered laser radiation in a periodically poled MgO-doped lithium niobate planar waveguide.

    PubMed

    Jedrzejczyk, Daniel; Güther, Reiner; Paschke, Katrin; Jeong, Woo-Jin; Lee, Han-Young; Erbert, Götz

    2011-02-01

    We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed. PMID:21283192

  15. Study of multiple hologram recording in lithium niobate

    NASA Technical Reports Server (NTRS)

    Gaylord, T. K.; Callen, W. R.

    1974-01-01

    The results of detailed experimental and theoretical considerations relating to multiple hologram recording in lithium niobate are reported. The following problem areas are identified and discussed: (1) the angular selectivity of the stored holograms, (2) interference effects due to the crystal surfaces, (3) beam divergence effects, (4) material recording sensitivity, and (5) scattered light from material inhomogeneities.

  16. Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width

    NASA Astrophysics Data System (ADS)

    Geiss, Reinhard; Sergeyev, Anton; Hartung, Holger; Solntsev, Alexander S.; Sukhorukov, Andrey A.; Grange, Rachel; Schrempel, Frank; Kley, Ernst-Bernhard; Tünnermann, Andreas; Pertsch, Thomas

    2016-02-01

    Nonlinear optical nanoscale waveguides are a compact and powerful platform for efficient wavelength conversion. The free-standing waveguide geometry opens a range of applications in microscopy for local delivery of light, where in situ wavelength conversion helps to overcome various wavelength-dependent issues, such as biological tissue damage. In this paper, we present an original patterning method for high-precision fabrication of free-standing nanoscale waveguides based on lithium niobate, a material with a strong second-order nonlinearity and a broad transparency window covering the visible and mid-infrared wavelength ranges. The fabrication process combines electron-beam lithography with ion-beam enhanced etching and produces nanowaveguides with lengths from 5 to 50 μm, widths from 50 to 1000 nm and heights from 50 to 500 nm, each with a precision of few nanometers. The fabricated nanowaveguides are tested in an optical characterization experiment showing efficient second-harmonic generation.

  17. Characterization of lithium niobate electro-optic modulators at cryogenic temperatures

    SciTech Connect

    Morse, J.; McCammon, K.; McConaghy, C.; Masquelier, D.; Garrett, H.; Lowry, M.

    1994-01-01

    This paper reports on the operation of lithium niobate electro-optic waveguide modulators at temperatures down to 15{degrees}K. Commercial and laboratory fiber pigtailed devices have successfully been cooled without any increases in insertion loss from temperature induced stresses in device packaging. Three x-cut devices exhibited a linear increase in V{pi} voltage of 8%{plus_minus}1% when cooled from room temperature to {approximately} 20{degree}K. The broadband frequency response improved at lower temperature. A velocity-matched experimental modular has shown increased bandwidth when cooled to liquid nitrogen temperature.

  18. Characterization of lithium niobate electro-optic modulators at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Morse, Jeffrey D.; McCammon, Kent G.; McConaghy, Charles F.; Masquelier, Don A.; Garrett, Henry E.; Lowry, Mark E.

    1994-05-01

    This paper reports on the operation of lithium niobate electro-optic waveguide modulators at temperatures down to 15 degree(s)K. Commercial and laboratory fiber pigtailed devices have successfully been cooled without any increases in insertion loss from temperature induced stresses in device packaging. Three x-cut devices exhibited a linear increase in Vpi voltage of 8% +/- 1% when cooled from room temperature to approximately 20 degree(s)K. The broadband frequency response improved at lower temperatures. A velocity-matched experimental modulator has shown increased bandwidth when cooled to liquid nitrogen temperature.

  19. Polaron luminescence in iron-doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Harhira, A.; Guilbert, L.; Bourson, P.; Rinnert, H.

    2008-09-01

    Photoluminescence related to the bound polaron Nb{Li/4+} is investigated as a function of temperature and incident light intensity in iron-doped lithium niobate crystals with various iron concentrations. Experiments are done under constant-wave (CW) and pulsed illumination. Its found that the decay time is always monoexponential. The radiative lifetime, the activation energy of the nonradiative lifetime and the quenching temperature are only weakly sensitive to iron concentration. On the other hand, the magnitude of the photoluminescence signal seems strongly correlated to the Fe2+ concentration, and the superlinear regime evidenced at low CW illumination definitely confirms that polaron excitation in lithium niobate is a two-step process.

  20. Shock-induced luminescence from Z-cut lithium niobate

    SciTech Connect

    Brannon, P.J.; Morris, R.W.; Asay, J.R.

    1985-03-01

    Shock-induced luminescence from lithium niobate has been studied in the stress range 1.6--21.0 GPa. Both fast-framing photography and five-channel optical pyrometry were used to observe the luminescence. The framing photography showed that the emission pattern is heterogeneous for stresses just above the dynamic yield point. A further increase of the stress resulted in a pattern which was essentially homogeneous to within the experimental spatial resolution of about 30 ..mu..m. Narrowband filters and photomultiplier tubes were used in the optical pyrometry experiments. A broadband spectrum with a peak near 700 nm was observed. A plot of the energy dissipated by the shock versus shock stress correlates very well with a plot of the 700-nm intensity versus shock stress. The mechanism for light emission in lithium niobate appears to be closely related to the dynamic yielding process.

  1. Photorefractive effect at 775 nm in doped lithium niobate crystals

    SciTech Connect

    Nava, G.; Minzioni, P.; Cristiani, I.; Degiorgio, V.; Argiolas, N.; Bazzan, M.; Ciampolillo, M. V.; Pozza, G.; Sada, C.

    2013-07-15

    The photorefractive effect induced by 775-nm laser light on doped lithium niobate crystals is investigated by the direct observation in the far field of the transmitted-beam distortion as a function of time. Measurements performed at various Zr-doping concentrations and different light intensities show that the 775-nm light beam induces a steady-state photorefractive effect comparable to that of 532-nm light, but the observed build-up time of the photovoltaic field is longer by three-orders of magnitude. The 775-nm photorefractivity of lithium niobate crystals doped with 3 mol. % ZrO{sub 2} or with 5.5 mol. % MgO is found to be negligible.

  2. Periodic domain inversion in x-cut single-crystal lithium niobate thin film

    NASA Astrophysics Data System (ADS)

    Mackwitz, P.; Rüsing, M.; Berth, G.; Widhalm, A.; Müller, K.; Zrenner, A.

    2016-04-01

    We report the fabrication of periodically poled domain patterns in x-cut lithium niobate thin-film. Here, thin films on insulator have drawn particular attention due to their intrinsic waveguiding properties offering high mode confinement and smaller devices compared to in-diffused waveguides in bulk material. In contrast to z-cut thin film lithium niobate, the x-cut geometry does not require back electrodes for poling. Further, the x-cut geometry grants direct access to the largest nonlinear and electro-optical tensor element, which overall promises smaller devices. The domain inversion was realized via electric field poling utilizing deposited aluminum top electrodes on a stack of LN thin film/SiO2 layer/Bulk LN, which were patterned by optical lithography. The periodic domain inversion was verified by non-invasive confocal second harmonic microscopy. Our results show domain patterns in accordance to the electrode mask layout. The second harmonic signatures can be interpreted in terms of spatially, overlapping domain filaments which start their growth on the +z side.

  3. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

    SciTech Connect

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff; Malinowski, Marcin; Novak, Spencer; Richardson, Kathleen; Rabiei, Payam; Fathpour, Sasan

    2015-08-20

    In this study, thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge23Sb7S70, to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 105 quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scale dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes.

  4. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

    DOE PAGESBeta

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff; Malinowski, Marcin; Novak, Spencer; Richardson, Kathleen; Rabiei, Payam; Fathpour, Sasan

    2015-08-20

    In this study, thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge23Sb7S70, to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 105 quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scale dense on-chip integration ofmore » high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes.« less

  5. Luminescence from chromium-neodymium-doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Mahpoud, S.; Chamiel, N.; Weiss, A. M.; Rosenbluh, M.; Herman, A.; Shoham, A.; Lipavsky, B.; Rotman, S. R.

    1999-10-01

    Luminescence from chromium-neodymium-doped lithium niobate (LiNbO 3) was experimentally measured to determine the degree of non-radiative energy transfer between chromium and neodymium ions. Evidence is presented for two different time constants for emission from chromium ions in the material, indicating that non-radiative transfer does occur. Differences between quasi-continuous pumping and pulsed excitation are discussed.

  6. Selective chemical etching of iron-doped lithium niobate

    SciTech Connect

    Alekseeva, Z.E.; Vorob'eva, L.B.; Evlanova, N.F.

    1987-01-01

    Addition of the dopant changed the way in which the lithium niobate crystal etched. As a result, nonpolar slices clearly showed microdomain etch figures that enabled determination of surface sign as well as <0110> and <0001> directions on the (2110) planes. Mechanical treatment was shown to be one of the reasons for microdomain destruction at the surface layer. The thickness of the damaged layer may be determined by the width of the edge zone displaying a high microdomain density at the (0001) plane.

  7. Fundamental Study of a Stacked Lithium Niobate Transducer

    NASA Astrophysics Data System (ADS)

    Morita, Takeshi; Niino, Toshiki; Asama, Hajime; Tashiro, Hideo

    2001-05-01

    Generally, a lead zirconate titanate ceramic is utilized for a high-power transducer such as an ultrasonic motor drive. However, it is difficult to realize an ultrasonic motor that can withstand a high temperature, above 500°C. We focused on lithium niobate because it has a high Curie temperature (1210°C) and high quality factor. The electromechanical coupling factor of lithium niobate is large, although the permittivity is one hundred times smaller compared to that of hard-type lead zirconate titanate (PZT)-8. Hence a stacked structure is required to generate high output power. Dimensions of the fabricated actuator were 10 mm square and 18.5 mm long. The number of lithium niobate layers was 18. The calculated force factor of this transducer was 0.28 N/V, a value comparable to that of the bolted Langevin transducer using PZT, though the vibration velocity was saturated at 0.12 m/s. To realize improved transducer performance, we are attempting to fabricate a new transducer that can generate high vibration velocity.

  8. Integrated opto-microfluidics platforms in lithium niobate crystals for sensing applications

    NASA Astrophysics Data System (ADS)

    Bettella, G.; Pozza, G.; Zaltron, A.; Ciampolillo, M. V.; Argiolas, N.; Sada, C.; Chauvet, M.; Guichardaz, B.

    2015-02-01

    In micro-analytical chemistry and biology applications, droplet microfluidic technology holds great promise for efficient lab-on-chip systems where higher levels of integration of different stages on the same platform is constantly addressed. The possibility of integration of opto-microfluidic functionalities in lithium niobate (LiNbO3) crystals is presented. Microfluidic channels were directly engraved in a LiNbO3 substrate by precision saw cutting, and illuminated by optical waveguides integrated on the same substrate. The morphological characterization of the microfluidic channel and the optical response of the coupled optical waveguide were tested. In particular, the results indicate that the optical properties of the constituents dispersed in the fluid flowing in the microfluidic channel can be monitored in situ, opening to new compact optical sensor prototypes based on droplets generation and optical analysis of the relative constituents.

  9. Structural examination of lithium niobate ferroelectric crystals by combining scanning electron microscopy and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Efremova, P. V.; Ped'ko, B. B.; Kuznecova, Yu. V.

    2016-02-01

    The structure of lithium niobate single crystals is studied by a complex technique that combines scanning electron microscopy and atomic force microscopy. By implementing the piezoresponse force method on an atomic force microscope, the domain structure of lithium niobate crystals, which was not revealed without electron beam irradiation, is visualized

  10. A Novel Inter Core-Cladding Lithium Niobate Thin Film Coated Fiber Modulator/Sensor

    NASA Technical Reports Server (NTRS)

    Jamison, Tracee L.; Komriech, Phillip; Yu, Chung

    2004-01-01

    A fiber modulator/sensor has been fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125 micron fiber. The proposed design of lithium niobate cylinder fibers can enhance the existing methodology for detecting sound waves under water utilizing the acoustooptic properties of lithium niobate. Upon application of a stress or strain, light propagating inside the core, according to the principle of total internal reflection, escapes, into the cladding because of the photoelastic boundary layer of lithium niobate. Test results of the lithium niobate fiber reveal a reduction in the 1550 nm, 4mW source with applied tension. The source power from an ordinary quartz fiber under the same stress condition remained invariant to applied tension.

  11. Investigation of properties of lithium niobate crystals in confined geometries

    NASA Astrophysics Data System (ADS)

    Veenhuizen, Keith; Stone, Greg; Knabe, Bastian; McAnany, Sean; Buse, Karsten; Jain, Himanshu; Dierolf, Volkmar

    The properties of ferroelectric materials in confined geometries, specifically lithium niobate nanocrystals and crystal lines in glass, were studied. Batches of LiNbO3 nanocrystals have been synthesized from various initial ratios of lithium to niobium using the sol-gel method. The batches were analyzed via Raman spectroscopy and SEM imaging to gain information about their size, morphology, stoichiometry, and defect content. The nanocrystals are very sensitive to the initial stoichiometric ratio in the synthesis step. Raman spectra reveal the resultant nanocrystal stoichiometry depends on the initial stoichiometry of the batch, the spectra also reveal an extra phase is present besides LiNbO3 in some batches, and high quality spherical nanocrystals can be synthesized at certain initial stoichiometric ratios. In addition, lines of LiNbO3 were crystallized in lithium-niobo-silica glass systems with varying amounts of silica to understand and control the nucleation and crystallization of the crystals in glass.

  12. Lithium niobate single-crystal and photo-functional device

    DOEpatents

    Gopalan, Venkatraman; Mitchell, Terrence E.; Kitamura, Kenji; Furukawa, Yasunori

    2001-01-01

    Provided are lithium niobate single-crystal that requires a low voltage of not larger than 10 kV/nm for its ferroelectric polarization inversion and of which the polarization can be periodically inverted with accuracy even at such a low voltage, and a photo-functional device comprising the crystal. The crystal has a molar fraction of Li.sub.2 O/(Nb.sub.2 O.sub.5 +Li.sub.2 O) of falling between 0.49 and 0.52. The photo-functional device can convert a laser ray being incident thereon.

  13. Domain wall width of lithium niobate poled during growth

    NASA Astrophysics Data System (ADS)

    Brooks, R.; Townsend, P. D.; Hole, D. E.; Callejo, D.; Bermúdez, V.; Diéguez, E.

    2003-04-01

    Good quality crystals of periodically poled lithium niobate can be generated directly during growth. However, the temperature gradients at the zone boundaries define the width of the regions where the polarity is reversed. Hence, the region influenced the domain transition may be a significant fraction of the overall poling period for material poled during growth. Evidence for the scale of this feature is reported both by chemical etching and by the less common method of ion beam luminescence and the `domain wall' width approximately 1 mum for these analyses. The influence of the reversal region may differ for alternative techniques but the relevance to device design for second harmonic generation is noted.

  14. Simulation of damage induced by ion implantation in Lithium Niobate

    NASA Astrophysics Data System (ADS)

    Bianconi, M.; Bentini, G. G.; Chiarini, M.; De Nicola, P.; Montanari, G. B.; Menin, A.; Nubile, A.; Sugliani, S.

    2010-11-01

    A simulation tool has been developed to engineer the damage formation in Lithium Niobate by ion irradiation with any atomic number and energy. Both nuclear and electronic processes were considered and, in particular, the dependence on the ion velocity of the electronic excitation damage efficiency has been taken into account. By using this tool it is possible both to draw damage nomograms, useful to qualitatively foresee the result of a given process, and to perform reliable simulations of the defect depth profiles, as demonstrated by the good agreement with the experimental data available in the literature.

  15. Writing of rare-earth ion doped lithium niobate line patterns in glass by laser scanning

    NASA Astrophysics Data System (ADS)

    Honma, T.; Komatsu, T.; Zhao, D.; Jain, H.

    2009-02-01

    A glass of Er3+ doped Li2O-Nb2O5-SiO2-B2O3 with an addition of CuO or Sm2O3 crystallizing nonlinear optical lithium niobate LiNbO3 (LN) is developed. Crystalline lines of LN have been fabricated on the glass surface by continuous wave Yb fiber laser irradiations with a wavelength of 1080 nm. The laser written LN crystalline lines have been found, by means of electron back scattering method, micro-Raman and second harmonic experiments, to be well oriented along the laser scanning direction. For the testing of optical waveguides crystal lines exhibit light confinements due to the refractive index (n) changes between the patterned line (n~2.2) and the glass matrix (n=1.7). The analysis of the confocal micro-luminescence spectra obtained for the crystalline line indicates the incorporation of Er3+ ions into LN crystals.

  16. A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications

    DOE PAGESBeta

    Ozturk, Birol; Yavuzcetin, Ozgur; Sridhar, Srinivas

    2015-01-01

    High-aspect-ratio photonic crystal air-hole fabrication on bulk Lithium Niobate (LN) substrates is extremely difficult due to its inherent resistance to etching, resulting in conical structures and high insertion losses. Here, we propose a novel coupled resonator photonic crystal (CRPC) design, combining a coupled resonator approach with that of Bragg gratings. CRPC design parameters were optimized by analytical calculations and FDTD simulations. CRPC structures with optimized parameters were fabricated and electrooptically tested on bulk LN annealed proton exchange waveguides. Low insertion loss and large electrooptic effect were observed with the fabricated devices, making the CRPC design a promising structure for electroopticmore » device applications.« less

  17. Performance enhancement of nonlinear lithium niobate couplers via double titanium and magnesium diffusion

    NASA Astrophysics Data System (ADS)

    Prudenzano, F.; Ciminelli, C.; D'Orazio, A.; Petruzzelli, V.; Sario, M. De

    The effects of double Ti and Mg diffusion into lithium niobate couplers exploiting cascaded second-order nonlinearity are theoretically investigated. We demonstrate that this technology may be employed to optimize the performance of a new type of coupler made by uniaxial crystal having an unusual dielectric tensor configuration, i.e. equatorial. An extended version of the simple effective index method is developed in order to take into account the complex nature of hybrid modes. A home-made computer code is utilized in the electromagnetic analysis of rotated anisotropic channel waveguides. As an example, the simulation results show that a magnesium diffusion, made in the external region of a Ti : LiNbO 3 coupler which induces negative extraordinary and ordinary changes of the refractive indices of LiNbO 3 Δn e( Mg) =-0.002 and Δ no(Mg)=-0.001, decreases the linear coupling length from Lc=73 to 44 mm.

  18. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    PubMed

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material. PMID:26726470

  19. Design of nanobeam photonic crystal resonators for a silicon-on-lithium-niobate platform

    NASA Astrophysics Data System (ADS)

    Witmer, Jeremy D.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2016-03-01

    We outline the design for a photonic crystal resonator made in a hybrid Silicon/Lithium Niobate material system. Using the index contrast between silicon and lithium niobate, it is possible to guide and confine photonic resonances in a thin film of silicon bonded on top of lithium niobate. Quality factors greater than $10^6$ at optical wavelength scale mode volumes are achievable. We show that patterning electrodes on such a system can yield an electro-optic coupling rate of 0.6 GHz/V (4 pm/V).

  20. Design of nanobeam photonic crystal resonators for a silicon-on-lithium-niobate platform.

    PubMed

    Witmer, Jeremy D; Hill, Jeff T; Safavi-Naeini, Amir H

    2016-03-21

    We outline the design for a photonic crystal resonator made in a hybrid Silicon/Lithium Niobate material system. Using the index contrast between silicon and lithium niobate, it is possible to guide and confine photonic resonances in a thin film of silicon bonded on top of lithium niobate. Quality factors greater than 106 at optical wavelength scale mode volumes are achievable. We show that patterning electrodes on such a system can yield an electro-optic coupling rate of 0.6 GHz/V (4 pm/V). PMID:27136784

  1. Development and Characterization of a Periodically Poled Lithium Niobate Photon Pair Source

    NASA Astrophysics Data System (ADS)

    Krupa, Sean; Stinaff, Eric; Oesterling, Lee; Nippa, David

    2015-05-01

    A photon pair source made of Periodically Poled Lithium Niobate (PPLN) was developed for degenerate and non-degenerate type-0 Spontaneous Parametric Downconversion (SPDC) of 775-780 nm light to telecom wavelengths. Research consisting of characterization and an iterative design/development process resulted in a PPLN photon pair source suitable for commercial application. Focusing on losses and heralding efficiency, different waveguide geometries and manufacturing techniques were tested, characterized, and optimized. The best PPLN devices created feature insertion losses of 3 dB and heralding efficiencies of 70% making them exceptional for use in emerging quantum applications. Further integration of fiber optic components will be done to expand the capabilities of the devices. Other current research is focused on further characterization of the devices, specifically the SPDC spectra and a direct measurement of the effective nonlinear coefficient in the PPLN waveguides. These measurements will be discussed in detail as well an overview of the project. This work seeks to improve the performance of PPLN waveguides for use in quantum technologies.

  2. Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Fu, Gang; Wang, Hui-Lin; Wang, Xue-Lin

    2013-07-01

    There is great interest in niobate crystals which belong to the tetragonal tungsten bronze (TTB) families owing to their intriguing properties. As one representative of such crystals, CBN (calcium barium niobate) has attracted rapidly growing attention. Because it has a higher Curie temperature than SBN (strontium barium niobate), possesses outstanding ferroelectric and it possesses optical properties. In addition, doped with sodium, CBN will show a higher Curie temperature than pure CBN. We report on the fabrication and characterization of optical planar waveguide in x-cut sodium-doped calcium barium niobate crystal by using C ion implantation. The guided-mode properties at the wavelength of 633 and 1539 nm are investigated through prism-coupling measurements, respectively. By applying direct end-face coupling arrangement, the near-field optical intensity distribution of waveguide modes is measured at 633 nm. For comparison, the modal profile of the same guided mode is also numerically calculated by the finite difference beam-propagation method via computer software BeamPROP. The transmission spectra of the waveguide before and after ion implantation treatments were investigated also. Our experiment results reveal that the waveguide could propagate light with transverse magnetic polarized direction only and it is assumed that the polarization selectivity of CBN crystal may responsible for this phenomenon.

  3. Novel intercore-cladding lithium niobate thin film coated MOEMS fiber sensor/modulator

    NASA Technical Reports Server (NTRS)

    Jamlson, Tracee L.; Konreich, Phillip; Yu, Chung

    2005-01-01

    A MOEMS fiber modulator/sensor is fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125-micron fibers. Such a MOEMS modulator design is expected to enhance existing lithium niobate undersea acousto-optic sound wave detectors. In our proposed version, the lithium niobate thin film alters the ordinary silica core/cladding boundary conditions such that, when a stress or strain is applied to the fiber, the core light confinement factor changes, leading to modulation of fiber light transmission. Test results of the lithium niobate embedded fiber with a 1550-nm, 4-mW laser source revealed a reduction in light transmission with applied tension. As a comparison, using the same laser source, an ordinary silica core/cladding fiber did not exhibit any reduction in transmitted light when the same strain was applied. Further experimental work and theoretical analysis is ongoing.

  4. Spectral separation of Cr3+ optical centers in stoichiometric magnesium-doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Galutskii, V. V.; Stroganova, E. V.; Yakovenko, N. A.

    2011-03-01

    The broadband luminescence of chromium optical centers with strongly overlapping spectral lines and similar emission probabilities from excited 4 T 2 states of red and green Cr3+ centers in stoichiometric magnesium-doped lithium niobate crystals has been separated for the first time. The spectral-luminescence characteristics and parameters of intracenter interaction between red and green optical Cr3+ centers in stoichiometric lithium niobate have been calculated. The luminescence quantum efficiencies of red and green chromium centers are determined.

  5. Ultraviolet nanosecond laser-assisted micro-modifications in lithium niobate monitored by Nd3+ luminescence

    NASA Astrophysics Data System (ADS)

    Ródenas, A.; Jaque, D.; Molpeceres, C.; Lauzurica, S.; Ocaña, J. L.; Torchia, G. A.; Agulló-Rueda, F.

    2007-04-01

    This work reports on the microstructural modifications produced by nanosecond ultraviolet ablation in neodymium doped lithium niobate crystals. The neodymium ions have been used as optical probes to determine the extension and nature of the modified bulk material. From micro-luminescence experiments we have been able to determine the spatial distribution of the UV ablation induced material densification, local disorder and defect creation. Results have been compared to those previously obtained from femtosecond irradiated lithium niobate crystals.

  6. Micro- and nanostructures in lithium niobate single crystals doped with lanthanides

    SciTech Connect

    Palatnikov, M. N. Shcherbina, O. B.; Sidorov, N. V.; Bormanis, K.

    2010-09-15

    Lithium niobate single crystals doped with lanthanides (Gd, Er) and nominally pure single crystals of congruent and stoichiometric compositions have been grown under time-dependent thermal conditions. Regular growth domain microstructures and periodic nanostructures have been investigated by optical microscopy and atomic force microscopy with a step from 10 to 100 nm. Comparative investigations of the Raman spectra of lithium niobate single crystals of different compositions have been performed.

  7. Holographic surface gratings in iron-doped lithium niobate

    SciTech Connect

    Sarkisov, S. S.; Curley, M. J.; Kukhtarev, N. V.; Fields, A.; Adamovsky, G.; Smith, C. C.; Moore, L. E.

    2001-08-13

    Surface gratings associated with holographic volume gratings in photorefractive crystals of iron-doped lithium niobate have been studied using diffraction of a reflected probe beam and high-resolution phase-shifted interferometric profilometry. Both techniques show that the surface gratings exist in the form of periodical corrugations of the same period as that of the volume grating. The maximum amplitude of the periodical surface relief measured by both techniques is close to 6.5 nm. We also demonstrated that the periodical electric forces on the surface were capable of assembling polystyrene microspheres along the fringes of the grating. Large amplitude of the periodic electric field (1.6 x 10{sup 4}V/cm) is associated with the photogalvanic effect. {copyright} 2001 American Institute of Physics.

  8. Properties and applications of potassium lithium tantalate niobate

    NASA Astrophysics Data System (ADS)

    Tong, Xiaolin

    1998-06-01

    This thesis describes the physical and photorefractive properties of potassium lithium tantalate niobate (KLTN) single crystal material. The top seeded solution growth method is reviewed. The phase transition temperatures and dielectric properties are related to the compositions of the KLTN crystals. A liquid/solid interface dynamics model is introduced to explain the experimental results which is that hydrogen ion concentration in KLTN crystals can be reduced dramatically by doping copper in the absence of titanium. Dark conductivity of KLTN crystals are contributed by two species when the temperature is in the range of 250 K and 350 K. Two species are hydrogen ions and shallow trapped electrons (holes). These results have been confirmed by direct dc conductivity measurements and holograms fixing experiments. Hydrogen ion has two types of motion in the crystals: O-H vibration and O-H libration. We established a model to describe hydrogen ions motions and hopping in KLTN crystals. The theoretical prediction is in agreement with experimental results. Hologram thermal fixing for optical data storage is discussed. Hydrogen ions are identified as the mobile ion which is responsible for thermal fixing. In ferroelectric phase KLTN crystals, spontaneous polarization of individual microdomains can be aligned throughout the entire crystal by the poling process. Photorefractive space charge fields play a role deploing the microdomains wherever space charge field opposing to spontaneous polarization. This may cause microdomain switching and lead to the generation of index grating. Experimental observation of Barkhausen current jumps is the signature of domain inversion. Holograms thermal fixing in potassium niobate crystals are also investigated. Because potassium niobate crystal has an orthognal structure with space group mm2, 3D polarization dependence of OH bands are observed. A special cut of iron doped potassium niobate crystal was designed to achieve the maximum

  9. Lithium niobate transducers for MRI-guided ultrasonic microsurgery.

    PubMed

    Kotopoulis, Spiros; Wang, Han; Cochran, Sandy; Postema, Michiel

    2011-08-01

    Focused ultrasound surgery (FUS) is usually based on frequencies below 5 MHz-typically around 1 MHz. Although this allows good penetration into tissue, it limits the minimum lesion dimensions that can be achieved. In this study, we investigate devices to allow FUS at much higher frequencies, in principle, reducing the minimum lesion dimensions. Furthermore, FUS can produce deep-sub-millimeter demarcation between viable and necrosed tissue; high-frequency devices may allow this to be exploited in superficial applications which may include dermatology, ophthalmology, treatment of the vascular system, and treatment of early dysplasia in epithelial tissue. In this paper, we explain the methodology we have used to build high-frequency high-intensity transducers using Y-36°-cut lithium niobate. This material was chosen because its low losses give it the potential to allow very-high-frequency operation at harmonics of the fundamental operating frequency. A range of single-element transducers with center frequencies between 6.6 and 20.0 MHz were built and the transducers' efficiency and acoustic power output were measured. A focused 6.6-MHz transducer was built with multiple elements operating together and tested using an ultrasound phantom and MRI scans. It was shown to increase phantom temperature by 32°C in a localized area of 2.5 x 3.4 mm in the plane of the MRI scan. Ex vivo tests on poultry tissue were also performed and shown to create lesions of similar dimensions. This study, therefore, demonstrates that it is feasible to produce high-frequency transducers capable of high-resolution FUS using lithium niobate. PMID:21859576

  10. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing

    NASA Astrophysics Data System (ADS)

    Kubasov, I. V.; Kislyuk, A. M.; Bykov, A. S.; Malinkovich, M. D.; Zhukov, R. N.; Kiselev, D. A.; Ksenich, S. V.; Temirov, A. A.; Timushkin, N. G.; Parkhomenko, Yu. N.

    2016-03-01

    The bidomain structures produced by light external heating in z-cut lithium niobate and lithium tantalate single crystals are formed and studied. Interdomain regions about 200 and 40 μm wide in, respectively, LiNbO3 and LiTaO3 bidomain crystals are visualized and studied by optical microscopy and piezoresponse force microscopy. Extended chains and lines of domains in the form of thin layers with a width less than 10 μm in volume, which penetrate the interdomain region and spread over distances of up to 1 mm, are found.

  11. Growth, defect structure, and THz application of stoichiometric lithium niobate

    NASA Astrophysics Data System (ADS)

    Lengyel, K.; Péter, Á.; Kovács, L.; Corradi, G.; Pálfalvi, L.; Hebling, J.; Unferdorben, M.; Dravecz, G.; Hajdara, I.; Szaller, Zs.; Polgár, K.

    2015-12-01

    Owing to the extraordinary richness of its physical properties, congruent lithium niobate has attracted multidecade-long interest both for fundamental science and applications. The combination of ferro-, pyro-, and piezoelectric properties with large electro-optic, acousto-optic, and photoelastic coefficients as well as the strong photorefractive and photovoltaic effects offers a great potential for applications in modern optics. To provide powerful optical components in high energy laser applications, tailoring of key material parameters, especially stoichiometry, is required. This paper reviews the state of the art of growing large stoichiometric LiNbO3 (sLN) crystals, in particular, the defect engineering of pure and doped sLN with emphasis on optical damage resistant (ODR) dopants (e.g., Mg, Zn, In, Sc, Hf, Zr, Sn). The discussion is focused on crystals grown by the high temperature top seeded solution growth (HTTSSG) technique using alkali oxide fluxing agents. Based on high-temperature phase equilibria studies of the Li2O-Nb2O5-X2O ternary systems (X = Na, K, Rb, Cs), the impact of alkali homologue additives on the stoichiometry of the lithium niobate phase will be analyzed, together with a summary of the ultraviolet, infrared, and far-infrared absorption spectroscopic methods developed to characterize the composition of the crystals. It will be shown that using HTTSSG from K2O containing flux, crystals closest to the stoichiometric composition can be grown characterized by a UV-edge position of at about 302 nm and a single narrow hydroxyl band in the IR with a linewidth of less than 3 cm-1 at 300 K. The threshold concentrations for ODR dopants depend on crystal stoichiometry and the valence of the dopants; Raman spectra, hydroxyl vibration spectra, and Z-scan measurements prove to be useful to distinguish crystals below and above the photorefractive threshold. Crystals just above the threshold are preferred for most nonlinear optical applications apart

  12. Optical and structural properties of single-crystal lithium niobate thin film

    NASA Astrophysics Data System (ADS)

    Han, Huangpu; Cai, Lutong; Hu, Hui

    2015-04-01

    High-refractive-index contrast, single-crystal lithium niobate thin films are emerging as a new platform for integrated optics. Such lithium niobate thin films are prepared using ion implantation and direct-wafer bonding to a SiO2 layer deposited on a LN substrate. However, the ion-implantation process can cause changes in the refractive index and result in lattice damage, and there are few studies on the optical and structural properties of lithium niobate thin film to compensate for this. In this paper, we reported that the refractive index of lithium niobate thin film can reach that of the bulk material by annealing in an oxygen atmosphere at 500 °C for 5 h. The experimental results of high-resolution X-ray diffraction (HRXRD) and Rutherford back-scattering spectrum (RBS) showed a good crystal lattice arrangement in the LN thin film. These experimental results confirmed that the refractive index and crystal-lattice structural properties of the lithium niobate thin film were similar to that of the bulk material. To demonstrate the application on integrated optics, a 1 μm wide photonic wire was fabricated and the near-field intensity profile at 1.55 μm wavelength was obtained and compared with the simulation result.

  13. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Laser damage resistance of a lithium niobate-tantalate bicrystal system

    NASA Astrophysics Data System (ADS)

    Skvortsov, L. A.; Stepantsov, E. S.

    1993-11-01

    The laser damage resistance of a bicrystal system prepared by solid-phase diffusive joining of specially prepared crystals of lithium niobate and lithium tantalate has been studied. This has been the first such study. The damage resistance of the interface is at least twice that of the lithium niobate surface. The damage resistance of the bicrystal is determined by the damage resistance of the lithium tantalate surface and is greater than 600 MW/cm2.

  14. Diamond micro-milling of lithium niobate for sensing applications

    NASA Astrophysics Data System (ADS)

    Huo, Dehong; Jie Choong, Zi; Shi, Yilun; Hedley, John; Zhao, Yan

    2016-09-01

    Lithium niobate (LiNbO3) is a crystalline material which is widely applied in surface acoustic wave, microelectromechanical systems (MEMS), and optical devices, owing to its superior physical, optical, and electronic properties. Due to its low toughness and chemical inactivity, LiNbO3 is considered to be a hard-to-machine material and has been traditionally left as as an inert substrate upon which other micro structures are deposited. However, in order to make use of its superior material properties and increase efficiency, the fabrication of microstructures directly on LiNbO3 is in high demand. This paper presents an experimental investigation on the micro machinability of LiNbO3 via micro milling with the aim of obtaining optimal process parameters. Machining of micro slots was performed on Z-cut LiNbO3 wafers using single crystal diamond tools. Surface and edge quality, cutting forces, and the crystallographic effect were examined and characterized. Ductile mode machining of LiNbO3 was found to be feasible at a low feed rate and small depth of cut. A strong crystallographic effect on the machined surface quality was also observed. Finally, some LiNbO3 micro components applicable to sensing applications were fabricated.

  15. The OH - absorption spectra of low doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Kong, Yongfa; Zhang, Wanlin; Xu, Jingjun; Yan, Wenbo; Liu, Hongde; Xie, Xiang; Li, Xiaochun; Shi, Lihong; Zhang, Guangyin

    2004-07-01

    The OH - absorption spectra of low doped lithium niobate (LiNbO 3) crystals have been investigated. Though no apparent band shift is observed in these absorption spectra, their shapes are quite different. In order to analyze the information on the defect structure underlying these OH - absorption bands, the normalization and difference methods were employed. It was found that although the doping concentrations are under the thresholds the doping ions have apparent affect to the site occupation of OH - ions. The OH - vibrations related to Mg Li+ (Mg 2+ occupying Li-site) and In Li2+ are 3483 and 3484 cm -1 in LiNbO 3:Mg and LiNbO 3:In crystals, respectively. The absorption peak of LiNbO 3:Ti (2.5 mol%) crystal at 3487 cm -1 is mainly related to Ti Li3+-OH - and the 3489 cm -1 peak of LiNbO 3:Mg (5.0 mol%), Ti (10.0 mol%) related to Mg Li+-OH -, Ti Nb--OH - and Ti Li3+-OH -. Doping with Na improves the peak intensity near 3466 cm -1 and induces a new absorption peak at 3470 cm -1. The absorption bands of LiNbO 3 crystals codoped with trivalent ions are associated with the co-effect of the doped ions and have some different characteristics from mono-doped crystals.

  16. New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis.

    PubMed

    Aufray, Maëlenn; Menuel, Stéphane; Fort, Yves; Eschbach, Julien; Rouxel, Didier; Vincent, Brice

    2009-08-01

    This work presents a new synthesis of nano-sized lithium niobate particles by a low temperature three steps procedure. The complete protocol implies a LiH induced reduction of NbCl5 followed by in situ spontaneous oxidation into low valence niobium nano-oxides. These niobium oxides are exposed to air atmosphere leading to pure Nb2O5 formation. Finally, the stable Nb2O5 is converted into lithium niobate LiNbO3 nanoparticles during the controlled hydrolysis of the LiH excess. The nano-sized lithium niobate particles as well as their formation processes were characterized using X-ray photoelectron spectroscopy. PMID:19928149

  17. Optical spectroscopy of trivalent chromium in sol-gel lithium niobate

    SciTech Connect

    Krebs, J.K.; Happek, U.

    2005-12-19

    We report on the characterization of sol-gel derived lithium niobate via trivalent chromium probe ions, a study that is motivated by recent reports on the synthesis of high quality sol-gel lithium niobate (LiNbO{sub 3}). In order to assess the quality of sol-gel derived LiNbO{sub 3}, we incorporate Cr{sup 3+} during the hydrolysis stage of the sol-gel process. A comparison of the Cr{sup 3+} emission and photoexcitation data on both sol-gel and melt-grown LiNbO{sub 3} shows that the sol-gel derived material is highly stoichiometric.

  18. Self-trapping of low-energy infrared femtosecond beams in lithium niobate

    SciTech Connect

    Pettazzi, Federico; Alonzo, Massimo; Centini, Marco; Fazio, Eugenio; Petris, Adrian; Vlad, Valentin I.; Chauvet, Mathieu

    2007-12-15

    In this paper we report self-trapping of subnanojoule femtosecond near-infrared beams in photonic-grade undoped bulk lithium niobate under application of an external dc electric field. We show that the phenomenon occurs thanks to the photorefractive effect induced by a weak second-harmonic component generated under large velocity mismatch. It offers a way to extend lithium niobate's photorefractive response to the near-infrared spectrum for peak intensity lower than 1 GW/cm{sup 2}, which is three orders of magnitude lower than reported in the literature.

  19. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate.

    PubMed

    Lehr, Dennis; Reinhold, Jörg; Thiele, Illia; Hartung, Holger; Dietrich, Kay; Menzel, Christoph; Pertsch, Thomas; Kley, Ernst-B; Tünnermann, Andreas

    2015-02-11

    Plasmonic nanorings provide the unique advantage of a pronounced plasmonic field enhancement inside their core. If filled with a polarizable medium, it may significantly enhance its optical effects. Here, we demonstrate this proposition by filling gold nanorings with lithium niobate. The generated second harmonic signal is compared to the signal originating from an unpatterned lithium niobate surface. Measurements and simulation confirm an enhancement of about 20. Applications requiring nanoscopic localized light sources like fluorescence spectroscopy or quantum communication will benefit from our findings. PMID:25584636

  20. Lattice vibrations and phase-transition soft mode in near stoichiometric lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Xia, H. R.; Sun, S. Q.; Cheng, X. F.; Dong, S. M.; Xu, H. Y.; Gao, L.; Cui, D. L.

    2005-08-01

    At room temperature, Raman-scattering investigations of near stoichiometric lithium niobate (S-LN) crystals theoretically and experimentally reveal an effect of the lattice vacant positions on the Raman spectra. At high temperature, Raman peaks of the mode ν5 vary sensitively and intensely with the increase of the temperature. A condensed soft optical-phonon mode originates from the triply degenerate symmetric in-plane O-Nb-O bending. The paraelectric-ferroelectric structural transition occurs at about 1170°C. The composition homogeneity and optical uniformity of the S-LN crystals are demonstrated to be excellent compared with those of the congruent lithium niobate.

  1. Electro-optic mode switch based on lithium-niobate Mach-Zehnder interferometer.

    PubMed

    Zhang, Mengruo; Chen, Kaixin; Jin, Wei; Chiang, Kin Seng

    2016-06-01

    We propose an electro-optic mode switch based on an optical waveguide Mach-Zehnder interferometer fabricated with x-cut lithium niobate by the annealed proton exchange process. The device can switch between the fundamental mode and the higher-order mode with a low driving voltage. Our typical fabricated device, which has a total length of ∼24  mm, shows a mode extinction ratio of ∼35  dB and a 20-dB bandwidth of ∼12  nm at the wavelength 1552 nm, when driven at a voltage of 1.7 V at 26°C. High performance can be obtained at any wavelength in the C+L band with a driving voltage varying by no more than 3 V. The proposed mode switch is easy to fabricate and could find applications in reconfigurable mode-division-multiplexing systems. PMID:27411197

  2. Erbium ion implantation into different crystallographic cuts of lithium niobate

    NASA Astrophysics Data System (ADS)

    Nekvindova, P.; Svecova, B.; Cajzl, J.; Mackova, A.; Malinsky, P.; Oswald, J.; Kolistsch, A.; Spirkova, J.

    2012-02-01

    Single crystals like lithium niobate are frequently doped with optically active rare-earth or transition-metal ions for a variety of applications in optical devices such as solid-state lasers, amplifiers or sensors. To exploit the potential of the Er:LiNbO 3, one must ensure high intensity of the 1.5 μm luminescence as an inevitable prerequisite. One of the important factors influencing the luminescence properties of a lasing ion is the crystal field of the surrounding, which is inevitably determined by the crystal structure of the pertinent material. From that point it is clear that it cannot be easy to affect the resulting luminescence properties - intensity or position of the luminescence band - without changing the structure of the substrate. However, there is a possibility to utilise a potential of the ion implantation of the lasing ions, optionally accompanied with a sensitising one, that can, besides the doping, also modify the structure of the treated area od the crystal. This effect can be eventually enhanced by a post-implantation annealing that may help to recover the damaged structure and hence to improve the desired luminescence. In this paper we are going to report on our experiments with ion-implantation technique followed with subsequent annealing could be a useful way to influence the crystal field of LN. Optically active Er:LiNbO 3 layers were fabricated by medium energy implantation under various experimental conditions. The Er + ions were implanted at energies of 330 and 500 keV with fluences ranging from 1.0 × 10 15 to 1.0 × 10 16 ion cm -2 into LiNbO 3 single-crystal cuts of both common and special orientations. The as-implanted samples were annealed in air and oxygen at two different temperatures (350 and 600 °C) for 5 h. The depth concentration profiles of the implanted erbium were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He + ions. The photoluminescence spectra of the samples were measured to determine the

  3. Growth, defect structure, and THz application of stoichiometric lithium niobate

    SciTech Connect

    Lengyel, K.; Péter, Á.; Kovács, L.; Corradi, G.; Dravecz, G.; Hajdara, I.; Szaller, Zs.; Polgár, K.; Pálfalvi, L.; Unferdorben, M.; Hebling, J.

    2015-12-15

    Owing to the extraordinary richness of its physical properties, congruent lithium niobate has attracted multidecade-long interest both for fundamental science and applications. The combination of ferro-, pyro-, and piezoelectric properties with large electro-optic, acousto-optic, and photoelastic coefficients as well as the strong photorefractive and photovoltaic effects offers a great potential for applications in modern optics. To provide powerful optical components in high energy laser applications, tailoring of key material parameters, especially stoichiometry, is required. This paper reviews the state of the art of growing large stoichiometric LiNbO{sub 3} (sLN) crystals, in particular, the defect engineering of pure and doped sLN with emphasis on optical damage resistant (ODR) dopants (e.g., Mg, Zn, In, Sc, Hf, Zr, Sn). The discussion is focused on crystals grown by the high temperature top seeded solution growth (HTTSSG) technique using alkali oxide fluxing agents. Based on high-temperature phase equilibria studies of the Li{sub 2}O–Nb{sub 2}O{sub 5}–X{sub 2}O ternary systems (X = Na, K, Rb, Cs), the impact of alkali homologue additives on the stoichiometry of the lithium niobate phase will be analyzed, together with a summary of the ultraviolet, infrared, and far-infrared absorption spectroscopic methods developed to characterize the composition of the crystals. It will be shown that using HTTSSG from K{sub 2}O containing flux, crystals closest to the stoichiometric composition can be grown characterized by a UV-edge position of at about 302 nm and a single narrow hydroxyl band in the IR with a linewidth of less than 3 cm{sup −1} at 300 K. The threshold concentrations for ODR dopants depend on crystal stoichiometry and the valence of the dopants; Raman spectra, hydroxyl vibration spectra, and Z-scan measurements prove to be useful to distinguish crystals below and above the photorefractive threshold. Crystals just above the threshold are

  4. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams

    NASA Astrophysics Data System (ADS)

    Chen, Feng

    2009-10-01

    A range of ion beam techniques have been used to fabricate a variety of photonic guiding structures in the well-known lithium niobate (LiNbO3 or LN) crystals that are of great importance in integrated photonics/optics. This paper reviews the up-to-date research progress of ion-beam-processed LiNbO3 photonic structures and reports on their fabrication, characterization, and applications. Ion beams are being used with this material in a wide range of techniques, as exemplified by the following examples. Ion beam milling/etching can remove the selected surface regions of LiNbO3 crystals via the sputtering effects. Ion implantation and swift ion irradiation can form optical waveguide structures by modifying the surface refractive indices of the LiNbO3 wafers. Crystal ion slicing has been used to obtain bulk-quality LiNbO3 single-crystalline thin films or membranes by exfoliating the implanted layer from the original substrate. Focused ion beams can either generate small structures of micron or submicron dimensions, to realize photonic bandgap crystals in LiNbO3, or directly write surface waveguides or other guiding devices in the crystal. Ion beam-enhanced etching has been extensively applied for micro- or nanostructuring of LiNbO3 surfaces. Methods developed to fabricate a range of photonic guiding structures in LiNbO3 are introduced. Modifications of LiNbO3 through the use of various energetic ion beams, including changes in refractive index and properties related to the photonic guiding structures as well as to the materials (i.e., electro-optic, nonlinear optic, luminescent, and photorefractive features), are overviewed in detail. The application of these LiNbO3 photonic guiding structures in both micro- and nanophotonics are briefly summarized.

  5. Laser-writing inside uniaxially birefringent crystals: fine morphology of ultrashort pulse-induced changes in lithium niobate.

    PubMed

    Karpinski, P; Shvedov, V; Krolikowski, W; Hnatovsky, C

    2016-04-01

    This work presents a detailed analysis of the morphology of femtosecond laser-induced changes in bulk lithium niobate (LiNbO3) - one of the most common host materials in photonics - using second-harmonic generation microscopy and scanning electron microscopy. It is shown that focused linearly polarized near-infrared pulses can produce two or three distinct axially separated regions of modified material, depending on whether the pulse propagation is along or perpendicular to the optical axis. When laser writing in LiNbO3 is conducted in multi-shot irradiation mode and the focused light intensity is kept near the bulk damage threshold, periodic planar nanostructures aligned perpendicular to the laser polarization are produced inside the focal volume. These results provide a new perspective to laser writing in crystalline materials, including the fabrication of passive and active waveguides, photonic crystals, and optical data storage devices. PMID:27137036

  6. Generation of high spectral purity photon-pairs with MgO-doped periodically poled lithium niobate

    NASA Astrophysics Data System (ADS)

    Zhan, Mengying; Sun, Qichao; Xiang, Tong; Chen, Xianfeng

    2015-12-01

    We study the spectral correlation of photon pairs generated via type-II spontaneous parametric down conversion in periodically poled lithium niobate crystals. By performing Schmidt decomposition on the two-photon wavefunction, we calculate the spectral purity of the two-photon state under various pump laser characteristics and doping concentrations of MgO in lithium niobate crystals. Our results show that periodically poled 5% MgO doped lithium niobate is a good candidate to generate photon-pairs with high spectral purity at telecom wavelength.

  7. Surface acoustic wave generation and detection using graphene interdigitated transducers on lithium niobate

    SciTech Connect

    Mayorov, A. S.; Hunter, N.; Muchenje, W.; Wood, C. D.; Rosamond, M.; Linfield, E. H.; Davies, A. G.; Cunningham, J. E.

    2014-02-24

    We demonstrate the feasibility of using graphene as a conductive electrode for the generation and detection of surface acoustic waves at 100 s of MHz on a lithium niobate substrate. The graphene interdigitated transducers (IDTs) show sensitivity to doping and temperature, and the characteristics of the IDTs are discussed in the context of a lossy transmission line model.

  8. Experimental and simulated performance of lithium niobate 1-3 piezocomposites for 2 MHz non-destructive testing applications.

    PubMed

    Kirk, K J; Schmarje, N

    2013-01-01

    Lithium niobate piezocomposites have been investigated as the active element in high temperature resistant ultrasonic transducers for non-destructive testing applications up to 400°C. Compared to a single piece of lithium niobate crystal they demonstrate shorter pulse length by 3×, elimination of lateral modes, and resistance to cracking. In a 1-3 connectivity piezocomposite for high temperature use (200-400°C), lithium niobate pillars are embedded in a matrix of flexible high temperature sealant or high temperature cement. In order to better understand the design principles and constraints for use of lithium niobate in piezocomposites experiments and modelling have been carried out. For this work the lithium niobate piezocomposites were investigated at room temperature so epoxy filler was used. 1-3 connectivity piezocomposite samples were prepared with z-cut lithium niobate, pillar width 0.3-0.6mm, sample thickness 1-4mm, pillar aspect ratio (pillar height/width) 3-6, volume fraction 30 and 45%. Operating frequency was 1-2MHz. Experimental measurements of impedance magnitude and resonance frequency were compared with 3-D finite element modelling using PZFlex. Resonance frequencies were predicted within 0.05MHz and impedance magnitude within 2-5% for samples with pillar aspect ratio ≥3 for 45% volume fraction and pillar aspect ratio ⩾6 for 30% volume fraction. Laser vibrometry of pulse excitation of piezocomposite samples in air showed that the lithium niobate pillars and the epoxy filler moved in phase. Experiment and simulation showed that the thickness mode coupling coefficient k(t) of the piezocomposite was maintained at the lithium niobate bulk value of approximately 0.2 down to a volume fraction of 30%, consistent with calculations using the (Smith and Auld, 1991) model for piezocomposites. PMID:22784707

  9. Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Meng, Qinglong; Zhang, Bin; Zhong, Sencheng; Zhu, Liguo

    2016-06-01

    The damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses has been studied theoretically and experimentally. Firstly, the model for the damage threshold prediction of crystal materials based on the improved rate equation has been proposed. Then, the experimental measure method of the damage threshold of crystal materials has been given in detail. On the basis, the variation of the damage threshold of lithium niobate crystal with the pulse duration has also been analyzed quantitatively. Finally, the damage threshold of lithium niobate crystal under multiple laser pulses has been measured and compared to the theoretical results. The results show that the transmittance of lithium niobate crystal is almost a constant when the laser pulse fluence is relative low, whereas it decreases linearly with the increase in the laser pulse fluence below the damage threshold. The damage threshold of lithium niobate crystal increases with the increase in the duration of the femtosecond laser pulse. And the damage threshold of lithium niobate crystal under multiple laser pulses is obviously lower than that irradiated by a single laser pulse. The theoretical data fall in good agreement with the experimental results.

  10. Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices

    SciTech Connect

    Fontana, Marc D.; Bourson, Patrice

    2015-12-15

    Raman microprobe applied on LiNbO{sub 3} (LN) crystals and derived materials or devices is shown to be a tool to detect either local variations or changes of the whole structure. Position, width, or intensity of one Raman line can be used as markers of a structural change. Indeed, each Raman line can be assigned to a peculiar ionic motion and is differently sensitive to application of strain, temperature change, and electric field. Some vibrational modes are especially associated to the site of Li ion, or Nb ion, or still oxygen octahedron, so that they can be affected by the introduction of dopant ion on one or another site. Therefore, Raman Spectroscopy (RS) can be used as a site spectroscopy to describe the mechanism of doping incorporation in the LN lattice, allowing the optimization of some linear and non-linear optical properties according to the dopant concentration and substitution site. The composition or the content of non-stoichiometry related defects could be derived from the width of some lines. Any damage or local disorder can be detected by a line broadening. The quality or preservation of the structure after chemical treatment, or laser pulses, can be thus checked. The structure of ion-implanted or proton-exchanged wave-guides and periodically poled lithium niobate as well can be imaged from frequency shift or intensity change of some lines. RS is thus a useful way to control the structure of LN and/or to optimize the preparation parameters and its properties.

  11. Utilizing dynamic annealing during ion implantation: synthesis of silver nanoparticles in crystalline lithium niobate.

    PubMed

    Wolf, Steffen; Rensberg, Jura; Stöcker, Hartmut; Abendroth, Barbara; Wesch, Werner; Ronning, Carsten

    2014-04-01

    Silver nanoparticles (NPs) embedded in lithium niobate were fabricated via ion beam synthesis and are suitable for various plasmonic applications, e.g. enhancement of optical nonlinear effects. After room temperature silver implantation, annealing in the temperature range of 400-600 °C was performed in order to recrystallize the damaged lithium niobate surface layer. The shape of the silver NPs, their optical properties as well as the structural properties of their surrounding matrix have been analyzed for various annealing steps. TEM investigations show that annealing at 400 °C does not lead to recrystallization of the damaged lithium niobate. A recrystallization occurs upon increasing the annealing temperature to 500 or 600 °C, but simultaneously a second phase consisting of lithium triniobate forms. This is additionally supported by XRD measurements. By utilizing dynamic annealing, i.e. implanting silver at elevated temperatures of 400 °C, it is shown that the LiNbO3 matrix stays single crystalline during ion implantation and no LiNb3O8 is formed. This is additionally verified by comparing the positions of the surface plasmon resonances with calculations based on Mie's scattering theory. PMID:24598310

  12. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate

    NASA Astrophysics Data System (ADS)

    Wolf, Steffen; Rensberg, Jura; Johannes, Andreas; Thomae, Rainer; Smit, Frederick; Neveling, Retief; Moodley, Mathew; Bierschenk, Thomas; Rodriguez, Matias; Afra, Boshra; Hasan, Shakeeb Bin; Rockstuhl, Carsten; Ridgway, Mark; Bharuth-Ram, Krish; Ronning, Carsten

    2016-04-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic 84Kr and 197Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm-1 in the top layer of the samples. Due to the high electronic energy losses of the irradiating ions, molten ion tracks are formed inside the lithium niobate in which the elongated Ag nanoparticles are formed. This process is strongly dependent on the initial particle size and leads to a broad aspect ratio distribution. Extinction spectra of the samples feature the extinction maximum with shoulders on either side. While the maximum is caused by numerous remaining spherical nanoparticles, the shoulders can be attributed to elongated particles. The latter could be verified by COMSOL simulations. The extinction spectra are thus a superposition of the spectra of all individual particles.

  13. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate.

    PubMed

    Wolf, Steffen; Rensberg, Jura; Johannes, Andreas; Thomae, Rainer; Smit, Frederick; Neveling, Retief; Moodley, Mathew; Bierschenk, Thomas; Rodriguez, Matias; Afra, Boshra; Bin Hasan, Shakeeb; Rockstuhl, Carsten; Ridgway, Mark; Bharuth-Ram, Krish; Ronning, Carsten

    2016-04-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic (84)Kr and (197)Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm(-1) in the top layer of the samples. Due to the high electronic energy losses of the irradiating ions, molten ion tracks are formed inside the lithium niobate in which the elongated Ag nanoparticles are formed. This process is strongly dependent on the initial particle size and leads to a broad aspect ratio distribution. Extinction spectra of the samples feature the extinction maximum with shoulders on either side. While the maximum is caused by numerous remaining spherical nanoparticles, the shoulders can be attributed to elongated particles. The latter could be verified by COMSOL simulations. The extinction spectra are thus a superposition of the spectra of all individual particles. PMID:26902734

  14. Acoustically determined linear piezoelectric response of lithium niobate up to 1100 V

    SciTech Connect

    Patel, N.; Branch, D. W.; Cular, S.; Schamiloglu, E.

    2014-04-21

    We present a method to measure high voltages using the piezoelectric crystal lithium niobate without using voltage dividers. A 36° Y-X cut lithium niobate crystal was coupled to two acoustic transducers, where direct current voltages were applied from 128–1100 V. The time-of-flight through the crystal was determined to be linearly dependent on the applied voltage. A model was developed to predict the time-delay in response to the applied voltage. The results show a sensitivity of 17 fs/V with a measurement error of 1 fs/V was achievable using this method. The sensitivity of this method can be increased by measuring the acoustic wave after multiple passes through the crystal. This method has many advantages over traditional techniques such as: favorable scalability for larger voltages, ease of use, cost effectiveness, and compactness.

  15. Optical and holographic storage properties of F3, Cu, and Mg-doped lithium niobate

    NASA Technical Reports Server (NTRS)

    Beatty, M. E., III; Meredith, B. D.

    1978-01-01

    Several samples of iron, copper, and magnesium doped lithium niobate were tested to determine their storage properties which would be applicable to an optical data storage system and an integrated optics data preprocessor which makes use of holographic storage techniques. The parameters of interest were the diffraction efficiency, write power, write time, erase time, erase energy, and write sensitivity. Results of these parameters are presented. It was found that iron doped lithium niobate samples yielded the best results in all parameters except for a few percent higher diffraction efficiency in copper doped samples. The magnesium doped samples were extremely insensitive and are not recommended for use in holographic optical data storage and processing systems.

  16. Acoustically determined linear piezoelectric response of lithium niobate up to 1100 V

    NASA Astrophysics Data System (ADS)

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2014-04-01

    We present a method to measure high voltages using the piezoelectric crystal lithium niobate without using voltage dividers. A 36° Y-X cut lithium niobate crystal was coupled to two acoustic transducers, where direct current voltages were applied from 128-1100 V. The time-of-flight through the crystal was determined to be linearly dependent on the applied voltage. A model was developed to predict the time-delay in response to the applied voltage. The results show a sensitivity of 17 fs/V with a measurement error of 1 fs/V was achievable using this method. The sensitivity of this method can be increased by measuring the acoustic wave after multiple passes through the crystal. This method has many advantages over traditional techniques such as: favorable scalability for larger voltages, ease of use, cost effectiveness, and compactness.

  17. Coded excitation of broadband terahertz using optical rectification in poled lithium niobate

    NASA Astrophysics Data System (ADS)

    Buma, T.; Norris, T. B.

    2005-12-01

    We demonstrate coded excitation of broadband terahertz for imaging applications. The encoded transmitter uses optical rectification of femtosecond laser pulses in poled lithium niobate patterned with a 53-bit binary phase code. The terahertz wave forms are detected by electro-optic sampling in zinc telluride. A digital pulse compression filter decodes the binary wave forms, producing broadband pulses at 1.0THz. A two-dimensional imaging experiment shows comparable performance between the encoded transmitter and a zinc telluride emitter.

  18. Modulational instability of polarization of light in a periodically poled lithium niobate chip

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Liu, Kun; Chen, Xianfeng

    2016-01-01

    A critical physical phenomenon of polarization instability was observed in periodically poled lithium niobate, which reveals that tiny changes in the exterior conditions will have a remarkable effect on the polarization state of the output light. The instability shown here has a new physical mechanism from those in the weakly dispersive fiber, and such an in-chip chaos system is likely to promote an integrated chaos device behaving as biosensor, switch, and filter with high sensitivity or resolution.

  19. Dependence of effective internal field of congruent lithium niobate on its domain configuration and stability

    SciTech Connect

    Das, Ranjit E-mail: souvik2cat@gmail.com Ghosh, Souvik E-mail: souvik2cat@gmail.com Chakraborty, Rajib E-mail: souvik2cat@gmail.com

    2014-06-28

    Congruent lithium niobate is characterized by its internal field, which arises due to defect clusters within the crystal. Here, it is shown experimentally that this internal field is a function of the molecular configuration in a particular domain and also on the stability of that particular configuration. The measurements of internal field are done using interferometric technique, while the variation of domain configuration is brought about by room temperature high voltage electric field poling.

  20. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing

    SciTech Connect

    Kubasov, I. V. Timshina, M. S.; Kiselev, D. A.; Malinkovich, M. D.; Bykov, A. S.; Parkhomenko, Yu. N.

    2015-09-15

    The interdomain region of a bidomain strucrture formed in 127°-cut lithium niobate single crystals using light annealing has been studied by optical and scanning probe microscopies. A periodic subdomain structure on the 180° macrodomain wall is visualized by piezoresponse force microscopy. The piezoresponse signal (polarization) is shown to be a power-law function of the domain width with an exponent n = 0.53.

  1. Graphene Based Surface Plasmon Polariton Modulator Controlled by Ferroelectric Domains in Lithium Niobate

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhao, Hua; Hu, Guangwei; Li, Siren; Su, Hang; Zhang, Jingwen

    2015-12-01

    We proposed a ferroelectric domain controlled graphene based surface plasmon polariton modulator. Ferroelectricity-induced electronic and optical property tuning of graphene by domain in lithium niobate was theoretically investigated considering both interband and intraband contributions of surface conductivity. With the corrected Sellmeier equation of lithium niobate, the propagation of transverse magnetic mode surface plasmon polaritons in an air/graphene/lithium niobate structure was studied when monolayer graphene was tuned by down polarization direction ferroelectric domain with different polarization levels. The length of the ferroelectric domain was optimized to be 90 nm for a wavelength of 5.0 μm with signal extinction per unit 14.7 dB/μm, modulation depth 474.1 dB/μm and figure of merit 32.5. This work may promote the study of highly efficient modulators and other ultra-compact nonvolatile electronic and photonic devices in which two-dimensional materials and ferroelectric materials are combined.

  2. Graphene Based Surface Plasmon Polariton Modulator Controlled by Ferroelectric Domains in Lithium Niobate.

    PubMed

    Wang, Hao; Zhao, Hua; Hu, Guangwei; Li, Siren; Su, Hang; Zhang, Jingwen

    2015-01-01

    We proposed a ferroelectric domain controlled graphene based surface plasmon polariton modulator. Ferroelectricity-induced electronic and optical property tuning of graphene by domain in lithium niobate was theoretically investigated considering both interband and intraband contributions of surface conductivity. With the corrected Sellmeier equation of lithium niobate, the propagation of transverse magnetic mode surface plasmon polaritons in an air/graphene/lithium niobate structure was studied when monolayer graphene was tuned by down polarization direction ferroelectric domain with different polarization levels. The length of the ferroelectric domain was optimized to be 90 nm for a wavelength of 5.0 μm with signal extinction per unit 14.7 dB/μm, modulation depth 474.1 dB/μm and figure of merit 32.5. This work may promote the study of highly efficient modulators and other ultra-compact nonvolatile electronic and photonic devices in which two-dimensional materials and ferroelectric materials are combined. PMID:26657622

  3. Graphene Based Surface Plasmon Polariton Modulator Controlled by Ferroelectric Domains in Lithium Niobate

    PubMed Central

    Wang, Hao; Zhao, Hua; Hu, Guangwei; Li, Siren; Su, Hang; Zhang, Jingwen

    2015-01-01

    We proposed a ferroelectric domain controlled graphene based surface plasmon polariton modulator. Ferroelectricity-induced electronic and optical property tuning of graphene by domain in lithium niobate was theoretically investigated considering both interband and intraband contributions of surface conductivity. With the corrected Sellmeier equation of lithium niobate, the propagation of transverse magnetic mode surface plasmon polaritons in an air/graphene/lithium niobate structure was studied when monolayer graphene was tuned by down polarization direction ferroelectric domain with different polarization levels. The length of the ferroelectric domain was optimized to be 90 nm for a wavelength of 5.0 μm with signal extinction per unit 14.7 dB/μm, modulation depth 474.1 dB/μm and figure of merit 32.5. This work may promote the study of highly efficient modulators and other ultra-compact nonvolatile electronic and photonic devices in which two-dimensional materials and ferroelectric materials are combined. PMID:26657622

  4. Erbium doping of lithium niobate by the ion exchange process for high-gain optical amplifiers

    NASA Astrophysics Data System (ADS)

    Caccavale, Frederico; Fedorov, Vyacheslav A.; Korkishko, Yuri N.; Morozova, Tamara V.; Sada, Cinzia; Segato, Francesco

    2000-04-01

    The erbium-lithium ion exchange is presented as a method for the erbium local doping of lithium niobate crystals. Ion exchange process is performed immersing the LiNbO3 substrates in a liquid melt, containing erbium ions; due to their high mobility, the lithium ions migrate from the crystal to the melt, and are replaced by erbium ions. A systematic analysis of the doping process is performed, and the influence of the process parameters is investigated: exchange time and temperature, crystal cut direction, composition and chemical reactivity of the Er ions liquid source. By structural (X-Ray Diffraction and Rutherford Backscattering Spectrometry), compositional (Secondary Ion Mass Spectrometry) and spectroscopic techniques (optical spectroscopy and micro-luminescence), the formation of lithium deficient phases and the incorporation of the Er ions into the LiNbO3 matrix is studied.

  5. When Halides Come to Lithium Niobate Nanopowders Purity and Morphology Assistance.

    PubMed

    Lamouroux, Emmanuel; Badie, Laurent; Miska, Patrice; Fort, Yves

    2016-03-01

    The preparation of pure lithium niobate nanopowders was carried out by a matrix-mediated synthesis approach. Lithium hydroxide and niobium pentachloride were used as precursors. The influence of the chemical environment was studied by adding lithium halide (LiCl or LiBr). After thermal treatment of the precursor mixture at 550 °C for 30 min, the morphology of the products was obtained from transmission electron microscopy and dynamic light scattering, whereas the crystallinity and phase purity were characterized by X-ray diffraction and UV-visible and Raman spectroscopies. Our results point out that the chemical environment during lithium niobate formation at 550 °C influences the final morphology. Moreover, direct and indirect band-gap energies have been determined from UV-visible spectroscopy. Their values for the direct-band-gap energies range from 3.97 to 4.36 eV with a slight dependence on the Li/Nb ratio, whereas for the indirect-band-gap energies, the value appears to be independent of this ratio and is 3.64 eV. No dependence of the band-gap energies on the average crystallite and nanoparticle sizes is observed. PMID:26859157

  6. 1-3 connectivity composite material made from lithium niobate and cement for ultrasonic condition monitoring at elevated temperatures.

    PubMed

    Shepherd, G; Cochran, A; Kirk, K J; McNab, A

    2002-05-01

    We have designed, manufactured and tested a piezoelectric composite material to operate at temperatures above 400 degrees C. The material is a 1-3 connectivity composite with pillars of Z-cut lithium niobate in a matrix of alumina cement. The composite material produced shorter pulses than a monolithic plate of lithium niobate and remained intact upon cooling. Results are presented from room temperature and high temperature testing. This material could be bonded permanently to a test object, making it possible to carry out condition monitoring over an extended period. A new excitation method was also developed to enable remote switching between array elements. PMID:12159936

  7. Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Nemanich, Robert J.

    2011-05-01

    This research addresses the wavelength dependence of the fabrication of Ag nanostructures through photoinduced deposition using single crystal ferroelectric lithium niobate as a template. The photoinduced deposition involves ultraviolent light illumination of polarity patterned lithium niobate while immersed in a AgNO3 solution. The results focus on the differences of the Ag nanostructure formation process on the positive and negative domains and domain boundaries. The results indicate that for below-band-gap excitation, a very low density of nanostructures is observed. However, for all above-gap-excitation wavelengths, deposition occurs on both polarity surfaces and at the domain boundaries. The density is greatest at the domain boundaries and reduced densities of smaller nanostructures are observed to form on both the positive and negative domains. The deposition on the domain surfaces is greatest for the shortest wavelengths, whereas the domain selectivity is increased for wavelengths just above the band gap. The external screening and weak band bending of single crystal lithium niobate introduces an enhanced electric field at the domain boundary. The enhanced electric field leads to migration of electrons to the domain boundary and consequently enhanced formation of Ag nanoparticles along the boundary. The variation in the reduction rate versus illumination wavelength is attributed to the light absorption depth and the competition between the photochemical and photoelectric deposition processes. To explore the transition from surface to bulk screening of the polarization charge, oxygen implanted PPLN surfaces were prepared and used for the Ag photoinduced deposition. Consistent with the transition to internal (bulk) screening, the Ag nanoparticle formation on the oxygen implanted PPLN surfaces showed suppressed boundary nanowire formation.

  8. Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate.

    PubMed

    Molter, D; Theuer, M; Beigang, R

    2009-04-13

    We present an optical parametric oscillator pumped by a single mode Q-switched nanosecond Nd:YVO(4) laser for terahertz generation in periodically poled lithium niobate with a new phase matching scheme. This new method leads to an emission of terahertz radiation close to the Cherenkov angle and to a parallel propagation of the pump and signal wave. The emission frequency of this novel source is chosen by the poling period to 1.5 THz. For spectral narrowing the signal wave of the OPO is injection seeded. In the optical spectrum also cascaded processes are observed demonstrating a powerful generation of terahertz waves. PMID:19365488

  9. The role of defects in light induced domain inversion in lithium niobate

    NASA Astrophysics Data System (ADS)

    Sandmann, Christian; Dierolf, Volkmar

    2005-01-01

    Using the tightly focussed laser beam within a confocal luminescence microscope we were able to induce electric space charge fields through photoionization of trace defects in lithium niobate. These fields are sufficient to selectively induce domain inversion when a additional external field is applied that is below the regular coercive field. Once a domain is nucleated it grows laterally in a direction that can be dictated by the laser. We studied the presence and the range of the space charge fields utilizing the electro-optical effect and the Stark shifts observed in emission spectra of Er3+ ions.

  10. Shock-induced luminescence from X-cut quartz and Z-cut lithium niobate

    SciTech Connect

    Brannon, P.J.; Morris, R.W.; Asay, J.R.

    1983-01-01

    The spectral and spatial properties of shock-induced luminescence from X-cut quartz and Z-cut lithium niobate are observed using optical pyrometry and fast framing photography. In both cases the spatial emission patterns are heterogeneous for stresses just above dynamic yielding; the pattern becomes homogeneous to within the spatial resolution of the experiment as the stress is increased further. In addition, the luminescence in both cases increases abruptly after dynamic yielding. The emission spectrum from both samples is bank-like rather than blackbody and in the case of X-cut quartz is similar to the photoluminescence from structural defects.

  11. Mixed conduction and grain boundary effect in lithium niobate under high pressure

    SciTech Connect

    Wang, Qinglin; Liu, Cailong; Han, Yonghao E-mail: cc060109@qq.com; Gao, Chunxiao E-mail: cc060109@qq.com; Gao, Yang; Ma, Yanzhang

    2015-03-30

    The charge transport behavior of lithium niobate has been investigated by in situ impedance measurement up to 40.6 GPa. The Li{sup +} ionic conduction plays a dominant role in the transport process. The relaxation process is described by the Maxwell-Wagner relaxation arising at the interfaces between grains and grain boundaries. The grain boundary microstructure rearranges after the phase transition, which improves the bulk dielectric performance. The theoretical calculations show that the decrease of bulk permittivity with increasing pressure in the Pnma phase is caused by the pressure-induced enhancement of electron localization around O atoms, which limits the polarization of Nb-O electric dipoles.

  12. Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate

    NASA Astrophysics Data System (ADS)

    McConnell, Gail; Ferguson, Allister I.

    2005-03-01

    Simultaneous stimulated Raman scattering (SRS) and second harmonic generation (SHG) are demonstrated in periodically poled lithium niobate (PPLN). Using a simple single-pass geometry, conversion efficiencies of up to 12% and 19% were observed for the SRS and SHG processes respectively. By changing the PPLN period interacting with the photonic crystal fibre based pump source and varying the PPLN temperature, the SHG signal was measured to be tunable from λ =584 nm to λ =679 nm. The SRS output spectrum was measured at λ=1583 nm, with a spectral full-width at half-maximum of λ =85 nm.

  13. Change in the structural imperfection of lithium niobate crystals doped with zinc

    SciTech Connect

    Litvinova, V. A. Litvinova, M. N.

    2015-01-15

    The changes in the degree of structural imperfection of lithium niobate (LiNbO{sub 3}) single crystals with an increase in the Li content and doping with zinc (to 1 wt %) have been investigated by the nonlinear optics methods and Raman spectroscopy. The conversion of broadband IR radiation in LiNbO{sub 3} crystals under noncritical (90°) phase-matching condition with vector interactions implemented is investigated. It is shown that the conversion efficiency, spectral width, and the position of maximum in the converted radiation spectrum depend on the ratio R = Li/Nb in LiNbO{sub 3} crystal and the impurity concentration.

  14. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining.

    PubMed

    Lin, Jintian; Xu, Yingxin; Fang, Zhiwei; Wang, Min; Song, Jiangxin; Wang, Nengwen; Qiao, Lingling; Fang, Wei; Cheng, Ya

    2015-01-01

    We report on fabrication of high-Q lithium niobate (LN) whispering-gallery-mode (WGM) microresonators suspended on silica pedestals by femtosecond laser direct writing followed by focused ion beam (FIB) milling. The micrometer-scale (diameter ~82 μm) LN resonator possesses a Q factor of ~2.5 × 10(5) around 1550 nm wavelength. The combination of femtosecond laser direct writing with FIB enables high-efficiency, high-precision nanofabrication of high-Q crystalline microresonators. PMID:25627294

  15. Suppression of optical damage at 532 nm in Holmium doped congruent lithium niobate.

    PubMed

    Barnes, Eftihia; O'Connell, Nathan H; Balli, Nicolas R; Pokhrel, Madhab; Movsesyan, Anush; Kokanyan, Edvard; Sardar, Dhiraj K

    2014-10-20

    Optical damage experiments were carried out in a series of Holmium doped congruent lithium niobate (Ho:cLN) crystals as a function of dopant concentration and laser intensity. The light induced beam distortion was recorded with a camera and a detector under the pseudo-Z-scan configuration. At 532 nm, strong suppression of the optical damage was observed for the 0.94 mol. % doped crystal. Increased resistance to optical damage was also observed at 488 nm. The suppression of the optical damage is predominantly attributed to the reduction of the Nb antisites due to the holmium doping. PMID:25401654

  16. Control of lateral domain spreading in congruent lithium niobate by selective proton exchange

    NASA Astrophysics Data System (ADS)

    Grilli, S.; Canalias, C.; Laurell, F.; Ferraro, P.; De Natale, P.

    2006-07-01

    Proton exchange was observed to increase the poling voltage for congruent lithium niobate. Patterned proton exchange was then used to control domain nucleation and inhibit broadening of reversed domains. Periodically proton exchanged samples were used to form domain gratings by electric field poling just using planar electrodes and without need for poling current control. The reversed domain gratings had a duty cycle faithfully reproducing that of the proton exchanged pattern with straight domain walls parallel to the x face, thus demonstrating that high-fidelity reversed domain patterning is possible to obtain by a relatively simple process.

  17. Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes

    SciTech Connect

    Diziain, Séverine Geiss, Reinhard; Zilk, Matthias; Schrempel, Frank; Kley, Ernst-Bernhard; Pertsch, Thomas; Tünnermann, Andreas

    2013-12-16

    We report on a multimodal analysis of photonic crystal L3 cavities milled in lithium niobate free-standing membranes. The classical L3 cavity geometry is compared to an L3 cavity containing a second lattice superimposed on the primary one. Those two different geometries are investigated in terms of vertical radiation and quality (Q) factor for each mode of the cavities. Depending on the cavity geometry, some modes undergo an enhancement of their vertical radiation into small angles while other modes experience a higher Q factor. Experimental characterizations are corroborated by three-dimensional finite difference time domain simulations.

  18. Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-w average output power.

    PubMed

    Graf, T; McConnell, G; Ferguson, A I; Bente, E; Burns, D; Dawson, M D

    1999-05-20

    We report on a rugged all-solid-state laser source of near-IR radiation in the range of 1461-1601 nm based on a high-power Nd:YVO(4) laser that is mode locked by a semiconductor saturable Bragg reflector as the pump source of a synchronously pumped optical parametric oscillator with a periodically poled lithium niobate crystal. The system produces 34-ps pulses with a high repetition rate of 235 MHz and an average output power of 1 W. The relatively long pulses lead to wide cavity detuning tolerances. The comparatively narrow spectral bandwidth of <15 GHz is suitable for applications such as pollutant detection. PMID:18319928

  19. Estimation of random duty-cycle error in periodically poled lithium niobate by simple diffraction experiment

    NASA Astrophysics Data System (ADS)

    Dwivedi, Prashant Povel; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik

    2014-02-01

    Random duty-cycle errors (RDE) in ferroelectric quasi-phase-matching (QPM) devices not only affect the frequency conversion efficiency, but also generate non-phase-matched background noise. Although such noise contribution can be evaluated by measuring second-harmonic generation (SHG) spectrum with tunable narrow-band lasers, the limited tuning ranges usually results in inaccurate measurement of pure noise. Instead of SHG, we took a diffraction pattern which is mathematically equivalent to the SHG spectrum, but can be obtained with greater simplicity. With our proposed method applied to periodically poled lithium niobate, RDE could be evaluated more accurately from the pure background noise measurement.

  20. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining

    PubMed Central

    Lin, Jintian; Xu, Yingxin; Fang, Zhiwei; Wang, Min; Song, Jiangxin; Wang, Nengwen; Qiao, Lingling; Fang, Wei; Cheng, Ya

    2015-01-01

    We report on fabrication of high-Q lithium niobate (LN) whispering-gallery-mode (WGM) microresonators suspended on silica pedestals by femtosecond laser direct writing followed by focused ion beam (FIB) milling. The micrometer-scale (diameter ~82 μm) LN resonator possesses a Q factor of ~2.5 × 105 around 1550 nm wavelength. The combination of femtosecond laser direct writing with FIB enables high-efficiency, high-precision nanofabrication of high-Q crystalline microresonators. PMID:25627294

  1. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation.

    PubMed

    Wang, Jie; Bo, Fang; Wan, Shuai; Li, Wuxia; Gao, Feng; Li, Junjie; Zhang, Guoquan; Xu, Jingjun

    2015-09-01

    Lithium niobate (LN) microdisk resonators on a LN-silica-LN chip were fabricated using only conventional semiconductor fabrication processes. The quality factor of the LN resonator with a 39.6-μm radius and a 0.5-μm thickness is up to 1.19 × 10(6), which doubles the record of the quality factor 4.84 × 10(5) of LN resonators produced by microfabrication methods allowing batch production. Electro-optic modulation with an effective resonance-frequency tuning rate of 3.0 GHz/V was demonstrated in the fabricated LN microdisk resonator. PMID:26368411

  2. Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation

    NASA Astrophysics Data System (ADS)

    Batchko, Robert G.; Shur, Vladimir Y.; Fejer, Martin M.; Byer, Robert L.

    1999-09-01

    In nonlinear optics applications employing quasiphase matching, short-pitch domain gratings are generally required for the efficient generation of visible and ultraviolet light. Here we introduce an improved electric-field poling technique, which incorporates spontaneous backswitching and leads to uniform short-pitch domain structures. The total volume of backswitched material, and hence the duty cycle of the backswitched domain grating, can be accurately controlled. First-order single-pass continuous-wave second harmonic generation of 60 mW at 460 nm is achieved at 6.1%/W efficiency in 0.5-mm-thick 4-μm-period backswitch-poled lithium niobate.

  3. Ferroelectric domain gratings and Barkhausen spikes in potassium lithium tantalate niobate

    SciTech Connect

    Tong, X.; Yariv, A.; Zhang, M.; Agranat, A.J.; Hofmeister, R.; Leyva, V.

    1997-04-01

    The observation of Barkhausen current spikes during the recording of volume phase holograms in potassium lithium tantalate niobate is reported on. These spikes are due to the ferroelectric domain reversal induced by photorefractive space charge fields. Both {open_quotes}small{close_quotes} (1 nA) and {open_quotes}large{close_quotes} (100 nA) spikes are observed, which correspond to micro and macro domain reversal, respectively. The diffraction efficiency can change as much as 50{percent} during a single macrodomain switching. {copyright} {ital 1997 American Institute of Physics.}

  4. Paramagnetic defects as probes for the study of ferroelastic phase transition in lithium niobate and lithium tantalate under high pressure

    NASA Astrophysics Data System (ADS)

    Malovichko, G.; Grachev, V.; Andreev, V.; Nachal'Naya, T.

    It was found by optical polarization microscopy and the EPR study that lithium niobate and tantalate crystals undergo irreversible lattice changes under anisotropic hydrostatic compression. Regions having different cell orientations were registered. The observed changes were explained in terms of "strain switching" of ferroelastic domains. Possible sequence of phase transitions in these crystals (Pm3m<->R (3) over bar3 c<->R 3 c) and the symmetry of the condensed soft modes ( R-25 and Gamma(15) , correspondingly) were obtained by the analysis of the Gibbs free energy under external pressure.

  5. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Carson, R. F.

    1985-01-01

    A variety of techniques have been proposed for fabricating integrated optical devices using semiconductors, lithium niobate, and glasses as waveguides and substrates. The use of glass waveguides and their interaction with thin semiconductor cladding layers was studied. Though the interactions of these multilayer waveguide structures have been analyzed here using glass, they may be applicable to other types of materials as well. The primary reason for using glass is that it provides a simple, inexpensive way to construct waveguides and devices.

  6. Iron-doped lithium niobate as a read-write holographic storage medium

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Phillips, W.

    1976-01-01

    The response of iron-doped lithium niobate under conditions corresponding to hologram storage and retrieval is described, and the material characteristics are discussed. The optical sensitivity can be improved by heavy chemical reduction of lightly doped crystals such that most of the iron is in the divalent state, the remaining part being trivalent. The best reduction process found to be reproducible so far is the anneal of the doped crystal in the presence of a salt such as lithium carbonate. It is shown by analysis and simulation that a page-oriented read-write holographic memory with 1000 bits per page would have a cycle time of about 60 msec and a signal-to-noise ratio of 27 dB. This cycle time, although still too long for a practical memory, represents an improvement of two orders of magnitude over that of previous laboratory prototypes using a thermoplastic storage medium

  7. Read-write holographic memory with iron-doped lithium niobate

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Phillips, W.

    1975-01-01

    The response of iron doped lithium niobate under conditions corresponding to hologram storage and retrieval is described, and the material's characteristics are discussed. The optical sensitivity can be improved by heavy chemical reduction of lightly doped crystals such that most of the iron is in the divalent state, the remaining part being trivalent. The best reduction process found to be reproducible so far is the anneal of the doped crystal in the presence of a salt such as lithium carbonate. It is shown by analysis and simulation that a page-oriented read-write holographic memory with 1,000 bits per page would have a cycle time of about 60 ms and a signal-to-noise ratio of 27 db. This cycle time, although still too long for a practical system, represents an improvement of two orders of magnitude over that of previous laboratory prototypes using different storage media.

  8. Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis.

    PubMed

    Qiu, Wentao; Ndao, Abdoulaye; Lu, Huihui; Bernal, Maria-Pilar; Baida, Fadi Issam

    2016-09-01

    We present a theoretical study of guided resonances (GR) on a thin film lithium niobate rectangular lattice photonic crystal by band diagram calculations and 3D Finite Difference Time Domain (FDTD) transmission investigations which cover a broad range of parameters. A photonic crystal with an active zone as small as 13μm×13μm×0.7μm can be easily designed to obtain a resonance Q value in the order of 1000. These resonances are then employed in electric field (E-field) sensing applications exploiting the electro optic (EO) effect of lithium niobate. A local field factor that is calculated locally for each FDTD cell is proposed to accurately estimate the sensitivity of GR based E-field sensor. The local field factor allows well agreement between simulations and reported experimental data therefore providing a valuable method in optimizing the GR structure to obtain high sensitivities. When these resonances are associated with sub-picometer optical spectrum analyzer and high field enhancement antenna design, an E-field probe with a sensitivity of 50 μV/m could be achieved. The results of our simulations could be also exploited in other EO based applications such as EEG (Electroencephalography) or ECG (Electrocardiography) probe and E-field frequency detector with an 'invisible' probe to the field being detected etc. PMID:27607627

  9. Photorefractive properties of paraelectric potassium lithium tantalate niobate crystal doped with iron

    NASA Astrophysics Data System (ADS)

    Tian, Hao; Zhou, Zhongxiang; Gong, Dewei; Wang, Haifeng; Jiang, Yongyuan; Hou, Chunfeng

    2008-03-01

    We report the successful growth of paraelectric potassium lithium tantalate niobate (KLTN) single crystal doped with iron. Detailed investigations have been made on the photorefractive properties of the as-grown crystal. The key parameters such as space-charge field, grating response time, photorefractive sensitivity and sign of the dominant charge carrier were obtained by two-wave mixing technique. 1.7 mm thick sample exhibits a high diffraction efficiency of 78% at the external field of 3.3 kV/cm and a sensitivity of 1.49 × 10-10E0 cm2/J. The two-wave mixing gain coefficient increases linearly with external field, and reaches a large value of 19.4 cm-1 at 4 kV/cm. Based on experimental results, iron is an effective dopant to KLTN which shows high diffraction efficiency and two-wave mixing gain coefficient.

  10. Spectral broadening in lithium niobate in a self-diffraction geometry using ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Jayashree A.; Dota, Krithika; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-05-01

    We report on broadband light generation in the impulsive regime in an un-doped lithium niobate (LiNbO3) crystal by two femtosecond laser pulses (36 fs) from a Ti-sapphire laser amplifier. We systematically investigate the role of incident intensity on spectral broadening. At relatively low incident intensity (0.7 TW cm-2), spectral broadening in the transmitted beam occurs due to the combined effect of self-phase modulation and cross-phase modulation. At higher incident intensity (10.2 TW cm-2), we observe generation of as many as 21 anti-Stokes orders due to coherent anti-Stokes Raman scattering in self-diffraction geometry. Moreover, we observe order-dependent spectral broadening of anti-Stokes lines that may be attributed to the competition with other nonlinear optical effects like cross-phase modulation.

  11. Multiplicity of europium centers in doped stoichiometric crystals of lithium niobate

    NASA Astrophysics Data System (ADS)

    Kaplyanskii, A. A.; Kapphan, S.; Kutsenko, A. B.; Polgar, K.; Skvortsov, A. P.

    2007-04-01

    The optical spectra of europium-doped stoichiometric lithium niobate (LiNbO3:Eu3+) crystals have been studied using combined excitation-luminescence spectroscopy in the range of 5D0 → 7F1, 7F0 optical transitions. Analysis of the results shows that Eu3+ ions can occupy 14 energetically nonequivalent positions in the LiNbO3 crystal lattice. This multiplicity of impurity centers is related to possible variants of the incorporation of Eu3+ ions into the LiNbO3 crystal lattice and the compensation of excess charge. Energy positions of the 5D0 level and the lowest sublevel of the 7F1 Stark multiplet are determined for Eu3+ centers of all 14 types.

  12. Electro-optically tunable, multi-wavelength optical parametric generators in aperiodically poled lithium niobates.

    PubMed

    Chen, Y H; Chung, H P; Chang, W K; Lyu, H T; Chang, J W; Tseng, C H

    2012-12-17

    We report on the design and demonstration of electro-optically tunable, multi-wavelength optical parametric generators (OPGs) based on aperiodically poled lithium niobate (APPLN) crystals. Two methods have been proposed to significantly enhance the electro-optic (EO) tunability of an APPLN OPG constructed by the aperiodic optical superlattice (AOS) technique. This is done by engineering the APPLN domain structure either in the crystal fabrication or in the crystal design process to increase the length or block-number difference of the two opposite-polarity domains used in the structure. Several orders of magnitude enhancement on the EO tuning rate of the APPLN OPGs constructed by the proposed techniques for simultaneous multiple signal wavelength generation over a conventional one has been demonstrated in a near infrared band (1500-1600 nm). PMID:23263140

  13. A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire

    NASA Astrophysics Data System (ADS)

    Cai, Lutong; Zhang, Shaomei; Hu, Hui

    2016-03-01

    The properties of the guided modes, including the single-mode conditions and the coupling of different polarized modes in the single-crystal lithium niobate photonic wires, were analyzed in detail. One-dimensional photonic crystal micro-cavities with several different patterns, which could be used as an ultra-compact optical filter, were designed and simulated in order to get high transmission at the resonant wavelength and the best preferment. The designed structure, with the whole size of 6.5 × 0.7 μm2, was fabricated on a single-mode photonic wire. A measured peak transmission of 0.34 at 1400 nm, an extinction ratio of 12.5 dB and a Q factor of 156 were obtained. The measured transmission spectrum was basically consistent with the simulation, although a slight shift of resonant wavelength occurred due to the fabrication errors.

  14. Biocompatibility of ferroelectric lithium niobate and the influence of polarization charge on osteoblast proliferation and function.

    PubMed

    Carville, N Craig; Collins, Liam; Manzo, Michele; Gallo, Katia; Lukasz, Bart I; McKayed, Katey K; Simpson, Jeremy C; Rodriguez, Brian J

    2015-08-01

    In this work, the influence of substrate surface charge on in vitro osteoblast cell proliferation on ferroelectric lithium niobate (LN) crystal surfaces is investigated. LN has a spontaneous polarization along the z-axis and is thus characterized by positive and negative bound polarization charge at the +z and -z surfaces. Biocompatibility of LN was demonstrated via culturing and fluorescence imaging of MC3T3 osteoblast cells for up to 11 days. The cells showed enhanced proliferation rates and improved osteoblast function through mineral formation on the positively and negatively charged LN surfaces compared to electrostatically neutral x-cut LN and a glass cover slip control. These results highlight the potential of LN as a template for investigating the role of charge on cellular processes. PMID:25504748

  15. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals

    SciTech Connect

    Zheng, Dahuai; Yao, Jiaying; Kong, Yongfa; Liu, Shiguo; Zhang, Ling; Chen, Shaolin; Xu, Jingjun

    2015-01-15

    Bismuth-doped lithium niobate (LN:Bi) crystals were grown by Czochralski method and their optical damage resistance, photorefraction, absorption spectra, and defect energy levels were investigated. The experimental results indicate that the photorefractive properties of LN:Bi were enhanced as compared with congruent one, the photorefractive response time was greatly shortened, the photorefractive sensitivity was increased, and the diffraction efficiency of near-stoichiometric LN:Bi (SLN:Bi) reached 31.72% and 49.08% at 532 nm and 488 nm laser, respectively (light intensity of 400 mW/cm{sup 2}). An absorption peak at about 350 nm was observed in the absorption spectrum of LN:Bi. And the defect energy levels simulation indicates new defect levels appear in the forbidden gap of LN:Bi crystals. Therefore bismuth can act as photorefractive centers in LN crystals.

  16. Highly sensitive absorption measurements in lithium niobate using whispering gallery resonators

    NASA Astrophysics Data System (ADS)

    Leidinger, Markus; Buse, Karsten; Breunig, Ingo

    2015-02-01

    The absorption coefficient of undoped, congruently grown lithium niobate (LiNbO3) for ordinarily and extraordinarily polarized light is measured in the wavelength range from 390 to 2600 nm using whispering gallery resonators (WGRs). These monolithic cavities guide light by total internal reflection. Their high Q-factor provides several hundred meters of propagation for the coupled light in millimetre size resonators allowing for the measurement of absorption coefficients below 10-2 cm-1, where standard methods such as Fourier-transform or grating spectroscopy meet their limit. In this work the lowest measured value is 10-4 cm-1 at 1700 nm wavelength. Furthermore, the known OH- overtone at 1470 nm wavelength can be resolved clearly.

  17. Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Mingaliev, E. A.; Lebedev, V. A.; Kuznetsov, D. K.; Fursov, D. V.

    2013-05-01

    Polarization reversal during heating-cooling cycles was investigated in MgO doped lithium niobate (MgO:LN) crystal using piezoresponse force microscopy. The essential dependence of the domain structure evolution scenario on the maximal temperature in the cycle has been revealed experimentally. It has been shown that the heating of the engineered domain matrix from room temperature to 85 °C leads to light size reduction of the isolated domains at the matrix edges, whereas the heating to 170 °C leads to essential reduction of the domain size. The opposite strong effect of the domain formation and growth during cooling after pulse heating have been revealed in single domain MgO:LN. The simulation of the time dependence of the pyroelectric field during heating-cooling cycle allowed to reveal the temperature hysteresis and to explain all observed effects taking into account the temperature dependence of the bulk conductivity.

  18. Lithium niobate nanoparticle-coated Y-coupler optical fiber for enhanced electro-optic sensitivity.

    PubMed

    Rao, Ch N; Sagar, S B; Harshitha, N G; Aepuru, Radhamanohar; Premkumar, S; Panda, H S; Choubey, R K; Kale, S N

    2015-02-15

    Single crystals of lithium niobate (LiNbO3), possessing high birefringence and anisotropic properties have been explored, for a long time, to harness their excellent electro-optic properties. However, their nanoforms are comparatively less explored. In this context, dielectric constant and polarization (P) versus electric-field (E) characteristics of LiNbO3 nanomaterials have been studied. A nonideal P-E loop and a dielectric constant of 20 at the onset of 1 kHz were seen. The electro-optic sensitivity was found to be 4 times as compared to the bulk LiNbO3 crystals. The results are attributed to oxygen vacancies, antisite defects, and grain boundary effects in an already congruent structural matrix of LiNbO3. PMID:25680132

  19. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses

    NASA Astrophysics Data System (ADS)

    Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin; Li, Chen; Qiu, Xiang-biao; Geng, De-qiang; Wu, Di; Lu, Yan-qing

    2016-07-01

    Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (˜28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is taken to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.

  20. Photoreduction of metal nanostructures on periodically proton exchanged MgO-doped lithium niobate crystals

    SciTech Connect

    Balobaid, Laila; Craig Carville, N.; Collins, Liam; Rodriguez, Brian J.; Manzo, Michele; Gallo, Katia

    2013-10-28

    Local reactivity on periodically proton exchanged lithium niobate (PPE:LN) surfaces is a promising route for the fabrication of regularly spaced nanostructures. Here, using MgO-doped PPE:LN templates, we investigate the influence of the doping on the nanostructure formation as a function of the proton exchange (PE) depth. The deposition is found to occur preferentially along the boundary between MgO-doped LN and the PE region when the PE depth is at least 1.73 μm, however, for shallower depths, deposition occurs across the entire PE region. The results are found to be consistent with an increased photoconductivity of the MgO-doped LN.

  1. Microscopy and microRaman study of periodically poled domains in deeply thinned lithium niobate wafers

    NASA Astrophysics Data System (ADS)

    Bullen, P. S.; Huang, H.-C.; Yang, H.; Dadap, J. I.; Kymissis, I.; Osgood, R. M.

    2016-07-01

    The domain structure of poled deeply thinned lithium niobate is investigated as a function of sample thickness. Free-standing samples of thickness from 25 to 500 μm are prepared by a multiple-cycle polish and annealing procedure and then periodically poled. Using these samples and employing micro-Raman scattering and scanning electron, atomic force, and optical microscopy together, the domain broadening and poling voltage are found to vary in a regular and significant manner. The poled domains show a reduction in width spreading of 38% as the sample thickness is reduced from 500 to 25 μm. Micro-Raman probe measurements verify the quality and the uniformity of the poled domains and provide insight into their thickness-dependent poling contrast.

  2. Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals

    SciTech Connect

    Ying, C. Y. J.; Mailis, S.; Daniell, G. J.; Steigerwald, H.; Soergel, E.

    2013-08-28

    The impact of UV laser irradiation on the distribution of lithium ions in ferroelectric lithium niobate single crystals has been numerically modelled. Strongly absorbed UV radiation at wavelengths of 244–305 nm produces steep temperature gradients which cause lithium ions to migrate and result in a local variation of the lithium concentration. In addition to the diffusion, here the pyroelectric effect is also taken into account which predicts a complex distribution of lithium concentration along the c-axis of the crystal: two separated lithium deficient regions on the surface and in depth. The modelling on the local lithium concentration and the subsequent variation of the coercive field are used to explain experimental results on the domain inversion of such UV treated lithium niobate crystals.

  3. Domain switching by electron beam irradiation of Z{sup +}-polar surface in Mg-doped lithium niobate

    SciTech Connect

    Shur, V. Ya. Chezganov, D. S.; Smirnov, M. M.; Alikin, D. O.; Neradovskiy, M. M.; Kuznetsov, D. K.

    2014-08-04

    The appearance of the static domains with depth above 200 μm in the bulk of MgO-doped lithium niobate single crystals as a result of focused electron beam irradiation of Z{sup +}-polar surface was demonstrated. The created domain patterns were visualized by high-resolution methods including piezoresponse force microscopy, scanning electron microscopy, and confocal Raman microscopy. The main stages of the domain structure formation were revealed and explained in terms of the original model.

  4. Disordered lithium niobate rock-salt materials prepared by hydrothermal synthesis.

    PubMed

    Modeshia, Deena R; Walton, Richard I; Mitchell, Martin R; Ashbrook, Sharon E

    2010-07-14

    An investigation of the one-step hydrothermal crystallisation of lithium niobates reveals that reaction between Nb(2)O(5) and aqueous LiOH at 240 degrees C yields materials with a disordered rock-salt structure where the metals are statistically distributed over the cation sites. This contrasts with the well-studied reaction between Nb(2)O(5) and NaOH or KOH that produces ANbO(3) (A = Na, K) perovskites. Powder neutron diffraction shows that materials prepared at short reaction times and lower LiOH concentration (2.5 M) are lithium deficient and have a slight excess of niobium, but that at longer periods of reaction in 5 M LiOH, close to the ideal, stoichiometric Li(0.75)Nb(0.25)O composition is produced. Upon annealing this phase cleanly transforms into the known ordered rock-salt material Li(3)NbO(4), a process we have followed using thermodiffractometry, which indicates that transformation begins at approximately 700 degrees C. Solid-state (93)Nb and (7)Li NMR of the disordered and ordered rock-salt phases shows that both contain single metal sites but there is clear evidence for local disorder in the disordered samples. For the ordered material, NMR parameters derived from experiment are also compared to those calculated using density functional theory and are shown to be in good agreement. PMID:20442945

  5. Near-infrared waveguide formation and RBS/channeling spectrometry analysis for damage in calcium barium niobate crystals via ion implantation

    NASA Astrophysics Data System (ADS)

    Zhang, Lian; Zhao, Jin-Hua; Gao, Wen-Lan; Liu, Peng; Zhou, Yu-Fan; Yu, Xiao-Fei; Wang, Tie-Jun; Song, Hong-Lian; Qiao, Mei; Wang, Xue-Lin

    2015-11-01

    We report on the fabrication of planar waveguide structures in calcium barium niobate crystals via C ion implantation at room temperature. The SRIM code was applied to calculate damage profiles of the C ions implanted into Ca0.32Ba0.68Nb2O6 crystals. The low-damage profiles in the near-surface of the implanted regions were verified by Rutherford backscattering/channeling spectrometry. The waveguide characteristics were investigated in the near-infrared bands. The propagation loss of the waveguide was estimated to be 0.88 dB/cm.

  6. Electric field controlled higher-order diffraction images of paraelectric potassium lithium tantalate niobate

    NASA Astrophysics Data System (ADS)

    Gong, Dewei; Chen, Changqing; Tian, Hao; Zhou, Zhongxiang

    2012-09-01

    We report some electric field controlled photorefractive higher-order diffraction phenomena of a paraelectric phase potassium lithium tantalate niobate crystal doped with iron. In experiments, a p-polarized semiconductor laser (532 nm) was used to record grating at a small incident angle. Higher-order diffraction images were observed when the signal beam was focused behind and in front of the crystal. Then the higher-order diffraction images were reconstructed by a p-polarized He-Ne laser (632.8 nm) in the direction perpendicular to the surface. The higher-order diffraction images could be controlled by the external electric field. A theory about the higher-order diffraction images of the K and 2K grating is developed. The results show that the even order diffraction images of the K grating and the odd order diffraction of the 2K grating overlap each other. The odd order diffraction images of the K grating are diffracted in unattached direction. The electric field controlled higher-order diffraction image provides a useful method for optical information processing.

  7. Resistance degradation due to interstitial hydrogen in photorefractive potassium lithium tantalate niobate single crystals

    NASA Astrophysics Data System (ADS)

    Ivker, M.; Agranat, A. J.

    2004-12-01

    Resistance degradation in potassium lithium tantalate niobate (KLTN) doped with iron and titanium was measured in a single sample containing various concentrations of interstitial hydrogen. In this crystal the degradation arose from the migration of interstitial hydrogen and not oxygen vacancies, as reported in previous research. Interstitial hydrogen and oxygen vacancy defects both arise to compensate the valence shortfall of the substitutional iron impurities and the thermodynamic balance between the two compensation mechanisms can be controlled using reaction chemistry techniques. Through appropriate annealing treatments a single crystal of KLTN was prepared in three states: hydrogen-rich oxidized, hydrogen-poor reduced, and hydrogen-rich reduced. The characteristic degradation times for the three cases were 29, 2710, and 26min, respectively. The degradation rate is correlated with hydrogen concentration and not oxidation state of the crystal. Infrared absorption from near the two electrodes of the hydrogen-rich reduced crystal after degradation confirmed polarization of the hydrogen concentration. Electrocoloration was also found to correlate with hydrogen—it was observed in both hydrogen-rich states, but was absent from the hydrogen-poor crystal.

  8. Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals

    NASA Astrophysics Data System (ADS)

    Bourim, El Mostafa; Moon, Chang-Wook; Lee, Seung-Woon; Kyeong Yoo, In

    2006-09-01

    The behaviors of thermally stimulated electron emission from pyroelectric monodomain lithium niobate single crystal (LiNbO 3) were investigated by utilizing a Si p-n junction photodiode as electron detector and a receptive electron beam resist (E-beam resist) as electron collector. In high vacuum (10 -6 Torr), the pyroelectric electron emission (PEE) was found to depend on the exposed emitting polar crystal surface (+ Z face or - Z face) and was significantly influenced by the emitter-electron receiver gap distances. Thus, the PEE from + Z face was detected during heating and was activated, in small gaps (<2 mm), by field emission effect on which was superposed an intense field ionization effect that primed intermittent runway ionizations (plasma breakdown into a glow discharge). In large gaps (>2 mm) the emission was simply mastered by field emission effect. Whereas, The PEE from - Z face was detected during cooling and was solely due to the field ionization effect. Therewith, for small gaps (<2 mm) the emission was governed by intermittent runway ionization ignitions resulting from a high ionization degree leading to dense plasma formation, and for large gaps (>2 mm) PEE was governed by field ionization generating a soft and continuous plasma ambient atmosphere. Significant decrease of electron emission current was observed from + Z face after successive thermal cycles. A fast and fully emission recovery was established after a brief exposure of crystal to a poor air vacuum of 10 -1 Torr.

  9. Influence of annealing on the photodeposition of silver on periodically poled lithium niobate

    NASA Astrophysics Data System (ADS)

    Carville, N. Craig; Neumayer, Sabine M.; Manzo, Michele; Baghban, Mohammad-Amin; Ivanov, Ilia N.; Gallo, Katia; Rodriguez, Brian J.

    2016-02-01

    The preferential deposition of metal nanoparticles onto periodically poled lithium niobate surfaces, whereby photogenerated electrons accumulate in accordance with local electric fields and reduce metal ions from solution, is known to depend on the intensity and wavelength of the illumination and the concentration of the solution used. Here, it is shown that for identical deposition conditions (wavelength, intensity, concentration), post-poling annealing for 10 h at 200 °C modifies the surface reactivity through the reorientation of internal defect fields. Whereas silver nanoparticles deposit preferentially on the +z domains on unannealed crystals, the deposition occurs preferentially along 180° domain walls for annealed crystals. In neither case is the deposition selective; limited deposition occurs also on the unannealed -z domain surface and on both annealed domain surfaces. The observed behavior is attributed to a relaxation of the poling-induced defect frustration mediated by Li+ ion mobility during annealing, which affects the accumulation of electrons, thereby changing the surface reactivity. The evolution of the defect field with temperature is corroborated using Raman spectroscopy.

  10. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    SciTech Connect

    Neumayer, Sabine M.; Strelcov, Evgheni; Manzo, Michele; Gallo, Katia; Kravchenko, Ivan I.; Kholkin, Andrei L.; Kalinin, Sergei V.; Rodriguez, Brian J.

    2015-12-28

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. Additionally, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. In polarization dependent current flow, attributed to charged domain walls and band bending, it the rectifying ability of Mg: LN in combination with suitable metal electrodes that allow for further tailoring of conductivity is demonstrated.

  11. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    DOE PAGESBeta

    Neumayer, Sabine M.; Strelcov, Evgheni; Manzo, Michele; Gallo, Katia; Kravchenko, Ivan I.; Kholkin, Andrei L.; Kalinin, Sergei V.; Rodriguez, Brian J.

    2015-12-28

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarizationmore » as well as atmospheric conditions. Additionally, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. In polarization dependent current flow, attributed to charged domain walls and band bending, it the rectifying ability of Mg: LN in combination with suitable metal electrodes that allow for further tailoring of conductivity is demonstrated.« less

  12. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate

    PubMed Central

    Nataf, G. F.; Grysan, P.; Guennou, M.; Kreisel, J.; Martinotti, D.; Rountree, C. L.; Mathieu, C.; Barrett, N.

    2016-01-01

    The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM – electrons reflected) to Low Energy Electron Microscopy (LEEM – electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field. PMID:27608605

  13. Complex study of the structural and optical homogeneity of lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Sidorov, N. V.; Palatnikov, M. N.; Yanichev, A. A.; Gabain, A. A.; Makarova, O. V.; Pikul', O. Yu.

    2014-09-01

    Methods of Raman spectroscopy, laser conoscopy, optical microscopy, and electron spin resonance have been used to study the photorefractive properties and structural and optical homogeneity of the following lithium niobate (LiNbO3) crystals: nominally pure crystals of congruent composition (LiNbO3con); LiNbO3:Cu[0.015 wt %] crystals grown from a melt of congruent composition and nominally pure crystals of stoichiometric composition grown from a melt with 58.6 mol % Li2O (LiNbO3st). A small deformation of optical indicatrix and regular microdomain structures of fractal type are revealed for the LiNbO3:Cu[0.015 wt %]; the microdomain structures may be due to the nonuniform impurity incorporation into the structure. It is shown that oxygen octahedra in the LiNbO3:Cu[0.015 wt %] crystal are deformed in comparison with the octahedra in LiNbO3st and LiNbO3con crystals and that the main and impurity cations are clusterized along the polar axis. It is established that the LiNbO3:Cu[0.015 wt %] crystal exhibits photorefractive properties not only due to the presence of intrinsic defects with localized electrons, as in the case of LiNbO3st, but also due to the charge exchange in copper cations (Cu2+ → Cu+) under illumination.

  14. Complex extraordinary dielectric function of Mg-doped lithium niobate crystals at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, K. A.; Kitaeva, G. Kh.; Kovalev, S. P.; Germansky, S. A.; Buryakov, A. M.; Tuchak, A. N.; Penin, A. N.

    2016-08-01

    We study the dispersion of the extraordinary dielectric function real and imaginary parts in the wide terahertz-frequency range of the lowest polariton branch for bulk LiNbO3 and Mg:LiNbO3 crystals. At frequencies 0.1-2.5 THz, both dispersion parts are measured by means of standard time-domain terahertz spectroscopy, and at higher frequencies up to 5.5 THz, the dielectric function real part is determined using a common scheme of spontaneous parametric down-conversion under near-forward Raman scattering by phonon polaritons. A special approach is applied for measuring of the dielectric function imaginary part at frequencies 1-3 THz, based on the analysis of visibility of three-wave second-order interference under spontaneous parametric down-conversion. The generalized approximate expressions are obtained for complex dielectric function dispersion within the lower polariton branches of LiNbO3 and Mg:LiNbO3. It is shown that the well-known decrease in terahertz-wave absorption of lithium niobate crystals under Mg-doping is caused by changes in the defect structure and reduction of coupling of the terahertz-frequency polaritons with Debye relaxational mode.

  15. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate.

    PubMed

    Nataf, G F; Grysan, P; Guennou, M; Kreisel, J; Martinotti, D; Rountree, C L; Mathieu, C; Barrett, N

    2016-01-01

    The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM - electrons reflected) to Low Energy Electron Microscopy (LEEM - electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field. PMID:27608605

  16. Real-time phase-contrast analysis of domain switching in lithium niobate by digital holography

    NASA Astrophysics Data System (ADS)

    Grilli, Simonetta; Ferraro, Pietro; de Angelis, Marella; De Nicola, Sergio; Alfieri, Domenico; Paturzo, Melania; De Natale, Paolo; Sansone, Lucia; Pierattini, Giovanni

    2004-08-01

    We present a method for in-situ visualization of electric field domain reversal in congruent lithium niobate (LN) through an electro-optic interferometric technique. The crystal refractive index n changes by the linear electro-optic and piezoelectric effects along the z crystal axis, due to the external electric field. This variation depends on the domain orientation so that two adjacent antiparallel domains present a refractive index difference equal to 2Dn which is used for in-situ visualization of the reversed domain pattern during formation. A digital holographic (DH) technique is employed for a two-dimensional (2D) reconstruction of the wavefield transmitted by the sample in amplitude and phase during the process. The corresponding amplitude-map and phase-map movies are presented. The amplitude-map gives qualitative information about the spatial evolution of the domain boundaries while the phase-map provides measurement of the 2D distribution of the phase shift induced along the z axis. The phase-map movies provide unequivocal information about the spatial distribution of the reversed domain regions. This technique can be used as in-situ monitoring method alternative to the measurement of the poling current which provides information only about the amount of charge delivered to the sample, ignoring the spatial distribution of the domain boundaries.

  17. Domain patterning by electron beam of MgO doped lithium niobate covered by resist

    SciTech Connect

    Shur, V. Ya. Chezganov, D. S.; Akhmatkhanov, A. R.; Kuznetsov, D. K.

    2015-06-08

    Periodical domain structuring by focused electron beam irradiation of MgO-doped lithium niobate (MgOCLN) single crystalline plate covered by resist layer was studied both experimentally and by computer simulation. The dependences of domain size on the charge dose and distance between isolated domains were measured. It has been shown that the quality of periodical domain pattern depends on the thickness of resist layer and electron energy. The experimentally obtained periodic domain structures have been divided into four types. The irradiation parameters for the most uniform patterning were obtained experimentally. It was shown by computer simulation that the space charge slightly touching the crystal surface produced the maximum value of electric field at the resist/LN interface thus resulting in the best pattern quality. The obtained knowledge allowed us to optimize the poling process and to make the periodical domain patterns in 1-mm-thick wafers with an area up to 1 × 5 mm{sup 2} and a period of 6.89 μm for green light second harmonic generation. Spatial distribution of the efficiency of light frequency conversion confirmed the high homogeneity of the tailored domain patterns.

  18. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Neumayer, Sabine M.; Strelcov, Evgheni; Manzo, Michele; Gallo, Katia; Kravchenko, Ivan I.; Kholkin, Andrei L.; Kalinin, Sergei V.; Rodriguez, Brian J.

    2015-12-01

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity.

  19. Dislocations and subgrain boundaries in highly magnesium-doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Kong, Yongfa; Wen, Jinke; Wang, Huafu

    1994-06-01

    The extension and distribution of dislocations and subgrain boundaries in highly magnesium-doped lithium niobate crystals at different stages of growth have been investigated using chemical etching and optical microscopy. The relations between dislocation densities, subgrain boundaries and optical quality of the crystals have been also studied. It was found that there is a core with relatively high dislocation density in the central region of the crystal shoulder. In the shouldering stage, the dislocations gathering in the core extend to its surrounding regions and the dislocation density tends to be homogeneous. Tailing increases the dislocation density in the bottom part of the crystal and causes inhomogeneous distribution of dislocations in that part. Subgrain boundaries are apt to form in high dislocation density regions, and neighbouring multiple subgrain boundaries tend to reform a more stable single subgrain boundary. The extinction ratios and conoscope images of crystals are worst in the dislocation gathering regions around the ends of subgrain boundaries, and dislocations are the basic cause of poor optical quality of crystals.

  20. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    SciTech Connect

    Neumayer, Sabine M.; Rodriguez, Brian J.; Strelcov, Evgheni; Kravchenko, Ivan I.; Kalinin, Sergei V.; Manzo, Michele; Gallo, Katia; Kholkin, Andrei L.

    2015-12-28

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity.

  1. Domain patterning by electron beam of MgO doped lithium niobate covered by resist

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Chezganov, D. S.; Akhmatkhanov, A. R.; Kuznetsov, D. K.

    2015-06-01

    Periodical domain structuring by focused electron beam irradiation of MgO-doped lithium niobate (MgOCLN) single crystalline plate covered by resist layer was studied both experimentally and by computer simulation. The dependences of domain size on the charge dose and distance between isolated domains were measured. It has been shown that the quality of periodical domain pattern depends on the thickness of resist layer and electron energy. The experimentally obtained periodic domain structures have been divided into four types. The irradiation parameters for the most uniform patterning were obtained experimentally. It was shown by computer simulation that the space charge slightly touching the crystal surface produced the maximum value of electric field at the resist/LN interface thus resulting in the best pattern quality. The obtained knowledge allowed us to optimize the poling process and to make the periodical domain patterns in 1-mm-thick wafers with an area up to 1 × 5 mm2 and a period of 6.89 μm for green light second harmonic generation. Spatial distribution of the efficiency of light frequency conversion confirmed the high homogeneity of the tailored domain patterns.

  2. Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery.

    PubMed

    Das, Suman; Dutta, Dipak; Araujo, Rafael B; Chakraborty, Sudip; Ahuja, Rajeev; Bhattacharyya, Aninda J

    2016-08-10

    Comprehensive understanding of the charge transport mechanism in the intrinsic structure of an electrode material is essential in accounting for its electrochemical performance. We present here systematic experimental and theoretical investigations of Li(+)-ion diffusion in a novel layered material, viz. lithium titanium niobate. Lithium titanium niobate (exact composition Li0.55K0.45TiNbO5·1.06H2O) is obtained from sol-gel synthesized potassium titanium niobate (KTiNbO5) by an ion-exchange method. The Li(+)-ions are inserted and de-inserted preferentially into the galleries between the octahedral layers formed by edge and corner sharing TiO6 and NbO6 octahedral units and the effective chemical diffusion coefficient, is estimated to be 3.8 × 10(-11) cm(2) s(-1) using the galvanostatic intermittent titration technique (GITT). Calculations based on density functional theory (DFT) strongly confirm the anisotropic Li(+)-ion diffusion in the interlayer galleries and that Li(+)-ions predominantly diffuse along the crystallographic b-direction. The preferential Li(+)-ion diffusion along the b-direction is assisted by line-defects, which are observed to be higher in concentration along the b-direction compared to the a- and c-directions, as revealed by high resolution electron microscopy. The Li-Ti niobate can be cycled to low voltages (≈0.2 V) and show stable and satisfactory battery performance over 100 cycles. Due to the possibility of cycling to low voltages, cyclic voltammetry and X-ray photoelectron spectroscopy convincingly reveal the reversibility of Ti(3+) ↔ Ti(2+) along with Ti(4+) ↔ Ti(3+) and Nb(5+) ↔ Nb(4+). PMID:27459636

  3. Design of 4 to 2 line encoder using lithium niobate based Mach Zehnder Interferometers for high speed communication

    NASA Astrophysics Data System (ADS)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep; Raghuwanshi, Sanjeev K.

    2016-04-01

    Encoder is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using encoder and external gates. In this paper, 4 to 2 line encoder is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).

  4. Ultraviolet laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals

    SciTech Connect

    Boes, Andreas Steigerwald, Hendrik; Sivan, Vijay; Mitchell, Arnan; Yudistira, Didit; Wade, Scott; Mailis, Sakellaris; Soergel, Elisabeth

    2014-09-01

    We report the realization of high-resolution bulk domains achieved using a shallow, structured, domain inverted surface template obtained by UV laser-induced poling inhibition in MgO-doped lithium niobate. The quality of the obtained bulk domains is compared to those of the template and their application for second harmonic generation is demonstrated. The present method enables domain structures with a period length as small as 3 μm to be achieved. Furthermore, we propose a potential physical mechanism that leads to the transformation of the surface template into bulk domains.

  5. Design of optical reversible logic gates using electro-optic effect of lithium niobate based Mach-Zehnder interferometers.

    PubMed

    Kumar, Santosh; Chanderkanta; Raghuwanshi, Sanjeev Kumar

    2016-07-20

    In recent years reversible logic has come as a promising solution in the optical computing domain. In reversible gates, there is one-to-one mapping between input and output, causing no loss of information. Reversible gates are useful for application in low power complementary metal-oxide semiconductors, with less dissipation, and in quantum computing. These benefits can be utilized by implementing reversible gate structures in the optical domain. In this paper, basic reversible Feynman and Fredkin logic gates using a lithium niobate based Mach-Zehnder interferometer are proposed. The different applications utilizing the proposed structures are also explained in this study. PMID:27463925

  6. Luminescent activation of planar optical waveguides in LiNbO 3 with rare earth ions Ln 3+ - a review

    NASA Astrophysics Data System (ADS)

    Tsonev, Lyubomir

    2008-02-01

    Based on the publications during the period 1990-2006, an attempt is made to summarize some of the important tendencies in integrated optics as well as the different techniques for activating lithium niobate by doping it with rare earth (lanthanide) ions. Luminescence properties of lanthanide ions in lithium niobate and in other hosts are reviewed in relation with their application in active thin film optical devices. The technological problems reported by different authors are commented. The possibilities for producing active waveguiding devices in lithium niobate only by low-temperature processes are discussed.

  7. Interface modulated currents in periodically proton exchanged Mg doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Neumayer, Sabine M.; Manzo, Michele; Kholkin, Andrei L.; Gallo, Katia; Rodriguez, Brian J.

    2016-03-01

    Conductivity in Mg doped lithium niobate (Mg:LN) plays a key role in the reduction of photorefraction and is therefore widely exploited in optical devices. However, charge transport through Mg:LN and across interfaces such as electrodes also yields potential electronic applications in devices with switchable conductivity states. Furthermore, the introduction of proton exchanged (PE) phases in Mg:LN enhances ionic conductivity, thus providing tailorability of conduction mechanisms and functionality dependent on sample composition. To facilitate the construction and design of such multifunctional electronic devices based on periodically PE Mg:LN or similar ferroelectric semiconductors, fundamental understanding of charge transport in these materials, as well as the impact of internal and external interfaces, is essential. In order to gain insight into polarization and interface dependent conductivity due to band bending, UV illumination, and chemical reactivity, wedge shaped samples consisting of polar oriented Mg:LN and PE phases were investigated using conductive atomic force microscopy. In Mg:LN, three conductivity states (on/off/transient) were observed under UV illumination, controllable by the polarity of the sample and the externally applied electric field. Measurements of currents originating from electrochemical reactions at the metal electrode-PE phase interfaces demonstrate a memresistive and rectifying capability of the PE phase. Furthermore, internal interfaces such as domain walls and Mg:LN-PE phase boundaries were found to play a major role in the accumulation of charge carriers due to polarization gradients, which can lead to increased currents. The insight gained from these findings yield the potential for multifunctional applications such as switchable UV sensitive micro- and nanoelectronic devices and bistable memristors.

  8. Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Neumayer, Sabine M.; Ivanov, Ilia N.; Manzo, Michele; Kholkin, Andrei L.; Gallo, Katia; Rodriguez, Brian J.

    2015-12-01

    Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the "up" to the "down" state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original "up" state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.

  9. Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

    SciTech Connect

    Neumayer, Sabine M.; Rodriguez, Brian J. E-mail: brian.rodriguez@ucd.ie; Ivanov, Ilia N.; Manzo, Michele; Gallo, Katia E-mail: brian.rodriguez@ucd.ie; Kholkin, Andrei L.

    2015-12-14

    Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the “up” to the “down” state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original “up” state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.

  10. Domain wall kinetics of lithium niobate single crystals near the hexagonal corner

    SciTech Connect

    Choi, Ju Won; Ko, Do-Kyeong; Yu, Nan Ei E-mail: jhro@pnu.edu; Kitamura, Kenji; Ro, Jung Hoon E-mail: jhro@pnu.edu

    2015-03-09

    A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic “asymmetric in-out domain wall motion” observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (E{sub c}) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1E{sub c} is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15E{sub c} is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.

  11. Temperature-stable lithium niobate electro-optic Q-switch for improved cold performance

    NASA Astrophysics Data System (ADS)

    Jundt, Dieter H.

    2014-10-01

    Lithium niobate (LN) is commonly used as an electro optic (EO) Q-switch material in infrared targeting lasers because of its relatively low voltage requirements and low cost compared to other crystals. A common challenge is maintaining good performance at the sub-freezing temperatures often experienced during flight. Dropping to low temperature causes a pyro-electric charge buildup on the optical faces that leads to birefringence non-uniformity and depolarization resulting in poor hold-off and premature lasing. The most common solution has been to use radioactive americium to ionize the air around the crystal and bleed off the charge, but the radioactive material requires handling and disposal procedures that can be problematic. We have developed a superior solution that is now being implemented by multiple defense system suppliers. By applying a low level thermo-chemical reduction to the LN crystal optical faces we induce a small conductivity that allows pyro-charges to dissipate. As the material gets more heavily treated, the capacity to dissipate charges improves, but the corresponding optical absorption also increases, causing insertion loss. Even though typical high gain targeting laser systems can tolerate a few percent of added loss, the thermo-chemical processing needs to be carefully optimized. We describe the results of our process optimization to minimize the insertion loss while still giving effective charge dissipation. Treatment is performed at temperatures below 500°C and a conductivity layer less than 0.5mm in depth is created that is uniform across the optical aperture. Because the conductivity is thermally activated, the charge dissipation is less effective at low temperature, and characterization needs to be performed at cold temperatures. The trade-off between optical insertion loss and potential depolarization due to low temperature operation is discussed and experimental results on the temperature dependence of the dissipation time and the

  12. Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate

    NASA Astrophysics Data System (ADS)

    Miller, Gregory D.; Batchko, Robert G.; Fejer, Martin M.; Byer, Robert L.

    1996-05-01

    Laser-based displays and illumination systems are applications which can capitalize on the brightness and efficiency of semiconductor lasers, provided that there is a means for converting their output into the visible spectrum. Semiconductor laser manufacturers can adjust their processes to achieve desired wavelengths in several near-infrared bands; an equally agile conversion technology is needed to permit display and illumination system manufacturers to choose visible wavelengths appropriate to their products. Quasi- phasematched second harmonic generation has the potential to convert high-power semiconductor laser output to the visible with 50% optical-to-optical conversion efficiency in a single-pass bulk configuration, using electric-field-poled lithium niobate. Lithographically- defined electrode structures on the positive or negative polar faces of this crystal are used to control the formation of domains under the influence of electric fields applied using those electrode structures. The quality of the resulting domain patterns not only controls the efficiency of quasi-phasematched second harmonic generation, but also controls the degree of resistance to photorefractive damage. We present a model which is used to identify the optimum electrode duty cycle and applied poling field for domain patterning and compare the predicted domain duty cycle with experimental results. We discuss factors which contribute to inhomogeneous domain pattern quality for samples poled under otherwise ideal conditions and our progress in limiting their influence. Finally, we present optical characterization of a 2.4 mm long 500 micrometers thick sample which produced an average second harmonic power of 1.3 W of 532 nm green from a 9 W average power Q-switched 1064 nm Nd:YAG laser in a loose- focus single-pass configuration.

  13. Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method

    SciTech Connect

    Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N.

    2015-08-15

    Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use of a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.

  14. Electrical properties of lead-free Fe-doped niobium-rich potassium lithium tantalate niobate single crystals

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Jun; Zhou, Zhongxiang; Guo, Ruyan; Bhalla, Amar S.

    2013-12-01

    Lead-free, 0.025 wt% Fe-doped niobium-rich potassium lithium tantalate niobate Fe: K0.95Li0.05Ta1-xNbxO3 single crystals have been grown by the top-seeded melt growth method. All the transition temperatures have been determined by the dielectric constant and loss-dependent temperature. The spontaneous polarizations computed by the integration of pyroelectric coefficients over all the temperatures are consistent with the results of the P-E hysteresis loops. The piezoelectric constants and electromechanical coupling factors are attractive among lead-free piezoelectric materials. With suitable Fe-doping, the electrical properties of KLTN single crystals have been improved overall and can be compared to those of the current important lead-based piezoelectric materials.

  15. Site-selective measurement of relaxation properties at 980 nm in Er^{3+}-doped congruent and stoichiometric lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Mandula, Gabor; Kis, Zsolt; Kovacs, Laszlo; Szaller, Zsuzsanna; Krampf, Andreas

    2016-04-01

    A pump-probe-type saturation spectroscopic experiment has been performed at 980 nm to measure the homogeneous linewidth of the ^4I_{11/2}-^4I_{15/2} transition and the lifetime of the ^4I_{11/2} state of erbium embedded into lithium niobate single crystals. There are several non-equivalent Er^{3+}_{Li^+}-V_{Li^+} sites with differently oriented defect structure for charge compensation. These non-equivalent centers differ in their transition energies. Hence, our measurements have been done at two nearby frequencies, addressing groups of erbium ions located at non-equivalent sites. The results are compared with lifetime calculations and measurements found in the literature and with the predictions of our simple model calculation.

  16. Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses

    SciTech Connect

    Garcia-Lechuga, Mario Siegel, Jan Hernandez-Rueda, Javier; Solis, Javier

    2014-09-21

    The interaction of high-power single 130 femtosecond (fs) laser pulses with the surface of Lithium Niobate is experimentally investigated in this work. The use of fs-resolution time-resolved microscopy allows us to separately observe the instantaneous optical Kerr effect induced by the pulse and the generation of a free electron plasma. The maximum electron density is reached 550 fs after the peak of the Kerr effect, confirming the presence of a delayed carrier generation mechanism. We have also observed the appearance of transient Newton rings during the ablation process, related to optical interference of the probe beam reflected at the front and back surface of the ablating layer. Finally, we have analyzed the dynamics of the photorefractive effect on a much longer time scale by measuring the evolution of the transmittance of the irradiated area for different fluences below the ablation threshold.

  17. Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling

    NASA Astrophysics Data System (ADS)

    Wellington, I. T.; Valdivia, C. E.; Sono, T. J.; Sones, C. L.; Mailis, S.; Eason, R. W.

    2007-02-01

    We report the formation of directionally ordered nano-scale surface domains on the +z face of undoped congruent lithium niobate single crystals by using UV illumination through a phase mask of sub-micron periodicity with an energy fluence between ˜90 mJ/cm 2 and 150 mJ/cm 2 at λ = 266 nm. We clearly show here that the UV-induced surface ferroelectric domains only nucleate at and propagate along maxima of laser intensity. Although the domain line separation varies and is greater than 2 μm for this set of experimental conditions, this enables a degree of control over the all-optical poling process.

  18. Lithium niobate Q-switch to prevent pre-lasing of high gain lasers operating over a wide temperature range

    NASA Astrophysics Data System (ADS)

    Jundt, Dieter H.; MacKay, Peter E.

    2015-02-01

    Because of its ease of growth and large electro-optic effect, lithium niobate is the preferred choice for Q-switching mobile lasers. Temperature-induced pyro-electric charges however may lead to premature lasing. We manufactured and characterized temperature-stable LN Q-switch. A thermo-chemical anneal was performed creating a conductive material layer 0.5mm thick with increased conductivity. While this increases optical insertion loss by a few percent, this is tolerable in high gain lasers. We present details of treatment, the surface charge creation and dissipation mechanism and the setup used to assess the cold-performance used to demonstrate improved charge dissipation when compared to untreated crystals.

  19. Molecular dynamic simulations of surface morphology and pulsed laser deposition growth of lithium niobate thin films on silicon substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Zhu, Hao-Nan; Pei, Zi-Dong; Kong, Yong-Fa; Xu, Jing-Jun

    2015-05-01

    The molecular dynamic simulation of lithium niobate thin films deposited on silicon substrate is carried out by using the dissipative particle dynamics method. The simulation results show that the Si (111) surface is more suitable for the growth of smooth LiNbO3 thin films compared to the Si(100) surface, and the optimal deposition temperature is around 873 K, which is consistent with the atomic force microscope results. In addition, the calculation molecular number is increased to take the electron spins and other molecular details into account. Project supported by the National Basic Research Program of China (Grant No. 2011CB922003), the International S&T Cooperation Program of China (Grant No. 2013DFG52660), the Taishan Scholar Construction Project Special Fund, China, and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 65030091 and 65010961).

  20. Simultaneous phase matching of optical parametric oscillation and second-harmonic generation in aperiodically poled lithium niobate

    NASA Astrophysics Data System (ADS)

    KartaloğLu, Tolga; Figen, Z. Gürkan; Aytür, Orhan

    2003-02-01

    We report a simple ad hoc method for designing an aperiodic grating structure to quasi-phase match two arbitrary second-order nonlinear processes simultaneously within the same electric-field-poled crystal. This method also allows the relative strength of the two processes to be adjusted freely, thereby enabling maximization of the overall conversion efficiency. We also report an experiment that is based on an aperiodically poled lithium niobate crystal that was designed by use of our method. In this crystal, parametric oscillation and second-harmonic generation are simultaneously phase matched for upconversion of a femtosecond Ti:sapphire laser to 570 nm. This self-doubling optical parametric oscillator provides an experimental verification of our design method.

  1. Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers

    SciTech Connect

    Shur, V. Ya.; Baturin, I. S.; Mingaliev, E. A.; Zorikhin, D. V.; Udalov, A. R.; Greshnyakov, E. D.

    2015-02-02

    The current paper presents a piezoelectric bimorph actuator produced by direct bonding of lithium niobate wafers with the mirrored Y and Z axes. Direct bonding technology allowed to fabricate bidomain plate with precise positioning of ideally flat domain boundary. By optimizing the cutting angle (128° Y-cut), the piezoelectric constant became as large as 27.3 pC/N. Investigation of voltage dependence of bending displacement confirmed that bimorph actuator has excellent linearity and hysteresis-free. Decrease of the applied voltage down to mV range showed the perfect linearity up to the sub-nm deflection amplitude. The frequency and temperature dependences of electromechanical transmission coefficient in wide temperature range (from 300 to 900 K) were investigated.

  2. Enhanced electro-optic response in domain-engineered LiNbO3 channel waveguides

    NASA Astrophysics Data System (ADS)

    Zisis, G.; Ying, C. Y. J.; Ganguly, P.; Sones, C. L.; Soergel, E.; Eason, R. W.; Mailis, S.

    2016-07-01

    Substantial enhancement (36.7%) of the intrinsic electro-optic coefficient ( r33) has been observed in lithium niobate channel waveguides, which are made to overlap with a pole-inhibited ferroelectric domain. The waveguide and the overlapping ferroelectric domain are both produced by a single UV irradiation process and are thus self-aligning. The enhancement of the electro-optic coefficient effect is attributed to strain, which is associated with the ferroelectric domain boundaries that contain the channel waveguide.

  3. Electrical conductivity and asymmetric material changes upon irradiation of Mg-doped lithium niobate crystals with low-mass, high-energy ions

    SciTech Connect

    Jentjens, L.; Raeth, N. L.; Peithmann, K.; Maier, K.

    2011-06-15

    Radiation damage in magnesium-doped lithium niobate crystals, created by low-mass, high-energy ions which have transmitted the entire crystal thickness, leads to an enhanced electrical dark conductivity as well as an enhanced photoconductivity. Experimental results on the electrical properties after ion exposure are given, and an asymmetric dependence of the conductivity as well as refractive index changes on the irradiation geometry with respect to the ferroelectric axis is revealed.

  4. High temperature top seeded solution growth of stoichiometric lithium niobate LiNbO3 (sLN) with planar interface

    NASA Astrophysics Data System (ADS)

    Szaller, Zs.; Péter, Á.; Polgár, K.; Szabó, Gy.

    2012-12-01

    HTTSSG growth of stoichiometric lithium niobate (sLN) from K2O containing melt was investigated in order to establish optimal condition for facet-free growth of crystals pulled along the Z=<0001> axis. Elimination of pyramidal facets and flow instabilities was achieved by a gradually adjusted rotation rate program at thermal conditions characterized by the relation Gr/Re2>1 assuring a crystallization front conformed to the very low convexity requirement.

  5. Photocarrier transport in iron-doped potassium lithium tantalate niobate studied by time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongxiang; Li, Yang; Tian, Hao; Li, Jun; Liu, Yuqiang; Yang, Yanqiang

    2009-07-01

    The photocarrier mobility of Fe 0.03 wt%-doped potassium lithium tantalate niobate (K 0.95Li 0.05Ta 0.61Nb 0.39O 3) was investigated by time-of-flight (TOF) measurement. The longitudinal photocarrier response due to pulsed excitation leads to values of the drift mobility of μh = 1.45 × 10 -2 cm 2/V s for holes, μe = 0.325 × 10 -2 cm 2/V s for electrons, and a value for the range of holes ( μτ) h = 4.38 × 10 -5 cm 2/V at room temperature and at low field 3 KV/cm. The response time of holes and electrons (or the relaxation time) is determined to be 3.02 × 10 -3 s and 3.74 × 10 -3 s, respectively. The mobility of holes strongly depends on the field strength, and is observed to decrease with increasing bias field.

  6. Growth, characterization and upconversion properties of erbium-doped potassium lithium tantalate niobate single crystals under 975 nm laser excitation

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongxiang; Li, Lei; Duan, Qianqian; Feng, Lei; Tian, Hao

    2012-04-01

    Potassium lithium tantalate niobate single crystals doped with erbium ions are grown by top-seeded solution growth method. The crystals are characterized by X-ray diffraction and differential thermal analysis. The refractive indices of the crystal are measured using ellipsometry method and fitted by Sellmeier equation. The as-grown crystals are tetragonal phase tungsten bronze-type structure with Curie temperature of 271.3 °C. Characteristic Er3 + absorption bands are observed from 350 to 1100 nm in ultraviolet-visible-near infrared absorption spectra. These crystals emit brightly green and red upconversion fluorescence under 975 nm LD laser excitation, and the steady state upconversion spectra are obtained at room temperature. The red emission intensity increases as the erbium ions concentration increases in crystals. Processes of excited state absorption and energy transfer are responsible for upconversion luminescence. The emission intensities are quadratic dependences on pump power from pump power dependence analyses and deduction of transition rate equation model.

  7. Light-induced domain inversion with real-time diagnostics of the defect/domain wall interaction in lithium niobate

    NASA Astrophysics Data System (ADS)

    Sandmann, Christian; Dierolf, Volkmar

    2004-03-01

    Lithium niobate is a mature material which has widely been used in several applications, many of them exploiting the possibility to engineer domains in arbitrary shapes and patterns. Despite this technological driving force, the dramatic role of defects in the domain inversion (reflected e.g.: in a wide variation of coercive fields with stoichiometry) has not be clarified. To this end we will report two major breakthroughs enabling investigation of the dynamics of the domain wall/defect interaction. (1) light-induced domain inversion using visible laser in a confocal microscope, that allows us to directly "write" precise domain patterns, (2) real time observation of the changes occurring in the defect configuration of probe defect ions during domain inversion by probing defect luminescence. The latter can be used as a feedback for the light induced domain inversion. Moreover, we have a new tool to study the correlation between the rearrangement of defects and the occurrence of strain fields, as well as to investigate the origin of the light induced electric fields responsible for (1).

  8. The impact of MgO-doped near-stoichiometric lithium niobate crystals on the THz wave output characteristics

    NASA Astrophysics Data System (ADS)

    Xianbin, Zhang; Yunfeng, Li; lijuan, Ma; ke, Yuan; Wei, Shi

    2011-02-01

    The control experimental study on the THz wave parametric oscillator (TPO) output characteristics based on the congruent LiNbO3 crystal (CLN) and stoichiometric MgO-doped lithium niobate (SLN) crystal is performed. As a nonlinear medium in the aspect of the THz wave output experiments show that the congruent LiNbO3 crystal is more stable than the SLN crystal. Compared with the CLN crystal SLN showed significant photorefractive effect which adversely the stability of the THz wave output. Experiments indicated that different molar concentration of MgO doped can significantly change the photorefractive properties of SLN crystal. The results showed that with the increase of MgO doping concentration the photorefractive of SLN gradually become weaker and THz wave output stability has the significantly increase. The output stability of mol 5.0% MgO droped SLN crystal has not significantly different with the CLN. In the contrast experiment of TPO with the 160mm cavity length and 65mm crystal length the pump laser threshold of the 5% mol MgO: SLN crystal decreased by 23% than the CLN crystal while the peak THz energy output increased 28%.

  9. Surface and Compositional Study of Graphene grown on Lithium Niobate (LiNbO3) substrates by Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Karamat, Shumaila; Celik, Umit; Oral, Ahmet

    The diversity required in the designing of electronic devices motivated the community to always attempt for new functional materials and device structures. Graphene is considered as one of the most promising candidate materials for future electronics and carbon based devices. It is very exciting to combine graphene with new dielectric materials which exhibit multifunctional properties. Lithium Niobate exhibits ferro-, pyro-, and piezoelectric properties with large electro-optic, acousto-optic, and photoelastic coefficients as well as strong photorefractive and photovoltaic effects which made it one of the most extensively studied materials over the last 50 years. We used ambient pressure chemical vapour deposition to grow graphene on LiNbO3 substrates without any catalyst. The growth was carried out in presence of methane, argon and hydrogen. AFM imaging showed very unique structures on the surface which contains triangular domains. X-ray photoelectron spectroscopy (XPS) was used to get information about the presence of necessary elements, their bonding with LiNbO3 substrates. Detailed characterization is under process which will be presented later.

  10. Millijoule-level picosecond mid-infrared optical parametric amplifier based on MgO-doped periodically poled lithium niobate.

    PubMed

    Xu, Hongyan; Yang, Feng; Chen, Ying; Liu, Ke; Du, Shifeng; Zong, Nan; Yang, Jing; Bo, Yong; Peng, Qinjun; Zhang, Jingyuan; Cui, Dafu; Xu, Zuyan

    2015-03-20

    A millijoule-level high pulse energy picosecond (ps) mid-infrared (MIR) optical parametric amplifier (OPA) at 3.9 μm based on large-aperture MgO-doped periodically poled lithium niobate (MgO:PPLN) crystal was demonstrated for the first time, to the best of our knowledge. The MIR OPA was pumped by a 30 ps 1064 nm Nd:YAG laser at 10 Hz and injected by an energy-adjustable near-infrared seed based on a barium boron oxide (BBO) optical parametric generator/optical parametric amplifier (OPG/OPA) with double-pass geometry. Output energy of 1.14 mJ at 3.9 μm has been obtained at pump energy of 15.2 mJ. Furthermore, the performance of MIR OPG in MgO:PPLN was also investigated for comparing with the seeded OPA. PMID:25968539

  11. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals

    SciTech Connect

    Alikin, D. O.; Turygin, A. P.; Lobov, A. I.; Shur, V. Ya.; Ievlev, A. V.; Kalinin, S. V.

    2015-05-04

    Currently, ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage, and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to the investigation of domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here, we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate which allows us to study the forward growth with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. To explain experimental results, we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.

  12. Sol-gel synthesis of nanocomposite materials based on lithium niobate nanocrystals dispersed in a silica glass matrix

    NASA Astrophysics Data System (ADS)

    Marenna, Elisa; Aruta, Carmela; Fanelli, Esther; Barra, Mario; Pernice, Pasquale; Aronne, Antonio

    2009-05-01

    With the final goal to obtain thin films containing stoichiometric lithium niobate nanocrystals embedded in an amorphous silica matrix, the synthesis strategy used to set a new inexpensive sol-gel route to prepare nanocomposite materials in the Li 2O-Nb 2O 5-SiO 2 system is reported. In this route, LiNO 3, NbCl 5 and Si(OC 2H 5) 4 were used as starting materials. The gels were annealed at different temperatures and nanocrystals of several phases were formed. Futhermore, by controlling the gel compositions and the synthesis parameters, it was possible to obtain LiNbO 3 as only crystallizing phase. LiNbO 3-SiO 2 nanocomposite thin films on Si-SiO 2 and Al 2O 3 substrates were grown. The LiNbO 3 average size, increasing with the annealing temperature, was 27 nm for a film of composition 10Li 2O-10Nb 2O 5-80SiO 2 heated 2 h at 800 °C. Electrical investigation revealed that the nanocrystals size strongly affects the film conductivity and the occurrence of hysteretic current-voltage curves.

  13. Sub-ten nanosecond laser pulse shaping using lithium niobate modulators and a double-passed tapered amplifier

    NASA Astrophysics Data System (ADS)

    Rogers, C. E., III; Gould, P. L.

    2015-05-01

    We present progress on developing a laser pulse shaping system capable of generating pulses shorter than ten nanoseconds and frequency chirps of up to about 5 GHz in 2.5 ns. Shaped control of phase and amplitude on this timescale may prove useful for producing ultracold molecules and controlling atomic hyperfine state populations. The pulses are generated by passing 780 nm light from an external cavity diode laser through a fiber-coupled lithium niobate (LN) phase modulator (PM) in series with an LN intensity modulator (IM). The modulators are driven with a single-channel 8 GS/s arbitrary waveform generator configured with an RF delay line for quasi-two channel pulsed operation. The optical pulses are then amplified in a double-pass tapered amplifier (TA). The TA's intrinsic mode structure leads to an etalon effect that modulates the pulse amplitude during a frequency chirp. To reduce this unwanted effect, a compensating intensity modulation can be programmed onto the seed pulse. This work is supported by DOE.

  14. Wafer-bonded surface plasmon waveguides

    NASA Astrophysics Data System (ADS)

    Berini, Pierre; Mattiussi, Greg; Lahoud, Nancy; Charbonneau, Robert

    2007-02-01

    Direct wafer bonding and thinning were explored as an approach for constructing long-range surface plasmon waveguides. The structures consist of a thin metal stripe deposited into a shallow trench etched into one of the claddings, to which another cladding of the same material is directly bonded. The approach was developed first using Pyrex wafers in order to assess feasibility and then using lithium niobate wafers. Optical and electro-optical measurements validate the approach.

  15. Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+ -doped aperiodically poled lithium niobate.

    PubMed

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Rico, M L; Capmany, J

    2008-05-01

    We report a dual-wavelength continuous-wave laser at 542.4 and 546.8 nm based on an Nd(3+)-doped aperiodically poled lithium niobate crystal. Two fundamental infrared (IR) wavelengths at 1084.8 and 1093.6 nm are simultaneously oscillated and self-frequency-doubled to green. The aperiodic domain distribution patterned in the crystal allows for quasi-phase matched self-frequency-doubling of both IR fundamentals while avoiding their sum-frequency mixing. PMID:18451969

  16. Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer

    SciTech Connect

    Hirosawa, Kenichi; Ito, Yasuyuki; Ushio, Hidetake; Nakagome, Hisayuki; Kannari, Fumihiko

    2009-10-15

    Squeezed vacuum pulses up to -1.7 dB at telecom-band ({approx}1550 nm) is generated with femtosecond laser pulses using cascaded {chi}{sup (2)} optical nonlinearity in a periodically poled lithium niobate crystal placed in a Sagnac interferometer. In spite of group velocity mismatch at short laser pulse pumping, sufficient cascaded nonlinear wave mixing is obtainable at the wavelength shifted from the phase matching wavelength for second harmonic generation. The theoretical model prediction agrees well with the experimental results.

  17. Nanocrystallization of ferroelectric strontium bismuth vanadium niobate in lithium tetraborate glasses.

    PubMed

    Venkataraman, B Harihara; Varma, K B R

    2005-12-01

    Transparent glass samples in (100-3x) (Li2O-2B2O3)-x(SrO-Bi2O3-0.7Nb2O5-0.3V2O5) (10 < or = x < or = 60, in molar ratio) system have been fabricated via conventional melt-quenching technique. The as-quenched samples, of all the compositions under study have been confirmed to be amorphous, by X-ray powder diffraction (XRD) studies. Differential thermal analysis (DTA) was employed to confirm the glassy nature of the as-quenched glasses. Glass composites comprising vanadium doped strontium bismuth niobate nanocrystallites were obtained by controlled heat-treatment of the as-quenched glasses at 783 K for 6 h. Perovskite SrBi2(Nb0.7VO3)2O9-delta phase formation was found to be preceded by an intermediate fluorite phase which was established via XRD and transmission electron microscopy (TEM). The dielectric constants (epsilonr) of the as-quenched glasses as well as the glass nanocrystal composites decreased with increase in frequency (100 Hz-10 kHz) at 300 K. Interestingly, the dielectric constant of the glass nanocrystal composite (heat-treated at 783 K/6 h) undergoes a maximum in the vicinity of the crystallization temperature of the host glass (Li2B4O7) reaching an anomalously high value (approximately 10(6)) at 800 K. Different dielectric mixture formulae were employed to rationalize the dielectric properties of the glass nanocrystal composite. The optical transmission properties of these glass nanocrystal composites were found to have strong compositional dependence. PMID:16430148

  18. Optimization of the idler wavelength tunable cascaded optical parametric oscillator based on chirp-assisted aperiodically poled lithium niobate crystal

    NASA Astrophysics Data System (ADS)

    Tao, Chen; Rong, Shu; Ye, Ge; Zhuo, Chen

    2016-01-01

    We present the numerical results for the optimization of the pump-to-idler conversion efficiencies of nanosecond idler wavelength tunable cascaded optical parametric oscillators (OPO) in different wavelength tuning ranges, where the primary signals from the OPO process are recycled to enhance the pump-to-idler conversion efficiencies via the simultaneous difference frequency generation (DFG) process by monolithic aperiodically poled, magnesium oxide doped lithium niobate (APMgLN) crystals. The APMgLN crystals are designed with different chirp parameters for the DFG process to broaden their thermal acceptance bandwidths to different extents. The idler wavelength tuning of the cascaded OPO is realized by changing the temperature of the designed APMgLN crystal and the cascaded oscillation is achieved in a single pump pass singly resonant linear cavity. The pump-to-idler conversion efficiencies with respect to the pump pulse duration and ratio of OPO coefficient to DFG coefficient are calculated by numerically solving the coupled wave equations. The optimal working conditions of the tunable cascaded OPOs pumped by pulses with energies of 350 μJ and 700 μJ are compared to obtain the general rules of optimization. It is concluded that the optimization becomes the interplay between the ratio of OPO coefficient to DFG coefficient and the pump pulse duration when the idler wavelength tuning range and the pump pulse energy are fixed. Besides, higher pump pulse energy is beneficial for reaching higher optimal pump-to-idler conversion efficiency as long as the APMgLN crystal is optimized according to this pump condition. To the best of our knowledge, this is the first numerical analysis of idler wavelength tunable cascaded OPOs based on chirp-assisted APMgLN crystals. Project supported by the National Natural Science Foundation of China (Grant No. 61505236), the Innovation Program of Shanghai Institute of Technical Physics, China (Grant No. CX-2), and the Program of Shanghai

  19. FABRICATION AND TESTING OF MICROWAVE SINTERED SOL-GEL SPRAY-ON BISMUTH TITANATE-LITHIUM NIOBATE BASED PIEZOELECTRIC COMPOSITE FOR USE AS A HIGH TEMPERATURE (>500 deg. C) ULTRASONIC TRANSDUCER

    SciTech Connect

    Searfass, C. T.; Baba, A.; Tittmann, B. R.; Agrawal, D. K.

    2010-02-22

    Bismuth titanate-lithium niobate based ultrasonic transducers have been fabricated using a sol-gel spray-on deposition technique. These transducers were then tested to determine their potential as high temperature ultrasonic transducers. Fabricated transducers were capable of operating to 1000 deg. C in pulse-echo mode; however, the exposure to such extreme temperatures appears to be destructive to the transducers.

  20. Wavelength-tunable polarization converter utilizing the strain induced by proton exchange in lithium niobate

    NASA Astrophysics Data System (ADS)

    Wang, T.-J.; Chung, J.-S.

    2005-02-01

    A new wavelength-tunable polarization converter utilizing the strain induced by proton exchange is demonstrated in x-cut LiNbO3. The light polarization is converted by the strain-optic effect through the phase-matched coupling of two orthogonal polarizations. The stress-applying structure is designed to be composed of several proton-exchanged strip regions for maximization of the stress distribution. The principle of birefringent chain filters is utilized to design the device structure in order to avoid the requirement of large stress, which results in serious cracks on the substrate surface. The overlap integral between the optical field distribution and the stress distribution can be enhanced simply by prolonging the proton-exchange time. Besides, the stress distribution and its strength in the stress-applying structure can be fine tuned without affecting the waveguide characteristics such that the principle of the birefringent chain filters is completely satisfied. Therefore, the polarization-conversion efficiency can be optimized when utilizing this exclusive stress-tuning ability. By the thermal-optic effect, the wavelength of maximum conversion can be tuned at a rate of -0.115 nm/°C with a maximum conversion efficiency of 92.41%. The proposed polarization converter has the advantages of adequate stress distribution and strength, high parameter-tuning feasibility, low propagation loss, easy fabrication, and low fabrication cost.

  1. Field induced modification of defect complexes in magnesium-doped lithium niobate

    SciTech Connect

    Meyer, Nadège; Granzow, Torsten; Nataf, Guillaume F.

    2014-12-28

    Dielectric constant, thermally stimulated depolarization currents (TSDC), and conductivity of undoped and 5% Mg-doped LiNbO{sub 3} single crystals between −100 °C and 200 °C have been investigated. A Debye-like dielectric relaxation with an activation energy of 135 meV is observed in the Mg-doped material, but not in undoped crystals. On heating this relaxation disappears near 140 °C and does not reappear after cooling. Anomalies observed in TSDC around this temperature are attributed to the motion of lithium vacancies, in agreement with conductivity measurements. It is proposed that in thermal equilibrium the electrons from the Mg{sub Li}{sup •} donors are trapped in (4Mg{sub Li}{sup •}+4V{sub Li}{sup ′}) defect complexes. High-temperature poling breaks these defect complexes. The transition of the liberated electrons between the Mg{sub Li}{sup •} donor centers and the Nb{sub Nb} forming the conduction band gives rise to the observed dielectric relaxation.

  2. Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing

    SciTech Connect

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-11

    A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  3. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    SciTech Connect

    Patel, N.; Branch, D. W.; Cular, S.; Schamiloglu, E.

    2015-08-15

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO{sub 3}) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  4. Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing

    DOE PAGESBeta

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-11

    A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to bothmore » crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less

  5. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing.

    PubMed

    Patel, N; Branch, D W; Schamiloglu, E; Cular, S

    2015-08-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment. PMID:26329223

  6. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    NASA Astrophysics Data System (ADS)

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  7. Electro-optic spectral tuning in a fan-out double-prism domain periodically poled lithium niobate intracavity optical parametric oscillator.

    PubMed

    Chang, W K; Chung, H P; Lin, Y Y; Chen, Y H

    2016-08-15

    We report on the design and experimental demonstration of an electro-optically tunable, pulsed intracavity optical parametric oscillator (IOPO) based on a unique fan-out double-prism domain periodically poled lithium niobate (DPD PPLN) in a diode-pumped Nd:YVO4 laser. The PPLN device combines the functionalities of fan-out and ramped duty-cycle domain structured nonlinear crystals, working simultaneously as a continuous grating-period quasi-phase-matched optical parametric downconverter and an electro-optic beam deflector/Q switch in the laser system. When driving the fan-out DPD PPLN with a voltage pulse train and varying the DC offset of the pulse train, a pulsed IOPO was realized with its signal and idler being electro-optically tunable over the 1880 and 2453 nm bands at spectral tuning rates of 13.5 (measured) and 25.8 (calculated) nm/(kV/mm), respectively. PMID:27519119

  8. Amplification of ps-pulses from freely triggerable gain-switched laser diodes at 1062 nm and second harmonic generation in periodically poled lithium niobate

    NASA Astrophysics Data System (ADS)

    Schönau, Thomas; Riecke, Sina M.; Lauritsen, Kristian; Erdmann, Rainer

    2011-03-01

    We present a compact frequency-doubled laser source with fundamental wavelength operation at 1062 nm. A freely triggerable seed diode laser delivers sub-100 ps pulses in the picojoule range at variable repetition rates up to 80 MHz. After amplification in a Ytterbium-doped fiber amplifier, the average power exceeds 380mW at 40 MHz, which corresponds to 9.5 nJ pulses and about 75W of peak power. The output beam is then focussed into periodically poled lithium niobate for second harmonic generation (SHG). In this way, green picosecond pulses with an energy of up to 2 nJ at 40MHz are generated. The pulse energy and pulse shape of the second harmonic pulses are systematically studied for various repetition rates, allowing conclusions on the amplifier performance under different operating conditions.

  9. Investigation of defect structure of impurity-doped lithium niobate by combining thermodynamic constraints with lattice constant variations

    SciTech Connect

    Koyama, Chihiro; Nozawa, Jun Fujiwara, Kozo; Uda, Satoshi; Maeda, Kensaku

    2015-01-07

    The defect structures of impurity-doped congruent lithium niobates (c-LN) were determined for impurities with various valences, including divalent, trivalent, and tetravalent impurities, in a concentration range where antisite niobium (Nb{sub Li}) exists. On the basis of the “Li site vacancy model,” six kinds of defect structures in impurity-doped c-LN are possible. Using thermodynamic constraints, these can be narrowed down to two kinds. The first structure is that in which impurities, vacancies and Nb exist as defects in the Li site and no defects exist in the Nb site (structure A), described as ([Li{sub Li}] {sub 1-5x-jy}[Nb{sub Li}]{sub x}[M{sub Li}]{sub y}[V{sub Li}]{sub 4x+(j-1)y})[Nb{sub Nb}][O{sub O}] {sub 3} (V: vacancy, M: impurity, j: valence of impurity, x, y: compositional variable (≠0), Li/Nb = congruent ratio). ([Li{sub Li}{sup ×}] {sub 1-5x-2y}[Nb{sub Li}{sup ••••}]{sub x}[M{sub Li}{sup •}]{sub y}[V{sub Li}{sup ′}]{sub 4x+y})[Nb{sub Nb}{sup ×}][O{sub O}{sup ×}] {sub 3} is an example by the Kröger-Vink notation for divalent M. In the second structure, vacancies and Nb exist as defects in the Li site and impurities exist as defects in the Nb site (structure B), described as ([Li{sub Li}] {sub 1-5x-(j-5)y}[Nb{sub Li}]{sub x}[V{sub Li}]{sub 4x+(j-5)y})([Nb{sub Nb}] {sub 1-y}[M{sub Nb}]{sub y})[O{sub O}] {sub 3}. ([Li{sub Li}{sup ×}] {sub 1-5x+y}[Nb{sub Li}{sup ••••}]{sub x}[V{sub Li}{sup ′}]{sub 4x-y})([Nb{sub Nb}{sup ×}] {sub 1-y}[M{sub Nb}{sup ′}]{sub y})[O{sub O}{sup ×}] {sub 3} is an example for tetravalent M. Since the relationship between impurity concentration and lattice constants for structures A and B differs, the defect structures can be differentiated by analyzing lattice constant variations as a function of impurity concentration. The results show that the defect structure of divalent and trivalent impurity-doped c-LN is structure A and that of tetravalent impurity-doped c-LN is

  10. Writing of crystal lines and its optical properties of rare-earth ion (Er 3+ and Sm 3+) doped lithium niobate crystal on glass surface formed by laser irradiation

    NASA Astrophysics Data System (ADS)

    Honma, Tsuyoshi; Koshiba, Keiko; Benino, Yasuhiko; Komatsu, Takayuki

    2008-10-01

    A glass of Li 2O-Nb 2O 5-SiO 2-B 2O 3 with an addition of CuO or Sm 2O 3 crystallizing in nonlinear optical lithium niobate LiNbO 3 is developed. Crystalline lines of Lithium Niobate have been fabricated by continuous wave laser irradiation of the glass surface. The crystalline laser written lines have been found, by means of micro-Raman and Second Harmonic experiments, to be well oriented with its c-axis pointing along the laser scanning direction. The analysis of the confocal micro luminescence spectra obtained at the crystalline line have confirmed the incorporation of rare-earth ions in the crystalline network.

  11. Continuous-wave quasi-phase-matched generation of 60thinspthinspmW at 465thinspthinspnm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate

    SciTech Connect

    Batchko, R.G.; Fejer, M.M.; Byer, R.L.; Woll, D.; Wallenstein, R.; Shur, V.Y.; Erman, L.

    1999-09-01

    We report continuous-wave single-pass second-harmonic generation (SHG) in 4-{mu}m -period 0.5-mm-thick backswitch-poled lithium niobate. Pump sources at 920{endash}930thinspthinspnm include both Ti:sapphire and diode-oscillator{endash}amplifier lasers. SHG of a Ti:sapphire laser at 6.1{percent}/W efficiency, producing 61thinspthinspmW of power at 460thinspthinspnm, is demonstrated in 50-mm-long periodically poled lithium niobate samples with a nonlinear coefficient d{sub eff}{approx}9 pm/V , and 60thinspthinspmW at 465thinspthinspnm and 2.8{percent}/W efficiency is obtained by SHG of a laser-diode source. {copyright} {ital 1999} {ital Optical Society of America}

  12. Structural, morphological and electrical studies of lithium ion irradiated sodium potassium niobate single crystal grown by flux method

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Rajesh, D.; Rajasekaran, S. V.; Perumal, R.; Chitra, M.; Jayavel, R.

    2013-02-01

    Single crystals of sodium potassium niobate (K0.5Na0.5)NbO3 (KNN) were grown by flux method and crystals were irradiated with 45 MeV Li ions to modify the electrical properties. Energy of the irradiated heavy ion was lower than the threshold energy to produce columnar defect and only clusters of defect was observed. The surface morphology of the irradiated single crystals was studied using scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the surface roughness value was found to increase with increasing fluence.

  13. Structural, morphological and electrical studies of lithium ion irradiated sodium potassium niobate single crystal grown by flux method

    SciTech Connect

    Saravanan, R.; Rajesh, D.; Rajasekaran, S. V.; Perumal, R.; Chitra, M.; Jayavel, R.

    2013-02-05

    Single crystals of sodium potassium niobate (K{sub 0.5}Na{sub 0.5})NbO{sub 3} (KNN) were grown by flux method and crystals were irradiated with 45 MeV Li ions to modify the electrical properties. Energy of the irradiated heavy ion was lower than the threshold energy to produce columnar defect and only clusters of defect was observed. The surface morphology of the irradiated single crystals was studied using scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the surface roughness value was found to increase with increasing fluence.

  14. Raman Study of Photorefractive Nonlinearity in TITANIUM:LITHIUM Niobate and of Silicon Crystallite Formation in Silicon Dioxide

    NASA Astrophysics Data System (ADS)

    Ramabadran, Uma B.

    1990-01-01

    Photorefractive non-linearities in electro-optic crystals have been widely investigated in a variety of materials including LiNbO_3. This phenomenon is also observed in the Ti:LiNbO_3 channel waveguide which is typically a few microns in thickness and width and therefore experiences high power densities which gives rise to this effect. The non-linearity is observed in the unidirectional energy transfer from one waveguide mode to an orthogonal one causing a polarization rotation. A threshold value of power necessary to initiate the polarization rotation can be obtained and used to calculate a value of beta_{15 }, an asymmetric component of the photovoltaic tensor. Elastic scattered light is collected over a distance of the propagating guided wave and the scattering loss as a function of distance is calculated. The Raman spectrometer was used in a novel way to measure inelastic scattered light from the waveguide surface as a function of propagatory distance and this data used to calculate the loss coefficient. In this way, the contributions due to surface inhomogeneities were neglected and a value of the loss characteristic of the guiding medium alone was obtained. The measurements were carried out in the channel waveguides of Ti:LiNbO _3 described above and in planar waveguides of Si^+/N^+ implanted in SiO_2 thermally grown on silicon substrates. In the latter case, the Raman macrochamber was used with a large collection lens to obtain sufficient signal. Different annealing cycles were performed to optimize the waveguide quality. This thesis also reports the investigation of diffusion characteristics of silicon when samples of high -dose silicon ion-implanted in crystalline quartz were subjected to rapid thermal or laser annealing. Characterization techniques included differential interference microscopy, Rutherford backscattering spectroscopy and Raman microprobe spectroscopy. The data obtained indicated that rapid thermal annealing results in the formation of

  15. Bragg mirror inscription on LiNbO3 waveguides by index microstructuration

    NASA Astrophysics Data System (ADS)

    Ferriere, Richard; Benkelfat, Badr-Eddine; Dudley, John M.; Ghoumid, Kamal

    2006-05-01

    Numerous applications in integrated optics, especially those related to multiwavelength telecommunications, require dichroic reflectors for use as narrowband or broadband wavelength-selective filters. Bragg mirrors are excellent candidates for this purpose, and we describe a method of fabricating Bragg grating reflectors in Ti-indiffused Lithium Niobate single-mode waveguides based on holographic masking in association with proton exchange. The holographic setup is employed to record a photolithographic mask directly on the substrate, enabling the inscription of waveguides with both periodic and aperiodic distributed parameters.

  16. Optical waveguides in Er:LiNbO3 fabricated by different techniques - A comparison

    NASA Astrophysics Data System (ADS)

    Cajzl, Jakub; Nekvindová, Pavla; Macková, Anna; Malinský, Petr; Oswald, Jiří; Staněk, Stanislav; Vytykáčová, Soňa; Špirková, Jarmila

    2016-03-01

    We report on the comparison of three techniques used for the fabrication of optical waveguides in erbium doped lithium niobate crystal substrates (Er:LiNbO3). The techniques include ion in-diffusion from a titanium metal layer, annealed proton exchange (APE), and He+ ion implantation. The main focus of the work was placed on the investigation of the influence of the used optical waveguides fabrication techniques on the structural and luminescence properties of Er:LiNbO3 substrates. The results have shown that none of the used optical-waveguide-fabrication techniques significantly affect the position of erbium in the host crystal structure. It turned out, however, that the fabrication process affected luminescence intensities of the characteristic luminescence bands of erbium ions - the most significant decrease in the luminescence intensity was observed in the Ti-indiffused waveguides.

  17. Studies on electrochemical lithium insertion in isostructural titanium niobate and tantalate phases with shear ReO{sub 3} structure

    SciTech Connect

    Saritha, D.; Varadaraju, U.V.

    2013-07-15

    Graphical abstract: - Highlights: • Electrochemical lithium insertion into ReO{sub 3} type phases TiNb{sub 2}O{sub 7}, TiTa{sub 2}O{sub 7} is feasible. • TiNb{sub 2}O{sub 7} exhibits good cycling behavior and high reversible capacity of 212 mAh g{sup −1}. • TiTa{sub 2}O{sub 7} exhibits reversible capacity of 100 mAh g{sup −1}. - Abstract: TiNb{sub 2}O{sub 7} and TiTa{sub 2}O{sub 7} phases are synthesized by solid-state reaction method and are investigated for electrochemical Li insertion/extraction. The electrochemical insertion of Li in these phases is characterized by both solid solution and two-phase regimes. The structure is stable toward Li insertion/extraction. The first cycle discharge capacity values are 307 mAh g{sup −1} and 215 mAh g{sup −1} in the voltage range of 3.0–1.0 V for TiNb{sub 2}O{sub 7} and TiTa{sub 2}O{sub 7} phases, respectively. The discharge capacities of TiNb{sub 2}O{sub 7} and TiTa{sub 2}O{sub 7} are 212 mAh g{sup −1} and 100 mAh g{sup −1}, respectively, after 20 cycles.

  18. Optical characterization of femtosecond laser induced active channel waveguides in lithium fluoride crystals

    SciTech Connect

    Chiamenti, I.; Kalinowski, H. J.; Bonfigli, F.; Montereali, R. M.; Gomes, A. S. L.; Michelotti, F.

    2014-01-14

    We successfully realized broad-band light-emitting color center waveguides buried in LiF crystals by using femtosecond laser pulses. The characterization of the waveguides was performed by optical microscopy, photoluminescence spectra, loss measurements and near-field profiling. The experimental results show that the direct-writing fabrication process induces low-index contrast active channel waveguides: their wavelength-dependent refractive index changes, estimated from 10{sup −3} to 10{sup −4} depending on the writing conditions, allow supporting few modes at visible and near-infrared wavelengths.

  19. Second-order optical non-linearity of proton exchanged lithium tantalate waveguides

    NASA Astrophysics Data System (ADS)

    Korkishko, Y. N.; Fedorov, V. A.; Alkaev, A. N.; Laurell, F.

    2001-10-01

    A detailed correlation between the fabrication conditions, crystallographic phase state of HxLi1-xTaO3 waveguides and second-order optical non-linearity has been investigated by using reflected SHG measurements from the polished waveguide end face. The non-linearity, strongly reduced after the initial proton exchange, is found to be restored and even increased after annealing. However, this apparent increase in the non-linearity is accompanied by a strong degradation of the quality of the SHG reflected beam in the region of the initial as-exchanged waveguide due to beam scattering. The high temperature proton exchange technique has been shown to produce high-quality α-phase waveguides with essentially undegraded non-linear optical properties. There is no phase transition when the α-phase waveguides are fabricated by direct exchange. This phase presents the same crystalline structure as that of LiTaO3 and maintains the excellent non-linear properties of the bulk material. The results obtained are important for the design, fabrication and optimization of guided-wave non-linear optical devices in LiTaO3.

  20. Design of the waveguide for microwave heating of solid lithium ceramic blankets

    SciTech Connect

    Kustom, R.L.; Fendley, P.; Tidona, J.

    1985-01-01

    A description is given of the design of a dielectric-loaded waveguide for thermohydraulic testing of solid ceramic tritium breeder material in a non-nuclear environment. The dielectric-loaded waveguide provides uniform heating over module surfaces that would face a fusion reactor plasma and simulates the exponential power decay characteristic of the neutron flux over the high power region of the blankets. A 200-MHz design suitable for modules with cross section of up to 20 x 40 cm is presented.

  1. Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide.

    PubMed

    Yang, Chengliang; Wu, Qiang; Xu, Jingjun; Nelson, Keith A; Werley, Christopher A

    2010-12-01

    Femtosecond optical pulses were used to generate THz-frequency phonon polariton waves in a 50 micrometer lithium niobate slab, which acts as a subwavelength, anisotropic planar waveguide. The spatial and temporal electric field profiles of the THz waves were recorded for different propagation directions using a polarization gating imaging system, and experimental dispersion curves were determined via a two-dimensional Fourier transform. Dispersion relations for an anisotropic slab waveguide were derived via analytical analysis and found to be in excellent agreement with all observed experimental modes. From the dispersion relations, we analyze the propagation-direction-dependent behavior, effective refractive index values, and generation efficiencies for THz-frequency modes in the subwavelength, anisotropic slab waveguide. PMID:21164986

  2. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2011-01-01

    In 2010, lithium consumption in the United States was estimated to have been about 1 kt (1,100 st) of contained lithium, a 23-percent decrease from 2009. The United States was estimated to be the fourth largest consumer of lithium. It remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2010, world lithium consumption was estimated to have been about 21 kt (22,000 st) of lithium contained in minerals and compounds, a 12-percent increase from 2009.

  3. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2010-01-01

    In 2009, lithium consumption in the United States was estimated to have been about 1.2 kt (1,300 st) of contained lithium, a 40-percent decrease from 2008. The United States was estimated to be the fourth largest consumer of lithium, and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2009, world lithium consumption was estimated to have been about 18.7 kt (20,600 st) of lithium contained in minerals and compounds.

  4. High resolution TE&TM near infrared compact spectrometer based on waveguide grating structures

    NASA Astrophysics Data System (ADS)

    Martin, G.; Thomas, F.; Heidmann, S.; de Mengin, M.; Courjal, N.; Ulliac, G.; Morand, A.; Benech, P.; Kern, P.; Le Coarer, E...

    2015-05-01

    Integrated optics spectrometers can be essentially classified into two main families: based on Fourier transform or dispersed modes. In the first case, an interferogram generated inside an optical waveguide is sampled using nanodetectors, these scatter light into the detector that is in contact with the waveguide. A dedicated FFT processing is needed in order to recover the spectrum with high resolution but limited spectral range. Another way is to extract the optical signal confined in a waveguide using a surface grating and directly obtain the spectrum by means of a relay optics that generates the spectrum on the Fourier plane of the lens, where the detector is placed. Following this second approach, we present a high-resolution compact dispersive spectrometer (δλ =1.5nm at λ=1050nm) based on guided optics technology. The propagating signal is dispersed out of a waveguide thanks to a surface grating that lays along it. Focused Ion Beam technique is used to etch nano-grooves that act as individual scattering centers and constitute the surface grating along the waveguide. The waveguide is realized using X-cut, Ypropagating Lithium Niobate substrate, where the effective index for TE and TM guided modes is different. This results in a strong angular separation of TE and TM diffracted modes, allowing simultaneous detection of spectra for both polarizations. A simple relay optics, with limited optical aberrations, reimages the diffracted signal on the focal plane array, leading to a robust, easy to align instrument.

  5. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2012-01-01

    In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.

  6. Lithium

    USGS Publications Warehouse

    Ober, J.A.

    2006-01-01

    In 2005, lithium consumption in the United States was at 2.5 kt of contained lithium, nearly 32% more than the estimate for 2004. World consumption was 14.1 kt of lithium contained in minerals and compounds in 2003. Exports from the US increased slightly compared with 2004. Due to strong demand for lithium compounds in 2005, both lithium carbonate plants in Chile were operating at or near capacity.

  7. Waveguide Harmonic Generator for the SIM

    NASA Technical Reports Server (NTRS)

    Chang, Daniel; Poberezhskiy, Ilya; Mulder, Jerry

    2008-01-01

    A second-harmonic generator (SHG) serves as the source of the visible laser beam in an onboard calibration scheme for NASA's planned Space Interferometry Mission (SIM), which requires an infrared laser beam and a visible laser beam coherent with the infrared laser beam. The SHG includes quasi-phase-matched waveguides made of MgO-doped, periodically poled lithium niobate, pigtailed with polarization- maintaining optical fibers. Frequency doubling by use of such waveguides affords the required combination of coherence and sufficient conversion efficiency for the intended application. The spatial period of the poling is designed to obtain quasi-phase- matching at a nominal middle excitation wavelength of 1,319.28 nm. The SHG is designed to operate at a warm bias (ambient temperature between 20 and 25 C) that would be maintained in its cooler environment by use of electric heaters; the heater power would be adjusted to regulate the temperature precisely and thereby maintain the required precision of the spatial period. At the state of development at the time of this reporting, the SHG had been packaged and subjected to most of its planned space-qualification tests.

  8. Lithium

    USGS Publications Warehouse

    Ober, J.

    1998-01-01

    The lithium industry can be divided into two sectors: ore concentrate producers and chemical producers. Ore concentrate producers mine lithium minerals. They beneficiate the ores to produce material for use in ceramics and glass manufacturing.

  9. Lithium

    MedlinePlus

    ... bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal moods). Lithium ... Lithium is also sometimes used to treat depression, schizophrenia (a mental ... emotions), disorders of impulse control (inability to resist the urge ...

  10. Phase engineered wavelength conversion of ultra-short optical pulses in TI:PPLN waveguides

    NASA Astrophysics Data System (ADS)

    Babazadeh, Amin; Nouroozi, Rahman; Sohler, Wolfgang

    2016-02-01

    A phase engineered all-optical wavelength converter for ultra-short pulses (down to 140 fs) in a Ti-diffused, periodically poled lithium niobate (Ti:PPLN) waveguide is proposed. The phase engineering, due to the phase conjugation between signal and idler (converted signal) pulses which takes place in the cascaded second harmonic generation and difference frequency generation (cSHG/DFG) based wavelength conversion, already leads to shorter idler pulses. The proposed device consists of an unpoled (passive) waveguide section beside of the PPLN waveguide section in order to compensate pulse broadening and phase distortion of the idler pulses induced by the wavelength conversion (in the PPLN section). For example numerical analysis shows that a 140 fs input signal pulse is only broadened by 1.6% in a device with a combination of 20 mm and 6 mm long periodically poled and unpoled waveguide sections. Thus, cSHG/DFG based wavelength converters of a bandwidth of several Tbits/s can be designed.