Science.gov

Sample records for lithium phosphorous oxynitride

  1. Characterization of lithium phosphorous oxynitride thin films

    SciTech Connect

    Yu, Xiaohua; Bates, J.B.; Jellison, G.E. Jr.

    1996-01-01

    Electrical and electrochemical properties of an amorphous thin-film lithium electrolyte, lithium phosphorous oxynitride (Lipon), have been studied with emphasis on the stability window vs Li metal and the behavior of the Li/Lipon interface. Ion conductivity of Lipon exhibits Arrhenius behavior at {minus}26 to +140 C, with a conductivity of 1.7 {times} 10{sup {minus}6}S/cm at 25 C and an activity energy of 0.50 {plus_minus} 0.01 eV. A stability window of 5.5 V was observed with respect to a Li{sup +}/Li reference, and no detectable reaction or degradation was evident at the Li/Lipon interface upon lithium cycling.

  2. High-k lithium phosphorous oxynitride thin films

    NASA Astrophysics Data System (ADS)

    Fu, Zheng-Wen; Liu, Wen-Yuan; Li, Chi-Lin; Qin, Qi-Zong; Yao, Yin; Lu, Fang

    2003-12-01

    Lithium phosphorous oxynitride (Lipon) thin films have been fabricated onto n-Si substrate at room temperature by nitrogen plasma-assisted deposition of electron-beam reactive evaporated Li3PO4. The capacitance-voltage (C-V) and I-V characteristics of Al/Lipon/Si capacitors were measured. The accumulation, depletion, and inversion phenomena in the C-V curves of the as-deposited Lipon thin film could be clearly observed. The isothermal transient ionic current of Al/Lipon/Al as a function of time during voltage stepping from 0 to 3 V exhibits a large current response due to dipole orientation. The dielectric constant of Lipon thin films is found to be 16.6, and the leakage current density at an applied electric field of 5 kV/cm is about 6.0×10-7 A/cm2. These results suggest that lithium phosphorous oxynitride thin films are high-k materials. The incorporation of N into amorphous of Li3PO4 could significantly increase the dielectric constant of Lipon thin films.

  3. Mechanical stresses and crystallization of lithium phosphorous oxynitride-coated germanium electrodes during lithiation and delithiation

    NASA Astrophysics Data System (ADS)

    Al-Obeidi, Ahmed; Kramer, Dominik; Mönig, Reiner; Thompson, Carl V.

    2016-02-01

    The evolution of mechanical stresses during the cycling of lithium phosphorous oxynitride (LiPON) coated germanium thin film electrodes was monitored using substrate curvature measurements. By coating germanium thin films with LiPON, morphology evolution, e.g. crack and island formation, can be strongly suppressed. LiPON-coated germanium thin film electrodes can retain their planar form during cycling, resulting in a clear and reproducible stress response originating primarily from the electrochemical processes occurring during lithiation and delithiation. Together with the electrochemical data, stress measurements were used to infer mechanisms underlying the alloying of lithium with germanium. The stress signatures associated with individual phases, crystallization, and amorphization of lithium-germanium alloys are reported and discussed.

  4. Lithium phosphorous oxynitride films synthesized by a plasma-assisted directed vapor deposition approach

    SciTech Connect

    Kim, Yoon Gu; Wadley, H. N. G.

    2008-01-15

    A plasma-assisted directed vapor deposition approach has been explored for the synthesis of lithium phosphorous oxynitride (Lipon) thin films. A Li{sub 3}PO{sub 4} source was first evaporated using a high voltage electron beam and the resulting vapor entrained in a nitrogen-doped supersonic helium gas jet and deposited on a substrate at ambient temperature. This approach failed to incorporate significant concentrations of nitrogen in the films. A hollow cathode technique was then used to create an argon plasma that enabled partial ionization of both the Li{sub 3}PO{sub 4} vapor and nitrogen gas just above the substrate surface. The plasma-enhanced deposition process greatly increased the gas phase and surface reactivity of the system and facilitated the synthesis and high rate deposition of amorphous Lipon films with the N/P ratios between 0.39 and 1.49. Manipulation of the plasma-enhanced process conditions also enabled control of the pore morphology and significantly affected the ionic transport properties of these films. This enabled the synthesis of electrolyte films with lithium ion conductivities in the 10{sup -7}-10{sup -8} S/m range. They appear to be well suited for thin-film battery applications.

  5. Suppressive effect of lithium phosphorous oxynitride at carbon anode on solvent decomposition in liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Chung, Kwang-il; Park, Jong-Guen; Kim, Woo-Seong; Sung, Yung-Eun; Choi, Yong-Kook

    The irreversible capacity during the first cycle is investigated at a carbon electrode in a Li-ion battery in 1 M LiPF 6/EC:DEC (ethylene carbonate:1,2 diethyl carbonate; 1:1 volume ratio). Solvent decomposition is one of main causes of the initial irreversible capacity. A lithium phosphorus oxynitride (LiPON) thin-film, which is a solid ionic conductor, is deposited on the surface of the carbon electrode by means of a radio frequency magnetron sputtering system. The effect of the LiPON layer is examined with chronopotentiometry and cyclic voltammetry, as well as with scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD). The deposition of LiPON on the surface of the carbon electrode results in a decrease in the initial irreversible capacity due to the suppression of solvent decomposition on the electrode surface.

  6. Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin films

    NASA Astrophysics Data System (ADS)

    Christiansen, Ane S.; Stamate, Eugen; Thydén, Karl; Younesi, Reza; Holtappels, Peter

    2015-01-01

    The nitrogen dissociation and plasma parameters during radio frequency sputtering of lithium phosphorus oxynitride thin films in nitrogen gas are investigated by mass appearance spectrometry, electrostatic probes and optical emission spectroscopy, and the results are correlated with electrochemical properties and microstructure of the films. Low pressure and moderate power are associated with lower plasma density, higher electron temperature, higher plasma potential and larger diffusion length for sputtered particles. This combination of parameters favors the presence of more atomic nitrogen, a fact that correlates with a higher ionic conductivity. Despite of lower plasma density the film grows faster at lower pressure where the higher plasma potential, translated into higher energy for impinging ions on the substrate, resulted in a compact and smooth film structure. Higher pressures showed much less nitrogen dissociation and lower ion energy with thinner films, less ionic conductivity and poor film structure with large roughness.

  7. CRADA Final Report: Properties of Vacuum Deposited Thin Films of Lithium Phosphorous Oxynitride (Lipon) with an Expanded Composition Range

    SciTech Connect

    Dudney, N.J.

    2003-12-29

    Thin films of an amorphous, solid-state, lithium electrolyte, referred to as ''Lipon'', were first synthesized and characterized at ORNL in 1991. This material is typically prepared by magnetron sputtering in a nitrogen plasma, which allows nitrogen atoms to substitute for part of the oxygen ions of Li{sub 3}PO{sub 4}. Lipon is the key component in the successful fabrication of ORNL's rechargeable thin film microbatteries. Cymbet and several other US Companies have licensed this technology for commercialization. Optimizing the properties of the Lipon material, particularly the lithium ion conductivity, is extremely important, yet only a limited range of compositions had been explored prior to this program. The goal of this CRADA was to develop new methods to prepare Lipon over an extended composition range and to determine if the film properties might be significantly improved beyond those previously reported by incorporating a larger N component into the film. Cymbet and ORNL investigated different deposition processes for the Lipon thin films. Cymbet's advanced deposition process not only achieved a higher deposition rate, but also permitted independent control the O and N flux to the surface of the growing film. ORNL experimented with several modified sputtering techniques and found that by using sectored sputter targets, composed of Li{sub 3}PO{sub 4} and Li{sub 3}N ceramic disks, thin Lipon films could be produced over an expanded composition range. The resulting Lipon films were characterized by electrical impedance, infrared spectroscopy, and several complementary analytical techniques to determine the composition. When additional N plus Li are incorporated into the Lipon film, the lithium conductivity was generally degraded. However, the addition of N accompanied by a slight loss of Li gave an increase in the conductivity. Although the improvement in the conductivity was only very modest and was a disappointing conclusion of this study, forcing a higher N

  8. Nitride and Oxynitride Based Phosphors for Solid State Lighting

    SciTech Connect

    Tian, Yongchi

    2011-10-15

    The objective of the project is to advance the technology of the Lightscape Materials Inc. (Lightscape) proprietary nitride and oxynitride phosphors for solid state lighting (SSL) from the current level of maturity of applied research to advanced engineering development. This objective will be accomplished by optimizing the novel nitride and oxynitride phosphors, whose formulations are listed in Table 1, and establishing cost-effective preparation processes for the phosphors. The target performances of the phosphors are: • High luminescence efficiency: Quantum Yield = 90%. • Superior thermal stability of luminescence: Thermal Quenching Loss <10% at 150 °C. • Superior environmental stability: Luminescence Maintenance >90% after 5,000 hours at 85 °C and 85% relative humidity. • Scattering loss <10%. • Cost-effective preparation processes. The resulting phosphor materials and their preparation processes are anticipated to be a drop-in component for product development paths undertaken by LED lamp makers in the SSL industry. Upon program completion, Lightscape will target market insertion that enables high efficacy, high color rendering index (CRI), high thermal stability and long lifetime LED-based lighting products for general illumination that realizes substantial energy savings.

  9. Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors.

    PubMed

    Chen, Wei-Ting; Sheu, Hwo-Shuenn; Liu, Ru-Shi; Attfield, J Paul

    2012-05-16

    Red or yellow phosphors excited by a blue light-emitting diode are an efficient source of white light for everyday applications. Many solid oxides and nitrides, particularly silicon nitride-based materials such as M(2)Si(5)N(8) and MSi(2)O(2)N(2) (M = Ca, Sr, Ba), CaAlSiN(3), and SiAlON, are useful phosphor hosts with good thermal stabilities. Both oxide/nitride and various cation substitutions are commonly used to shift the emission spectrum and optimize luminescent properties, but the underlying mechanisms are not always clear. Here we show that size-mismatch between host and dopant cations tunes photoluminescence shifts systematically in M(1.95)Eu(0.05)Si(5-x)Al(x)N(8-x)O(x) lattices, leading to a red shift when the M = Ba and Sr host cations are larger than the Eu(2+) dopant, but a blue shift when the M = Ca host is smaller. Size-mismatch tuning of thermal quenching is also observed. A local anion clustering mechanism in which Eu(2+) gains excess nitride coordination in the M = Ba and Sr structures, but excess oxide in the Ca analogues, is proposed for these mismatch effects. This mechanism is predicted to be general to oxynitride materials and will be useful in tuning optical and other properties that are sensitive to local coordination environments. PMID:22534019

  10. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOEpatents

    Neudecker, Bernd J.; Bates, John B.

    2001-01-01

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  11. Chemical and photoluminescence analyses of new carbon-based boron oxynitride phosphors

    SciTech Connect

    Wang, Wei-Ning; Kaihatsu, Yutaka; Iskandar, Ferry; Okuyama, Kikuo

    2009-11-15

    Analyses of newly developed carbon-based boron oxynitride phosphors using an electron energy-loss spectrometer and a spectroflurophotometer were carried out. The results showed that the prepared phosphor powder has covalently bonded boron, nitrogen, and oxygen atoms with a soft carbon framework. Photoluminescence characterization revealed that the resultant phosphor has a direct bandgap transition with defect broadened band edges, resulting in a high quantum efficiency, because the atomic distances of the phosphor are smaller than those of conventional carbon-based boron nitride compounds, which have an indirect bandgap transition and a low quantum efficiency. The atomic distances of the phosphor are smaller owing to the presence of oxygen atoms, which have a higher electron affinity and a smaller covalent bond radius compared with boron, carbon and nitrogen.

  12. Lithium titanium oxynitride thin film with enhanced lithium storage and rate capability

    NASA Astrophysics Data System (ADS)

    Yu, Zhaozhe; Xu, Huarui; Zhu, Guisheng; Yan, Dongliang; Yu, Aibing

    2016-04-01

    The lithium titanium oxynitride (LTON) thin film electrode was prepared by radio frequency (RF) magnetron sputtering deposition using a cubic spinel structure Li4Ti5O12 (LTO) powder target in a N2 atmosphere for lithium ion batteries. XRD and SEM test results showed that the thin film was composed of weak crystal or amorphous structure and that its surface was homogeneous. XPS analyses indicated that nitrogen atoms were actually incorporated into the LTO matrix framework. The substitution of nitrogen for oxygen in the thin film created more abundant cross-linking structures, which favored the higher mobility of lithium ions. The LTON had a high capacity of 290 mAh g-1 at 0.1C, excellent rate capability of 160 mAh g-1 at 5C and only ≈7% capacity loss after 100 cycles at 5C charge and discharge rate. These properties make this thin film electrode a promising candidate material for use in thin film lithium ion batteries.

  13. Ionic conductivities of lithium phosphorus oxynitride glasses, polycrystals, and thin films

    SciTech Connect

    Wang, B.; Bates, J.B.; Chakoumakos, B.C.; Sales, B.C.; Kwak, B.S.; Zuhr, R.A.; Robertson, J.D.

    1994-11-01

    Various lithium phosphorus oxynitrides have been prepared in the form of glasses, polycrystals, and thin films. The structures of these compounds were investigated by X-ray and neutron diffraction, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). The ac impedance measurements indicate a significant improvement of ionic conductivity as the result of incorporation of nitrogen into the structure. In the case of polycrystalline Li{sub 2.88}PO{sub 3.73}N{sub 0.14} with the {gamma}-Li{sub 3}PO{sub 4} structure, the conductivity increased by several orders of magnitude on small addition of nitrogen. The highest conductivities in the bulk glasses and thin films were found to be 3.0 {times} 10{sup -7} and 8.9 {times} 10{sup -7} S{center_dot}cm{sup -1} at 25{degrees}C, respectively.

  14. Crystal structure and photoluminescence of Mn2+-Mg2+ codoped gamma aluminum oxynitride (γ-AlON): A promising green phosphor for white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Xie, Rong-Jun; Hirosaki, Naoto; Liu, Xue-Jian; Takeda, Takashi; Li, Hui-Li

    2008-05-01

    This letter reports on the crystal structure and luminescence of a green gamma aluminum oxynitride phosphor. This phosphor, codoped with Mn2+ and Mg2+, shows a single cubic spinel phase, with Mn2+ and Mg2+ substituting Al3+ in the tetrahedral sites. It shows a broad emission band centered at 520nm and a full width at half maximum of 44nm. The green phosphor exhibits a small thermal quenching and high internal quantum efficiency of 62% under the blue light irradiation, enabling it to be used in high color rendering white light-emitting diodes.

  15. Plasma-assisted directed vapor deposition for synthesizing lithium phosphorus oxynitride thin films

    NASA Astrophysics Data System (ADS)

    Kim, Yoon Gu

    This dissertation explores a new vapor deposition route for synthesizing lithium phosphorus oxynitride (Lipon) thin-film electrolytes for rechargeable thin-film Li/Li-ion batteries. These batteries operate at a high voltage (around 4.0 V) and exhibit a long cyclic life (over 10,000 charge/discharge cycles). These features stem from the extremely low leakage current of the Lipon film electrolyte when in contact with a lithium anode, and its good Li-ion conductivity (in the 10-6-10-7 S/cm range). Lipon films have usually been synthesized by reactive RF-magnetron sputtering, which suffers from a very low deposition rate (˜2 nm/min). It therefore takes many hours to make the 1-2 mum thick films needed for battery applications. Other deposition approaches, such as Pulsed Laser Deposition, Ion Beam Assisted Deposition, and E-beam evaporation, have been investigated but resulted in unsatisfactory Lipon film performance. Here, a plasma-assisted directed vapor deposition (PA-DVD) approach has been explored to synthesize dense, amorphous Lipon films. Unlike conventional e-beam evaporation, the e-beam based DVD approach employs an annular nozzle to generate a rarefied supersonic inert gas jet around the periphery of an electron beam evaporated source material. The vapor is entrained in the jet and rapidly transferred to a substrate. Because the supersonic gas jet focuses the vapor (it impedes lateral spreading of the vapor flux), most of the evaporant reaches the substrate. As a result, the deposition rate of Lipon films can be potentially much higher than most other processes. The PA-DVD approach used here employs a hollow cathode to create low-energy plasma through which the vapor is propagated. This plasma ionized some of the evaporant and reactive gases (nitrogen) that were added to the jet. This increased their reactivity and atomic mobility on a substrate enabling the reactive synthesis of lithium phosphorus oxynitride from a lithium phosphate source. This dissertation

  16. Reduction of charge transfer resistance at the lithium phosphorus oxynitride/lithium cobalt oxide interface by thermal treatment

    NASA Astrophysics Data System (ADS)

    Iriyama, Yasutoshi; Kako, Tomonori; Yada, Chihiro; Abe, Takeshi; Ogumi, Zempachi

    An all-solid-state thin-film battery consisting of a c-axis-oriented LiCoO 2 thin-film and a lithium phosphorus oxynitride (LiPON) glass electrolyte was fabricated. Thermal treatment at 473 K after fabrication of the LiPON/LiCoO 2 interface decreased the charge transfer resistance at the interface, and the resistance was further reduced by prolonging the thermal treatment time. The charge transfer resistance per unit electrode area (interfacial resistivity) of a film battery thermal-treated for 60 min decreased down to 125 Ω cm 2, which is ca. five times larger than that in the case of an organic electrolyte (1 mol dm -3 LiClO 4 dissolved in propylene carbonate)/LiCoO 2 interface (25 Ω cm 2). Due to the reduction of the charge transfer resistance at the LiPON/LiCoO 2 interface, the reaction current of the film battery was greatly increased by the thermal treatment. Also, thermally treated film batteries showed stable electrochemical lithium insertion/extraction properties compared with the batteries using conventional organic electrolytes. Both the voltammograms and the impedance spectra of the film battery maintained their initial shape for over 100 cycles, and the capacity retention ratio per cycle was calculated to be 99.9%.

  17. Prediction of a new crystalline lithium phosphorus oxynitride -- Li2PO2N

    NASA Astrophysics Data System (ADS)

    Holzwarth, N. A. W.; Du, Yaojun A.

    2010-03-01

    Lithium phosphorus oxynitride materials have been investigated for many years, especially in relation to the thin film electrolye LiPON, developed at Oak Ridge National Laboratory.footnotetext J. B. Bates et al, Solid State Ionics 53-56 647-654 (1992). We have carried out first principles simulations of related crystalline materials in an attempt to understand the sources of stability and mechanisms of Li ion conductivity in these materials. Starting with crystalline LiPO3 which has twisted phosphate chains,footnotetextE. V. Marashova, Crystallography Reports 46 942-946 (2001). we consider the possibility of modifying the structure by substituting N and Li for O. The optimized structures are computed to have regularized phosphate chains which form planar -P-N-P-N- backbones. To the best of our knowledge, the new predicted crystals, which we call s1-Li2PO2N with a 24 atom unit cell and s2-Li2PO2N with a 12 atom unit cell, have not yet been observed experimentally. We suggest several possible exothermic reaction pathways to synthesize these crystals.

  18. Ion-implantation modification of lithium-phosphorus oxynitride thin-films

    NASA Astrophysics Data System (ADS)

    Kim, Byoungsoo; Cho, Yoon Sang; Lee, Joon-Gon; Joo, Kyong-Hee; Jung, Kwang-Ok; Oh, Jeongmin; Park, Byungwoo; Sohn, Hun-Joon; Kang, Tak; Cho, Jaephil; Park, Young-Shin; Oh, Joo Yeol

    Among various solid electrolytes, the lithium-phosphorus oxynitride (Lipon) electrolyte synthesized by sputtering of Li 3PO 4 in pure N 2 has a good ionic conductivity of 2(±1)×10 -6 S cm -1 at 25° C. As the nitrogen concentration increases in the Lipon electrolyte, the ionic conductivity is reported to increase as a result of a higher degree of cross-links. When Lipon films are deposited by sputtering, however, it is reported that the maximum nitrogen concentration saturates approximately at 6 at.%. By non-equilibrium processes, such as ion-implantation, nitrogen concentration can be controlled over 6 at.%. This study investigates the effect of nitrogen concentration on the ionic conductivity in Lipon films by using ion-implantation. Impedance measurements at 25° C show that the nitrogen-implanted Lipon films enhance or retard the ionic conductivity over a wide range after nitrogen-implantation, when compared with as-deposited thin-films.

  19. Photoluminescence, energy transfer and tunable color of Ce(3+), Tb(3+) and Eu(2+) activated oxynitride phosphors with high brightness.

    PubMed

    Lü, Wei; Huo, Jiansheng; Feng, Yang; Zhao, Shuang; You, Hongpeng

    2016-06-21

    New tuneable light-emitting Ca3Al8Si4O17N4:Ce(3+)/Tb(3+)/Eu(2+) oxynitride phosphors with high brightness have been prepared. When doped with trivalent cerium or divalent europium they present blue luminescence under UV excitation. The energy transfer from Ce(3+) to Tb(3+) and Ce(3+) to Eu(2+) ions is deduced from the spectral overlap between Ce(3+) emission and Tb(3+)/Eu(2+) excitation spectra. The energy-transfer efficiencies and corresponding mechanisms are discussed in detail, and the mechanisms of energy transfer from the Ce(3+) to Tb(3+) and Ce(3+) to Eu(2+) ions are demonstrated to be a dipole-quadrupole and dipole-dipole mechanism, respectively, by the Inokuti-Hirayama model. The International Commission on Illumination value of color tuneable emission as well as luminescence quantum yield (23.8-80.6%) can be tuned by controlling the content of Ce(3+), Tb(3+) and Eu(2+). All results suggest that they are suitable for UV light-emitting diode excitation. PMID:27226201

  20. Enhanced luminescence properties in (Sr1-xBax)2.97SiO3N4/3:0.03Eu2+ oxynitride phosphor

    NASA Astrophysics Data System (ADS)

    He, Xia; Qiu, Kehui; Lu, Xueguang; Zhao, Kun; Jiang, Zixu

    2014-12-01

    An oxynitride phosphor (Sr1-xBax)2.97SiO3N4/3:0.03Eu2+ (SBSON) was synthesized by the solid-state reaction at 1550 °C for 4 h. XRD results show that the major phase of the synthesized phosphors is isostructural with Sr3SiO5 when the content of Ba2+ is not greater than 0.5. Through the doping of Ba2+ ions, the particle morphology, luminescence intensities and thermal stability are all improved obviously. When the x equals 0.5 the luminescence intensity reaches maximum which is about 1.48 times as that of the phosphor free of Ba2+. The emission peaks can be tuned from 583 nm to 601 nm by adjusting Ba2+ content. The doping of Ba2+ can also prolong the average lifetime from 1482 to 2122 ns. With high emission intensity and thermal stability, this novel oxynitride phosphor SBSON shows potential application in white LEDs.

  1. Lithium phosphorus oxynitride solid-state thin-film electrolyte deposited and modified by bias sputtering and low temperature annealing

    SciTech Connect

    Chiu, K.-F.; Chen, C. C.; Lin, K. M.; Lo, C. C.; Lin, H. C.; Ho, W.-H.; Jiang, C. S.

    2010-07-15

    Amorphous lithium phosphorus oxynitride (LiPON) solid-state thin-film electrolyte has been deposited and characterized. The thin films were prepared by rf magnetron sputtering under various substrate biases. By fabricating under different substrate biases and applying low temperature annealing (473 K), the properties of the LiPON thin-film electrolytes and the electrolyte/cathode interfaces were modified. The ionic conductivity as high as 9.4x10{sup -4} S m{sup -1} can be obtained by depositing at optimal bias. The performances of the consequently fabricated SnO{sub 2}/LiPON/LiMn{sub 2}O{sub 4} all-solid-state lithium ion thin-film batteries were improved using the bias sputtering technique, due to the enhanced the ionic conductivity and uniform interface.

  2. Niobium(V) Oxynitride: Synthesis, Characterization, and Feasibility as Anode Material for Rechargeable Lithium-Ion Batteries

    PubMed Central

    Wang, Xiao-Jun; Krumeich, Frank; Wörle, Michael; Nesper, Reinhard; Jantsky, Laurent; Fjellvåg, Helmer

    2012-01-01

    Abstract The decomposition reaction of niobium(V) oxytrichloride ammoniate to the oxynitride of niobium in the 5+ oxidation state was developed in a methodological way. By combining elemental analysis, Rietveld refinements of X-ray and neutron diffraction data, SEM and TEM, the sample compound was identified as approximately 5 nm-diameter particles of NbO1.3(1)N0.7(1) crystallizing with baddeleyite-type structure. The thermal stability of this compound was studied in detail by thermogravimetric/differential thermal analysis and temperature-dependent X-ray diffraction. Moreover, the electrochemical uptake and release by the galvanostatic cycling method of pure and carbon-coated NbO1.3(1)N0.7(1) versus lithium was investigated as an example of an Li-free transition-metal oxynitride. The results showed that reversible capacities as high as 250 and 80 A h kg−1 can be reached in voltage ranges of 0.05–3 and 1–3 V, respectively. Furthermore, a plausible mechanism for the charge–discharge reaction is proposed. PMID:22461147

  3. Lithium silicon tin oxynitride (Li ySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics

    NASA Astrophysics Data System (ADS)

    Neudecker, B. J.; Zuhr, R. A.; Bates, J. B.

    A lithium-ion thin-film battery, consisting of the amorphous silicon tin oxynitride anode (`SiTON'), the amorphous lithium phosphorus oxynitride electrolyte (`Lipon'), and a crystalline LiCoO 2 cathode, can be heated at 250°C in air for 1 h which exceeds by far the required solder reflow conditions for electronic circuit assembly. Moreover, the performance of such a battery was found to even improve after the heat treatment. The Li ySiTON profile between 0 and 1.2 V vs. Li was determined in SiTON/Lipon/LiCoO 2 lithium-ion thin-film cells equipped with a Li metal reference electrode. By comparison with a Sn 3N 4/Lipon/LiCoO 2 three-electrode lithium-ion thin-film cell, a model for the electrochemical insertion/extraction process of Li ySiTON was suggested. The SiTON/Lipon/LiCoO 2 cells sustained 5 mA/cm 2 between 4.2 and 2.7 V while the anode supplied a reversible discharge capacity of about 340 μA h/mg or even 450 μA h/mg after heating at 250°C in air for 1 h. A long-term cycling stability test of a SiTON/Lipon/LiCoO 2 battery between 3.93 and 2.7 V demonstrated that the Li ySiTON capacity faded only by 0.001% per cycle when charging was stopped as soon as the Li ySiTON potential reached 0 V vs. Li. When this cathode-heavy cell was charged to 4.1 V (Li ySiTON at 0 V vs. Li), a significantly higher reversible discharge capacity was obtained over ˜5000 cycles.

  4. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method

    DOEpatents

    Bates, John B.

    1994-01-01

    A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

  5. In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface

    NASA Astrophysics Data System (ADS)

    Sagane, Fumihiro; Shimokawa, Ryosuke; Sano, Hikaru; Sakaebe, Hikari; Iriyama, Yasutoshi

    2013-03-01

    Morphology variations during electrochemical lithium plating-stripping reactions at the lithium phosphorus oxynitride glass electrolyte (LiPON)/copper current collector (Cu) interface are observed in-situ by scanning electron microscopy (SEM). This in-situ SEM observation shows dynamically that the plating reactions at 50 μA cm-2 distribute initial lithium growth sites sparsely at the LiPON/Cu interface, later, local lithium growth occurs from the pre-plated sites through the Cu film, and finally, most of the precipitated lithium grows to be needle-shape with the height of micron order. This local growth rate attains to be 6.8 mA cm-2, about 100 times higher value than applied one. When those precipitated lithium are stripped at 50 μA cm-2, core region of each precipitate is mostly stripped but its degree depends on the length of the precipitate. This dependency will arise from the diffusivity of Li. When this stripping current density is increased to 500 μA cm-2, the coulomb efficiency is further decreased. In-situ SEM observation shows that plated lithium around the interface becomes thin preferentially while that far away from the interface (upper side of plated lithium) remains unchanged. This will isolate most of precipitate lithium from LiPON film electrically, leading to further decreasing of the coulomb efficiency.

  6. Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D High-Capacity Conversion Electrodes.

    PubMed

    Lin, Chuan-Fu; Noked, Malachi; Kozen, Alexander C; Liu, Chanyuan; Zhao, Oliver; Gregorczyk, Keith; Hu, Liangbing; Lee, Sang Bok; Rubloff, Gary W

    2016-02-23

    Materials that undergo conversion reactions to form different materials upon lithiation typically offer high specific capacity for energy storage applications such as Li ion batteries. However, since the reaction products often involve complex mixtures of electrically insulating and conducting particles and significant changes in volume and phase, the reversibility of conversion reactions is poor, preventing their use in rechargeable (secondary) batteries. In this paper, we fabricate and protect 3D conversion electrodes by first coating multiwalled carbon nanotubes (MWCNT) with a model conversion material, RuO2, and subsequently protecting them with conformal thin-film lithium phosphous oxynitride (LiPON), a well-known solid-state electrolyte. Atomic layer deposition is used to deposit the RuO2 and the LiPON, thus forming core double-shell MWCNT@RuO2@LiPON electrodes as a model system. We find that the LiPON protection layer enhances cyclability of the conversion electrode, which we attribute to two factors. (1) The LiPON layer provides high Li ion conductivity at the interface between the electrolyte and the electrode. (2) By constraining the electrode materials mechanically, the LiPON protection layer ensures electronic connectivity and thus conductivity during lithiation/delithiation cycles. These two mechanisms are striking in their ability to preserve capacity despite the profound changes in structure and composition intrinsic to conversion electrode materials. This LiPON-protected structure exhibits superior cycling stability and reversibility as well as decreased overpotentials compared to the unprotected core-shell structure. Furthermore, even at very low lithiation potential (0.05 V), the LiPON-protected electrode largely reduces the formation of a solid electrolyte interphase. PMID:26820038

  7. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  8. Thin-film rechargeable lithium batteries

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Lubben, D.

    1995-06-01

    Thin-film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin-film battery.

  9. A study of the thin film battery electrolyte lithium phosphorus oxynitride deposited by an ion beam assisted process

    NASA Astrophysics Data System (ADS)

    Vereda-Moratilla, Fernando

    Thin film Li-ion batteries are currently the subject of a world-wide research effort because of their many potential applications as portable energy sources. One of the key elements of these batteries is the electrolyte. Since it was first produced in the early 1990's, the preferred solid state thin film Li-ion electrolyte is lithium phosphorus oxynitride (LiPON), which is normally grown by means of reactive rf sputtering of a Li3PO 4 target in an N2 atmosphere. Solid electrolytes such as LiPON have several advantages compared to the liquid electrolytes normally used in bulk batteries. Solid electrolytes avoid leakage and have excellent charge-discharge cycling properties. Furthermore, sputtered-deposited LiPON proved to be stable versus Li+/Li from 0 to +5.5 V, which exceeded the stability window of any of the liquid electrolytes. In this work we present a general study of the properties of LiPON thin films deposited by an alternative process: ion beam assisted deposition (IBAD). In this process Li3PO4 is vacuum thermally evaporated and the condensing film is simultaneously bombarded with nitrogen ions which incorporate to form LiPON. Because of its application as an electrolyte and because of a previous study in which we showed that tensile stress led to cracking of the LiPON films and subsequently to shorting of the battery devices, the emphasis of the study was placed on improving the electrochemical properties of the films and on reducing their residual stress. Additional effort was aimed at learning about the structure and the composition of our films. It has been shown that IBAD LiPON thin films are undoubtedly capable of high quality performance as the electrolyte in Li-ion thin film batteries. Their ionic conductivity is almost as high, and their electronic conductivity as low, as those of the sputtered films. Their major advantages when compared to sputtered LiPON films are: (i) a higher deposition rate; (ii) a lower concentration of reduced-phosphorus in

  10. Enhanced luminescence properties in (Sr{sub 1−x}Ba{sub x}){sub 2.97}SiO{sub 3}N{sub 4/3}:0.03Eu{sup 2+} oxynitride phosphor

    SciTech Connect

    He, Xia; Qiu, Kehui; Lu, Xueguang; Zhao, Kun; Jiang, Zixu

    2014-12-15

    An oxynitride phosphor (Sr{sub 1−x}Ba{sub x}){sub 2.97}SiO{sub 3}N{sub 4/3}:0.03Eu{sup 2+} (SBSON) was synthesized by the solid-state reaction at 1550 °C for 4 h. XRD results show that the major phase of the synthesized phosphors is isostructural with Sr{sub 3}SiO{sub 5} when the content of Ba{sup 2+} is not greater than 0.5. Through the doping of Ba{sup 2+} ions, the particle morphology, luminescence intensities and thermal stability are all improved obviously. When the x equals 0.5 the luminescence intensity reaches maximum which is about 1.48 times as that of the phosphor free of Ba{sup 2+}. The emission peaks can be tuned from 583 nm to 601 nm by adjusting Ba{sup 2+} content. The doping of Ba{sup 2+} can also prolong the average lifetime from 1482 to 2122 ns. With high emission intensity and thermal stability, this novel oxynitride phosphor SBSON shows potential application in white LEDs. - Graphical abstract: Through the change of micro-structure by doping Ba{sup 2+} ions proved by the XRD patterns, (Sr{sub 1−x}Ba{sub x}){sub 2.97}SiO{sub 3}N{sub 4/3}:0.03Eu{sup 2+}phosphor eventually achieves the extension of lifetime and the improvement of luminescence properties and thermal stability. - Highlights: • (Sr{sub 1−x}Ba{sub x}){sub 2.97}SiO{sub 3}N{sub 4/3}:0.03Eu phosphors were prepared by the solid-state reaction. • The synthesized phosphor (x≤0.5) is isostructural with Sr{sub 3}SiO{sub 5}. • The emission peaks red shift to 601 nm then slightly blue shift by adding Ba{sup 2+}. • The emission intensity and thermal stability are both enhanced. • Fluorescent lifetime can be prolonged by doping Ba{sup 2+}.

  11. Radiation-induced defects in manganese-doped lithium tetraborate phosphor.

    PubMed

    Annalakshmi, O; Jose, M T; Madhusoodanan, U; Sridevi, J; Venkatraman, B; Amarendra, G; Mandal, A B

    2015-01-01

    Lithium tetraborate doped with manganese synthesised by solid-state sintering technique exhibits a dosimetric peak at 280°C. The high-temperature glow curve results in no fading for three months. The sensitivity of Li2B4O7:Mn is determined to be 0.9 times that of TLD-100. The infrared spectrum of this phosphor indicates the presence of bond vibrations corresponding to BO4 tetrahedral and BO3 triangles. The mechanism for thermoluminescence in this phosphor was proposed based on the thermoluminescence (TL) emission spectra, kinetic analysis of TL glow curves and electron paramagnetic resonance (EPR) measurements on non-irradiated and gamma-irradiated phosphors. It was identified that oxygen vacancies and Boron oxygen hole centre (BOHC) are the electron and hole trap centres for TL in this phosphor. When the phosphor is heated, the electrons are released from the electron trap and recombine with the trapped holes. The excitation energy during the recombination is transferred to the nearby Mn(2+) ions, which emit light at 580 nm. PMID:24743763

  12. Silver vanadium phosphorous oxide, Ag 2VO 2PO 4: Chimie douce preparation and resulting lithium cell electrochemistry

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    Recently, we have shown silver vanadium phosphorous oxide (Ag 2VO 2PO 4, SVPO) to be a promising cathode material for lithium based batteries. Whereas the first reported preparation of SVPO employed an elevated pressure, hydrothermal approach, we report herein a novel ambient pressure synthesis method to prepare SVPO, where our chimie douce preparation is readily scalable and provides material with a smaller, more consistent particle size and higher surface area relative to SVPO prepared via the hydrothermal method. Lithium electrochemical cells utilizing SVPO cathodes made by our new process show improved power capability under constant current and pulse conditions over cells containing cathode from SVPO prepared via the hydrothermal method.

  13. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  14. Oxynitride glass production procedure

    DOEpatents

    Weidner, Jerry R.; Schuetz, Stanley T.; O'Brien, Michael H.

    1991-01-01

    The invention is a process for the preparation of high quality oxynitride glasses without resorting to high pressures. Nitrogen-containing compounds such as Si.sub.3 N.sub.4 are first encapsulated in a low melting temperature glass. Particles of the encapsulated nitrogen-containing compound are mixed with other oxide glass-formers and melted in an atmosphere of flowing nitrogen and in the presence of buffering gas to form the oxynitride glass. Glasses containing up to 15 at % nitrogen have been prepared by this method.

  15. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. F.; Sousa, R.; Cunha, D. J.; Vieira, E. M. F.; Silva, M. M.; Dupont, L.; Goncalves, L. M.

    2015-10-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO2) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si3N4). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber.

  16. Study of electron-vibrational interaction and concentration quenching effect of Cu+ ions in lithium based sulphate phosphors

    NASA Astrophysics Data System (ADS)

    Bhoyar, Priyanka D.; Choithrani, Renu; Dhoble, S. J.

    2016-07-01

    The objective of this work is to study electron-vibrational interaction (EVI) and concentration quenching and their manifestation in experimental photoluminescence spectra of Cu+ ion in various lithium based phosphors namely, Li2SO4, LiNaSO4 and LiKSO4. The main parameters of EVI, such as the Stokes shift, Huang-Rhys factor and zero-phonon line positions, were estimated. The studied systems shows strong electron lattice coupling. The validity of results was established by modeling the shape of the emission spectra, which was found to be in good agreement with experimental photoluminescence spectra. The concentration quenching study is also carried out for these compounds. The studied systems correspond to the nearest neighbor energy transfer mechanism.

  17. Cold neutron depth profiling of lithium-ion battery materials

    NASA Astrophysics Data System (ADS)

    Lamaze, G. P.; Chen-Mayer, H. H.; Becker, D. A.; Vereda, F.; Goldner, R. B.; Haas, T.; Zerigian, P.

    We report the characterization of two thin-film battery materials using neutron techniques. Neutron depth profiling (NDP) has been employed to determine the distribution of lithium and nitrogen simultaneously in lithium phosphorous oxynitride (LiPON) deposited by ion beam assisted deposition (IBAD). The depth profiles are based on the measurement of the energy of the charged particle products from the 6Li(n,α) 3H and 14N(n,p) 14C reactions for lithium and nitrogen, respectively. Lithium at the level of 10 22 atoms/cm 3 and N of 10 21 atoms/cm 3, distributed in the film thickness on the order of 1 μm, have been determined. This information provides insights into nitrogen incorporation and lithium concentration in the films under various fabrication conditions. NDP of lithium has also been performed on IBAD LiCoO 2 films, in conjunction with instrumental neutron activation analysis (INAA) to determine the cobalt concentration. The Li/Co ratio thus obtained serves as an ex situ control for the thin-film evaporation process. The non-destructive nature of the neutron techniques is especially suitable for repeated analysis of these materials and for actual working devices.

  18. Lithium-Ion Electrolytes Containing Phosphorous-Based, Flame-Retardant Additives

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Smith, Kiah A.; Bugga, Ratnakumar V.; Prakash, G. K. Surya

    2010-01-01

    Future NASA missions aimed at exploring Mars, the Moon, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications. In addition, many of these applications will require improved safety, due to their use by humans. Currently, the state-of-the-art lithium-ion (Li-ion) system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, abuse conditions can often lead to cell rupture and fire. The nature of the electrolyte can greatly affect the propensity of the cell/battery to catch fire, given the flammability of the organic solvents used within. Li-ion electrolytes have been developed that contain a flame-retardant additive in conjunction with fluorinated co-solvents to provide a safe system with a wide operating temperature range. Previous work incorporated fluorinated esters into multi-component electrolyte formulations, which were demonstrated to cover a temperature range from 60 to +60 C. This work was described in Fluoroester Co-Solvents for Low-Temperature Li+ Cells (NPO-44626), NASA Tech Briefs, Vol. 33, No. 9 (September 2009), p. 37; and Optimized Li-Ion Electrolytes Con tain ing Fluorinated Ester Co-Solvents (NPO-45824), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 48. Other previous work improved the safety characteristics of the electrolytes by adding flame-retardant additives such as triphenyl phosphate (TPhPh), tri-butyl phosphate (TBuPh), triethyl phosphate (TEtPh), and bis(2,2,2-trifluoroethyl) methyl phosphonate (TFMPo). The current work involves further investigation of other types of flame-retardant additives, including tris(2,2,2-trifluoroethyl) phosphate, tris(2,2,2-trifluoroethyl) phosphite, triphenylphosphite, diethyl ethylphosphonate, and diethyl phenylphosphonate added to an electrolyte composition intended for wide operating temperatures. In general, many of the formulations investigated in this

  19. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2011-01-01

    In 2010, lithium consumption in the United States was estimated to have been about 1 kt (1,100 st) of contained lithium, a 23-percent decrease from 2009. The United States was estimated to be the fourth largest consumer of lithium. It remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2010, world lithium consumption was estimated to have been about 21 kt (22,000 st) of lithium contained in minerals and compounds, a 12-percent increase from 2009.

  20. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2010-01-01

    In 2009, lithium consumption in the United States was estimated to have been about 1.2 kt (1,300 st) of contained lithium, a 40-percent decrease from 2008. The United States was estimated to be the fourth largest consumer of lithium, and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2009, world lithium consumption was estimated to have been about 18.7 kt (20,600 st) of lithium contained in minerals and compounds.

  1. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2012-01-01

    In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.

  2. Lithium

    USGS Publications Warehouse

    Ober, J.A.

    2006-01-01

    In 2005, lithium consumption in the United States was at 2.5 kt of contained lithium, nearly 32% more than the estimate for 2004. World consumption was 14.1 kt of lithium contained in minerals and compounds in 2003. Exports from the US increased slightly compared with 2004. Due to strong demand for lithium compounds in 2005, both lithium carbonate plants in Chile were operating at or near capacity.

  3. Solar cell with silicon oxynitride dielectric layer

    SciTech Connect

    Shepherd, Michael; Smith, David D

    2015-04-28

    Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0oxynitride dielectric layer.

  4. Lithium

    USGS Publications Warehouse

    Ober, J.

    1998-01-01

    The lithium industry can be divided into two sectors: ore concentrate producers and chemical producers. Ore concentrate producers mine lithium minerals. They beneficiate the ores to produce material for use in ceramics and glass manufacturing.

  5. Lithium

    MedlinePlus

    ... bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal moods). Lithium ... Lithium is also sometimes used to treat depression, schizophrenia (a mental ... emotions), disorders of impulse control (inability to resist the urge ...

  6. Enhancement of photoluminescence, persistent luminescence and photocatalytic activity in ZnGa2O4 phosphors by lithium ion doping

    NASA Astrophysics Data System (ADS)

    Li, Darong; Wang, Yinhai; Xu, Ke; Li, Lei; Hu, Zhengfa; Zhao, Hui

    2015-04-01

    The crystal structure, photoluminescence, persistent luminescence and photocatalytic properties of Li0.15Zn0.85Ga2O4 phosphors were investigated. X-ray diffraction (XRD) patterns indicated that Li-doped ZnGa2O4 had a spinel phase. The result of Raman spectra showed that the first order Raman active modes in spinel ZnGa2O4 were only attributed to Zn2+ ions in the tetrahedral sites. The Li+ ion doping into ZnGa2O4 led to enhancement of the emission intensity, and improved the persistent luminescence properties. When Li+ ion was incorporated into the ZnGa2O4 lattice, the new cation vacancy formed for the charge compensation and the cation vacancy would capture some of the excited electrons and acted as electron trap. Moreover, photocatalytic activity test shown that Li-doped ZnGa2O4 phosphor exhibited higher catalytic activities than the pure ZnGa2O4 for the degradation of Rhodamine B by the ultraviolet irradiation. It indicated that Li-doped ZnGa2O4 owned more traps to storage the photoinduced carriers, which decreased the combination of electrons and holes, resulting a higher catalytic activity.

  7. Lithium

    MedlinePlus

    ... mania (frenzied, abnormally excited mood) in people with bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal moods). Lithium is in a ... antimanic agents. It works by decreasing abnormal activity in the brain.

  8. Shear Strength of Aluminum Oxynitride

    NASA Astrophysics Data System (ADS)

    Dandekar, Dattatraya P.; Vaughan, Brian A. M.; Proud, William G.

    2007-06-01

    Aluminum oxynitride (AlON) is a transparent, polycrystalline cubic spinel. The results of investigations^1-4 on shock response of AlON permit determination of the equation of state, and shear strength retained under shock compression. Whereas the values of the HEL of AlON holds no surprises, the inelastic response of AlON reported in Ref. 1-4 differ significantly and is stress dependent. The results of Ref. 1-2 show that AlON retains a shear strength of 3 to 4 GPa when shocked up to around 20 GPa, but the results of Ref, 3-4 seem to suggest a possible loss of shear strength when shocked to 16 GPa and beyond. Our analysis examines the observed differences in the inelastic response of AlON reported in these four studies . 1. J. U. Cazamias, et. al., in Fundamental Issues and Applications of Shock-Wave and High Strain Rate Phenomena, Eds. Staudhammer, Murr, and Meyers, Elsevier, NY, 173 (2001). 2. B. A. M. Vaughn, et.al., Shock Physics, Cavendish Laboratory, Report SP/1092 (2001) 3. T. Sekine, et.al., J. Appl. Phys. 94, 4803 (2003). 4. T. F. Thornhill, et.al., Shock Compression of Matter-2005, Eds. Furnish, Elert, Russell, White, AIP, NY, 143 (2006).

  9. Advanced phosphors

    DOEpatents

    Xiang, Xiao-Dong; Sun, Xiaodong; Schultz, Peter G.

    2000-01-01

    This invention relates to new phosphor materials and to combinatorial methods of synthesizing and detecting the same. In addition, methods of using phosphors to generate luminescence are also disclosed.

  10. Thermoluminescent phosphor

    DOEpatents

    Lasky, Jerome B.; Moran, Paul R.

    1978-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta rays in the presence of a background of more penetrating radiation.

  11. Silicon oxynitride: A field emission suppression coating

    NASA Astrophysics Data System (ADS)

    Theodore, Nimel D.

    We have studied coatings deposited using our inductively-coupled RF plasma ion implantation and desposition system to suppress field emission from large, 3-D electrode structures used in high voltage applications, like those used by Thomas Jefferson National Accelerator Facility in their DC-field photoelectron gun. Currently time and labor-intensive hand-polishing procedures are used to minimize field emission from these structures. Previous work had shown that the field emission from polished stainless steel (27 muA of field-emitted current at 15 MV/m) could be drastically reduced with simultaneous deposition of sputtered silicon dioxide during nitrogen implantation (167 pA of field-emitted current at 30 MV/m). We have determined that this unique implantation and deposition procedure produces high-purity silicon oxynitride films that can suppress field emission from stainless steel regardless of their initial surface polish. However, when this implantation procedure was applied to large, 3-D substrates, arcs occurred, damaging the coating and causing unreliable and unrepeatable field emission suppression. We have developed a novel reactive sputtering procedure to deposit high-purity silicon oxynitride coatings without nitrogen ion implantation. We can control the stoichometry and deposition rate of these coatings by adjusting the nitrogen pressure and incident RF-power. Using profilometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Rutherford backscattering spectrometry, elastic recoil detection analysis, and current-voltage measurements, we have determined that the elemental composition, chemical bonding, density, and electrical properties of the reactively-sputtered silicon oxynitride coatings are similar to those produced by nitrogen implantation during silicon dioxide deposition. Furthermore, high voltage tests determined that both coatings similarly suppress field emission from 6" diameter, polished

  12. Green Phosphors

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Chakradhar, R. P. S.; Rao, J. L.; Dhoble, S. J.; Kim, S. H.

    2014-11-01

    Manganese-doped LaMgAl11O19 powder has been prepared by an easy combustion method. Powder x-ray diffraction and scanning electron microscopy have been used to characterize the as-prepared phosphor. The electron paramagnetic resonance (EPR) spectrum of LaMgAl11O19:Mn2+ phosphor exhibits six-line hyperfine structure centered at g ≈ 1.973. The number of spins participating in resonance ( N) and the paramagnetic susceptibility ( χ) for the resonance signal at g ≈ 1.973 have been calculated as a function of temperature. The photoluminescence spectrum exhibits green emission at 516 nm, which is attributed to 4T1 → 6A1 transition of Mn2+ ions. From EPR and luminescence studies, it is observed that Mn2+ ions occupy Mg2+ sites and Mn2+ ions are located at tetrahedral sites in the prepared phosphors.

  13. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  14. Joining of silicon nitrides using oxynitride glasses

    SciTech Connect

    O`Brien, M.H.

    1993-03-01

    This report presents a study on commercial silicon nitrides that were successfully joined using oxynitride glasses. Sintered silicon nitride was joined by either closed or glass-filled joints. Glass-filled joints were successfully used on hot-pressed silicon nitrides and were comparable in fast fracture strength to unjoined silicon nitrides up to approximately 1000C. Above that temperature, strengths decreased rapidly and glass flow failure began. The study observed that time-dependent failure currently limits the service temperatures of glass-filled joints. Creep failure occurred in excess of 1000C. Between 900 and 1000C, slow crack growth failure was observed. Cavitation (or viscous deformation) was the rate-controlling mechanism of slow crack growth.

  15. Development of a lithium microbattery packaging technology: ERKTS01. Final report

    SciTech Connect

    Bates, J.B.; Yu, Xioahua; Luck, C.F.; Dudney, N.J.

    1995-10-01

    The objective of this joint project between Oak Ridge National Laboratory (ORNL) and Eveready Battery Company (EBC) was to develop a coating process that would protect the lithium anode of thin-film rechargeable lithium batteries from air. Several methods were investigated including metallization of the lithium film, coverage of the lithium anode with the electrolyte, lithium phosphorus oxynitride (Lipon), and other ceramic films, and a multilayer coating consisting of alternating films of parylene and metal and/or ceramic films. The parylene-ceramic or metal multilaver coating was found to be an effective packaging method for thin-film lithium batteries.

  16. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  17. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  18. Oxynitride Thin Film Barriers for PV Packaging

    SciTech Connect

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  19. Silicon oxynitride-based integrated optical switch

    NASA Astrophysics Data System (ADS)

    Rehder, G.; Stochero, M.; Alayo, M. I.

    2009-02-01

    In this work we describe the fabrication and characterization of MOEMS-based integrated optical switches with improved ON/OFF performance. These structures consist of silicon oxynitride-based optical waveguides, through which a light beam of 633-nm can be conducted, and mobile thermo-electro actuated cantilevers, which form part of the waveguide and can work as ON-OFF switches for the laser. These switches allow the laser light to pass or block the laser light when activated electrically. The cantilevers are fabricated by freeing regions of the waveguide, which is done by front side micromachining the silicon wafer used as substrate. Also, they are actuated electrically through the heating of a metallic resistance positioned in the device, where the applied current heats the cantilevers and, due to the difference in thermal expansion coefficients of the constituent materials, it is possible to produce a controlled motion proportional to the heating current. Therefore, the switches can be electrically polarized in on/off cycles allowing or blocking the light through the waveguide, similar to logic "1's" and "0's".

  20. Dosimetric properties of activated lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Majchrowski, Andrzej; Malecki, M.; Zmija, Jozef; Warkocki, Stanislaw; Warkocki, Wodzislaw

    1993-10-01

    This paper describes preliminary investigations of Li2B4O7 thermoluminescent phosphors as candidates for gamma radiation dosimetry materials. Single crystals, glasses, and polycrystals of lithium tetraborate activated with different dopants have been investigated.

  1. Glow discharge assisted oxynitriding process of titanium for medical application

    NASA Astrophysics Data System (ADS)

    Wierzchoń, Tadeusz; Czarnowska, Elżbieta; Grzonka, Justyna; Sowińska, Agnieszka; Tarnowski, Michał; Kamiński, Janusz; Kulikowski, Krzysztof; Borowski, Tomasz; Kurzydłowski, Krzysztof J.

    2015-04-01

    The plasma oxynitriding process is a prospective method of producing titanium oxides as an integral part of a diffusive nitrided surface layer on titanium implants. This hybrid process, which combines glow discharge assisted nitriding and oxidizing, permits producing TiO2 + Ti2N + αTi(N)-type diffusive surface layers. The oxynitrided surface layers improve the corrosion and wear resistance of the substrate material. Additionally, the nanocrystalline titanium oxide TiO2 (rutile) improves the biological properties of titanium and its alloys when in contact with blood, whereas the TiN + Ti2N + αTi(N) zone eliminates the effect of metalosis.

  2. Determination of the valence band structure of an alkali phosphorus oxynitride glass: A synchrotron XPS study on LiPON

    NASA Astrophysics Data System (ADS)

    Schwöbel, André; Precht, Ruben; Motzko, Markus; Carrillo Solano, Mercedes A.; Calvet, Wolfram; Hausbrand, René; Jaegermann, Wolfram

    2014-12-01

    Lithium phosphorus oxynitride (LiPON) is a solid state electrolyte commonly used in thin film batteries (TFBs). Advanced TFBs face the issue of detrimental electrode-electrolyte interlayer formation, related to the electronic structure of the interface. In this contribution, we study the valence band structure of LiPON using resonant photoemission and synchrotron photoemission with variable excitation energies. The identification of different valence band features is done according to the known valence band features of meta- and orthophosphates. Additionally we compare our results with partial density of states simulations from literature. We find that the valence band structure is similar to the known metaphosphates with an additional contribution of nitrogen states at the top of the valence band. From the results we conclude that synchrotron X-ray photoemission (XPS) is a useful tool to study the valence band structure of nitridated alkali phosphate glasses.

  3. Rare earth phosphors and phosphor screens

    DOEpatents

    Buchanan, Robert A.; Maple, T. Grant; Sklensky, Alden F.

    1981-01-01

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  4. High-pressure synthesis of predicted oxynitride perovskite: Yttrium Silicon Oxynitride (YSiO2N)

    NASA Astrophysics Data System (ADS)

    Ahart, Muhtar; Somayazulu, M.; Vadapoo, Rajasekarakumar; Cohen, R. E.

    We synthesized the previously predicted polar oxynitride perovskite in a diamond anvil cell with laser heating. YSiO2N was predicted to have the polar P4mm structure with an effective spontaneous polarization of 130 μC/cm2. A mixture of Yttrium nitride (YN) and amorphous Silicon dioxide (SiO2) were loaded into a diamond anvil cell and laser heated at or above 1200 C at 12 GPa. The run products were investigated by x-ray diffraction, Raman spectroscopy, and second harmonic generation, for their phase and structural properties. The x-ray diffraction pattern (a = 3.235 Å, c = 4.485 Å) shows the phase formation of YSiO2N and matches with the diffraction pattern derived from the first-principle predicted lattice parameters. However, minor unknown peaks are on the diffraction pattern indicating of the co-existence of other unknown phases. Further study of Raman spectroscopy observes the theoretically predicted modes, and second harmonic generation shows strong non-linear optical signal, which confirms the polar properties of YSiO2N. This work is supported by ONR Grants N00014-12-1-1038 and N00014-14-1-0561, by the ERC Advanced Grant ToMCaT.

  5. Hydrogen incorporation in silicon (oxy)nitride thin films

    SciTech Connect

    Kuiper, A.E.T.; Willemsen, M.F.C.; van IJzendoorn, L.J.

    1988-11-28

    Hydrogen in low-pressure chemical vapor deposited oxynitride films was measured using elastic recoil detection with 2 MeV He ions. A distinction between N- and Si-bonded hydrogen could be made for films deposited from ND/sub 3/ instead of NH/sub 3/. The analyses reveal that on an average three times as much hydrogen is incorporated as NH relative to SiH, and that a maximum in this ratio is present in oxynitride with a composition around O/N = 0.3. This optimum coincides with a maximum in total hydrogen content in the film of 3.2 at. %. Hydrogen desorption occurs in a narrow temperature interval around 950 /sup 0/C and proceeds virtually in an identical way for both binding types.

  6. Boosting Responsivity of Organic-Metal Oxynitride Hybrid Heterointerface Phototransistor.

    PubMed

    Rim, You Seung; Ok, Kyung-Chul; Yang, Yang Michael; Chen, Huajun; Bae, Sang-Hoon; Wang, Chen; Huang, Yu; Park, Jin-Seong; Yang, Yang

    2016-06-15

    Amorphous metal oxides are attractive materials for various sensor applications, because of high electrical performance and easy processing. However, low absorption coefficient, slow photoresponse, and persistent photoconductivity of amorphous metal oxide films from the origin of deep-level defects are obstacles to their use as photonic applications. Here, we demonstrate ultrahigh photoresponsivity of organic-inorganic hybrid phototransistors featuring bulk heterojunction polymers and low-bandgap zinc oxynitride. Spontaneous formation of ultrathin zinc oxide on the surface of zinc oxynitride films could make an effective band-alignment for electron transfer from the dissociation of excitons in the bulk heterojunction, while holes were blocked by the deep highest occupied molecular orbital level of zinc oxide. These hybrid structure-based phototransistors are ultrasensitive to broad-bandwidth photons in ultraviolet to near-infrared regions. The detectivity and a linear dynamic range exceeded 10(12) Jones and 122.3 dB, respectively. PMID:27193237

  7. Structural behaviour of niobium oxynitride under high pressure

    SciTech Connect

    Sharma, Bharat Bhooshan Poswal, H. K. Pandey, K. K. Sharma, Surinder M.; Yakhmi, J. V.; Ohashi, Y.; Kikkawa, S.

    2014-04-24

    High pressure investigation of niobium oxynitrides (NbN{sub 0.98}O{sub 0.02}) employing synchrotron based angle dispersive x-ray diffraction experiments was carried out in very fine pressure steps using membrane driven diamond anvil cell. Ambient cubic phase was found to be stable up to ∼18 GPa. At further high pressure cubic phase showed rhombohedral distortion.

  8. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhu, Haomiao; Lin, Chun Che; Luo, Wenqin; Shu, Situan; Liu, Zhuguang; Liu, Yongsheng; Kong, Jintao; Ma, En; Cao, Yongge; Liu, Ru-Shi; Chen, Xueyuan

    2014-07-01

    Mn4+-activated fluoride compounds, as an alternative to commercial (oxy)nitride phosphors, are emerging as a new class of non-rare-earth red phosphors for high-efficacy warm white LEDs. Currently, it remains a challenge to synthesize these phosphors with high photoluminescence quantum yields through a convenient chemical route. Herein we propose a general but convenient strategy based on efficient cation exchange reaction, which had been originally regarded only effective in synthesizing nano-sized materials before, for the synthesis of Mn4+-activated fluoride microcrystals such as K2TiF6, K2SiF6, NaGdF4 and NaYF4. Particularly we achieve a photoluminescence quantum yield as high as 98% for K2TiF6:Mn4+. By employing it as red phosphor, we fabricate a high-performance white LED with low correlated colour temperature (3,556 K), high-colour-rendering index (Ra=81) and luminous efficacy of 116 lm W-1. These findings show great promise of K2TiF6:Mn4+ as a commercial red phosphor in warm white LEDs, and open up new avenues for the exploration of novel non-rare-earth red emitting phosphors.

  9. TL-OSL study of Li{sub 3}PO{sub 4}: Mg, Cu phosphor

    SciTech Connect

    Rahangdale, S. R. Wankhede, S. P.; Dhabekar, B. S.; Palikundwar, U. A.; Moharil, S. V.

    2015-08-28

    In the present work, we report the thermoluminescence and optically stimulated luminescence properties of Mg and Cu doped Li{sub 3}PO{sub 4} phosphor. The phosphor was synthesized by precipitation method. The thermoluminescence dosimetric peak temperature for the phosphor varies with concentrations of Mg and Cu. Li{sub 3}PO{sub 4} shows good response to 470nm optical stimulation. The OSL sensitivity of the phosphor is approximately 12 times than that of standard Lithium magnesium phosphate. This study may help to develop this material for the application in real time dosimetry using optically stimulated luminescence.

  10. TL-OSL study of Li3PO4: Mg, Cu phosphor

    NASA Astrophysics Data System (ADS)

    Rahangdale, S. R.; Wankhede, S. P.; Dhabekar, B. S.; Palikundwar, U. A.; Moharil, S. V.

    2015-08-01

    In the present work, we report the thermoluminescence and optically stimulated luminescence properties of Mg and Cu doped Li3PO4 phosphor. The phosphor was synthesized by precipitation method. The thermoluminescence dosimetric peak temperature for the phosphor varies with concentrations of Mg and Cu. Li3PO4 shows good response to 470nm optical stimulation. The OSL sensitivity of the phosphor is approximately 12 times than that of standard Lithium magnesium phosphate. This study may help to develop this material for the application in real time dosimetry using optically stimulated luminescence.

  11. Self-activating and doped tantalate phosphors.

    SciTech Connect

    Nyman, May Devan; Rohwer, Lauren Elizabeth Shea

    2011-01-01

    An ideal red phosphor for blue LEDs is one of the biggest challenges for the solid-state lighting industry. The appropriate phosphor material should have good adsorption and emission properties, good thermal and chemical stability, minimal thermal quenching, high quantum yield, and is preferably inexpensive and easy to fabricate. Tantalates possess many of these criteria, and lithium lanthanum tantalate materials warrant thorough investigation. In this study, we investigated red luminescence of two lithium lanthanum tantalates via three mechanisms: (1) Eu-doping, (2) Mn-doping and (3) self-activation of the tantalum polyhedra. Of these three mechanisms, Mn-doping proved to be the most promising. These materials exhibit two very broad adsorption peaks; one in the UV and one in the blue region of the spectrum; both can be exploited in LED applications. Furthermore, Mn-doping can be accomplished in two ways; ion-exchange and direct solid-state synthesis. One of the two lithium lanthanum tantalate phases investigated proved to be a superior host for Mn-luminescence, suggesting the crystal chemistry of the host lattice is important.

  12. Analysis of nitrogen species in titanium oxynitride ALD films

    NASA Astrophysics Data System (ADS)

    Sowińska, Małgorzata; Brizzi, Simone; Das, Chittaranjan; Kärkkänen, Irina; Schneidewind, Jessica; Naumann, Franziska; Gargouri, Hassan; Henkel, Karsten; Schmeißer, Dieter

    2016-09-01

    Titanium oxynitride films are prepared by plasma enhanced atomic layer deposition method using two different precursors and nitrogen sources. Synchrotron radiation-based X-ray photoelectron spectroscopy and X-ray absorption spectroscopy are used to characterize the nitrogen species incorporated within these films depending on the deposition parameters. It is found that nitrogen atoms in these films are differently bonded. In particular, it can be distinguished between Tisbnd ON and Tisbnd N bonding configurations and molecular nitrogen species caused by precursor fragments.

  13. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    SciTech Connect

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.; Iskandar, Ferry Abdullah, Mikrajuddin; Khairurrijal; Ogi, Takashi; Okuyama, Kikuo

    2015-04-16

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained by varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.

  14. Lithium intercalation in porous carbon anodes

    SciTech Connect

    Tran, T.D.; Pekala, R.W.; Mayer, S.T.

    1994-11-23

    Carbon foams derived from the phase separation of polyacrylonitrile/solvent mixtures were investigated as lithium intercalation anodes for rechargeable lithium-ion batteries. The carbon foams have a bulk density of 0.35--0.5 g/cm{sup 3}, low surface area (< 50 m{sup 2}/g), and an average cell size of 5--10 {mu}m. Polyacrylonitrile-based carbon foams doped with phosphoric acid had capacity as high as 450 mAh/g. Carbon capacity increased with increasing phosphoric acid concentration in the doping solution. The doped porous carbon anodes exhibited good cyclability and excellent coulombic efficiency.

  15. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  16. Exploring order-disorder structural transitions in the Li-Nb-N-O system: The new antifluorite oxynitride Li{sub 11}NbN{sub 4}O{sub 2}

    SciTech Connect

    Cabana, J.; Casas-Cabanas, M.; Santner, H.J.; Fuertes, A.; Palacin, M.R.

    2010-07-15

    A systematic exploratory study of the Li-Nb-N-O system at low oxygen and high lithium contents has been performed. As lithium and oxygen increase, an order-disorder transition has been identified using powder neutron diffraction data between Li{sub 16}Nb{sub 2}N{sub 8}O, which crystallizes in an antifluorite-type superstructure with cationic and anionic ordering, and Li{sub 11}NbN{sub 4}O{sub 2}, a new antifluorite-type oxynitride that shows structural disorder. A description of the synthetic conditions required to prepare these phases and their structural characterization is presented. - Graphical abstract: The Li-Nb-N-O system has been explored at low oxygen and high lithium contents and an order-disorder transition has been identified between ordered Li{sub 16}NbN{sub 8}O and the new disordered Li{sub 11}NbN{sub 4}O{sub 2} antifluorite-type oxynitrides.

  17. Kimzeyite garnet phosphors

    DOEpatents

    Lyons, Robert Joseph

    2013-05-14

    A phosphor of formula I is included in a phosphor composition in a lighting apparatus capable of emitting white light, Ca.sub.3-x-zSr.sub.xCe.sub.zM.sup.1.sub.2M.sup.2AlSiO.sub.12 (I) wherein M.sup.1 is Hf, Zr, or a combination thereof; M.sup.2 is Al, or a combination of Al and Ga; z<3-x; and 0.2>x.gtoreq.0. The lighting apparatus includes a semiconductor light source in addition to the phosphor composition.

  18. Sulfide Stress Cracking and Electrochemical Corrosion of Precipitation Hardening Steel After Plasma Oxy-Nitriding

    NASA Astrophysics Data System (ADS)

    Granda-Gutiérrez, E. E.; Díaz-Guillén, J. C.; Díaz-Guillén, J. A.; González, M. A.; García-Vázquez, F.; Muñóz, R.

    2014-11-01

    In this paper, we present the results of a duplex plasma nitriding followed by an oxidizing stage process (which is also referred as oxy-nitriding) on the corrosion behavior of a 17-4PH precipitation hardening stainless steel. The formation of both, expanded martensite (b.c.t. α'N-phase) and chromium oxide (type Cr2O3) in the subsurface of oxy-nitrided samples at specific controlled conditions, leads in a noticeable increasing in the time-to-rupture during the sulfide stress cracking test, in comparison with an untreated reference sample. Oxy-nitriding improves the corrosion performance of the alloy when it is immersed in solutions saturated by sour gas, which extends the application potential of this type of steel in the oil and gas extraction and processing industry. The presence of the oxy-nitrided layer inhibits the corrosion process that occurs in the near-surface region, where hydrogen is liberated after the formation of iron sulfides, which finally produces a fragile fracture by micro-crack propagation; the obtained results suggest that oxy-nitriding slows this process, thus delaying the rupture of the specimen. Moreover, oxy-nitriding produces a hard, sour gas-resistant surface, but do not significantly affect the original chloride ion solution resistance of the material.

  19. Sulfide Stress Cracking and Electrochemical Corrosion of Precipitation Hardening Steel After Plasma Oxy-Nitriding

    NASA Astrophysics Data System (ADS)

    Granda-Gutiérrez, E. E.; Díaz-Guillén, J. C.; Díaz-Guillén, J. A.; González, M. A.; García-Vázquez, F.; Muñóz, R.

    2014-09-01

    In this paper, we present the results of a duplex plasma nitriding followed by an oxidizing stage process (which is also referred as oxy-nitriding) on the corrosion behavior of a 17-4PH precipitation hardening stainless steel. The formation of both, expanded martensite (b.c.t. α'N-phase) and chromium oxide (type Cr2O3) in the subsurface of oxy-nitrided samples at specific controlled conditions, leads in a noticeable increasing in the time-to-rupture during the sulfide stress cracking test, in comparison with an untreated reference sample. Oxy-nitriding improves the corrosion performance of the alloy when it is immersed in solutions saturated by sour gas, which extends the application potential of this type of steel in the oil and gas extraction and processing industry. The presence of the oxy-nitrided layer inhibits the corrosion process that occurs in the near-surface region, where hydrogen is liberated after the formation of iron sulfides, which finally produces a fragile fracture by micro-crack propagation; the obtained results suggest that oxy-nitriding slows this process, thus delaying the rupture of the specimen. Moreover, oxy-nitriding produces a hard, sour gas-resistant surface, but do not significantly affect the original chloride ion solution resistance of the material.

  20. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  1. Phosphors for LED lamps

    DOEpatents

    Murphy, James Edward; Manepalli, Satya Kishore; Kumar, Prasanth Nammalwar

    2013-08-13

    A phosphor, a phosphor blend including the phosphor, a phosphor prepared by a process, and a lighting apparatus including the phosphor blend are disclosed. The phosphor has the formula (Ca.sub.1-p-qCe.sub.pK.sub.q).sub.xSc.sub.y(Si.sub.1-rGa.sub.r).sub.zO.su- b.12+.delta. or derived from a process followed using disclosed amounts of reactants. In the formula, (0

  2. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  3. Phosphor thermometry system

    DOEpatents

    Beshears, David L.; Sitter, Jr., David N.; Andrews, William H.; Simpson, Marc L.; Abston, Ruth A.; Cates, Michael R.; Allison, Steve W.

    2000-01-01

    An apparatus for measuring the temperature of a moving substrate includes an air gun with a powder inlet port in communication with the outlet port of a powder reservoir, an air inlet port in communication with a pressurized air source, and an outlet nozzle spaced from and directed toward the moving substrate. The air gun is activated by the air pulses to spray controlled amounts of the powdered phosphor onto the moving substrate, where the phosphor assumes the temperature of the moving substrate. A laser produces light pulses, and optics direct the light pulses onto the phosphor on the moving substrate, in response to which the phosphor emits a luminescence with a decay rate indicative of the temperature of the phosphor. A collection lens is disposed to focus the luminescence, and a photodetector detects the luminescence focused by the collection lens and produces an electrical signal that is characteristic of the brightness of the luminescence. A processor analyzes the electrical signal to determine the decay characteristic of the luminescence and to determine the temperature of the phosphor from the decay characteristic.

  4. Method for separating mono- and di-octylphenyl phosphoric acid esters

    DOEpatents

    Arnold, Jr., Wesley D.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.

  5. High mobility and high stability glassy metal-oxynitride materials and devices

    PubMed Central

    Lee, Eunha; Kim, Taeho; Benayad, Anass; Hur, Jihyun; Park, Gyeong-Su; Jeon, Sanghun

    2016-01-01

    In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices. PMID:27044371

  6. High mobility and high stability glassy metal-oxynitride materials and devices.

    PubMed

    Lee, Eunha; Kim, Taeho; Benayad, Anass; Hur, Jihyun; Park, Gyeong-Su; Jeon, Sanghun

    2016-01-01

    In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices. PMID:27044371

  7. High mobility and high stability glassy metal-oxynitride materials and devices

    NASA Astrophysics Data System (ADS)

    Lee, Eunha; Kim, Taeho; Benayad, Anass; Hur, Jihyun; Park, Gyeong-Su; Jeon, Sanghun

    2016-04-01

    In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices.

  8. Use of silicon oxynitride as a sacrificial material for microelectromechanical devices

    DOEpatents

    Habermehl, Scott D.; Sniegowski, Jeffry J.

    2001-01-01

    The use of silicon oxynitride (SiO.sub.x N.sub.y) as a sacrificial material for forming a microelectromechanical (MEM) device is disclosed. Whereas conventional sacrificial materials such as silicon dioxide and silicate glasses are compressively strained, the composition of silicon oxynitride can be selected to be either tensile-strained or substantially-stress-free. Thus, silicon oxynitride can be used in combination with conventional sacrificial materials to limit an accumulation of compressive stress in a MEM device; or alternately the MEM device can be formed entirely with silicon oxynitride. Advantages to be gained from the use of silicon oxynitride as a sacrificial material for a MEM device include the formation of polysilicon members that are substantially free from residual stress, thereby improving the reliability of the MEM device; an ability to form the MEM device with a higher degree of complexity and more layers of structural polysilicon than would be possible using conventional compressively-strained sacrificial materials; and improved manufacturability resulting from the elimination of wafer distortion that can arise from an excess of accumulated stress in conventional sacrificial materials. The present invention is useful for forming many different types of MEM devices including accelerometers, sensors, motors, switches, coded locks, and flow-control devices, with or without integrated electronic circuitry.

  9. A simple urea-based route to ternary metal oxynitride nanoparticles

    SciTech Connect

    Gomathi, A.; Reshma, S.; Rao, C.N.R.

    2009-01-15

    Ternary metal oxynitrides are generally prepared by heating the corresponding metal oxides with ammonia for long durations at high temperatures. In order to find a simple route that avoids use of gaseous ammonia, we have employed urea as the nitriding agent. In this method, ternary metal oxynitrides are obtained by heating the corresponding metal carbonates and transition metal oxides with excess urea. By this route, ternary metal oxynitrides of the formulae MTaO{sub 2}N (M=Ca, Sr or Ba), MNbO{sub 2}N (M=Sr or Ba), LaTiO{sub 2}N and SrMoO{sub 3-x}N{sub x} have been prepared successfully. The oxynitrides so obtained were generally in the form of nanoparticles, and were characterized by various physical techniques. - Graphical abstract: Nanoparticles of ternary metal oxynitrides can be synthesized by means of urea route. Given is the TEM image of the nanoparticles of CaTaO{sub 2}N so obtained and the insets show the SAED pattern and HREM image of the nanoparticles.

  10. Phosphor persistence of oscilloscopic displays: a comparison of four phosphors.

    PubMed

    Di Lollo, V; Seiffert, A E; Burchett, G; Rabeeh, R; Ruman, T A

    1997-01-01

    The period for which phosphor decay remains visible after stimulus offset was assessed for four phosphors commonly used in psychophysical experiments: P4, P15, P31, and P46. Stimuli were displayed behind closed shutters which opened at various intervals after stimulus offset. Thus, the observers' responses were based solely on the visibility of phosphor persistence. We varied viewing conditions (dark-adapted vs. veiling light), type of task (detection vs. identification), and intensity of the stimuli. No detectable persistence was ever produced by the P15 phosphor. In contrast, the P31 phosphor remained visible for several hundred ms. even with a veiling light. The P4 and P46 phosphors produced persistence of intermediate durations. It is concluded that P15 is the phosphor of choice for visual experiments. PMID:9176944

  11. The Kirkendall effect towards oxynitride nanotubes with improved visible light driven conversion of CO2 into CH4.

    PubMed

    Zhou, P; Gao, H L; Yan, S C; Zou, Z G

    2016-02-28

    Functional hollow nanomaterials are of great interest due to their unique physical-chemical properties. Oxynitride photocatalysts are a kind of promising material for solar energy conversion. However, nanoscale design of hollow oxynitrides was difficult to achieve due to the thermal instability of oxide precursors at high temperature. Here, single crystal zinc gallium oxynitride nanotubes were successfully synthesized via the Kirkendall effect with ZnO nanorods and Ga2O3 nanosheets as precursors, which can be attributed to the high diffusion rate of ZnO and the high melting point of oxynitride. Enhanced photocatalytic performance in CO2 reduction was achieved over the as-prepared ZnGaNO nanotubes, due to their higher specific surface area and less recombination of the photogenerated carriers. These results are expected to provide new guidance in the design and preparation of highly efficient nano-scaled oxynitride photocatalysts. PMID:26795040

  12. Crystal structure and optical properties of oxynitride rare-earth tantalates RTa-(O, N) (R = Nd, Gd, Y)

    SciTech Connect

    Kikkawa, Shinichi Takeda, Takashi; Yoshiasa, Akira; Maillard, Pascal; Tessier, Franck

    2008-04-01

    X-ray absorption and photoluminescence were used to investigate the structure of rare-earth tantalum oxynitrides RTa-(O, N) (R = Nd, Gd, Y). Owing to the size of the rare-earth element, the crystal structure tends towards the pyrochlore or defect fluorite-type structure. EXAFS suggested neodymium and yttrium atoms are coordinated either by 6 + 2 or 6 oxygen/nitrogen atoms in the Nd or Y respective oxynitrides although the coordination number of tantalum is six in both compounds. Photoluminescence for 5 at.% doped europium showed the spectra compatible with the point symmetry C{sub 3v} lower than O{sub h} in fluorite and D{sub 3d} in pyrochlore structure type for both the Gd and Y tantalum oxynitrides. These measurements supported that their structure types were basically pyrochlore for Nd and Gd tantalum oxynitrides and defect fluorite for Y tantalum oxynitride but they are highly defective.

  13. Laser damage studies of silicon oxy-nitride narrowband reflectors

    NASA Astrophysics Data System (ADS)

    Milward, Jonathan R.; Lewis, Keith L.; Sheach, K.; Heinecke, Rudolf A.

    1993-06-01

    A series of sinusoidally modulated, plasma deposited, silicon oxy-nitride, narrow band reflectors have been examined with a view to understanding the relative roles of electric field effects, defect type, surface roughness, thickness, and coating absorption on the laser damage threshold. The damage threshold measurements were made at 0.532 micrometers with a range of spot sizes, a pulse length of 15 ns (full width at half maximum intensity), and each site was tested with 100 shots at a 10 Hz repetition rate. The damage threshold was essentially constant at around 2 J/cm2 for all the samples, and was defect dominated. Three types of topological defects were discovered using a WYKO three dimensional surface profiler, and one of the defect types was responsible for a large fraction of the damage events. It is postulated that this 5 micrometers hemispherical defect may behave either as a microlens which enhances the peak fluence that the underlying coating is subjected to, or as a center for enhanced electric field effects.

  14. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    SciTech Connect

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  15. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  16. Control of silicon nanoparticle size embedded in silicon oxynitride dielectric matrix

    SciTech Connect

    Ehrhardt, F.; Ferblantier, G.; Muller, D.; Slaoui, A.; Ulhaq-Bouillet, C.; Rinnert, H.

    2013-07-21

    In this study, silicon rich silicon oxynitride layers containing more than 15% nitrogen were deposited by electron cyclotron resonance assisted plasma enhanced vapor deposition in order to form silicon nanoparticles after a high temperature thermal annealing. The effect of the flows of the precursor gases on the composition and the structural properties of the layers was assessed by Rutherford backscattering spectroscopy, elastic recoil detection analysis, and infrared spectroscopic measurements. The morphological and crystallinity properties were investigated by energy filtered transmission electron microscopy and Raman spectroscopy. We show that the excess of silicon in the silicon oxynitride layer controls the silicon nanoparticles size. On the other hand, the crystalline fraction of particles is found to be strongly correlated to the nanoparticle size. Finally, the photoluminescence measurements show that it is also possible to tune the photoluminescence peak position between 400 and 800 nm and its intensity by changing the silicon excess in the silicon rich silicon oxynitride matrix.

  17. Method of forming aluminum oxynitride material and bodies formed by such methods

    DOEpatents

    Bakas, Michael P [Ammon, ID; Lillo, Thomas M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  18. Phosphorous trapped within buckminsterfullerene

    NASA Astrophysics Data System (ADS)

    Larsson, J. A.; Greer, J. C.; Harneit, W.; Weidinger, A.

    2002-05-01

    Under normal circumstances, when covalent molecules form, electrons are exchanged between atoms to form bonds. However, experiment and theoretical computations reveal exactly the opposite effect for the formation of group V elements nitrogen and phosphorous encapsulated within a buckminsterfullerene molecule. The C60 carbon cage remains intact upon encapsulation of the atom, whereas the electronic charge cloud of the N or P atom contracts. We have studied the chemical, spin, and thermodynamic properties of endohedral phosphorous (P@C60) and have compared our results with earlier findings for N@C60. From a combined experimental and theoretical vantage, we are able to elucidate a model for the interaction between the trapped group V atom and the fullerene cage. A picture emerges for the electronic structure of these complexes, whereby an atom is trapped within a fullerene, and interacts weakly with the molecular orbitals of the C60 cage.

  19. Green emitting phosphors and blends thereof

    DOEpatents

    Setlur, Anant Achyut; Siclovan, Oltea Puica; Nammalwar, Prasanth Kumar; Sathyanarayan, Ramesh Rao; Porob, Digamber G.; Chandran, Ramachandran Gopi; Heward, William Jordan; Radkov, Emil Vergilov; Briel, Linda Jane Valyou

    2010-12-28

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  20. X-ray Rietveld refinement of structure of Ba-deficient Ba3Si6O12N2:Eu phosphor

    NASA Astrophysics Data System (ADS)

    Moriga, Toshihiro; Fujigaki, Hiroshi; Ogita, Yuma; Muguruma, Issei; Bando, Fumika; Murai, Kei-Ichiro; Waterhouse, Geoffrey I. N.

    2015-03-01

    Green oxynitride phosphors Ba3Si6O12N2 were prepared with metallic ratio of Si/Ba = 3. It was found that the nonstoichiometric mixture at Si/Ba = 3 formed the Ba3Si6O12N2-type phase easier than the stoichiometric one at Si/Ba = 2 after it was fired at 1200°C for 5 h under a diluted hydrogen flow (5%H2-95%N2). The excess Si source led to a formation of SiO2 glass, which can act as a flux in case of formation of Ba3Si6O12N2.

  1. Effect of Silica Nanoparticles on the Photoluminescence Properties of BCNO Phosphor

    NASA Astrophysics Data System (ADS)

    Nuryadin, Bebeh W.; Faryuni, Irfana Diah; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal, Khairurrijal

    2011-12-01

    Effect of additional silica nanoparticles on the photoluminescence (PL) performance of boron carbon oxy-nitride (BCNO) phosphor was investigated. As a precursor, boric acid and urea were used as boron and nitrogen sources, respectively. The carbon sources was polyethylene glycol (PEG) with average molecule weight 20000 g/mol.. Precursor solutions were prepared by mixing these raw materials in pure water, followed by stirring to achieve homogeneous solutions. In this precursor, silica nanoparticles were added at various mass ratio from 0 to 7 %wt in the solution. The precursors were then heated at 750 °C for 60 min in a ceramic crucible under atmospheric pressure. The photoluminescence (PL) spectrum that characterized by spectrophotometer showed a single, distinct, and broad emission band varied from blue to near red color, depend on the PEG, boric acid and urea ratio in the precursor. The addition of silica nanoparticles caused the increasing of PL intensity as well as the shifting of peak wavelength of PL spectrum. The peak shifting of PL was affected by the concentration of silica nanoparticles that added into the precursor. We believe that the BCNO-silica composite phosphor becomes a promising material for the phosphor conversion-based white light-emitting diodes.

  2. Manganese valence and coordination structure in Mn,Mg-codoped {gamma}-AlON green phosphor

    SciTech Connect

    Takeda, Takashi; Xie, Rong-Jun; Hirosaki, Naoto; Matsushita, Yoshitaka; Honma, Tetuso

    2012-10-15

    The valence and coordination structure of manganese in a Mn,Mg-codoped {gamma}-AlON spinel-type oxynitride green phosphor were studied by synchrotron X-ray diffraction and absorption fine structure measurements. The absorption edge position of the XANES revealed the bivalency of Mn. Two cation sites are available in the spinel structure for cation doping: a tetrahedral site and an octahedral site. The pre-edge of the XANES and the distance to the nearest neighbor atoms obtained from the EXAFS measurement showed that Mn was situated at the tetrahedral site. Rietveld analysis showed that the vacancy occupied the octahedral site. The preferential occupation of the tetrahedral site by Mn and the roles of N and Mg are discussed in relation to the spinel crystal structure. - Graphical Abstract: Fourier transform of EXAFS of Mn K-edge for Mn,Mg-codoped green phosphor and Mn coordination structure. Highlights: Black-Right-Pointing-Pointer Mn, Mg-codoped {gamma}-AlON green phosphor for white LED. Black-Right-Pointing-Pointer The valence of Mn is divalent. Black-Right-Pointing-Pointer Mn occupies the tetrahedral site in the spinel structure.

  3. Long-persistence blue phosphors

    NASA Technical Reports Server (NTRS)

    Yen, William M. (Inventor); Jia, Weiyi (Inventor); Lu, Lizhu (Inventor); Yuan, Huabiao (Inventor)

    2000-01-01

    This invention relates to phosphors including long-persistence blue phosphors. Phosphors of the invention are represented by the general formula: MO . mAl.sub.2 O.sub.3 :Eu.sup.2+,R.sup.3+ wherein m is a number ranging from about 1.6 to about 2.2, M is Sr or a combination of Sr with Ca and Ba or both, R.sup.3+ is a trivalent metal ion or trivalent Bi or a mixture of these trivalent ions, Eu.sup.2+ is present at a level up to about 5 mol % of M, and R.sup.3+ is present at a level up to about 5 mol % of M. Phosphors of this invention include powders, ceramics, single crystals and single crystal fibers. A method of manufacturing improved phosphors and a method of manufacturing single crystal phosphors are also provided.

  4. Blue light emitting thiogallate phosphor

    DOEpatents

    Dye, Robert C.; Smith, David C.; King, Christopher N.; Tuenge, Richard T.

    1998-01-01

    A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

  5. TiN-buffered substrates for photoelectrochemical measurements of oxynitride thin films

    NASA Astrophysics Data System (ADS)

    Pichler, Markus; Pergolesi, Daniele; Landsmann, Steve; Chawla, Vipin; Michler, Johann; Döbeli, Max; Wokaun, Alexander; Lippert, Thomas

    2016-04-01

    Developing novel materials for the conversion of solar to chemical energy is becoming an increasingly important endeavour. Perovskite compounds based on bandgap tunable oxynitrides represent an exciting class of novel photoactive materials. To date, literature mostly focuses on the characterization of oxynitride powder samples which have undeniable technological interest but do not allow the investigation of fundamental properties such as the role of the crystalline quality and/or the surface crystallographic orientation toward photo-catalytic activity. The challenge of growing high quality oxynitride thin films arises from the availability of a suitable substrate, owing to strict material and processing requirements: effective lattice matching, sufficiently high conductivities, stability under high temperatures and in strongly reducing environments. Here, we have established the foundations of a model system incorporating a TiN-buffer layer which enables fundamental investigations into crystallographic surface orientation and crystalline quality of the photocatalyst against photo(electro)chemical performance to be effectively performed. Furthermore, we find that TiN as current collector enables control over the nitrogen content of oxynitride thin films produced by a modified pulsed laser deposition method and allows the growth of highly ordered LaTiO3-xNx thin films.

  6. Structure and optical properties of cubic gallium oxynitride synthesized by solvothermal route

    SciTech Connect

    Oberländer, Andreas; Kinski, Isabel; Zhu, Wenliang; Pezzotti, Giuseppe; Michaelis, Alexander

    2013-04-15

    Cubic gallium oxynitride was synthesized using a solvothermal processing route. Crystal structure, chemical composition, optical properties and the influence of heat treatment in either reactive or inert atmospheres have been investigated. Despite a strongly distorted lattice revealed using X-ray diffraction, the Raman active modes of a cubic gallium oxynitride structure could be observed. With diffusive reflectance UV–Vis spectroscopy a band gap at around 4.8 eV has been observed. Additionally, cathodoluminescence spectroscopy exhibited observable luminescence caused by defect-related transitions within the optical gap. Cathodoluminescence and photoluminescence spectra collected after heat treatments showed significant changes in the defect structure. In particular, for annealing in ammonia the main spectral modifications were related to the substitution of oxygen by nitrogen on anion sites. - Graphical abstract: CL spectra of gallium oxynitride: As-prepared and heat-treated at temperatures of 500 °C in different atmospheres. Highlights: ► Raman spectrum of cubic gallium oxynitride. ► Experimental determination of optical band gap. ► Shift of band gap energy due to heat treatment. ► Nitrogen incorporation leads to deep level acceptor states. ► Red shifted luminescence spectrum.

  7. Physical characterization of ultrathin silicon oxynitrides grown by Rapid Thermal Processing aiming to MOS tunnel devices

    NASA Astrophysics Data System (ADS)

    Christiano, V.; dos Santos Filho, S. G.

    2015-03-01

    Oxynitrides were grown in a homemade Rapid Thermal Processor (RTP) using a low mass quartz carrier, to obtain thin oxynitrides over large areas of 3 inches silicon p-type wafers. Layers with thickness varying from 0.97 to 2.39 nm with uniformity better than 0.4%, were obtained at 700 and 850°C, in a mixed ambient of nitrogen and oxygen (4N2:3O2 in volume). The nitrogen concentration was obtained with the aid of X-ray photoelectron spectroscopy (XPS) and was 0.6 at%. On the other hand, the Si/O ratio in the oxynitride was approximately 1.9, indicating an almost stoichiometric SiO2 with a small amount of nitrogen. In addition, using the 16O(α, α) elastic-scattering signal at 3.039MeV, the planar concentration of oxygen was 5.5×1015cm2 for the oxynitride grown at 850°C during 40s.

  8. Early stage oxynitridation process of Si(001) surface by NO gas: Reactive molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Cao, Haining; Srivastava, Pooja; Choi, Keunsu; Kim, Seungchul; Lee, Kwang-Ryeol

    2016-03-01

    Initial stage of oxynitridation process of Si substrate is of crucial importance in fabricating the ultrathin gate dielectric layer of high quality in advanced MOSFET devices. The oxynitridation reaction on a relaxed Si(001) surface is investigated via reactive molecular dynamics (MD) simulation. A total of 1120 events of a single nitric oxide (NO) molecule reaction at temperatures ranging from 300 to 1000 K are statistically analyzed. The observed reaction kinetics are consistent with the previous experimental or calculation results, which show the viability of the reactive MD technique to study the NO dissociation reaction on Si. We suggest the reaction pathway for NO dissociation that is characterized by the inter-dimer bridge of a NO molecule as the intermediate state prior to NO dissociation. Although the energy of the inter-dimer bridge is higher than that of the intra-dimer one, our suggestion is supported by the ab initio nudged elastic band calculations showing that the energy barrier for the inter-dimer bridge formation is much lower. The growth mechanism of an ultrathin Si oxynitride layer is also investigated via consecutive NO reactions simulation. The simulation reveals the mechanism of self-limiting reaction at low temperature and the time evolution of the depth profile of N and O atoms depending on the process temperature, which would guide to optimize the oxynitridation process condition.

  9. A new highly sensitive low-Z LiF-based OSL phosphor for radiation dosimetry.

    PubMed

    Patil, R R; Gaikwad, S U; More, Y K; Kulkarni, M S; Bhatt, B C; Moharil, S V

    2016-03-01

    A new low-Z lithium fluoride-based optical stimulated luminescent (OSL) phosphor is developed. The phosphor shows good OSL properties, and its sensitivity is comparable with that of the commercial Al2O3:C (Landauer, Inc.) phosphor. For the luminescence averaged over initial 3 s, blue stimulated luminescence (BSL) and green stimulated luminescence (GSL) sensitivities were found to be 0.27 and 4 times, respectively, than that of Al2O3:C (Landauer, Inc.). The BSL decay is fast, and the whole signal decays within 3 s; the GSL decay is relatively slow, and the signal decays in 25 s. The fast decay, good sensitivity, good linearity and its near tissue equivalence (Zeff ∼8.14) will make this phosphor suitable for radiation dosimetry particularly in personnel as well as in medical dosimetry. PMID:26347541

  10. Crystal structure of Eu-doped magnetoplumbite-type lanthanum aluminum oxynitride with emission site splitting

    SciTech Connect

    Masubuchi, Yuji; Hata, Tomoyuki; Motohashi, Teruki; Kikkawa, Shinichi

    2011-09-15

    Eu-doped lanthanum aluminum oxynitride (LaAl{sub 12}(O,N){sub 19}) with magnetoplumbite structure was prepared by nitridation of the oxide precursor obtained from aluminum glycine gel and subsequent post-annealing. Eu-doped lanthanum aluminum oxynitride exhibited blue light emission at 440 nm with a shoulder at 464 nm under excitation at 254 nm. Isostructural Eu-doped calcium aluminum oxide (CaAl{sub 12}O{sub 19}) exhibited a single emission peak at 415 nm. Structural refinement using neutron powder diffraction indicated that the lanthanum site occupied partially by Eu{sup 2+} splits into 2d and 6h sites in the aluminum oxynitride. The longer emission and the shoulder peak in the former aluminum oxynitride were observed in relation to the increasing covalency as well as crystal field splitting around doped Eu{sup 2+} induced by site splitting involved with the two kinds of anions. - Graphical Abstract: Magnetoplumbite type Eu-doped lanthanum aluminum oxynitride has lanthanum site splitting induced by two kinds of anions, causing two emission peaks. Highlights: > Magnetoplumbite type LaAl{sub 12}(O,N){sub 19} doped with Eu shows emission peak splitting. > ND analysis is performed on La{sub 0.97}Eu{sub 0.03}Al{sub 12}(O,N){sub 19} and Ca{sub 0.97}Eu{sub 0.03}Al{sub 12}O{sub 19}. > La{sub 0.97}Eu{sub 0.03}Al{sub 12}(O,N){sub 19} has lanthanum site splitting. > The lanthanum site splitting is induced by coexisting of two kinds of anions.

  11. Hydrogen, lithium, and lithium hydride production

    SciTech Connect

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  12. Synthesis of the phase pure Ba3Si6O12N2:Eu2+ green phosphor and its application in high color rendition white LEDs.

    PubMed

    Li, Wanyuan; Xie, Rong-Jun; Zhou, Tianliang; Liu, Lihong; Zhu, Yuejin

    2014-04-28

    The promising green oxynitride phosphor, Ba3Si6O12N2:Eu(2+), was synthesized at 1350 °C for 5 hours under a reducing N2/H2 (5%) atmosphere by using the solid-state reaction method. The phase purity was investigated by varying the nominal compositions, and the pure phase was achieved by carefully controlling the Si/Ba and O/Ba ratios. The phosphor displayed a broad excitation band spanning from the ultraviolet (UV) to the blue spectral region, and showed a single symmetrical emission band peaking at 525 nm with a full width at half maximum (FWHM) of ∼ 68 nm. The as-prepared green phosphor exhibited a small thermal quenching, which remained 90% of the initial emission intensity when measured at 200 °C. The internal and external quantum efficiencies measured under 450 nm excitation were 68 and 38%, respectively. Color temperature-tunable white LEDs with a high color rendering index of Ra = 88-94 were attained by combining the prepared green phosphor and a red phosphor Sr2Si5N8:Eu(2+) with a blue LED chip. PMID:24557497

  13. Single-Layer, Multicolor Electroluminescent Phosphors

    NASA Technical Reports Server (NTRS)

    Robertson, James B.

    1988-01-01

    Etching eliminated in producing phosphor layers for displays. New process enables production of single-layer, two-color phosphor layer without etching. Method of construction, beginning with glass substrate with electrode and insulator layers, involves deposition of green phosphor masking with metal mask or photoresist; diffusion or ion implantation of manganese through mask to produce red phosphor and removal of mask.

  14. Polymorphism of phosphoric oxide

    USGS Publications Warehouse

    Hill, W.L.; Faust, G.T.; Hendricks, S.B.

    1943-01-01

    The melting points and monotropic relationship of three crystalline forms of phosphoric oxide were determined by the method of quenching. Previous vapor pressure data are discussed and interpreted to establish a pressure-temperature diagram (70 to 600??) for the one-component system. The system involves three triple points, at which solid, liquid and vapor (P4O10) coexist in equilibrium, namely: 420?? and 360 cm., 562?? and 43.7 cm. and 580?? and 55.5 cm., corresponding to the hexagonal, orthorhombic and stable polymorphs, respectively, and at least two distinct liquids, one a stable polymer of the other, which are identified with the melting of the stable form and the hexagonal modification, respectively. Indices of refraction of the polymorphs and glasses were determined. The density and the thermal, hygroscopic and structural properties of the several phases are discussed.

  15. Lithium nephrotoxicity.

    PubMed

    Azab, Abed N; Shnaider, Alla; Osher, Yamima; Wang, Dana; Bersudsky, Yuly; Belmaker, R H

    2015-12-01

    Reports of toxic effects on the kidney of lithium treatment emerged very soon after lithium therapy was introduced. Lithium-induced nephrogenic diabetes insipidus is usually self-limiting or not clinically dangerous. Some reports of irreversible chronic kidney disease and renal failure were difficult to attribute to lithium treatment since chronic kidney disease and renal failure exist in the population at large. In recent years, large-scale epidemiological studies have convincingly shown that lithium treatment elevates the risk of chronic kidney disease and renal failure. Most patients do not experience renal side effects. The most common side effect of polyuria only weakly predicts increasing creatinine or reduced kidney function. Among those patients who do experience decrease in creatinine clearance, some may require continuation of lithium treatment even as their creatinine increases. Other patients may be able to switch to a different mood stabilizer medication, but kidney function may continue to deteriorate even after lithium cessation. Most, but not all, evidence today recommends using a lower lithium plasma level target for long-term maintenance and thereby reducing risks of severe nephrotoxicity. PMID:26043842

  16. Custom blending of lamp phosphors

    NASA Technical Reports Server (NTRS)

    Klemm, R. E.

    1978-01-01

    Spectral output of fluorescent lamps can be precisely adjusted by using computer-assisted analysis for custom blending lamp phosphors. With technique, spectrum of main bank of lamps is measured and stored in computer memory along with emission characteristics of commonly available phosphors. Computer then calculates ratio of green and blue intensities for each phosphor according to manufacturer's specifications and plots them as coordinates on graph. Same ratios are calculated for measured spectrum. Once proper mix is determined, it is applied as coating to fluorescent tubing.

  17. Combustion synthesis of borate phosphors

    NASA Astrophysics Data System (ADS)

    Thakare, D. S.; Omanwar, S. K.; Moharil, S. V.; Dhopte, S. M.; Muthal, P. L.; Kondawar, V. K.

    2007-08-01

    A fast and simple method of preparation, based on the combustion synthesis, is described for the synthesis of borate based PL phosphors which can be used for commercial lamp applications. Phosphors with various structures, incorporating different activators could be successfully prepared. PL intensities of (Gd0.6Ce0.2Tb0.2)MgB5O10, SrB4O7:Eu2+ and La0.88Gd0.1Bi0.02B3O6 were found to be comparable with those of the corresponding commercial phosphors.

  18. Possible ferroelectricity in perovskite oxynitride SrTaO2N epitaxial thin films

    PubMed Central

    Oka, Daichi; Hirose, Yasushi; Kamisaka, Hideyuki; Fukumura, Tomoteru; Sasa, Kimikazu; Ishii, Satoshi; Matsuzaki, Hiroyuki; Sato, Yukio; Ikuhara, Yuichi; Hasegawa, Tetsuya

    2014-01-01

    Compressively strained SrTaO2N thin films were epitaxially grown on SrTiO3 substrates using nitrogen plasma-assisted pulsed laser deposition. Piezoresponse force microscopy measurements revealed small domains (101–102 nm) that exhibited classical ferroelectricity, a behaviour not previously observed in perovskite oxynitrides. The surrounding matrix region exhibited relaxor ferroelectric-like behaviour, with remanent polarisation invoked by domain poling. First-principles calculations suggested that the small domains and the surrounding matrix had trans-type and a cis-type anion arrangements, respectively. These experiments demonstrate the promise of tailoring the functionality of perovskite oxynitrides by modifying the anion arrangements by using epitaxial strain.

  19. Preparation of niobium based oxynitride nanosheets by exfoliation of Ruddlesden-Popper phase precursor

    NASA Astrophysics Data System (ADS)

    da Silva Maia, Ary; Cheviré, François; Demange, Valérie; Bouquet, Valérie; Pasturel, Mathieu; Députier, Stéphanie; Lebullenger, Ronan; Guilloux-Viry, Marylline; Tessier, Franck

    2016-04-01

    A new oxynitride Ruddlesden-Popper phase K1.6Ca2Nb3O9.4N0.6.1.1H2O was synthesized by the topochemical ammonolysis reaction at 700 °C from the oxide Dion-Jacobson phase KCa2Nb3O10 in the presence of K2CO3. The oxynitride showed good stability with a little loss of nitrogen, even after a few months of exposure to air. Its crystal structure was solved by Rietveld refinement of X-ray powder diffraction data in space group P4/mmm and considering a two-phase mixture, due to the difference in the degree of hydration, with a = 3.894(2) Å and c = 17.90(8) Å for the most hydrated phase and a = 3.927(6) Å and c = 17.09(2) Å for the less one. Optical band gaps were measured by diffuse reflectance in the UV-Visible range indicating a red shift of Eg to the visible region. The oxynitride layered perovskite was then protonated and exfoliated into nanosheets. TEM images and SAED patterns of the nanosheets proved that exfoliation was successful, showing lattice parameters quite compatible with the Rietveld refinement.

  20. Formation of microchannels from low-temperature plasma-deposited silicon oxynitride

    DOEpatents

    Matzke, Carolyn M.; Ashby, Carol I. H.; Bridges, Monica M.; Manginell, Ronald P.

    2000-01-01

    A process for forming one or more fluid microchannels on a substrate is disclosed that is compatible with the formation of integrated circuitry on the substrate. The microchannels can be formed below an upper surface of the substrate, above the upper surface, or both. The microchannels are formed by depositing a covering layer of silicon oxynitride over a mold formed of a sacrificial material such as photoresist which can later be removed. The silicon oxynitride is deposited at a low temperature (.ltoreq.100.degree. C.) and preferably near room temperature using a high-density plasma (e.g. an electron-cyclotron resonance plasma or an inductively-coupled plasma). In some embodiments of the present invention, the microchannels can be completely lined with silicon oxynitride to present a uniform material composition to a fluid therein. The present invention has applications for forming microchannels for use in chromatography and electrophoresis. Additionally, the microchannels can be used for electrokinetic pumping, or for localized or global substrate cooling.

  1. Improved ultrathin oxynitride formed by thermal nitridation and low pressure chemical vapor deposition process

    NASA Astrophysics Data System (ADS)

    Maiti, Bikas; Hao, Ming Yin; Lee, Insup; Lee, Jack C.

    1992-10-01

    In this letter, we will present the electrical and reliability characteristics of ultrathin oxynitrides (65-73 Å) formed by thermal nitridation of silicon substrate followed by deposition of silicon dioxide by low pressure chemical vapor deposition (LPCVD) technique. The dielectric integrity has been compared to those of the conventional thermal oxide and reoxidized nitrided oxides. It has been found that the new oxynitrides have lower electron trapping, higher charge-to-breakdown, and lower interface state generation under electrical stress even in comparison to reoxidized nitrided oxides with the same thermal budget. The improved characteristics are believed to be due to the combination of the nitrogen-rich layer at the Si/SiO2 interface, the higher quality of LPCVD oxides over thermally grown oxides, and the reduced hydrogen concentration in the dielectrics in comparison to conventional nitrided oxides. The results indicate that these new oxynitride films may be promising for ultra large scale integrated metal-oxide-semiconductor device applications, especially in cases where low thermal budget processes are desirable.

  2. Structural and ellipsometric study on tailored optical properties of tantalum oxynitride films deposited by reactive sputtering

    NASA Astrophysics Data System (ADS)

    Bousquet, Angélique; Zoubian, Fadi; Cellier, Joël; Taviot-Gueho, Christine; Sauvage, T.; Tomasella, Eric

    2014-11-01

    Oxynitride materials, which offer the possibility of merging oxide and nitride properties, are increasingly studied for this reason. This paper focuses on assessing the optical properties of tantalum oxynitride thin films deposited by pure tantalum target sputtering in an Ar/O2/N2 reactive atmosphere. First, by changing the oxygen to reactive gas flow rate ratio, and using thermal post-treatment, we deposited films with elemental compositions studied by Rutherford backscattering spectroscopy, ranging from a nitride (close to Ta3N5) to an oxide (close to Ta2O5) with various structures analyzed by x-ray diffraction. Their optical properties were investigated in depth by spectroscopic ellipsometry and UV-visible spectroscopy. For the ellipsometry investigation, we propose a model combining the Tauc-Lorentz law and additional Lorentz oscillator: the first contribution is linked to a semi-conductor or insulator film matrix, and the second one to the presence of conductive TaN crystals. Ellipsometry thus appears as a powerful tool to investigate complex materials such as tantalum oxynitrides. Moreover, we demonstrated that using this deposition method we were able to finely tune the film refractive index from 3.4 to 2.0 (at 1.96 eV) and the optical band gap, specifically from 1.3 to 2.7 eV.

  3. Laser-activated remote phosphor conversion with ceramic phosphors

    NASA Astrophysics Data System (ADS)

    Lenef, Alan; Kelso, John; Tchoul, Maxim; Mehl, Oliver; Sorg, Jörg; Zheng, Y.

    2014-09-01

    Direct laser activation of a remote phosphor, or LARP, is a highly effective approach for producing very high luminance solid-state light sources. Such sources have much smaller étendue than LEDs of similar power, thereby greatly increasing system luminous fluxes in projection and display applications. While several commercial products now employ LARP technology, most current configurations employ phosphor powders in a silicone matrix deposited on rotating wheels. These provide a low excitation duty cycle that helps limit quenching and thermal overload. These systems already operate close to maximum achievable pump powers and intensities. To further increase power scaling and eliminate mechanical parts to achieve smaller footprints, OSRAM has been developing static LARP systems based on high-thermal conductivity monolithic ceramic phosphors. OSRAM has recently introduced a static LARP product using ceramic phosphor for endoscopy and also demonstrated a LARP concept for automotive forward lighting1. We first discuss the basic LARP concept with ceramic phosphors, showing how their improved thermal conductivity can achieve both high luminous fluxes and luminance in a static configuration. Secondly, we show the importance of scattering and low optical losses to achieving high overall efficiency and light extraction. This is shown through experimental results and radiation transport calculations. Finally, we discuss some of the fundamental factors which limit the ultimate luminance achievable with ceramic converted LARP, including optical pumping effects and thermal quenching.

  4. Fully phosphor-converted LEDs with Lumiramic phosphor technology

    NASA Astrophysics Data System (ADS)

    Bechtel, Helmut; Schmidt, Peter J.; Tücks, Andreas; Heidemann, Matthias; Chamberlin, Danielle; Müller-Mach, Regina; Müller, Gerd O.; Shchekin, Oleg

    2010-08-01

    Fully phosphor-converted LEDs (FpcLeds) with saturated emission have been realized in the green and amber spectral region. With the Lumiramic phosphor technology it is possible to achieve high package efficiency with minimum transmission of blue light from the primary LED source. This is done by keeping the scattering properties of the phosphor layer low while the phosphor thickness is chosen to fully convert all blue LED emission. It is shown that this can be done not only for optically isotropic Lumiramic materials like garnets, but also for oxonitridosilicate materials like the green emitting Europium doped SrSi2O2N2, crystallizing in a triclinic lattice with three optical axes. The scattering power of the Lumiramic can be decreased to acceptable levels by increasing the size of the crystallites in the densely sintered ceramics. Light propagation is found to be described well with Mie scattering of mono-sized SrSi2O2N2 spheres with refraction index differing by 0.07 to the refractive index of a SrSi2O2N2 matrix material. Using this technology, the green-yellow gap of visible light emitting LEDs can be bridged and color tunable lamps with the efficiency and flux of today's white phosphor-converted LEDs become feasible.

  5. H +, Na +, and K + ion sensing properties of sodium and aluminum coimplanted LPCVD silicon oxynitride thin films

    NASA Astrophysics Data System (ADS)

    Shin, Paik-Kyun; Mikolajick, Thomas

    2003-02-01

    Three different silicon oxynitride layers were fabricated by varying NH 3/N 2O flow rate ratios in low pressure chemical vapor deposition (LPCVD) process. Sodium and aluminum were then coimplanted by implanting sodium ions with the energy of 100 keV and dose of 5×10 16 cm -2 into an aluminum buffer layer on silicon dioxide and three different silicon oxynitride layers. The composition of the as-deposited silicon oxynitride layers was analyzed by sputtered neutral mass spectroscopy (SNMS). Sodium, potassium and pH-sensing properties of the layers were investigated on an electrolyte-isolator-silicon (EIS) structure using high frequency capacitance-voltage (HF-CV) measurements. Differences of pH, sodium and potassium sensing properties between the as-deposited silicon oxynitride layers and the coimplanted silicon oxynitride layers were investigated. The sodium and aluminum coimplanted layers showed better sodium and potassium sensitivity as well as a lower sensitivity towards hydrogen ions. The effect is more pronounced for higher oxygen concentration in the layers. On the other hand the stability of ion response of the layers, in contrast, is better for the higher nitrogen content of the layers.

  6. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  7. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  8. Optically stimulated luminescence in LiCaAlF6:Eu2+ phosphor.

    PubMed

    More, Y K; Wankhede, S P; Moharil, S V; Kumar, Munish; Chougaonkar, M P

    2015-09-01

    Results on optically stimulated luminescence (OSL) in LiCaAlF6:Eu(2+) are reported. Continuous wave OSL signal as recorded using blue (470 nm) stimulation was found to be ~31% that of standard phosphor lithium magnesium phosphate. The rate of OSL depletion for standard phosphor lithium magnesium phosphate is only three times less as compared with that of LiCaAlF6:Eu(2+). Strong photoluminescence (PL) in the near ultraviolet region is observed for LiCaAlF6:Eu(2+) with the characteristic Eu(2+) emission at 369 nm for 254 nm excitation. The thermoluminescence (TL) glow peak for LiCaAlF6:Eu(2+) was observed at around 180°C. The glow peak was about six times more intense compared with the dosimetric peak of the well known thermoluminescence dosimetric (TLD) phosphor LiF-TLD 100. Thus this phosphor deserves much more attention than it has received until now and may be useful as a dosimetric material in radiation dosimetry. PMID:25620581

  9. Inorganic Phosphor Materials for Lighting.

    PubMed

    Lin, Yuan-Chih; Karlsson, Maths; Bettinelli, Marco

    2016-04-01

    This chapter addresses the development of inorganic phosphor materials capable of converting the near UV or blue radiation emitted by a light emitting diode to visible radiation that can be suitably combined to yield white light. These materials are at the core of the new generation of solid-state lighting devices that are emerging as a crucial clean and energy saving technology. The chapter introduces the problem of white light generation using inorganic phosphors and the structure-property relationships in the broad class of phosphor materials, normally containing lanthanide or transition metal ions as dopants. Radiative and non-radiative relaxation mechanisms are briefly described. Phosphors emitting light of different colors (yellow, blue, green, and red) are described and reviewed, classifying them in different chemical families of the host (silicates, phosphates, aluminates, borates, and non-oxide hosts). This research field has grown rapidly and is still growing, but the discovery of new phosphor materials with optimized properties (in terms of emission efficiency, chemical and thermal stability, color, purity, and cost of fabrication) would still be of the utmost importance. PMID:27573146

  10. High-speed phosphor thermometry.

    PubMed

    Fuhrmann, N; Baum, E; Brübach, J; Dreizler, A

    2011-10-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilising the luminescence properties of doped ceramic materials. Typically, these phosphor materials are coated onto the object of interest and are excited by a short UV laser pulse. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. This contribution reports on the first realisation of a high-speed phosphor thermometry system employing a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterised regarding its temperature lifetime characteristic and its measurement precision. Additionally, the influence of laser power on the phosphor coating was investigated in terms of heating effects. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of 6 kHz corresponding to one sample per crank angle degree at 1000 rpm. PMID:22047319

  11. Titanium oxynitride interlayer to influence oxygen reduction reaction activity and corrosion stability of Pt and Pt-Ni alloy.

    PubMed

    Tan, XueHai; Wang, Liya; Zahiri, Beniamin; Kohandehghan, Alireza; Karpuzov, Dimitre; Lotfabad, Elmira Memarzadeh; Li, Zhi; Eikerling, Michael H; Mitlin, David

    2015-01-01

    A key advancement target for oxygen reduction reaction catalysts is to simultaneously improve both the electrochemical activity and durability. To this end, the efficacy of a new highly conductive support that comprises of a 0.5 nm titanium oxynitride film coated by atomic layer deposition onto an array of carbon nanotubes has been investigated. Support effects for pure platinum and for a platinum (50 at %)/nickel alloy have been considered. Oxynitride induces a downshift in the d-band center for pure platinum and fundamentally changes the platinum particle size and spatial distribution. This results in major enhancements in activity and corrosion stability relative to an identically synthesized catalyst without the interlayer. Conversely, oxynitride has a minimal effect on the electronic structure and microstructure, and therefore, on the catalytic performance of platinum-nickel. Calculations based on density functional theory add insight with regard to compositional segregation that occurs at the alloy catalyst-support interface. PMID:25470445

  12. Solid-State Thin-Film Lithium Batteries for Integration in Microsystems

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. F.; Silva, M. F.; Carmo, J. P.; Gonçalves, L. M.; Silva, M. M.; Correia, J. H.

    The increasing miniaturization of electronic devices requires the miniaturization of devices that provide energy to them. Autonomous devices of reduced energy consumption are increasingly common and they have benefited from energy harvesting techniques. However, these devices often have peak power consumption, requiring storage of energy.This chapter presents the fabrication and characterization of thin-films for solid-state lithium battery. The solid-state batteries stand out for the possibility of all materials being solid and therefore ideal for microelectronics fabrication techniques. Lithium batteries are composed primarily of three materials, the cathode, the electrolyte and the anode. The positive electrode (cathode) and negative (anode) have high electrical conductivity and capacity for extraction and insertion of lithium ions. The electrolyte's main features are the high ionic conductivity and high electrical resistivity. The materials chosen for the battery are lithium cobalt oxide (cathode), lithium phosphorus oxynitride (electrolyte), and metallic lithium (anode).The lithium cobalt oxide cathode (LiCoO2) was deposited by RF sputtering and characterized using the XRD, EDX, SEM techniques, and electrical resistivity. Fully crystalline {LiCoO}2 was achieved with an annealing of 65{0}° in vacuum for 2 h. Electrical resistivity of 3.7 Ω \\cdot mm was achieved.The lithium phosphorus oxynitride electrolyte (LIPON) was deposited by RF sputtering and characterized using the techniques EDX, SEM, ionic conductivity, DSC, and TGA. Ionic conductivity of 6.3 × 1{0}^{-7} S \\cdot {cm}^{-1} for a temperature of 2{6}°C was measured. The thermal stability of LIPON up to 40{0}°C was also proved.The metallic lithium anode (Li) was deposited by thermal evaporation and its electrical resistance measured at four points during the deposition. Resistance of about 3. 5 Ω was measured for a thickness of 3 μm. The oxidation rate of the lithium in contact with the ambient

  13. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  14. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  15. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  16. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  17. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  18. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  19. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is generally recognized as safe when used...

  20. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is...

  1. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  2. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  3. Deposition and dielectric characterization of strontium and tantalum-based oxide and oxynitride perovskite thin films

    NASA Astrophysics Data System (ADS)

    Jacq, S.; Le Paven, C.; Le Gendre, L.; Benzerga, R.; Cheviré, F.; Tessier, F.; Sharaiha, A.

    2016-04-01

    We have synthesized the composition x = 0.01 of the (Sr1-xLax)2(Ta1-xTix)2O7 solid solution, mixing the ferroelectric perovskite phases Sr2Ta2O7 and La2Ti2O7. Related oxide and oxynitride materials have been produced as thin films by magnetron radio frequency sputtering. Reactive sputter deposition was conducted at 750 °C under a 75 vol.% (Ar) + 25 vol.% (N2,O2) mixture. An oxygen-free plasma leads to the deposition of an oxynitride film (Sr0.99La0.01) (Ta0.99Ti0.01)O2N, characterized by a band gap Eg = 2.30 eV and a preferential (001) epitaxial growth on (001) SrTiO3 substrate. Its dielectric constant and loss tangent are respectively Epsilon' = 60 (at 1 kHz) and tanDelta = 62.5 × 10-3. In oxygen-rich conditions (vol.%N2 ≤ 15%), (110) epitaxial (Sr0.99La0.01)2(Ta0.99Ti0.01)2O7 oxides films are deposited, associated to a larger band gap value (Eg = 4.55 eV). The oxide films permittivity varies from 45 to 25 (at 1 kHz) in correlation with the decrease in crystalline orientation; measured losses are lower than 5.10-3. For 20 ≤ vol.% N2 ≤ 24.55, the films are poorly crystallized, leading to very low permittivities (minimum Epsilon' = 3). A correlation between the dielectric losses and the presence of an oxynitride phase in the samples is highlighted.

  4. N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution.

    PubMed

    Li, Qun; Cui, Wei; Tian, Jingqi; Xing, Zhicai; Liu, Qian; Xing, Wei; Asiri, Abdullah M; Sun, Xuping

    2015-08-10

    It is highly desired but still challenging to develop active nonprecious metal hydrogen evolution reaction (HER) electrocatalysts operating under all pH conditions. Herein, the development of three-dimensional N-doped carbon-coated tungsten oxynitride nanowire arrays on carbon cloth as a highly efficient and durable HER cathode was explored. The material delivers current densities of 10 and 100 mA cm(-2) at overpotentials of 106 and 172 mV, respectively, in acidic medium, and it also performs well in neutral and basic electrolytes. PMID:26121606

  5. The study of titanium oxynitride coatings solubility deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Leonova, L. A.; Boytsova, E. L.; Pustovalova, A. A.

    2016-06-01

    To improve hemocompatibility of cardiovascular stents the coatings based on titanium oxides and oxynitrides were used. In the present work the morphology, surface properties (wettability and surface energy), and in vitro solubility of the ternary system Ti-N-O coating were investigated. Experimentally, low dissolution rate of the coating in saline NaCl (0,9%) was confirmed. Instrumental methods of quantitative analysis (XRF, AES) revealed that the Ti-N-O coating is chemical-resistant and does not change the qualitative and quantitative composition of body fluids.

  6. Local structure of indium oxynitride from x-ray absorption spectroscopy

    SciTech Connect

    T-Thienprasert, J.; Onkaw, D.; Rujirawat, S.; Limpijumnong, S.; Nukeaw, J.; Sungthong, A.; Porntheeraphat, S.; Singkarat, S.

    2008-08-04

    Synchrotron x-ray absorption near edge structures (XANES) measurements of In L{sub 3} edge is used in conjunction with first principles calculations to characterize rf magnetron sputtered indium oxynitride at different O contents. Good agreement between the measured and the independently calculated spectra are obtained. Calculations show that the XANES spectra of this alloy are sensitive to the coordination numbers of the In atoms, i.e., fourfold for indium nitride-like structures and sixfold for indium oxide-like structures, but not to the substitution of nearest neighbor N by O or vice versa.

  7. Nanopore fabrication in silicon oxynitride membranes by heating Au-particles

    NASA Astrophysics Data System (ADS)

    de Vreede, L. J.; Schmidt Muniz, M.; van den Berg, A.; Eijkel, J. C. T.

    2016-03-01

    We report the fabrication of nanopores in a silicon oxynitride (SiON) membrane by heating a silicon rich-silicon nitride (SiRN) membrane with a gold nanoparticle array deposited on its surface. The gold nanoparticle array was realized by photolithography and the membrane by wet-etching. The entire process is wafer scale. Nanopore through-holes of an average diameter of 150 nm were produced in a ~22 nm thick membrane. Membranes and nanopores were characterized by atomic force microscopy, scanning transmission electron microscopy, and x-ray photo-electron spectrocopy.

  8. Stability and etching of titanium oxynitride films in hydrogen microwave plasma

    SciTech Connect

    Do Hien; Yen, Tzu-Chun; Chang Li

    2013-07-15

    Epitaxial titanium oxynitride (TiNO) films deposited on MgO by pulsed laser deposition were treated in hydrogen microwave plasma. Scanning electron microscopy and x-ray photoelectron spectroscopy were used to examine the stability and etching of TiNO which strongly depended on hydrogen gas pressure. TiNO was very chemically stable and remained with good crystallinity under hydrogen pressure below 5300 Pa. With increase of pressure, it may lead to the formation of etch pits in inverse pyramid shape. The etch mechanism as well as the effects of gas pressure and etching time are also presented.

  9. Rare earth niobium oxynitrides, LnNbON{sub 2-{delta}} (Ln = Y, La, Pr, Nd, Gd, Dy): Synthesis, structure and properties

    SciTech Connect

    Kumar, Nitesh; Sundaresan, A.; Rao, C.N.R.

    2011-11-15

    Graphical abstract: Ammonolysis of LnNbO{sub 4} (Ln = rare earth or Y) leads to the formation of oxynitrides of different structures depending on the size of the rare earth. Highlights: {yields} We have carried out ammonolysis of LnNbO{sub 4} (Ln = rare earth and Y) to form oxynitrides of different structures depending on the size of the rare earth. {yields} Infrared spectroscopy shows the marked difference between oxides and the corresponding oxynitrides. {yields} The oxynitrides are stable in air upto {approx}400 {sup o}C above which an intermediate phase with nitrogen molecules attached to the oxide lattice forms. {yields} Gadolinium niobium oxynitride shows paramagnetism. -- Abstract: Ammonolysis of rare earth niobates of the type LnNbO{sub 4} (Ln = Y, La, Pr, Nd, Gd, Dy) yields oxynitrides of different structures. When Ln = La, Nd and Pr, the structure is that of an orthorhombic perovskite of the general formula LnNbON{sub 2}. As the size of the rare earth decreases, the oxynitride has a nitrogen-deficient defect fluorite (Ln = Pr, Nd, Gd), or pyrochlore (Ln = Y) structure. The IR spectra of the oxynitrides and the corresponding oxides are significantly different. Thermogravimetric analysis suggests the formation of an intermediate phase wherein the N{sub 2} molecule is attached to the oxide lattice above 400 {sup o}C and decomposes to give the oxide on heating in an oxygen atmosphere. Raman spectra of the intermediate phases show evidence for the N{identical_to}N stretching vibration. Gadolinium niobium oxynitride is found to be paramagnetic.

  10. On the phase formation of sputtered hafnium oxide and oxynitride films

    SciTech Connect

    Sarakinos, K.; Music, D.; Mraz, S.; Baben, M. to; Jiang, K.; Nahif, F.; Braun, A.; Zilkens, C.; Schneider, J. M.; Konstantinidis, S.; Renaux, F.; Cossement, D.; Munnik, F.

    2010-07-15

    Hafnium oxynitride films are deposited from a Hf target employing direct current magnetron sputtering in an Ar-O{sub 2}-N{sub 2} atmosphere. It is shown that the presence of N{sub 2} allows for the stabilization of the transition zone between the metallic and the compound sputtering mode enabling deposition of films at well defined conditions of target coverage by varying the O{sub 2} partial pressure. Plasma analysis reveals that this experimental strategy facilitates control over the flux of the O{sup -} ions which are generated on the oxidized target surface and accelerated by the negative target potential toward the growing film. An arrangement that enables film growth without O{sup -} ion bombardment is also implemented. Moreover, stabilization of the transition sputtering zone and control of the O{sup -} ion flux without N{sub 2} addition is achieved employing high power pulsed magnetron sputtering. Structural characterization of the deposited films unambiguously proves that the phase formation of hafnium oxide and hafnium oxynitride films with the crystal structure of HfO{sub 2} is independent from the O{sup -} bombardment conditions. Experimental and theoretical data indicate that the presence of vacancies and/or the substitution of O by N atoms in the nonmetal sublattice favor the formation of the cubic and/or the tetragonal HfO{sub 2} crystal structure at the expense of the monoclinic HfO{sub 2} one.

  11. Control of silicon oxynitrides refractive index by reactive-assisted ion beam sputter deposition

    NASA Astrophysics Data System (ADS)

    Ida, Michel; Chaton, Patrick; Rafin, B.

    1994-11-01

    This paper presents the properties of silicon oxynitrides obtained by reactive ion beam sputter deposition: Dual Ion Beam System. Control of refractive index was achieved by adjusting the process parameters as ion beam current, ion beam energy and reactive gas partial pressure of oxygen and nitrogen. The main difficulty was to achieve stoichiometric nitride, it has been shown that energetic ionized nitrogen was needed to obtain silicon nitride. The major parameter, to obtain variable compositions between silica and silicon nitride, was the oxygen partial pressure with a fixed nitrogen partial pressure. Optical constants in the visible range, refractive index and extinction coefficient, have been measured by spectrophotometry and spectroscopic ellipsometry. Stoichiometry, contamination and packing density have been measured by Rutherford Backscattering and Nuclear Reaction Analysis. The correlation between the film composition and optical constants is shown. Various test results indicate that silicon oxynitrides obtained by reactive assisted ion beam sputtering are high quality optical materials. These films are homogeneous isotropic, with a high packing density. The extinction coefficient is in the order of 10-4 after 300 degree(s)C annealing. All values of refractive index between 1.49 and 2.1 can be chosen.

  12. On the phase formation of sputtered hafnium oxide and oxynitride films

    NASA Astrophysics Data System (ADS)

    Sarakinos, K.; Music, D.; Mráz, S.; to Baben, M.; Jiang, K.; Nahif, F.; Braun, A.; Zilkens, C.; Konstantinidis, S.; Renaux, F.; Cossement, D.; Munnik, F.; Schneider, J. M.

    2010-07-01

    Hafnium oxynitride films are deposited from a Hf target employing direct current magnetron sputtering in an Ar-O2-N2 atmosphere. It is shown that the presence of N2 allows for the stabilization of the transition zone between the metallic and the compound sputtering mode enabling deposition of films at well defined conditions of target coverage by varying the O2 partial pressure. Plasma analysis reveals that this experimental strategy facilitates control over the flux of the O- ions which are generated on the oxidized target surface and accelerated by the negative target potential toward the growing film. An arrangement that enables film growth without O- ion bombardment is also implemented. Moreover, stabilization of the transition sputtering zone and control of the O- ion flux without N2 addition is achieved employing high power pulsed magnetron sputtering. Structural characterization of the deposited films unambiguously proves that the phase formation of hafnium oxide and hafnium oxynitride films with the crystal structure of HfO2 is independent from the O- bombardment conditions. Experimental and theoretical data indicate that the presence of vacancies and/or the substitution of O by N atoms in the nonmetal sublattice favor the formation of the cubic and/or the tetragonal HfO2 crystal structure at the expense of the monoclinic HfO2 one.

  13. Sputtered titanium oxynitride coatings for endosseous applications: Physical and chemical evaluation and first bioactivity assays

    NASA Astrophysics Data System (ADS)

    Banakh, Oksana; Moussa, Mira; Matthey, Joel; Pontearso, Alessandro; Cattani-Lorente, Maria; Sanjines, Rosendo; Fontana, Pierre; Wiskott, Anselm; Durual, Stephane

    2014-10-01

    Titanium oxynitride coatings (TiNxOy) are considered a promising material for applications in dental implantology due to their high corrosion resistance, their biocompatibility and their superior hardness. Using the sputtering technique, TiNxOy films with variable chemical compositions can be deposited. These films may then be set to a desired value by varying the process parameters, that is, the oxygen and nitrogen gas flows. To improve the control of the sputtering process with two reactive gases and to achieve a variable and controllable coating composition, the plasma characteristics were monitored in-situ by optical emission spectroscopy. TiNxOy films were deposited onto commercially pure (ASTM 67) microroughened titanium plates by reactive magnetron sputtering. The nitrogen gas flow was kept constant while the oxygen gas flow was adjusted for each deposition run to obtain films with different oxygen and nitrogen contents. The physical and chemical properties of the deposited films were analyzed as a function of oxygen content in the titanium oxynitride. The potential application of the coatings in dental implantology was assessed by monitoring the proliferation and differentiation of human primary osteoblasts.

  14. Improved Retention Characteristic in Polycrystalline Silicon-Oxide-Hafnium Oxide-Oxide-Silicon-Type Nonvolatile Memory with Robust Tunnel Oxynitride

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih Ren; Lai, Chiung Hui; Lin, Bo Chun; Zheng, Yuan Kai; Chung Lou, Jen; Lin, Gray

    2011-03-01

    In this paper, we present a simple novel process for forming a robust and reliable oxynitride dielectric with a high nitrogen content. It is highly suitable for n-channel metal-oxide-semiconductor field-effect transistor (nMOSFETs) and polycrystalline silicon-oxide-hafnium oxide-oxide-silicon (SOHOS)-type memory applications. The proposed approach is realized by using chemical oxide with ammonia (NH3) nitridation followed by reoxidation with oxygen (O2). The novel oxynitride process is not only compatible with the standard complementary metal-oxide-semiconductor (CMOS) process, but also can ensure the improvement of flash memory with low-cost manufacturing. The characteristics of nMOSFETs and SOHOS-type nonvolatile memories (NVMs) with a robust oxynitride as a gate oxide or tunnel oxide are studied to demonstrate their advantages such as the retardation of the stress-induced trap generation during constant-voltage stress (CVS), the program/erase behaviors, cycling endurance, and data retention. The results indicate that the proposed robust oxynitride is suitable for future nonvolatile flash memory technology application.

  15. Interface properties and reliability of ultrathin oxynitride films grown on strained Si1-xGex substrates

    NASA Astrophysics Data System (ADS)

    Samanta, S. K.; Chatterjee, S.; Maikap, S.; Bera, L. K.; Banerjee, H. D.; Maiti, C. K.

    2003-03-01

    The role of nitrogen in improving the interface properties and the reliability of oxynitride/SiGe interfaces and the dielectric properties of oxynitride films has been studied using constraint theory. Ultrathin (<3 nm) oxynitride films were grown using N2O followed by N2 annealing on strained Si0.82Ge0.18 layers. Silicon dioxide films grown on strained Si0.82Ge0.18 layers were also nitrided in N2O by rapid thermal processing. The nitrogen distribution in the oxynitride films was investigated by time-of-flight secondary ion mass spectrometry. The interface state density, charge trapping properties, and interface state generation with constant current and voltage stressing were studied. It is observed that dielectric films grown in N2O ambient and subsequently annealed in N2 have excellent electrical properties. A low stress-induced leakage current and a high time dependent dielectric breakdown are also observed in these films. Improvements in the electrical properties are shown to be due to the creation of a large number of strong Si-N bonds both in bulk and in the SiON-Si1-xGex interface region of the dielectric.

  16. Lithium in 2012

    USGS Publications Warehouse

    Jaskula, B.W.

    2013-01-01

    In 2012, estimated world lithium consumption was about 28 kt (31,000 st) of lithium contained in minerals and compounds, an 8 percent increase from that of 2011. Estimated U.S. consumption was about 2 kt (2,200 st) of contained lithium, the same as that of 2011. The United States was thought to rank fourth in consumption of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Rockwood Lithium Inc., produced lithium compounds from domestic brine resources near Silver Peak, NV.

  17. Method and apparatus for reading thermoluminescent phosphors

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang

    1987-01-01

    An apparatus and method for rapidly reading thermoluminescent phosphors to determine the amount of luminescent energy stored therein. The stored luminescent energy is interpreted as a measure of the total exposure of the thermoluminescent phosphor to ionizing radiation. The thermoluminescent phosphor reading apparatus uses a laser to generate a laser beam. The laser beam power level is monitored by a laser power detector and controlled to maintain the power level nearly constant. A shutter or other laser beam interrupting means is used to control exposure of the thermoluminescent phosphor to the laser beam. The laser beam can be equalized using an optical equalizer so that the laser beam has an approximately uniform power density across the beam. The heated thermoluminescent phosphor emits a visible or otherwise detectable luminescent emission which is measured as an indication of the radiation exposure of the thermoluminescent phosphors. Also disclosed are preferred signal processing and control circuits.

  18. Phosphors with long-persistent green phosphorescence

    DOEpatents

    Yen, William M; Jia, Weiyi; Lu, Lizhu; Yuan, Huabiao

    2001-01-01

    This invention relates to phosphors including long-persistence green phosphors. Phosphors of the invention are represented by the general formula: M.sub.k Al.sub.2 O.sub.4 :2xEu.sup.2+,2yR.sup.3+ wherein k-1-2x-2y, x is a number ranging from about 0.0001 to about 0.05, y is a number ranging from about x to about 3x, M is an alkaline earth metal, and R.sup.3+ is one or more trivalent metal ions. Phosphors of this invention include powders, ceramics, single crystals and single crystal fibers. A method of manufacturing improved phosphors and a method of manufacturing single crystal phosphors are also provided.

  19. Optical properties of zirconium oxynitride films: The effect of composition, electronic and crystalline structures

    NASA Astrophysics Data System (ADS)

    Carvalho, P.; Borges, J.; Rodrigues, M. S.; Barradas, N. P.; Alves, E.; Espinós, J. P.; González-Elipe, A. R.; Cunha, L.; Marques, L.; Vasilevskiy, M. I.; Vaz, F.

    2015-12-01

    This work is devoted to the investigation of zirconium oxynitride (ZrOxNy) films with varied optical responses prompted by the variations in their compositional and structural properties. The films were prepared by dc reactive magnetron sputtering of Zr, using Ar and a reactive gas mixture of N2 + O2 (17:3). The colour of the films changed from metallic-like, very bright yellow-pale and golden yellow, for low gas flows to red-brownish for intermediate gas flows. Associated to this colour change there was a significant decrease of brightness. With further increase of the reactive gas flow, the colour of the samples changed from red-brownish to dark blue or even to interference colourations. The variations in composition disclosed the existence of four different zones, which were found to be closely related with the variations in the crystalline structure. XRD analysis revealed the change from a B1 NaCl face-centred cubic zirconium nitride-type phase for films prepared with low reactive gas flows, towards a poorly crystallized over-stoichiometric nitride phase, which may be similar to that of Zr3N4 with some probable oxygen inclusions within nitrogen positions, for films prepared with intermediate reactive gas flows. For high reactive gas flows, the films developed an oxynitride-type phase, similar to that of γ-Zr2ON2 with some oxygen atoms occupying some of the nitrogen positions, evolving to a ZrO2 monoclinic type structure within the zone where films were prepared with relatively high reactive gas flows. The analysis carried out by reflected electron energy loss spectroscopy (REELS) revealed a continuous depopulation of the d-band and an opening of an energy gap between the valence band (2p) and the Fermi level close to 5 eV. The ZrN-based coatings (zone I and II) presented intrinsic colourations, with a decrease in brightness and a colour change from bright yellow to golden yellow, red brownish and dark blue. Associated to these changes, there was also a shift

  20. Method of preparing a thermoluminescent phosphor

    DOEpatents

    Lasky, Jerome B.; Moran, Paul R.

    1979-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta ays in the presence of a background of more penetrating radiation.

  1. Investigations of blue emitting phosphors for thermometry

    NASA Astrophysics Data System (ADS)

    Särner, Gustaf; Richter, Mattias; Aldén, Marcus

    2008-12-01

    Blue emitting phosphors are investigated and reported for possible use in thermometry. Currently reported thermographic phosphors in general have the drawback of long emission lifetimes obstructing the possibility to time gate for background discrimination. An additional problem is that many thermographic phosphors have emission in the red spectral region, making them vulnerable for black body radiation at high temperatures. This work reports the temperature sensitivity for nine phosphors considered suitable for accurate temperature measurements in harsh conditions both in single points and in two dimensions (2D).

  2. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... phosphoric acid, and super phosphoric acid. (b) Phosphoric acid may be carried in either gravity or pressure... gravity type cargo tanks. (d) Cargo piping, including valves, fittings, and flanges where exposed to...

  3. Structural Evolution of Silicon Oxynitride Fiber Reinforced Boron Nitride Matrix Composite at High Temperatures

    NASA Astrophysics Data System (ADS)

    Zou, Chunrong; Li, Bin; Zhang, Changrui; Wang, Siqing; Xie, Zhengfang; Shao, Changwei

    2016-02-01

    The structural evolution of a silicon oxynitride fiber reinforced boron nitride matrix (Si-N-Of/BN) wave-transparent composite at high temperatures was investigated. When heat treated at 1600 °C, the composite retained a favorable bending strength of 55.3 MPa while partially crystallizing to Si2N2O and h-BN from the as-received amorphous structure. The Si-N-O fibers still performed as effective reinforcements despite the presence of small pores due to fiber decomposition. Upon heat treatment at 1800 °C, the Si-N-O fibers already lost their reinforcing function and rough hollow microstructure formed within the fibers because of the accelerated decomposition. Further heating to 2000 °C led to the complete decomposition of the reinforcing fibers and only h-BN particles survived. The crystallization and decomposition behaviors of the composite at high temperatures are discussed.

  4. Effects of Calcination Condition on Porous Reduced Titanium Oxides and Oxynitrides via Preceramic Polymer Route

    SciTech Connect

    Hasegawa, George; Sato, Tatsuya; Kanamori, Kazuyoshi; Sun, Cheng-Jun; Ren, Yang; Kobayashi, Yoji; Kageyama, Hiroshi; Abe, Takeshi; Nakanishi, Kazuki

    2015-03-16

    The preceramic polymer route from titanium-based inorganic-organic hybrid networks provides electro conductive N-doped reduced titanium oxides (TinO2n–1) and titanium oxynitrides (TiOxNy) with a monolithic shape as well as well-defined porous structure. This methodology demonstrates advantageously lower temperature of crystal phase transition compared to the reduction of TiO2 by carbon or H2. In this study, effects of calcination condition on various features of the products have been explored by adopting three different atmospheric conditions and varying the calcination temperature. The detailed crystallographic and elemental analyses disclose the distinguished difference in phase transition behavior with respect to calcination atmosphere. Correlation between the crystallization and nitridation behaviors, porous properties and electric conductivities in the final products has been discussed.

  5. Mechanical properties of silicon oxynitride thin films prepared by low energy ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Shima, Yukari; Hasuyama, Hiroki; Kondoh, Toshiharu; Imaoka, Yasuo; Watari, Takanori; Baba, Koumei; Hatada, Ruriko

    1999-01-01

    Silicon oxynitride (SiO xN y) films (0.1-0.7 μm) were produced on Si (1 0 0), glass and 316L stainless steel substrates by ion beam assisted deposition (IBAD) using Si evaporation and the concurrent bombardment with a mixture of 200 eV N 2 and Ar, or O 2 and Ar ions. Adhesion was evaluated by pull-off tests. Film hardness was measured by a nanoindentation system with AFM. The measurement of internal stress in the films was carried out by the Stoney method. The film structure was examined by GXRD. XPS was employed to measure the composition of films and to analyze the chemical bonds. The dependence of mechanical properties on the film thickness and the processing temperature during deposition was studied. Finally, the relations between the mechanical properties of the films and the correlation with corrosion-protection ability of films are discussed and summarized.

  6. Effect of annealing on properties of decorative zirconium oxynitride thin films

    NASA Astrophysics Data System (ADS)

    Hamed Mohamed, Sodky; Hadia, Nomery M. A.; Ali, Hazim M.

    2015-03-01

    > of 0.98. The as-prepared films were annealed in air for 1 h. The full set of annealing was 100, 200, 300, 400, 450, 500 and 550°C. The annealed zirconium oxynitride films exhibited nitrogen loss (oxidation). The nitrogen loss results in a great variance in compositional, electrical and optical properties. The energy dispersive analysis of X-ray and X-ray diffraction were used to examine the compositional and structural properties, respectively. A huge increase in the electrical resistivity was observed upon oxidation. The films annealed at higher temperatures (≥450°C) showed insulating behavior with low extinction coefficient (<1) and reasonable refractive index values. The optical band gap values of the films annealed at 500°C and 550°C are in good agreement with the previously reported values for ZrO2.

  7. Silicon oxynitride thin films synthesised by the reactive gas pulsing process using rectangular pulses

    NASA Astrophysics Data System (ADS)

    Aubry, E.; Weber, S.; Billard, A.; Martin, N.

    2011-09-01

    Silicon oxynitride thin films were synthesised by the reactive gas pulsing process using an argon, oxygen and nitrogen gas mixture from a semiconductor Si target. Argon and nitrogen were introduced at a constant mass flow rate, whereas oxygen gas was periodically supplied using a rectangular pulsed flow rate. The O2 injection time TON (or duty cycle α) was the only varied parameter. The influences of this parameter on the discharge behaviour, on the Si target voltage, and on the resulting chemical composition of the films were investigated. The temporal evolution of the total pressure exhibits exponential shape differing from the rectangular oxygen pulse shape, due to the response time of the gas flowmeter and to the progressive oxidation of the target and the chamber walls. During the TON time, the preferential adsorption of the introduced O2 induces a decay in Si target voltage. Reversion to the nitrided mode is still possible as soon as the O2 injection is stopped. The elemental analyses assessed by secondary neutral mass spectrometry (SNMS) showed that the O/N ratio within silicon oxynitride films linearly depends on the TON time. Increasing the duty cycle α over a certain value results in an oxidised steady state formation during the TON time. This formation was observed by real time measurements of the emission lines ratio I(O*)/I(Ar*) indicative of the O2 partial pressure and confirmed by the time derivative of the target voltage. During the TOFF time, the alternation with the nitrided mode becomes impossible, leading to the specific synthesis of stoichiometric SiO2 films.

  8. Temperature dependence of the biaxial modulus, intrinsic stress and composition of plasma deposited silicon oxynitride films

    NASA Technical Reports Server (NTRS)

    Harding, David R.; Ogbuji, Linus U. T.; Freeman, Mathieu J.

    1995-01-01

    Silicon oxynitride films were deposited by plasma-enhanced chemical-vapor deposition. The elemental composition was varied between silicon nitride and silicon dioxide: SiO(0.3)N(1.0), SiO(0.7)N(1.6), SiO(0.7)N(1.1), and SiO(1.7)N(0.%). These films were annealed in air, at temperatures of 40-240 C above the deposition temperature (260 C), to determine the stability and behavior or each composition. the biaxial modulus, biaxial intrinsic stress, and elemental composition were measured at discrete intervals within the annealing cycle. Films deposited from primarily ammonia possessed considerable hydrogen (up to 38 at.%) and lost nitrogen and hydrogen at anneal temperatures (260-300 C) only marginally higher than the deposition temperature. As the initial oxygen content increased a different mechanism controlled the behavior or the film: The temperature threshold for change rose to approximately equal to 350 C and the loss of nitrogen was compensated by an equivalent rise in the oxygen content. The transformation from silicon oxynitride to silica was completed after 50 h at 400 C. The initial biaxial modulus of all compositions was 21-3- GPa and the intrinsic stress was -30 to 85 MPa. Increasing the oxygen content raised the temperature threshold where cracking first occurred; the two film compositions with the highest initial oxygen content did not crack, even at the highest temperature (450 C) investigated. At 450 C the biaxial modulus increased to approximately equal to 100 GPa and the intrinsic stress was approximately equal to 200 MPa. These increases could be correlated with the observed change in the film's composition. When nitrogen was replaced by oxygen, the induced stress remained lower than the biaxial strength of the material, but, when nitrogen and hydrogen were lost, stress-relieving microcracking occurred.

  9. P2IMS depth profile analysis of high temperature boron oxynitride dielectric films

    NASA Astrophysics Data System (ADS)

    Badi, N.; Vijayaraghavan, S.; Benqaoula, A.; Tempez, A.; Tauziède, C.; Chapon, P.

    2014-02-01

    Existing silicon oxynitride (SiON) dielectric can only provide a very near term solution for the metal oxide semiconductor technology. The emerging high-k dielectric materials have a limited thermal stability and are prone to electrical behavior degradation which is associated with unwanted chemical reactions with silicon (Si). We investigated here applicability of amorphous boron oxynitride (BON) thin films as an emerging dielectric for high temperature capacitors. BON samples of thickness varying from 200 nm down to 10 nm were deposited in a high vacuum reactor using ion source assisted physical vapor deposition (PVD) technique. Plasma profiling ion mass spectrometry (P2IMS) was utilized to specifically determine the interface quality and best capacitor performance as a function of growth temperatures of a graded sample with alternate layers of deposited titanium (Ti) and BON layers on Si. P2IMS depth profiling of these layers were also performed to evaluate the stability of the dielectric layers and their efficacy against B dopant diffusion simulating processes occurring in activated polySi-based devices. For this purpose, BON layers were deposited on boron-isotope 10 (B10) implanted Si substrates and subsequently annealed at high temperatures up to 1050 °C for about 10 s. Results comparing inter-diffusion of B10 intensities at the interfaces of BON-Si and SiON-Si samples suggest suitability of BON as barrier layers against boron diffusion at high temperature. Stable Ti/BON/Ti capacitor behavior was achieved at optimum growth temperature of 600 °C of the BON dielectric layer. Capacitance change with frequency (10 kHz to 2 MHz) and temperature up to 400 °C is about 1% and 10%, respectively.

  10. Three-Dimensional Cu2ZnSnS4 Films with Modified Surface for Thin-Film Lithium-Ion Batteries.

    PubMed

    Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang

    2015-08-12

    Cu2ZnSnS4 (CZTS) is an important material in low-cost thin film solar cells and is also a promising candidate for lithium storage. In this work, a novel three-dimensional CZTS film coated with a lithium phosphorus oxynitride (LiPON) film is fabricated for the first time and is applied to thin-film lithium-ion batteries. The modified film exhibits an excellent performance of ∼900 mAh g(-1) (450 μAh cm(-2) μm(-1)), even after 75 cycles. Morphology integrity is still maintained after repeated lithiation/delithiation, and the main reaction mechanism is analyzed in detail. The significant findings from this study indicate the striking advantages of modifying both the surface and structure of alloy-based electrodes for energy storage. PMID:26192026

  11. Lithium-associated hyperthyroidism.

    PubMed

    Siyam, Fadi F; Deshmukh, Sanaa; Garcia-Touza, Mariana

    2013-08-01

    Goiters and hypothyroidism are well-known patient complications of the use of lithium for treatment of bipolar disease. However, the occurrence of lithium-induced hyperthyroidism is a more rare event. Many times, the condition can be confused with a flare of mania. Monitoring through serial biochemical measurement of thyroid function is critical in patients taking lithium. Hyperthyroidism induced by lithium is a condition that generally can be controlled medically without the patient having to discontinue lithium therapy, although in some circumstances, discontinuation of lithium therapy may be indicated. We report on a patient case of lithium-associated hyperthyroidism that resolved after discontinuation of the medication. PMID:23948626

  12. Thermoluminescence Characteristics of Nanocrystalline LiF Phosphors Synthesized at Different pH Values

    SciTech Connect

    Sharma, A. K.; Dogra, R.; Kumar, Shalendra; Mishra, S. K.; Lochab, S. P.; Kumar, Ravi

    2011-07-15

    Nanocrystalline lithium fluoride (LiF) phosphors have been prepared by the chemical co-precipitation method at different pH values (7.0, 8.0, 9.0). The formation of nanocrystalline structure has been confirmed by X-ray diffraction and transmission electron microscope. The thermolumniscence (TL) properties of LiF phosphors irradiated with gamma rays at different doses have been studied. The analysis of TL glow curve has revealed the existence of two well resolved glow peaks, one low temperature peak at around 145 deg. C and other one at higher temperature around 375 deg. C. The LiF nano-crystallites synthesized at 8.00 pH have been found to show maximum TL intensity at studied gamma doses (0.1 Gy-15 Gy).

  13. Ion bombardment-induced mechanical stress in plasma-enhanced deposited silicon nitride and silicon oxynitride films

    SciTech Connect

    Claassen, W.A.P.

    1987-03-01

    The authors have studied the influence of different deposition conditions on the mechanical stress of silicon nitride and silicon oxynitride layers formed by plasma-enhanced deposition onto silicon substrates. It appears that the mechanical stress of the as-deposited silicon (oxy)nitride layer is a combined effect of the extent of ion bombardment and the deposition temperature on the hydrogen desorption rate. Deposited films show a tensile stress character when the hydrogen desorption rate is thermally controlled, whereas in the case of an ion-bombardment-controlled hydrogen desorption rate the deposited films have a compressive stress. It is also shown that due to annealing at temperatures above the deposition temperature the films are densified as a result of hydrogen desorption and cross-linking.

  14. Methods of forming aluminum oxynitride-comprising bodies, including methods of forming a sheet of transparent armor

    DOEpatents

    Chu, Henry Shiu-Hung [Idaho Falls, ID; Lillo, Thomas Martin [Idaho Falls, ID

    2008-12-02

    The invention includes methods of forming an aluminum oxynitride-comprising body. For example, a mixture is formed which comprises A:B:C in a respective molar ratio in the range of 9:3.6-6.2:0.1-1.1, where "A" is Al.sub.2O.sub.3, "B" is AlN, and "C" is a total of one or more of B.sub.2O.sub.3, SiO.sub.2, Si--Al--O--N, and TiO.sub.2. The mixture is sintered at a temperature of at least 1,600.degree. C. at a pressure of no greater than 500 psia effective to form an aluminum oxynitride-comprising body which is at least internally transparent and has at least 99% maximum theoretical density.

  15. Study of the R-(Zr,W)-(O,N) (R = Y, Nd, Sm, Gd, Yb) oxynitride system

    SciTech Connect

    Tessier, Franck; Maillard, Pascal; Orhan, Emmanuelle; Chevire, Francois

    2010-02-15

    The replacement of tantalum by the couple Zr/W within the RTa-O-N systems (R = Y, Nd, Sm, Gd, Yb), enables the preparation of novel oxide and oxynitride phases in the R-Zr-W-O-N system. R{sub 2}Zr{sub 2-x}W{sub x}O{sub 7+x} oxides exhibit the fluorite-type (x < 0.9) and scheelite (x {approx} 1) structures. Corresponding oxynitride compositions are of the fluorite-type and show different colors, for example in the case of ytterbium: pale yellow (x = 0.2 or 0.25), green (x = 0.5-0.8) and brown for the tungsten-rich samples (x = 0.9, 1). Photocatalytic activity measurements have been performed to investigate the overall water splitting behavior of these colored phases.

  16. Abnormal anti-quenching and controllable multi-transitions of Bi3+ luminescence by temperature in a yellow-emitting LuVO4 :Bi3+ phosphor for UV-converted white LEDs.

    PubMed

    Kang, Fengwen; Peng, Mingying; Zhang, Qinyuan; Qiu, Jianrong

    2014-09-01

    Phosphors with an efficient yellow-emitting color play a crucial role in phosphor-converted white LEDs (pc-WLEDs), but popular yellow phosphors such as YAG:Ce or Eu(2+) -doped (oxy)nitrides cannot smoothly meet this seemingly simple requirement due to their strong absorptions in the visible range. Herein, we report a novel yellow-emitting LuVO(4) :Bi(3+) phosphor that can solve this shortcoming. The emission from LuVO(4) :Bi(3+) shows a peak at 576 nm with a quantum efficiency (QE) of up to 68 %, good resistance to thermal quenching (T(50 %) =573 K), and no severe thermal degradation after heating-cooling cycles upon UV excitation. The yellow emission, as verified by X-ray photoelectron spectra (XPS), originates from the ((3)P(0),(3)P(1))→(1) S0 transitions of Bi(3+). Increasing the temperature from 10 to 300 K produces a temperature-dependent energy-transfer process between VO(4)(3-) groups and Bi(3+), and further heating of the samples to 573 K intensifies the emission. However, it subsequently weakens, accompanied by blueshifts of the emission peaks. This abnormal anti-thermal quenching can be ascribed to temperature-dependent energy transfer from VO(4)(3-) groups to Bi(3+), a population redistribution between the excited states of (3)P(0) and (3)P(1) upon thermal stimulation, and discharge of electrons trapped in defects with a trap depth of 359 K. Device fabrication with the as-prepared phosphor LuVO(4) :Bi(3+) has proved that it can act as a good yellow phosphor for pc-WLEDs. PMID:25048156

  17. Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding

    NASA Astrophysics Data System (ADS)

    Cubillos, G. I.; Bethencourt, M.; Olaya, J. J.

    2015-02-01

    ZrOxNy/ZrO2 thin films were deposited on stainless steel using two different methods: ultrasonic spray pyrolysis-nitriding (SPY-N) and the DC unbalanced magnetron sputtering technique (UBMS). Using the first method, ZrO2 was initially deposited and subsequently nitrided in an anhydrous ammonia atmosphere at 1023 K at atmospheric pressure. For UBMS, the film was deposited in an atmosphere of air/argon with a Φair/ΦAr flow ratio of 3.0. Structural analysis was carried out through X-ray diffraction (XRD), and morphological analysis was done through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Chemical analysis was carried out using X-ray photoelectron spectroscopy (XPS). ZrOxNy rhombohedral polycrystalline film was produced with spray pyrolysis-nitriding, whereas using the UBMS technique, the oxynitride films grew with cubic Zr2ON2 crystalline structures preferentially oriented along the (2 2 2) plane. Upon chemical analysis of the surface, the coatings exhibited spectral lines of Zr3d, O1s, and N1s, characteristic of zirconium oxynitride/zirconia. SEM analysis showed the homogeneity of the films, and AFM showed morphological differences according to the deposition technique of the coatings. Zirconium oxynitride films enhanced the stainless steel's resistance to corrosion using both techniques. The protective efficacy was evaluated using electrochemical techniques based on linear polarization (LP). The results indicated that the layers provide good resistance to corrosion when exposed to chloride-containing media.

  18. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  19. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  20. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  1. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-ENG); or (c) Made of a stainless steel that resists corrosion...

  2. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-ENG); or (c) Made of a stainless steel that resists corrosion...

  3. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-522); or (c) Made of a stainless steel that resists corrosion...

  4. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-522); or (c) Made of a stainless steel that resists corrosion...

  5. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-ENG); or (c) Made of a stainless steel that resists corrosion...

  6. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Phosphoric acid. 151.50-23 Section 151.50-23 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term phosphoric acid as used in this subpart shall include, in addition to phosphoric acid, aqueous solutions...

  7. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Phosphoric acid. 151.50-23 Section 151.50-23 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term phosphoric acid as used in this subpart shall include, in addition to phosphoric acid, aqueous solutions...

  8. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Phosphoric acid. 151.50-23 Section 151.50-23 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term phosphoric acid as used in this subpart shall include, in addition to phosphoric acid, aqueous solutions...

  9. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Phosphoric acid. 151.50-23 Section 151.50-23 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term phosphoric acid as used in this subpart shall include, in addition to phosphoric acid, aqueous solutions...

  10. Skin Temperature Recording with Phosphors

    PubMed Central

    Lawson, Ray N.; Alt, Leslie L.

    1965-01-01

    New knowledge of temperature irregularities associated with various disease states has resulted in increasing interest in the recording of heat radiation from the human body. Infrared radiation from the skin is a surface phenomenon and the amount of such radiation increases with temperature. Previous recording techniques have been not only crude but difficult and expensive. An unconventional thermal imaging system is described which gives superior temperature patterns and is also simpler and cheaper than any of the other available procedures. This system is based on the employment of thermally sensitive phosphors which glow when exposed to ultraviolet illumination, in inverse proportion to the underlying temperature. The thermal image can be directly observed or more critically analyzed and photographed on a simple closed-circuit television monitor. ImagesFig. 3Fig. 3Fig. 4Fig. 5Fig. 6 PMID:14270208

  11. Phosphorous-Containing Polymers for Regenerative Medicine

    PubMed Central

    Watson, Brendan M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications. PMID:24565855

  12. Effect of high-energy electron-beam irradiation on the optical properties of ion-beam-sputtered silicon oxynitride thin films.

    PubMed

    Karanth, Shivaprasad; Shanbhogue, Ganesh H; Nagendra, C L

    2005-10-10

    Silicon oxynitride thin films are prepared by ion-beam sputtering, and the optical properties and surface chemical composition are studied by spectrophotometric and x-ray photoelectron spectroscopy, respectively. It is seen that the films sputtered by use of nitrogen alone as the sputtering species from a silicon nitride target are completely transparent (k < 0.005) and have a refractive-index dispersion from 1.85 to 1.71 over the visible and near-infrared spectral regions, and the films show distinct spectral lines that are due to silicon, Si(2s), nitrogen, N(1s), and oxygen, O(1s). Sputter deposition of argon and of argon and nitrogen produces silicon-rich silicon oxynitride films that are absorbent and have high refractive indices. These films have a direct electronic transition, with a threshold energy of 1.75 eV. Electron irradiation transforms optically transparent silicon oxynitride films into silicon-rich silicon oxynitride films that have higher refractive indices and are optically absorbing owing to the presence of nonsaturated silicon in the irradiated films. The degradation in current responsivity of silicon photodetectors, under electron irradiation, is within 3% over the wavelength region from 450 to 750 nm, which is entirely due to the degradation of optical properties of silicon oxynitride antireflection coatings. PMID:16237933

  13. Lithium intercalation in porous carbon electrodes

    SciTech Connect

    Tran, T.D.; Feikert, J.; Pekala, R.W.

    1995-04-01

    Carbons derived from the phase separation of polyacrylonitrile/solvent mixtures were investigated as lithium intercalation anodes for rechargeable lithium-ion batteries. The carbon electrodes have a bulk density of 0.35-0.5 g/cm{sup 3}, relatively low surface areas (< 10 m{sup 2}/g), and micron-size cells. Pyrolysis temperature influences the reversible lithium intercalation and the irreversible capacity (associated with the formation of the passivating layer). Carbon electrodes pyrolyzed at 600{degrees}C have first-cycle capacity as high as 550 mAh/g as well as large irreversible capacity, 440 mAh/g. Electrodes prepared at 1050{degrees}C have reversible capacities around 270 mAh/g with relatively lower capacity losses (120 mAh/g). Doping the organic precursors with phosphoric acid, prior to pyrolysis at 1050{degrees}C, leads to carbon electrodes with reversible capacities as high as 450 mAh/g. The capacity of doped carbon increased with increasing phosphorus concentration in the samples. The doped carbon anodes exhibited good cycleability and excellent coulombic efficiency. The electrochemical performance is related to morphology, chemical composition, and local structural order.

  14. Stress dependence of optically active diamagnetic point defects in silicon oxynitride.

    PubMed

    Pezzotti, Giuseppe; Hosokawa, Koichiro; Munisso, Maria Chiara; Leto, Andrea; Zhu, Wenliang

    2007-08-30

    The cathodoluminescence (CL) spectrum arising from diamagnetic point defects of silicon oxynitride lattice was analyzed to extract quantitative information on local stress fields stored on the surface of a silicon nitride polycrystal. A calibration procedure was preliminarily made to obtain a relationship between CL spectral shift and applied stress, according to the piezo-spectroscopic effect. In this calibration procedure, we used the uniaxial stress field developed in a rectangular bar loaded in a four-point flexural jig. Stress dependence was clearly detected for the most intense spectral band of a doublet arising from diamagnetic ([triple bond]Si-Si[triple bond]) defects, which was located at around 340 nm. The shallow nature of the electron probe enabled the characterization of surface stress fields with sub-micrometer-order spatial resolution. As applications of the PS technique, the CL emission from [triple bond]Si-Si[triple bond] defects was used as a stress probe for visualizing the residual stress fields stored at grain-boundary regions and at the tip of a surface crack propagated in polycrystalline silicon nitride. PMID:17685596

  15. Carbon-assisted growth and high visible-light optical reflectivity of amorphous silicon oxynitride nanowires

    PubMed Central

    2011-01-01

    Large amounts of amorphous silicon oxynitride nanowires have been synthesized on silicon wafer through carbon-assisted vapor-solid growth avoiding the contamination from metallic catalysts. These nanowires have the length of up to 100 μm, with a diameter ranging from 50 to 150 nm. Around 3-nm-sized nanostructures are observed to be homogeneously distributed within a nanowire cross-section matrix. The unique configuration might determine the growth of ternary amorphous structure and its special splitting behavior. Optical properties of the nanowires have also been investigated. The obtained nanowires were attractive for their exceptional whiteness, perceived brightness, and optical brilliance. These nanowires display greatly enhanced reflection over the whole visible wavelength, with more than 80% of light reflected on most of the wavelength ranging from 400 to 700 nm and the lowest reflectivity exceeding 70%, exhibiting performance superior to that of the reported white beetle. Intense visible photoluminescence is also observed over a broad spectrum ranging from 320 to 500 nm with two shoulders centered at around 444 and 468 nm, respectively. PMID:21787429

  16. Contributions of Nanodiamond Abrasives and Deionized Water in Magnetorheological Finishing of Aluminum Oxynitride

    SciTech Connect

    Miao, C.; Lambropoulos, J.C.; Romanofsky, H.; Shafrir, S.N.; Jacobs, S.D.

    2010-01-13

    Magnetorheological finishing (MRF) is a sub-aperture deterministic process for fabricating high-precision optics by removing material and smoothing the surface. The goal of this work is to study the relative contribution of nanodiamonds and water in material removal for MRF of aluminum oxynitride ceramic (ALON) based upon a nonaqueous magnetorheological (MR) fluid. Removal was enhanced by a high carbonyl iron concentration and the addition of nanodiamond abrasives. Small amounts of deionized (DI) water were introduced into the nonaqueous MR fluid to further influence the material removal process. Material removal data were collected with a spot-taking machine. Drag force (Fd) and normal force (Fn) before and after adding nanodiamonds or DI water were measured with a dual load cell. Both drag force and normal force were insensitive to the addition of nanodiamonds but increased with DI water content in the nonaqueous MR fluid. Shear stress (i.e., drag force divided by spot area) was calculated, and examined as a function of nanodiamond concentration and DI water concentration. Volumetric removal rate increased with increasing shear stress, which was shown to be a result of increasing viscosity after adding nanodiamonds and DI water. This work demonstrates that removal rate for a hard ceramic with MRF can be enhanced by adding DI water into a nonaqueous MR fluid.

  17. Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization.

    PubMed

    Saengdee, Pawasuth; Chaisriratanakul, Woraphan; Bunjongpru, Win; Sripumkhai, Witsaroot; Srisuwan, Awirut; Jeamsaksiri, Wutthinan; Hruanun, Charndet; Poyai, Amporn; Promptmas, Chamras

    2015-05-15

    Three different types of surface, silicon dioxide (SiO2), silicon nitride (Si3N4), and titanium oxynitride (TiON) were modified for lactate dehydrogenase (LDH) immobilization using (3-aminopropyl)triethoxysilane (APTES) to obtain an amino layer on each surface. The APTES modified surfaces can directly react with LDH via physical attachment. LDH can be chemically immobilized on those surfaces after incorporation with glutaraldehyde (GA) to obtain aldehyde layers of APTES-GA modified surfaces. The wetting properties, chemical bonding composition, and morphology of the modified surface were determined by contact angle (CA) measurement, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM), respectively. In this experiment, the immobilized protein content and LDH activity on each modified surface was used as an indicator of surface modification achievement. The results revealed that both the APTES and APTES-GA treatments successfully link the LDH molecule to those surfaces while retaining its activity. All types of tested surfaces modified with APTES-GA gave better LDH immobilizing efficiency than APTES, especially the SiO2 surface. In addition, the SiO2 surface offered the highest LDH immobilization among tested surfaces, with both APTES and APTES-GA modification. However, TiON and Si3N4 surfaces could be used as alternative candidate materials in the preparation of ion-sensitive field-effect transistor (ISFET) based biosensors, including lactate sensors using immobilized LDH on the ISFET surface. PMID:25108848

  18. High mobility amorphous zinc oxynitride semiconductor material for thin film transistors

    SciTech Connect

    Ye Yan; Lim, Rodney; White, John M.

    2009-10-01

    Zinc oxynitride semiconductor material is produced through a reactive sputtering process in which competition between reactions responsible for the growth of hexagonal zinc oxide (ZnO) and for the growth of cubic zinc nitride (Zn{sub 3}N{sub 2}) is promoted. In contrast to processes in which the reaction for either the oxide or the nitride is dominant, the multireaction process yields a substantially amorphous or a highly disordered nanocrystalline film with higher Hall mobility, 47 cm{sup 2} V{sup -1} s{sup -1} for the as-deposited film produced at 50 deg. C and 110 cm{sup 2} V{sup -1} s{sup -1} after annealing at 400 deg. C. In addition, it has been observed that the Hall mobility of the material increases as the carrier concentration decreases in a carrier concentration range where a multicomponent metal oxide semiconductor, indium-gallium-zinc oxide, follows the opposite trend. This indicates that the carrier transports in the single-metal compound and the multimetal compound are probably dominated by different mechanisms. Film stability and thin film transistor performance of the material have also been tested, and results are presented herein.

  19. Controlling the Electronic Structures of Perovskite Oxynitrides and their Solid Solutions for Photocatalysis.

    PubMed

    Umezawa, Naoto; Janotti, Anderson

    2016-05-10

    Band-gap engineering of oxide materials is of great interest for optoelectronics, photovoltaics, and photocatalysis applications. In this study, electronic structures of perovskite oxynitrides, LaTiO2 N and SrNbO2 N, and solid solutions, (SrTiO3 )1-x (LaTiO2 N)x and (SrTiO3 )1-x (SrNbO2 N)x , are investigated using hybrid density functional calculations. Band gaps of LaTiO2 N and SrNbO2 N are much smaller than that of SrTiO3 owing to the formation of a N 2p band, which is higher in energy than the O 2p band. The valence- and conduction-band offsets of SrTiO3 /LaTiO2 N and SrTiO3 /SrNbO2 N are computed, and the adequacy for H2 evolution is analyzed by comparing the positions of the band edges with respect to the standard hydrogen electrode (SHE). The band gap of (SrTiO3 )1-x (LaTiO2 N)x and (SrTiO3 )1-x (SrNbO2 N)x solid solutions are also discussed. PMID:27072042

  20. Titanium Oxynitride Nanoparticles Anchored on Carbon Nanotubes as Energy Storage Materials.

    PubMed

    Yan, Litao; Chen, Gen; Tan, Shuai; Zhou, Meng; Zou, Guifu; Deng, Shuguang; Smirnov, Sergei; Luo, Hongmei

    2015-11-01

    Sub-8 nm titanium oxynitride (TiON) nanoparticles were uniformly formed on the surface of carbon nanotubes (CNTs) by annealing amorphous TiO2 (a-TiO2) conformally coated CNTs (CNTs/a-TiO2) at 600 °C in ammonia gas. The novel CNTs/TiON nanocomposite was systematically characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy imaging (HRTEM), scanning transmission electron microscopy-energy dispersive spectroscopy (STEM-EDX), and X-ray photoelectron spectroscopy (XPS). The results show that Ti, O, and N are homogeneously distributed in TiON nanoparticles. The specific capacitance of CNTs/TiON exhibits 187 F g(-1) at a current density of 0.5 A g(-1), which is much higher than that of CNTs (33.4 F g(-1)) and CNTs/TiO2 (83.4 F g(-1)) obtained by annealing CNTs/a-TiO2 at 450 °C in nitrogen gas. CNTs/TiON also exhibits enhanced cycle durability, which enables it to be considered as a promising candidate for supercapacitors. PMID:26470651

  1. Surface cleaning effects on reliability for devices with ultrathin oxides or oxynitrides

    NASA Astrophysics Data System (ADS)

    Lai, Kafai; Hao, Ming-Yin; Chen, Wei-Ming; Lee, Jack C.

    1994-09-01

    A new wafer cleaning procedure has been developed for ultra-thin thermal oxidation process (oxynitrides grown in N2O (42 angstrom) were prepared using this new cleaning and other commonly used cleaning methods to investigate the effects of surface preparation on dielectric integrity. It has been found that this two-dip method produces dielectrics with reduced leakage current and stress-induced leakage current, which are believed to be the critical parameters for ultrathin oxides. Furthermore, this new cleaning procedure improves both intrinsic and defect-related breakdown as well as the uniformity of the current- voltage characteristics across a 4-inch wafer. The methanol/HF dip time has also been optimized. The improvement is believed to be due to enhanced silicon surface passivation by hydrogen, the reduced surface micro-roughness and the absence of native oxide.

  2. Radioluminescence Investigation Of Ion-irradiated Phosphors

    SciTech Connect

    Jacobsohn, Luiz; Muenchausen, Ross; Bennett, Bryan

    2008-01-01

    Phosphors are materials that emit light under the excitation of incoming radiation. This property is used, among other applications, in radiation detection. Efficient energy transfer from the ionization track to the luminescent centers must occur to yield significant light output. Besides, the investigation of the effects of ion irradiation on the luminescence of phosphors is comparatively unexplored. In this work, we review radioluminescence (RL) investigation of ion-irradiated oxides and oxide phosphors, and present preliminary data on the effects of ion irradiation on the luminescence of intrinsic phosphor Bi{sub 4}Ge{sub 3}0{sub 12} (BGO). Commercial crystals were irradiated, and the irradiation effects characterized by means of RL measurements as a function of temperature, from 10K to room temperature (RT), and optical absorption measurements. Overall, surface modification induced by ion irradiation leads to higher luminescence output.

  3. A high sensitive phosphor for dosimetric applications

    NASA Astrophysics Data System (ADS)

    Kore, Bhushan P.; Dhoble, N. S.; Lochab, S. P.; Dhoble, S. J.

    2015-06-01

    In this study a novel TL phosphor CaMg3(SO4)4:Dy3+ was prepared by acid distillation method. The TL response of this phosphor towards γ-rays and carbon ion beam was tested. Good dosimetric glow curve was observed which is stable against both the type of radiations. The CaMg3(SO4)4:Dy3+ phosphor doped with 0.2 mol% of Dy3+, irradiated with γ-ray shows nearly equal sensitivity to that of commercially available CaSO4:Dy TLD phosphor whereas 3.5 times more sensitivity than CaSO4:Dy, when irradiated with carbon ion beam. The change in glow peak intensities and glow peak temperature with variation in irradiation species and energy of ion beam is discussed here. The effect of these on trapping parameters is also illustrated.

  4. Comparison analysis on the properties of the phosphor film according to the various composition ratio of phosphor slurry

    NASA Astrophysics Data System (ADS)

    Park, Jeong Yeon; Lee, Jeong Won; Heo, Young Moo; Won, Si Tae; Yoon, Gil Sang

    2016-03-01

    The conventional method of making a phosphor layer on the LED package by using a dispensing method is difficult to implement the specific color coordinate, color temperature and optical efficiency because the thickness of the phosphor layer is non-uniform due to precipitation of the phosphor. Besides, the dispensing method consume a large amount of phosphor and silicone to fill the LED package. Thus, studies that manufacture phosphor layer with a uniform thickness such as spray coating, screen printing, electrophoresis are active recently. The purpose of this study is to perform the basic research about the change of the characteristics of phosphor film that is molded with uniform thickness using the phosphor slurry according to various silicone resin and phosphor composition ratio. It is expected to be used as useful information for the fabricating properties when production environment of phosphor layer is changed dispensing method into phosphor film fabrication. In the experiment, it was selected three kinds of methyl-phenyl silicone based resin as the phosphor slurry constituents, and mixed with phosphor various amount of 20 ˜ 60wt% content per one silicone resin. Using this mixed phosphor slurry, it was molded the phosphor film with 300 μm thickness and analyzed the mechanical properties and optical properties of the phosphor film. Finally, the results of this study are presented below: (a) As the phenyl group content is increased, the total heat of reaction need to cure the silicone resin is decrease, and also lower the durometer hardness of the phosphor sheet. On the other hand, it was confirmed that there is no relationship between the phenyl group content in the phosphor film and optical characteristics of the phosphor film. (b) If the amount of the phosphor within the film are increased, then the values of shore hardness and CIE color coordinates are increased gradually but the value of CIE color temperature is decreased gradually in case of being

  5. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  6. Lithium use in batteries

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  7. Fluorescent lighting with aluminum nitride phosphors

    DOEpatents

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  8. MULTI-PHOTON PHOSPHOR FEASIBILITY RESEARCH

    SciTech Connect

    R. Graham; W. Chow

    2003-05-01

    Development of multi-photon phosphor materials for discharge lamps represents a goal that would achieve up to a doubling of discharge (fluorescent) lamp efficacy. This report reviews the existing literature on multi-photon phosphors, identifies obstacles in developing such phosphors, and recommends directions for future research to address these obstacles. To critically examine issues involved in developing a multi-photon phosphor, the project brought together a team of experts from universities, national laboratories, and an industrial lamp manufacturer. Results and findings are organized into three categories: (1) Multi-Photon Systems and Processes, (2) Chemistry and Materials Issues, and (3) Concepts and Models. Multi-Photon Systems and Processes: This category focuses on how to use our current understanding of multi-photon phosphor systems to design new phosphor systems for application in fluorescent lamps. The quickest way to develop multi-photon lamp phosphors lies in finding sensitizer ions for Gd{sup 3+} and identifying activator ions to red shift the blue emission from Pr{sup 3+} due to the {sup 1}S{sub 0} {yields} {sup 1}I{sub 6} transition associated with the first cascading step. Success in either of these developments would lead to more efficient fluorescent lamps. Chemistry and Materials Issues: The most promising multi-photon phosphors are found in fluoride hosts. However, stability of fluorides in environments typically found in fluorescent lamps needs to be greatly improved. Experimental investigation of fluorides in actual lamp environments needs to be undertaken while working on oxide and oxyfluoride alternative systems for backup. Concepts and Models: Successful design of a multi-photon phosphor system based on cascading transitions of Gd{sup 3+} and Pr{sup 3+} depends critically on how the former can be sensitized and the latter can sensitize an activator ion. Methods to predict energy level diagrams and Judd-Ofelt parameters of multi

  9. Phosphor blends for high-CRI fluorescent lamps

    DOEpatents

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan; Beers, William Winder; Toth, Katalin; Balazs, Laszlo D.

    2008-06-24

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  10. Optical and thermal performance of a remote phosphor plate

    NASA Astrophysics Data System (ADS)

    Mou, Xi; Narendran, Nadarajah; Zhu, Yiting; Perera, Indika U.

    2014-09-01

    The objective of this study was to understand how optical and thermal performances are impacted in a remote phosphor LED (light-emitting diode) system when the phosphor plate thickness and phosphor concentration change with a fixed amount of a commonly used YAG:Ce phosphor. In the first part of this two-part study, an optical raytracing analysis was carried out to quantify the optical power and the color properties as a function of remote phosphor plate thickness, and a laboratory experiment was conducted to verify the results obtained from the raytracing analysis and also to examine the phosphor temperature variation due to thickness change.

  11. Blue-green phosphor for fluorescent lighting applications

    DOEpatents

    Srivastava, Alok; Comanzo, Holly; Manivannan, Venkatesan; Setlur, Anant Achyut

    2005-03-15

    A fluorescent lamp including a phosphor layer including Sr.sub.4 Al.sub.14 O.sub.25 :Eu.sup.2+ (SAE) and at least one of each of a red, green and blue emitting phosphor. The phosphor layer can optionally include an additional, deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of SAE in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over, the course of the lamp life.

  12. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth.

    PubMed

    Li, Weiyang; Yao, Hongbin; Yan, Kai; Zheng, Guangyuan; Liang, Zheng; Chiang, Yet-Ming; Cui, Yi

    2015-01-01

    Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium and lithium polysulfide, which has long been considered as a critical flaw in lithium-sulfur batteries. We show that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition. Our findings allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes. PMID:26081242

  13. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth

    NASA Astrophysics Data System (ADS)

    Li, Weiyang; Yao, Hongbin; Yan, Kai; Zheng, Guangyuan; Liang, Zheng; Chiang, Yet-Ming; Cui, Yi

    2015-06-01

    Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium and lithium polysulfide, which has long been considered as a critical flaw in lithium-sulfur batteries. We show that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition. Our findings allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes.

  14. Influence of the chemical and electronic structure on the electrical behavior of zirconium oxynitride films

    SciTech Connect

    Carvalho, P.; Chappe, J. M.; Cunha, L.; Lanceros-Mendez, S.; Alpuim, P.; Vaz, F.; Alves, E.; Rousselot, C.; Espinos, J. P.; Gonzalez-Elipe, A. R.

    2008-05-15

    This work is devoted to the investigation of decorative zirconium oxynitride, ZrO{sub x}N{sub y}, films prepared by dc reactive magnetron sputtering, using a 17:3 nitrogen-to-oxygen-ratio gas mixture. The color of the films changed from metallic-like, very bright yellow pale, and golden yellow, for low gas mixture flows [from 0 to about 9 SCCM (SCCM denotes cubic centimeter per minute at STP)] to red brownish for intermediate gas flows (values up to 12 SCCM). Associated to this color change there is a significant decrease of brightness. With further increase of the reactive gas flow, the color of the samples changed from red brownish to dark blue (samples prepared with 13 and 14 SCCM). The films deposited with gas flows above 14 SCCM showed only apparent colorations due to interference effects. This change in optical behavior from opaque to transparent (characteristic of a transition from metallic to insulating-type materials), promoted by the change in gas flow values, revealed that significant changes were occurring in the film structure and electronic properties, thus opening new potential applications for the films, beyond those of purely decorative ones. Taking this into account, the electrical behavior of the films was investigated as a function of the reactive gas flow and correlated with the observed chemical, electronic, and structural features. The variations in composition disclosed the existence of four different zones, which were correlated to different crystalline structures. For the so-called zone I, x-ray diffraction revealed the development of films with a B1 NaCl face-centered cubic zirconium nitride-type phase, with some texture changes. Increasing the reactive gas flow, the structure of the films is that of a poorly crystallized overstoichiometric nitride phase, which may be similar to that of Zr{sub 3}N{sub 4}, but with some probable oxygen inclusions within nitrogen positions. This region was characterized as zone II. Zone III was indexed as

  15. Influence of the chemical and electronic structure on the electrical behavior of zirconium oxynitride films

    NASA Astrophysics Data System (ADS)

    Carvalho, P.; Chappé, J. M.; Cunha, L.; Lanceros-Méndez, S.; Alpuim, P.; Vaz, F.; Alves, E.; Rousselot, C.; Espinós, J. P.; González-Elipe, A. R.

    2008-05-01

    This work is devoted to the investigation of decorative zirconium oxynitride, ZrOxNy, films prepared by dc reactive magnetron sputtering, using a 17:3 nitrogen-to-oxygen-ratio gas mixture. The color of the films changed from metallic-like, very bright yellow pale, and golden yellow, for low gas mixture flows [from 0 to about 9SCCM (SCCM denotes cubic centimeter per minute at STP)] to red brownish for intermediate gas flows (values up to 12SCCM). Associated to this color change there is a significant decrease of brightness. With further increase of the reactive gas flow, the color of the samples changed from red brownish to dark blue (samples prepared with 13 and 14SCCM). The films deposited with gas flows above 14SCCM showed only apparent colorations due to interference effects. This change in optical behavior from opaque to transparent (characteristic of a transition from metallic to insulating-type materials), promoted by the change in gas flow values, revealed that significant changes were occurring in the film structure and electronic properties, thus opening new potential applications for the films, beyond those of purely decorative ones. Taking this into account, the electrical behavior of the films was investigated as a function of the reactive gas flow and correlated with the observed chemical, electronic, and structural features. The variations in composition disclosed the existence of four different zones, which were correlated to different crystalline structures. For the so-called zone I, x-ray diffraction revealed the development of films with a B1 NaCl face-centered cubic zirconium nitride-type phase, with some texture changes. Increasing the reactive gas flow, the structure of the films is that of a poorly crystallized overstoichiometric nitride phase, which may be similar to that of Zr3N4, but with some probable oxygen inclusions within nitrogen positions. This region was characterized as zone II. Zone III was indexed as an oxynitride-type phase

  16. Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Dudney, Nancy J.

    Three rechargeable lithium cells have been fabricated using thin films of Li and sputter-deposited Li xMn 2- yO 4 as the electrodes, and a LiPF 6 organic liquid electrolyte. Cells were cycled up to 18 times between 4.5 and 2.5 V at 25°C both with and without the addition of the thin-film lithium phosphorus oxynitride solid electrolyte, known as Lipon. Of the cells tested, the Lipon film was most effective in maximizing the capacity and cycling efficiency when deposited in direct contact with the cathode; however, a significant improvement over the Lipon-free cell was also observed with Lipon sandwiched between layers of the liquid electrolyte. In the latter case, the Lipon was deposited onto a microporous polypropylene separator membrane.

  17. Method of recycling lithium borate to lithium borohydride through diborane

    DOEpatents

    Filby, Evan E.

    1976-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

  18. Gas barrier properties of titanium oxynitride films deposited on polyethylene terephthalate substrates by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, M.-C.; Chang, L.-S.; Lin, H. C.

    2008-03-01

    Titanium oxynitride (TiN xO y) films were deposited on polyethylene terephthalate (PET) substrates by means of a reactive radio frequency (RF) magnetron sputtering system in which the power density and substrate bias were the varied parameters. Experimental results show that the deposited TiN xO y films exhibited an amorphous or a columnar structure with fine crystalline dependent on power density. The deposition rate increases significantly in conjunction as the power density increases from 2 W/cm 2 to 7 W/cm 2. The maximum deposition rate occurs, as the substrate bias is -40 V at a certain power densities chosen in this study. The film's roughness slightly decreases with increasing substrate bias. The TiN xO y films deposited at power densities above 4 W/cm 2 show a steady Ti:N:O ratio of about 1:1:0.8. The water vapor and oxygen transmission rates of the TiN xO y films reach values as low as 0.98 g/m 2-day-atm and 0.60 cm 3/m 2-day-atm which are about 6 and 47 times lower than those of the uncoated PET substrate, respectively. These transmission rates are comparable to those of DLC, carbon-based and Al 2O 3 barrier films. Therefore, TiN xO y films are potential candidates to be used as a gas permeation barrier for PET substrate.

  19. Incorporation of dopant impurities into a silicon oxynitride matrix containing silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Fabien; Ulhaq-Bouillet, Corinne; Muller, Dominique; Slaoui, Abdelilah; Ferblantier, Gérald

    2016-05-01

    Dopant impurities, such as gallium (Ga), indium (In), and phosphorus (P), were incorporated into silicon-rich silicon oxynitride (SRSON) thin films by the ion implantation technique. To form silicon nanoparticles, the implanted layers were thermally annealed at temperatures up to 1100 °C for 60 min. This thermal treatment generates a phase separation of the silicon nanoparticles from the SRSON matrix in the presence of the dopant atoms. We report on the position of the dopant species within the host matrix and relative to the silicon nanoparticles, as well as on the effect of the dopants on the crystalline structure and the size of the Si nanoparticles. The energy-filtered transmission electron microscopy technique is thoroughly used to identify the chemical species. The distribution of the dopant elements within the SRSON compound is determined using Rutherford backscattering spectroscopy. Energy dispersive X-ray mapping coupled with spectral imaging of silicon plasmons was performed to spatially localize at the nanoscale the dopant impurities and the silicon nanoparticles in the SRSON films. Three different behaviors were observed according to the implanted dopant type (Ga, In, or P). The In-doped SRSON layers clearly showed separated nanoparticles based on indium, InOx, or silicon. In contrast, in the P-doped SRSON layers, Si and P are completely miscible. A high concentration of P atoms was found within the Si nanoparticles. Lastly, in Ga-doped SRSON the Ga atoms formed large nanoparticles close to the SRSON surface, while the Si nanoparticles were localized in the bulk of the SRSON layer. In this work, we shed light on the mechanisms responsible for these three different behaviors.

  20. Radiation damage and luminescence properties of gamma aluminum oxynitride transparent ceramic

    NASA Astrophysics Data System (ADS)

    Du, Xinhua; Yao, Shiyue; Jin, Xihai; Chen, Haohong; Li, Weifeng; Liang, Bo

    2015-09-01

    This paper reports on the radiation damage of gamma aluminum oxynitride (γ-AlON) transparent ceramic, which remarkably degrades UV-vis transparency and hence limits its applications in optoelectronic devices. The radiation-induced optical absorption of the as-sintered γ-AlON consists of at least two subbands: one is in the UV region with a peak at 270 nm and the other optical absorption band centers at 550 nm, covering the whole visible light spectrum, which makes the sample colored. Interestingly, all the radiation-induced color centers can be completely ‘bleached’ by low temperature annealing. In the thermoluminescence curve, we observed a broad luminescence in the range of 25-300 °C with the peak at 120 °C. Furthermore, the x-ray excited luminescence spectra revealed that there exist multiple emission centers in the γ-AlON. Based on this experimental fact, the radiation damage and luminescent mechanisms were studied. These optical properties of the γ-AlON are considered to be related to defect states. In the as-sintered γ-AlON, charge balancing is realized by the co-existence of \\text{V}\\text{Al}\\prime\\prime \\prime and \\text{O}\\text{N}\\bullet , and the predominant defect form is ≤ft[\\text{V}\\text{Al}\\prime\\prime \\prime-\\text{3O}\\text{N}\\bullet\\right] , which is optically inactive and no optical absorption occurs. However, isolated \\text{V}\\text{Al}\\prime\\prime \\prime and \\text{O}\\text{N}\\bullet can be formed by irradiation and it is these that are responsible for the radiation damage of γ-AlON transparent ceramic. In the end, the UV absorption and visible-light absorption in the irradiated sample were ascribed to VAl-related and ON-related intrinsic defects, respectively.

  1. Carbonaceous materials as lithium intercalation anodes

    SciTech Connect

    Tran, T.D.; Feikert, J.H.; Mayer, S.T.; Song, X.; Kinoshita, K.

    1994-10-01

    Commercial and polymer-derived carbonaceous materials were examined as lithium intercalation anodes in propylene carbonate (pyrolysis < 1350C, carbons) and ethylene carbonate/dimethyl carbonate (graphites) electrolytes. The reversible capacity (180--355 mAh/g) and the irreversible capacity loss (15--200 % based on reversible capacity) depend on the type of binder, carbon type, morphology, and phosphorus doping concentration. A carbon-based binder was chosen for electrode fabrication, producing mechanically and chemically stable electrodes and reproducible results. Several types of graphites had capacity approaching LiC{sub 6}. Petroleum fuel green cokes doped with phosphorous gave more than a 20 % increase in capacity compared to undoped samples. Electrochemical characteristics are related to SEM, TEM, XRD and BET measurements.

  2. Crystal structure and photoluminescence properties of Eu 2+-activated Ba 2LiB 5O 10 phosphors

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Deng, Degang; Xu, Shiqing; Hua, Youjie; Huang, Lihui; Wang, Huanping; Zhao, Shilong; Jia, Guohua; Li, Chenxia

    2011-10-01

    A novel orange-yellow-emitting Ba 2LiB 5O 10:Eu 2+ phosphor has been synthesized by traditional high temperature solid state reaction. A monoclinic crystal structure of Barium lithiumborates Ba 2LiB 5O 10 was verified by the investigation of X-ray diffraction (XRD). The compound crystallizes in the space group of P121/m1(11) (Z = 2) with the unit cell parameters a = 4.414(1) Å, b = 14.576(2) Å, c = 6.697(2) Å and β = 104.26(2)°. Barium and lithium atoms are located in distorted octahedral and tetrahedral oxygen coordinations, respectively. Upon around 365 nm excitation, the Eu 2+-activated Ba 2LiB 5O 10 phosphors exhibit a single broad emission band with the maximum at about 587 nm, due to the 4f 65d → 4f 7(8S 7/2) transition of Eu 2+. This work investigates the relationship between luminescence properties and structural characterization of the Ba 2LiB 5O 10: Eu 2+. This newly developed phosphor shows high potential as a phosphor conversion for white LED applications.

  3. Narrow line-width phosphors for phosphor-converted white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Khanna, Aloka

    The luminous efficacy of present day phosphor-converted white LEDs is limited by phosphors with broad spectral emission in the long wavelength visible range (600-700 nm). The light output from the cool-white LEDs that do not use a red phosphor is 30-35% higher than the warm white LEDs fabricated with a red phosphor in addition to the yellow phosphor. However, the CRI of cool-white LEDs is significantly lower (~60-70) than the CRI of the warm white LEDs (~80-95) due to lack of the red photons in the emission spectrum. Therefore, a trade-off exists between luminous efficacy and color rendering capability of light generated by phosphor-converted white LEDs. In order to solve this problem, an efficient red phosphor with considerably narrow full width of half maxima (~5-10 nm) and emission in the 600-650 nm wavelength range is required. The narrow spectral line-width can be achieved by introducing trivalent lanthanide ions like Eu3+, Pr3+ and Sm3+ (λpeak- 615 nm, 650 nm, 655 nm) in oxide host lattices although the high energy gaps of these hosts makes these phosphors unsuitable for excitation with near-UV/Blue (380-470 nm) LED sources. Therefore, the goal of this project is two-fold- to develop new material systems which can serve as potential hosts for trivalent lanthanide ions like Eu3+, Pr3+ and Sm3+ (λpeak- 615 nm, 650 nm, 655 nm) with strong excitation bands in the near-UV/blue wavelength region (380-470 nm) and improve the efficiency of the known oxide phosphors doped with trivalent lanthanide ions and the novel phosphors via crystal growth processes. Moreover, phosphors in the green-yellow wavelength region with a narrow emission line-width have the potential of improving the luminous efficacy of the phosphor-converted LEDs as the human eye sensitivity curve peaks at 555 nm. Thus, in parallel with the narrow line-width red phosphor research, new compositions doped with Tb3+ (550 nm), Dy3+ (575 nm), etc. are being explored with strong excitation bands in near

  4. Color stable manganese-doped phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Deshpande, Anirundha Rajendra; Grigorov, Ljudmil Slavchev

    2014-04-29

    A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor material radiationally coupled to the light source. The phosphor material includes a color-stable Mn.sup.+4 doped phosphor prepared by a process including providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof.

  5. Color stable manganese-doped phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Deshpande, Anirudha Rajendra; Grigorov, Ljudmil Slavchev

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  6. Crystalline rare-earth activated oxyorthosilicate phosphor

    DOEpatents

    McClellan, Kenneth J.; Cooke, D. Wayne

    2004-02-10

    Crystalline, transparent, rare-earth activated lutetium oxyorthosilicate phosphor. The phosphor consists essentially of lutetium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of lutetium gadolinium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Gd.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of gadolinium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Gd(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor may be optically coupled to a photodetector to provide a radiation detector.

  7. Lithium Redistribution in Lithium-Metal Batteries

    SciTech Connect

    Ferrese, A; Albertus, P; Christensen, J; Newman, J

    2012-01-01

    A model of a lithium-metal battery with a CoO2 positive electrode has been modeled in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. A finite-element approach was used to incorporate an intercalation positive electrode using superposition, electrode tabbing, transport using concentrated solution theory, as well as the net movement of the lithium electrode during cycling. From this model, it has been found that movement of lithium along the negative electrode/separator interface does occur during cycling and is affected by three factors: the cell geometry, the slope of the open-circuit-potential function of the positive electrode, and concentration gradients in both the solid and liquid phases in the cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.027210jes] All rights reserved.

  8. Stoichiometric silicon oxynitride thin films reactively sputtered in Ar/N2O plasmas by HiPIMS

    NASA Astrophysics Data System (ADS)

    Hänninen, Tuomas; Schmidt, Susann; Wissting, Jonas; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2016-04-01

    Silicon oxynitride (SiO x N y , x=0.2-1.3, y=0.2 -0.7) thin films were synthesized by reactive high power impulse magnetron sputtering from a pure silicon target in Ar/N2O atmospheres. It was found that the composition of the material can be controlled by the reactive gas flow and the average target power. X-ray photoelectron spectroscopy (XPS) shows that high average powers result in more silicon-rich films, while lower target powers yield silicon-oxide-like material due to more pronounced target poisoning. The amount of nitrogen in the films can be controlled by the percentage of nitrous oxide in the working gas. The nitrogen content remains at a constant level while the target is operated in the transition region between metallic and poisoned target surface conditions. The extent of target poisoning is gauged by the changes in peak target current under the different deposition conditions. XPS also shows that varying concentrations and ratios of oxygen and nitrogen in the films result in film chemical bonding structures ranging from silicon-rich to stoichiometric silicon oxynitrides having no observable Si-Si bond contributions. Spectroscopic ellipsometry shows that the film optical properties depend on the amount and ratio of oxygen and nitrogen in the compound, with film refractive indices measured at 633 nm ranging between those of SiO2 and Si3N4.

  9. NO2-assisted molecular-beam epitaxy of wustitelike and magnetitelike Fe oxynitride films on MgO(100)

    NASA Astrophysics Data System (ADS)

    Voogt, F. C.; Smulders, P. J.; Wijnja, G. H.; Niesen, L.; Fujii, T.; James, M. A.; Hibma, T.

    2001-03-01

    In an attempt to obtain wustite Fe1-xO as epitaxial films on MgO(100), NO2-assisted molecular-beam epitaxy was applied. At low NO2 fluxes, the low-energy electron diffraction and reflection high-energy electron diffraction images indeed indicate the formation of a rocksaltlike structure. In addition, Mössbauer spectroscopy provides evidence for the formation of a phase that is paramagnetic at room temperature. However, the layers are not pure oxides but are well-ordered oxynitrides with composition Fe1-xO1-yNy. The nitrogen atoms occupy substitutional sites on the oxygen-anion sublattice. Similarly, at slightly higher NO2 fluxes, magnetitelike oxynitride films with composition Fe3+δO4-yNy are obtained. By correlating x-ray photoelectron spectroscopy spectra with the intensity oscillation periods observed during reflection high-energy electron diffraction, it is possible to derive the complete stoichiometry of the films. We propose that the abrupt incorporation of nitrogen atoms only occurs if the atomic oxygen provided by the NO2 flux is insufficient to form a stoichiometric Fe3O4.

  10. Correlation of charge transport to intrinsic strain in silicon oxynitride and Si-rich silicon nitride thin films

    NASA Astrophysics Data System (ADS)

    Habermehl, S.; Apodaca, R. T.

    2004-01-01

    Poole-Frenkel emission in Si-rich nitride and silicon oxynitride thin films is studied in conjunction with compositional aspects of their elastic properties. For Si-rich nitrides varying in composition from SiN1.33 to SiN0.54, the Poole-Frenkel trap depth (ΦB) decreases from 1.08 to 0.52 eV as the intrinsic film strain (ɛi) decreases from 0.0036 to -0.0016. For oxynitrides varying in composition from SiN1.33 to SiO1.49N0.35, ΦB increases from 1.08 to 1.53 eV as ɛi decreases from 0.0036 to 0.0006. In both material systems, a direct correlation is observed between ΦB and ɛi. Compositionally induced strain relief as a mechanism for regulating ΦB is discussed.

  11. Correlation of charge transport to intrinsic strain in silicon oxynitride and Si-rich silicon nitride thin films.

    SciTech Connect

    Apodaca, Roger T.; Habermehl, Scott D.

    2003-07-01

    Poole-Frenkel emission in Si-rich nitride and silicon oxynitride thin films is studied in conjunction with compositional aspects of their elastic properties. For Si-rich nitrides varying in composition from SiN{sub 1.33} to SiN{sub 0.54}, the Poole-Frenkel trap depth ({Phi}{sub B}) decreases from 1.08 to 0.52 eV as the intrinsic film strain ({Epsilon}{sub i}) decreases from 0.0036 to -0.0016. For oxynitrides varying in composition from SiN{sub 1.33} to SiO{sub 1.49}N{sub 0.35}, {Phi}{sub B} increases from 1.08 to 1.53 eV as {Epsilon}{sub i} decreases from 0.0036 to 0.0006. In both material systems, a direct correlation is observed between {Phi}{sub B} and {Epsilon}{sub i}. Compositionally induced strain relief as a mechanism for regulating {Phi}{sub B} is discussed.

  12. The effect of plasma on silicon nitride, oxynitride and other metals for enhanced epoxy adhesion for packaging applications

    NASA Astrophysics Data System (ADS)

    Gaddam, Sneha Sen

    The effects of direct plasma chemistries on carbon removal from silicon nitride (SiNx) and oxynitride (SiOxNy ) surfaces and Cu have been studied by x-photoelectron spectroscopy (XPS) and ex-situ contact angle measurements. The data indicate that O2,NH3 and He capacitively coupled plasmas are effective at removing adventitious carbon from silicon nitride (SiNx) and Silicon oxynitride (SiO xNy ) surfaces. O2plasma and He plasma treatment results in the formation of silica overlayer. In contrast, the exposure to NH3 plasma results in negligible additional oxidation of the SiN x and SiOxNy surface. Ex-situ contact angle measurements show that SiNx and SiOxNy surfaces when exposed to oxygen plasma are initially more hydrophilic than surfaces exposed to NH 3 plasma and He plasma, indicating that the O2 plasma-induced SiO2 overlayer is highly reactive towards ambient corresponding to increased roughness measured by AFM. At longer ambient exposures (>~10 hours), however surfaces treated by either O2, He or NH3 plasma exhibit similar steady state contact angles, correlated with rapid uptake of adventitious carbon, as determined by XPS. Surface passivation by exposure to molecular hydrogen prior to ambient exposure significantly retards the increase in the contact angle upon the exposure to ambient. The results suggest a practical route to enhancing the time available for effective bonding to surfaces in microelectronics packaging applications.

  13. Influence of pressure on the x-ray spectra and electronic structure of vanadium oxycarbide and vanadium oxynitride

    SciTech Connect

    Cherkashenko, V.M.; Kurmaev, E.Z.; Zainulin, Yu.G.

    1988-09-01

    We undertook an investigation of the influence of thermobaric treatment on the electron-energy spectrum of the oxycarbide VC/sub 0.44/O/sub 0.48/ and the oxynitride VN/sub 0.46/ /times/ O/sub 0.50/ of vanadium. For this purpose we obtained the V K/sub /beta/5/ x-ray emission spectra of the compounds in their original state and after thorough compression. The thermobaric treatment of these compounds were carried out by holding the original samples for 1-2 min under pressures of 7.7 and 9.0 GPa at temperatures of 1800 and 1600/degree/C, respectively. This treatment resulted in an increase in the lattice constant from 4.1360 to 4.1647 /angstrom/ in the case of the oxycarbide and from 4.1161 to 4.1370 /angstrom/ in the case of the oxynitride with a corresponding increase in density. The calculations of the number of particles in the unit cell showed that the filling of structural vacancies in the unit cell takes place in both compounds. The study of the V K /sub /beta/5/ x-ray emission spectra was carried out on a FRS-KD-1 x-ray fluorescence spectrometer.

  14. Lithium and symptomatic hyperparathyroidism.

    PubMed Central

    Ananth, J; Dubin, S E

    1983-01-01

    Hyperparathyroidism with or without adenoma has occasionally been reported in association with lithium treatment, and in symptomatic patients depression, psychosis and an exacerbation of existing psychopathology may occur. Three lithium-treated patients with hyperparathyroidism are reported, in whom discontinuation of lithium in one and removal of parathyroid adenomata in two led to both a reduction in plasma calcium levels and an improvement in their psychopathology. PMID:6423822

  15. Lithium purification technique

    DOEpatents

    Keough, R.F.; Meadows, G.E.

    1984-01-10

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  16. Lithium purification technique

    DOEpatents

    Keough, Robert F.; Meadows, George E.

    1985-01-01

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  17. 40 CFR 721.10685 - Phosphoric acid, mixed esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, mixed esters (generic... Specific Chemical Substances § 721.10685 Phosphoric acid, mixed esters (generic). (a) Chemical substance... phosphoric acid, mixed esters (PMN P-13-170) is subject to reporting under this section for the...

  18. 40 CFR 721.10431 - Phosphoric acid esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid esters (generic). 721... Substances § 721.10431 Phosphoric acid esters (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphoric acid esters (PMNs...

  19. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  20. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  1. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  2. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  3. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  4. Red phosphors for use in high CRI fluorescent lamps

    DOEpatents

    Srivastava, Alok; Comanzo, Holly; Manivannan, Vankatesan; Setlur, Anant Achyut

    2005-11-15

    Novel red emitting phosphors for use in fluorescent lamps resulting in superior color rendering index values compared to conventional red phosphors. Also disclosed is a fluorescent lamp including a phosphor layer comprising blends of one or more of a blue phosphor, a blue-green phosphor, a green phosphor and a red a phosphor selected from the group consisting of SrY.sub.2 O.sub.4 :Eu.sup.3+, (Y,Gd)Al.sub.3 B.sub.4 O.sub.12 :Eu.sup.3+, and [(Y.sub.1-x-y-m La.sub.y)Gd.sub.x ]BO.sub.3 :Eu.sub.m wherein y<0.50 and m=0.001-0.3. The phosphor layer can optionally include an additional deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of the disclosed red phosphors in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over the course of the lamp life.

  5. 40 CFR 721.10431 - Phosphoric acid esters (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid esters (generic). 721... Substances § 721.10431 Phosphoric acid esters (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphoric acid esters (PMNs...

  6. Mechanical and optical characterization of tungsten oxynitride (W-O-N) nano-coatings

    NASA Astrophysics Data System (ADS)

    Nunez, Oscar Roberto

    Aation and cation doping of transition metal oxides has recently gained attention as a viable option to design materials for application in solar energy conversion, photo-catalysis, transparent electrodes, photo-electrochemical cells, electrochromics and flat panel displays in optoelectronics. Specifically, nitrogen doped tungsten oxide (WO3) has gained much attention for its ability to facilitate optical property tuning while also demonstrating enhanced photo-catalytic and photochemical properties. The effect of nitrogen chemistry and mechanics on the optical and mechanical properties of tungsten oxynitride (W-O-N) nano-coatings is studied in detail in this work. The W-O-N coatings were deposited by direct current (DC) sputtering to a thickness of ˜100 nm and the structural, compositional, optical and mechanical properties were characterized in order to gain a deeper understanding of the effects of nitrogen incorporation and chemical composition. All the W-O-N coatings fabricated under variable nitrogen gas flow rate were amorphous. X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectrometry (RBS) measurements revealed that nitrogen incorporation is effective only for a nitrogen gas flow rates ?9 sccm. Optical characterization using ultraviolet-visible-near infrared (UV-VIS-NIR) spectroscopy and spectroscopic ellipsometry (SE) indicate that the nitrogen incorporation induced effects on the optical parameters is significant. The band gap (Eg) values decreased from ˜2.99 eV to ˜1.89 eV indicating a transition from insulating WO3 to metallic-like W-N phase. Nano-mechanical characterization using indentation revealed a corresponding change in mechanical properties; maximum values of 4.46 GPa and 98.5 GPa were noted for hardness and Young?s modulus, respectively. The results demonstrate a clear relationship between the mechanical, physical and optical properties of amorphous W-O-N nano-coatings. The correlation presented in this thesis could

  7. Composition and structure variation for magnetron sputtered tantalum oxynitride thin films, as function of deposition parameters

    NASA Astrophysics Data System (ADS)

    Cristea, D.; Pătru, M.; Crisan, A.; Munteanu, D.; Crăciun, D.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Moura, C.; Cunha, L.

    2015-12-01

    Tantalum oxynitride thin films were produced by magnetron sputtering. The films were deposited using a pure Ta target and a working atmosphere with a constant N2/O2 ratio. The choice of this constant ratio limits the study concerning the influence of each reactive gas, but allows a deeper understanding of the aspects related to the affinity of Ta to the non-metallic elements and it is economically advantageous. This work begins by analysing the data obtained directly from the film deposition stage, followed by the analysis of the morphology, composition and structure. For a better understanding regarding the influence of the deposition parameters, the analyses are presented by using the following criterion: the films were divided into two sets, one of them produced with grounded substrate holder and the other with a polarization of -50 V. Each one of these sets was produced with different partial pressure of the reactive gases P(N2 + O2). All the films exhibited a O/N ratio higher than the N/O ratio in the deposition chamber atmosphere. In the case of the films produced with grounded substrate holder, a strong increase of the O content is observed, associated to the strong decrease of the N content, when P(N2 + O2) is higher than 0.13 Pa. The higher Ta affinity for O strongly influences the structural evolution of the films. Grazing incidence X-ray diffraction showed that the lower partial pressure films were crystalline, while X-ray reflectivity studies found out that the density of the films depended on the deposition conditions: the higher the gas pressure, the lower the density. Firstly, a dominant β-Ta structure is observed, for low P(N2 + O2); secondly a fcc-Ta(N,O) structure, for intermediate P(N2 + O2); thirdly, the films are amorphous for the highest partial pressures. The comparison of the characteristics of both sets of produced TaNxOy films are explained, with detail, in the text.

  8. Synthesis, Characterization and Applications of New Nonmetallic Photocatalysts -- Resorcinol Formaldehyde Resin and Boron Carbon Oxynitride

    NASA Astrophysics Data System (ADS)

    Gu, Ting

    This thesis describes the synthesis, characterization and applications of two kinds of nonmetallic photocatalysts: resorcinol formaldehyde (RF) resin and boron carbon oxynitride (BCNO). Part I: Catalyst-free hydrothermal method was developed to synthesize RF resin. It started with a solution containing only resorcinol and formaldehyde. The products were characterized by transmission electron microscopy (TEM), Solid state 13C nuclear magnetic resonance (13C-NMR) spectrometer and UV-Visible absorption spectroscopy. The particle size (diameter: 100nm-4microm) of RF the spheres was controlled by changing the concentration of the reactants. With increasing particle size, visible light absorption of the product was also increased. These RF spheres could degrade Rhodamine B and generate OH radicals under visible light irradiation. Besides, highly concentrated starting reactants would form large macroporous gel instead of individual particles. This kind of gel could be easily shaped to dishes and tubes, which could be used in filtration and degradation of air pollutants. Part II: The BCNO was prepared by heating a mixture of boric acid, melamine and PEG in atmosphere. The optical properties of the products were measured by UV-Visible absorption spectroscopy with integrating sphere. The X-ray powder diffraction (XRD) patterns indicated that all BCNO compounds had the turbostratic boron nitride (t-BN) structure. Meanwhile, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectrum (EELS) were used to determine the chemical composition of the catalyst. The BCNO could be identified as t-BN with N atoms partly substituted by O and C atoms. The degree of substitution affected its photocatalytic properties. Perdew--Burke--Ernzerhof (PBE) exchange model was introduced to simulate the density of state (DOS) of BCNO using these supercells. Simulation results indicated that C and O substitution induced occupied impurity states in the gap region which modified the band

  9. Phosphor suspended in silicone, molded/formed and used in a remote phosphor configuration

    SciTech Connect

    Kolodin, Boris; Deshpande, Anirudha R

    2014-09-16

    A light emitting package comprising a support hosting at least one light emitting diode. A light transmissive dome comprised of a silicone including a phosphor material positioned to receive light emitted by the diode. A glass cap overlies said dome.

  10. Corrosion free phosphoric acid fuel cell

    DOEpatents

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.