Science.gov

Sample records for litter environment affects

  1. Litter Environment Affects Behavior and Brain Metabolic Activity of Adult Knockout Mice

    PubMed Central

    Crews, David; Rushworth, David; Gonzalez-Lima, Francisco; Ogawa, Sonoko

    2009-01-01

    In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s), the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual's behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for sex ratio and genotype ratio (wild type pups versus pups lacking a functional estrogen receptor α). In both males and females, the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks. PMID:19707539

  2. Factors affecting arsenic and copper runoff from fields fertilized with poultry litter.

    PubMed

    DeLaune, P B; Moore, P A

    2014-07-01

    Arsenic (As) and copper (Cu) runoff from fields fertilized with poultry litter has received increasing attention in recent years, although it is not known if heavy metal runoff from poultry litter poses a significant threat to the environment. The objective of this study was to determine the main factors affecting As and Cu concentrations in runoff water from pastures receiving poultry litter applications. Rainfall simulation studies were conducted to determine the effects of the following treatments on metal runoff: (i) aluminum sulfate (alum) additions, (ii) diet modification using phytase or high available phosphorus corn, (iii) fertilizer type, (iv) poultry litter application rate, and (v) time until the first runoff event occurs after poultry litter application. Results showed that alum additions to poultry litter significantly decreased As and Cu concentrations in runoff water. Copper concentrations were highest in runoff from poultry litter from birds fed phytase diets compared with other diets; however, this effect may have been a result of wet storage conditions rather than diet. Triple superphosphate applications resulted in the lowest heavy metal concentrations in runoff water among all fertilizer treatments, while normal poultry litter resulted in the highest concentrations. Arsenic and Cu concentrations increased in runoff water as poultry litter application rates increased and decreased with increasing time until the first runoff event. These data indicate that adding alum to poultry litter, a cost-effective best management practice, which also results in lower P runoff and ammonia emissions, may also be an effective tool in reducing metal runoff. PMID:25603088

  3. [Litter decomposition and its main affecting factors in tidal marshes of Minjiang River Estuary, East China].

    PubMed

    Zhang, Lin-Hai; Zeng, Cong-Sheng; Zhang, Wen-Juan; Wang, Tian-E; Tong, Chuan

    2012-09-01

    By using litterbag method, this paper studied the decomposition of the leaf- and flower litters of two emergent macrophytes, native species Phragmites australis and invasive species Spartina alterniflora, and related affecting factors in the Minjiang River estuary of East China. In the decomposition process of the litters, the decay of standing litter (0-90 days) was an important period, and the loss rate of the flower- and leaf litters dry mass of P. australis and S. alterniflora was 15.0 +/- 3.5% and 13.3 +/- 1.1%, and 31.9 +/- 1.1% and 20.8 +/- 1.4%, respectively. During lodging decay period (91-210 days), the loss rate of the flower- and leaf litters dry mass of P. australis and S. alterniflora was 69.5 +/- 0.6% and 71.5 +/- 2.5%, and 76.8 +/- 1.9% and 67.5 +/- 2.1%, respectively. In standing decay period, the decomposition rate of the two plants litters was positively correlated with the litters C/N but negatively correlated to the litters N/P, and the litters P was an important factor limiting the litters decay. In lodging decay period, the effects of the litters C/N, C/P, and N/P decreased, while the environment factors (climate, soil moisture, soil acidity and salinity, and sediment properties) acted more important roles. The differences in the factors affecting the decay of the litters in different decomposition periods were mainly related to the micro-environment and tidal process for the two plant communities. PMID:23285995

  4. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    NASA Astrophysics Data System (ADS)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root

  5. Impacts of Poultry House Environment on Poultry Litter Bacterial Community Composition

    PubMed Central

    Dumas, Michael D.; Polson, Shawn W.; Ritter, Don; Ravel, Jacques; Gelb, Jack; Morgan, Robin; Wommack, K. Eric

    2011-01-01

    Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD). Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly Gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens. PMID:21949751

  6. The Effects of Litter on Littering Behavior in a Forest Environment

    ERIC Educational Resources Information Center

    Crump, S. Larry; And Others

    1977-01-01

    The effects of littered and nonlittered areas on littering behavior were determined in picnic areas in the Uinta National Forest, Utah. Littered and nonlittered conditions were controlled by spreading or removing litter from specified areas. Observations revealed that in the nonlittered areas there was more litter than in the littered areas. (CS)

  7. Alum affects ammonia-producing microorganisms in poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists at the USDA-ARS in Bowling Green, KY and in Fayetteville, AR are working to uncover the microbiology of ammonia production in poultry litter. Poultry litter is a valuable nutrient source for plants and microorganisms that contains high levels of protein, nitrogen, and other minerals. Howe...

  8. Poultry litter and the environment: Physiochemical properties of litter and soil during successive flock rotations and after remote site deposition.

    PubMed

    Crippen, Tawni L; Sheffield, Cynthia L; Byrd, J Allen; Esquivel, Jesus F; Beier, Ross C; Yeater, Kathleen

    2016-05-15

    The U.S. broiler meat market has grown over the past 16 years and destinations for U.S. broiler meat exports expanded to over 150 countries. This market opportunity has spurred a corresponding increase in industrialized poultry production, which due to the confined space in which high numbers of animals are housed, risks accumulating nutrients and pollutants. The purpose of this research was to determine the level of pollutants within poultry litter and the underlying soil within a production facility; and to explore the impact of spent litter deposition into the environment. The study follows a production facility for the first 2.5 years of production. It monitors the effects of successive flocks and management practices on 15 physiochemical parameters: Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, moisture, Na, NO3(-)/N, organic matter, P, pH, S, and Zn. Litter samples were collected in-house, after clean-outs and during stockpiling. The soil before house placement, after the clean-outs and following litter stockpiling was monitored. Management practices markedly altered the physiochemical profiles of the litter in-house. A canonical discriminant analysis was used to describe the relationship between the parameters and sampling times. The litter profiles grouped into five clusters corresponding to time and management practices. The soil in-house exhibited mean increases in all physiochemical parameters (2-297 fold) except Fe, Mg, %M, and pH. The spent litter was followed after deposition onto a field for use as fertilizer. After 20 weeks, the soil beneath the litter exhibited increases in EC, Cu, K, Na, NO3(-)/N, %OM, P, S and Zn; while %M decreased. Understanding the impacts of industrialized poultry farms on the environment is vital as the cumulative ecological impact of this land usage could be substantial if not properly managed to reduce the risk of potential pollutant infiltration into the environment. PMID:26990075

  9. How does litter cover, litter diversity and fauna affect sediment discharge and runoff?

    NASA Astrophysics Data System (ADS)

    Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Scholten, Thomas

    2013-04-01

    Litter cover plays a major role in soil erosion processes. It is known that litter cover reduces erosivity of raindrops, decreases sediment discharge and lowers runoff volume compared to bare ground. However, in the context of biodiversity, the composition of litter cover, its effect on sediment discharge and runoff volume and their influence on soil erosion have not yet been analyzed in detail. Focusing on initial soil erosion (splash), our experimental design is designated to get a better understanding of these mechanisms. The experiments were carried out within the DFG research unit "Biodiversity and Ecosystem Functioning (BEF)-China" in subtropical China. The "New Integrated Litter Experiment (NILEx)" used as platform combining different subprojects of BEF-China dealing with "decomposition and nutrient cycling", "mechanisms of soil erosion" and "functional effects of herbivores, predators and saproxylics" in one experiment. In NILEx, 96 40cm x 40cm runoff plots on two hill slopes inside a castanea molissima forest plantation have been installed and filled with seven different types of litter cover. 16 one-species plots, 24 two-species plots, 4 four-species plots and 4 bare ground plots have been set up, each replicated once. We prepared 48 Plots with traps (Renner solution) for soil macrofauna (diplopods and collembola), so half of the plots were kept free from fauna while the other half was accessible for fauna. Rainfall was generated artificially by using a rainfall simulator with a continuous and stable intensity of 60 mm/h. Our experiments included two runs of 20 minutes duration each, both conducted at two different time steps (summer 2012 and autumn 2012). Runoff volume and sediment discharge were measured every 5 minutes during one rainfall run. Litter coverage and litter mass were recorded at the beginning (summer 2012) and at the end of the experiment (autumn 2012). Our results show that sediment discharge as well as runoff volume decreases

  10. Intestinal Microbiota of Broiler Chickens As Affected by Litter Management Regimens.

    PubMed

    Wang, Lingling; Lilburn, Mike; Yu, Zhongtang

    2016-01-01

    Poultry litter is a mixture of bedding materials and enteric bacteria excreted by chickens, and it is typically reused for multiple growth cycles in commercial broiler production. Thus, bacteria can be transmitted from one growth cycle to the next via litter. However, it remains poorly understood how litter reuse affects development and composition of chicken gut microbiota. In this study, the effect of litter reuse on the microbiota in litter and in chicken gut was investigated using 2 litter management regimens: fresh vs. reused litter. Samples of ileal mucosa and cecal digesta were collected from young chicks (10 days of age) and mature birds (35 days of age). Based on analysis using DGGE and pyrosequencing of bacterial 16S rRNA gene amplicons, the microbiota of both the ileal mucosa and the cecal contents was affected by both litter management regimen and age of birds. Faecalibacterium, Oscillospira, Butyricicoccus, and one unclassified candidate genus closely related to Ruminococcus were most predominant in the cecal samples, while Lactobacillus was predominant in the ileal samples at both ages and in the cecal samples collected at day 10. At days 10 and 35, 8 and 3 genera, respectively, in the cecal luminal microbiota differed significantly in relative abundance between the 2 litter management regimens. Compared to the fresh litter, reused litter increased predominance of halotolerant/alkaliphilic bacteria and Faecalibacterium prausnitzii, a butyrate-producing gut bacterium. This study suggests that litter management regimens affect the chicken GI microbiota, which may impact the host nutritional status and intestinal health. PMID:27242676

  11. Intestinal Microbiota of Broiler Chickens As Affected by Litter Management Regimens

    PubMed Central

    Wang, Lingling; Lilburn, Mike; Yu, Zhongtang

    2016-01-01

    Poultry litter is a mixture of bedding materials and enteric bacteria excreted by chickens, and it is typically reused for multiple growth cycles in commercial broiler production. Thus, bacteria can be transmitted from one growth cycle to the next via litter. However, it remains poorly understood how litter reuse affects development and composition of chicken gut microbiota. In this study, the effect of litter reuse on the microbiota in litter and in chicken gut was investigated using 2 litter management regimens: fresh vs. reused litter. Samples of ileal mucosa and cecal digesta were collected from young chicks (10 days of age) and mature birds (35 days of age). Based on analysis using DGGE and pyrosequencing of bacterial 16S rRNA gene amplicons, the microbiota of both the ileal mucosa and the cecal contents was affected by both litter management regimen and age of birds. Faecalibacterium, Oscillospira, Butyricicoccus, and one unclassified candidate genus closely related to Ruminococcus were most predominant in the cecal samples, while Lactobacillus was predominant in the ileal samples at both ages and in the cecal samples collected at day 10. At days 10 and 35, 8 and 3 genera, respectively, in the cecal luminal microbiota differed significantly in relative abundance between the 2 litter management regimens. Compared to the fresh litter, reused litter increased predominance of halotolerant/alkaliphilic bacteria and Faecalibacterium prausnitzii, a butyrate-producing gut bacterium. This study suggests that litter management regimens affect the chicken GI microbiota, which may impact the host nutritional status and intestinal health. PMID:27242676

  12. Factors affecting arsenic and copper runoff from pastures fertilized with poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heavy metal runoff from soils fertilized with poultry litter has received increasing attention in recent years, although it is not really known if heavy runoff from poultry litter poses a significant threat to the environment. The objective of this study was to evaluate arsenic (As) and copper (Cu)...

  13. The Evaluation of Litter Behavior Modification in a River Environment.

    ERIC Educational Resources Information Center

    Wagstaff, Mark C.; Wilson, Beth E.

    1988-01-01

    Behavior modification techniques were evaluated by observing litter collection behavior of commercial rafting groups. The number of litter pieces retrieved by treatment and control groups was significantly different. Results support the idea that verbal appeal and role modeling can be effective litter control techniques. (Author/CW)

  14. Habitat, food, and climate affecting leaf litter anuran assemblages in an Atlantic Forest remnant

    NASA Astrophysics Data System (ADS)

    Rievers, Camila Rabelo; Pires, Maria Rita Silvério; Eterovick, Paula Cabral

    2014-07-01

    Leaf litter anuran assemblages include both species that have terrestrial development and species that, during the breeding season, aggregate around bodies of water where their tadpoles develop. The resources used by these two groups in the leaf litter are likely to differ, as well as their sampled species richness, abundance and biomass as resource availability changes. We conducted a 12-month survey of leaf litter anuran assemblages at three forest areas in the largest Atlantic Forest remnant in the state of Minas Gerais in southeastern Brazil. Each month we estimated, based on capture rates, anuran species richness, abundance, and biomass as assemblage descriptors. We also measured variables that could potentially affect these descriptors in space and time: invertebrate litter fauna (abundance and richness of taxa), leaf litter biomass, and microclimatic conditions (air humidity, air and soil temperature, soil water content, and rainfall). We tested for differences in these variables among areas. We used general linear models to search for the variables that best explained variation in anuran abundance (based on capture rates) throughout the year. We analyzed species with terrestrial development (TD) and with aquatic larvae (AL) separately. We recorded 326 anurans of 15 species. Sampled anuran abundance (correlated to species richness and biomass) was explained by air humidity and/or invertebrate abundance for species with TD, and by soil water content or air humidity and leaf litter biomass for species with AL. The variability in the results of studies on leaf litter frogs that try to find variables to explain changes in community descriptors may be due to spatial variation of resources among areas and also to the fact that TD and AL species are frequently analyzed together, when in fact they are likely to show different responses to resources present in the leaf litter habitat, reflected on capture rates.

  15. SOIL COMPACTION AND POULTRY LITTER EFFECTS ON FACTORS AFFECTING NITROGEN AVAILABILITY IN A CLAYPAN SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil compaction may affect N mineralization and the subsequent fate of N in agroecosystems. Laboratory incubation and field experiments were conducted to determine the effects of surface soil compaction on soil N mineralization in a claypan soil amended with poultry litter (i.e., turkey excrement mi...

  16. Evidence for mild sediment Pb contamination affecting leaf-litter decomposition in a lake.

    PubMed

    Oguma, Andrew Y; Klerks, Paul L

    2015-08-01

    Much work has focused on the effects of metal-contaminated sediment on benthic community structure, but effects on ecosystem functions have received far less attention. Decomposition has been widely used as an integrating metric of ecosystem function in lotic systems, but not for lentic ones. We assessed the relationship between low-level sediment lead (Pb) contamination and leaf-litter decomposition in a lentic system. We measured 30-day weight loss in 30 litter-bags that were deployed along a Pb-contamination gradient in a cypress-forested lake. At each deployment site we also quantified macrobenthos abundance, dissolved oxygen, water depth, sediment organic content, sediment silt/clay content, and both total sediment and porewater concentrations of Cd, Cu, Ni, Pb and Zn. Principal components (PC) analysis revealed a negative relationship between Pb concentration and benthic macroinvertebrate abundance, and this covariation dominated the first PC axis (PC1). Subsequent correlation analyses revealed a negative relationship between PC1 and percent leaf-litter loss. Our results indicate that leaf-litter decomposition was related to sediment Pb and benthic macroinvertebrate abundance. They also showed that ecosystem function may be affected even where sediment Pb concentrations are mostly below threshold-effects sediment quality guidelines--a finding with potential implications for sediment risk assessment. Additionally, the litter-bag technique used in this study showed promise as a tool in risk assessments of metal-contaminated sediments in lentic systems. PMID:26115904

  17. Prior Hydrologic Disturbance Affects Competition between Aedes Mosquitoes via Changes in Leaf Litter

    PubMed Central

    Smith, Cassandra D.; Freed, T. Zachary; Leisnham, Paul T.

    2015-01-01

    Allochthonous leaf litter is often the main resource base for invertebrate communities in ephemeral water-filled containers, and detritus quality can be affected by hydrologic conditions. The invasive mosquito Aedes albopictus utilizes container habitats for its development where it competes as larvae for detritus and associated microorganisms with the native Aedes triseriatus. Different hydrologic conditions that containers are exposed to prior to mosquito utilization affect litter decay and associated water quality. We tested the hypothesis that larval competition between A. albopictus and A. triseriatus would be differentially affected by prior hydrologic conditions. Experimental microcosms provisioned with Quercus alba L. litter were subjected to one of three different hydrologic treatments prior to the addition of water and mosquito larvae: dry, flooded, and a wet/dry cycle. Interspecific competition between A. albopictus and A. triseriatus was mediated by hydrologic treatment, and was strongest in the dry treatment vs. the flooded or wet/dry treatments. Aedes triseriatus estimated rate of population change (λ') was lowest in the dry treatment. Aedes albopictus λ' was unaffected by hydrologic treatment, and was on average always increasing (i.e., > 1). Aedes triseriatus λ' was affected by the interaction of hydrologic treatment with interspecific competition, and was on average declining (i.e., < 1.0), at the highest interspecific densities in the dry treatment. Dry treatment litter had the slowest decay rate and leached the highest concentration of tannin-lignin, but supported more total bacteria than the other treatments. These results suggest that dry conditions negatively impact A. triseriatus population performance and may result in the competitive exclusion of A. triseriatus by A. albopictus, possibly by reducing microbial taxa that Aedes species browse. Changing rainfall patterns with climate change are likely to affect competition between A

  18. Prior Hydrologic Disturbance Affects Competition between Aedes Mosquitoes via Changes in Leaf Litter.

    PubMed

    Smith, Cassandra D; Freed, T Zachary; Leisnham, Paul T

    2015-01-01

    Allochthonous leaf litter is often the main resource base for invertebrate communities in ephemeral water-filled containers, and detritus quality can be affected by hydrologic conditions. The invasive mosquito Aedes albopictus utilizes container habitats for its development where it competes as larvae for detritus and associated microorganisms with the native Aedes triseriatus. Different hydrologic conditions that containers are exposed to prior to mosquito utilization affect litter decay and associated water quality. We tested the hypothesis that larval competition between A. albopictus and A. triseriatus would be differentially affected by prior hydrologic conditions. Experimental microcosms provisioned with Quercus alba L. litter were subjected to one of three different hydrologic treatments prior to the addition of water and mosquito larvae: dry, flooded, and a wet/dry cycle. Interspecific competition between A. albopictus and A. triseriatus was mediated by hydrologic treatment, and was strongest in the dry treatment vs. the flooded or wet/dry treatments. Aedes triseriatus estimated rate of population change (λ') was lowest in the dry treatment. Aedes albopictus λ' was unaffected by hydrologic treatment, and was on average always increasing (i.e., > 1). Aedes triseriatus λ' was affected by the interaction of hydrologic treatment with interspecific competition, and was on average declining (i.e., < 1.0), at the highest interspecific densities in the dry treatment. Dry treatment litter had the slowest decay rate and leached the highest concentration of tannin-lignin, but supported more total bacteria than the other treatments. These results suggest that dry conditions negatively impact A. triseriatus population performance and may result in the competitive exclusion of A. triseriatus by A. albopictus, possibly by reducing microbial taxa that Aedes species browse. Changing rainfall patterns with climate change are likely to affect competition between A

  19. Infant Affect and Home Environment.

    ERIC Educational Resources Information Center

    Luster, Tom; And Others

    1993-01-01

    Examined data from National Longitudinal Survey of Youth to investigate relationship between infant affect and quality of home environment. Found that infant irritability was negatively correlated with quality of home environment in both low-risk and high-risk families. Infant positive affect was more strongly related to quality of care in…

  20. Tadpoles of Early Breeding Amphibians are Negatively Affected by Leaf Litter From Invasive Chinese Tallow Trees

    NASA Astrophysics Data System (ADS)

    Leonard, N. E.

    2005-05-01

    As wetlands are invaded by Chinese tallow trees (Triadica sebifera), native trees are displaced and detrital inputs to amphibian breeding ponds are altered. I used a mesocosm experiment to examine the effect of Chinese tallow leaf litter on the survival to, size at, and time to metamorphosis of amphibian larvae. Fifty 1000-L cattle watering tanks were treated with 1500 g dry weight of one of five leaf litter treatments: Chinese tallow, laurel oak (Quercus laurifolia), water tupelo (Nyssa aquatica), slash pine (Pinus elliottii), or a 3:1:1:1 mixture. Each tank received 45 tadpoles of Pseudacris feriarum, Bufo terrestris, and Hyla cinerea in sequence according to their natural breeding phonologies. Every Pseudacris feriarum and Bufo terrestris tadpole exposed to Chinese tallow died prior to metamorphosis. Hyla cinerea survival in tanks with tallow-only was significantly lower than that observed for all other leaf treatments. Hyla cinerea tadpoles from tallow-only and mixed-leaf treatments were larger at metamorphosis and transformed faster than those in tanks with native leaves only. These results suggest that Chinese tallow leaf litter may negatively affect tadpoles of early breeding frogs and that Chinese tallow invasion may change the structure of amphibian communities in temporary ponds.

  1. Does Proximity to Subsurface Poultry Litter Affect Corn Seedling Survival and Growth?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter provides a rich nutrient source for crops, but the usual practice of surface broadcasting litter can degrade water quality by allowing storm runoff to transport nutrients into streams and lakes, while much of the ammonia N escapes into the atmosphere. Subsurface application of litter...

  2. Genetic by environment interactions affect plant–soil linkages

    PubMed Central

    Pregitzer, Clara C; Bailey, Joseph K; Schweitzer, Jennifer A

    2013-01-01

    The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant–soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant–soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate. PMID:23919173

  3. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

    PubMed

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes. PMID:26406249

  4. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow

    PubMed Central

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes. PMID:26406249

  5. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.

    PubMed

    Mora-Gómez, Juanita; Elosegi, Arturo; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M

    2016-08-01

    Microorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags. Irrespective of the season, microbial decomposition followed two stages. Initially, bacterial contribution to total microbial biomass was higher compared to later stages, and it was related to disaccharide and lignin degradation; in a later stage, bacteria were less important and were associated with hemicellulose and cellulose degradation, while fungi were related to lignin decomposition. The relevance of microbial groups in decomposition differed among seasons: fungi were more important in spring, whereas in summer, water quality changes seemed to favour bacteria and slowed down lignin and hemicellulose degradation. Invertebrates influenced litter-associated microbial assemblages (especially bacteria), stimulated enzyme efficiencies and reduced fungal biomass. We conclude that bacterial and fungal assemblages play distinctive roles in microbial decomposition and differ in their sensitivity to environmental changes, ultimately affecting litter decomposition, which might be particularly relevant in highly seasonal ecosystems, such as intermittent streams. PMID:27288197

  6. Initial phylogenetic relatedness of saprotrophic fungal communities affects subsequent litter decomposition rates.

    PubMed

    Kivlin, Stephanie N; Treseder, Kathleen K

    2015-05-01

    Ecosystem-level consequences of biodiversity loss of macroorganisms are well understood, while the repercussions of species extirpation in microbial systems are not. We manipulated species richness and phylogenetic relatedness of saprotrophic fungi in situ in a boreal forest to address this issue. Litter decomposition rates (as total mass loss) after 2 months were significantly higher in the least phylogenetically related fungal assemblages. Likewise, cellulose loss was also highest in the most distantly related treatments after 1 year. There were marginal effects of species richness on mass loss that only affected decomposition after 2 months. At the end of 1 year of decomposition, most fungal communities had collapsed from their original diversity to two species, mainly in the Penicillium or Hypocrea clades. Two concurrent processes may explain these results: competition between closely related fungal taxa and phylogenetic conservation in cellulose decomposition. Our results suggest that phylogenetic relatedness of fungal communities may be a more appropriate metric than species richness or community composition to predict functional responses of fungal communities to global change. PMID:25331109

  7. Does Litter Size Variation Affect Models of Terrestrial Carnivore Extinction Risk and Management?

    PubMed Central

    Devenish-Nelson, Eleanor S.; Stephens, Philip A.; Harris, Stephen; Soulsbury, Carl; Richards, Shane A.

    2013-01-01

    Background Individual variation in both survival and reproduction has the potential to influence extinction risk. Especially for rare or threatened species, reliable population models should adequately incorporate demographic uncertainty. Here, we focus on an important form of demographic stochasticity: variation in litter sizes. We use terrestrial carnivores as an example taxon, as they are frequently threatened or of economic importance. Since data on intraspecific litter size variation are often sparse, it is unclear what probability distribution should be used to describe the pattern of litter size variation for multiparous carnivores. Methodology/Principal Findings We used litter size data on 32 terrestrial carnivore species to test the fit of 12 probability distributions. The influence of these distributions on quasi-extinction probabilities and the probability of successful disease control was then examined for three canid species – the island fox Urocyon littoralis, the red fox Vulpes vulpes, and the African wild dog Lycaon pictus. Best fitting probability distributions differed among the carnivores examined. However, the discretised normal distribution provided the best fit for the majority of species, because variation among litter-sizes was often small. Importantly, however, the outcomes of demographic models were generally robust to the distribution used. Conclusion/Significance These results provide reassurance for those using demographic modelling for the management of less studied carnivores in which litter size variation is estimated using data from species with similar reproductive attributes. PMID:23469140

  8. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe...

  9. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe...

  10. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe...

  11. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe...

  12. 40 CFR 1502.15 - Affected environment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Affected environment. 1502.15 Section 1502.15 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.15 Affected environment. The environmental impact statement shall succinctly describe...

  13. Maternal immune activation affects litter success, size and neuroendocrine responses related to behavior in adult offspring.

    PubMed

    French, Susannah S; Chester, Emily M; Demas, Gregory E

    2013-07-01

    It is increasingly evident that influences other than genetics can contribute to offspring phenotype. In particular, maternal influences are an important contributing factor to offspring survival, development, physiology and behavior. Common environmental pathogens such as viral or bacterial microorganisms can induce maternal immune responses, which have the potential to alter the prenatal environment via multiple independent pathways. The effects of maternal immune activation on endocrine responses and behavior are less well studied and provide the basis for the current study. Our approach in the current study was two-pronged: 1) quantify sickness responses during pregnancy in adult female hamsters experiencing varying severity of immune responsiveness (i.e., differing doses of lipopolysaccharide [LPS]), and 2) assess the effects of maternal immune activation on offspring development, immunocompetence, hormone profiles, and social behavior during adulthood. Pregnancy success decreased with increasing doses of LPS, and litter size was reduced in LPS dams that managed to successfully reproduce. Unexpectedly, pregnant females treated with LPS showed a hypothermic response in addition to the more typical anorexic and body mass changes associated with sickness. Significant endocrine changes related to behavior were observed in the offspring of LPS-treated dams; these effects were apparent in adulthood. Specifically, offspring from LPS treated dams showed significantly greater cortisol responses to stressful resident-intruder encounters compared with offspring from control dams. Post-behavior cortisol was elevated in male LPS offspring relative to the offspring of control dams, and was positively correlated with the frequency of bites during agonistic interactions, and cortisol levels in both sexes were related to defensive behaviors, suggesting that changes in hypothalamo-pituitary-adrenal axis responsiveness may play a regulatory role in the observed behavioral

  14. MINERALIZATION OF NITROGEN FROM BROILER LITTER AS AFFECTED BY SOIL TEXTURE IN THE SOUTHEASTERN COASTAL PLAIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted during 2004-2005 to determine nitrogen (N) mineralization of broiler litter (BL) in two Coastal Plain soils of differing texture, sandy or clayey. The soils were a Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) and a Greenville sandy clay loam (...

  15. Leaf litter quality affects aquatic insect emergence: contrasting patterns from two foundation trees.

    PubMed

    Compson, Zacchaeus G; Adams, Kenneth J; Edwards, Joeseph A; Maestas, Jesse M; Whitham, Thomas G; Marks, Jane C

    2013-10-01

    Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m(-2) day(-1)) was 25% higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon's H') was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these

  16. Field Experiments in Litter Control

    ERIC Educational Resources Information Center

    Finnie, William C.

    1973-01-01

    A series of urban and highway litter experiments in Richmond (Virginia), St. Louis, and Philadelphia indicated well-designed litter cans reduced littering about 15 percent along city streets and nearly 30 percent along highways. Also, the propensity to litter is critically affected by the characteristics of the individual and environmental…

  17. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests.

    PubMed

    Silveira, Juliana M; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-01-01

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance. PMID:20877720

  18. Factors Affecting the Abundance of Leaf-Litter Arthropods in Unburned and Thrice-Burned Seasonally-Dry Amazonian Forests

    PubMed Central

    Silveira, Juliana M.; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-01-01

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance. PMID:20877720

  19. Enrichment of uranium in particulate matter during litter decomposition affected by Gammarus pulex L.

    PubMed

    Schaller, Jörg; Weiske, Arndt; Mkandawire, Martin; Dudel, E Gert

    2008-12-01

    Plant litter and organic matter of aquatic sediments provide a significant sink of soluble inorganic uranium species in contaminated ecosystems. The uranium content in detritus has been observed to increase significantly during decomposition. However, the influence of the decomposer community on uranium fixation remains unclear. In view of this, we investigated the influence of a shredder (the freshwater shrimp Gammarus pulex L) on uranium fixation and mobilization during the degradation of plant litter. Leaf litter from Alnus glutinosa (L.) Gaertn. with 1152 mg kg(-1) U of dry biomass (DM) and without uranium was used in a 14-day laboratory experiment. The uranium concentration in the particulate organic material (POM) at the end of experiment was 1427 mg kg(-1) DM. After 14 days of decay, the residues of the leaves show a uranium concentration of 644 mg kg(-1) DM. Uranium concentrations in the media initially increased reaching up to 63.9 microg L(-1) but finally decreased to an average value of 34.3 microg L(-1). Atthe same time, DOC levels increased from 2.43 mg L(-1) up to 11.4 mg L(-1) in the course of the experiment Hence, inorganic uranium fixation onto particulate organic matter was enhanced by the activity of G. pulex. PMID:19192788

  20. Metaproteomics to unravel major microbial players in leaf litter and soil environments: challenges and perspectives.

    PubMed

    Becher, Dörte; Bernhardt, Jörg; Fuchs, Stephan; Riedel, Katharina

    2013-10-01

    Soil- and litter-borne microorganisms vitally contribute to biogeochemical cycles. However, changes in environmental parameters but also human interferences may alter species composition and elicit alterations in microbial activities. Soil and litter metaproteomics, implying the assignment of soil and litter proteins to specific phylogenetic and functional groups, has a great potential to provide essential new insights into the impact of microbial diversity on soil ecosystem functioning. This article will illuminate challenges and perspectives of current soil and litter metaproteomics research, starting with an introduction to an appropriate experimental design and state-of-the-art proteomics methodologies. This will be followed by a summary of important studies aimed at (i) the discovery of the major biotic drivers of leaf litter decomposition, (ii) metaproteomics analyses of rhizosphere-inhabiting microbes, and (iii) global approaches to study bioremediation processes. The review will be closed by a brief outlook on future developments and some concluding remarks, which should assist the reader to develop successful concepts for soil and litter metaproteomics studies. PMID:23894095

  1. Succession of Phylogeny and Function During Plant Litter Decomposition (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Brodie, Eoin

    2013-03-01

    Eoin Brodie of Berkeley Lab on "Succession of phylogeny and function during plant litter decomposition" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  2. Fungal diversity of saprotrophic litter fungi in a Mediterranean maquis environment.

    PubMed

    Lunghini, D; Granito, V M; Di Lonardo, D P; Maggi, O; Persiani, A M

    2013-01-01

    Monospecific and mixed-leaf litters from plant species of Mediterranean maquis (Quercus ilex, Phillyrea angustifolia, Pistacia lentiscus, Cistus spp.) in an undisturbed area in southern Italy were studied with respect to the structure and composition of their decomposer fungal community over an incubation period of 403 d. The data matrix structure was analyzed by means of detrended correspondence analysis (DCA), while indicator species analysis (ISA) was used to determine the preferential association of species with a substrate, a succession phase and monospecific/mixed experimental conditions. The ecological nature of the gradient expressed by the DCA axes was investigated by means of experimental and main chemical leaf-litter variables. The litter mixture had non-additive effects on the decomposition process even though the fungal species richness of the mixed litter was considerably higher than that of the monospecific litter. Our findings highlight the occurrence of shifts in the fungal community during decomposition in response to changes in the substrate, such as those related to the cellulose content and lignin/N ratio. PMID:23921238

  3. A Fungal Endosymbiont Affects Host Plant Recruitment Through Seed- and Litter-mediated Mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Many grass species are associated with maternally transmitted fungal endophytes. Increasing evidence shows that endophytes enhance host plant success under varied conditions, yet studies have rarely considered alternative mechanisms whereby these mutualistic symbionts may affect regeneration from...

  4. Early environment affects neuroendocrine regulation in adulthood

    PubMed Central

    Karlamangla, Arun S.; Friedman, Esther M.; Seeman, Teresa E.

    2011-01-01

    Animal and human research indicates that the early environment can exert effects on hypothalamic pituitary adrenal (HPA) axis functioning across the lifespan. Using data from the National Study of Midlife Development in the United States and the National Study of Daily Experience substudy, we identified curvilinear relations between adult reports of parental affection in childhood and adult diurnal cortisol rhythms. Reports of both very affectionate and very unaffectionate parental relations in childhood were associated with flatter diurnal rhythms, suggesting potential dysregulation of the HPA axis at both extremes of family environment. Participants in the bottom tertile showed more signs of HPA axis dysregulation than those in the top tertile. We discuss processes that may underlie these effects, with reference to the theory of allostatic load. PMID:20400490

  5. Controls on mass loss and nitrogen dynamics of oak leaf litter along an urban-rural land-use gradient.

    PubMed

    Pouyat, Richard V; Carreiro, Margaret M

    2003-04-01

    Using reciprocal leaf litter transplants, we investigated the effects of contrasting environments (urban vs. rural) and intraspecific variations in oak leaf litter quality on mass loss rates and nitrogen (N) dynamics along an urban-rural gradient in the New York City metropolitan area. Differences in earthworm abundances and temperature had previously been documented in the stands along this gradient. Red oak leaf litter was collected and returned to its original source stand as native litter to measure decay rates along the gradient. To separate site effects from litter quality effects on decay, reciprocal transplants of litter were also made between stands at the extremes of the environmental gradient (urban and rural stands). Land-use had no effect on mass loss and N dynamics of native litter by the end of the 22-month incubation period. The lack of differences in native litter suggests the factors affecting decay were similar across the stands in this study. However, in the transplant study both environment and litter type strongly affected decay of oak leaf litter. On average urban and rural litter decomposed faster over the incubation period in urban than in rural stands (P=0.016 and P=0.001, respectively, repeated measures ANOVA). Differences in mass loss between urban and rural stands resulted in rural environments having less mass remaining than urban environments at the end of the incubation period (25.6 and 46.2% for urban and rural sites, respectively). Likewise, less N remained in leaf residue in urban sites (71.3%) compared to that in rural sites (115.1%). Litter type also affected mass loss rates during the 22-month incubation period. On average rural litter mass loss rates were faster than urban litter rates in both urban and rural stands (P=0.030 and P=0.026, respectively, repeated measures ANOVA). By the end of the incubation period, rural litter exhibited 43 and 20% greater mass loss and retained 44 and 5% less N than urban litter decomposing in

  6. Suberin-derived aliphatic monomers as biomarkers for SOM affected by root litter contribution

    NASA Astrophysics Data System (ADS)

    Kogel-Knabner, I.; Spielvogel, S.-; Prietzel, J.-

    2012-12-01

    belowground carbon input among the tree species and that (iii) forest conversion may substantially alter SOC stocks and spatial distribution. Suberin biomarkers can thus be used as indicators for the presence of root influence on SOM composition and for identifying root-affected soil compartments.

  7. Arsenic species in broiler (Gallus gallus domesticus) litter, soils, maize (Zea mays L.), and groundwater from litter-amended fields.

    PubMed

    D'Angelo, Elisa; Zeigler, Georgia; Beck, E Glenn; Grove, John; Sikora, Frank

    2012-11-01

    Manure and bedding material (litter) generated by the broiler industry (Gallus gallus domesticus) often contain high levels of arsenic (As) when organoarsenical roxarsone and p-arsanilic acid are included in feed to combat disease and improve weight gain of the birds. This study was conducted to determine As levels and species in litter from three major broiler producing companies, and As levels in soils, corn tissue (Zea mays L.), and groundwater in fields where litter was applied. Total As in litter from the three different integrators ranged between <1 and 44 mg kg(-1). Between 15 and 20% of total As in litter consisted of mostly of arsenate, with smaller amounts of roxarsone and several transformation products that were extractable with phosphate buffer. Soils amended with litter had higher levels of bioavailable As (extractable with Mehlich 3 solution and taken up by corn leaves). Arsenic concentrations in plant tissue and groundwater, however, were below the World Health Organization thresholds, which was attributed to strong sorption/precipitation of arsenate in Fe- and Al-rich soils. Ecological impacts of amending soils with As-laden litter depend on the As species in the litter, and chemical and physical properties of soil that strongly affect As mobility and bioavailability in the environment. PMID:23010102

  8. Microbial mineralization of organic nitrogen forms in poultry litters.

    PubMed

    Rothrock, Michael J; Cook, Kimberly L; Warren, Jason G; Eiteman, Mark A; Sistani, Karamat

    2010-01-01

    Ammonia volatilization from the mineralization of uric acid and urea has a major impact on the poultry industry and the environment. Dry acids are commonly used to reduce ammonia emissions from poultry houses; however, little is known about how acidification affects the litter biologically. The goal of this laboratory incubation was to compare the microbiological and physiochemical effects of dry acid amendments (Al+Clear, Poultry Litter Treatment, Poultry Guard) on poultry litter to an untreated control litter and to specifically correlate uric acid and urea contents of these litters to the microbes responsible for their mineralization. Although all three acidifiers eventually produced similar effects within the litter, there was at least a 2-wk delay in the microbiological responses using Poultry Litter Treatment. Acidification of the poultry litter resulted in >3 log increases in total fungal concentrations, with both uricolytic (uric acid degrading) and ureolytic (urea degrading) fungi increasing by >2 logs within the first 2 to 4 wk of the incubation. Conversely, total, uricolytic, and ureolytic bacterial populations all significantly declined during this same time period. While uric acid and urea mineralization occurred within the first 2 wk in the untreated control litter, acidification resulted in delayed mineralization events for both uric acid and urea (2 and 4 wk delay, respectively) once fungal cell concentrations exceeded a threshold level. Therefore, fungi, and especially uricolytic fungi, appear to have a vital role in the mineralization of organic N in low-pH, high-N environments, and the activity of these fungi should be considered in best management practices to reduce ammonia volatilization from acidified poultry litter. PMID:21043291

  9. Litter quality and decomposability of species from a Mediterranean succession depend on leaf traits but not on nitrogen supply

    PubMed Central

    Kazakou, Elena; Violle, Cyrille; Roumet, Catherine; Pintor, Cristina; Gimenez, Olivier; Garnier, Eric

    2009-01-01

    Background and Aims The rate of plant decomposition depends on both the decomposition environment and the functional traits of the individual species (e.g. leaf and litter quality), but their relative importance in determining interspecific differences in litter decomposition remains unclear. The aims of this study were to: (a) determine if species from different successional stages grown on soils with low and high nitrogen levels produce leaf and litter traits that decompose differently under identical conditions; and (b) assess which trait of living leaves best relates to litter quality and litter decomposability Methods The study was conducted on 17 herbaceous species representative of three stages of a Mediterranean successional sere of Southern France. Plants were grown in monocultures in a common garden under two nitrogen levels. To elucidate how different leaf traits affected litter decomposition a microcosm experiment was conducted to determine decomposability under standard conditions. Tests were also carried out to determine how successional stage and nitrogen supply affected functional traits of living leaves and how these traits then modified litter quality and subsequent litter decomposability. Key Results The results demonstrated that leaf traits and litter decomposability varied according to species and successional stage. It was also demonstrated that while nitrogen addition affected leaf and litter traits, it had no effect on decomposition rates. Finally, leaf dry matter content stood out as the leaf trait best related to litter quality and litter decomposability Conclusions In this study, species litter decomposability was affected by some leaf and litter traits but not by soil nitrogen supply. The results demonstrated the strength of a trait-based approach to predict changes in ecosystem processes as a result of species shifts in ecosystems. PMID:19710073

  10. Photodegradation of roxarsone in poultry litter leachates

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Ferrer, I.; Rutherford, D.W.; Wershaw, R. L.; Ranville, J.F.; Wildeman, T.R.

    2003-01-01

    Arsenic compounds have been used extensively in agriculture in the US for applications ranging from cotton herbicides to animal feed supplements. Roxarsone (3-nitro-4-hydroxyphenylarsonic acid), in particular, is used widely in poultry production to control coccidial intestinal parasites. It is excreted unchanged in the manure and introduced into the environment when litter is applied to farmland as fertilizer. Although the toxicity of roxarsone is less than that of inorganic arsenic, roxarsone can degrade, biotically and abiotically, to produce more toxic inorganic forms of arsenic, such as arsenite and arsenate. Experiments were conducted on aqueous litter leachates to test the stability of roxarsone under different conditions. Laboratory experiments have shown that arsenite can be cleaved photolytically from the roxarsone moiety at pH 4-8 and that the degradation rate increases with increasing pH. Furthermore, the rate of photodegradation increases with nitrate and natural organic matter concentration, reactants that are commonly found in poultry-litter-water leachates. Additional photochemical reactions rapidly oxidize the cleaved arsenite to arsenate. The formation of arsenate is not entirely undesirable, because it is less mobile in soil systems and less toxic than arsenite. A possible mechanism for the degradation of roxarsone in poultry litter leachates is proposed. The results suggest that poultry litter storage and field application practices could affect the degradation of roxarsone and subsequent mobilization of inorganic arsenic species. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. Transcriptomic Analysis of Ovaries from Pigs with High And Low Litter Size

    PubMed Central

    Feng, Yifang; Ding, Yueyun; Ye, Pengfei; Yin, Zongjun

    2015-01-01

    Litter size is one of the most important economic traits for pig production as it is directly related to the production efficiency. Litter size is affected by interactions between multiple genes and the environment. While recent studies have identified some genes associated with prolificacy in pigs, transcriptomic studies of specific genes affecting litter size in porcine ovaries are rare. In order to identify candidate genes associated with litter size in swine, we assessed gene expression differences between the ovaries of Yorkshire pigs with extremely high and low litter sizes using the RNA-Seq method. A total of 1 243 differentially expressed genes were identified: 897 genes were upregulated and 346 genes were downregulated in high litter size ovary samples compared with low litter size ovary samples. A large number of these genes related to steroid hormone regulation in animal ovaries, including 59 Gene Ontology terms and 27 Kyoto Encyclopedia of Genes and Genomes pathways involved in steroid biosynthesis and ovarian steroidogenesis. From these differentially expressed genes, we identified a total of 11 genes using a bioinformatics screen that may be associated with high litter size in Yorkshire pigs. These results provide a list of new candidate genes for porcine litter size and prolificacy to be further investigated. PMID:26426260

  12. Design Matters: How School Environment Affects Children.

    ERIC Educational Resources Information Center

    Hebert, Elizabeth A.

    1998-01-01

    The organization of space profoundly affects learning. Students feel better connected to a building that anticipates their needs and respects them as individuals. Built in 1971, Crow Island School, in Winnetka, Illinois, is a prize-winning facility that has provided generations of children with windowed classrooms, skylights, adjacent workrooms,…

  13. Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China.

    PubMed

    Chen, Hao; Gurmesa, Geshere A; Liu, Lei; Zhang, Tao; Fu, Shenglei; Liu, Zhanfeng; Dong, Shaofeng; Ma, Chuan; Mo, Jiangming

    2014-01-01

    Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8% and litter addition increased litter decomposition rates by 55%, 36% and 14% in MEBF, MF and MPF, respectively. The magnitudes of changes in litter decomposition were more significant in MEBF forest and less significant in MF, but not significant in MPF. Our results suggest that change in litter quantity can affect litter decomposition, and this impact may become stronger with forest succession in tropical forest ecosystem. PMID:24901698

  14. Litter chemistry prevails over litter consumers in mediating effects of past steel industry activities on leaf litter decomposition.

    PubMed

    Lucisine, Pierre; Lecerf, Antoine; Danger, Michaël; Felten, Vincent; Aran, Delphine; Auclerc, Apolline; Gross, Elisabeth M; Huot, Hermine; Morel, Jean-Louis; Muller, Serge; Nahmani, Johanne; Maunoury-Danger, Florence

    2015-12-15

    Soil pollution has adverse effects on the performance and life history traits of microorganisms, plants, and animals, yet evidence indicates that even the most polluted sites can support structurally-complex and dynamic ecosystems. The present study aims at determining whether and how litter decomposition, one of the most important soil ecological processes leaf, is affected in a highly trace-metal polluted site. We postulated that past steel mill activities resulting in soil pollution and associated changes in soil characteristics would influence the rate of litter decomposition through two non-exclusive pathways: altered litter chemistry and responses of decomposers to lethal and sub-lethal toxic stress. We carried out a litter-bag experiment using Populus tremula L. leaf litter collected at, and allowed to decompose in, a trace metal polluted site and in three unpolluted sites used as controls. We designed a fully-factorial transplant experimental design to assess effects of litter origin and exposure site on the rate of litter decomposition. We further determined initial litter chemistry, fungal biomass, mesofauna abundance in litter bags, and the soil macrofauna community. Irrespective of the site of litter exposure, litter originating from the polluted site had a two-fold faster decomposition than litter from the unpolluted sites. Litter chemistry, notably the lignin content, seemed most important in explaining the degradation rate of the leaf litter. Abundance of meso and macro-detritivores was higher at the polluted site than at the unpolluted sites. However, litter decomposition proceeded at similar rates in polluted and unpolluted sites. Our results show that trace metal pollution and associated soil and litter changes do not necessarily weaken consumer control on litter decomposition through lethal and sub-lethal toxic stress. PMID:26282755

  15. Microbial mineralization of organic nitrogen forms in poultry litters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia volatilization from the mineralization of uric acid and urea has a major impact on the poultry industry and the environment. Dry acids are a common management practice to reduce ammonia emissions from poultry houses, however little is known about how acidification affects the litter biologic...

  16. Litter-of-origin trait effects on gilt development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The preweaning litter environment of gilts can affect subsequent development. In a recent experiment designed to test the effects of diet on gilt development, individual birth weights, immunocrits, sow parity, number weaned, and individual weaning weights were collected for gilts during the preweani...

  17. Experimental evidence that litter size imposes an oxidative challenge to offspring.

    PubMed

    Gibson, Alyssa B; Garratt, Michael; Brooks, Robert C

    2015-12-01

    The post-natal environment in which young develop can substantially impact development, adult phenotype and fitness. In wild mice, competition among litter-mates affects development rate and adult behaviour. We manipulated post-natal litter size in a cross-fostering design to investigate the effects of enlarged and reduced litter sizes on sexual signalling, oxidative stress and the links between them. Oxidative stress causes somatic damage that can limit reproductive success and lifespan, and is predicted to mediate investment in life-history traits, including sexual signals. We predicted that litter enlargement would cause an increase in potential oxidative stress, inhibit growth and reduce sexual signalling in male mice. Males reared in enlarged litters were smaller at weaning and, despite rapid growth immediately after weaning, remained smaller at 10 weeks of age than those reared in smaller litters. Females from enlarged litters were consistently smaller throughout post-weaning development and showed no increase in growth rate compared with females from reduced litters. In enlarged litters, protein thiol concentration was lower at weaning in the liver and kidneys, with this trend continuing at 10 weeks of age in the kidneys only. Aconitase enzyme activity was also lower in mice from enlarged litters at weaning and 10 weeks of age in the kidneys. Male mice from enlarged litters scent marked more frequently and had larger preputial glands than those from reduced litters, indicating greater sexual signalling investment irrespective of this increased oxidative challenge. The results of this study are the first to reveal oxidative costs of developmental stress in small mammals. PMID:26519509

  18. Decreased Toxicity of Bacillus thuringiensis subsp. israelensis to Mosquito Larvae after Contact with Leaf Litter

    PubMed Central

    Stalinski, Renaud; Kersusan, Dylann; Veyrenc, Sylvie; David, Jean-Philippe; Reynaud, Stéphane; Després, Laurence

    2012-01-01

    Bacillus thuringiensis subsp. israelensis is a bacterium producing crystals containing Cry and Cyt proteins, which are toxic for mosquito larvae. Nothing is known about the interaction between crystal toxins and decaying leaf litter, which is a major component of several mosquito breeding sites and represents an important food source. In the present work, we investigated the behavior of B. thuringiensis subsp. israelensis toxic crystals sprayed on leaf litter. In the presence of leaf litter, a 60% decrease in the amount of Cyt toxin detectable by immunology (enzyme-linked immunosorbent assays [ELISAs]) was observed, while the respective proportions of Cry toxins were not affected. The toxicity of Cry toxins toward Aedes aegypti larvae was not affected by leaf litter, while the synergistic effect of Cyt toxins on all B. thuringiensis subsp. israelensis Cry toxins was decreased by about 20% when mixed with leaf litter. The toxicity of two commercial B. thuringiensis subsp. israelensis strains (VectoBac WG and VectoBac 12AS) and a laboratory-produced B. thuringiensis subsp. israelensis strain decreased by about 70% when mixed with leaf litter. Taken together, these results suggest that Cyt toxins interact with leaf litter, resulting in a decreased toxicity of B. thuringiensis subsp. israelensis in litter-rich environments and thereby dramatically reducing the efficiency of mosquitocidal treatments. PMID:22610426

  19. Evidence for extraintestinal growth of bacteroidales originating from poultry litter.

    PubMed

    Weidhaas, Jennifer; Mantha, Sirisha; Hair, Elliott; Nayak, Bina; Harwood, Valerie J

    2015-01-01

    Water quality monitoring techniques that target microorganisms in the order Bacteroidales are potential alternatives to conventional methods for detection of fecal indicator bacteria. Bacteroidales and members of the genus Bacteroides have been the focus of microbial source tracking (MST) investigations for discriminating sources of fecal pollution (e.g., human or cattle feces) in environmental waters. For accurate source apportionment to occur, one needs to understand both the abundance of Bacteroides in host feces and the survival of these host-associated microbial markers after deposition in the environment. Studies were undertaken to evaluate the abundance, persistence, and potential for growth of Bacteroidales originating from poultry litter under oxic and anoxic environmental conditions. Bacteroidales abundance, as determined by quantitative PCR (qPCR) with GenBac primers and probe, increased 2 to 5 log gene copies ml(-1) and 2 log gene copies g litter(-1) under most conditions during incubation of poultry litter in a variety of laboratory microcosm and field mesocosm studies. DNA sequencing of the Bacteroidales organisms in the litter identified taxa with sequences corresponding exactly to the GenBac primer and probe sequences and that were closely related to Bacteroides uniformis, B. ovatus, and B. vulgatus. These results suggest that MST studies using qPCR methods targeting Bacteroidales in watersheds that are affected by poultry litter should be interpreted cautiously. Growth of Bacteroidales originating from poultry litter in environmental waters may occur while Bacteroidales growth from other fecal sources declines, thus confounding the interpretation of MST results. PMID:25326306

  20. Litter composition effects on decomposition across the litter-soil interface

    EPA Science Inventory

    Background/Question/Methods Many studies have investigated the influence of plant litter species composition on decomposition dynamics, but given the variety of communities and environments around the world, a variety of consequences of litter-mixing have been reported. Litter ...

  1. Considering Affective Responses towards Environments for Enhancing Location Based Services

    NASA Astrophysics Data System (ADS)

    Huang, H.; Gartner, G.; Klettner, S.; Schmidt, M.

    2014-04-01

    A number of studies in the field of environmental psychology show that humans perceive and evaluate their surroundings affectively. Some places are experienced as unsafe, while some others as attractive and interesting. Experiences from daily life show that many of our daily behaviours and decision-making are often influenced by this kind of affective responses towards environments. Location based services (LBS) are often designed to assist and support people's behaviours and decision-making in space. In order to provide services with high usefulness (usability and utility), LBS should consider these kinds of affective responses towards environments. This paper reports on the results of a research project, which studies how people's affective responses towards environments can be modelled and acquired, as well as how LBS can benefit by considering these affective responses. As one of the most popular LBS applications, mobile pedestrian navigation systems are used as an example for illustration.

  2. Litter ammonia generation: moisture content and organic versus inorganic bedding materials.

    PubMed

    Miles, D M; Rowe, D E; Cathcart, T C

    2011-06-01

    Negative impacts on the environment, bird well-being, and farm worker health indicate the need for abatement strategies for poultry litter NH(3) generation. Type of bedding affects many parameters related to poultry production including NH(3) losses. In a randomized complete block design, 3 trials compared the cumulative NH(3) volatilization for laboratory-prepared litter (4 bedding types mixed with excreta) and commercial litter (sampled from a broiler house during the second flock on reused pine wood chips). Litters were assessed at the original moisture content and 2 higher moisture contents. Broiler excrement was mixed with pine wood shavings, rice hulls, sand, and vermiculite to create litter samples. Volumetrically uniform litter samples were placed in chambers receiving humidified air where the exhaust passed through H(3)BO(3) solution, trapping litter-emitted NH(3). At the original moisture content, sand and vermiculite litters generated the most NH(3) (5.3 and 9.1 mg of N, respectively) whereas wood shavings, commercial, and rice hull litters emitted the least NH(3) (0.9-2.6 mg of N). For reducing NH(3) emissions, the results support recommendations for using wood shavings and rice hulls, already popular bedding choices in the United States and worldwide. In this research, the organic bedding materials generated the least NH(3) at the original moisture content when compared with the inorganic materials. For each bedding type, incremental increases in litter moisture content increased NH(3) volatilization. However, the effects of bedding material on NH(3) volatilization at the increased moisture levels were not clearly differentiated across the treatments. Vermiculite generated the most NH(3) (26.3 mg of N) at the highest moisture content. Vermiculite was a novel bedding choice that has a high water absorption capacity, but because of high NH(3) generation, it is not recommended for further study as broiler bedding material. Controlling unnecessary moisture

  3. Responses of litter invertebrate communities to litter manipulation in a Japanese conifer plantation

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomohiro; Takito, Yuki; Soga, Masashi; Hijii, Naoki

    2013-08-01

    We examined how the litter invertebrate communities were affected by the temporal changes in the mass and structural complexity of the litter resources by adding and removing litter on the forest floor of a temperate conifer plantation (Cryptomeria japonica) in Japan. We showed that litter mass and depth in the litter-addition (L+) plots changed rapidly into a steady-state condition similar to those in the control plots, mainly due to accelerated decomposition processes during the rainy season. Higher area-based densities of litter invertebrates in the L+ plots, similar mass-based densities between the L+ and control plots, and significant positive correlations between litter mass and the number of individuals implied that the abundance of litter invertebrates would be governed by litter mass rather than by the litter depth. Many litter invertebrates including detritivores were collected even in the litter-removal (L-) area. The relative abundances of invertebrate predators collecting pitfall traps were higher in the L- plots and lower in the L+ plots compared to those in the control plots, whereas those collecting Tullgren funnels were higher in the L+ plots than in the control plots. In the L+ plots, the range of variation in the community compositions among the samples decreased significantly over time in response to a drastic decrease in litter mass, in contrast to the control plots, which showed a relatively constant community composition during the study period. Our litter manipulation experiment reveals some of the mechanisms responsible for maintaining an equilibrium state of forest-floor litter mass and for the responses of litter invertebrate communities to temporal changes in the litter.

  4. Litter sex composition influences dominance status of Alpine marmots (Marmota marmota).

    PubMed

    Dupont, Pierre; Pradel, Roger; Lardy, Sophie; Allainé, Dominique; Cohas, Aurélie

    2015-11-01

    In social species, the hierarchical status of an individual has important consequences for its fitness. While many studies have focused on individual condition to explain access to dominance, very few have investigated the influence of the social environment, especially during early life. Yet it is known that environmental conditions early in life may influence several traits at adulthood. Here, we examine the influence of early social environment on accession to dominance by investigating the influence of litter size and sex composition on survival and the probability of ascending to dominance later in life using a 20-year dataset from a wild population of Alpine marmots (Marmota marmota). Although litter size had no effect on the fate of individuals, litter sex composition affected male juvenile survival and both male and female probabilities of reaching dominant status when adult. Male juveniles incur lower survival when the number of male juveniles in the litter increases, and individuals of both sexes from male-biased litters are more likely to become dominant than individuals from female-biased litters. However, the absolute number of sisters in the litter, rather than the sex ratio, seems to be an important predictor of the probability of acquiring dominant status: pups having more sisters are less likely to become dominant. Several potential mechanisms to explain these results are discussed. PMID:26169393

  5. Microbial environment affects innate immunity in two closely related earthworm species Eisenia andrei and Eisenia fetida.

    PubMed

    Dvořák, Jiří; Mančíková, Veronika; Pižl, Václav; Elhottová, Dana; Silerová, Marcela; Roubalová, Radka; Skanta, František; Procházková, Petra; Bilej, Martin

    2013-01-01

    Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins. PMID:24223917

  6. Microbial Environment Affects Innate Immunity in Two Closely Related Earthworm Species Eisenia andrei and Eisenia fetida

    PubMed Central

    Dvořák, Jiří; Mančíková, Veronika; Pižl, Václav; Elhottová, Dana; Šilerová, Marcela; Roubalová, Radka; Škanta, František; Procházková, Petra; Bilej, Martin

    2013-01-01

    Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins. PMID:24223917

  7. Birth order, family environments, academic and affective outcomes.

    PubMed

    Marjoribanks, Kevin

    2003-06-01

    Relations were examined among birth order, family social status, family learning environments, and a set of affective and academic outcomes. Data were collected as part of an Australian longitudinal study (4,171 females and 3,718 males). Analysis suggested that birth order continued to have small but significant associations with adolescents' self-concept and educational aspirations and with young adults' educational attainment, after taking into account differences in family social status and family learning environments. PMID:12931949

  8. Water addition, evaporation and water holding capacity of poultry litter.

    PubMed

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2015-12-15

    Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis. PMID:26367067

  9. Evidence for Extraintestinal Growth of Bacteroidales Originating from Poultry Litter

    PubMed Central

    Mantha, Sirisha; Hair, Elliott; Nayak, Bina; Harwood, Valerie J.

    2014-01-01

    Water quality monitoring techniques that target microorganisms in the order Bacteroidales are potential alternatives to conventional methods for detection of fecal indicator bacteria. Bacteroidales and members of the genus Bacteroides have been the focus of microbial source tracking (MST) investigations for discriminating sources of fecal pollution (e.g., human or cattle feces) in environmental waters. For accurate source apportionment to occur, one needs to understand both the abundance of Bacteroides in host feces and the survival of these host-associated microbial markers after deposition in the environment. Studies were undertaken to evaluate the abundance, persistence, and potential for growth of Bacteroidales originating from poultry litter under oxic and anoxic environmental conditions. Bacteroidales abundance, as determined by quantitative PCR (qPCR) with GenBac primers and probe, increased 2 to 5 log gene copies ml−1 and 2 log gene copies g litter−1 under most conditions during incubation of poultry litter in a variety of laboratory microcosm and field mesocosm studies. DNA sequencing of the Bacteroidales organisms in the litter identified taxa with sequences corresponding exactly to the GenBac primer and probe sequences and that were closely related to Bacteroides uniformis, B. ovatus, and B. vulgatus. These results suggest that MST studies using qPCR methods targeting Bacteroidales in watersheds that are affected by poultry litter should be interpreted cautiously. Growth of Bacteroidales originating from poultry litter in environmental waters may occur while Bacteroidales growth from other fecal sources declines, thus confounding the interpretation of MST results. PMID:25326306

  10. Soil moisture regime and soil type affect the decomposition of graminoid litter grown under three levels of atmospheric CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increases in atmospheric CO2 can augment the quantity and change the quality of plant carbon (C) inputs into grassland soils. Soil moisture interacts with substrate characteristics and soil properties to affect decomposition and transfer of plant-derived C into soil organic matter (SOM). Thus, pre...

  11. Sibsize, Family Environment, Cognitive Performance, and Affective Characteristics

    ERIC Educational Resources Information Center

    Marjoribanks, Kevin

    1976-01-01

    Incorporates measures of family environment (parent-child interaction) into research methodology to study the effects of sibsize (family size and birth order) on a child's cognitive performance and affective behavior. Provides tentative support for the confluence model of sibsize influences on children's behaviors. (RL)

  12. Litter-Spinning Retarders

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1995-01-01

    Aerodynamic plates stop litter from spinning during hoisting by helicopter. Features of proposed litter-spinning retarders include convenience of deployment and independence from ground restraint. Retarder plate(s) folded flat against bottom of litter during storage or while litter is loaded. Plate(s) held in storage position by latch that releases manually or automatically as litter is hoisted. Upon release, springs move plates into deployed position.

  13. Evaluation of broiler litter transportation in northern Alabama, USA.

    PubMed

    Paudel, Krishna P; Adhikari, Murali; Martin, Neil R

    2004-10-01

    The profitability of using broiler litter as a source of crop nutrients was calculated using a phosphorus-consistent litter application rule. A ton of litter can cost effectively be transported up to 164 miles from the production facility. A cost-minimizing phosphorus-consistent transportation model developed to meet the nutrient needs of 29 counties in northern Alabama revealed that not all of the litter can be utilized in the region. The total cost increased when transportation of the litter out of the heavily surplus counties was prioritized. Total litter use was minimally affected by changes in chemical fertilizer prices. Shadow prices indicated the robustness of the model. PMID:15327843

  14. High litter moisture content suppresses litter ammonia volatilization.

    PubMed

    Miles, D M; Rowe, D E; Cathcart, T C

    2011-07-01

    With global food demand expected to increase by 100% in the next 50 yr, urgency to combine comprehensive strategies for sustainable, efficacious, and environmentally sensible agronomic practices has never been greater. One effort for US meat bird management is to reduce NH(3) volatilization from litter to create a better growing environment for the birds, improve production efficiency, retain N in litter for fertilizer value, and negate the detrimental environmental impacts of NH(3) loss to the air. To derive the fundamental effects of temperature and moisture on litter NH(3) volatilization over the range of conditions found in commercial houses, experiments were conducted using commercial broiler litter that had moisture contents of approximately 20 to 55% while controlling temperatures ranging from 18.3 to 40.6°C. Litter samples (100 g) were placed in 1-L containers that received humidified air at approximately 113 mL/min. Volatilized NH(3) in exhaust air was captured in H(3)BO(3) traps. Ammonia loss (log(10) transformation) was modeled via an equation using linear coefficients for temperature and moisture, an interaction term for temperature × moisture, and a quadratic term for moisture. The surface responses resembled parabolic cylinders, indicating a critical moisture level at which NH(3) no longer increases but is diminished as moisture continues to increase. The critical moisture level lies between 37.4 and 51.1% litter moisture, depending on the temperature. An increase in temperature consistently increased NH(3) generation. When the temperature extremes were compared, the maximum NH(3) was up to 7 times greater at 40.6 vs. 18.3°C. The upper moisture limit at which NH(3) release is maximized and subsequently arrested as moisture continues to increase had not been defined previously for commercial broiler litter. The poultry industry and researchers can use these results as a decision tool to enable management strategies that limit NH(3) production. PMID

  15. Analysis of candidate genes underlying two epistatic quantitative trait loci on SSC12 affecting litter size in pig.

    PubMed

    Fernández-Rodríguez, A; Rodríguez, C; Varona, L; Balcells, I; Noguera, J L; Ovilo, C; Fernández, A I

    2010-02-01

    The previous results from a genome scan for total number of piglets born and number of piglets born alive in a F(2) Iberian by Meishan intercross showed several single and epistatic QTL. One of the most interesting results was obtained for SSC12, where two QTL affecting both traits showed epistatic interaction. In this study, we proposed two genes (SLC9A3R1 and NOS2) as biological and potentially positional candidates underlying these QTL. Both cDNAs were characterized and 23 polymorphisms were detected. A chromosome scan was conducted with 12 markers, plus one SNP in SLC9A3R1 and one in NOS2, covering 110 cM of SSC12. The epistatic QTL (QTL1 at 15 cM and QTL2 at 97 cM) were confirmed, and SLC9A3R1 and NOS2 were mapped around the QTL1 and QTL2 regions respectively. Several SNPs in both genes were tested with standard animal model and marker assisted association tests. The most significant results were obtained with the NOS2 haplotype defined by one missense SNP c.2192C > T (Val to Ala) and a 15 bp duplication at the 3'UTR. This duplication seems to include AU-rich elements, and could be a target site for miRNA, therefore there are statistical and biological indications to consider this haplotype as the potential causal mutation underlying QTL2. SLC9A3R1 results were not conclusive. Although the interaction between the SNPs was not significant, we cannot reject the possibility of interaction of the NOS2 haplotype with other polymorphisms closely linked to the SL9A3R1 SNPs analysed. PMID:19793269

  16. Effects of prescribed burning and litter type on litter decomposition and nutrient release in mixed-grass prairie in Eastern Montana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire can affect litter decomposition and carbon (C) and nitrogen (N) dynamics. Here, we examined the effect of summer fire and three litter types on litter decomposition and litter C and N dynamics in a northern mixed-grass prairie over a 24 month period starting ca. 14 months after fire. Over all...

  17. Chinese herbal medicine for miscarriage affects decidual micro-environment and fetal growth

    PubMed Central

    Piao, L.; Chen, C.-P.; Yeh, C.-C.; Basar, M.; Masch, R.; Cheng, Y.-C.; Lockwood, C. J.; Schatz, F.; Huang, S. J.

    2015-01-01

    Introduction Intrauterine growth restriction complicates 5 - 10% of pregnancies. This study aims to test the hypothesis that Chinese herbal formula, JLFC01, affects pregnancy and fetal development by modulating the pro-inflammatory decidual micro-environment. Methods Human decidua from gestational age-matched elective terminations or incomplete/missed abortion was immunostained using anti-CD68 + anti-CD86 or anti-CD163 antibodies. qRT-PCR and Luminex assay measured the effects of JLFC01 on IL-1β- or TNF-α-induced cytokine expression in first trimester decidual cells and on an established spontaneous abortion/intrauterine growth restriction (SA/IUGR)-prone mouse placentae. The effect of JLFC01 on human endometrial endothelial cell angiogenesis was evaluated by average area, length and numbers of branching points of tube formation. Food intake, litter size, fetal weight, placental weight and resorption rate were recorded in SA/IUGR-prone mouse treated with JLFC01. qRT-PCR, Western blot and immunohistochemistry assessed the expression of mouse placental IGF-I and IGF-IR. Results In spontaneous abortion, numbers of decidual macrophages expressing CD86 and CD163 are increased and decreased, respectively. JLFC01 reduces IL-1β- or TNF-α-induced GM-CSF, M-CSF, C-C motif ligand 2 (CCL2), interferon-γ-inducible protein-10 (IP-10), CCL5 and IL-8 production in first trimester decidual cells. JLFC01 suppresses the activity of IL-1β- or TNF-α-treated first trimester decidual cells in enhancing macrophage-inhibited angiogenesis. In SA/IUGR-prone mice, JLFC01 increases maternal food intake, litter size, fetal and placental weight, and reduces fetal resorption rate. JLFC01 induces IGF-I and IGF-IR expression and inhibits M-CSF, CCL2, CCL5, CCL11, CCL3 and G-CSF expression in the placentae. Discussion JLFC01 improves gestation by inhibiting decidual inflammation, enhancing angiogenesis and promoting fetal growth. PMID:25771406

  18. Microarthropods accelerate litter decomposition and alter the fate of litter carbon and nitrogen in the soil

    NASA Astrophysics Data System (ADS)

    Soong, Jennifer; Horton, Andrew; Wall, Diana; Cotrufo, Francesca

    2015-04-01

    Soil fauna have been found to accelerate litter decomposition in some ecosystems, with calls for the need to include them in global models of C and N cycling. However, their influence on the fate of decomposing litter C and N is not clear. Does the acceleration of mass loss affect how much litter C and N end up stored as soil organic matter (SOM), or how much C and N are lost to the atmosphere during decomposition? We will present the results from our three-year, 100% mass loss, tracking of 13C and 15N labeled Andropogon gerardii leaf litter decomposing at a tallgrass prairie site, where we used a naphthalene treatment to suppress microarthropods and examine their effects on the fate of decomposing litter C and N. Initially, leaching was the main pathway of litter inputs to the mineral associated SOM. We found that microarthropods accelerated the first 18 months of litter mass loss, but after 24 months mass loss rates converged. This early acceleration of mass loss was associated with an increase of litter fragment inputs to the soil. This increase in litter inputs to the soil caused by microarthropods resulted in an increase in microbial uptake of litter C (measured by tracing 13C into phospholipid fatty acids), and a shift in the microbial community. The C:N ratio of litter inputs to the soil was significantly increased by the presence of microarthropods. Together these results demonstrate how microarthropods accelerate shredding, mass loss, and litter fragment inputs to the soil during the early stages of decomposition but they do not affect the total amount of litter contribution to SOM over the entire course of decomposition. However, microarthropods do alter the C:N composition of litter inputs to the soil through their top-down influence on the microbial community responsible for decomposing and transforming litter inputs to the soil. Our results reveal the complex interactions between microarthropods, litter mass loss, soil microbes and C:N dynamics, and

  19. Cigarette Litter: Smokers’ Attitudes and Behaviors

    PubMed Central

    Rath, Jessica M.; Rubenstein, Rebecca A.; Curry, Laurel E.; Shank, Sarah E.; Cartwright, Julia C.

    2012-01-01

    Cigarette butts are consistently the most collected items in litter clean-up efforts, which are a costly burden to local economies. In addition, tobacco waste may be detrimental to our natural environment. The tobacco industry has conducted or funded numerous studies on smokers’ littering knowledge and behavior, however, non-industry sponsored research is rare. We sought to examine whether demographics and smokers’ knowledge and beliefs toward cigarette waste as litter predicts littering behavior. Smokers aged 18 and older (n = 1,000) were interviewed about their knowledge and beliefs towards cigarette waste as litter. Respondents were members of the Research Now panel, an online panel of over three million respondents in the United States. Multivariate logistic regressions were conducted to determine factors significantly predictive of ever having littered cigarette butts or having littered cigarette butts within the past month (p-value < 0.05). The majority (74.1%) of smokers reported having littered cigarette butts at least once in their life, by disposing of them on the ground or throwing them out of a car window. Over half (55.7%) reported disposing of cigarette butts on the ground, in a sewer/gutter, or down a drain in the past month. Those who did not consider cigarette butts to be litter were over three and half times as likely to report having ever littered cigarette butts (OR = 3.68, 95%CI = 2.04, 6.66) and four times as likely to have littered cigarette butts in the past month (OR = 4.00, 95%CI = 2.53, 6.32). Males were significantly more likely to have littered cigarette butts in the past month compared to females (OR = 1.49, 95%CI = 1.14, 1.94). Holding the belief that cigarette butts are not litter was the only belief in this study that predicted ever or past-month littering of cigarette waste. Messages in anti-cigarette-litter campaigns should emphasize that cigarette butts are not just litter but are toxic waste and are harmful when disposed of

  20. Cigarette litter: smokers' attitudes and behaviors.

    PubMed

    Rath, Jessica M; Rubenstein, Rebecca A; Curry, Laurel E; Shank, Sarah E; Cartwright, Julia C

    2012-06-01

    Cigarette butts are consistently the most collected items in litter clean-up efforts, which are a costly burden to local economies. In addition, tobacco waste may be detrimental to our natural environment. The tobacco industry has conducted or funded numerous studies on smokers' littering knowledge and behavior, however, non-industry sponsored research is rare. We sought to examine whether demographics and smokers' knowledge and beliefs toward cigarette waste as litter predicts littering behavior. Smokers aged 18 and older (n = 1,000) were interviewed about their knowledge and beliefs towards cigarette waste as litter. Respondents were members of the Research Now panel, an online panel of over three million respondents in the United States. Multivariate logistic regressions were conducted to determine factors significantly predictive of ever having littered cigarette butts or having littered cigarette butts within the past month (p-value < 0.05). The majority (74.1%) of smokers reported having littered cigarette butts at least once in their life, by disposing of them on the ground or throwing them out of a car window. Over half (55.7%) reported disposing of cigarette butts on the ground, in a sewer/gutter, or down a drain in the past month. Those who did not consider cigarette butts to be litter were over three and half times as likely to report having ever littered cigarette butts (OR = 3.68, 95%CI = 2.04, 6.66) and four times as likely to have littered cigarette butts in the past month (OR = 4.00, 95%CI = 2.53, 6.32). Males were significantly more likely to have littered cigarette butts in the past month compared to females (OR = 1.49, 95%CI = 1.14, 1.94). Holding the belief that cigarette butts are not litter was the only belief in this study that predicted ever or past-month littering of cigarette waste. Messages in anti-cigarette-litter campaigns should emphasize that cigarette butts are not just litter but are toxic waste and are harmful when disposed of

  1. How Environment Affects Galaxy Metallicity: Lessons from the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Genel, S.

    2016-06-01

    Recent studies have found higher galaxy metallicities in richer environments. It is not yet clear, however, whether metallicity-environment dependencies are merely an indirect consequence of environmentally dependent formation histories, or of environment related processes directly affecting metallicity. Here, we present a detailed study of metallicity-environment correlations in a cosmological hydrodynamical simulation, in particular the Illustris simulation. Illustris galaxies display similar relations to those observed. Utilizing our knowledge of simulated formation histories, and leveraging the large simulation volume, we construct galaxy samples of satellites and centrals that are matched in formation histories. This allows us to find that ˜1/3 of the metallicity-environment correlation is due to different formation histories in different environments. This is a combined effect of satellites (in particular, in denser environments) having on average lower z=0 star formation rates (SFRs), and of their older stellar ages, even at a given z=0 SFR. Most of the difference, ˜2/3, however, is caused by the higher concentration of star-forming disks of satellite galaxies, as this biases their SFR-weighted metallicities toward their inner, more metal-rich parts. With a newly defined quantity, the `radially averaged' metallicity, which captures the metallicity profile but is independent of the SFR profile, the metallicities of satellites and centrals become environmentally independent once they are matched in formation history. This effect may also explain most of the differences between metallicities of galaxies in different large-scale environmental densities. A prediction for observations is that those differences become smaller as smaller apertures are considered.

  2. Natural zeolites in diet or litter of broilers.

    PubMed

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter. PMID:26879673

  3. Litter of origin effects on gilt development in a commercial setting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The preweaning litter environment of gilts can affect subsequent development. In a recent experiment designed to test the effects of dietary ME and lysine on gilt development, individual birth weights, immunocrits (related to colostrum intake), sow parity, number weaned, individual weaning weights, ...

  4. Litter quality versus soil microbial community controls over decomposition: a quantitative analysis

    USGS Publications Warehouse

    Cleveland, Cory C.; Reed, Sasha C.; Keller, Adrienne B.; Nemergut, Diana R.; O'Neill, Sean P.; Ostertag, Rebecca; Vitousek, Peter M.

    2014-01-01

    The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64 %) of variation in decomposition rates, and a smaller proportion (25 %) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16 %) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in

  5. Non-native plant litter enhances soil carbon dioxide emissions in an invaded annual grassland.

    PubMed

    Zhang, Ling; Wang, Hong; Zou, Jianwen; Rogers, William E; Siemann, Evan

    2014-01-01

    Litter decomposition is a fundamental ecosystem process in which breakdown and decay of plant detritus releases carbon and nutrients. Invasive exotic plants may produce litter that differs from native plant litter in quality and quantity. Such differences may impact litter decomposition and soil respiration in ways that depend on whether exotic and native plant litters decompose in mixtures. However, few field experiments have examined how exotic plants affect soil respiration via litter decomposition. Here, we conducted an in situ study of litter decomposition of an annual native grass (Eragrostis pilosa), a perennial exotic forb (Alternanthera philoxeroides), and their mixtures in an annual grassland in China to examine potential invasion effects on soil respiration. Alternanthera litter decomposed faster than Eragrostis litter when each was incubated separately. Mass loss in litter mixes was more rapid than predicted from rates in single species bags (only 35% of predicted mass remained at 8 months) showing synergistic effects. Notably, exotic plant litter decomposition rate was unchanged but native plant litter decomposition rate was accelerated in mixtures (decay constant k = 0.20 month(-1)) compared to in isolation (k = 0.10 month(-1)). On average, every litter type increased soil respiration compared to bare soil from which litter was removed. However, the increases were larger for mixed litter (1.82 times) than for Alternanthera litter (1.58 times) or Eragrostis litter (1.30 times). Carbon released as CO2 relative to litter carbon input was also higher for mixed litter (3.34) than for Alternathera litter (2.29) or Eragrostis litter (1.19). Our results indicated that exotic Alternanthera produces rapidly decomposing litter which also accelerates the decomposition of native plant litter in litter mixtures and enhances soil respiration rates. Thus, this exotic invasive plant species will likely accelerate carbon cycling and increase soil respiration

  6. Nitrogen and Phosphorus Loads in an Agricultural Watershed Affected by Poultry Litter Application and Wastewater Effluent, Northeastern Oklahoma and Northwestern Arkansas, 2002-2009

    NASA Astrophysics Data System (ADS)

    Esralew, R.; Tortorelli, R. L.

    2010-12-01

    The Eucha-Spavinaw Basin in Northeastern Oklahoma and Northwestern Arkansas is the source of water for Lake Eucha and Spavinaw Lake, which are part of the water supply for the city of Tulsa, Oklahoma. Lake Eucha and Spavinaw Lakes have experienced deteriorating water quality largely due to growth of algae, notably cyanobacteria, from the excess input of nutrients. As a result, the city of Tulsa has spent millions of dollars to eliminate taste and odor problems resulting from production of algal and bacterial byproducts. To evaluate changes in nutrient loading resulting from a reduction in land application of poultry litter, installation of best management practices, and reductions in the phosphorus concentrations in wastewater effluent, the U.S. Geological Survey investigated nitrogen and phosphorus concentrations from samples collected during baseflow and runoff and used regression models to estimate nitrogen and phosphorus loads, yields, and flow-weighted concentrations in two major tributaries to Lake Eucha, Spavinaw and Beaty Creeks, for the period 2002-2009. Estimated mean flow-weighted total unfiltered nitrogen and phosphorus concentrations in the basin were about 5 to 10 times greater than the 75th percentile of flow-weighted nutrient concentrations in other mostly undeveloped basins of the United States. Spavinaw and Beaty Creeks contributed an estimated mean annual total load of about 762,500 kilograms of nitrogen and 49,200 kilograms of phosphorus per year, 76 to 91 percent of which was transported to Lake Eucha by runoff. Thirty-four percent of the nitrogen load and 48 percent of the phosphorus load to Lake Eucha occurred during the year 2008 which was the wettest year on record for the Eucha-Spavinaw Basin. The results of this analysis indicate that although efforts were made to control nutrient loading, nutrient concentrations, especially phosphorus, were substantially augmented by non-point sources and that most loading occurs during runoff events

  7. Carbon redistribution during interrill erosion in subtropical forests: Effects of leaf litter diversity and soil fauna

    NASA Astrophysics Data System (ADS)

    Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Scholten, Thomas

    2016-04-01

    Soil erosion is crucial for degradation of carbon (C) from their pools in the soil. If C of the eroded sediment and runoff are not only related to soil pools but also resulting additively from decomposition of litter cover, the system gets more complex. The role of these amounts for C cycling in a forest environment is not yet known properly and thus, the aim of this study was to investigate the role of leaf litter diversity, litter cover and soil fauna on C redistribution during interrill erosion. We established 96 runoff plots that were deployed with seven domestic leaf litter species resulting in none species (bare ground), 1-species, 2-species and 4-species mixtures. Every second runoff plot was equipped with a fauna extinction feature to investigate the role of soil meso- and macrofauna. Erosion processes were initiated using a rainfall simulator at two time steps (summer 2012 and autumn 2012) to investigate the role of leaf litter decomposition on C redistribution. C fluxes during 20 min rainfall simulation were 99.13 ± 94.98 g/m². C fluxes and C contents both were affected by soil fauna. C fluxes were higher with presence of soil fauna due to loosening and slackening of the soil surface rather than due to faster decomposition of leaves. In contrast, C contents were higher in the absence of soil fauna possibly resulting from a missing dilution effect in the top soil layer. Leaf litter diversity did not affect C fluxes, but indirectly affected C contents as it increased the soil fauna effect with higher leaf litter diversity due to superior food supply. Initial C contents in the soil mainly determined those of the eroded sediment. For future research, it will be essential to introduce a long-term decomposition experiment to get further insights into the processes of C redistribution.

  8. A sea anemone's environment affects discharge of its isolated nematocysts.

    PubMed

    Greenwood, Paul G; Balboni, Imelda M; Lohmann, Cynthia

    2003-02-01

    Nematocysts were isolated from individuals of Calliactis tricolor maintained under different feeding schedules or in different salinities in an attempt to determine how these culture conditions influence the discharge of isolated nematocysts. In addition, the discharge frequencies of nematocysts isolated from two different populations of sea anemones found in two different environments were also compared. Undischarged acontial nematocysts were isolated by extrusion into 1 M sodium citrate and were then treated with 5 mM EGTA to initiate discharge. Nematocysts isolated from anemones maintained under three different feeding schedules showed significantly different responses to the test solution. Nematocysts isolated from anemones maintained in two different salinities did not differ significantly in discharge frequency. Nematocysts isolated from individuals from two separate populations of C. tricolor responded significantly differently to 5 mM EGTA and to deionized water, and these responses also depended upon the isolation solution used. Environmental conditions are known to have an impact on the physiological state of most organisms, but this is the first study providing evidence that the environment or feeding state of an anemone affects discharge of isolated nematocysts. Inherent differences in ionic and osmotic characteristics among nematocysts could explain some of the ambiguities when comparing past studies of isolated nematocyst discharge. PMID:12547257

  9. Mixing effects on litter decomposition rates in a young tree diversity experiment

    NASA Astrophysics Data System (ADS)

    Setiawan, Nuri Nurlaila; Vanhellemont, Margot; De Schrijver, An; Schelfhout, Stephanie; Baeten, Lander; Verheyen, Kris

    2016-01-01

    Litter decomposition is an essential process for biogeochemical cycling and for the formation of new soil organic matter. Mixing litter from different tree species has been reported to increase litter decomposition rates through synergistic effects. We assessed the decomposition rates of leaf litter from five tree species in a recently established tree diversity experiment on a post-agriculture site in Belgium. We used 20 different leaf litter compositions with diversity levels ranging from 1 up to 4 species. Litter mass loss in litterbags was assessed 10, 20, 25, 35, and 60 weeks after installation in the field. We found that litter decomposition rates were higher for high-quality litters, i.e., with high nitrogen content and low lignin content. The decomposition rates of mixed litter were more affected by the identity of the litter species within the mixture than by the diversity of the litter per se, but the variability in litter decomposition rates decreased as the litter diversity increased. Among the 15 different mixed litter compositions in our study, only three litter combinations showed synergistic effects. Our study suggests that admixing tree species with high-quality litter in post-agricultural plantations helps in increasing the mixture's early-stage litter decomposition rate.

  10. Effect of Fresh Poultry Litter and Compost on Soil Physical and Chemical Properties

    NASA Technical Reports Server (NTRS)

    Carr, Stacy; Tsegaye, Teferi; Coleman, Tommy

    1998-01-01

    Application of poultry litter and compost as a substitute for fertilizer not only uses unwanted waste and decreases expenditures for commercial fertilizer, it adds nutrients to soil for plant uptake. The properties of soil affected by poultry litter were analyzed to determine the positive and negative aspects of using this substitute fertilizer. This study focused on changes associated with saturated hydraulic conductivity, bulk density, nitrate concentrations, and pH after application of varying concentrations of poultry litter and compost. Soil samples from Tennessee Valley Substation in Alabama were analyzed in a laboratory at Alabama A&M University. As a result of the application of fresh poultry litter and compost, we found that the saturated hydraulic conductivity increased and the bulk density decreased, while the pH was generally not affected. Using poultry litter and compost as an alternative commercial fertilizers could be adapted by the farming community to protect the sustainability of our environment. Unwanted waste is used productively and soil is enriched for farming.

  11. The impact of alum addition on organic P transformations in poultry litter and litter-amended soil.

    PubMed

    Warren, Jason G; Penn, Chad J; McGrath, Joshua M; Sistani, Karamat

    2008-01-01

    Poultry litter treatment with alum (Al(2)(SO(4))(3) . 18H(2)O) lowers litter phosphorus (P) solubility and therefore can lower litter P release to runoff after land application. Lower P solubility in litter is generally attributed to aluminum-phosphate complex formation. However, recent studies suggest that alum additions to poultry litter may influence organic P mineralization. Therefore, alum-treated and untreated litters were incubated for 93 d to assess organic P transformations during simulated storage. A 62-d soil incubation was also conducted to determine the fate of incorporated litter organic P, which included alum-treated litter, untreated litter, KH(2)PO(4) applied at 60 mg P kg(-1) of soil, and an unamended control. Liquid-state (31)P nuclear magnetic resonance indicated that phytic acid was the only organic P compound present, accounting for 50 and 45% of the total P in untreated and alum-treated litters, respectively, before incubation and declined to 9 and 37% after 93 d of storage-simulating incubation. Sequential fractionation of litters showed that alum addition to litter transformed 30% of the organic P from the 1.0 mol L(-1) HCl to the 0.1 mol L(-1) NaOH extractable fraction and that both organic P fractions were more persistent in alum-treated litter compared with untreated litter. The soil incubation revealed that 0.1 mol L(-1) NaOH-extractable organic P was more recalcitrant after mixing than was the 1.0 mol L(-1) HCl-extractable organic P. Thus, adding alum to litter inhibits organic P mineralization during storage and promotes the formation of alkaline extractable organic P that sustains lower P solubility in the soil environment. PMID:18268310

  12. Video-Based Affect Detection in Noninteractive Learning Environments

    ERIC Educational Resources Information Center

    Chen, Yuxuan; Bosch, Nigel; D'Mello, Sidney

    2015-01-01

    The current paper explores possible solutions to the problem of detecting affective states from facial expressions during text/diagram comprehension, a context devoid of interactive events that can be used to infer affect. These data present an interesting challenge for face-based affect detection because likely locations of affective facial…

  13. Watching eyes on potential litter can reduce littering: evidence from two field experiments

    PubMed Central

    Bateson, Melissa; Robinson, Rebecca; Abayomi-Cole, Tim; Greenlees, Josh; O’Connor, Abby

    2015-01-01

    Littering constitutes a major societal problem, and any simple intervention that reduces its prevalence would be widely beneficial. In previous research, we have found that displaying images of watching eyes in the environment makes people less likely to litter. Here, we investigate whether the watching eyes images can be transferred onto the potential items of litter themselves. In two field experiments on a university campus, we created an opportunity to litter by attaching leaflets that either did or did not feature an image of watching eyes to parked bicycles. In both experiments, the watching eyes leaflets were substantially less likely to be littered than control leaflets (odds ratios 0.22–0.32). We also found that people were less likely to litter when there other people in the immediate vicinity than when there were not (odds ratios 0.04–0.25) and, in one experiment but not the other, that eye leaflets only reduced littering when there no other people in the immediate vicinity. We suggest that designing cues of observation into packaging could be a simple but fruitful strategy for reducing littering. PMID:26644979

  14. Watching eyes on potential litter can reduce littering: evidence from two field experiments.

    PubMed

    Bateson, Melissa; Robinson, Rebecca; Abayomi-Cole, Tim; Greenlees, Josh; O'Connor, Abby; Nettle, Daniel

    2015-01-01

    Littering constitutes a major societal problem, and any simple intervention that reduces its prevalence would be widely beneficial. In previous research, we have found that displaying images of watching eyes in the environment makes people less likely to litter. Here, we investigate whether the watching eyes images can be transferred onto the potential items of litter themselves. In two field experiments on a university campus, we created an opportunity to litter by attaching leaflets that either did or did not feature an image of watching eyes to parked bicycles. In both experiments, the watching eyes leaflets were substantially less likely to be littered than control leaflets (odds ratios 0.22-0.32). We also found that people were less likely to litter when there other people in the immediate vicinity than when there were not (odds ratios 0.04-0.25) and, in one experiment but not the other, that eye leaflets only reduced littering when there no other people in the immediate vicinity. We suggest that designing cues of observation into packaging could be a simple but fruitful strategy for reducing littering. PMID:26644979

  15. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter

    USGS Publications Warehouse

    Rutherford, D.W.; Bednar, A.J.; Garbarino, J.R.; Needham, R.; Staver, K.W.; Wershaw, R. L.

    2003-01-01

    Poultry litter often contains arsenic as a result of organo-arsenical feed additives. When the poultry litter is applied to agricultural fields, the arsenic is released to the environment and may result in increased arsenic in surface and groundwater and increased uptake by plants. The release of arsenic from poultry litter, litter-amended soils, and soils without litter amendment was examined by extraction with water and strong acids (HCI and HN03). The extracts were analyzed for As, C, P, Cu, Zn, and Fe. Copper, zinc, and iron are also poultry feed additives. Soils with a known history of litter application and controlled application rate of arsenic-containing poultry litter were obtained from the University of Maryland Agricultural Experiment Station. Soils from fields with long-term application of poultry litter were obtained from a tilled field on the Delmarva Peninsula (MD) and an untilled Oklahoma pasture. Samples from an adjacent forest or nearby pasture that had no history of litter application were used as controls. Depth profiles were sampled for the Oklahoma pasture soils. Analysis of the poultry litter showed that 75% of the arsenic was readily soluble in water. Extraction of soils shows that weakly bound arsenic mobilized by water correlates positively with C, P, Cu, and Zn in amended fields and appears to come primarily from the litter. Strongly bound arsenic correlates positively with Fe in amended fields and suggests sorption or coprecipitation of As and Fe in the soil column.

  16. Influence of waste management policy on the characteristics of beach litter in Kaohsiung, Taiwan.

    PubMed

    Liu, Ta-Kang; Wang, Meng-Wei; Chen, Ping

    2013-07-15

    Marine debris is a ubiquitous problem that poses a serious threat to the global oceans; it has motivated public participation in clean-up campaigns, as well as governmental involvement in developing mitigation strategies. While it is known that the problem of marine litter may be affected by waste management practices on land, beach survey results have seldom been compared with them. In this study, marine litter surveys on four beaches of Cijin Island were conducted to explore the effects of waste management and policy implications. Indirect evidence shows that chances for land-based litter, such as plastic bags and bottles, entering the marine environment can be greatly decreased if they can be properly reduced, reused and recycled. We suggest that mitigation measures should focus on source reduction, waste recycling and management, utilizing effective economic instruments, and pursuing a long-term public education campaign to raise the public awareness of this problem. PMID:23673204

  17. Parents and Early Life Environment Affect Behavioral Development of Laying Hen Chickens

    PubMed Central

    de Haas, Elske N.; Bolhuis, J. Elizabeth; Kemp, Bas; Groothuis, Ton G. G.; Rodenburg, T. Bas

    2014-01-01

    Severe feather pecking (SFP) in commercial laying hens is a maladaptive behavior which is associated with anxiety traits. Many experimental studies have shown that stress in the parents can affect anxiety in the offspring, but until now these effects have been neglected in addressing the problem of SFP in commercially kept laying hens. We therefore studied whether parental stock (PS) affected the development of SFP and anxiety in their offspring. We used flocks from a brown and white genetic hybrid because genetic background can affect SFP and anxiety. As SFP can also be influenced by housing conditions on the rearing farm, we included effects of housing system and litter availability in the analysis. Forty-seven rearing flocks, originating from ten PS flocks were followed. Behavioral and physiological parameters related to anxiety and SFP were studied in the PS at 40 weeks of age and in the rearing flocks at one, five, ten and fifteen weeks of age. We found that PS had an effect on SFP at one week of age and on anxiety at one and five weeks of age. In the white hybrid, but not in the brown hybrid, high levels of maternal corticosterone, maternal feather damage and maternal whole-blood serotonin levels showed positive relations with offsprings’ SFP at one week and offsprings’ anxiety at one and five weeks of age. Disruption and limitation of litter supply at an early age on the rearing farms increased SFP, feather damage and fearfulness. These effects were most prominent in the brown hybrid. It appeared that hens from a brown hybrid are more affected by environmental conditions, while hens from a white hybrid were more strongly affected by parental effects. These results are important for designing measures to prevent the development of SFP, which may require a different approach in brown and white flocks. PMID:24603500

  18. UVB Exposure Does Not Accelerate Rates of Litter Decomposition in a Semiarid Riparian Ecosystem

    NASA Astrophysics Data System (ADS)

    Uselman, S. M.; Snyder, K. A.; Blank, R. R.; Jones, T. J.

    2010-12-01

    Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive effects of UVB exposure and litter quality on decomposition in a Tamarix-invaded riparian ecosystem during the establishment of an insect biological control agent in northern Nevada. Feeding by the northern tamarisk beetle (Diorhabda carinulata) on Tamarix spp. trees leads to altered leaf litter quality and increased exposure to solar UVB radiation from canopy opening. In addition, we examined the dynamics of litter decomposition of the invasive exotic Lepidium latifolium, because it is well-situated to invade beetle-infested Tamarix sites. Three leaf litter types (natural Tamarix, beetle-affected Tamarix, and L. latifolium) differing in substrate quality were decomposed in litterbags for one year in the field. Litterbags were subjected to one of three treatments: (1) Ambient UVB or (2) Reduced UVB (where UVB was manipulated by using clear plastic films that transmit or block UVB), and (3) No Cover (a control used to test for the effect of using the plastic films, i.e. a cover effect). Results showed a large cover effect on rates of decomposition and nutrient release, and our findings suggested that frequent cycles of freeze-thaw, and possibly rainfall intensity, influenced decomposition at this site. Contrary to our expectations, greater UVB exposure did not result in faster rates of decomposition. Greater UVB exposure resulted in decreased rates of decomposition and P release for the lower quality litter and no change in rates of decomposition and nutrient release for the two higher quality litter types, possibly due to a negative effect of UVB on soil microbes. Among litter types, rates of decomposition and net release of N and P followed this ranking: L. latifolium

  19. Toxicity evaluation of diazinon contaminated leaf litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diazinon is an organophosphate pesticide with widespread use on a variety of agricultural crops. Because of its use, diazinon is a potential contributor to non-point source contamination of aquatic environments. A prominent feature within these aquatic environments includes leaf litter, especially...

  20. Impacts of Photodegradation on Surface Litter Decomposition and Organic Matter Cycling in Semi-Arid Grasslands

    NASA Astrophysics Data System (ADS)

    King, J. Y.; Brandt, L. A.; Milchunas, D. G.

    2006-12-01

    Litter decomposition is typically modeled as a biological process controlled primarily by moisture and temperature effects on faunal decomposers. The role of ultraviolet (UV) radiation in surface plant litter decomposition via the abiotic process of photodegradation is not well understood or quantified. We hypothesized that photodegradation by UV radiation may significantly influence decomposition rates and organic matter cycling in the semi-arid environment of the Colorado shortgrass steppe. We conducted a 3-year field litterbag experiment to investigate the effects of UV radiation on litter decomposition under high and low precipitation conditions for litter of differing tissue chemistry. The experimental treatments included UV (10% and 90% of ambient), precipitation (wet and dry), and litter chemistry (high and low carbon to nitrogen ratio (C:N)) in a factorial design. UV radiation can suppress biotic decomposition by inhibiting faunal activity; UV radiation can also enhance abiotic decomposition via photodegradation. We therefore imposed the precipitation and litter chemistry treatments in order to examine responses to UV radiation with different levels of biotic decomposition. Our results demonstrate that UV radiation plays an important role in litter decomposition. Under dry conditions, decomposition rates were significantly higher (18-30%) for litter exposed to higher UV compared to lower UV radiation. Under wet conditions, decomposition rates were not significantly affected by level of UV radiation. Under dry conditions, high C:N litter showed a greater increase in decomposition rates with UV radiation than low C:N litter. Nitrogen immobilization did not increase with higher decomposition rates under higher UV radiation. These observations are consistent with our hypothesis that UV radiation is an important abiotic mechanism of decomposition. Our results indicate that photodegradation is responsible for as much as 23% of mass loss under dry conditions

  1. Abundance of litter on Condor seamount (Azores, Portugal, Northeast Atlantic)

    NASA Astrophysics Data System (ADS)

    Pham, C. K.; Gomes-Pereira, J. N.; Isidro, E. J.; Santos, R. S.; Morato, T.

    2013-12-01

    Marine litter is an emerging problem for the world's ocean health but little is known on its distribution and abundance on seamounts and how it affects deep-sea ecosystems. The scientific underwater laboratory set up on Condor seamount offered an ideal case study for the first documentation of litter distribution on a shallow seamount with historical fishing. A total of 48 video transects deployed on the summit (n=45) and the northern flank (n=3) covered an area of 0.031 and 0.025km2, respectively, revealing 55 litter items. Litter density on the summit was 1439 litter items km-2, whilst on the deeper northern flank, estimates indicate densities of 397 litter items km-2. Lost fishing line was the dominant litter item encountered on both areas (73% of total litter on the summit and 50% on northern flank), all being entirely or partly entangled in the locally abundant gorgonians Dentomuricea cf. meteor and Viminella flagellum. Other items included lost weights, anchors and glass bottles. The predominance of lost fishing gear identifies the source of litter on Condor seamount as exclusively ocean-based and related to fishing activities. Abundance of litter on the Condor seamount was much lower than that reported from other locations closer to populated areas.

  2. Environmentally friendly animal litter

    DOEpatents

    Chett, Boxley; McKelvie, Jessica

    2013-08-20

    A method of making an animal litter that includes geopolymerized ash, wherein, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control may be accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  3. Littering Behavior in Public Places

    ERIC Educational Resources Information Center

    Robinson, Stuart N.

    1976-01-01

    This review summarizes the present state of knowledge concerning littering behavior. Available studies are categorized according to the variables that influence littering--individual and environmental. Theoretical issues of attitude-behavior consistency and incentive effectiveness are analyzed with respect to littering and litter control. Results…

  4. Odour emissions from poultry litter - A review litter properties, odour formation and odorant emissions from porous materials.

    PubMed

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2016-07-15

    Odour emissions from meat chicken sheds can at times cause odour impacts on surrounding communities. Litter is seen as the primary source of this odour. Formation and emission of odour from meat chicken litter during the grow-out period are influenced by various factors such as litter conditions, the environment, microbial activity, properties of the odorous gases and management practices. Odour emissions vary spatially and temporally. This variability has made it challenging to understand how specific litter conditions contribute to odour emissions from the litter and production sheds. Existing knowledge on odorants, odour formation mechanisms and emission processes that contribute to odour emissions from litter are reviewed. Litter moisture content and water thermodynamics (i.e. water activity, Aw) are also examined as factors that contribute to microbial odour formation, physical litter conditions and the exchange of individual odorant gases at the air-water interface. Substantial opportunities exist for future research on litter conditions and litter formation mechanisms and how these contribute to odour emissions. Closing this knowledge gap will improve management strategies that intercept and interfere with odour formation and emission processes leading to an overall reduction in the potential to cause community impacts. PMID:27111649

  5. LIGHT-INDUCED PROCESSES AFFECTING ENTEROCOCCI IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Fecal indicator bacteria such as enterococci have been used to assess contamination of freshwater and marine environments by pathogenic microorganisms. Various past studies have shown that sunlight plays an important role in reducing concentrations of culturable enterococci and ...

  6. Ingestion of marine litter by loggerhead sea turtles, Caretta caretta, in Portuguese continental waters.

    PubMed

    Nicolau, Lídia; Marçalo, Ana; Ferreira, Marisa; Sá, Sara; Vingada, José; Eira, Catarina

    2016-02-15

    The accumulation of litter in marine and coastal environments is a major threat to marine life. Data on marine litter in the gastrointestinal tract of stranded loggerhead turtles, Caretta caretta, found along the Portuguese continental coast was presented. Out of the 95 analysed loggerheads, litter was present in 56 individuals (59.0%) and most had less than 10 litter items (76.8%) and less than 5 g (dm) (96.8%). Plastic was the main litter category (frequency of occurrence=56.8%), while sheet (45.3%) was the most relevant plastic sub-category. There was no influence of loggerhead stranding season, cause of stranding or size on the amount of litter ingested (mean number and dry mass of litter items per turtle). The high ingested litter occurrence frequency in this study supports the use of the loggerhead turtle as a suitable tool to monitor marine litter trends, as required by the European Marine Strategy Framework Directive. PMID:26763321

  7. Control of climate and litter quality on leaf litter decomposition in different climatic zones.

    PubMed

    Zhang, Xinyue; Wang, Wei

    2015-09-01

    Climate and initial litter quality are the major factors influencing decomposition rates on large scales. We established a comprehensive database of terrestrial leaf litter decomposition, including 785 datasets, to examine the relationship between climate and litter quality and evaluate the factors controlling decomposition on a global scale, the arid and semi-arid (AS) zone, the humid middle and humid low (HL) latitude zones. Initial litter nitrogen (N) and phosphorus (P) concentration only increased with mean annual temperature (MAT) in the AS zone and decreased with mean annual precipitation (MAP) in the HL zone. Compared with nutrient content, MAT imposed less effect on initial litter lignin content than MAP. MAT were the most important decomposition driving factors on a global scale as well as in different climatic zones. MAP only significantly affected decomposition constants in AS zone. Although litter quality parameters also showed significant influence on decomposition, their importance was less than the climatic factors. Besides, different litter quality parameters exerted significant influence on decomposition in different climatic zones. Our results emphasized that climate consistently exerted important effects on decomposition constants across different climatic zones. PMID:26135888

  8. Anti-Litter Curriculum Packet, Interdisciplinary, K-12.

    ERIC Educational Resources Information Center

    Tillis, Richard

    This curriculum packet consists of 20 illustrated cards with 15 activities designed to create "positive feelings" about a clean environment. Activities range from picture coloring for younger students, to lessons such as the economic and health problems litter creates for older students. Objectives include encouraging anti-litter and…

  9. Canine dysautonomia in a litter of Havanese puppies.

    PubMed

    Hull, Noah C; O'Toole, Donal; Miller, Myrna M; Shoults, Hannah; Deck, Robin; Jones, Warren; Johnson, Gayle C; Shaw, Daniel P; Schumaker, Brant A

    2015-09-01

    Canine dysautonomia is a sporadic, generally fatal disease that rarely affects groups of related animals. Four 10-week-old Havanese puppies from a litter of 5 developed clinical signs of canine dysautonomia. The 4 affected dogs were exposed to an outdoor environment, whereas the fifth littermate was not exposed to the outdoors and remained clinically healthy. Clinical signs of dysautonomia developed 10-16 days after going outside the house. An unrelated dog also developed dysautonomia after exposure to 1 of the affected Havanese littermates. All 5 dogs had morphological changes consistent with dysautonomia (widespread neuronal degeneration in autonomic ganglia, select brainstem nuclei, and ventral horn motor neurons). Differential diagnoses were excluded through negative toxicological evaluation, fecal parasite screening, negative Canine distemper virus reverse transcription polymerase chain reaction, fluorescent antibody testing, attempted virus isolation, and electron microscopy. The 5 affected dogs were in the Kansas City, Missouri area, where there is a high incidence of dysautonomia. PMID:26179098

  10. Trans-generational exposure to low levels of rhodamine B does not adversely affect litter size or liver function in murine mucopolysaccharidosis type IIIA.

    PubMed

    Roberts, Ainslie L K; Fletcher, Janice M; Moore, Lynette; Byers, Sharon

    2010-01-01

    MPS IIIA is a lysosomal storage disorder caused by mutations in the sulphamidase gene, resulting in the accumulation of heparan sulphate glycosaminoglycans (HS GAGs). Symptoms predominantly manifest in the CNS and there is no current therapy that effectively addresses neuropathology in MPS IIIA patients. Recent studies in MPS IIIA mice have shown that rhodamine B substrate deprivation therapy (SDT) (also termed substrate reduction therapy/SRT) inhibits GAG biosynthesis and, improves both somatic and CNS disease pathology. Acute overexposure to high doses of rhodamine B results in liver toxicity and is detrimental to reproductive ability. However, the long-term effects of decreasing GAG synthesis, at the low dose sufficient to alter neurological function are unknown. A trans-generational study was therefore initiated to evaluate the continuous exposure of rhodamine B treatment in MPS IIIA mice over 4 generations, including treatment during pregnancy. No alterations in litter size, liver histology or liver function were observed. Overall, there are no long-term issues with the administration of rhodamine B at the low dose tested and no adverse effects were noted during pregnancy in mice. PMID:20650670

  11. Office Space: How Will Technology Affect the Education Office Environment?

    ERIC Educational Resources Information Center

    Day, C. William

    2009-01-01

    The office environment 10 years from now will be different from the one today. More office personnel will be organized around processes rather than functions. More work activities will be done by teams rather than individuals, and those teams will change over time, as will the nature of the work projects and the people who constitute the team. The…

  12. Affective Behavior and Nonverbal Interaction in Collaborative Virtual Environments

    ERIC Educational Resources Information Center

    Peña, Adriana; Rangel, Nora; Muñoz, Mirna; Mejia, Jezreel; Lara, Graciela

    2016-01-01

    While a person's internal state might not be easily inferred through an automatic computer system, within a group, people express themselves through their interaction with others. The group members' interaction can be then helpful to understand, to certain extent, its members' affective behavior in any case toward the task at hand. In this…

  13. Designing for Automatic Affect Inference in Learning Environments

    ERIC Educational Resources Information Center

    Afzal, Shazia; Robinson, Peter

    2011-01-01

    Emotions play a significant role in healthy cognitive functioning; they impact memory, attention, decision-making and attitude; and are therefore influential in learning and achievement. Consequently, affective diagnoses constitute an important aspect of human teacher-learner interactions motivating efforts to incorporate skills of affect…

  14. Critical processes affecting Cryptosporidium oocyst survival in the environment.

    PubMed

    King, B J; Monis, P T

    2007-03-01

    Cryptosporidium are parasitic protozoans that cause gastrointestinal disease and represent a significant risk to public health. Cryptosporidium oocysts are prevalent in surface waters as a result of human, livestock and native animal faecal contamination. The resistance of oocysts to the concentrations of chlorine and monochloramine used to disinfect potable water increases the risk of waterborne transmission via drinking water. In addition to being resistant to commonly used disinfectants, it is thought that oocysts can persist in the environment and be readily mobilized by precipitation events. This paper will review the critical processes involved in the inactivation or removal of oocysts in the terrestrial and aquatic environments and consider how these processes will respond in the context of climate change. PMID:17096874

  15. Physical processes affecting the sedimentary environments of Long Island Sound

    USGS Publications Warehouse

    Signell, R.P.; Knebel, H. J.; List, J.H.; Farris, A.S.

    1997-01-01

    A modeling study was undertaken to simulate the bottom tidal-, wave-, and wind-driven currents in Long Island Sound in order to provide a general physical oceanographic framework for understanding the characteristics and distribution of seafloor sedimentary environments. Tidal currents are important in the funnel-shaped eastern part of the Sound, where a strong gradient of tidal-current speed was found. This current gradient parallels the general westward progression of sedimentary environments from erosion or non-deposition, through bedload transport and sediment sorting, to fine-grained deposition. Wave-driven currents, meanwhile, appear to be important along the shallow margins of the basin, explaining the occurrence of relatively coarse sediments in regions where tidal currents alone are not strong enough to move sediment. Finally, westerly wind events are shown to locally enhance bottom currents along the axial depression of the sound, providing a possible explanation for the relatively coarse sediments found in the depression despite tide- and wave-induced currents below the threshold of sediment movement. The strong correlation between the near-bottom current intensity based on the model results and the sediment response as indicated by the distribution of sedimentary environments provides a framework for predicting the long-term effects of anthropogenic activities.

  16. Developmental and Evolutionary History Affect Survival in Stressful Environments

    PubMed Central

    Hopkins, Gareth R.; Brodie, Edmund D.; French, Susannah S.

    2014-01-01

    The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history. PMID:24748021

  17. The Effect of Litter Position on Ultraviolet Photodegradation of Standing Dead Litter

    NASA Astrophysics Data System (ADS)

    Lin, Y.; King, J. Y.

    2012-12-01

    In dryland ecosystems, models incorporating only biotic mechanisms usually underestimate the decay rate of plant litter. Photodegradation, an abiotic process through which solar radiation breaks down organic matter, has recently been proposed as an important pathway of litter decomposition in dryland ecosystems, accounting for as much as 25 to 60% of mass loss. However, it remains unclear what factors control the relative importance of photodegradation and biotic decomposition. It is hypothesized that this balance is affected by the location of litter within the litter layer (or thatch): in upper layers of thatch, photodegradation is significant because litter is exposed to sunlight; in lower layers where litter is strongly shaded, photodegradation is negligible compared to biotic decomposition. In August 2011, a field experiment was initiated at the University of California's Sedgwick Reserve, Santa Ynez, CA, in order to understand how ultraviolet (UV) radiation and litter position within the thatch affect litter decomposition. Two levels of UV radiation (280-400 nm) are achieved by screens: "UV-Pass" (transmitting > 81% of UV radiation) and "UV-Block" (transmitting < 8% of UV radiation). Litterbags were placed either at the top or at the bottom of the thatch. Results after 9 months of field exposure show that at the top of the thatch, litter mass loss was 13% higher in UV-Pass than in UV-Block, suggesting the occurrence of UV photodegradation. Surprisingly, litter mass loss was 52% higher in UV-Pass at the bottom of the thatch, even though very limited UV radiation penetrated through the thatch (at least 10 cm thick). The relative humidity in the thatch was higher in UV-Pass than in UV-Block treatments, especially at night; thus it is speculated that the UV manipulation not only alters the incoming radiation spectrum but also affects microclimate, consequently changing biotic decomposition. At the bottom of the thatch, lignin concentration of plant litter was 19

  18. Effects of neonatal litter size and age on ovarian gene expression and follicular development in gilts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gilts raised in small litters have greater ovulation rate, stay in the herd longer and produce more pigs. The objective was to understand how neonatal litter size affects gilt development. The hypothesis is that gilts reared in smaller litters have greater ovarian follicular development. Within 24 h...

  19. The Unintended Effects of a Posted Sign on Littering Attitudes and Stated Intentions.

    ERIC Educational Resources Information Center

    Horsley, A. Doyne

    1988-01-01

    Compares the effect of two different anti-littering signs. Results suggest that the ambiguously worded litterbug sign was interpreted differently by individuals and that it did not encourage an anti-littering attitude or affect stated intention to litter. (CW)

  20. Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas.

    PubMed

    Mousseau, Timothy A; Milinevsky, Gennadi; Kenney-Hunt, Jane; Møller, Anders Pape

    2014-05-01

    The effects of radioactive contamination from Chernobyl on decomposition of plant material still remain unknown. We predicted that decomposition rate would be reduced in the most contaminated sites due to an absence or reduced densities of soil invertebrates. If microorganisms were the main agents responsible for decomposition, exclusion of large soil invertebrates should not affect decomposition. In September 2007 we deposited 572 bags with uncontaminated dry leaf litter from four species of trees in the leaf litter layer at 20 forest sites around Chernobyl that varied in background radiation by more than a factor 2,600. Approximately one quarter of these bags were made of a fine mesh that prevented access to litter by soil invertebrates. These bags were retrieved in June 2008, dried and weighed to estimate litter mass loss. Litter mass loss was 40% lower in the most contaminated sites relative to sites with a normal background radiation level for Ukraine. Similar reductions in litter mass loss were estimated for individual litter bags, litter bags at different sites, and differences between litter bags at pairs of neighboring sites differing in level of radioactive contamination. Litter mass loss was slightly greater in the presence of large soil invertebrates than in their absence. The thickness of the forest floor increased with the level of radiation and decreased with proportional loss of mass from all litter bags. These findings suggest that radioactive contamination has reduced the rate of litter mass loss, increased accumulation of litter, and affected growth conditions for plants. PMID:24590204

  1. Habitat structure alters top-down control in litter communities.

    PubMed

    Kalinkat, Gregor; Brose, Ulrich; Rall, Björn Christian

    2013-07-01

    The question whether top-down or bottom-up forces dominate trophic relationships, energy flow, and abundances within food webs has fuelled much ecological research with particular focus on soil litter ecosystems. Because litter simultaneously provides habitat structure and a basal resource, disentangling direct trophic and indirect non-trophic effects on different trophic levels remains challenging. Here, we focussed on short-term per capita interaction strengths of generalist predators (centipedes) on their microbi-detritivore prey (springtails) and addressed how the habitat structuring effects of the leaf litter modifies this interaction. We performed a series of laboratory functional response experiments where four levels of habitat structure were constructed by adding different amounts of leaf litter to the experimental arenas. We found that increased leaf litter reduced the consumption rate of the predator. We interpreted this as a dilution effect of the augmented habitat size provided by the increasing leaf litter surface available to the species. Dilution of the prey population decreased encounter rates, whereas the capture success was not affected. Interestingly, our results imply that top-down control by centipedes decreased with increasing resource supply for the microbi-detritivore prey (i.e. the leaf litter that simultaneously provides habitat structure). Therefore, effective top-down control of predators on microbi-detritvore populations seems unlikely in litter-rich ecosystems due to the non-trophic, habitat-structuring effect of the basal litter resource. PMID:23188055

  2. Occurrence and sorption of fluoroquinolones in poultry litters and soils from São Paulo State, Brazil.

    PubMed

    Leal, Rafael Marques Pereira; Figueira, Rafael Fernandes; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges

    2012-08-15

    Animal production is one of the most expressive sectors of Brazilian agro-economy. Although antibiotics are routinely used in this activity, their occurrence, fate, and potential impacts to the local environment are largely unknown. This research evaluated sorption-desorption and occurrence of four commonly used fluoroquinolones (norfloxacin, ciprofloxacin, danofloxacin, and enrofloxacin) in poultry litter and soil samples from São Paulo State, Brazil. The sorption-desorption studies involved batch equilibration technique and followed the OECD guideline for pesticides. All compounds were analyzed by HPLC, using fluorescence detector. Fluoroquinolones' sorption potential to the poultry litters (K(d) ≤65 L kg(-1)) was lower than to the soil (K(d) ~40,000 L kg(-1)), but was always high (≥69% of applied amount) indicating a higher specificity of fluoroquinolones interaction with soils. The addition of poultry litter (5%) to the soil had not affected sorption or desorption of these compounds. Desorption was negligible in the soil (≤0.5% of sorbed amount), but not in the poultry litters (up to 42% of sorbed amount). Fluoroquinolones' mean concentrations found in the poultry litters (1.37 to 6.68 mg kg(-1)) and soils (22.93 μg kg(-1)) were compatible to those found elsewhere (Austria, China, and Turkey). Enrofloxacin was the most often detected compound (30% of poultry litters and 27% of soils) at the highest mean concentrations (6.68 mg kg(-1) for poultry litters and 22.93 μg kg(-1) for soils). These results show that antibiotics are routinely used in poultry production and might represent one potential source of pollution to the environment that has been largely ignored and should be further investigated in Brazil. PMID:22750180

  3. Poultry litter as a source of gastrointestinal helminth infections.

    PubMed

    Maurer, V; Amsler, Z; Perler, E; Heckendorn, F

    2009-05-12

    worm burdens in tracer animals were low compared to a similar study with tracers kept in poultry runs. The reasons for this may be that poultry litter negatively affects viability and infectiousness of helminth eggs. However, underlying mechanisms need to be clarified. PMID:19251370

  4. Understanding processes affecting mineral deposits in humid environments

    USGS Publications Warehouse

    Seal, Robert R., II; Ayuso, Robert A.

    2011-01-01

    Recent interdisciplinary studies by the U.S. Geological Survey have resulted in substantial progress toward understanding the influence that climate and hydrology have on the geochemical signatures of mineral deposits and the resulting mine wastes in the eastern United States. Specific areas of focus include the release, transport, and fate of acid, metals, and associated elements from inactive mines in temperate coastal areas and of metals from unmined mineral deposits in tropical to subtropical areas; the influence of climate, geology, and hydrology on remediation options for abandoned mines; and the application of radiogenic isotopes to uniquely apportion source contributions that distinguish natural from mining sources and extent of metal transport. The environmental effects of abandoned mines and unmined mineral deposits result from a complex interaction of a variety of chemical and physical factors. These include the geology of the mineral deposit, the hydrologic setting of the mineral deposit and associated mine wastes, the chemistry of waters interacting with the deposit and associated waste material, the engineering of a mine as it relates to the reactivity of mine wastes, and climate, which affects such factors as temperature and the amounts of precipitation and evapotranspiration; these factors, in turn, influence the environmental behavior of mineral deposits. The role of climate is becoming increasingly important in environmental investigations of mineral deposits because of the growing concerns about climate change.

  5. Psychosocial Environment and Affective Outcomes in Technology-Rich Classrooms: Testing a Causal Model

    ERIC Educational Resources Information Center

    Dorman, Jeffrey P.; Fraser, Barry J.

    2009-01-01

    Research investigated classroom environment antecedent variables and student affective outcomes in Australian high schools. The Technology-Rich Outcomes-Focused Learning Environment Inventory (TROFLEI) was used to assess 10 classroom environment dimensions: student cohesiveness, teacher support, involvement, investigation, task orientation,…

  6. The Experimental Control of Littering

    ERIC Educational Resources Information Center

    Clark, Roger N.; And Others

    1972-01-01

    Behavior, incentives, and education programs were researched as factors relating to littering. Experiments in theaters, forest campgrounds, and hiking and dispersed car camping areas indicate incentive systems are necessary and feasible for curbing litter problems. (BL)

  7. Distribution of beach litter along the coastline of Cádiz, Spain.

    PubMed

    Williams, Allan Thomas; Randerson, Peter; Di Giacomo, Carlo; Anfuso, Giorgio; Macias, Ana; Perales, José Antonio

    2016-06-15

    A total of 59 categories of litter items were found at 20 beaches (13 mechanically cleaned, 7 non-cleaned) in the Cádiz tourist environment, Spain. Cluster Analysis and Principal Components Analysis were used to highlight similarities and contrasts between sites and/or associations between litter categories. Multivariate analyses separated beaches according to the total numbers of litter items present. Non-cleaned sites showed a variety of litter category abundance with distinct origins and abundant, ubiquitous items (plastic and glass fragments). Of the 7 non-cleaned beaches (49 litter categories) river-mouth sites were distinct due with high numbers of litter items. The sheltered inner part of Cádiz Bay beaches had a wide range of litter type. Many sites were associated with locally deposited recreational litter categories; while industrial/commercial/fishing categories were abundant only at a few sites, indicating items transported onto the shore from the Guadalete river. PMID:27117354

  8. Mediterranean marine biodiversity under threat: Reviewing influence of marine litter on species.

    PubMed

    Deudero, Salud; Alomar, Carme

    2015-09-15

    The Mediterranean Sea is one of the most polluted seas worldwide, especially with regard to plastics. The presence of this emerging man made contaminant in marine environments precludes large effects and interactions with species exposed to massive litter quantities. In this review, available data of floating and seafloor litter around Mediterranean sub-basins are reported. A review of scientific literature on the interaction of plastic with marine biota resulted in the identification of 134 species, several taxa and feeding strategies affected from 1986 to 2014. Data from 17,334 individuals showed different levels of ingestion and effects on catalogued IUCN species (marine mammals and sea turtles) in addition to several pelagic fish and elasmobranchs. Biodiversity is certainly under threat, and knowledge of the extent of taxa affected is of concern considering the increasing plastic loads in the Mediterranean Sea and worldwide. PMID:26183308

  9. Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation.

    PubMed

    Suseela, Vidya; Tharayil, Nishanth; Xing, Baoshan; Dukes, Jeffrey S

    2013-10-01

    Together, climate and litter quality strongly regulate decomposition rates. Although these two factors and their interaction have been studied across species in continent-scale experiments, few researchers have studied how labile and recalcitrant compounds interact to influence decomposition, or the climate sensitivity of decomposition, within a litter type. Over a period of 3 yr, we studied the effects of warming and altered precipitation on mass loss and compound-specific decomposition using two litter types that possessed similar heteropolymer chemistry, but different proportions of labile and recalcitrant compounds. Climate treatments immediately affected the mass loss of the more recalcitrant litter, but affected the more labile litter only after 2 yr. After 3 yr, although both litter types had lost similar amounts of mass, warming (c. 4°C) and supplemental precipitation (150% of ambient) together accelerated the degradation of alkyl-carbon and lignin only in the more recalcitrant litter, highlighting the role of initial litter quality in determining whether the chemistry of litter residues converges or diverges under different climates. Our finding that labile compounds in litter reduce the climate sensitivity of mass loss and the decomposition of recalcitrant matrix is novel. Our results highlight the potential for litter quality to regulate the effect of climatic changes on the sequestration of litter-derived carbon. PMID:23822593

  10. The influence of litter quality and micro-habitat on litter decomposition and soil properties in a silvopasture system

    NASA Astrophysics Data System (ADS)

    Tripathi, G.; Deora, R.; Singh, G.

    2013-07-01

    Studies to understand litter processes and soil properties are useful for maintaining pastureland productivity as animal husbandry is the dominant occupation in the hot arid region. We aimed to quantify how micro-habitats and combinations of litters of the introduced leguminous tree Colophospermum mopane with the grasses Cenchrus ciliaris or Lasiurus sindicus influence decomposition rate and soil nutrient changes in a hot desert silvopasture system. Litter bags with tree litter alone (T), tree + C. ciliaris in 1:1 ratio (TCC) and tree + L. sindicus 1:1 ratio (TLS) litter were placed inside and outside of the C. mopane canopy and at the surface, 3-7 cm and 8-12 cm soil depths. We examined litter loss, soil fauna abundance, organic carbon (SOC), total (TN), ammonium (NH4-N) and nitrate (NO3-N) nitrogen, phosphorus (PO4-P), soil respiration (SR) and dehydrogenase activity (DHA) in soil adjacent to each litter bag. After 12 months exposure, the mean residual litter was 40.2% of the initial value and annual decomposition rate constant (k) was 0.98 (0.49-1.80). Highest (p < 0.01) litter loss was in the first four months, when faunal abundance, SR, DHA and humidity were highest but it decreased with time. These variables and k were highest under the tree canopies. The litter loss and k were highest (p < 0.01) in TLS under the tree canopy, but the reverse trend was found for litter outside the canopy. Faunal abundance, litter loss, k, nutrient release and biochemical activities were highest (p < 0.01) in the 3-7 cm soil layer. Positive correlations of litter loss and soil fauna abundance with soil nutrients, SR and DHA demonstrated the interactions of litter quality and micro-habitats together with soil fauna on increased soil fertility. These results suggest that a Colophospermum mopane and L. sindicus silvopasture system best promotes faunal abundance, litter decomposition and soil fertility. The properties of these species and the associated faunal resources may be

  11. Labile Compounds in Plant Litter Reduce the Sensitivity of Decomposition to Warming and Altered Precipitation

    NASA Astrophysics Data System (ADS)

    Suseela, V.; Tharayil, N.; Xing, B.; Dukes, J. S.

    2013-12-01

    Together, climate and litter quality strongly regulate decomposition rates. While these two factors and their interaction have been studied across species in continent-scale experiments, few researchers have studied how labile and recalcitrant compounds interact to influence decomposition, or the climate sensitivity of decomposition, within a litter type. Over a period of three years, we studied the effects climate change on mass loss and compound-specific decomposition using two litter types that differed in the relative proportions of labile and recalcitrant compounds, but that had heteropolymers with similar molecular structure. We examined how warming and altered precipitation affected the decomposition of two types of Polygonum cuspidatum (Japanese knotweed) litter (stem litter that was either newly senesced or one year old), at the Boston-Area Climate Experiment (BACE), in Massachusetts, USA. We placed litter bags in an old-field ecosystem exposed to four levels of warming (up to 4oC) and three levels of precipitation (ambient, drought (-50%) and wet (+50%) treatments. The compound-specific degradation of litter was assessed using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and 13C Nuclear Magnetic Resonance Spectroscopy. Climate treatments immediately affected mass loss of the more recalcitrant litter, but affected the more labile litter only after two years. After three years, although both litter types had lost similar amounts of mass, warming (~4oC) and supplemental precipitation (150% of ambient) together accelerated degradation of alkyl-carbon and lignin only in the more recalcitrant litter, highlighting the role of initial litter quality in determining whether the chemistry of litter residues converges or diverges under different climates. The results from this study indicate that the effect of climate on litter decomposition depends on the quality of litter; litter with a greater initial proportion of labile compounds was less

  12. Leaf litter decomposition in three Adirondack lakes

    SciTech Connect

    Francis, A.J.; Quinby, H.L.; Hendrey, G.R.; Hoogendyk, C.G.

    1983-04-01

    Decomposition of terrestrial leaf litter in three Adirondack lakes with water pH values approximately 5, 6, and 7 was studied. Litter bags containing leaves of American beech, sugar maple, red maple, leather leaf, and red spruce were placed in the lakes. Samples were removed periodically over a 3-year period and analyzed for loss in weight, changes in leaf surface area, carbon, nitrogen, and bacterial populations. The rate of decomposition of litter depended on the leaf species tested as well as on the lake water in which they were incubated. Of the five leaf species tested, red maple decomposed much faster and red spruce more slowly, i.e., red maple > sugar maple > beech > leather leaf > red spruce. Further, the data indicated that the rate of decomposition of the leaves differed among the lakes in the order Woods (pH approx. 5) < Sagamore (pH approx. 6) < Panther (pH approx. 7), and that the microbial colonization of some leaf species was affected. Accumulations of leaf litter in acid lakes due to reduction in microbial decomposition may affect nutrient recycling in lake ecosystems. 8 references, 4 tables.

  13. Experiences and Implications of Social Workers Practicing in a Pediatric Hospital Environment Affected by SARS

    ERIC Educational Resources Information Center

    Gearing, Robin Edward; Saini, Michael; McNeill, Ted

    2007-01-01

    This phenomenological study's purpose was threefold: to detail the experiences of social workers practicing in a hospital environment affected by severe acute respiratory syndrome (SARS), to describe essential themes and structures of social work practices within this crisis environment, and to explore recommendations for better preparedness to…

  14. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... significantly affecting the quality of the human environment,” as used in this part, shall be construed with a... actions should ordinarily be considered as significantly affecting the quality of the human...

  15. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... significantly affecting the quality of the human environment,” as used in this part, shall be construed with a... actions should ordinarily be considered as significantly affecting the quality of the human...

  16. Early prediction of student goals and affect in narrative-centered learning environments

    NASA Astrophysics Data System (ADS)

    Lee, Sunyoung

    Recent years have seen a growing recognition of the role of goal and affect recognition in intelligent tutoring systems. Goal recognition is the task of inferring users' goals from a sequence of observations of their actions. Because of the uncertainty inherent in every facet of human computer interaction, goal recognition is challenging, particularly in contexts in which users can perform many actions in any order, as is the case with intelligent tutoring systems. Affect recognition is the task of identifying the emotional state of a user from a variety of physical cues, which are produced in response to affective changes in the individual. Accurately recognizing student goals and affect states could contribute to more effective and motivating interactions in intelligent tutoring systems. By exploiting knowledge of student goals and affect states, intelligent tutoring systems can dynamically modify their behavior to better support individual students. To create effective interactions in intelligent tutoring systems, goal and affect recognition models should satisfy two key requirements. First, because incorrectly predicted goals and affect states could significantly diminish the effectiveness of interactive systems, goal and affect recognition models should provide accurate predictions of user goals and affect states. When observations of users' activities become available, recognizers should make accurate early" predictions. Second, goal and affect recognition models should be highly efficient so they can operate in real time. To address key issues, we present an inductive approach to recognizing student goals and affect states in intelligent tutoring systems by learning goals and affect recognition models. Our work focuses on goal and affect recognition in an important new class of intelligent tutoring systems, narrative-centered learning environments. We report the results of empirical studies of induced recognition models from observations of students

  17. Reducing Children's Littering on a Nature Trail

    ERIC Educational Resources Information Center

    LaHart, David E.; Bailey, Jon S.

    1975-01-01

    This study compared incentives and educational methods to motivate children to pick up litter and to prevent littering. Incentives did aid in getting litter picked up. One-sentence anti-litter statements, educational materials, and lectures reduced littering, but incentives did not. (MR)

  18. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone.

    PubMed

    Bonzom, Jean-Marc; Hättenschwiler, Stephan; Lecomte-Pradines, Catherine; Chauvet, Eric; Gaschak, Sergey; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Dubourg, Nicolas; Maksimenko, Andrey; Garnier-Laplace, Jacqueline; Adam-Guillermin, Christelle

    2016-08-15

    The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22-15μGyh(-1)) and (ii) along a short distance gradient of radioactive contamination (1.2-29μGyh(-1)) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150μGyh(-1). This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes. PMID:27110974

  19. In situ characterization of forest litter using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    André, Frédéric; Jonard, François; Jonard, Mathieu; Lambot, Sébastien

    2016-03-01

    Decomposing litter accumulated on the soil surface in forests plays a major role in several ecosystem processes; its detailed characterization is therefore essential for thorough understanding of ecosystem functioning. In addition, litter is known to affect remote sensing radar data over forested areas and their proper processing requires accurate quantification of litter scattering properties. In the present study, ultrawideband (0.8-2.2 GHz) ground-penetrating radar (GPR) data were collected in situ for a wide range of litter types to investigate the potential of the technique to reconstruct litter horizons in undisturbed natural conditions. Radar data were processed resorting to full-wave inversion. Good agreement was generally found between estimated and measured litter layer thicknesses, with root-mean-square error values around 1 cm for recently fallen litter (OL layer) and around 2 cm for fragmented litter in partial decomposition (OF layer) and total litter (OL + OF). Nevertheless, significant correlations between estimated and measured thicknesses were found for total litter only. Inaccuracies in the reconstruction of the individual litter horizons were mainly attributed to weak dielectric contrasts amongst litter layers, with absolute differences in relative dielectric permittivity values often lower than 2 between humus horizons, and to uncertainties in the ground truth values. Radar signal inversions also provided reliable estimates of litter electromagnetic properties, with average relative dielectric permittivity values around 2.9 and 6.3 for OL and OF litters, respectively. These results are encouraging for the use of GPR for noninvasive characterization and mapping of forest litter. Perspectives for the application of the technique in biogeosciences are discussed.

  20. Warming and Nitrogen Addition Increase Litter Decomposition in a Temperate Meadow Ecosystem

    PubMed Central

    Gong, Shiwei; Guo, Rui; Zhang, Tao; Guo, Jixun

    2015-01-01

    Background Litter decomposition greatly influences soil structure, nutrient content and carbon sequestration, but how litter decomposition is affected by climate change is still not well understood. Methodology/Principal Findings A field experiment with increased temperature and nitrogen (N) addition was established in April 2007 to examine the effects of experimental warming, N addition and their interaction on litter decomposition in a temperate meadow steppe in northeastern China. Warming, N addition and warming plus N addition reduced the residual mass of L. chinensis litter by 3.78%, 7.51% and 4.53%, respectively, in 2008 and 2009, and by 4.73%, 24.08% and 16.1%, respectively, in 2010. Warming, N addition and warming plus N addition had no effect on the decomposition of P. communis litter in 2008 or 2009, but reduced the residual litter mass by 5.58%, 15.53% and 5.17%, respectively, in 2010. Warming and N addition reduced the cellulose percentage of L. chinensis and P. communis, specifically in 2010. The lignin percentage of L. chinensis and P. communis was reduced by warming but increased by N addition. The C, N and P contents of L. chinensis and P. communis litter increased with time. Warming and N addition reduced the C content and C:N ratios of L. chinensisand P. communis litter, but increased the N and P contents. Significant interactive effects of warming and N addition on litter decomposition were observed (P<0.01). Conclusion/Significance The litter decomposition rate was highly correlated with soil temperature, soil water content and litter quality. Warming and N addition significantly impacted the litter decomposition rate in the Songnen meadow ecosystem, and the effects of warming and N addition on litter decomposition were also influenced by the quality of litter. These results highlight how climate change could alter grassland ecosystem carbon, nitrogen and phosphorus contents in soil by influencing litter decomposition. PMID:25774776

  1. Riparian litter inputs to streams in the central Oregon Coast Range

    USGS Publications Warehouse

    Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.

    2013-01-01

    Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves <5 m downslope annually. N concentrations of several litter fractions were higher at deciduous sites and, when combined with greater litter amounts, yielded twice as much total litter N flux to streams in deciduous than coniferous sites. The presence of red alder in riparian forests along many small streams of the deeply incised and highly dendritic basins of the Oregon Coast Range enhances total fluxes and seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.

  2. Size dependent differences in litter consumption of isopods: preliminary results

    PubMed Central

    Vilisics, Ferenc; Szekeres, Sándor; Hornung, Elisabeth

    2012-01-01

    Abstract A series of experiments were applied to test how leaf orientation within microcosms affect consumption rates (Experiment 1), and to discover intra-specific differences in leaf litter consumption (Experiment 2) of the common isopod species Porcellio scaber and Porcellionides pruinosus. A standardised microcosm setup was developed for feeding experiments to maintain standard conditions. A constant amount of freshly fallen black poplar litter was provided to three distinct size class (small, medium, large) of woodlice. We measured litter consumption after a fortnight. We maintained appr. constant isopod biomass for all treatments, and equal densities within each size class. We hypothesized that different size classes differ in their litter consumption, therefore such differences should occur even within populations of the species. We also hypothesized a marked difference in consumption rates for different leaf orientation within microcosms. Our results showed size-specific consumption patterns for Porcellio scaber: small adults showed the highest consumption rates (i.e. litter mass loss / isopod biomass) in high density microcosms, while medium-sized adults of lower densities ate the most litter in containers. Leaf orientation posed no significant effect on litter consumption. PMID:22536112

  3. Study type and plant litter identity modulating the response of litter decomposition to warming, elevated CO2, and elevated O3: A meta-analysis

    NASA Astrophysics Data System (ADS)

    Yue, Kai; Peng, Changhui; Yang, Wanqin; Peng, Yan; Fang, Junmin; Wu, Fuzhong

    2015-03-01

    Plant litter decomposition is one of the most important ecosystem carbon flux processes in terrestrial ecosystems and is usually regarded as sensitive to climate change. The goal of the present study was to examine the effects of changing climate variables on litter decomposition. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of the litter decomposition rate to the independent effects of warming, elevated carbon dioxide (CO2), elevated ozone (O3), and the combined effects of elevated CO2 + elevated O3. Across all case studies, warming increased the litter decomposition rate significantly by 4.4%, but this effect could be reduced as a result of the negatively significant effects of elevated CO2 and elevated CO2 + elevated O3. The combined effects of elevated CO2 + elevated O3 decreased the litter decomposition rate significantly, and the magnitude appeared to be higher than that of the elevated CO2 per se. Moreover, the study type (field versus laboratory), ecosystem type, and plant litter identity and functional traits (growth form and litter form) were all important moderators regulating the response of litter decomposition to climate warming and elevated CO2 and O3. Although litter decomposition rate may show a moderate change as a result of the effects of multiple changing climate variables, the process of litter decomposition would be strongly altered due to the differing mechanisms of the effects of each climate change variable, suggesting that the global carbon cycle and biogeochemistry could be substantially affected.

  4. Mower/Litter Removal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Burg Corporation needed to get more power out of the suction system in their Vac 'N Bag grass mower/litter remover. The president submitted a problem statement to the Marshall Space Flight Center Technology Transfer Office, which devised a way to guide heavier items of trash to a point where suction was greatest, and made changes to the impeller and the exhaust port, based on rocket propulsion technology. The improved system is used by highway departments, city governments and park authorities, reducing work time by combining the tasks of grass cutting and vacuuming trash and grass clippings.

  5. Phosphatase activities in soil after repeated untreated and alum-treated poultry litter applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Repeated additions of untreated and aluminum sulfate (alum)-treated poultry litter to soil affect ecology and consequent nutrient dynamics. The objective of this study was to determine how repeated annual poultry litter additions affected phosphatase activities in concert with changes in soil phosph...

  6. Effect of mountain climatic elevation gradient and litter origin on decomposition processes: long-term experiment with litter-bags

    NASA Astrophysics Data System (ADS)

    Klimek, Beata; Niklińska, Maria; Chodak, Marcin

    2013-04-01

    Temperature is one of the most important factors affecting soil organic matter decomposition. Mountain areas with vertical gradients of temperature and precipitation provide an opportunity to observe climate changes similar to those observed at various latitudes and may serve as an approximation for climatic changes. The aim of the study was to compare the effects of climatic conditions and initial properties of litter on decomposition processes and thermal sensitivity of forest litter. The litter was collected at three altitudes (600, 900, 1200 m a.s.l.) in the Beskidy Mts (southern Poland), put into litter-bags and exposed in the field since autumn 2011. The litter collected at single altitude was exposed at the altitude it was taken and also at the two other altitudes. The litter-bags were laid out on five mountains, treated as replicates. Starting on April 2012, single sets of litter-bags were collected every five weeks. The laboratory measurements included determination of dry mass loss and chemical composition (Corg, Nt, St, Mg, Ca, Na, K, Cu, Zn) of the litter. In the additional litter-bag sets, taken in spring and autumn 2012, microbial properties were measured. To determine the effect of litter properties and climatic conditions of elevation sites on decomposing litter thermal sensitivity the respiration rate of litter was measured at 5°C, 15°C and 25°C and calculated as Q10 L and Q10 H (ratios of respiration rate between 5° and 15°C and between 15°C and 25°C, respectively). The functional diversity of soil microbes was measured with Biolog® ECO plates, structural diversity with phospholipid fatty acids (PLFA). Litter mass lost during first year of incubation was characterized by high variability and mean mass lost ranged up to a 30% of initial mass. After autumn sampling we showed, that mean respiration rate of litter (dry mass) from the 600m a.s.l site exposed on 600m a.s.l. was the highest at each tested temperature. In turn, the lowest mean

  7. Litter-of-origin trait effects on gilt development.

    PubMed

    Vallet, J L; Calderón-Díaz, J A; Stalder, K J; Phillips, C; Cushman, R A; Miles, J R; Rempel, L A; Rohrer, G A; Lents, C A; Freking, B A; Nonneman, D J

    2016-01-01

    The preweaning litter environment of gilts can affect subsequent development. In a recent experiment designed to test the effects of diet on gilt development, litter-of-origin traits including individual birth weights, immunocrits (a measure of colostrum intake), sow parity, number weaned, and individual weaning weights were collected for approximately 1,200 gilts that were progeny of approximately 300 sows. Subsequently, BW, LM area, and backfat were measured at 100 d of age and at 28-d intervals until slaughter (260 d of age). From 160 d of age to slaughter, gilts were observed daily for estrus. At slaughter, the reproductive tract and 1 mammary gland were recovered. The reproductive tract was classified as cyclic or prepubertal; the number of corpora lutea was counted. Uterine horn lengths and ovarian dimensions were measured. Uterus and ovary samples from every 10th gilt were prepared for histological evaluation of uterine gland development and follicle counts, respectively. Mammary gland tissue protein and fat were assayed. Day of the estrous cycle at slaughter was calculated using the first day of the most recent standing estrus (d 0) recorded previous to slaughter. Each gilt development trait was analyzed for association with each litter-of-origin trait, after adjusting for dietary treatment effects. Uterine length, ovarian dimensions, mammary gland protein and fat, and uterine gland development were also adjusted for day of the estrous cycle at slaughter. All litter-of-origin traits were associated ( < 0.05) with growth traits. Top-down (backward elimination) multiple regression analysis indicated that BW and LM accretion in gilts was positively associated with immunocrit ( < 0.01), birth weight ( < 0.01), preweaning growth rate ( < 0.01), and parity ( < 0.01). Backfat accretion was positively associated with preweaning growth rate ( < 0.01), number weaned ( < 0.05), and parity ( < 0.05). Age at puberty was associated with birth weight (positive; < 0

  8. Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape.

    PubMed

    Vasconcelos, Heraldo L; Laurance, William F

    2005-07-01

    Amazonian forest fragments and second-growth forests often differ substantially from undisturbed forests in their microclimate, plant-species composition, and soil fauna. To determine if these changes could affect litter decomposition, we quantified the mass loss of two contrasting leaf-litter mixtures, in the presence or absence of soil macroinvertebrates, and in three forest habitats. Leaf-litter decomposition rates in second-growth forests (>10 years old) and in fragment edges (<100 m from the edge) did not differ from that in the forest interior (>250 m from the edges of primary forests). In all three habitats, experimental exclusion of soil invertebrates resulted in slower decomposition rates. Faunal-exclosure effects were stronger for litter of the primary forest, composed mostly of leaves of old-growth trees, than for litter of second-growth forests, which was dominated by leaves of successional species. The latter had a significantly lower initial concentration of N, higher C:N and lignin:N ratios, and decomposed at a slower rate than did litter from forest interiors. Our results indicate that land-cover changes in Amazonia affect decomposition mainly through changes in plant species composition, which in turn affect litter quality. Similar effects may occur on fragment edges, particularly on very disturbed edges, where successional trees become dominant. The drier microclimatic conditions in fragment edges and second-growth forests (>10 years old) did not appear to inhibit decomposition. Finally, although soil invertebrates play a key role in leaf-litter decomposition, we found no evidence that differences in the abundance, species richness, or species composition of invertebrates between disturbed and undisturbed forests significantly altered decomposition rates. PMID:15942762

  9. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    PubMed

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality. PMID:27236291

  10. Solubility of leaf litter phosphorus and nitrogen from taiga and lowland tropical forest

    NASA Astrophysics Data System (ADS)

    Schreeg, L.; Mack, M. C.; Turner, B. L.

    2011-12-01

    Leaf litter returns significant quantities of phosphorus (P) and nitrogen (N) to the soil environment in terrestrial ecosystems. The release of litter nutrients during decomposition can occur through mineralization of organic material and leaching. While leaching is an important component in our conceptual models of decomposition, the role of leaching in P and N release from leaf litter has been little investigated. Here we synthesize the results from two studies using recently senesced litter from taiga in Siberia and lowland tropical forest in Panama. We show that leaf litter P is highly soluble. On average, 35±10% (mean ± standard deviation) of total litter P was soluble from 41 species of trees and lianas from a lowland tropical forest during a 4 h extract. Similarly, the soluble fraction of litter P was high for recently senesced litter from the taiga - an average of 40±15% of total P was water soluble during a 24 h extract across nine species, which included a sedge, a tree and shrubs spanning two topographical positions (i.e., floodplain and upland). For both systems P extracted per gram litter mass was strongly predicted by total P concentration in initial litter (r2=0.66, p<0.001 in tropical forest; r2=0.63, p<0.001 in taiga). In addition, greater than 80% of the soluble P was inorganic P, suggesting leached P is readily available to plants and microbes. In contrast, litter N was relatively less soluble (<10±5% of the total leaf N on average for both systems), water soluble N per unit litter mass was only weakly predicted by total litter N (r2<0.35 for both systems), and organic N was prominent in extracts. The similarity in solubility results from two distinct latitudes and multiple life forms suggests differences in litter P and N solubility may be fundamental to how these two key nutrients cycle in terrestrial ecosystems across the globe.

  11. Runoff quality from no-till cotton fertilized with broiler litter in subsurface bands.

    PubMed

    Adeli, A; Tewolde, H; Shankle, M W; Way, T R; Brooks, J P; McLaughlin, M R

    2013-01-01

    Surface broadcast of broiler litter to no-till row crops exposes the litter and its nutrients to risks of loss in runoff water and volatilization and may limit the potential benefit of litter to the crops. Subsurface banding of litter could alleviate these risks. A field study was conducted in 2008 and 2009 on an upland Falkner silt loam soil to determine the effect of broiler litter placement on runoff nutrient losses from no-till cotton ( L.). Treatments included surface broadcast broiler litter applied manually, subsurface-banded litter applied by tractor-drawn equipment, and no broiler litter, all in combination with or without winter wheat ( L.) cover crop residue. Broiler litter rate was 5.6 Mg ha. The experimental design was a randomized complete block with a split-plot arrangement of treatments replicated three times. In 2008, simulated rainfall was used to generate runoff 27 d after litter application. Subsurface-banded litter reduced runoff total C, N, P, NH, NO, Cu, Zn and water-soluble P (WP) concentrations by 72, 64, 51, 49, 70, 36, 65, and 77%, respectively, compared with surface broadcast. The reductions were greater in 2009 where runoff occurred 1 d after litter application. Bacterial runoff was decreased by one log with subsurface-banded litter compared to surface broadcast. Except for C, NH, N, and WP, the presence of winter cover crop residue did not affect the load or runoff nutrient concentrations in either year. The results indicate that subsurface banding litter to no-till cotton substantially reduces nutrient and bacterial losses in runoff compared with surface broadcasting. PMID:23673763

  12. Countervailing effects on pine and oak leaf litter decomposition in human-altered Mediterranean ecosystems.

    PubMed

    Sheffer, Efrat; Canham, Charles D; Kigel, Jaime; Perevolotsky, Avi

    2015-04-01

    Species affect the dynamics of litter decay through the intrinsic properties of their litter, but also by influencing the environmental conditions imposed by their canopy, roots, and litter layers. We examined how human-induced changes in the relative abundances of two dominant Mediterranean trees-Pinus halepensis and Quercus calliprinos-impact leaf litter decomposition. A reciprocal transplant experiment tested decomposition of pine, oak, and mixed leaf litter in oak woodland and pine forest ecosystems with different relative abundances of pine and oak. Using likelihood methods, we tested the importance and magnitude of the environmental effects of local species abundance, litter layer composition, and soil properties on litter mass loss. Oak litter decomposition was slower than pine, and had an antagonistic effect on mixed litter decay. These results differ from other reported pine-oak associations, and are probably associated with a higher content of tannins and phenols in oak compared to pine litter in our study sites. The environmental effects of the two species were opposite to their litter decomposition dynamics. An increased proportion of pine in the oak woodlands and a higher content of pine needles in the litter layer of pine forests reduced decay rates. The presence of more oak and broadleaf litter in the litter layer accelerated decomposition in pine forests. Our results highlight the importance of considering multidimensional species effects mediated by both chemical and physical properties, and imply that man-made changes in the composition and configuration of plant communities may result in complex unpredicted consequences to ecosystem biogeochemistry. PMID:25680333

  13. Adolescents' Cognitive "Habitus", Learning Environments, Affective Outcomes of Schooling, and Young Adults' Educational Attainment

    ERIC Educational Resources Information Center

    Marjoribanks, Kevin

    2006-01-01

    A moderation-mediation model was constructed to examine relationships among adolescents' cognitive "habitus" (their cognitive dispositions), learning environments, affective outcomes of schooling, and young adults' educational attainment. Data were collected as part of a longitudinal survey of Australian youth (4,171 females, 3,718 males). The…

  14. Can Mood-Inducing Videos Affect Problem-Solving Activities in a Web-Based Environment?

    ERIC Educational Resources Information Center

    Verleur, Ria; Verhagen, Plon W.; Heuvelman, Ard

    2007-01-01

    The purpose of this study was to examine whether a video-induced positive and negative mood has a differential effect on subsequent problem-solving activities in a web-based environment. The study also examined whether task conditions (task demands) moderated the mood effect. As in traditional experimental mood-effect studies, the affective video…

  15. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Guidelines for identifying major actions significantly affecting the environment. 520.5 Section 520.5 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURES FOR CONSIDERING ENVIRONMENTAL...

  16. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Guidelines for identifying major actions significantly affecting the environment. 520.5 Section 520.5 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURES FOR CONSIDERING ENVIRONMENTAL...

  17. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Guidelines for identifying major actions significantly affecting the environment. 520.5 Section 520.5 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURES FOR CONSIDERING ENVIRONMENTAL...

  18. Assessing the Utility of a Virtual Environment for Enhancing Facial Affect Recognition in Adolescents with Autism

    ERIC Educational Resources Information Center

    Bekele, Esubalew; Crittendon, Julie; Zheng, Zhi; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan

    2014-01-01

    Teenagers with autism spectrum disorder (ASD) and age-matched controls participated in a dynamic facial affect recognition task within a virtual reality (VR) environment. Participants identified the emotion of a facial expression displayed at varied levels of intensity by a computer generated avatar. The system assessed performance (i.e.,…

  19. Litter manipulation and associated invertebrate fauna in secondary forest, central Amazonia, Brazil

    NASA Astrophysics Data System (ADS)

    Santos, Evanira M. R.; Franklin, Elizabeth; Luizão, Flávio J.

    2008-11-01

    Plant litter from selected tree species has been used for improving soil productivity in low-input systems of secondary vegetation in Central Amazon, leading to different conditions for invertebrates. Soil invertebrate assemblages were monitored to test the effects of adding litter types of contrasting nutritional quality and periods of exposure on the development of the community. We established four second growth plots with 80 subplots of 3 m 2 from which the original litter was removed and replaced in 60 subplots. Twenty subplots received Hevea brasiliensis leaves, 20 others Carapa guianensis leaves, and another 20 an equal mixture of H. brasiliensis, C. guianensis and Vismia guianensis. Twenty subplots were left with the original litter. Litter and mineral soil (5 cm deep) sub-horizons were collected after 45, 100, 160, 240 and 300 days of exposure. The invertebrates were extracted using Kempson apparatus. At the day 210, the litter was replenished to match the surrounding litter. Regression analyses showed no significant effect of litter type, but the period of exposure did affect the community in both sub-horizons. Only after the litter replenishment, the type of litter and periods of exposure affected the community in the litter sub-horizon. Because we tried to isolate the effects of litter composition from other large-scale phenomena, several factors interfered in the experiment and potential problems were identified to optimize the investigation. The sampling design must be improved by using a larger number of subsamples for each kind of litter within each plot. Coarse parameters of Order and Family were suited to detect major environmental patterns on soil invertebrates, but taxonomic resolution to species and/or morphospecies is required to detect more subtle effects. Future manipulations should also be done on a longer time scale, and the replicates need to be spread over larger areas to capture the natural variations within the ecosystems.

  20. Challenges in researching violence affecting health service delivery in complex security environments.

    PubMed

    Foghammar, Ludvig; Jang, Suyoun; Kyzy, Gulzhan Asylbek; Weiss, Nerina; Sullivan, Katherine A; Gibson-Fall, Fawzia; Irwin, Rachel

    2016-08-01

    Complex security environments are characterized by violence (including, but not limited to "armed conflict" in the legal sense), poverty, environmental disasters and poor governance. Violence directly affecting health service delivery in complex security environments includes attacks on individuals (e.g. doctors, nurses, administrators, security guards, ambulance drivers and translators), obstructions (e.g. ambulances being stopped at checkpoints), discrimination (e.g. staff being pressured to treat one patient instead of another), attacks on and misappropriation of health facilities and property (e.g. vandalism, theft and ambulance theft by armed groups), and the criminalization of health workers. This paper examines the challenges associated with researching the context, scope and nature of violence directly affecting health service delivery in these environments. With a focus on data collection, it considers how these challenges affect researchers' ability to analyze the drivers of violence and impact of violence. This paper presents key findings from two research workshops organized in 2014 and 2015 which convened researchers and practitioners in the fields of health and humanitarian aid delivery and policy, and draws upon an analysis of organizational efforts to address violence affecting healthcare delivery and eleven in-depth interviews with representatives of organizations working in complex security environments. Despite the urgency and impact of violence affecting healthcare delivery, there is an overall lack of research that is of health-specific, publically accessible and comparable, as well as a lack of gender-disaggregated data, data on perpetrator motives and an assessment of the 'knock-on' effects of violence. These gaps limit analysis and, by extension, the ability of organizations operating in complex security environments to effectively manage the security of their staff and facilities and to deliver health services. Increased research

  1. Research Into the Role of Students’ Affective Domain While Learning Geology in Field Environments

    NASA Astrophysics Data System (ADS)

    Elkins, J.

    2009-12-01

    Existing research programs in field-based geocognition include assessment of cognitive, psychomotor, and affective domains. Assessment of the affective domain often involves the use of instruments and techniques uncommon to the geosciences. Research regarding the affective domain also commonly results in the collection and production of qualitative data that is difficult for geoscientists to analyze due to their lack of familiarity with these data sets. However, important information about students’ affective responses to learning in field environments can be obtained by using these methods. My research program focuses on data produced by students’ affective responses to field-based learning environments, primarily among students at the introductory level. For this research I developed a Likert-scale Novelty Space Survey, which presents student ‘novelty space’ (Orion and Hofstien, 1993) as a polygon; the larger the polygons, the more novelty students are experiencing. The axises for these polygons correspond to novelty domains involving geographic, social, cognitive, and psychological factors. In addition to the Novelty Space Survey, data which I have collected/generated includes focus group interviews on the role of recreational experiences in geology field programs. I have also collected data concerning the motivating factors that cause students to take photographs on field trips. The results of these studies give insight to the emotional responses students have to learning in the field and are important considerations for practitioners of teaching in these environments. Collaborative investigations among research programs that cross university departments and include multiple institutions is critical at this point in development of geocognition as a field due to unfamiliarity with cognitive science methodology by practitioners teaching geosciences and the dynamic nature of field work by cognitive scientists. However, combining the efforts of cognitive

  2. Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau.

    PubMed

    Yue, Kai; Yang, Wanqin; Peng, Changhui; Peng, Yan; Zhang, Chuan; Huang, Chunping; Tan, Yu; Wu, Fuzhong

    2016-10-01

    Litter decomposition is a biological process fundamental to element cycling and a main nutrient source within forest meta-ecosystems, but few studies have looked into this process simultaneously in individual ecosystems, where environmental factors can vary substantially. A two-year field study conducted in an alpine forest meta-ecosystem with four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, and larch: Larix mastersiana) that varied widely in chemical traits showed that both litter species and ecosystem type (i.e., forest floor, stream and riparian zone) are important factors affecting litter decomposition, and their effects can be moderated by local-scale environmental factors such as temperature and nutrient availability. Litter decomposed fastest in the streams followed by the riparian zone and forest floor regardless of species. For a given litter species, both the k value and limit value varied significantly among ecosystems, indicating that the litter decomposition rate and extent (i.e., reaching a limit value) can be substantially affected by ecosystem type and the local-scale environmental factors. Apart from litter initial acid unhydrolyzable residue (AUR) concentration and its ratio to nitrogen concentration (i.e., AUR/N ratio), the initial nutrient concentrations of phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were also important litter traits that affected decomposition depending on the ecosystem type. PMID:27220105

  3. The effects of physical environments in medical wards on medication communication processes affecting patient safety.

    PubMed

    Liu, Wei; Manias, Elizabeth; Gerdtz, Marie

    2014-03-01

    Physical environments of clinical settings play an important role in health communication processes. Effective medication management requires seamless communication among health professionals of different disciplines. This paper explores how physical environments affect communication processes for managing medications and patient safety in acute care hospital settings. Findings highlighted the impact of environmental interruptions on communication processes about medications. In response to frequent interruptions and limited space within working environments, nurses, doctors and pharmacists developed adaptive practices in the local clinical context. Communication difficulties were associated with the ward physical layout, the controlled drug key and the medication retrieving device. Health professionals should be provided with opportunities to discuss the effects of ward environments on medication communication processes and how this impacts medication safety. Hospital administrators and architects need to consider health professionals' views and experiences when designing hospital spaces. PMID:24486620

  4. Effects of chemically amended litter on broiler performances, atmospheric ammonia concentration, and phosphorus solubility in litter.

    PubMed

    Do, J C; Choi, I H; Nahm, K H

    2005-05-01

    The effects of 6 different litter amendments on broiler performance, level of atmospheric ammonia (NH3) concentration, and soluble reactive phosphorus (SRP) in litter was determined. Through 3 experiments conducted on 2 different commercial farms, one chemical amendment was added to the litter and then was compared with a control. Broiler performance was not affected by any of the amendments except the ferrous sulfate amendment for which mortality was 25.5%. Application of aluminum chloride (AlCl3 x 6H2O) to the litter lowered atmospheric ammonia concentrations at 42 d by 97.2%, whereas ferrous sulfate (FeSO4 x 7H2O) lowered it by 90.77%. Ammonia concentrations were reduced by 86.18, 78.66, 75.52, and 69.00% by aluminum sulfate [alum or Al2(SO4)3 x 14H2O)], alum + CaCO3, aluminum chloride + CaCO3, and potassium permanganate (KMnO4), respectively, when compared with each control at 42 d. Each amendment except KMnO4 significantly reduced SRP contents. Alum and aluminum chloride were the effective compounds evaluated on the commercial farms with respect to reducing ammonia contents, phosphorus solubility, and mortality. PMID:15913178

  5. Litter contribution to soil organic carbon in the agriculture abandons processes

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Francaviglia, Dario; La Mantia, tommaso; Gristina, Luciano; La Bella, Salvatore; Tuttolomondo, Teresa

    2015-04-01

    Mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in ecosystem functioning as it regulates the cycle of soil organic matter (SOM), CO2 emission into the atmosphere, carbon sequestration into the soil. In this study, it was investigated the contribution of litters of different stages of Mediterranean secondary succession on Carbon sequestration, analyzing the role of earthworms on translocation of SOM into soil profile. For this purpose δ13C difference between meadow C4-C soil and C3-C litter were used in a field experiment. Four undisturbed litters of different stages of succession were collected (45, 70, 100 and 120 since agriculture abandon) and placed on the top of isolated soil cores. The litter contribution to C stock was affected by plant species and increased with the age of the stage of secondary succession. The soil organic carbon after 1 year since litter position increased up to 40% in comparison to no litter treatment in soil with litter of 120 years since abandon. The new carbon derived from C3-litter was decomposed and transferred into soil profile thanks to earthworms and dissolved organic carbon leaching. After 1 years the carbon increase attributed to earthworm activity ranged from 6% to 13% in soil under litter in field abandoned since 120 and 45 years, respectively.

  6. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.

    PubMed

    Schuster, Michael J

    2016-03-01

    Anthropogenic nitrogen deposition and projected increases in rainfall variability (the frequency of drought and heavy rainfall events) are expected to strongly influence ecosystem processes such as litter decomposition. However, how these two global change factors interact to influence litter decomposition is largely unknown. I examined how increased rainfall variability and nitrogen addition affected mass and nitrogen loss of litter from two tallgrass prairie species, Schizachyrium scoparium and Solidago canadensis, and isolated the effects of each during plant growth and during litter decomposition. I increased rainfall variability by consolidating ambient rainfall into larger events and simulated chronic nitrogen deposition using a slow-release urea fertilizer. S. scoparium litter decay was more strongly regulated by the treatments applied during plant growth than by those applied during decomposition. During plant growth, increased rainfall variability resulted in S. scoparium litter that subsequently decomposed more slowly and immobilized more nitrogen than litter grown under ambient conditions, whereas nitrogen addition during plant growth accelerated subsequent mass loss of S. scoparium litter. In contrast, S. canadensis litter mass and N losses were enhanced under either N addition or increased rainfall variability both during plant growth and during decomposition. These results suggest that ongoing changes in rainfall variability and nitrogen availability are accelerating nutrient cycling in tallgrass prairies through their combined effects on litter quality, environmental conditions, and plant community composition. PMID:26216200

  7. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-06-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition.

  8. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect

    PubMed Central

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-01-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition. PMID:24976274

  9. Consequences of biodiversity loss for litter decomposition across biomes.

    PubMed

    Handa, I Tanya; Aerts, Rien; Berendse, Frank; Berg, Matty P; Bruder, Andreas; Butenschoen, Olaf; Chauvet, Eric; Gessner, Mark O; Jabiol, Jérémy; Makkonen, Marika; McKie, Brendan G; Malmqvist, Björn; Peeters, Edwin T H M; Scheu, Stefan; Schmid, Bernhard; van Ruijven, Jasper; Vos, Veronique C A; Hättenschwiler, Stephan

    2014-05-01

    The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales. PMID:24805346

  10. Environmentally-friendly animal litter

    DOEpatents

    Boxley, Chett; McKelvie, Jessica

    2013-09-03

    An animal litter composition that includes geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. This geopolymerization reaction may occur within a pelletizer. After the geopolymerized ash is formed, it may be dried and sieved to a desired size. These geopolymerized ash particulates may be used to make a non-clumping or clumping animal litter or other absorbing material. Aluminum sulfate, clinoptilolite, silica gel, sodium alginate and mineral oil may be added as additional ingredients.

  11. Environmentally-friendly animal litter

    DOEpatents

    Boxley, Chett; McKelvie, Jessica

    2012-08-28

    An animal litter composition including geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control is accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  12. Subsurface band application of poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broiler litter is commonly used as a fertilizer on pastures and cropland. Poultry litter is typically land-applied by broadcasting the litter on the soil surface. Rain falling on soil to which poultry litter has been applied, may carry phosphorus (P) and nitrogen (N) nutrients from the soil into s...

  13. External built residential environment characteristics that affect mental health of adults.

    PubMed

    Ochodo, Charles; Ndetei, D M; Moturi, W N; Otieno, J O

    2014-10-01

    External built residential environment characteristics include aspects of building design such as types of walls, doors and windows, green spaces, density of houses per unit area, and waste disposal facilities. Neighborhoods that are characterized by poor quality external built environment can contribute to psychosocial stress and increase the likelihood of mental health disorders. This study investigated the relationship between characteristics of external built residential environment and mental health disorders in selected residences of Nakuru Municipality, Kenya. External built residential environment characteristics were investigated for 544 residents living in different residential areas that were categorized by their socioeconomic status. Medically validated interview schedules were used to determine mental health of residents in the respective neighborhoods. The relationship between characteristics of the external built residential environment and mental health of residents was determined by multivariable logistic regression analyses and chi-square tests. The results show that walling materials used on buildings, density of dwelling units, state of street lighting, types of doors, states of roofs, and states of windows are some built external residential environment characteristics that affect mental health of adult males and females. Urban residential areas that are characterized by poor quality external built environment substantially expose the population to daily stressors and inconveniences that increase the likelihood of developing mental health disorders. PMID:24464242

  14. Enriching early adult environment affects the copulation behaviour of a tephritid fly.

    PubMed

    Díaz-Fleischer, Francisco; Arredondo, José; Aluja, Martín

    2009-07-01

    Early adult experiences in enriched environments favours animal brain and behavioural development ultimately resulting in an increased fitness. However, measuring the effect of environmental enrichment in animal behaviour in nature is often a complicated task, considering the complexity of the natural environment. We expanded previous studies to evaluate how early experience in an enriched environment affects copulation behaviour when animals are confronted with a complex semi-natural environment. Anastrepha ludens flies are an ideal model system for studying these effects because their natural habitats differ significantly from the cage environments in which these flies are reared for biological control purposes. For example, in the field, males form leks of up to six individuals. Each male defends a territory represented by a tree leaf whereas in rearing cages, territories are completely reduced because of the high population density. In a series of three experiments, we observed that male density represented the most influential stimulus for A. ludens male copulation success. Males that experienced lower densities in early adulthood obtained the highest proportion of copulations. By contrast, female copulation behaviour was not altered by female density. However, exposure to natural or artificial leaves in cages in which flies were kept until tested influenced female copulation behaviour. Females that were exposed to enriched environments exhibited a shorter latency to mate and shorter copulation durations with males than females reared in poor environments. We discuss the influence of early experience on male copulation success and female-mating choosiness. PMID:19525439

  15. Statistical analysis of litter experiments in teratology

    SciTech Connect

    Williams, R.; Buschbom, R.L.

    1982-11-01

    Teratological data is binary response data (each fetus is either affected or not) in which the responses within a litter are usually not independent. As a result, the litter should be taken as the experimental unit. For each litter, its size, n, and the number of fetuses, x, possessing the effect of interest are recorded. The ratio p = x/n is then the basic data generated by the experiment. There are currently three general approaches to the analysis of teratological data: nonparametric, transformation followed by t-test or ANOVA, and parametric. The first two are currently in wide use by practitioners while the third is relatively new to the field. These first two also appear to possess comparable power levels while maintaining the nominal level of significance. When transformations are employed, care must be exercised to check that the transformed data has the required properties. Since the data is often highly asymmetric, there may be no transformation which renders the data nearly normal. The parametric procedures, including the beta-binomial model, offer the possibility of increased power.

  16. Centrifugal spreader mass and nutrients distribution patterns for application of fresh and aged poultry litter.

    PubMed

    Temple, W D; Skowrońska, M; Bomke, A A

    2014-06-15

    A spin-type centrifugal spreader was evaluated using fresh and aged poultry litter upon dry mass, product nitrogen (N), phosphorus (P) and potassium (K), incubation study soil available N and particle size distribution patterns. Relative to the aged litter (37% moisture content), the fresh litter (17% moisture content) had greater <1.00 mm particle size fraction weights and atmospheric particulate was launched, which posed as a potential fallout to adjacent fields, waterways and residences. Relative to the aged litter, the broadcast fresh litter resulted in higher coefficients of variation (CV) over its transverse distance, a narrower calculated space distance between passes for uniform spread and lower soil available N concentrations. For nitrogen application over the broadcast transverse distance the fresh litter displayed a high R(2) best fit 4th order polynomial distribution pattern, while the aged litter showed high R(2) best fit 6th order polynomial distribution pattern. A soil incubation study of the fresh and aged broadcast litter resulted in a more variable or lower R(2) best fit 2nd order polynomial distribution pattern. For both the fresh and aged litter, the calculated distance between passes to achieve a uniform mass distribution was greater than that required for the broadcast of soil available N. For the fresh litter, the soil available N and litter P concentration levels strongly correlated (relatively high p and R(2) values) with the <1.00 mm fraction weight, while for the aged litter this relationship was not as significant. In addition to reducing the health risk (i.e. pathogens, antibiotic residues and resistant bacteria) and/or environment issues (particulate fallout onto waterways, adjacent fields and/or residences) our study mass, particulate and N distribution patterns results suggest that poultry litter should be allowed to age before broadcast application is attempted. PMID:24705099

  17. Arsenic speciation and reactivity in poultry litter

    USGS Publications Warehouse

    Arai, Y.; Lanzirotti, A.; Sutton, S.; Davis, J.A.; Sparks, D.L.

    2003-01-01

    Recent U.S. government action to lower the maximum concentration levels (MCL) of total arsenic (As) (10 ppb) in drinking water has raised serious concerns about the agricultural use of As-containing biosolids such as poultry litter (PL). In this study, solid-state chemical speciation, desorbability, and total levels of As in PL and long-term amended soils were investigated using novel synchrotronbased probing techniques (microfocused (??) synchrotron X-ray fluorescence (SXRF) and ??-X-ray absorption near-edge structure (XANES) spectroscopies) coupled with chemical digestion and batch experiments. The total As levels in the PL were as high as ???50 mg kg-1, and As(II/III and V) was always concentrated in abundant needle-shaped microscopic particles (???20/ ??m x 850 ??m) associated with Ca, Cu, and Fe and to a lesser extent with S, CI, and Zn. Postedge XANES features of litter particles are dissimilar to those of the organo-As(V) compound in poultry feed (i.e., roxarsone), suggesting possible degradation/transformation of roxarsone in the litter and/or in poultry digestive tracts. The extent of As desorption from the litter increased with increasing time and pH from 4.5 to 7, but at most 15% of the total As was released after 5 d at pH 7, indicating the presence of insoluble phases and/or strongly retained soluble compounds. No significant As accumulation (< 15 mg kg-1) was found in long-term PL-a mended agricultural surface soils. This suggests that As in the PL may have undergone surface and subsurface transport processes. Our research results raise concerns about long-term PL amendment effects on As contamination in surrounding soilwater environments.

  18. The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China

    PubMed Central

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2014-01-01

    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858

  19. How mothers influence the development of litter-mate preferences in Belding's ground squirrels.

    PubMed

    Holmes; Mateo

    1998-06-01

    We performed three experiments to examine the role of mothers in the development of litter-mate preferences in captive juvenile Belding's ground squirrels, Spermophilus beldingi. First, when observed in the absence of mothers, juveniles did not play preferentially with litter-mates, which suggests that mothers somehow influence the ontogeny of litter-mate preferences. Second, when mothers were present but unable to intervene in social interactions, juveniles displayed litter-mate preferences, which suggests that mothers do not influence their offsprings' social development by directly intervening in social interactions. In another group, mothers were removed daily, a few hours before nocturnal immergence, and returned the following morning. Juveniles in this group did not display litter-mate preferences and at night they occupied burrows with many more non-litter-mates than litter-mates. These results suggest that associating with non-litter-mates can compromise the development of litter-mate preferences, and implies that mothers indirectly influence social development by affecting the identities of sleeping partners. Third, newly emergent juveniles that interacted only with litter-mates for 3 days in the absence of mothers subsequently preferred litter-mates over non-litter-mates as play partners. This result demonstrates that once litter-mate preferences are instilled, due in part to social experiences during juveniles' initial days above-ground, the preferences are expressed even in the absence of mothers. Collectively, the results demonstrate that the presence of S. beldingi mothers is important to juvenile social development, but that mothers do not actively direct the ontogeny of their offsprings' social relationships. Copyright 1998 The Association for the Study of Animal Behaviour. Copyright 1998 The Association for the Study of Animal Behaviour. PMID:9642000

  20. Manganese Cycling in a Long-term Plant Litter Decomposition Time Series

    NASA Astrophysics Data System (ADS)

    Keiluweit, M.; Nico, P. S.; Kleber, M.; Bougoure, J.; Harmon, M. E.; Pett-Ridge, J.

    2012-12-01

    Climate change is predicted to affect the chemical composition of plant litter, and global warming may increase microbial and enzymatic activity, with uncertain consequences for litter decomposition rates in soils. This uncertainty has highlighted the need to better understand the controls on litter decomposition rates and pathways. A key controlling processes that is poorly understood is the coupling between decomposition pathways and the inorganic resources available in fresh litter or the underlying soil. For example, a strong correlation was established between the concentration of manganese (Mn) in needle litter and the degradation of litter lignocellulose across boreal forest ecosystems, suggesting that litter decomposition proceeds more efficiently in the presence of Mn. There is good reason to assume that this is due to the critical role of Mn(III)-ligand complexes acting as potent oxidizers in the fungal decomposition of lignocellulose. Here we investigated how litter decomposing organisms redistribute and repurpose the Mn inherently present in fresh plant litter in order to enhance decomposition. For this purpose, we used two 7-year litter decomposition time series collected at sites at the H.J. Andrews Experimental Forest with widely differing decomposition rates. Spatially-resolved X-ray absorption spectroscopy and wet-chemical extractions were used to track pathways of microbially-mediated Mn transport and associated changes in its speciation in each annual litter layer. The cycling of Mn and other metal cations (e.g., Ca and Fe) was then related to changes in the litter chemistry as documented by 13C TMAH and FTIR. Our results show that, as litter decomposition progresses, reduced Mn in the vascular system of fresh needles is transformed into oxidized forms concentrated in Mn oxide precipitates. This transformation of Mn into more reactive forms proceeds faster at the site of greater decomposition. Our imaging data suggests that during this process Mn

  1. Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter

    USGS Publications Warehouse

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    High tissue nitrogen (N) accelerates decomposition of high-quality leaf litter in the early phases of mass loss, but the influence of initial tissue N variation on the decomposition of lignin-rich litter is less resolved. Because environmental changes such as atmospheric N deposition and elevated CO2 can alter tissue N levels within species more rapidly than they alter the species composition of ecosystems, it is important to consider how within-species variation in tissue N may shape litter decomposition and associated N dynamics. Douglas-fir (Pseudotsuga menziesii ) is a widespread lignin-rich conifer that dominates forests of high carbon (C) storage across western North America, and displays wide variation in tissue and litter N that reflects landscape variation in soil N. We collected eight unique Douglas-fir litter sources that spanned a two-fold range in initial N concentrations (0.67–1.31%) with a narrow range of lignin (29–35%), and examined relationships between initial litter chemistry, decomposition, and N dynamics in both ambient and N fertilized plots at four sites over 3 yr. High initial litter N slowed decomposition rates in both early (0.67 yr) and late (3 yr) stages in unfertilized plots. Applications of N fertilizer to litters accelerated early-stage decomposition, but slowed late-stage decomposition, and most strongly affected low-N litters, which equalized decomposition rates across litters regardless of initial N concentrations. Decomposition of N-fertilized litters correlated positively with initial litter manganese (Mn) concentrations, with litter Mn variation reflecting faster turnover of canopy foliage in high N sites, producing younger litterfall with high N and low Mn. Although both internal and external N inhibited decomposition at 3 yr, most litters exhibited net N immobilization, with strongest immobilization in low-N litter and in N-fertilized plots. Our observation for lignin-rich litter that high initial N can slow decomposition

  2. Evaluation of litter type and dietary coarse ground corn inclusion on broiler live performance, gastrointestinal tract development, and litter characteristics.

    PubMed

    Xu, Y; Stark, C R; Ferket, P R; Williams, C M; Nusairat, B; Brake, J

    2015-03-01

    Two 49 d floor pen studies were conducted to evaluate the effects of litter type and dietary coarse ground corn (CC) inclusion on broiler live performance, gastrointestinal tract (GIT) development, and litter characteristics. Experiment 1 was a 2×2 factorial arrangement of 2 genders (male or female) and 2 CC levels (0 or 50%). From 15 to 35 d, the addition of CC decreased feed intake (P<0.01) and BW gain (P<0.05) of males but not females. The inclusion of CC decreased feed intake (P<0.01) and BW gain (P<0.01) from 0 to 49 d but improved adjusted feed conversion ratio (AdjFCR) from 35 to 49 d (P<0.05). Male broilers exhibited better live performance than females during the study as evidenced by greater feed intake (P<0.01) and BW gain (P<0.01), and improved FCR (P<0.01), but with increased mortality (P<0.05). The inclusion of CC increased relative gizzard weight (P<0.01) and decreased relative proventriculus weight (P<0.01) at 49 d. Experiment 2 was a 2×2 factorial arrangement of 2 CC levels (0 or 50%) and 2 litter types (ground old litter or new wood shavings litter). The inclusion of CC decreased feed intake throughout the experiment without affecting final BW when only males were used and improved FCR after 25 d (P<0.01). New litter improved FCR from 1 to 14 d (P<0.01). At 49 d, the birds fed the CC diet had reduced excreta nitrogen (P<0.05) and litter moisture (P<0.05). In conclusion, 50% CC inclusion initially produced negative effects on live performance that became positive as BW increased. The effects of CC became evident at an earlier age for males. New litter had only a marginal benefit on broiler live performance. PMID:25681480

  3. Effects of broiler litter management on runoff N and P from bermudagrass forage based system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of broiler litter to provide nutrients for crop growth has generally been based on crop N requirements. Because broiler litter has a lower N/P ratio than harvested crops, N-based broiler management often oversupplies the crop-soil system with P, which can be lost into the environment and ...

  4. Person-centered work environments, psychological safety, and positive affect in healthcare: a theoretical framework.

    PubMed

    Rathert, Cheryl; May, Douglas R

    2008-01-01

    We propose that in order to systematically improve healthcare quality, healthcare organizations (HCOs) need work environments that are person-centered: environments that support the careprovider as well as the patient. We further argue that HCOs have a moral imperative to provide a workplace where professional care standards can be achieved. We draw upon a large body of research from several disciplines to propose and articulate a theoretical framework that explains how the work environment should be related to the well-being of patients and careproviders, that is, the potential mediating mechanisms. Person-centered work environments include: 1. Climates for patient-centered care. 2. Climates for quality improvement. 3. Benevolent ethical climates. Such a work environment should support the provision of patient-centered care, and should lead to positive psychological states for careproviders, including psychological safety and positive affect. The model contributes to theory by specifying relationships between important organizational variables. The model can potentially contribute to practice by linking specific work environment attributes to outcomes for careproviders and patients. PMID:18839753

  5. Effect of moisture content on the heating profile in composted broiler litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture content can affect the magnitude of heat generation during composting. Temperature was recorded every 2 min for 7 d at 10-cm increments throughout the vertical profile of broiler litter treated with five quantities of water addition. Water additions were applied to achieve litter moisture...

  6. Nitrous Oxide Emissions from a Bermudagrass Pasture: Interseeded Winter Rye and Poultry Litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of poultry litter applications and interseeded winter rye on nitrous oxide (N2O) emissions from pasture is not well documented. This study was conducted to estimate soil surface N2O fluxes as affect by poultry litter applications and interseeded winter rye as well as weather and soil vari...

  7. Effects of broiler litter rate, timing and cover crop on cotton yield and residual soil N

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Timing of broiler litter applications has critical effect on the availability of litter-derived nutrients and should affect cotton (Gossypium spp.) growth and yield. This experiment was conducted on a Leeper silty clay loam (fine, montmorillionitic, nonacid, thermic Vertic Haplaquepts) soil at Missi...

  8. Effects of personal relevance and simulated darkness on the affective appraisal of a virtual environment.

    PubMed

    Toet, Alexander; Houtkamp, Joske M; Vreugdenhil, Paul E

    2016-01-01

    This study investigated whether personal relevance influences the affective appraisal of a desktop virtual environment (VE) in simulated darkness. In the real world, darkness often evokes thoughts of vulnerability, threat, and danger, and may automatically precipitate emotional responses consonant with those thoughts (fear of darkness). This influences the affective appraisal of a given environment after dark and the way humans behave in that environment in conditions of low lighting. Desktop VEs are increasingly deployed to study the effects of environmental qualities and (architectural or lighting) interventions on human behaviour and feelings of safety. Their (ecological) validity for these purposes depends critically on their ability to correctly address the user's cognitive and affective experience. Previous studies with desktop (i.e., non-immersive) VEs found that simulated darkness only slightly affects the user's behavioral and emotional responses to the represented environment, in contrast to the responses observed for immersive VEs. We hypothesize that the desktop VE scenarios used in previous studies less effectively induced emotional and behavioral responses because they lacked personal relevance. In addition, factors like signs of social presence and relatively high levels of ambient lighting may also have limited these responses. In this study, young female volunteers explored either a daytime or a night-time (low ambient light level) version of a desktop VE representing a deserted (no social presence) prototypical Dutch polder landscape. To enhance the personal relevance of the simulation, a fraction of the participants were led to believe that the virtual exploration tour would prepare them for a follow-up tour through the real world counterpart of the VE. The affective appraisal of the VE and the emotional response of the participants were measured through self-report. The results show that the VE was appraised as slightly less pleasant and more

  9. Effects of personal relevance and simulated darkness on the affective appraisal of a virtual environment

    PubMed Central

    Houtkamp, Joske M.; Vreugdenhil, Paul E.

    2016-01-01

    This study investigated whether personal relevance influences the affective appraisal of a desktop virtual environment (VE) in simulated darkness. In the real world, darkness often evokes thoughts of vulnerability, threat, and danger, and may automatically precipitate emotional responses consonant with those thoughts (fear of darkness). This influences the affective appraisal of a given environment after dark and the way humans behave in that environment in conditions of low lighting. Desktop VEs are increasingly deployed to study the effects of environmental qualities and (architectural or lighting) interventions on human behaviour and feelings of safety. Their (ecological) validity for these purposes depends critically on their ability to correctly address the user’s cognitive and affective experience. Previous studies with desktop (i.e., non-immersive) VEs found that simulated darkness only slightly affects the user’s behavioral and emotional responses to the represented environment, in contrast to the responses observed for immersive VEs. We hypothesize that the desktop VE scenarios used in previous studies less effectively induced emotional and behavioral responses because they lacked personal relevance. In addition, factors like signs of social presence and relatively high levels of ambient lighting may also have limited these responses. In this study, young female volunteers explored either a daytime or a night-time (low ambient light level) version of a desktop VE representing a deserted (no social presence) prototypical Dutch polder landscape. To enhance the personal relevance of the simulation, a fraction of the participants were led to believe that the virtual exploration tour would prepare them for a follow-up tour through the real world counterpart of the VE. The affective appraisal of the VE and the emotional response of the participants were measured through self-report. The results show that the VE was appraised as slightly less pleasant and

  10. Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter.

    PubMed

    Talk, Anne; Kublik, Susanne; Uksa, Marie; Engel, Marion; Berghahn, Rüdiger; Welzl, Gerhard; Schloter, Michael; Mohr, Silvia

    2016-08-01

    In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability. PMID:27521943

  11. How Environment Affects Galaxy Metallicity through Stripping and Formation History: Lessons from the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Genel, Shy

    2016-05-01

    Recent studies have found higher galaxy metallicities in richer environments. It is not yet clear, however, whether metallicity-environment dependencies are merely an indirect consequence of environmentally dependent formation histories, or of environmentally related processes directly affecting metallicity. Here, we present a first detailed study of metallicity-environment correlations in a cosmological hydrodynamical simulation, in particular, we focus on the Illustris simulation. Illustris galaxies display similar relations to those observed. Utilizing our knowledge of simulated formation histories, and leveraging the large simulation volume, we construct galaxy samples of satellites and centrals with matching formation histories. This allows us to find that ∼ 1/3 of the metallicity-environment correlation is due to different formation histories in different environments. This is a combined effect of satellites (in particular, in denser environments) having on average lower z = 0 star formation rates (SFRs), and of their older stellar ages, even at a given z = 0 SFR. Most of the difference, ∼ 2/3, however, is caused by the higher concentration of star-forming disks of satellite galaxies, as this biases their SFR-weighted metallicities toward their inner, more metal-rich parts. With a newly defined quantity, the “radially averaged” metallicity, which captures the metallicity profile but is independent of the SFR profile, the metallicities of satellites and centrals become environmentally independent once they are matched in formation history. We find that circumgalactic metallicity (defined as rapidly inflowing gas around the virial radius), while sensitive to environment, has no measurable effect on the metallicity of the star-forming gas inside the galaxies.

  12. Neural networks underlying affective states in a multimodal virtual environment: contributions to boredom

    PubMed Central

    Mathiak, Krystyna A.; Klasen, Martin; Zvyagintsev, Mikhail; Weber, René; Mathiak, Klaus

    2013-01-01

    The interaction of low perceptual stimulation or goal-directed behavior with a negative subjective evaluation may lead to boredom. This contribution to boredom may shed light on its neural correlates, which are poorly characterized so far. A video game served as simulation of free interactive behavior without interruption of the game’s narrative. Thirteen male German volunteers played a first-person shooter game (Tactical Ops: Assault on Terror) during functional magnetic resonance imaging (fMRI). Two independent coders performed the time-based analysis of the audio-visual game content. Boredom was operationalized as interaction of prolonged absence of goal-directed behavior with lowered affect in the Positive and Negative Affect Schedule (PANAS). A decrease of positive affect (PA) correlated with response amplitudes in bilateral insular clusters extending into the amygdala to prolonged inactive phases in a game play and an increase in negative affect (NA) was associated with higher responses in bilateral ventromedial prefrontal cortex (vmPFC). Precuneus and hippocampus responses were negatively correlated with changes in NA. We describe for the first time neural contributions to boredom, using a video game as complex virtual environment. Further our study confirmed that PA and NA are separable constructs, reflected by distinct neural patterns. PA may be associated with afferent limbic activity whereas NA with affective control. PMID:24348366

  13. Prospects for phosphorus recovery from poultry litter.

    PubMed

    Szogi, A A; Vanotti, M B

    2009-11-01

    Land disposal of poultry litter is an environmental concern often associated to excess phosphorus (P) in soils and potential water pollution in regions with intense poultry production. Although poultry litter can be moved off the farm and traded as fertilizer, its transportation becomes less economical with increasing distances from the farm. Thus, new litter management alternatives are needed to reduce the environmental impact of P litter application to land. This paper summarizes established and emerging alternative technologies in the U.S. that facilitate handling, concentration, and transporting of litter P. Furthermore, it examines the potential integration of technologies into poultry litter management systems that could reduce poultry litter volume and increase P content in litter byproducts. The adoption of alternative technologies may encourage new opportunities to produce bio-energy, fertilizer, and other valuable P byproducts from poultry litter while reducing environmental impact and promoting sustainable poultry production. PMID:19394817

  14. Negative and positive interactions among plants: effects of competitors and litter on seedling emergence and growth of forest and grassland species.

    PubMed

    Loydi, A; Donath, T W; Otte, A; Eckstein, R L

    2015-05-01

    Living plant neighbours, but also their dead aboveground remains (i.e. litter), may individually exert negative or positive effects on plant recruitment. Although living plants and litter co-occur in most ecosystems, few studies have addressed their combined effects, and conclusions are ambivalent. Therefore, we examined the response in terms of seedling emergence and growth of herbaceous grassland and forest species to different litter types and amounts and the presence of competitors. We conducted a pot experiment testing the effects of litter type (grass, oak), litter amount (low, medium, high) and interspecific competition (presence or absence of four Festuca arundinacea individuals) on seedling emergence and biomass of four congeneric pairs of hemicryptophytes from two habitat types (woodland, grassland). Interactions between litter and competition were weak. Litter presence increased competitor biomass. It also had positive effects on seedling emergence at low litter amounts and negative effects at high litter amounts, while competition had no effect on seedling emergence. Seedling biomass was negatively affected by the presence of competitors, and this effect was stronger in combination with high amounts of litter. Litter affected seedling emergence while competition determined the biomass of the emerged individuals, both affecting early stages of seedling recruitment. High litter accumulation also reduced seedling biomass, but this effect seemed to be additive to competitor effects. This suggests that live and dead plant mass can affect species recruitment in natural systems, but the mechanisms by which they operate and their timing differ. PMID:25381837

  15. Patterns of litter disappearance in a northern hardwood forest invaded by exotic earthworms.

    PubMed

    Suárez, Esteban R; Fahey, Timothy J; Yavitt, Joseph B; Groffman, Peter M; Bohlen, Patrick J

    2006-02-01

    A field study was conducted to evaluate the effects of exotic earthworm invasions on the rates of leaf litter disappearance in a northern hardwood forest in southcentral New York, USA. Specifically, we assessed whether differences in litter quality and the species composition of exotic earthworm communities affected leaf litter disappearance rates. Two forest sites with contrasting communities of exotic earthworms were selected, and disappearance rates of sugar maple and red oak litter were estimated in litter boxes in adjacent earthworm-free, transition, and earthworm-invaded plots within each site. After 540 days in the field, 1.7-3 times more litter remained in the reference plots than in the earthworm-invaded plots. In the earthworm-invaded plots, rates of disappearance of sugar maple litter were higher than for oak litter during the first year, but by the end of the experiment, the amount of sugar maple and oak litter remaining in the earthworm-invaded plots was identical within each site. The composition of the earthworm communities significantly affected the patterns of litter disappearance. In the site dominated by the anecic earthworm Lumbricus terrestris and the endogeic Aporrectodea tuberculata, the percentage of litter remaining after 540 days (approximately 17%) was significantly less than at the site dominated by L. rubellus and Octolasion tyrtaeum (approximately 27%). This difference may be attributed to the differences in feeding behavior of the two litter-feeding species: L. terrestris buries entire leaves in vertical burrows, whereas L. rubellus usually feeds on litter at the soil surface, leaving behind leaf petioles and veins. Our results showed that earthworms not only accelerate litter disappearance rates, but also may reduce the differences in decomposition rates that result from different litter qualities at later stages of decay. Similarly, our results indicate that earthworm effects on decomposition vary with earthworm community

  16. Litter contribution to soil organic carbon in the agriculture abandons processes

    NASA Astrophysics Data System (ADS)

    Novara, A.; Rühl, J.; La Mantia, T.; Gristina, L.; La Bella, S.; Tuttolomondo, T.

    2015-02-01

    Mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in ecosystem functioning as it regulates the cycle of soil organic matter (SOM), CO2 emission into the atmosphere, carbon sequestration into the soil. In this study, it was investigated the contribution of litters of different stages of Mediterranean secondary succession on Carbon sequestration, analyzing the role of earthworms on translocation of SOM into soil profile. For this purpose δ13C difference between meadow C4-Csoil and C3-Clitter were used in a field experiment. Four undisturbed litters of different stages of succession were collected (45, 70, 100 and 120 since agriculture abandon) and placed on the top of isolated soil cores. The litter contribution to C stock was affected by plant species and increased with the age of the stage of secondary succession. The soil organic carbon after 1 year since litter position increased up to 40% in comparison to no litter treatment in soil with litter of 120 years since abandon. The new carbon derived from C3-litter was decomposed and transferred into soil profile thanks to earthworms and dissolved organic carbon leaching. After 1 years the carbon increase attributed to earthworm activity ranged from 6 to 13% in soil under litter in field abandoned since 120 and 45 years, respectively.

  17. Litter contribution to soil organic carbon in the processes of agriculture abandon

    NASA Astrophysics Data System (ADS)

    Novara, A.; Rühl, J.; La Mantia, T.; Gristina, L.; La Bella, S.; Tuttolomondo, T.

    2015-04-01

    The mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in the functioning of the ecosystem, as they regulate the cycle of soil organic matter (SOM) and CO2 emission into the atmosphere. In this study the contribution of litters of different stages of Mediterranean secondary succession on carbon sequestration was investigated, analyzing the role of earthworms in the translocation of SOM into the soil profile. For this purpose the δ13C difference between meadow C4-C soil and C3-C litter was used in a field experiment. Four undisturbed litters of different stages of succession (45, 70, 100 and 120 since agriculture abandon) were collected and placed on the top of isolated C4 soil cores. The litter contribution to C stock was affected by plant species and it increased with the age of the stage of secondary succession. One year after the litter position, the soil organic carbon increased up to 40% in comparison to soils not treated with litter after 120 years of abandon. The new carbon derived from C3 litter was decomposed and transferred into soil profile thanks to earthworms and the leaching of dissolved organic carbon. After 1 year the carbon increase attributed to earthworm activity was 6 and 13% in the soils under litter of fields abandoned for 120 and 45 years, respectively.

  18. Strong stoichiometric resilience after litter manipulation experiments; a case study in a Chinese grassland

    NASA Astrophysics Data System (ADS)

    Xiao, C. W.; Janssens, I. A.; Zhou, Y.; Su, J. Q.; Liang, Y.; Guenet, B.

    2014-07-01

    Global climate change has generally increased net primary production which leads to increasing litter inputs. Therefore assessing the impacts of increasing litter inputs on soil nutrients, plant growth and ecological Carbon (C) : nitrogen (N) : phosphorus (P) stoichiometry is critical for an understanding of C, N and P cycling and their feedback processes to climate change. In this study, we added plant litter to the 10-20 cm subsoil layer under a steppe community at rates equivalent to 0, 150, 300, 600 and 1200 g (dry mass) m-2 and measured the resulting C, N and P content of different pools (above and below ground plant biomass, litter, microbial biomass). High litter addition (120% of the annual litter inputs) significantly increased soil inorganic N and available P, aboveground biomass, belowground biomass and litter. Nevertheless small litter additions, which are more realistic compared to the future predictions, had no effect on the variables examined. Our results suggest that while very high litter addition can strongly affect C : N : P stoichiometry, the grassland studied here is quite resilient to more realistic inputs in terms of stoichiometric functioning. This result highlights the complexity of the ecosystem's response to climate change.

  19. Role of leaf litter nitrogen immobilization in the nitrogen budget of a swamp stream

    SciTech Connect

    Qualls, R.G.

    1984-01-01

    Attempts were made to determine if immobilization-mobilization of N in the litter layer is of a sufficient magnitude to affect the concentrations of inorganic N in the overlying water, and to determine the effect of concentrations of dissolved nutrients and hydroperiod on litter decomposition, N uptake, and N release by litter. The study was conducted in two blackwater stream swamps in North Carolina: Creeping Swamp (CR) and Chicod Creek (CH). With the low levels of dissolved nutrients in CR, there was little difference in litter decomposition rate along elevation gradients. Decomposition was faster at the inundated sites in CH and the faster decomposition was associated with nutrient enrichment. Exogenous N immobilized in litter reached higher levels in the enriched swamp CH. Despite faster decomposition in CH, no substantial mineralization of litter N had occurred prior to June. A budget of litter N and dissolved inorganic N inflow showed that immobilization by flooded litter over 1 linear km of CR during the sampling period was 87 kg, equivalent to about 25% of the inorganic N inflow. This proportion shows that litter can play a significant role in controlling N concentration in stream water in small swamp streams. 24 references, 3 figures, 3 tables.

  20. Effects of Elevated CO2 on Litter Chemistry and Subsequent Invertebrate Detritivore Feeding Responses

    PubMed Central

    Dray, Matthew W.; Crowther, Thomas W.; Thomas, Stephen M.; A’Bear, A. Donald; Godbold, Douglas L.; Ormerod, Steve J.; Hartley, Susan E.; Jones, T. Hefin

    2014-01-01

    Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To identify any unifying mechanisms, we presented eight invertebrate species from aquatic and terrestrial ecosystems with litter from Alnus glutinosa (common alder) or Betula pendula (silver birch) trees propagated under ambient (380 ppm) or elevated (ambient +200 ppm) CO2 concentrations. Alder litter was largely unaffected by CO2 enrichment, but birch litter from leaves grown under elevated CO2 had reduced nitrogen concentrations and greater C/N ratios. Invertebrates were provided individually with either (i) two litter discs, one of each CO2 treatment (‘choice’), or (ii) one litter disc of each CO2 treatment alone (‘no-choice’). Consumption was recorded. Only Odontocerum albicorne showed a feeding preference in the choice test, consuming more ambient- than elevated-CO2 birch litter. Species’ responses to alder were highly idiosyncratic in the no-choice test: Gammarus pulex and O. albicorne consumed more elevated-CO2 than ambient-CO2 litter, indicating compensatory feeding, while Oniscus asellus consumed more of the ambient-CO2 litter. No species responded to CO2 treatment when fed birch litter. Overall, these results show how elevated atmospheric CO2 can alter litter chemistry, affecting invertebrate feeding behaviour in species-specific ways. The data highlight the need for greater species-level information when predicting changes to detrital processing–a key ecosystem function–under atmospheric change. PMID:24465985

  1. Differential responses of ammonia/ammonium-oxidizing microorganisms in mangrove sediment to amendment of acetate and leaf litter.

    PubMed

    Wang, Yong-Feng; Li, Xiao-Yan; Gu, Ji-Dong

    2014-04-01

    The effects of acetate and leaf litter powder on ammonia/ammonium-oxidizing microorganisms (AOMs) in mangrove sediment were investigated in a laboratory incubation study for a period of 60 days. The results showed that different AOMs responded differently to the addition of acetate and leaf litter. A higher diversity of anaerobic ammonium-oxidizing (anammox) bacteria was observed when acetate or leaf litter was added than the control. However, acetate and leaf litter generally inhibited the growth of anammox bacteria despite that leaf litter promoted their growth in the first 5 days. The inhibitory effects on anammox bacteria were more pronounced by acetate than by leaf litter. Neither acetate nor leaf litter affected ammonia-oxidizing archaea (AOA) community structures, but promoted their growth. For ammonia-oxidizing bacteria (AOB), the addition of acetate or leaf litter resulted in changes of community structures and promoted their growth in the early phase of the incubation. In addition, the promoting effects by leaf litter on AOB growth were more obvious than acetate. These results indicated that organic substances affect AOM community structures and abundances. The study suggests that leaf litter has an important influence on the community structures and abundances of AOMs in mangrove sediment and affects the nitrogen cycle in such ecosystem. PMID:24169949

  2. Fungi vectored by the bark beetle Ips typographus following hibernation under the bark of standing trees and in the forest litter.

    PubMed

    Persson, Ylva; Vasaitis, Rimvydas; Långström, Bo; Ohrn, Petter; Ihrmark, Katarina; Stenlid, Jan

    2009-10-01

    The bark beetle Ips typographus has different hibernation environments, under the bark of standing trees or in the forest litter, which is likely to affect the beetle-associated fungal flora. We isolated fungi from beetles, standing I. typographus-attacked trees, and forest litter below the attacked trees. Fungal identification was done using cultural and molecular methods. The results of the two methods in detecting fungal species were compared. Fungal communities associated with I. typographus differed considerably depending on the hibernation environment. In addition to seven taxa of known ophiostomoid I. typographus-associated fungi, we detected 18 ascomycetes and anamorphic fungi, five wood-decaying basidomycetes, 11 yeasts, and four zygomycetes. Of those, 14 fungal taxa were detected exclusively from beetles that hibernated under bark, and six taxa were detected exclusively from beetles hibernating in forest litter. The spruce pathogen, Ceratocystis polonica, was detected occasionally in bark, while another spruce pathogen, Grosmannia europhioides, was detected more often from beetles hibernating under the bark as compared to litter. The identification method had a significant impact on which taxa were detected. Rapidly growing fungal taxa, e.g. Penicillium, Trichoderma, and Ophiostoma, dominated pure culture isolations; while yeasts dominated the communities detected using molecular methods. The study also demonstrated low frequencies of tree pathogenic fungi carried by I. typographus during its outbreaks and that the beetle does not require them to successfully attack and kill trees. PMID:19444498

  3. Radiocesium leaching from contaminated litter in forest streams.

    PubMed

    Sakai, Masaru; Gomi, Takashi; Naito, Risa S; Negishi, Junjiro N; Sasaki, Michiko; Toda, Hiroto; Nunokawa, Masanori; Murase, Kaori

    2015-06-01

    In Japanese forests suffering from the Fukushima Daiichi Nuclear Power Plant accident, litter fall provides a large amount of radiocesium from forests to streams. Submerged litter is processed to become a vital food resource for various stream organisms through initial leaching and subsequent decomposition. Although leaching from litter can detach radiocesium similarly to potassium, radiocesium leaching and its migration are poorly understood. We examined both radiocesium and potassium leaching to the water column and radiocesium allocation to minerals (glass beads, silica sand, and vermiculite) in the laboratory using soaked litter with and without minerals on a water column. The mineral types did not affect radiocesium leaching from litter, but soaking in water for 1, 7, and 30 days decreased the radiocesium concentration in litter by ×0.71, ×0.66, and ×0.56, respectively. Meanwhile, the 1-, 7-, and 30-day experiments decreased potassium concentration in litter by ×0.17, ×0.11, and ×0.09, respectively. Leached radiocesium remained in a dissolved form when there was no mineral phases present in the water, whereas there was sorption onto the minerals when they were present. In particular, vermiculite adsorbed radiocesium by two to three orders of magnitude more effectively than the other minerals. Because radiocesium forms (such as that dissolved or adsorbed to organic matter or minerals) can further mobilize to ecosystems, our findings will increase our understanding regarding the dynamics of radiocesium in stream ecosystems. PMID:25791899

  4. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    USGS Publications Warehouse

    van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  5. Litter Size Variation in Hypothalamic Gene Expression Determines Adult Metabolic Phenotype in Brandt's Voles (Lasiopodomys brandtii)

    PubMed Central

    Zhang, Xue-Ying; Zhang, Qiang; Wang, De-Hua

    2011-01-01

    Background Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large (10–12) and small (3–4) litter sizes, of Brandt's voles (Lasiopodomys brandtii), a rodent species from Inner Mongolia grassland in China. Methodology/Principal Findings Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large litters, accompanied by increased food intake during development. There were no significant differences in serum leptin levels or leptin receptor (OB-Rb) mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor of cytokine signaling 3 (SOCS3) mRNA in adulthood increased in small litters compared to that in large litters. As a result, the agouti-related peptide (AgRP) mRNA increased in the offspring from small litters. Conclusions/Significance These findings support our hypothesis that natural litter size has a permanent effect on offspring metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of metabolic fitness in adulthood. PMID:21637839

  6. Long-term marine litter monitoring in the remote Great Australian Bight, South Australia.

    PubMed

    Edyvane, K S; Dalgetty, A; Hone, P W; Higham, J S; Wace, N M

    2004-06-01

    , fishing-related litter in the Bight has reduced at a slower rate than domestic litter. While the level of glass and soft plastics on the beach have both reduced by almost 93% (i.e. 103-7 kg and 119-8 kg, respectively), the level of hard plastics, has diminished at a slower rate, with reductions of only 75% (i.e. 122-30 kg). Some fisheries (i.e. rock lobster, Southern Shark Fishery) have shown marked reductions in fishing-related litter. This is probably due, to some extent, to significant reductions in fishing effort in the region, although this requires further investigation. The information from the Anxious Bay beach litter survey is crucial in monitoring trends in ocean litter in Australia's southern oceans and compliance with international litter regulations. While fishing-related litter remains the major source of ship-based or ocean litter in Australia's southern oceans, the continued reduction in ship-based litter since 1991 supports increasing compliance to MARPOL (Annex V) by commercial fisheries and shipping in the Great Australian Bight. While Australia participates in marine debris monitoring programs in the Antarctic (under CCAMLR), there is currently no national program or management framework to assess, manage and monitor ocean-based litter along Australia's coasts, and monitor compliance with MARPOL. Apart from the commitments under CCAMLR for Antarctic (and sub-Antarctic) marine environments, there are no other regional programs, guidelines or monitoring protocols or to assess and manage ocean litter in the Southern Ocean. PMID:15172812

  7. The maternal environment affects offspring viability via an indirect effect of yolk investment on offspring size.

    PubMed

    Warner, Daniel A; Lovern, Matthew B

    2014-01-01

    Environmental conditions that reproductive females experience can influence patterns of offspring provisioning and fitness. In particular, prey availability can influence maternal reproduction and, in turn, affect the viability of their offspring. Although such maternal effects are widespread, the mechanisms by which these effects operate are poorly understood. We manipulated the amount of prey available to female brown anole lizards (Anolis sagrei) to evaluate how this factor affects patterns of reproductive investment (total egg output, egg size, yolk steroids) and offspring viability (morphology, growth, survival). Experimental reduction of yolk in a subset of eggs enabled us to evaluate a potential causal mechanism (yolk investment) that mediates the effect of maternal prey availability on offspring viability. We show that limited prey availability significantly reduced egg size, which negatively influenced offspring size, growth, and survival. Experimental yolk removal from eggs directly reduced offspring size, which, in turn, negatively affected offspring growth and survival. These findings show that maternal environments (i.e., low prey) can affect offspring fitness via an indirect effect of yolk investment on offspring size and highlight the complex set of indirect effects by which maternal effects can operate. PMID:24642545

  8. Considerations on the effects of tidal regimes in the movement of floating litter in an estuarine environment: Case study of the estuarine system of Santos-São Vicente, Brazil.

    PubMed

    Fernandino, Gerson; Elliff, Carla Isobel; Frutuoso, Gabriela Amado; Silva, Eric Vinícius Nascimento Malaquias da; Gama, Guilherme Santiago; Sousa, João Henrique de Oliveira; Silva, Iracema Reimão

    2016-09-15

    Floating litter in the estuarine system of Santos-São Vicente is common and is part of day-to-day activities of various users of the area. The objective of the present study was to carry out a quali-quantitative evaluation of the occurrence of floating litter, to infer their sources, and to identify environmental factors that are likely to control occurrence and distribution, with particular emphasis on the effects of tidal regimes. Six sampling stations were selected along the aforementioned estuary and visited monthly between July 2010 and January 2012. Floating litter was counted from a fixed sampling station. Plastics prevailed (89.64%) and their main source was domestic activities (55.41%). More litter was found during ebb spring tides, with higher concentrations obeying confluence patterns of the estuary's channels. Results indicated that occurrence can be attributed to the deficiency in basic sewage system in the area and the deliberate disposal into the estuary by the local population. PMID:27263980

  9. Above and belowground controls on litter decomposition in semiarid ecosystems: effects of solar radiation, water availability and litter quality

    NASA Astrophysics Data System (ADS)

    Austin, A. T.; Araujo, P. I.; Leva, P. E.; Ballare, C. L.

    2008-12-01

    The integrated controls on soil organic matter formation in arid and semiarid ecosystems are not well understood and appear to stem from a number of interacting controls affecting above- and belowground carbon turnover. While solar radiation has recently been shown to have an important direct effect on carbon loss in semiarid ecosystems as a result of photochemical mineralization of aboveground plant material, the mechanistic basis for photodegradative losses is poorly understood. In addition, there are large potential differences in major controls on above- and belowground decomposition in low rainfall ecosystems. We report on a mesocosm and field study designed to examine the relative importance of different wavelengths of solar radiation, water availability, position of senescent material above- and belowground and the importance of carbon litter quality in determining rates of abiotic and biotic decomposition. In a factorial experiment of mesocosms, we incubated leaf and root litter simultaneously above- and belowground and manipulated water availability with large and small pulses. Significant interactions between position-litter type and position-pulse sizes demonstrated interactive controls on organic mass loss. Aboveground decomposition showed no response to pulse size or litter type, as roots and leaves decomposed equally rapidly under all circumstances. In contrast, belowground decomposition was significantly altered by litter type and water pulses, with roots decomposing significantly slower and small water pulses reducing belowground decomposition. In the field site, using plastic filters which attenuated different wavelengths of natural solar radiation, we found a highly significant effect of radiation exclusion on mass loss and demonstrated that both UV-A and short-wave visible light can have important impacts on photodegradative carbon losses. The combination of position and litter quality effects on litter decomposition appear to be critical for the

  10. The effects of litter carrying on rifle shooting.

    PubMed

    Tharion, W J; Rice, V; Sharp, M A; Marlowe, B E

    1993-08-01

    This study investigated whether the use of a shoulder harness would affect shooting accuracy after patient litter carrying. Two- and four-person teams, 12 male and 9 female soldiers, fired at targets before and after (1) a 15-minute bout of rapid, short litter carries and lifts, and (2) a moderate speed 30-minute litter carry with and without a harness for both types of carries. Shooting accuracy was 10% poorer (p < 0.05) after the 15-minute bout (mean +/- SD = 8.9 +/- 1.9 mm) than after the 30-minute carry (8.1 +/- 1.7 mm). Four-person teams using litter-carriage harnesses had 17% tighter shot groups (45.5 +/- 30.4 mm2) (p < 0.05) than four-person teams that did not use harnesses (54.5 +/- 26.1 mm2) and two-person teams with (56.3 +/- 29.1 mm2) or without harnesses (54.9 +/- 30.7 mm2). The harness can potentially improve shooting accuracy after litter carrying. PMID:8414084

  11. Assessing the Utility of a Virtual Environment for Enhancing Facial Affect Recognition in Adolescents with Autism

    PubMed Central

    Crittendon, Julie; Zheng, Zhi; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan

    2014-01-01

    Teenagers with autism spectrum disorder (ASD) and age-matched controls participated in a dynamic facial affect recognition task within a virtual reality (VR) environment. Participants identified the emotion of a facial expression displayed at varied levels of intensity by a computer generated avatar. The system assessed performance (i.e., accuracy, confidence ratings, response latency, and stimulus discrimination) as well as how participants used their gaze to process facial information using an eye tracker. Participants in both groups were similarly accurate at basic facial affect recognition at varied levels of intensity. Despite similar performance characteristics, ASD participants endorsed lower confidence in their responses and substantial variation in gaze patterns in absence of perceptual discrimination deficits. These results add support to the hypothesis that deficits in emotion and face recognition for individuals with ASD are related to fundamental differences in information processing. We discuss implications of this finding in a VR environment with regards to potential future applications and paradigms targeting not just enhanced performance, but enhanced social information processing within intelligent systems capable of adaptation to individual processing differences. PMID:24419871

  12. The affect of a clearcut environment on woody debris respiration rate dynamics, Harvard Forest, Massachusetts

    NASA Astrophysics Data System (ADS)

    Vanderhoof, M. K.; Williams, C. L.

    2011-12-01

    At an ecosystem scale, the distribution of carbon is largely a function of stand development and disturbance processes. Clearcut logging remains a common practice both in the United States and globally and typically results in elevated storage of carbon in onsite woody debris and detritus. The residence time and decomposition rate of this woody debris and detritus will affect the rate of CO2 efflux to the atmosphere and thus affect the long term consequences of such disturbances on carbon flux and storage. The removal of a forest canopy also affects a site's microclimate including the albedo, air temperature, air humidity, as well as soil temperature and moisture, many of the same factors that affect the rate of woody debris decomposition. Thus it could be expected that differences in woody debris characteristics (e.g. size, abundance, state of decay), as well as differences in microclimate, between mature and recently clearcut forest sites, would result in differences in piece and site-level woody debris decomposition rates. Although woody debris stocks post-harvest have been well characterized, few studies have explored post-disturbance woody debris respiration rates, which directly measures carbon emissions from woody debris, distinguishing decomposition from mass loss due to fragmentation or leaching. This study addressed the question: does a clearcut environment in a temperate forest affect the rate of decomposition of coarse woody debris? The rate of respiration of downed spruce logs were repeatedly measured in-situ using an LI-6250 gas analyzer in Harvard Forest, Petersham, Massachusetts. Treatments included clear-cut, shaded clear-cut, mature spruce stand, and transfer (from clearcut to spruce stand). Gas analyzer measurements were accompanied by measurements of log temperature and percent water, soil temperature, moisture and pH, as well as light levels, air temperature and humidity to determine dominant drivers of respiration rates.

  13. [Decomposition and phosphorus dynamics of the litters in standing and litterbag of the Hangzhou Bay coastal wetland ].

    PubMed

    Shao, Xue-xin; Liang, Xin-qiang; Wu, Ming; Ye, Xiao-qi; Jiang, Ke-yi

    2014-09-01

    Wetlands litter decomposition affects wetlands nutrient cycling. The decomposition progress of standing litter was monitored and the litterbag simulation experiment was carried out in order to analyze dynamics of litter decomposition and phosphorus release in Phragmites australis (PA), Spartina alterniflora (SA) and Scirpus mariqueter (SM) marshes of Hangzhou Bay coastal wetland. Results show that the dry mass of standing litter and P concentration decrease gradually and the litter drops to the sediment surface after 180 d. There are distinctive stages of the plant litter decomposition in litterbag simulation experiments. The loss rate is faster during 0- 15 d than that of later days. The loss rate in root decomposition of three plants are SM > PA > SA, while the trend is opposite for that of aboveground tissues. The time needed for 95% of dry mass decomposition in the plant tissues is between 1. 2- 8. 3 a. The P concentration in litters decreases rapidly in the initial stage and then increases slowly while the net P pools decreases all the time. Pearson's correlation coefficient shows that there is no significant correlation between the litter decomposition rate and C/N ratio. However, the litter C/P ratio affects greatly on plant decomposition rate. Environmental factors in the atmospheric temperature also have an impact on the decomposition rate of leaves. The different decomposition progresses between standing litter and litterbag are caused by environmental factors. PMID:25518655

  14. Injecting poultry litter into orchardgrass hay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional surface application of poultry litter leaves nutrients vulnerable to loss through volatilization and runoff. However, injection can increase capture of these nutrients in agricultural fields. Therefore, a field experiment was conducted to determine the effects of poultry litter injection...

  15. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition.

    PubMed

    DeMarco, Jennie; Mack, Michelle C; Bret-Harte, M Syndonia

    2014-07-01

    Climate warming in arctic tundra may shift dominant vegetation from graminoids to deciduous shrubs, whose functional traits could, in turn, alter biotic and abiotic controls over biogeochemical cycling of carbon (C) and nitrogen (N). We investigated whether shrub-induced changes in microclimate have stronger effects on litter decomposition and nutrient release than changes in litter quality and quantity. In arctic tundra near Toolik Lake, Alaska, USA, we incubated a common substrate in a snow-addition experiment to test whether snow accumulation around arctic deciduous shrubs altered the environment enough to increase litter decomposition rates. We compared the influence of litter quality on the rate of litter and N loss by decomposing litter from four different plant functional types in a common site. We used aboveground net primary production values and estimated decay constant (k) values from our decomposition experiments to calculate community-weighted mass loss for each site. Snow addition had no effect on decomposition of the common substrate, and the site with the highest abundance of shrubs had the lowest decomposition rates. Species varied in their decomposition rates, with species from the same functional type not always following similar patterns. Community-weighted mass loss was 1.5 times greater in the high shrub site, and only slightly decreased when adjusted for soil environment, suggesting that litter quality and quantity are the primary drivers of community decomposition. Our findings suggest that on a short time scale, the changes in soil environment associated with snow trapping by shrubs are unlikely to influence litter nutrient turnover enough to drive positive snow-shrub feedbacks. The mechanisms driving shrub expansion are more likely to do with shrub-litter feedbacks, where the higher growth rates and N uptake by shrubs allows them to produce more leaves, resulting in a larger litter N pool and faster internal cycling of nutrients. PMID

  16. COVERING THEIR BUTTS: RESPONSES TO THE CIGARETTE LITTER PROBLEM

    PubMed Central

    Smith, Elizabeth A.; McDaniel, Patricia A.

    2011-01-01

    Background Cigarette butt litter is a potential target of tobacco control. In addition to its toxicity and non-biodegradability, it can justify environmental regulation and policies that raise the price of tobacco and further denormalize its use. This paper examines how the tobacco industry has managed the cigarette butt litter issue and how the issue has been covered in the media. Methods We searched the Legacy Tobacco Documents Library (http://legacy.library.ucsf.edu) using a snowball strategy. We analyzed data from approximately 700 documents, dated 1959–2006, using an interpretive approach. We also searched two newspaper databases, Lexis/Nexis and Newsbank, and found 406 relevant articles, dated 1982–2009 which we analyzed quantitatively and qualitatively. Results The tobacco industry monitored and developed strategies for dealing with the cigarette litter issue because it affected the social acceptability of smoking, created the potential for alliances between tobacco control and environmental advocates, and created a target for regulation. The industry developed anti-litter programs with Keep America Beautiful (KAB) and similar organizations. Media coverage focused on industry-acceptable solutions, such as volunteer clean-ups and installation of ashtrays; stories that mentioned KAB were also more frequently positive toward the tobacco industry. Among alternative approaches, clean outdoor air laws received the most media attention. Conclusions Cigarette litter, like secondhand smoke, is the result of smoker behavior and affects nonsmokers. The tobacco industry has tried and failed to mitigate the impact of cigarette litter. Tobacco control advocates should explore alliances with environmental groups and propose policy options that hold the industry accountable for cigarette waste. PMID:20966130

  17. Bacterial communities from shoreline environments (costa da morte, northwestern Spain) affected by the prestige oil spill.

    PubMed

    Alonso-Gutiérrez, Jorge; Figueras, Antonio; Albaigés, Joan; Jiménez, Núria; Viñas, Marc; Solanas, Anna M; Novoa, Beatriz

    2009-06-01

    The bacterial communities in two different shoreline matrices, rocks and sand, from the Costa da Morte, northwestern Spain, were investigated 12 months after being affected by the Prestige oil spill. Culture-based and culture-independent approaches were used to compare the bacterial diversity present in these environments with that at a nonoiled site. A long-term effect of fuel on the microbial communities in the oiled sand and rock was suggested by the higher proportion of alkane and polyaromatic hydrocarbon (PAH) degraders and the differences in denaturing gradient gel electrophoresis patterns compared with those of the reference site. Members of the classes Alphaproteobacteria and Actinobacteria were the prevailing groups of bacteria detected in both matrices, although the sand bacterial community exhibited higher species richness than the rock bacterial community did. Culture-dependent and -independent approaches suggested that the genus Rhodococcus could play a key role in the in situ degradation of the alkane fraction of the Prestige fuel together with other members of the suborder Corynebacterineae. Moreover, other members of this suborder, such as Mycobacterium spp., together with Sphingomonadaceae bacteria (mainly Lutibacterium anuloederans), were related as well to the degradation of the aromatic fraction of the Prestige fuel. The multiapproach methodology applied in the present study allowed us to assess the complexity of autochthonous microbial communities related to the degradation of heavy fuel from the Prestige and to isolate some of their components for a further physiological study. Since several Corynebacterineae members related to the degradation of alkanes and PAHs were frequently detected in this and other supralittoral environments affected by the Prestige oil spill along the northwestern Spanish coast, the addition of mycolic acids to bioremediation amendments is proposed to favor the presence of these degraders in long-term fuel pollution-affected

  18. Early Life in a Barren Environment Adversely Affects Spatial Cognition in Laying Hens (Gallus gallus domesticus)

    PubMed Central

    Tahamtani, Fernanda M.; Nordgreen, Janicke; Nordquist, Rebecca E.; Janczak, Andrew M.

    2015-01-01

    Spatial cognition in vertebrates is adversely affected by a lack of environmental complexity during early life. However, to our knowledge, no previous studies have tested the effect of early exposure to varying degrees of environmental complexity on specific components of spatial cognition in chickens. There are two main rearing systems for laying hens in the EU: aviaries and cages. These two systems differ from one another in environmental complexity. The aim of the present study was to test the hypothesis that rearing in a barren cage environment relative to a complex aviary environment causes long-lasting deficits in the ability to perform spatial tasks. For this purpose, 24 white Dekalb laying hens, half of which had been reared in an aviary system and the other half in a conventional cage system, were tested in a holeboard task. Birds from both treatment groups learnt the task; however, the cage-reared hens required more time to locate rewards and had poorer levels of working memory. The latter finding supports the hypothesis that rearing in a barren environment causes long-term impairment of short-term memory in chickens. PMID:26664932

  19. Effects of subsidy quality on reciprocal subsidies: how leaf litter species changes frog biomass export.

    PubMed

    Earl, Julia E; Castello, Paula O; Cohagen, Kara E; Semlitsch, Raymond D

    2014-05-01

    Spatial subsidies are resources transferred from one ecosystem to another and which can greatly affect recipient systems. Increased subsidy quantity is known to increase these effects, but subsidy quality is likely also important. We examined the effects of leaf litter quality (varying in nutrient and tannin content) in pond mesocosms on gray treefrog (Hyla versicolor) biomass export, as well as water quality and ecosystem processes. We used litter from three different tree species native to Missouri [white oak (Quercus alba), northern red oak (Quercus rubra), and sugar maple (Acer saccharum)], one non-native tree [white pine (Pinus strobus)], and a common aquatic grass [prairie cordgrass (Spartina pectinata)]. We found that leaf litter species affected almost every variable we measured. Gray treefrog biomass export was greatest in mesocosms with grass litter and lowest with white oak litter. Differences in biomass export were affected by high tannin concentrations (or possibly the correlated variable, dissolved oxygen) via their effects on survival, and by primary production, which altered mean body mass. Effects of litter species could often be traced back to the characteristics of the litter itself: leaf nitrogen, phosphorus, and tannin content, which highlights the importance of plant functional traits in affecting aquatic ecosystems. This work and others stress that changes in forest species composition could greatly influence aquatic systems and aquatic-terrestrial linkages. PMID:24399483

  20. Effects of anthropogenic heavy metal contamination on litter decomposition in streams - A meta-analysis.

    PubMed

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K; Guérold, François

    2016-03-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. PMID:26774191

  1. Variability of aboveground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Liu, L.; Sayer, E. J.

    2013-03-01

    Global change has been shown to greatly alter the amount of aboveground litter inputs to soil, which could cause substantial cascading effects on belowground biogeochemical cyling. Although having been studied extensively, there is uncertainty about how changes in aboveground litter inputs affect soil carbon and nutrient turnover and transformation. Here, we conducted a comprehensive compilation of 68 studies on litter addition or removal experiments, and used meta-analysis to assess the responses of soil physicochemical properties and carbon and nutrient cycling under changed aboveground litter inputs. Our results suggested that litter addition or removal could significantly alter soil temperature and moisture, but not soil pH. Litter inputs were more crucial in buffering soil temperature and moisture fluctuations in grassland than in forest. Soil respiration, soil microbial biomass carbon and total carbon in the mineral soil increased with increasing litter inputs, suggesting that soil acted as a~net carbon sink although carbon loss and transformation increased with increasing litter inputs. Total nitrogen and the C : N ratio in the mineral soil increased with increased litter inputs. However, there was no correlation between litter inputs and extractable inorganic nitrogen in the mineral soil. Compared to other ecosystems, tropical and subtropical forests are more sensitive to variation in litter inputs. Increased or decreased litter inputs altered the turnover and accumulation of soil carbon and nutrient in tropical and subtropical forests more substantially over a shorter time period compared to other ecosystems. Overall, our study suggested that, although the magnitude of responses differed greatly among ecosystems, increased litter inputs generally accelerated the decomposition and accumulation of carbon and nutrients in soil, and decreased litter inputs reduced them.

  2. Use of rice husk litter at different depths for broiler chicks during summer.

    PubMed

    Haque, M I; Chowdhury, S D

    1994-12-01

    1. Four groups of 36 one-day-old broiler chicks were reared for 8 weeks during summer on rice husk litter spread to depths of 20, 30, 40 or 50 mm. 2. The depth of the litter did not significantly affect live weight gain, food consumption, food conversion ratio, liveability or production number. 3. It was concluded that rice husks can be used as litter at depths of between 20 and 50 mm during summer to raise broilers without affecting performance. PMID:7719744

  3. 46 CFR 108.709 - Litter.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Litter. 108.709 Section 108.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.709 Litter. Each unit must have a litter that is— (a) Stowed in a location that...

  4. Poultry Industry Trends for Litter Utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broiler litter utilization falls primarily into two broad categories, as fertilizer or in litter-to-energy processes. Without economic, environmentally sound litter uses, potential or real regional litigation may force alternative management that can be detrimental to the grower’s bottom line as wel...

  5. Galling by Rhopalomyia solidaginis alters Solidago altissima architecture and litter nutrient dynamics in an old-field ecosystem

    SciTech Connect

    Crutsinger, Greg; Habenicht, Melissa N; Classen, Aimee T; Schweitzer, Jennifer A; Sanders, Dr. Nathan James

    2008-01-01

    Plant-insect interactions can alter ecosystem processes, especially if the insects modify plant architecture, quality, or the quantity of leaf litter inputs. In this study, we investigated the interactions between the gall midge Rhopalomyia solidaginis and tall goldenrod, Solidago altissima, to quantify the degree to which the midge alters plant architecture and how the galls affect rates of litter decomposition and nutrient release in an old-field ecosystem. R. solidaginis commonly leads to the formation of a distinct apical rosette gall on S. altissima and approximately 15% of the ramets in a S. altissima patch were galled (range: 3-34%). Aboveground biomass of galled ramets was 60% higher and the leaf area density was four times greater on galled leaf tissue relative to the portions of the plant that were not affected by the gall. Overall decomposition rate constants did not differ between galled and ungalled leaf litter. However, leaf-litter mass loss was lower in galled litter relative to ungalled litter, which was likely driven by modest differences in initial litter chemistry; this effect diminished after 12 weeks of decomposition in the field. The proportion of N remaining was always higher in galled litter than in ungalled litter at each collection date indicating differential release of nitrogen in galled leaf litter. Several studies have shown that plant-insect interactions on woody species can alter ecosystem processes by affecting the quality or quantity of litter inputs. Our results illustrate how plant-insect interactions in an herbaceous species can affect ecosystem processes by altering the quality and quantity of litter inputs. Given that S. altissima dominates fields and roadsides and that R. solidaginis galls are highly abundant throughout eastern North America, these interactions are likely to be important for both the structure and function of old-field ecosystems.

  6. Annual litter fall in an intact mixed dipterocarp forest of Brunei Darussalam

    NASA Astrophysics Data System (ADS)

    Roh, Yujin; Lee, Jongyeol; Lee, Sohye; Abu Salim, Kamariah; Davies, Stuart James; Son, Yowhan

    2016-04-01

    Estimating litter dynamics in an intact tropical forests is important for understanding tropical forests. Litter fall varies with seasonality, forest type or species composition, forest age, soil water retention, and soil fertility. These parameters are known to be strongly affected by elevation. The objective of this study was to estimate annual litter fall along a relative elevation in an intact mixed dipterocarp forest of Brunei Darussalam. This study was conducted in the Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Five 0.36 ha plots were established within the permanent 25 ha UBD-CTFS plot. The plots were divided into three groups by relative elevation of the site: 1) high (N = 1), 2) middle (N = 2) and 3) low (N = 2). In January 2015, nine litter traps were installed in each plot and falling litter was collected every month from February to November, 2015. The collected litter was separated into leaves and other materials, and then weighed after drying at 80oC. The average annual litter fall in this site was 8.70 ± 0.16 Mg ha-1 yr-1, and this was within the range reported in previous studies which were conducted in tropical forests. Litter fall at high, middle and low plots was 9.09 ± 0.46, 8.90 ± 0.29 and 8.06 ± 0.29 Mg ha-1 yr-1, respectively. Litter fall was not significantly different among the groups (P>0.05). The results of regression analysis showed that litter fall was not significantly increased with altitude. We suppose that litter fall may be relatively constant in this site. *Supported by research grants from the Korea Forest Service (S121314L130100)

  7. Winter broiler litter gases and nitrogen compounds: Temporal and spatial trends

    NASA Astrophysics Data System (ADS)

    Miles, D. M.; Rowe, D. E.; Owens, P. R.

    Understanding how animal activities, management, and barn structure affect litter gases and nutrients is fundamental to developing accurate emission models for meat-bird facilities. This research characterized the temporal and spatial variability of litter ammonia (NH 3) and nitrous oxide (N 2O) flux via a chamber method, as well as determined litter nitrogen (N) compounds by intensive sampling in two commercial broiler houses on aged litter. Thirty-six grid samples were taken during a winter flock in Mississippi on days 2, 22, and 45. On day 45, eight additional samples were taken near the feeders and waterers (F/W). Geostatistical contour plots indicate NH 3 flux on day 2 was elevated in the brood area of house one (H1) where litter and air temperatures were highest; a commercial litter treatment held the NH 3 flux near zero for approximately 45% of the brood area in house two (H2). Day 45 NH 3 fluxes were similar, averaging 694 mg m -2 h -1 in H1 vs. 644 mg m -2 h -1 in H2; both houses exhibited greater NH 3 flux near the cooling pads. Ammonia flux, litter moisture and pH were diminished at the F/W locations. Heavy cake near the exhaust fans provided the lowest recorded litter pH, highest litter moisture and ammonium (NH 4) with no NH 3 flux at the flock's end. Trends in litter condition based on bird activity were evident, but individual differences persisted between the houses. The importance of cake formation over the litter surface and differences based on location, both related to bird activity and house structure, should be considered in NH 3 mitigation strategies.

  8. ARTIE: An Integrated Environment for the Development of Affective Robot Tutors

    PubMed Central

    Imbernón Cuadrado, Luis-Eduardo; Manjarrés Riesco, Ángeles; De La Paz López, Félix

    2016-01-01

    Over the last decade robotics has attracted a great deal of interest from teachers and researchers as a valuable educational tool from preschool to highschool levels. The implementation of social-support behaviors in robot tutors, in particular in the emotional dimension, can make a significant contribution to learning efficiency. With the aim of contributing to the rising field of affective robot tutors we have developed ARTIE (Affective Robot Tutor Integrated Environment). We offer an architectural pattern which integrates any given educational software for primary school children with a component whose function is to identify the emotional state of the students who are interacting with the software, and with the driver of a robot tutor which provides personalized emotional pedagogical support to the students. In order to support the development of affective robot tutors according to the proposed architecture, we also provide a methodology which incorporates a technique for eliciting pedagogical knowledge from teachers, and a generic development platform. This platform contains a component for identiying emotional states by analysing keyboard and mouse interaction data, and a generic affective pedagogical support component which specifies the affective educational interventions (including facial expressions, body language, tone of voice,…) in terms of BML (a Behavior Model Language for virtual agent specification) files which are translated into actions of a robot tutor. The platform and the methodology are both adapted to primary school students. Finally, we illustrate the use of this platform to build a prototype implementation of the architecture, in which the educational software is instantiated with Scratch and the robot tutor with NAO. We also report on a user experiment we carried out to orient the development of the platform and of the prototype. We conclude from our work that, in the case of primary school students, it is possible to identify, without

  9. ARTIE: An Integrated Environment for the Development of Affective Robot Tutors.

    PubMed

    Imbernón Cuadrado, Luis-Eduardo; Manjarrés Riesco, Ángeles; De La Paz López, Félix

    2016-01-01

    Over the last decade robotics has attracted a great deal of interest from teachers and researchers as a valuable educational tool from preschool to highschool levels. The implementation of social-support behaviors in robot tutors, in particular in the emotional dimension, can make a significant contribution to learning efficiency. With the aim of contributing to the rising field of affective robot tutors we have developed ARTIE (Affective Robot Tutor Integrated Environment). We offer an architectural pattern which integrates any given educational software for primary school children with a component whose function is to identify the emotional state of the students who are interacting with the software, and with the driver of a robot tutor which provides personalized emotional pedagogical support to the students. In order to support the development of affective robot tutors according to the proposed architecture, we also provide a methodology which incorporates a technique for eliciting pedagogical knowledge from teachers, and a generic development platform. This platform contains a component for identiying emotional states by analysing keyboard and mouse interaction data, and a generic affective pedagogical support component which specifies the affective educational interventions (including facial expressions, body language, tone of voice,…) in terms of BML (a Behavior Model Language for virtual agent specification) files which are translated into actions of a robot tutor. The platform and the methodology are both adapted to primary school students. Finally, we illustrate the use of this platform to build a prototype implementation of the architecture, in which the educational software is instantiated with Scratch and the robot tutor with NAO. We also report on a user experiment we carried out to orient the development of the platform and of the prototype. We conclude from our work that, in the case of primary school students, it is possible to identify, without

  10. Influence of litter chemistry and stoichiometry on glucan depolymerization during decomposition of beech (Fagus sylvatica L.) litter

    PubMed Central

    Leitner, Sonja; Wanek, Wolfgang; Wild, Birgit; Haemmerle, Ieda; Kohl, Lukas; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2012-01-01

    highly correlated to cellulase activities, suggesting that cellulose was the primary substrate for glucan depolymerization at this stage of decomposition. Litter stoichiometry did not affect glucan depolymerization or glucose consumption rates early in decomposition. At later stages, however, we found significant negative relationships between glucan depolymerization and litter C:N and AUR:N ratio and a positive relationship between glucan depolymerization and litter N concentration. Litter C:N and C:P ratios were negatively related to cellulase, peroxidase and phenoloxidase activities three and six months after incubation, further corroborating the importance of resource stoichiometry for glucan depolymerization after the initial pulse of starch degradation. PMID:22761539

  11. Sampling of riverine litter with citizen scientists--findings and recommendations.

    PubMed

    Rech, S; Macaya-Caquilpán, V; Pantoja, J F; Rivadeneira, M M; Campodónico, C Kroeger; Thiel, M

    2015-06-01

    The quantity and composition of litter at riversides and in the surface waters, as well as the occurrence of illegal dumping sites, were studied along four rivers in Chile. Data generated by volunteers were compared to the results from a professional survey, using an identical protocol. Litter was found in considerable quantities at the riversides and in the surface waters at all the sites investigated. A generalized linear mixed model analysis showed that the recorded litter densities did not differ between volunteers and professionals, even after controlling for river, site, or distance between sampling locations, demonstrating that the volunteers successfully applied the sampling protocol. Differences occurred with respect to litter composition, which is most likely due to difficulties in the classification of litter items and particles and to the underestimation of litter present in surface water samples. Even though this study was only conducted at a small number of rivers and sites, a comparatively consistent pattern of direct and intentional litter deposition at riversides was recorded, highlighting that river basins require more protection. The results also show that the citizen science approach can be a suitable means for more extensive litter surveys at riversides and in other natural environments. PMID:25957193

  12. Marine Litter Distribution and Density in European Seas, from the Shelves to Deep Basins

    PubMed Central

    Pham, Christopher K.; Ramirez-Llodra, Eva; Alt, Claudia H. S.; Amaro, Teresa; Bergmann, Melanie; Canals, Miquel; Company, Joan B.; Davies, Jaime; Duineveld, Gerard; Galgani, François; Howell, Kerry L.; Huvenne, Veerle A. I.; Isidro, Eduardo; Jones, Daniel O. B.; Lastras, Galderic; Morato, Telmo; Gomes-Pereira, José Nuno; Purser, Autun; Stewart, Heather; Tojeira, Inês; Tubau, Xavier; Van Rooij, David; Tyler, Paul A.

    2014-01-01

    Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments. PMID:24788771

  13. Marine litter distribution and density in European seas, from the shelves to deep basins.

    PubMed

    Pham, Christopher K; Ramirez-Llodra, Eva; Alt, Claudia H S; Amaro, Teresa; Bergmann, Melanie; Canals, Miquel; Company, Joan B; Davies, Jaime; Duineveld, Gerard; Galgani, François; Howell, Kerry L; Huvenne, Veerle A I; Isidro, Eduardo; Jones, Daniel O B; Lastras, Galderic; Morato, Telmo; Gomes-Pereira, José Nuno; Purser, Autun; Stewart, Heather; Tojeira, Inês; Tubau, Xavier; Van Rooij, David; Tyler, Paul A

    2014-01-01

    Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments. PMID:24788771

  14. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.

    PubMed

    Sayer, Emma J

    2006-02-01

    The widespread use of forest litter as animal bedding in central Europe for many centuries gave rise to the first litter manipulation studies, and their results demonstrated that litter and its decomposition are a vital part of ecosystem function. Litter plays two major roles in forest ecosystems: firstly, litterfall is an inherent part of nutrient and carbon cycling, and secondly, litter forms a protective layer on the soil surface that also regulates microclimatic conditions. By reviewing 152 years of litter manipulation experiments, I show that the effects of manipulating litter stem from changes in one, or both, of these two functions, and interactions between the variables influenced by the accumulation of litter can result in feedback mechanisms that may intensify treatment effects or mask responses, making the interpretation of results difficult.Long-term litter removal increased soil bulk density, overland flow, erosion, and temperature fluctuations and upset the soil water balance, causing lower soil water content during dry periods. Soil pH increased or decreased in response to manipulation treatments depending on forest type and initial soil pH, but it is unclear why there was no uniform response. Long-term litter harvesting severely depleted the forests of nutrients. Decreases in the concentrations of available P, Ca, Mg, and K in the soil occurred after only three to five years. The decline in soil N occurred over longer periods of time, and the relative loss was greater in soils with high initial nitrogen concentration. Tree growth declined with long-term litter removal, probably due to lower nutrient availability. Litter manipulation also added or removed large amounts of carbon thereby affecting microbial communities and altering soil respiration rates. Litter manipulation experiments have shown that litter cover acts as a physical barrier to the shoot emergence of small-seeded species; further, the microclimate maintained by the litter layer may be

  15. Recent social environment affects colour-assortative shoaling in juvenile angelfish (Pterophyllum scalare).

    PubMed

    Gómez-Laplaza, Luis M

    2009-09-01

    Theory predicts that fish should show colour-assortative shoaling in order to avoid the oddity effect whereby individuals that differ in some feature from the group majority appear to incur increased risk of predation. It has also been shown that early experience plays an important role in affecting social preferences in some fish species. In this study, the importance of colour phenotype in promoting assortative shoaling and the role played by the recent social environment on its expression were investigated in juvenile angelfish, Pterophyllum scalare. Individuals of the uniformly black and golden colour morphs were housed in a group with conspecifics of like and unlike body colour to themselves, as well as in mixed-colour groups for 4 weeks. Subsequently, they were subjected to a binary choice to shoal with a group of conspecifics composed of unfamiliar fish of either a like or unlike colour phenotype to themselves. The response of the individuals to the colour attributes of the shoals was related to their recent social environment. Fish in like- and mixed-colour previous treatments showed a preferential association with like colour conspecifics. In contrast, the shoaling behaviour exhibited by fish previously maintained with a group of unlike-coloured conspecifics (cross-housed treatment) indicated no significant preference for any of the shoals. The results suggest that angelfish use body colouration as an intraspecific shoaling cue and that learning, in the form of recent familiarization with a specific colour phenotype of conspecifics, can affect colour-assortative shoaling preferences in this species. This learning component of the choice need not be restricted to early developmental stages. PMID:19376208

  16. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    SciTech Connect

    Classen, Aimee T; Chapman, Samantha K.; Whitham, Thomas G; Hart, Stephen C; Koch, George W

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimental removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and

  17. The geomagnetic environment in which sea turtle eggs incubate affects subsequent magnetic navigation behaviour of hatchlings

    PubMed Central

    Fuxjager, Matthew J.; Davidoff, Kyla R.; Mangiamele, Lisa A.; Lohmann, Kenneth J.

    2014-01-01

    Loggerhead sea turtle hatchlings (Caretta caretta) use regional magnetic fields as open-ocean navigational markers during trans-oceanic migrations. Little is known, however, about the ontogeny of this behaviour. As a first step towards investigating whether the magnetic environment in which hatchlings develop affects subsequent magnetic orientation behaviour, eggs deposited by nesting female loggerheads were permitted to develop in situ either in the natural ambient magnetic field or in a magnetic field distorted by magnets placed around the nest. In orientation experiments, hatchlings that developed in the normal ambient field oriented approximately south when exposed to a field that exists near the northern coast of Portugal, a direction consistent with their migratory route in the northeastern Atlantic. By contrast, hatchlings that developed in a distorted magnetic field had orientation indistinguishable from random when tested in the same north Portugal field. No differences existed between the two groups in orientation assays involving responses to orbital movements of waves or sea-finding, neither of which involves magnetic field perception. These findings, to our knowledge, demonstrate for the first time that the magnetic environment present during early development can influence the magnetic orientation behaviour of a neonatal migratory animal. PMID:25100699

  18. Factors Affecting the Hydrogen Environment Assisted Cracking Resistance of an AL-Zn-Mg-(Cu) Alloy

    SciTech Connect

    Young, G A; Scully, J R

    2002-04-09

    Precipitation hardenable Al-Zn-Mg alloys are susceptible to hydrogen environment assisted cracking (HEAC) when exposed to aqueous environments. In Al-Zn-Mg-Cu alloys, overaged tempers are used to increase HEAC resistance at the expense of strength but overaging has little benefit in low copper alloys. However, the mechanism or mechanisms by which overaging imparts HEAC resistance is poorly understood. The present research investigated hydrogen uptake, diffusion, and crack growth rate in 90% relative humidity (RH) air for both a commercial copper bearing Al-Zn-Mg-Cu alloy (AA 7050) and a low copper variant of this alloy in order to better understand the factors which affect HEAC resistance. Experimental methods used to evaluate hydrogen concentrations local to a surface and near a crack tip include nuclear reaction analysis (NRA), focused ion beam, secondary ion mass spectroscopy (FIB/SIMS) and thermal desorption spectroscopy (TDS). Results show that overaging the copper bearing alloys both inhibits hydrogen ingress from oxide covered surfaces and decreases the apparent hydrogen diffusion rates in the metal.

  19. A review on factors affecting microcystins production by algae in aquatic environments.

    PubMed

    Dai, Ruihua; Wang, Pinfei; Jia, Peili; Zhang, Yi; Chu, Xincheng; Wang, Yifei

    2016-03-01

    Microcystins, a toxin produced by Microcystis aeruginosa have become a global environmental issue in recent years. As a consequence of eutrophication, microcystins have become widely disseminated in drinking water sources, seriously impairing drinking water quality. This review focuses on the relationship between microcystins synthesis and physical, chemical, and biological environmental factors that are significant in controlling their production. Light intensity and temperature are the more important physical factors, and in many cases, an optimum level for these two factors has been observed. Nitrogen and phosphorus are the key chemical factors causing frequent occurrence of harmful algal blooms and microcystins production. The absorption of nutrients and metabolic activities of algae are affected by different concentrations and forms of nitrogen and phosphorus, leading to variations in microcystins production Metal ions and emerging pollutants are other significant chemical factors, whose comprehensive impact is still being studied. Algae can also interact with biological agents like predators and competitors in aquatic environments, and such interactions are suggested to promote MCs production and release. This review further highlights areas that require further research in order to gain a better understanding of microcystins production. It provides a theoretical basis for the control of microcystins production and releasing into aquatic environments. PMID:26874538

  20. Second-Hand Eating? Maternal perception of the food environment affects reproductive investment in mice

    PubMed Central

    Schwartz, Tonia S.; Gainer, Renee; Dohm, Erik D.; Johnson, Maria S.; Wyss, J. Michael; Allison, David B.

    2015-01-01

    Objective Little information exists on how perception of the food (or ‘energetic’) environment affects body composition and reproductive investment. We test the hypothesis that female mice, who are themselves consuming standard chow diets, but who are exposed to conspecifics eating a rich “cafeteria diet”, will exhibit altered weight gain and reproductive investment. Design and Methods Female C57BL/6 mice were raised on a cafeteria diet. At maturity, subjects were switched to a standard chow diet and their cage-mate was assigned to consume either a cafeteria diet (treatment, n=20), or standard chow (control, n=20). Subjects were mated, and pups raised to weaning. Subjects and pups were analyzed for body composition. Results Treatment had no discernable effect on dam body weight or composition, but caused pups to have lower body weight (p=0.036), and less fat mass (p=0.041). We found a nearly significant treatment effect on ‘time to successful reproduction’ (avg. 55 vs. 44 days) likely due to increased failed first pregnancies (14/19 versus 8/19, p=0.099). Conclusions These data indicate that perceived food environment (independent of the diet actually consumed) can produce small pups with less body fat, and possibly induce difficulties in pregnancy for dams. Replication and mechanistic studies should follow. PMID:25864567

  1. Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

    2006-01-31

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

  2. Nest Bacterial Environment Affects Microbiome of Hoopoe Eggshells, but Not That of the Uropygial Secretion.

    PubMed

    Martínez-García, Ángela; Martín-Vivaldi, Manuel; Rodríguez-Ruano, Sonia M; Peralta-Sánchez, Juan Manuel; Valdivia, Eva; Soler, Juan J

    2016-01-01

    The study of associations between symbiotic bacterial communities of hosts and those of surrounding environments would help to understand how bacterial assemblages are acquired, and how they are transmitted from one to another location (i.e. symbiotic bacteria acquisition by hosts). Hoopoes (Upupa epops) smear their eggshells with uropygial secretion (oily secretion produced in their uropygial gland) that harbors antibiotic producing bacteria. Trying to elucidate a possible role of nest material and cloaca microbiota in determining the bacterial community of the uropygial gland and the eggshells of hoopoes, we characterized bacterial communities of nest material, cloaca, uropygial gland and eggshells by the ARISA fingerprinting. Further, by adding material with scarce bacteria and antimicrobial properties, we manipulated the bacterial community of nest material and thus tested experimentally its effects on the microbiomes of the uropygial secretion and of the eggshells. The experiment did not influence the microbiome of the uropygial secretion of females, but affected the community established on eggshells. This is the first experimental evidence indicating that nest material influences the bacterial community of the eggshells and, therefore, probability of embryo infection. Some of the bacterial strains detected in the secretion were also in the bacterial communities of the nest material and of cloaca, but their occurrence within nests was not associated, which suggests that bacterial environments of nest material and cloaca are not sources of symbiotic bacteria for the gland. These results do not support a role of nest environments of hoopoes as reservoirs of symbiotic bacteria. We discuss possible scenarios explaining bacterial acquisition by hoopoes that should be further explored. PMID:27409772

  3. Nest Bacterial Environment Affects Microbiome of Hoopoe Eggshells, but Not That of the Uropygial Secretion

    PubMed Central

    Martínez-García, Ángela; Martín-Vivaldi, Manuel; Rodríguez-Ruano, Sonia M.; Peralta-Sánchez, Juan Manuel; Valdivia, Eva; Soler, Juan J.

    2016-01-01

    The study of associations between symbiotic bacterial communities of hosts and those of surrounding environments would help to understand how bacterial assemblages are acquired, and how they are transmitted from one to another location (i.e. symbiotic bacteria acquisition by hosts). Hoopoes (Upupa epops) smear their eggshells with uropygial secretion (oily secretion produced in their uropygial gland) that harbors antibiotic producing bacteria. Trying to elucidate a possible role of nest material and cloaca microbiota in determining the bacterial community of the uropygial gland and the eggshells of hoopoes, we characterized bacterial communities of nest material, cloaca, uropygial gland and eggshells by the ARISA fingerprinting. Further, by adding material with scarce bacteria and antimicrobial properties, we manipulated the bacterial community of nest material and thus tested experimentally its effects on the microbiomes of the uropygial secretion and of the eggshells. The experiment did not influence the microbiome of the uropygial secretion of females, but affected the community established on eggshells. This is the first experimental evidence indicating that nest material influences the bacterial community of the eggshells and, therefore, probability of embryo infection. Some of the bacterial strains detected in the secretion were also in the bacterial communities of the nest material and of cloaca, but their occurrence within nests was not associated, which suggests that bacterial environments of nest material and cloaca are not sources of symbiotic bacteria for the gland. These results do not support a role of nest environments of hoopoes as reservoirs of symbiotic bacteria. We discuss possible scenarios explaining bacterial acquisition by hoopoes that should be further explored. PMID:27409772

  4. Effects of nutrient enrichment on mangrove leaf litter decomposition.

    PubMed

    Keuskamp, Joost A; Hefting, Mariet M; Dingemans, Bas J J; Verhoeven, Jos T A; Feller, Ilka C

    2015-03-01

    Nutrient enrichment of mangroves, a common phenomenon along densely populated coastlines, may negatively affect mangrove ecosystems by modifying internal carbon and nutrient cycling. The decomposition of litter exerts a strong influence on these processes and is potentially modified by eutrophication. This study describes effects of N and P enrichment on litter decomposition rate and mineralisation/immobilisation patterns. By making use of reciprocal litter transplantation experiments among fertiliser treatments, it was tested if nutrient addition primarily acts on the primary producers (i.e. changes in litter quantity and quality) or on the microbial decomposers (i.e. changes in nutrient limitation for decomposition). Measurements were done in two mangrove forests where primary production was either limited by N or by P, which had been subject to at least 5 years of experimental N and P fertilisation. Results of this study indicated that decomposers were always N-limited regardless of the limitation of the primary producers. This leads to a differential nutrient limitation between decomposers and primary producers in sites where mangrove production was P-limited. In these sites, fertilisation with P caused litter quality to change, resulting in a higher decomposition rate. This study shows that direct effects of fertilisation on decomposition through an effect on decomposer nutrient availability might be non-significant, while the indirect effects through modifying litter quality might be quite substantial in mangroves. Our results show no indication that eutrophication increases decomposition without stimulating primary production. Therefore we do not expect a decline in carbon sequestration as a result of eutrophication of mangrove ecosystems. PMID:25497680

  5. Effects of litter addition on ectomycorrhizal associates of a lodgepole pine (Pinus contorta) stand in Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Cullings, Kenneth W.; New, Michael H.; Makhija, Shilpa; Parker, V. Thomas

    2003-01-01

    Increasing soil nutrients through litter manipulation, pollution, or fertilization can adversely affect ectomycorrhizal (EM) communities by inhibiting fungal growth. In this study, we used molecular genetic methods to determine the effects of litter addition on the EM community of a Pinus contorta stand in Yellowstone National Park that regenerated after a stand-replacing fire. Two controls were used; in unmodified control plots nothing was added to the soil, and in perlite plots perlite, a chemically neutral substance, was added to maintain soil moisture and temperature at levels similar to those under litter. We found that (i) species richness did not change significantly following perlite addition (2.6 +/- 0.3 species/core in control plots, compared with 2.3 +/- 0.3 species/core in perlite plots) but decreased significantly (P < 0.05) following litter addition (1.8 +/- 0.3 species/core); (ii) EM infection was not affected by the addition of perlite but increased significantly (P < 0.001) in response to litter addition, and the increase occurred only in the upper soil layer, directly adjacent to the added litter; and (iii) Suillus granulatus, Wilcoxina mikolae, and agaricoid DD were the dominant organisms in controls, but the levels of W. mikolae and agaricoid DD decreased significantly in response to both perlite and litter addition. The relative levels of S. granulatus and a fourth fungus, Cortinariaceae species 2, increased significantly (P < 0.01 and P < 0.05, respectively) following litter addition. Thus, litter addition resulted in some negative effects that may be attributable to moisture-temperature relationships rather than to the increased nutrients associated with litter. Some species respond positively to litter addition, indicating that there are differences in their physiologies. Hence, changes in the EM community induced by litter accumulation also may affect ecosystem function.

  6. [Relationships between decomposition rate of leaf litter and initial quality across the alpine timberline ecotone in Western Sichuan, China].

    PubMed

    Yang, Lin; Deng, Chang-chun; Chen Ya-mei; He, Run-lian; Zhang, Jian; Liu, Yang

    2015-12-01

    The relationships between litter decomposition rate and their initial quality of 14 representative plants in the alpine forest ecotone of western Sichuan were investigated in this paper. The decomposition rate k of the litter ranged from 0.16 to 1.70. Woody leaf litter and moss litter decomposed much slower, and shrubby litter decomposed a little faster. Then, herbaceous litters decomposed fastest among all plant forms. There were significant linear regression relationships between the litter decomposition rate and the N content, lignin content, phenolics content, C/N, C/P and lignin/N. Lignin/N and hemicellulose content could explain 78.4% variation of the litter decomposition rate (k) by path analysis. The lignin/N could explain 69.5% variation of k alone, and the direct path coefficient of lignin/N on k was -0.913. Principal component analysis (PCA) showed that the contribution rate of the first sort axis to k and the decomposition time (t) reached 99.2%. Significant positive correlations existed between lignin/N, lignin content, C/N, C/P and the first sort axis, and the closest relationship existed between lignin/N and the first sort axis (r = 0.923). Lignin/N was the key quality factor affecting plant litter decomposition rate across the alpine timberline ecotone, with the higher the initial lignin/N, the lower the decomposition rate of leaf litter. PMID:27111995

  7. Biodegradation of veterinary ionophore antibiotics in broiler litter and soil microcosms.

    PubMed

    Sun, Peizhe; Cabrera, Miguel L; Huang, Ching-Hua; Pavlostathis, Spyros G

    2014-01-01

    Ionophore antibiotics (IPAs) are polyether compounds used in broiler feed to promote growth and control coccidiosis. Most of the ingested IPAs are excreted into broiler litter (BL), a mixture of excreta and bedding material. BL is considered a major source of IPAs released into the environment as BL is commonly used to fertilize agricultural fields. This study investigated IPA biodegradation in BL and soil microcosms, as a process affecting the fate of IPAs in the environment. The study focused on the most widely used IPAs, monensin (MON), salinomycin (SAL), and narasin (NAR). MON was stable in BL microcosms at 24-72% water content (water/wet litter, w/w) and 35-60 °C, whereas SAL and NAR degraded under certain conditions. Factor analysis was conducted to delineate the interaction of water and temperature on SAL and NAR degradation in the BL. A major transformation product of SAL and NAR was identified. Abiotic reaction(s) were primarily responsible for the degradation of MON and SAL in nonfertilized soil microcosms, whereas biodegradation contributed significantly in BL-fertilized soil microcosms. SAL biotransformation in soil microcosms yielded the same product as in the BL microcosms. A new primary biotransformation product of MON was identified in soil microcosms. A field study showed that MON and SAL were stable during BL stacking, whereas MON degraded after BL was applied to grassland. The biotransformation product of MON was also detected in the top soil layer where BL was applied. PMID:24494860

  8. Litter Size Predicts Adult Stereotypic Behavior in Female Laboratory Mice

    PubMed Central

    Bechard, Allison; Nicholson, Anthony; Mason, Georgia

    2012-01-01

    Stereotypic behaviors are repetitive invariant behaviors that are common in many captive species and potentially indicate compromised welfare and suitability as research subjects. Adult laboratory mice commonly perform stereotypic bar-gnawing, route-tracing, and back-flipping, although great individual variation in frequency occurs. Early life factors (for example, level of maternal care received) have lasting effects on CNS functioning and abilities to cope with stress and therefore may also affect stereotypic behavior in offspring. Access to maternal resources and care are influenced by the number of pups in a litter; therefore, we examined both litter size and its potential correlate, weight at weaning, as early environmental predictors of adult stereotypic behavior in laboratory mice. Further, we assessed the effects on offspring stereotypic behavior of delaying the separation of mother and pups (weaning) beyond the standard 21 d of age. Analyzing stereotypic behavior in 3 different mouse colonies composed of 2 inbred strains (C57BL/6N and C57BL/6J) and an outbred stock (CD1[ICR]) revealed significant positive correlation between litter size and stereotypic behavior in female, but not male, mice. Weight and age at weaning did not significantly affect levels of stereotypy in either sex. Litter size therefore may be a useful indicator of individual predisposition to stereotypic behavior in female laboratory mice. PMID:23043805

  9. Exploring Undergraduate Students' Mental Models of the Environment: Are They Related to Environmental Affect and Behavior?

    ERIC Educational Resources Information Center

    Liu, Shu-Chiu; Lin, Huann-shyang

    2015-01-01

    A draw-and-explain task and questionnaire were used to explore Taiwanese undergraduate students' mental models of the environment and whether and how they relate to their environmental affect and behavioral commitment. We found that students generally held incomplete mental models of the environment, focusing on objects rather than on…

  10. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens; Wall, Diana H.

    2015-01-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesized litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~27%). However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. PMID:23763716

  11. The Importance of Social Learning Environment Factors for Affective Well-Being among Students

    ERIC Educational Resources Information Center

    Idsoe, Ella Maria Cosmovici

    2016-01-01

    We investigated whether perceived inclusion and exclusion with peers at school, as well as self-reported bullying exposure, affected positive and negative affect among 1161 students from grades five through seven. Positive affect was significantly, but only weakly, affected by perceived exclusion and inclusion. Negative affect was not related to…

  12. Effects of snow condition on microbial respiration of Scots pine needle litter in a boreal forest

    NASA Astrophysics Data System (ADS)

    Ohnuki, Masataka; Domisch, Timo; Dannoura, Masako; Ataka, Mioko; Finér, Leena; Repo, Tapani; Osawa, Akira

    2016-04-01

    Climate warming scenarios predict decreasing snow depths and increasing winter precipitation in boreal forests ("rain on snow"). I These conditions may affect the decomposition and the microbial respiration of leaf litter, contributing a major part of tree litters, To understand how different snow conditions during winter would affect the microbial respiration of Scots pine needle litter in a boreal forest, we conducted a laboratory experiment using needle litter of two age classes (newly dropped and older litter). The experiment simulated four different winter treatments, followed by spring and early summer : (1) ambient snow cover (SNOW), (2) Compressed snow and ice encasement (ICE), (3) frozen flood (FLOOD) and (4) no snow cover at all (NO SNOW). The experiment was carried out in four walk-in dasotrons (n=3) with soil temperatures of -2° C and air temperatures of 2° C during winter and increased to 15° C and 20° C during spring, respectively . Needle litter samples were collected three times (prior to the winter, just after winter and at the end of the experiment). We evaluated the microbial respiration from the litter at several temperatures (-5° C, 0° C, 5° C and 12° C), the SIR index (an index estimating the microbial biomass), and the C/N ratio .And we calculated Q10 value (index of microbial respiration activity) using microbial respiration data. We found significant differences in microbial respiration between the newly dropped and older litter at the beginning and at the end of the experiment. However, there were no significant differences in Q10 value and the SIR (index of microbial biomass) between the different winter treatments. All samples showed decrease of microbial activity with time. Finally, we conclude that the winter snow conditions with mild air temperatures as used in our experiment, are not detrimentally affecting the Scots pine needle litter decomposition and its respiration.

  13. Influence of Poultry Litter Applications on Nematode Communities in Cotton Agroecosystems

    PubMed Central

    Koenning, S. R.; Barker, K. R.

    2004-01-01

    The effects of the application of poultry litter at 0.0, 6.7, 13.4, and 20.1 tons/ha on population changes during the growing season on nematode communities were evaluated in two cotton production fields in North Carolina. Numbers of bactivorous nematodes increased at midseason in response to the rate at which litter was applied but decreased with increasing litter application rates at cotton harvest. Numbers of fungivores at cotton harvest were related positively to the rate of litter applied, and this affected a positive increase in the fungivore-to-bacterivore ratio at this sampling date. The rate at which poultry litter was applied resulted in an increase in the bacterivore to plant-parasite ratio, and this corresponded with increased cotton lint yield. Trophic diversity was increased by litter application rate at cotton harvest at one location but not at another. The plant-parasite maturity index was greater consistently at one site than at a second site where the Hoplolaimus columbus population density was above the damage threshold for cotton. The population density of H. columbus was suppressed with increasing rates of poultry litter application, but other plant-parasitic nematodes were affected marginally. PMID:19262834

  14. Home advantage? Decomposition across the freshwater-estuarine transition zone varies with litter origin and local salinity.

    PubMed

    Franzitta, Giulio; Hanley, Mick E; Airoldi, Laura; Baggini, Cecilia; Bilton, David T; Rundle, Simon D; Thompson, Richard C

    2015-09-01

    Expected increases in the frequency and intensity of storm surges and river flooding may greatly affect the relative salinity of estuarine environments over the coming decades. In this experiment we used detritus from three contrasting environments (marine Fucus vesiculosus; estuarine Spartina anglica; terrestrial Quercus robur) to test the prediction that the decomposition of the different types of litter would be highest in the environment with which they are associated. Patterns of decomposition broadly fitted our prediction: Quercus detritus decomposed more rapidly in freshwater compared with saline conditions while Fucus showed the opposite trend; Spartina showed an intermediate response. Variation in macro-invertebrate assemblages was detected along the salinity gradient but with different patterns between estuaries, suggesting that breakdown rates may be linked in part to local invertebrate assemblages. Nonetheless, our results suggest that perturbation of salinity gradients through climate change could affect the process of litter decomposition and thus alter nutrient cycling in estuarine transition zones. Understanding the vulnerability of estuaries to changes in local abiotic conditions is important given the need to better integrate coastal proceses into a wider management framework at a time when coastlines are increasingly threatened by human activities. PMID:26247807

  15. Surface coating affects behavior of metallic nanoparticles in a biological environment

    PubMed Central

    Jurašin, Darija Domazet; Ćurlin, Marija; Capjak, Ivona; Crnković, Tea; Lovrić, Marija; Babič, Michal; Horák, Daniel; Gajović, Srećko

    2016-01-01

    Summary Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible. PMID:26977382

  16. Surface coating affects behavior of metallic nanoparticles in a biological environment.

    PubMed

    Jurašin, Darija Domazet; Ćurlin, Marija; Capjak, Ivona; Crnković, Tea; Lovrić, Marija; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible. PMID:26977382

  17. Effects of top-dressing recycled broiler litter on litter production, litter characteristics, and nitrogen mass balance.

    PubMed

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    Top-dressing is a method of broiler litter management in which a thin layer of new, clean litter material is spread over the top of previously used litter prior to placement of a new flock. This fresh layer of bedding material increases the absorptive capacity of the litter and decreases litter caking. Although this practice has been widely used in the poultry industry for many years, no research has been conducted to quantify the effects the practice has on broiler performance, litter production rates, and nutrient content, or the ability of broiler litter to retain manure N and prevent volatilization. An experiment was conducted to quantify these parameters under simulated commercial conditions in a research facility. Nine consecutive flocks of broilers were reared on recycled broiler litter that had previously been used for 9 flocks. Control pens received no litter treatment whereas top-dressed pens received a thin layer of new rice hulls (1 to 2 cm) before the placement of each flock. Nitrogen loss was calculated using the mass balance method. Average broiler performance was not different between the top-dressed and control pens. Top-dressing of litter significantly (P < 0.05) reduced caked litter production compared with control pens in 6 of 9 flocks. However, average total litter production over all 9 flocks was not different between the 2 litter management strategies. In all flocks, litter N content was significantly reduced in top-dressed pens compared with control pens. As a result, litter C:N ratios were significantly higher for pens with top-dressed litter. Differences in N loss between the treatments were not consistent. Average N loss for all flocks was 10.61 and 11.92 g of N/kg of marketed broiler for control and top-dressed pens, respectively, or 20.1 and 22.5% of N inputs, respectively. Based on this experiment, top-dressing of recycled broiler litter would not be recommended as a strategy to reduce the volatilization of N from broiler rearing

  18. Growth and social behavior in a cichlid fish are affected by social rearing environment and kinship

    NASA Astrophysics Data System (ADS)

    Hesse, Saskia; Thünken, Timo

    2014-04-01

    Living in groups is a widespread phenomenon in many animal taxa. The reduction of predation risk is thought to be an important cause for the formation of groups. Consequently, grouping behavior is particularly pronounced during vulnerable life stages, i.e., as juveniles. However, group living does not only provide benefits but also imposes costs on group members, e.g., increased competition for food. Thus, benefits of grouping behavior might not be evident when predation risk is absent. The adaptive significance of living and also developing in a group independent from predation risk has received relatively little attention although this might have important implications on the evolution and maintenance of group living. The first aim of the present study was to examine whether the social environment affects juvenile performance in the cichlid fish Pelvicachromis taeniatus and, secondly, whether kinship affects social behavior. Kin selection theory predicts benefits from grouping with kin. Here, we demonstrate that juveniles reared in a group grow on average faster compared to juveniles reared in isolation under standardized laboratory conditions without predation risk. Furthermore, we found significant differences in social behavior between juveniles reared in a group and reared in isolation. Fish reared in isolation were significantly more aggressive and less willing to shoal than group-reared fish. As expected, genetic relatedness influenced social behavior in group-reared fish as well: dyads of juveniles consisting of kin showed increased group cohesiveness compared to non-kin dyads. We discuss the potential benefits of group living in general and living with kin in particular.

  19. THE EFFECT OF CO-MINGLING LITTERS ON PIGLETS' GROWTH, SUCKLING BEHAVIOR AND RESPONSES TO BEHAVIORAL TESTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Co-mingling litters prior to weaning alters piglet development and ability to cope with post-stress. The purpose of this study was to determine how co-mingling litters affected piglet growth, suckling behavior and responses to behavioral tests used to measure coping abilities before weaning. Thirty ...

  20. Plant structure predicts leaf litter capture in the tropical montane bromeliad Tillandsia turneri.

    PubMed

    Ospina-Bautista, F; Estévez Varón, J V

    2016-05-01

    Leaves intercepted by bromeliads become an important energy and matter resource for invertebrate communities, bacteria, fungi, and the plant itself. The relationship between bromeliad structure, defined as its size and complexity, and accumulated leaf litter was studied in 55 bromeliads of Tillandsia turneri through multiple regression and the Akaike information criterion. Leaf litter accumulation in bromeliads was best explained by size and complexity variables such as plant cover, sheath length, and leaf number. In conclusion, plant structure determines the amount of litter that enters bromeliads, and changes in its structure could affect important processes within ecosystem functioning or species richness. PMID:27143067

  1. Factors Affecting the Hydrogen Environment Assisted Cracking Resistance of an Al-Zn-Mg-(Cu) Alloy

    SciTech Connect

    G.A. Young; J.R. Scully

    2001-09-12

    It is well established that Al-Zn-Mg-(Cu) aluminum alloys are susceptible to hydrogen environment assisted cracking (HEAC) when exposed to aqueous environments. In Al-Zn-Mg-Cu alloys, overaged tempers are commonly used to increase HEAC resistance at the expense of strength. Overaging has little benefit in low copper alloys. However, the mechanism or mechanisms by which overaging imparts HEAC resistance is poorly understood. The present research investigated hydrogen uptake, diffusion, and crack growth rate in 90% relative humidity (RH) air for both a commercial copper bearing Al-Zn-Mg-Cu alloy (AA 7050) and a low copper variant of this alloy in order to better understand the factors which affect HEAC resistance. Experimental methods used to evaluate hydrogen concentrations local to a surface and near a crack tip include nuclear reaction analysis (NRA), focused ion beam, secondary ion mass spectroscopy (FIB/SIMS) and thermal desorption spectroscopy (TDS). When freshly bared coupons of AA 7050 are exposed to 90 C, 90% RH air, hydrogen ingress follows inverse-logarithmic-type kinetics and is equivalent for underaged (HEAC susceptible) and overaged (HEAC resistant) tempers. However, when the native oxide is allowed to form (24 hrs in 25 C, 40% RH lab air) prior to exposure to 90 C, 90% RH air, underaged alloy shows significantly greater hydrogen ingress than the overaged alloy. Humid air is a very aggressive environment producing local ({approx}1{micro}m) hydrogen concentrations in excess of 10,000 wt. ppm at 90 C. In the copper bearing alloy, overaging also effects the apparent diffusivity of hydrogen. As AA 7050 is aged from underaged {yields} peak aged {yields} overaged, the activation energy for hydrogen diffusion increases and the apparent diffusivity for hydrogen decreases, In the low copper alloy, overaging has little effect on hydrogen diffusion. Comparison of the apparent activation energies for hydrogen diffusion and for K independent (stage II) crack growth

  2. Aging and the environment affect gamete and embryo potential: can we intervene?

    PubMed

    Meldrum, David R; Casper, Robert F; Diez-Juan, Antonio; Simon, Carlos; Domar, Alice D; Frydman, Rene

    2016-03-01

    Optimal maturation of the oocyte depends on its environment and determines embryo competence, because the embryonic genome is not active until the cleavage stage and new mitochondria are not produced until blastulation. Adverse environmental factors include aging, andropause, oxidative stress, obesity, smoking, alcohol, and psychologic stress, whereas androgen supplementation, a prudent diet, exercise, nutritional supplements, and psychologic interventions have beneficial effects. Mitochondrial function and energy production deteriorate with age, adversely affecting ovarian reserve, chromosome segregation, and embryo competence. In aging mice, the mitochondrial cofactor coenzyme Q10 reverses most of these changes. Early human experience has been encouraging, although only a small study using a shorter duration of intervention compared with the murine model has been carried out. Mitochondrial metabolic stress can result in an abnormal compensatory increase in mitochondrial DNA, which can be assessed in biopsied blastomeres of trophectoderm as a predictive biomarker of implantation failure. Psychologic stress may reduce oocyte competence by shifting blood flow away from the ovary as part of the classic "fight or flight" physiologic response, and methods to reduce stress or the body's reaction to stress improve pregnancy success. Enhancing oocyte competence is a key intervention that promises to reduce the number of euploid embryos failing to produce viable deliveries. PMID:26812244

  3. The social environment affects mate guarding behavior in Japanese beetles, Popillia japonica

    PubMed Central

    Saeki, Yoriko; Kruse, Kipp C.; Switzer, Paul V.

    2005-01-01

    The effect of the social environment on post-copulatory mate guarding duration in Japanese beetles, (Popillia japonica Newman), was examined in a laboratory experiment. The mate guarding durations of beetles in different sex ratios and densities were observed for 10 hours. Guarding duration was longer when females were larger, suggesting the presence of ‘cryptic’ male mate choice. Densities, but not sex ratio, affected the duration of guarding bouts, with males guarding for longer at higher densities. This result implies that males increase their guarding duration under conditions in which their female may be likely to be encountered by other males. The lack of a sex ratio effect on the duration of guarding bouts is consistent with other studies on this species that indicate males have difficulty distinguishing females from males. Consequently, because the sex ratio on food plants is typically male-biased, a paired male may react just to density, treating surrounding individuals as if they were mostly males. The total amount of time males spent guarding was lower at lower densities and at male-biased sex ratios; this suggests that after ceasing to guard one female, males were less able to find a subsequent mate under these conditions. PMID:16341250

  4. No Effect of Ambient Odor on the Affective Appraisal of a Desktop Virtual Environment with Signs of Disorder

    PubMed Central

    Toet, Alexander; van Schaik, Martin; Theunissen, Nicolet C. M.

    2013-01-01

    Background Desktop virtual environments (VEs) are increasingly deployed to study the effects of environmental qualities and interventions on human behavior and safety related concerns in built environments. For these applications it is essential that users appraise the affective qualities of the VE similar to those of its real world counterpart. Previous studies have shown that factors like simulated lighting, sound and dynamic elements all contribute to the affective appraisal of a desktop VE. Since ambient odor is known to affect the affective appraisal of real environments, and has been shown to increase the sense of presence in immersive VEs, it may also be an effective tool to tune the affective appraisal of desktop VEs. This study investigated if exposure to ambient odor can modulate the affective appraisal of a desktop VE with signs of public disorder. Method Participants explored a desktop VE representing a suburban neighborhood with signs of public disorder (neglect, vandalism and crime), while being exposed to either room air or subliminal levels of unpleasant (tar) or pleasant (cut grass) ambient odor. Whenever they encountered signs of disorder they reported their safety related concerns and associated affective feelings. Results Signs of crime in the desktop VE were associated with negative affective feelings and concerns for personal safety and personal property. However, there was no significant difference between reported safety related concerns and affective connotations in the control (no-odor) and in each of the two ambient odor conditions. Conclusion Ambient odor did not affect safety related concerns and affective connotations associated with signs of disorder in the desktop VE. Thus, semantic congruency between ambient odor and a desktop VE may not be sufficient to influence its affective appraisal, and a more realistic simulation in which simulated objects appear to emit scents may be required to achieve this goal. PMID:24250810

  5. SOA Formation Potential of Emissions from Soil and Leaf Litter

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Vanderschelden, G. S.; Wen, M.; Cobos, D. R.; Jobson, B. T.; VanReken, T. M.

    2013-12-01

    dominated by soil/litter emissions--soil/litter monoterpene emissions in spring could contribute up to 63% of total forest emissions. If this is the case, a significant portion of total forest monoterpene emission rates would be controlled by factors that affect soil/litter emissions rather than factors that affect plant emissions.

  6. Allelopathy of Bracken Fern (Pteridium arachnoideum): New Evidence from Green Fronds, Litter, and Soil.

    PubMed

    de Jesus Jatoba, Luciana; Varela, Rosa Maria; Molinillo, José Maria Gonzalez; Ud Din, Zia; Juliano Gualtieri, Sonia Cristina; Rodrigues-Filho, Edson; Macías, Francisco Antonio

    2016-01-01

    The neotropical bracken fern Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) is described as an aggressive pioneer plant species. It invades abandoned or newly burned areas and represents a management challenge at these invaded sites. Native to the Atlantic Forest and Cerrado (Tropical Savanna) Brazilian biomes, P. arachnoideum has nevertheless become very problematic in these conservation hotspots. Despite some reports suggesting a possible role of allelopathy in this plant's dominance, until now there has been little evidence of isolated and individually identified compounds with phytotoxic activities present in its tissues or in the surrounding environment. Thus, the aim of this study was to investigate the allelopathic potential of P. arachnoideum by isolating and identifying any secondary metabolites with phytotoxic activity in its tissues, litter, and soil. Bioguided phytochemical investigation led to the isolation and identification of the proanthocyanidin selligueain A as the major secondary compound in the green fronds and litter of this fern. It is produced by P. arachnoideum in its green fronds, remains unaltered during the senescence process, and is the major secondary compound present in litter. Selligueain A showed phytotoxic activity against the selected target species sesame (Sesamum indicum) early development. In particular, the compound inhibited root and stem growth, and root metaxylem cell size but did not affect chlorophyll content. This compound can be considered as an allelochemical because it is present in the soil under P. arachnoideum patches as one of the major compounds in the soil solution. This is the first report of the presence of selligueain A in any member of the Dennstaedtiaceae family and the first time an isolated and identified allelochemical produced by members of the Pteridium species complex has been described. This evidence of selligueain A as a putative allelochemical of P. arachnoideum reinforces the role of

  7. Allelopathy of Bracken Fern (Pteridium arachnoideum): New Evidence from Green Fronds, Litter, and Soil

    PubMed Central

    Juliano Gualtieri, Sonia Cristina; Rodrigues-Filho, Edson; Macías, Francisco Antonio

    2016-01-01

    The neotropical bracken fern Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) is described as an aggressive pioneer plant species. It invades abandoned or newly burned areas and represents a management challenge at these invaded sites. Native to the Atlantic Forest and Cerrado (Tropical Savanna) Brazilian biomes, P. arachnoideum has nevertheless become very problematic in these conservation hotspots. Despite some reports suggesting a possible role of allelopathy in this plant’s dominance, until now there has been little evidence of isolated and individually identified compounds with phytotoxic activities present in its tissues or in the surrounding environment. Thus, the aim of this study was to investigate the allelopathic potential of P. arachnoideum by isolating and identifying any secondary metabolites with phytotoxic activity in its tissues, litter, and soil. Bioguided phytochemical investigation led to the isolation and identification of the proanthocyanidin selligueain A as the major secondary compound in the green fronds and litter of this fern. It is produced by P. arachnoideum in its green fronds, remains unaltered during the senescence process, and is the major secondary compound present in litter. Selligueain A showed phytotoxic activity against the selected target species sesame (Sesamum indicum) early development. In particular, the compound inhibited root and stem growth, and root metaxylem cell size but did not affect chlorophyll content. This compound can be considered as an allelochemical because it is present in the soil under P. arachnoideum patches as one of the major compounds in the soil solution. This is the first report of the presence of selligueain A in any member of the Dennstaedtiaceae family and the first time an isolated and identified allelochemical produced by members of the Pteridium species complex has been described. This evidence of selligueain A as a putative allelochemical of P. arachnoideum reinforces the role of

  8. Biochemical Composition Suggests Different Roles of Leaf Litter and Fine Roots in Soil Carbon Formation

    NASA Astrophysics Data System (ADS)

    Xia, M.; Pregitzer, K. S.; Talhelm, A. F.

    2012-12-01

    stimulate the decay of lignin by providing required energy. Therefore, fine roots of Acer saccharum have a relatively recalcitrant nature based on their distinct biochemical composition, suggesting fine roots may be the major driver of soil carbon formation in the ecosystems we studied. Litter type and N addition had significant interactions on lignin, holocellulose, and NSC (P< 0.05), indicating these traits of different litter types respond differently to N addition. In leaf litter, the concentrations of lignin, NSC, and bound CT were affected by N addition (P< 0.05). By contrast, N addition only reduced the soluble protein concentration in fine roots (P< 0.05). Hence, substrate quality of leaf litter and fine roots responds differently to the simulated N deposition, and may eventually lead to different responses in decomposition pattern. This is one of few studies comparing the detailed biochemical profile of leaf litter and fine roots in a dominant tree species. Different biochemical traits of fine roots and leaf litter may reflect the different specializations for their physiological functions. This work highlights the importance of fine root in the soil carbon formation due to its recalcitrant nature, and emphasizes the necessity of differentiating the responses of leaf litter and fine root decompositions to environmental changes when modeling biogeochemical cycles.

  9. Variance component estimates for alternative litter size traits in swine.

    PubMed

    Putz, A M; Tiezzi, F; Maltecca, C; Gray, K A; Knauer, M T

    2015-11-01

    Litter size at d 5 (LS5) has been shown to be an effective trait to increase total number born (TNB) while simultaneously decreasing preweaning mortality. The objective of this study was to determine the optimal litter size day for selection (i.e., other than d 5). Traits included TNB, number born alive (NBA), litter size at d 2, 5, 10, 30 (LS2, LS5, LS10, LS30, respectively), litter size at weaning (LSW), number weaned (NW), piglet mortality at d 30 (MortD30), and average piglet birth weight (BirthWt). Litter size traits were assigned to biological litters and treated as a trait of the sow. In contrast, NW was the number of piglets weaned by the nurse dam. Bivariate animal models included farm, year-season, and parity as fixed effects. Number born alive was fit as a covariate for BirthWt. Random effects included additive genetics and the permanent environment of the sow. Variance components were plotted for TNB, NBA, and LS2 to LS30 using univariate animal models to determine how variances changed over time. Additive genetic variance was minimized at d 7 in Large White and at d 14 in Landrace pigs. Total phenotypic variance for litter size traits decreased over the first 10 d and then stabilized. Heritability estimates increased between TNB and LS30. Genetic correlations between TNB, NBA, and LS2 to LS29 with LS30 plateaued within the first 10 d. A genetic correlation with LS30 of 0.95 was reached at d 4 for Large White and at d 8 for Landrace pigs. Heritability estimates ranged from 0.07 to 0.13 for litter size traits and MortD30. Birth weight had an h of 0.24 and 0.26 for Large White and Landrace pigs, respectively. Genetic correlations among LS30, LSW, and NW ranged from 0.97 to 1.00. In the Large White breed, genetic correlations between MortD30 with TNB and LS30 were 0.23 and -0.64, respectively. These correlations were 0.10 and -0.61 in the Landrace breed. A high genetic correlation of 0.98 and 0.97 was observed between LS10 and NW for Large White and

  10. Sequential monitoring of beach litter using webcams.

    PubMed

    Kako, Shin'ichiro; Isobe, Atsuhiko; Magome, Shinya

    2010-05-01

    This study attempts to establish a system for the sequential monitoring of beach litter using webcams placed at the Ookushi beach, Goto Islands, Japan, to establish the temporal variability in the quantities of beach litter every 90 min over a one and a half year period. The time series of the quantities of beach litter, computed by counting pixels with a greater lightness than a threshold value in photographs, shows that litter does not increase monotonically on the beach, but fluctuates mainly on a monthly time scale or less. To investigate what factors influence this variability, the time derivative of the quantity of beach litter is compared with satellite-derived wind speeds. It is found that the beach litter quantities vary largely with winds, but there may be other influencing factors. PMID:20392465

  11. Effects of natural and anthropogenic processes in the distribution of marine litter in the deep Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Ramirez-Llodra, Eva; De Mol, Ben; Company, Joan B.; Coll, Marta; Sardà, Francesc

    2013-11-01

    The distribution, type and quantity of marine litter accumulated on the bathyal and abyssal Mediterranean seafloor has been studied in the framework of the Spanish national projects PROMETEO and DOS MARES and the ESF-EuroDEEP project BIOFUN. Litter was collected with an otter trawl and Agassiz trawl while sampling for megafauna on the Blanes canyon and adjacent slope (Catalan margin, north-western Mediterranean) between 900 and 2700 m depth, and on the western, central and eastern Mediterranean basins at 1200, 2000 and 3000 m depth. All litter was sorted into 8 categories (hard plastic, soft plastic, glass, metal, clinker, fabric, longlines and fishing nets) and weighed. The distribution of litter was analysed in relation to depth, geographic area and natural (bathymetry, currents and rivers) and anthropogenic (population density and shipping routes) processes. The most abundant litter types were plastic, glass, metal and clinker. Lost or discarded fishing gear was also commonly found. On the Catalan margin, although the data indicated an accumulation of litter with increasing depth, mean weight was not significantly different between depths or between the open slope and the canyon. We propose that litter accumulated in the canyon, with high proportions of plastics, has predominantly a coastal origin, while litter collected on the open slope, dominated by heavy litter, is mostly ship-originated, especially at sites under major shipping routes. Along the trans-Mediterranean transect, although a higher amount of litter seemed to be found on the Western Mediterranean, differences of mean weight were not significant between the 3 geographic areas and the 3 depths. Here, the shallower sites, also closer to the coast, had a higher proportion of plastics than the deeper sites, which had a higher proportion of heavy litter and were often affected by shipping routes. The weight of litter was also compared to biomass of megafauna from the same samples. On the Blanes slope

  12. Enhancement of broiler litter to improve the fertilizer quality of litter

    SciTech Connect

    Ransom, J.M.; Strickland, R.C.

    1992-01-01

    This document presents efforts to utilize poultry litter for feed, fertilizer, and soil amendments. Historical and programmatic efforts by TVA are discussed. Current methods of drying and pelleting the litter, along with more direct methods of composting are reported.

  13. Enhancement of broiler litter to improve the fertilizer quality of litter

    SciTech Connect

    Ransom, J.M.; Strickland, R.C.

    1992-12-01

    This document presents efforts to utilize poultry litter for feed, fertilizer, and soil amendments. Historical and programmatic efforts by TVA are discussed. Current methods of drying and pelleting the litter, along with more direct methods of composting are reported.

  14. Environment temperature affects cell proliferation in the spinal cord and brain of juvenile turtles.

    PubMed

    Radmilovich, Milka; Fernández, Anabel; Trujillo-Cenóz, Omar

    2003-09-01

    The spinal cords and brains--comprising dorsal cortex (DC), medial cortex (MC) and diencephalon (Dien)--of juvenile turtles acclimated to warm temperature [27-30 degrees C; warm-acclimated turtles (WATs)] revealed higher density values of bromodeoxyuridine-labeled cells (BrdU-LCs) than those acclimated to a cooler environment [5-14 degrees C; cold-acclimated turtles (CATs)]. Both populations were under the influence of the seasonal daily light-dark rhythms. Pronounced differences between WATs and CATs (independent t-test; confidence level, P<0.01) were found in the central area of the spinal gray matter and in the ependymal epithelium lining the brain ventricles. Forebrain regions (DC, MC and Dien) also revealed significant differences between WATs and CATs (independent t-test; confidence level, P<0.01-0.05). Unexplored biological clocks that may be affecting cell proliferation were equalized by performing paired experiments involving one WAT and one CAT. Both animals were injected on the same day at the same time and both were sacrificed 24 h later. These experiments confirmed that a warm environment increased cell proliferation in the CNS of turtles. Double- and triple-labeling experiments involving anti-BrdU antibody together with anti-glial protein antibodies revealed that temperature modulates not only cell populations expressing glial markers but also other cells that do not express them. As expected, in the case of short post-injection (BrdU) surviving time points, no cells were found colabeling for BrdU and NeuN (neuronal marker). The probable direct effect of temperature on the cell division rate should be analyzed together with potential indirect effects involving increased motor activity and increased food intake. The fate of the increased BrdU-LCs (death, permanence as progenitor cells or differentiation following neuronal or glial lines) remains a matter for further investigation. Results are discussed in the light of current opinions concerned with

  15. Statistical analyses of the results of 25 years of beach litter surveys on the south-eastern North Sea coast.

    PubMed

    Schulz, Marcus; Clemens, Thomas; Förster, Harald; Harder, Thorsten; Fleet, David; Gaus, Silvia; Grave, Christel; Flegel, Imme; Schrey, Eckart; Hartwig, Eike

    2015-08-01

    In the North Sea, the amount of litter present in the marine environment represents a severe environmental problem. In order to assess the magnitude of the problem and measure changes in abundance, the results of two beach litter monitoring programmes were compared and analysed for long-term trends applying multivariate techniques. Total beach litter pollution was persistently high. Spatial differences in litter abundance made it difficult to identify long-term trends: Partly more than 8000 litter items year(-1) were recorded on a 100 m long survey site on the island of Scharhörn, while the survey site on the beach on the island of Amrum revealed abundances lower by two orders of magnitude. Beach litter was dominated by plastic with mean proportions of 52%-91% of total beach litter. Non-parametric time series analyses detected many significant trends, which, however, did not show any systematic spatial patterns. Cluster analyses partly led to groupings of beaches according to their expositions to sources of litter, wind and currents. Surveys in short intervals of one to two weeks were found to give higher annual sums of beach litter than the quarterly surveys of the OSPAR method. Surveys at regular intervals of four weeks to five months would make monitoring results more reliable. PMID:26026589

  16. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting

    USGS Publications Warehouse

    Garbarino, J.R.; Bednar, A.J.; Rutherford, D.W.; Beyer, R.S.; Wershaw, R. L.

    2003-01-01

    Roxarsone, 3-nitro-4-hydroxyphenylarsonic acid, is an organoarsenic compound that is used extensively in the feed of broiler poultryto control coccidial intestinal parasites, improve feed efficiency, and promote rapid growth. Nearly all the roxarsone in the feed is excreted unchanged in the manure. Poultry litter composed of the manure and bedding material has a high nutrient content and is used routinely as a fertilizer on cropland and pasture. Investigations were conducted to determine the fate of poultrylitter roxarsone in the environment. Experiments indicated that roxarsone was stable in fresh dried litter; the primary arsenic species extracted with water from dried litter was roxarsone. However, when water was added to litter at about 50 wt % and the mixture was allowed to compost at 40 ??C, the speciation of arsenic shifted from roxarsone to primarily arsenate in about 30 days. Increasing the amount of water increased the rate of degradation. Experiments also suggested that the degradation process most likely was biotic in nature. The rate of degradation was directly proportional to the incubation temperature; heat sterilization eliminated the degradation. Biotic degradation also was supported by results from enterobacteriaceae growth media that were inoculated with litter slurry to enhance the biotic processes and to reduce the concomitant abiotic effects from the complex litter solution. Samples collected from a variety of litter windrows in Arkansas, Oklahoma, and Maryland also showed that roxarsone originally present had been converted to arsenate.

  17. Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant-soil feedbacks?

    PubMed

    Mazzoleni, Stefano; Bonanomi, Giuliano; Incerti, Guido; Chiusano, Maria Luisa; Termolino, Pasquale; Mingo, Antonio; Senatore, Mauro; Giannino, Francesco; Cartenì, Fabrizio; Rietkerk, Max; Lanzotti, Virginia

    2015-02-01

    Plant-soil negative feedback (NF) is recognized as an important factor affecting plant communities. The objectives of this work were to assess the effects of litter phytotoxicity and autotoxicity on root proliferation, and to test the hypothesis that DNA is a driver of litter autotoxicity and plant-soil NF. The inhibitory effect of decomposed litter was studied in different bioassays. Litter biochemical changes were evaluated with nuclear magnetic resonance (NMR) spectroscopy. DNA accumulation in litter and soil was measured and DNA toxicity was assessed in laboratory experiments. Undecomposed litter caused nonspecific inhibition of root growth, while autotoxicity was produced by aged litter. The addition of activated carbon (AC) removed phytotoxicity, but was ineffective against autotoxicity. Phytotoxicity was related to known labile allelopathic compounds. Restricted (13) C NMR signals related to nucleic acids were the only ones negatively correlated with root growth on conspecific substrates. DNA accumulation was observed in both litter decomposition and soil history experiments. Extracted total DNA showed evident species-specific toxicity. Results indicate a general occurrence of litter autotoxicity related to the exposure to fragmented self-DNA. The evidence also suggests the involvement of accumulated extracellular DNA in plant-soil NF. Further studies are needed to further investigate this unexpected function of extracellular DNA at the ecosystem level and related cellular and molecular mechanisms. PMID:25354164

  18. Litter quality, decomposition rates and saprotrophic mycoflora in Fallopia japonica (Houtt.) Ronse Decraene and in adjacent native grassland vegetation

    NASA Astrophysics Data System (ADS)

    Mincheva, T.; Barni, E.; Varese, G. C.; Brusa, G.; Cerabolini, B.; Siniscalco, C.

    2014-01-01

    Fallopia japonica succeeds in invading different ecosystems likely because of its huge biomass production. This biomass is characterized by low nutritional quality and low decomposition rates but knowledge on whether these features are correlated to microbial decomposers is still lacking. The aims of this work were: i) to determine litter decomposition rates of native grassland vegetation and F. japonica under different conditions in a year-round experiment; ii) to evaluate litter quality and/or site effect on the decomposition of the invader and native vegetation and iii) to characterize mycoflora isolated from F. japonica and native vegetation litter. The results showed that F. japonica litter decomposes 3-4 times slower than that of native grassland, mainly due to its low N content and consequently high C/N ratio both in leaves and stems. As decomposition proceeds C/N in F. japonica litter decreases to values approaching those of the grassland litter. Site had no effect on the decomposition rates of F. japonica and grassland litter. Total fungal load and composition differed between F. japonica and native litter, and also varied across sites. These results indicate that the successful invasive plant F. japonica affects the structure and functions of the invaded ecosystem through a huge production of low quality, slow-decomposing litter that selects saprotrophic fungi.

  19. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities.

    PubMed

    Amend, Anthony S; Matulich, Kristin L; Martiny, Jennifer B H

    2015-01-01

    Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity (PD). This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between PD and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial PD, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of 66 days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial PD failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which PD predicts ecosystem function will depend on environmental context. PMID:25741330

  20. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities

    PubMed Central

    Amend, Anthony S.; Matulich, Kristin L.; Martiny, Jennifer B. H.

    2015-01-01

    Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity (PD). This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between PD and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial PD, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of 66 days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial PD failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which PD predicts ecosystem function will depend on environmental context. PMID:25741330

  1. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions

    PubMed Central

    Schneider, Thomas; Keiblinger, Katharina M; Schmid, Emanuel; Sterflinger-Gleixner, Katja; Ellersdorfer, Günther; Roschitzki, Bernd; Richter, Andreas; Eberl, Leo; Zechmeister-Boltenstern, Sophie; Riedel, Kathrin

    2012-01-01

    Leaf-litter decomposition is a central process in carbon cycling; however, our knowledge about the microbial regulation of this process is still scarce. Metaproteomics allows us to link the abundance and activity of enzymes during nutrient cycling to their phylogenetic origin based on proteins, the ‘active building blocks' in the system. Moreover, we employed metaproteomics to investigate the influence of environmental factors and nutrients on the decomposer structure and function during beech litter decomposition. Litter was collected at forest sites in Austria with different litter nutrient content. Proteins were analyzed by 1-D-SDS-PAGE followed by liquid-chromatography and tandem mass-spectrometry. Mass spectra were assigned to phylogenetic and functional groups by a newly developed bioinformatics workflow, assignments being validated by complementary approaches. We provide evidence that the litter nutrient content and the stoichiometry of C:N:P affect the decomposer community structure and activity. Fungi were found to be the main producers of extracellular hydrolytic enzymes, with no bacterial hydrolases being detected by our metaproteomics approach. Detailed investigation of microbial succession suggests that it is influenced by litter nutrient content. Microbial activity was stimulated at higher litter nutrient contents via a higher abundance and activity of extracellular enzymes. PMID:22402400

  2. Accuracy of prediction of canine litter size and gestational age with ultrasound.

    PubMed

    Lenard, Z M; Hopper, B J; Lester, N V; Richardson, J L; Robertson, I D

    2007-06-01

    Different sonographic criteria have been developed to estimate canine fetal age, including fetal mensuration and assessment of fetal organ development. This retrospective study assessed the accuracy of gestational age and litter size predictions in 76 bitches using one of two techniques. The first method used the differential features of fetal organ development that occur in early and mid pregnancy, based on published tables for beagles. The second method used biparietal head and trunk diameters to predict gestational age based on tables published for late gestational Labrador Retrievers. The accuracy of the two methods was compared and the effect of maternal body weight and litter size evaluated. Litter size and maternal body weight did not affect the accuracy of gestational age prediction. Using a combination of both methods, the overall accuracy of predicting parturition date within 65 +/- 1 day and +/- 2 days was 70.8% and 86.1%, respectively. The correct litter size was predicted in 65% of cases, and in 89.5% of cases for +/- 1 pup. Pearson's correlation between actual litter size and predicted litter size was high (R = 0.957, P < 0.001). The organ development method of predicting gestational age was more accurate than late gestational fetal mensuration (P = 0.019). The optimum time for sonographic estimation of fetal age and litter size is early and mid pregnancy. PMID:17547634

  3. Storminess and geo-hydrological events affecting small coastal basins in a terraced Mediterranean environment.

    PubMed

    Cevasco, Andrea; Diodato, Nazzareno; Revellino, Paola; Fiorillo, Francesco; Grelle, Gerardo; Guadagno, Francesco M

    2015-11-01

    This study was prompted by the occurrence of an extreme Damaging geo-Hydrological Event (DHE) which occurred on October 25th 2011 and which affected a wide area of the northern Mediterranean region. After analysing the storm by means of the precipitation time series, the study attempts to relate the October 25th 2011 DHE with a series of other DHEs that occurred in the period 1954-2012, assessed via the use of historical data and classified according to severity, with a Storm Erosivity Indicator (Ra). The annual mean of the Ra value (2582 MJ mm ha(-1) h(-1) y(-1)) confirmed that the study area is one of the European regions with the highest rainfall erosivity level. A shift in storminess during 1991-2012 with respect to 1954-1990 was observed. A return period of 1000 years was calculated for the single storm erosivity of October 25th, which contributed to 84% of the total annual storm erosivity of 2011 A quite good agreement was found comparing DHE distribution and severity with Ra anomalies over time. As a matter of fact, most of the low severity DHEs (62.5%) occurred in years in which the Ra was below the average value. Moreover, almost all DHEs (93%) ranging from medium- to very high-severity occurred in years for which the Ra exceeded the average value. With regard to the occurrence of the most severe DHE classes, a threshold of the Ra and a recurrence time of approximately 3300 MJ mm ha(-1) h(-1) y(-1) and 12 years, respectively, were identified. Finally, some evidences suggest that an increasing frequency of DHEs is expected in the forthcoming years. It is argued that understanding these issues is a major priority for future research in order to improve land and urban planning strategies for preserving people and the environment, leading ultimately to an effective risk reduction. PMID:26071962

  4. McDonald's Litter Hunt: A Community Litter Control System for Youth.

    ERIC Educational Resources Information Center

    McNees, M. Patrick; And Others

    1979-01-01

    Describes a community litter control program. Special adhesive stickers were randomly placed on existing litter throughout a community and youth were rewarded with special prizes for participating in the program. Litter was reduced 32 percent across the city. (Author/MA)

  5. Earthworms and legumes control litter decomposition in a plant diversity gradient.

    PubMed

    Milcu, Alexandru; Partsch, Stephan; Scherber, Christoph; Weisser, Wolfgang W; Scheu, Stefan

    2008-07-01

    The role of species and functional group diversity of primary producers for decomposers and decomposition processes is little understood. We made use of the "Jena Biodiversity Experiment" and tested the hypothesis that increasing plant species (1, 4, and 16 species) and functional group diversity (1, 2, 3, and 4 groups) beneficially affects decomposer density and activity and therefore the decomposition of plant litter material. Furthermore, by manipulating the densities of decomposers (earthworms and springtails) within the plant diversity gradient we investigated how the interactions between plant diversity and decomposer densities affect the decomposition of litter belonging to different plant functional groups (grasses, herbs, and legumes). Positive effects of increasing plant species or functional group diversity on earthworms (biomass and density) and microbial biomass were mainly due to the increased incidence of legumes with increasing diversity. Neither plant species diversity nor functional group diversity affected litter decomposition, However, litter decomposition varied with decomposer and plant functional group identity (of both living plants and plant litter). While springtail removal generally had little effect on decomposition, increased earthworm density accelerated the decomposition of nitrogen-rich legume litter, and this was more pronounced at higher plant diversity. The results suggest that earthworms (Lumbricus terrestris L.) and legumes function as keystone organisms for grassland decomposition processes and presumably contribute to the recorded increase in primary productivity with increasing plant diversity. PMID:18705374

  6. Distinct Microbial Limitations in Litter and Underlying Soil Revealed by Carbon and Nutrient Fertilization in a Tropical Rainforest

    PubMed Central

    Fanin, Nicolas; Barantal, Sandra; Fromin, Nathalie; Schimann, Heidy; Schevin, Patrick; Hättenschwiler, Stephan

    2012-01-01

    Human-caused alterations of the carbon and nutrient cycles are expected to impact tropical ecosystems in the near future. Here we evaluated how a combined change in carbon (C), nitrogen (N) and phosphorus (P) availability affects soil and litter microbial respiration and litter decomposition in an undisturbed Amazonian rainforest in French Guiana. In a fully factorial C (as cellulose), N (as urea), and P (as phosphate) fertilization experiment we analyzed a total of 540 litterbag-soil pairs after a 158-day exposure in the field. Rates of substrate-induced respiration (SIR) measured in litter and litter mass loss were similarly affected by fertilization showing the strongest stimulation when N and P were added simultaneously. The stimulating NP effect on litter SIR increased considerably with increasing initial dissolved organic carbon (DOC) concentrations in litter, suggesting that the combined availability of N, P, and a labile C source has a particularly strong effect on microbial activity. Cellulose fertilization, however, did not further stimulate the NP effect. In contrast to litter SIR and litter mass loss, soil SIR was reduced with N fertilization and showed only a positive effect in response to P fertilization that was further enhanced with additional C fertilization. Our data suggest that increased nutrient enrichment in the studied Amazonian rainforest can considerably change microbial activity and litter decomposition, and that these effects differ between the litter layer and the underlying soil. Any resulting change in relative C and nutrient fluxes between the litter layer and the soil can have important consequences for biogeochemical cycles in tropical forest ecosystems. PMID:23272052

  7. Assessment of litter degradation in medicinal plants subjected to ultraviolet-B radiation.

    PubMed

    Agrawal, S B; Kumari, Rima

    2013-07-01

    Litter decomposition is an important component of global carbon budget. Elevated influx of ultraviolet-B radiation (UV-B) as a consequence of depletion of stratospheric ozone (O3) layer may affect litter decomposition directly or/modifying the plant tissue quality. Chemical composition of plant can affect litter decomposition. In the present study, three important medicinal plant species i.e. Acorus calamus, Ocimum sanctum and Cymbopogon citratus were exposed to two levels of supplemental UV-B (sUV and sUV,) during the growth period and examined the changes in leaf quality and degradation of leaf litters. The sUV, treatment (+3.6 kJ m(-2) d(-1)) increased the rate of decomposition by 45% and 31% respectively; in leaf litters from O. sanctum and C. citratus, while no significant effect was noticed in A. calamus leaf litter. Higher accumulation of sclerenchymatous tissue around vascular bundles and increased concentrations of total phenols by 39 mg g(-1) probably lowered the decomposition rate; finding k value: 0.0049 g g(-1) d(-1) in leaf litters of A. calamus. The C/N ratio was increased by 14% at sUV2 in C. citratus, whereas in O. sanctum it decreased by 13.6% after treatment. Results of the present experiment illustrates that firstly UV-B can modify the decomposition rate of leaf litter of test plant species, secondly it can alter the tissue chemistry particularly leaf phenolics, N and P concentrations strongly and thus affecting the decay rate and thirdly UV-B effects on decay rate and leaf chemistry is species specific. PMID:24640251

  8. Response of leaf litter decomposition to rises in atmospheric CO2 and temperature

    NASA Astrophysics Data System (ADS)

    Hammrich, A.; Flury, S.; Gessner, M. O.

    2007-05-01

    Atmospheric concentrations of CO2 have considerably increased in the last century and are expected to rise further. Elevated CO2 concentrations not only increase global temperature but also have potential to change plant litter quality, for example by increasing lignin content, changing C:N ratios and altering tannin contents. These chemical changes may interact with increased temperature to alter litter decomposition. To test whether changes in litter quality and warming affect decomposition, we conducted a field experiment with leaf litter collected from six species of mature deciduous trees exposed to either ambient or elevated CO2 levels. We used a set of 16 enclosures installed in four blocks in a freshwater marsh in a prealpine lake to test for the effects of CO2-mediated litter quality and temperature and the interaction of both factors. We measured leaf mass loss of the twelve litter types in control and heated enclosures (4 °C above ambient) and also in the open marsh. In contrast to expectations, species decomposing at low (oak and beech) and medium (hornbeam and maple) rates showed faster mass loss when leaves were grown under elevated CO2 conditions, whereas fast-decomposing species (cherry and basswood) showed no clear response. The accelerated decomposition of CO2-enriched litter could be due to higher amounts of nonstructural carbohydrates, which may have been either leached or readily degraded. Warming had a surprisingly small influence on mass loss of the tested litter species, and interactive effects were weak. These results suggest that direct and indirect effects of elevated CO2 levels on litter decomposition may not be readily predictable from first principles.

  9. Effects of stoichiometry and temperature perturbations on beech litter decomposition, enzyme activities and protein expression

    NASA Astrophysics Data System (ADS)

    Keiblinger, K. M.; Schneider, T.; Roschitzki, B.; Schmid, E.; Eberl, L.; Hämmerle, I.; Leitner, S.; Richter, A.; Wanek, W.; Riedel, K.; Zechmeister-Boltenstern, S.

    2011-12-01

    Microbes are major players in leaf litter decomposition and therefore advances in the understanding of their control on element cycling are of paramount importance. Our aim was to investigate the influence of leaf litter stoichiometry in terms of carbon (C) : nitrogen (N) : phosphorus (P) on the decomposition process, and to follow changes in microbial community structure and function in response to temperature-stress treatments. To elucidate how the stoichiometry of beech litter (Fagus sylvatica L.) and stress treatments interactively affect the decomposition processes, a terrestrial microcosm experiment was conducted. Beech litter from different Austrian sites covering C:N ratios from 39 to 61 and C:P ratios from 666 to 1729 were incubated at 15 °C and 60% moisture for six months. Part of the microcosms were then subjected to severe changes in temperature (+30 °C and -15 °C) to monitor the influence of temperature stress. Extracellular enzyme activities were assayed and respiratory activities measured. A semi-quantitative metaproteomics approach (1D-SDS PAGE combined with liquid chromatography and tandem mass-spectrometry; unique spectral counting) was employed to investigate the impact of the applied stress treatments in dependency of litter stoichiometry on structure and function of the decomposing community. In litter with narrow C:nutrient ratios microbial decomposers were most abundant. Cellulase, chitinase, phosphatase and protease activity decreased after heat and frost treatments. Decomposer communities and specific functions varied with site i.e. stoichiometry. The applied stress evoked strong changes of enzyme activities, dissolved organic nitrogen and litter pH. Freeze treatments resulted in a decline in residual plant litter material, and increased fungal abundance indicating slightly accelerated decomposition. Overall, we could detect a strong effect of litter stoichiometry on microbial community structure as well as function. Temperature

  10. Biochemical Control of Fungal Biomass and Enzyme Production During Native Hawaiian Litter Degradation

    NASA Astrophysics Data System (ADS)

    Amatangelo, K. L.; Cordova, T. P.; Vitousek, P. M.

    2007-12-01

    Microbial growth and enzyme production during decomposition is controlled by the availability of carbon substrates, essential elements, and the ratios of these (such as lignin:N). We manipulated carbon:nutrient stoichiometry during decomposition using a natural fertility gradient in Hawaii and litter of varying initial biochemistry. We collected freshly senesced litter of seven biochemically distinct species from three sites offering differing levels of N, P, cations, and 15N , but similar yearly rainfall and temperature patterns. Litter types were decomposed at both the sites they were collected, and at the other site(s) that species was found. Litter was collected at multiple time points, and after one year of decomposition, calculated K constants varied an order of magnitude, from 0.276 to 2.76. Decomposition rates varied significantly with both litter site of origin and deployment, except at the oldest, P-limited site, where litter site of origin was not significantly correlated with decomposition within species. As microbial exocellular enzymes provide the catalyst for the breakdown of organic molecules including phenols, cellulose, and cutin, we assayed polyphenol oxidase, cellobiohydrolase, cutinase, chitinase, and lignin peroxidase to evaluate the breakdown sequence of different litter types. To measure the fungal biomass accumulating during decomposition, we extracted (22E)-Ergosta-5,7,22-trien-3beta- ol (ergosterol) on a subset of samples. The production of particular exocellular enzymes on litter species responded distinctly to origin and decomposition sites: after six months, chitinase and cellobiohydrolase were significantly affected by origin site, whereas polyphenol oxidase activity was controlled by deployment site. We conclude that site characteristics can alter the interaction between litter carbon:nutrient ratios and decomposition rate, mediated through microbial biomass and enzyme production.

  11. Consequences of a low litter birth weight phenotype for postnatal lean growth performance and neonatal testicular morphology in the pig.

    PubMed

    Smit, M N; Spencer, J D; Almeida, F R C L; Patterson, J L; Chiarini-Garcia, H; Dyck, M K; Foxcroft, G R

    2013-10-01

    The consequences of a low litter average birth weight phenotype for postnatal growth performance and carcass quality of all progeny, and testicular development in male offspring, were investigated. Using data from 25 sows with one, and 223 sows with two consecutive farrowing events, individual birth weight (BW) was measured and each litter between 9 and 16 total pigs born was classified as low (LBW), medium (MBW) or high (HBW) birth weight: low and high BW being defined as >1 standard deviation below or above, respectively, the population mean for each litter size. Litter average BW was repeatable within sows. At castration, testicular tissue was collected from 40 male pigs in LBW and HBW litters with individual BW close to their litter average BW and used for histomorphometric analysis. LBW piglets had a lower absolute number of germ cells, Sertoli cells and Leydig cells in their testes and a higher brain : testis weight ratio than HBW piglets. Overall, LBW litters had lower placental weight and higher brain : liver, brain : intestine and brain : Semitendinosus muscle weight ratios than MBW and HBW litters. In the nursery and grow-finish (GF) phase, pigs were kept in pens by BW classification (9 HBW, 17 MBW and 10 LBW pens) with 13 males and 13 females per pen. Average daily gain tended to be lower in LBW than HBW litters in lactation (P = 0.06) and throughout the nursery and GF phases (P < 0.01), resulting in an increasing difference in body weight between LBW, MBW and HBW litters (P < 0.05). Average daily feed intake was lower (P < 0.001) in LBW than HBW litters in the nursery and GF phases. Feed utilization efficiency (feed/gain) was similar for LBW and HBW litters in the nursery, but was lower (P < 0.001) in HBW than LBW litters in the GF phase. By design, slaughter weight was similar between BW classifications; however, LBW litters needed 9 more days to reach the same slaughter weight than HBW litters (P < 0.001). BW classification did not affect carcass

  12. FATE OF FENTHION IN SALT-MARSH ENVIRONMENTS: 1. FACTORS AFFECTING BIOTIC AND ABIOTIC DEGRADATION RATES IN WATER AND SEDIMENT

    EPA Science Inventory

    Fenthion (Baytex), an organophosphate insecticide, is frequently applied to salt-marsh environments to control mosquitoes. hake-flask tests were used to study rates of abiotic and biotic degradation of fenthion and the environmental parameters that affect these rates. Water or wa...

  13. Elementary Students' Affective Variables in a Networked Learning Environment Supported by a Blog: A Case Study

    ERIC Educational Resources Information Center

    Allaire, Stéphane; Thériault, Pascale; Gagnon, Vincent; Lalancette, Evelyne

    2013-01-01

    This study documents to what extent writing on a blog in a networked learning environment could influence the affective variables of elementary-school students' writing. The framework is grounded more specifically in theory of self-determination (Deci & Ryan, 1985), relationship to writing (Chartrand & Prince, 2009) and the…

  14. Avoidance of Affect Mediates the Effect of Invalidating Childhood Environments on Borderline Personality Symptomatology in a Non-Clinical Sample

    ERIC Educational Resources Information Center

    Sturrock, Bonnie A.; Francis, Andrew; Carr, Steven

    2009-01-01

    The aim of this study was to test the Linehan (1993) proposal regarding associations between invalidating childhood environments, distress tolerance (e.g., avoidance of affect), and borderline personality disorder (BPD) symptoms. The sample consisted of 141 non-clinical participants (51 men, 89 women, one gender unknown), ranging in age from 18 to…

  15. Leaf Litter Mixtures Alter Microbial Community Development: Mechanisms for Non-Additive Effects in Litter Decomposition

    PubMed Central

    Chapman, Samantha K.; Newman, Gregory S.; Hart, Stephen C.; Schweitzer, Jennifer A.; Koch, George W.

    2013-01-01

    To what extent microbial community composition can explain variability in ecosystem processes remains an open question in ecology. Microbial decomposer communities can change during litter decomposition due to biotic interactions and shifting substrate availability. Though relative abundance of decomposers may change due to mixing leaf litter, linking these shifts to the non-additive patterns often recorded in mixed species litter decomposition rates has been elusive, and links community composition to ecosystem function. We extracted phospholipid fatty acids (PLFAs) from single species and mixed species leaf litterbags after 10 and 27 months of decomposition in a mixed conifer forest. Total PLFA concentrations were 70% higher on litter mixtures than single litter types after 10 months, but were only 20% higher after 27 months. Similarly, fungal-to-bacterial ratios differed between mixed and single litter types after 10 months of decomposition, but equalized over time. Microbial community composition, as indicated by principal components analyses, differed due to both litter mixing and stage of litter decomposition. PLFA biomarkers a15∶0 and cy17∶0, which indicate gram-positive and gram-negative bacteria respectively, in particular drove these shifts. Total PLFA correlated significantly with single litter mass loss early in decomposition but not at later stages. We conclude that litter mixing alters microbial community development, which can contribute to synergisms in litter decomposition. These findings advance our understanding of how changing forest biodiversity can alter microbial communities and the ecosystem processes they mediate. PMID:23658639

  16. The Mediating Role of Affective Commitment in the Relation of the Feedback Environment to Work Outcomes

    ERIC Educational Resources Information Center

    Norris-Watts, Christina; Levy, Paul E.

    2004-01-01

    The Feedback Environment, as opposed to the formal performance appraisal process, is comprised of the daily interactions between members of an organization (Steelman, Levy, & Snell, in press). Relations between the feedback environment and work outcome variables such as Organizational Citizenship Behavior (OCB) were examined through the mediating…

  17. Societal Trends Affecting the Environment of Early Childhood Education. Follow Through Planning Project. Final Report.

    ERIC Educational Resources Information Center

    Katzman, Martin T.; Vandell, Deborah

    This monograph documents the magnitude and likely prognosis of demographic changes in the 1970's and suggests the impact of these trends on the problems of early childhood education. The implications of this changing environment for designing a new Follow Through program are also examined. With respect to the changing demographic environment,…

  18. Establishment of Rabbiteye Blueberries in Poultry Litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter is abundant in the Southeast where there is also a growing blueberry production. Poultry litter has been used for fertilization of other crops such as cotton and grass with increased yields and growth. This study was conducted to determine if rabbiteye blueberries ‘Tifblue’ and ‘Pre...

  19. 33 CFR 144.01-35 - Litter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Litter. 144.01-35 Section 144.01-35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-35 Litter. On each...

  20. Broiler house litter sampling: the final frontier

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Today, the sustainability of broiler operations reaches beyond the need for litter nutrient management plans that came to the forefront of the industry’s attention in the last fifteen years. Thorough characterization of litter within houses provides the basis for emission models to benefit growers,...

  1. Poultry industry trends for litter usage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broiler litter, a combination of primarily organic bedding material and excreta, has been routinely applied for decades as fertilizer. Poultry litter improves soil quality by adding organic material, an advantage over commercial fertilizers. Once a hindrance to be disposed, rising costs of commerc...

  2. Comparing intra- and inter-specific effects on litter decomposition in an old-field ecosystem

    SciTech Connect

    Crutsinger, Greg; Sanders, Dr. Nathan James; Classen, Aimee T

    2009-09-01

    Plant species can differ in the quantity and quality of leaf litter they produce, and many studies have examined whether plant species diversity affects leaf-litter decomposition and nutrient release. A growing number of studies have indicated that intra-specific variation within plant species can also affect key ecosystem processes. However, the relative importance of intra- versus inter-specific variation for the functioning of ecosystems remains poorly known. Here, we investigate the effects of intra-specific variation in a dominant old-field plant species, tall goldenrod (Solidago altissima), and inter-specific variation among goldenrod species on litter quality, decomposition, and nitrogen (N) release. We found that the nutrient concentration of leaf litter varied among genotypes, which translated into 50% difference in decomposition rates. Variation among other goldenrod species in decomposition rate was more than twice that of genetic variation within S. altissima. Furthermore, by manipulating litterbags to contain 1, 3, 6, or 9 genotypes, we found that S. altissima genotype identity had much stronger effects than did genotypic diversity on leaf-litter quality, decomposition, and N release. Taken together, these results suggest that the order of ecological importance for controlling leaf-litter decomposition and N release dynamics is plant species identitygenotype identity>genotypic diversity.

  3. Affective Dimensions of Participatory Design Research in Informal Learning Environments: Placemaking, Belonging, and Correspondence

    ERIC Educational Resources Information Center

    Ehret, Christian; Hollett, Ty

    2016-01-01

    This article argues that current approaches to participatory design research (PDR) risk eliding the affective life of making educational change by locating change in cultural mediation alone. Locating change only in mediation subordinates affect, potentially overlooking lived dimensions of learning and being essential to lasting, transformative…

  4. Poultry litter toxicity comparison from various bioassays

    SciTech Connect

    Gupta, G.; Kelly, P. )

    1992-01-01

    Poultry litter contains many toxic chemicals including Cu, As, Pb, Cd, Hg, Se and PCBs. Poultry litter leachate has been shown to be more toxic to marine luminescent organisms (Photobacterium phosphoreum) than other farm animal manures. A comparison of toxicity of the poultry litter leachate was undertaken using various bioassays. The EC{sub 50} (or LC{sub 50}) value for the leachate with the Microtox and Daphnia bioassays was 2.9 g/L/ Nitrobacter and Pseudomonas bioassays were not useful in determining the leachate toxicity because of the nutritional properties of the litter. Poultry litter leachate was found to be mutagenic to strains TA 97, TA 98, TA 100 and TA 102 using the Ames Test.

  5. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment.

    EPA Science Inventory

    In this study, we investigate the role of simulated sunlight on the physicochemical properties, aggregation, and deposition of graphene oxide (GO) in aquatic environments. Results show that light exposure under varied environmental conditions significantly impacts the physicochem...

  6. Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Liu, L. L.; Sayer, E. J.

    2013-11-01

    Global change has been shown to alter the amount of above-ground litter inputs to soil greatly, which could cause substantial cascading effects on below-ground biogeochemical cycling. Despite extensive study, there is uncertainty about how changes in above-ground litter inputs affect soil carbon and nutrient turnover and transformation. Here, we conducted a meta-analysis on 70 litter-manipulation experiments in order to assess how changes in above-ground litter inputs alter soil physicochemical properties, carbon dynamics and nutrient cycles. Our results demonstrated that litter removal decreased soil respiration by 34%, microbial biomass carbon in the mineral soil by 39% and total carbon in the mineral soil by 10%, whereas litter addition increased them by 31, 26 and 10%, respectively. This suggests that greater litter inputs increase the soil carbon sink despite higher rates of carbon release and transformation. Total nitrogen and extractable inorganic nitrogen in the mineral soil decreased by 17 and 30%, respectively, under litter removal, but were not altered by litter addition. Overall, litter manipulation had a significant impact upon soil temperature and moisture, but not soil pH; litter inputs were more crucial in buffering soil temperature and moisture fluctuations in grassland than in forest. Compared to other ecosystems, tropical and subtropical forests were more sensitive to variation in litter inputs, as altered litter inputs affected the turnover and accumulation of soil carbon and nutrients more substantially over a shorter time period. Our study demonstrates that although the magnitude of responses differed greatly among ecosystems, the direction of the responses was very similar across different ecosystems. Interactions between plant productivity and below-ground biogeochemical cycling need to be taken into account to predict ecosystem responses to environmental change.

  7. Study on Hydrological Functions of Litter Layers in North China

    PubMed Central

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2013-01-01

    Canopy interception, throughfall, stemflow, and runoff have received considerable attention during the study of water balance and hydrological processes in forested ecosystems. Past research has either neglected or underestimated the role of hydrological functions of litter layers, although some studies have considered the impact of various characteristics of rainfall and litter on litter interception. Based on both simulated rainfall and litter conditions in North China, the effect of litter mass, rainfall intensity and litter type on the maximum water storage capacity of litter (S) and litter interception storage capacity (C) were investigated under five simulated rainfall intensities and four litter masses for two litter types. The results indicated: 1) the S values increased linearly with litter mass, and the S values of broadleaf litter were on average 2.65 times larger than the S values of needle leaf litter; 2) rainfall intensity rather than litter mass determined the maximum interception storage capacity (Cmax); Cmax increased linearly with increasing rainfall intensity; by contrast, the minimum interception storage capacity (Cmin) showed a linear relationship with litter mass, but a poor correlation with rainfall intensity; 3) litter type impacted Cmax and Cmin; the values of Cmax and Cmin for broadleaf litter were larger than those of needle leaf litter, which indicated that broadleaf litter could intercepte and store more water than needle leaf litter; 4) a gap existed between Cmax and Cmin, indicating that litter played a significant role by allowing rainwater to infiltrate or to produce runoff rather than intercepting it and allowing it to evaporate after the rainfall event; 5) Cmin was always less than S at the same litter mass, which should be considered in future interception predictions. Vegetation and precipitation characteristics played important roles in hydrological characteristics. PMID:23936188

  8. Genotype-environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes.

    PubMed

    El-Soda, Mohamed; Boer, Martin P; Bagheri, Hedayat; Hanhart, Corrie J; Koornneef, Maarten; Aarts, Mark G M

    2014-02-01

    Plant growth and productivity are greatly affected by drought, which is likely to become more threatening with the predicted global temperature increase. Understanding the genetic architecture of complex quantitative traits and their interaction with water availability may lead to improved crop adaptation to a wide range of environments. Here, the genetic basis of 20 physiological and morphological traits is explored by describing plant performance and growth in a Brassica rapa recombinant inbred line (RIL) population grown on a sandy substrate supplemented with nutrient solution, under control and drought conditions. Altogether, 54 quantitative trait loci (QTL) were identified, of which many colocated in 11 QTL clusters. Seventeen QTL showed significant QTL-environment interaction (Q×E), indicating genetic variation for phenotypic plasticity. Of the measured traits, only hypocotyl length did not show significant genotype-environment interaction (G×E) in both environments in all experiments. Correlation analysis showed that, in the control environment, stomatal conductance was positively correlated with total leaf dry weight (DW) and aboveground DW, whereas in the drought environment, stomatal conductance showed a significant negative correlation with total leaf DW and aboveground DW. This correlation was explained by antagonistic fitness effects in the drought environment, controlled by a QTL cluster on chromosome A7. These results demonstrate that Q×E is an important component of the genetic variance and can play a great role in improving drought tolerance in future breeding programmes. PMID:24474811

  9. Effects of Nitrogen Addition on Litter Decomposition and CO2 Release: Considering Changes in Litter Quantity

    PubMed Central

    Li, Hui-Chao; Hu, Ya-Lin; Mao, Rong; Zhao, Qiong; Zeng, De-Hui

    2015-01-01

    This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 days. We found that increased litter input strongly stimulated litter decomposition rate and CO2 release in both control and N fertilization microcosms, though reduced soil microbial biomass C (MBC) and dissolved inorganic N (DIN) concentration. Carbon input (C loss from litter decomposition) and carbon output (the cumulative C loss due to respiration) elevated with increasing litter input in both control and N fertilization microcosms. However, soil C loss potentials (C output–C input) reduced by 62% in control microcosms and 111% in N fertilization microcosms when litter addition increased from 1 g to 4 g, respectively. Our results indicated that increased litter input had a potential to suppress soil organic C loss especially for N addition plots. PMID:26657180

  10. Influence of early pregnancy on reproductive rate in lines of mice selected for litter size.

    PubMed

    Eisen, E J

    1980-09-01

    The influence of male-induced early puberty on female reproductive rate was determined in three lines of mice differing in litter size and body weight. The lines originated from a single base population and had undergone 20 generations of selection for the following criteria: large litter size at birth (L(+)), large litter size and small 6-week body weight (L(+)W(-)), or small litter size and large 6-week body weight (L(-)W(+)). Females were paired with a mature intact male of the same line at 3, 5 or 7 weeks of age. Mean mating age, averaged over lines, was 26.5 ± .3, 38.3 ± .3 and 52.7 ± .3 days. Exposure to a mature male accelerated female sexual maturation in each line. When contrasted with their sibs mated at a later age, early-pregnant females from each line exhibited a decline in one or more component of reproductive performance, suggesting that the physiological state of the very young female was not optimum for normal pregnancy. In comparisons of early and later mating ages, all three lines showed a decreased littering rate at first mating, number born alive, and individual birth weight of progeny adjusted for litter size; L(+) and L(+)W(-) mice showed an increased perinatal mortality rate; L(+) and L(-)W(+) had a reduction in litter size at birth. When the L(+), L(+)W(-) and L(-)W(+) lines were compared with an unselected strain and a line selected for high postweaning gain in similar experiments, a genotype by environment interaction was apparent since all lines did not respond in a similar manner to early mating. The line ranking for litter size at birth for each age at male-exposure was L(+)>L(+)W(-)>L(-)W(+), despite the significant line by age interaction. When litter size was adjusted by covariance for body weight at mating, the significant effects of age at male-exposure and line by age interaction were eliminated. All fertile females were remated after they had weaned their first litter to obtain information on litter size in parity two. Line

  11. Experimental study of terrestrial plant litter interaction with aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fraysse, F.; Pokrovsky, O. S.; Meunier, J.-D.

    2010-01-01

    Quantification of silicon and calcium recycling by plants is hampered by the lack of physico-chemical data on reactivity of plant litter in soil environments. We applied a laboratory experimental approach for determining the silica and calcium release rates from litter of typical temperate and boreal plants: pine ( Pinus laricio), birch ( Betula pubescens), larch ( Larix gmelinii), elm ( Ulmus laevis Pall.), tree fern ( Dicksonia squarrosa), and horsetail (Equisetum arvense) in 0.01 M NaCl solutions, pH of 2-10 and temperature equals to 5, 25 and 40 °C. Open system, mixed-flow reactors equipped with dialysis compartment and batch reactors were used. Comparative measurements were performed on intact larch needles and samples grounded during different time, sterilized or not and with addition or not of sodium azide in order to account for the effect of surface to mass ratio and possible microbiological activity on the litter dissolution rates. Litter degradation results suggest that the silica release rate is independent on dissolved organic carbon release (cell breakdown) which implies the presence of phytoliths in a pure "inorganic" pool not complexed with organic matter. Calcium and DOC are released at the very first stage of litter dissolution while Si concentration increases gradually suggesting the presence of Ca and Si in two different pools. The dry-weight normalized dissolution rate at circum-neutral pH range (approx. 1-10 μmol/g DW/day) is 2 orders of magnitude higher than the rates of Si release from common soil minerals (kaolinite, smectite, illite). Minimal Ca release rates evaluated from batch and mixed-flow reactors are comparable with those of most reactive soil minerals such as calcite and apatite, and several orders of magnitude higher than the dissolution rates of major rock-forming silicates (feldspars, pyroxenes). The activation energy for Si liberation from plant litter is approx. 50 kJ/mol which is comparable with that of surface

  12. Maternal investment, sibling competition, and offspring survival with increasing litter size and parity in pigs (Sus scrofa).

    PubMed

    Andersen, Inger Lise; Nævdal, Eric; Bøe, Knut Egil

    2011-06-01

    The aim of this study was to examine the effects of litter size and parity on sibling competition, piglet survival, and weight gain. It was predicted that competition for teats would increase with increasing litter size, resulting in a higher mortality due to maternal infanticide (i.e., crushing) and starvation, thus keeping the number of surviving piglets constant. We predicted negative effects on weight gain with increasing litter size. Based on maternal investment theory, we also predicted that piglet mortality would be higher for litters born late in a sow's life and thus that the number of surviving piglets would be higher in early litters. As predicted, piglet mortality increased with increasing litter size both due to an increased proportion of crushed piglets, where most of them failed in the teat competition, and due to starvation caused by increased sibling competition, resulting in a constant number of survivors. Piglet weight at day 1 and growth until weaning also declined with increasing litter size. Sows in parity four had higher piglet mortality due to starvation, but the number of surviving piglets was not affected by parity. In conclusion, piglet mortality caused by maternal crushing of piglets, many of which had no teat success, and starvation caused by sibling competition, increased with increasing litter size for most sow parities. The constant number of surviving piglets at the time of weaning suggests that 10 to 11 piglets could be close to the upper limit that the domestic sow is capable of taking care of. PMID:21743767

  13. Effects of Chicken Litter Storage Time and Ammonia Content on Thermal Resistance of Desiccation-Adapted Salmonella spp.

    PubMed Central

    Chen, Zhao; Wang, Hongye; Ionita, Claudia; Luo, Feng

    2015-01-01

    Broiler chicken litter was kept as a stacked heap on a poultry farm, and samples were collected up to 9 months of storage. Chicken litter inoculated with desiccation-adapted Salmonella cells was heat-treated at 75, 80, 85, and 150°C. Salmonella populations decreased in all these samples during heat treatment, and the inactivation rates became lower in chicken litter when storage time was extended from 0 to 6 months. There was no significant difference (P > 0.05) in thermal resistance of Salmonella in 6- and 9-month litter samples, indicating that a threshold for thermal resistance was reached after 6 months. Overall, the thermal resistance of Salmonella in chicken litter was affected by the storage time of the litter. The changes in some chemical, physical, and microbiological properties during storage could possibly contribute to this difference. Moisture and ammonia could be two of the most significant factors influencing the thermal resistance of Salmonella cells in chicken litter. Our results emphasize the importance of adjusting time and temperature conditions for heat processing chicken litter when it is removed from the chicken house at different time intervals. PMID:26209673

  14. Treatment of broiler litter with organic acids.

    PubMed

    Ivanov, I E

    2001-04-01

    Experiments for treatment of contaminated broiler litter with citric, tartaric and salicylic acids were performed. At days 2 and 6 after the treatment, pH values (using a pH-meter), the ammonia concentrations (titration with 0.1 N HCl) and the microbial cells counts were determined in both experimental and control specimens of litter. The cost of acidification of litter was also determined. Our studies showed that the treatment of the contaminated litter with 5 per cent citric acid, 4 per cent tartaric acid and 1.5 per cent salicylic acid created an acid medium with pH under 5.0 and thus reduced the microbial counts to 2.2 x 10(3)colony forming units per gram manure litter. The treatment reduced the content of ammonia in the litter and in the air under the hygienic limits, i.e. 25-50 ppm. The cost of acidification of litter with these organic acids amounted to 0.1 $ per bird and 1.5 $ per 15 birds on one square metre in a growth period of 50 days. PMID:11356097

  15. Antibiotic resistance of bacterial litter isolates.

    PubMed

    Kelley, T R; Pancorbo, O C; Merka, W C; Barnhart, H M

    1998-02-01

    Use of antibiotics in subtherapeutic doses as growth-promoting feed additives for animal production is widespread in the U.S. and throughout the world. Previous studies by our research group concluded that size fractionation of poultry (broiler) litter followed by storage facilitated reutilization of litter as a soil amendment or bedding supplement. However, litter microbial contamination, including antibiotic-resistant populations, and accumulation of metals and other elements may limit litter reutilization. Litter from four broiler houses was separated into a fine fraction for use as a soil amendment, and a coarse fraction for reutilization as a bedding supplement in growing subsequent flocks of broilers. Fractions and whole litter were stored in indoor piles simulating farm storage conditions for 4 mo with periodic analysis for metals, other elements, and culturable bacteria (including total and fecal coliform, Aeromonas hydrophila, Pseudomonas aeruginosa, Yersinia enterocolitica, and Campylobacter jejuni). Representative bacterial isolates were tested for their sensitivity to 12 common antibiotics (ampicillin, bacitracin, cephalothin, erythromycin, gentamicin, kanamycin, nalidixic acid, neomycin, penicillin, streptomycin, sulfisoxazole, and tetracycline) using the Kirby-Bauer technique. Pathogens and indicator bacteria tested were found to be resistant to multiple antibiotics. Data suggest that microbial contamination of litter should be reduced or eliminated prior to reutilization to minimize environmental health risks related to transfer of antibiotic-resistant bacteria to humans or other animals. PMID:9495488

  16. Production and decomposition of forest litter fall on the Apalachicola River flood plain, Florida

    USGS Publications Warehouse

    Elder, J.F.; Cairns, D.J.

    1982-01-01

    Measurements of litter fall (leaves and other particulate organic material) and leaf decomposition were made on the Apalachicola River flood plain in 1979-80. Litter fall was collected monthly in five different forest types in swamp and levee areas. Leaves from 42 species of trees and other plants accounted for 58 percent of total litter fall. The remaining 42 percent was nonleaf material. Average litter fall was 800 grams per square meter per year in the flood plain. Tupelo (Nyssa), baldcypress (Taxodium), and ash (Fraxinus), all swamp-adapted trees, produce over 50 percent of the leaf fall. Common levee species such as sweetgum (Liquidambar styraciflua) and diamond-leaf oak (Quercus laurifolia) are also major contributors to total flood-plain litter fall. Annual flooding of the river provides an important mechanism for mobilization of the litter-fall products. Leaf decomposition rates were greatly reduced in dry environments. Carbon loss was nearly linear over a 6-month period, but nitrogen and phosphorus loss was exponential and nearly complete within 1 month. (USGS)

  17. Does solar radiation affect the growth of tomato seeds relative to their environment?

    SciTech Connect

    Holzer, K.

    1995-09-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as the authors plans to note growth in artificial verses natural environment as the basic experiment.

  18. Does solar radiation affect the growth of tomato seeds relative to their environment?

    NASA Technical Reports Server (NTRS)

    Holzer, Kristi

    1995-01-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as I plan to note growth in artificial verses natural environment as the basic experiment.

  19. FACTORS AFFECTING COLORED DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    The sunlight-absorbing (colored) component of dissolved organic matter (CDOM) in aquatic environments is widely distributed in freshwaters and coastal regions where it influences the fate and transport of toxic organic substances and biologically-important metals such as mercury,...

  20. Time flies: time of day and social environment affect cuticular hydrocarbon sexual displays in Drosophila serrata

    PubMed Central

    Gershman, Susan N.; Toumishey, Ethan; Rundle, Howard D.

    2014-01-01

    Recent work on Drosophila cuticular hydrocarbons (CHCs) challenges a historical assumption that CHCs in flies are largely invariant. Here, we examine the effect of time of day and social environment on a suite of sexually selected CHCs in Drosophila serrata. We demonstrate that males become more attractive to females during the time of day that flies are most active and when most matings occur, but females become less attractive to males during the same time of day. These opposing temporal changes may reflect differences in selection among the sexes. To evaluate the effect of social environment on male CHC attractiveness, we manipulated male opportunity for mating: male flies were housed either alone, with five females, with five males or with five males and five females. We found that males had the most attractive CHCs when with females, and less attractive CHCs when with competitor males. Social environment mediated how male CHC attractiveness cycled: males housed with females and/or other males showed temporal changes in CHC attractiveness, whereas males housed alone did not. In total, our results demonstrate temporal patterning of male CHCs that is dependent on social environment, and suggest that such changes may be beneficial to males. PMID:25143030

  1. Does the restoration of an inner-city stream in Seoul affect local thermal environment?

    NASA Astrophysics Data System (ADS)

    Kim, Y.-H.; Ryoo, S.-B.; Baik, J.-J.; Park, I.-S.; Koo, H.-J.; Nam, J.-C.

    2008-05-01

    Changes in local thermal environment associated with the restoration of an inner-city stream in Seoul, Korea, are investigated using observational data. The stream, called the Cheonggye stream, which had been hidden and covered with cement/asphalt for 46 years, runs 5.8 km eastward through a central region of Seoul. Intensive observations were made in the stream area for a number of summertime periods before, during, and after the stream restoration to detect the effects of the stream on local environment and to quantify them. It is estimated that after the stream restoration the near-surface temperature averaged over the stream area dropped by 0.4 °C, with the largest local temperature drop being 0.9 °C. However, it cannot be stated that this 0.4 °C temperature drop is due entirely to the stream effect only, because synoptic-scale and local-scale weather conditions during the two periods were inevitably not identical. The stream effect on air temperature is also evident in the temperature distribution along a street traversing the stream. In the daytime after the stream restoration, the sensible heat flux was greatly reduced and the ratio of sensible heat flux to net radiative flux dramatically decreased. These first-time results of the restored-stream effects on urban thermal environment could contribute to the scientific basis of urban planning which aims to make a large city comfortable to live in and nature- and environment-friendly.

  2. Time flies: Time of day and social environment affect cuticular hydrocarbon sexual displays in Drosophila serrata.

    PubMed

    Gershman, Susan N; Toumishey, Ethan; Rundle, Howard D

    2014-10-01

    Recent work on Drosophila cuticular hydrocarbons (CHCs) challenges a historical assumption that CHCs in flies are largely invariant. Here, we examine the effect of time of day and social environment on a suite of sexually selected CHCs in Drosophila serrata. We demonstrate that males become more attractive to females during the time of day that flies are most active and when most matings occur, but females become less attractive to males during the same time of day. These opposing temporal changes may reflect differences in selection among the sexes. To evaluate the effect of social environment on male CHC attractiveness, we manipulated male opportunity for mating: male flies were housed either alone, with five females, with five males or with five males and five females. We found that males had the most attractive CHCs when with females, and less attractive CHCs when with competitor males. Social environment mediated how male CHC attractiveness cycled: males housed with females and/or other males showed temporal changes in CHC attractiveness, whereas males housed alone did not. In total, our results demonstrate temporal patterning of male CHCs that is dependent on social environment, and suggest that such changes may be beneficial to males. PMID:25143030

  3. Low-radiation environment affects the development of protection mechanisms in V79 cells.

    PubMed

    Fratini, E; Carbone, C; Capece, D; Esposito, G; Simone, G; Tabocchini, M A; Tomasi, M; Belli, M; Satta, L

    2015-05-01

    Very little is known about the influence of environmental radiation on living matter. In principle, important information can be acquired by analysing possible differences between parallel biological systems, one in a reference-radiation environment (RRE) and the other in a low-radiation environment (LRE). We took advantage of the unique opportunity represented by the cell culture facilities at the Gran Sasso National Laboratories of the Istituto Nazionale di Fisica Nucleare, where environment dose rate reduction factors in the underground (LRE), with respect to the external laboratory (RRE), are as follows: 10(3) for neutrons, 10(7) for directly ionizing cosmic rays and 10 for total γ-rays. Chinese hamster V79 cells were cultured for 10 months in both RRE and LRE. At the end of this period, all the cultures were kept in RRE for another 6 months. Changes in the activities of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX) and spontaneous mutation frequency at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus were investigated. The results obtained suggest that environmental radiation might act as a trigger of defence mechanisms in V79 cells, specifically those in reference conditions, showing a higher degree of defence against endogenous damage as compared to cells grown in a very low-radiation environment. Our findings corroborate the hypothesis that environmental radiation contributes to the development of defence mechanisms in today living organisms/systems. PMID:25636513

  4. How Gene-Environment Interaction Affects Children's Anxious and Fearful Behavior. Science Briefs

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2007

    2007-01-01

    "Science Briefs" summarize the findings and implications of a recent study in basic science or clinical research. This brief reports on the study "Evidence for a Gene-Environment Interaction in Predicting Behavioral Inhibition in Middle Childhood" (N. A. Fox, K E. Nichols, H. A. Henderson, K. Rubin, L. Schmidt, D. Hamer, M. Ernst, and D. S.…

  5. Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry.

    PubMed

    Ott, David; Rall, Björn C; Brose, Ulrich

    2012-11-01

    Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C : nutrient ratios) induced by higher atmospheric CO(2) concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator-prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates. PMID:23007091

  6. Work environment factors affecting quality work in Swedish oral and maxillofacial surgery.

    PubMed

    Pilgård, Göran; Söderfeldt, Björn; Hjalmers, Karin; Rosenquist, Jan

    2008-01-01

    The aim of this study was to investigate how work environment influenced attitudes to and knowledge of quality among employees of Oral and Maxillofacial Surgery (OMFS) clinics in Sweden. Data were collected with a questionnaire of 67 questions, related to quality management at the clinic, working situation, content of "good work", physical environment and health. 22 clinics with 297 employees responded, 65% of the clinics and 86% of the employees. A multiple regression analysis with the dependent variable "Attitude towards quality work" showed that only "work environment" (p = 0.010) revealed a significant association (p < 0.05). The personnel will have a more favourable attitude to quality work if they regard work environment to be important. Dental nurses and assistant nurses had more than four times more knowledge of the used quality management system than had the maxillo-facial surgeons. Women had nearly four times more knowledge of quality management than men. Clinic size was important, with better knowledge of quality management in bigger clinics. Soft demands were defined as demands for "flexibility, creativity, quality, service, engagement/commitment and ability to work together, and competence". Hard demands included economy as important, and emphasis on efficiency and productivity. There was a weak association with knowledge of quality management systems if soft demands increased, but negative if hard demands increased. In conclusion, mainly work environment was of significance for the attitude towards quality work among the employees of OMFS clinics in Sweden. Profession, gender, clinic size, and the hard demands were significantly associated with knowledge of the quality management system used. PMID:18973085

  7. An implement for subsurface band application of poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broiler litter is commonly used as a fertilizer on pastures and cropland. Poultry litter is typically land-applied by broadcasting the litter on the soil surface. Rain falling on soil to which poultry litter has been applied, may carry phosphorus (P) and nitrogen (N) nutrients from the soil into s...

  8. Potassium and magnesium nutrition of cotton fertilized with broiler litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter has been shown to be an effective cotton fertilizer and is usually applied as a source of N. Litter contains substantial amounts of K also, but whether the K need of cotton can be met by the commonly recommended litter rate has not been investigated or documented. Litter also contai...

  9. The Litter Problem. Environmental Education Supplementary Instructional Guide, Secondary Level.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    Presented is a guide for helping secondary school students investigate the litter problem, acquire litter control skills, and develop an anti-litter ethic. The manual contains a hierarchy of learning objectives, a pretest/posttest, background information on litter, and activities keyed to the learning objectives. Each lesson includes brief…

  10. The Litter Problem. Environmental Education Supplementary Instructional Guide, Elementary Level.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    Presented is a guide for helping elementary school students become aware of the litter problem, acquire litter control skills, and develop an anti-litter ethic. The manual contains a hierarchy of learning objectives, a pretest/posttest instrument, background information on litter, and 12 lessons designed to promote attainment of the learning…

  11. The Role of Affective and Motivational Factors in Designing Personalized Learning Environments

    ERIC Educational Resources Information Center

    Kim, ChanMin

    2012-01-01

    In this paper, guidelines for designing virtual change agents (VCAs) are proposed to support students' affective and motivational needs in order to promote personalized learning in online remedial mathematics courses. Automated, dynamic, and personalized support is emphasized in the guidelines through maximizing "interactions" between VCAs and…

  12. Affective e-Learning: Using "Emotional" Data to Improve Learning in Pervasive Learning Environment

    ERIC Educational Resources Information Center

    Shen, Liping; Wang, Minjuan; Shen, Ruimin

    2009-01-01

    Using emotion detection technologies from biophysical signals, this study explored how emotion evolves during learning process and how emotion feedback could be used to improve learning experiences. This article also described a cutting-edge pervasive e-Learning platform used in a Shanghai online college and proposed an affective e-Learning model,…

  13. Weathering the Preschool Environment: Affect Moderates the Relations between Meteorology and Preschool Behaviors

    ERIC Educational Resources Information Center

    Lagace-Seguin, Daniel G.; d'Entremont, Marc-Robert L.

    2005-01-01

    The goal of this study was to examine the relations among various meteorological conditions, affective states and behavior in young children. Results from past research have revealed many weather effects on behavior and emotions with adult samples. However, there is a paucity of empirical evidence to support this link with children. Thirty-three…

  14. Affective Learning Outcomes in Workplace Training: A Test of Synchronous vs. Asynchronous Online Learning Environments

    ERIC Educational Resources Information Center

    Cleveland-Innes, Martha; Ally, Mohamed

    2004-01-01

    Research employing an experimental design pilot-tested two delivery platforms, WebCT™ and vClass™, for the generation of affective learning outcomes in the workplace. Using a sample of volunteer participants in the help-desk industry, participants were randomly assigned to one of the two types of delivery software. Thirty-eight subjects…

  15. Effects of Modality and Pace on Achievement, Mental Effort, and Positive Affect in Multimedia Learning Environments

    ERIC Educational Resources Information Center

    Izmirli, Serkan; Kurt, Adile Askim

    2016-01-01

    The purpose of the study was to examine the effects of instruction given with different multimedia modalities (written text + animation or narration + animation) on the academic achievement, cognitive load, and positive affect in different paces (learner-paced or system-paced); 97 freshmen university students divided into four groups taught in…

  16. The Fear Factor: How It Affects Students Learning to Program in a Tertiary Environment

    ERIC Educational Resources Information Center

    Rogerson, Christine; Scott, Elsje

    2010-01-01

    This paper examines how students' experiences of learning to program are affected by feelings of fear, using a phenomenological approach to elicit rich descriptions of personal experiences from the narratives of final year undergraduate students. In the course of reviewing current work concerning learning or teaching programming, certain focal…

  17. Contribution of lone-pairs to birefringence affected by the Pb(II) coordination environment: a DFT investigation.

    PubMed

    Jing, Qun; Yang, Zhihua; Pan, Shilie; Xue, Dongfeng

    2015-09-14

    Pb(II) cations have long been associated with lone-pairs which can help to enhance the optical anisotropic birefringence. In this paper, the contribution of lead cations to birefringence has been investigated using first-principles and real-space atom-cutting methods. The results show that the contribution of lead cations to birefringence is determined by the degree of stereochemical activity, which is affected by the coordination environment of lead cations. PMID:26234398

  18. Leaf litter resource quality induces morphological changes in wood frog (Lithobates sylvaticus) metamorphs.

    PubMed

    Stoler, Aaron B; Stephens, Jeffrey P; Relyea, Rick A; Berven, Keith A; Tiegs, Scott D

    2015-11-01

    For organisms that exhibit complex life cycles, resource conditions experienced by individuals before metamorphosis can strongly affect phenotypes later in life. Such resource-induced effects are known to arise from variation in resource quantity, yet little is known regarding effects stemming from variation in resource quality (e.g., chemistry). For larval anurans, we hypothesized that variation in resource quality will induce a gradient of effects on metamorph morphology. We conducted an outdoor mesocosm experiment in which we manipulated resource quality by rearing larval wood frogs (Lithobates sylvaticus) under 11 leaf litter treatments. The litter species represented plant species found in open- and closed-canopy wetlands and included many plant species of current conservation concern (e.g., green ash, common reed). Consistent with our hypothesis, we found a gradient of responses for nearly all mass-adjusted morphological dimensions. Hindlimb dimensions and gut mass were positively associated with litter nutrient content and decomposition rate. In contrast, forelimb length and head width were positively associated with concentrations of phenolic acids and dissolved organic carbon. Limb lengths and widths were positively related with the duration of larval period, and we discuss possible hormonal mechanisms underlying this relationship. There were very few, broad differences in morphological traits of metamorphs between open- and closed-canopy litter species or between litter and no-litter treatments. This suggests that the effects of litter on metamorph morphology are litter species-specific, indicating that the effects of changing plant community structure in and around wetlands will largely depend on plant species composition. PMID:26188520

  19. Factors Controlling Decomposition Rates of Fine Root Litter in Temperate Forests and Grasslands

    NASA Astrophysics Data System (ADS)

    Solly, E.; Schöning, I.; Trumbore, S.; Michalzik, B.; Schrumpf, M.

    2013-12-01

    Fine root decomposition contributes significantly to biogeochemical cycling in terrestrial ecosystems. Recent studies suggest that root litter is stabilized preferentially compared to shoot litter, contributing in high amounts to soil organic matter. Land use and management may affect root litter decomposition through changes in plant species composition, effects on the decomposer community and differences in soil nutrient availability. We established a large scale root litter decomposition study in three German study regions using a combination of litterbags deployed in forest and grassland sites under different management and soil types. In all three study regions, we compared site-level differences in decomposition by deploying bags containing standardized forest litter in a total of 150 forest plots (50 in each of the three study regions). Bags with standardized grass litter, which had lower lignin content and lignin:N than standardized forest root litter, were similarly distributed across 50 grassland sites in each of the three regions. Standardized fine grass roots decomposed on average faster 23.5 × 6.3% compared to forest roots 11.7 × 4.4% (p < 0.001) when deployed in their respective land use. Fine root decomposition of standardized litter was affected by study region with higher mass losses in northern Germany followed by mass loss rates in central and southern Germany (p < 0.05). Given the standardized litter chemistry, these differences mainly reflect the influence of climate and soil differences between study regions. Within the central German region (Hainich-Dün), we also compared rates of mass loss of root litter collected on-site as part of a second, parallel litterbag deployment to tease apart the influences of litter quality from other factors (such as soil properties and climate) that affect mass loss rates. Despite differences in the initial fine root litter quality, the average mass lost during 12 months for on-site litter was similar to

  20. Enhanced solid waste management by understanding the effects of gender, income, marital status, and religious convictions on attitudes and practices related to street littering in Nablus - Palestinian territory

    SciTech Connect

    Al-Khatib, Issam A.; Arafat, Hassan A. Daoud, Raeda; Shwahneh, Hadeel

    2009-01-15

    Litter is recognized as a form of street pollution and a key issue for solid waste managers. Nablus district (West Bank, Palestinian Territory), which has an established network of urban and rural roads, suffers from a wide-spread litter problem that is associated with these roads and is growing steadily with a well-felt negative impact on public health and the environment. The purpose of this research was to study the effects of four socio-economic characteristics (gender, income, marital status, and religious convictions) of district residents on their attitudes, practices, and behavior regarding street litter generation and to suggest possible remedial actions. All four characteristics were found to have strong correlations, not only with littering behavior and practices, but also with potential litter prevention strategies. In particular, the impact of religious convictions of the respondents on their littering habits and attitudes was very clear and interesting to observe.

  1. Enhanced solid waste management by understanding the effects of gender, income, marital status, and religious convictions on attitudes and practices related to street littering in Nablus - Palestinian territory.

    PubMed

    Al-Khatib, Issam A; Arafat, Hassan A; Daoud, Raeda; Shwahneh, Hadeel

    2009-01-01

    Litter is recognized as a form of street pollution and a key issue for solid waste managers. Nablus district (West Bank, Palestinian Territory), which has an established network of urban and rural roads, suffers from a wide-spread litter problem that is associated with these roads and is growing steadily with a well-felt negative impact on public health and the environment. The purpose of this research was to study the effects of four socio-economic characteristics (gender, income, marital status, and religious convictions) of district residents on their attitudes, practices, and behavior regarding street litter generation and to suggest possible remedial actions. All four characteristics were found to have strong correlations, not only with littering behavior and practices, but also with potential litter prevention strategies. In particular, the impact of religious convictions of the respondents on their littering habits and attitudes was very clear and interesting to observe. PMID:18397822

  2. High-frequency fire alters C : N : P stoichiometry in forest litter.

    PubMed

    Toberman, Hannah; Chen, Chengrong; Lewis, Tom; Elser, James J

    2014-07-01

    Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every 2 years (2yrB), burning every 4 years (4 yrB) and no burning (NB). C : N ratios in freshly fallen litter were 29-42% higher and C : P ratios were 6-25% lower for 2 yrB than NB during decomposition, with correspondingly lower 2yrB N : P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N : P ratios were similar to the overall litter N : P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2 yrB than NB, whereas 4 yrB was generally intermediate between 2 yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2 yrB (72 ± 2% mass remaining at the end of experiment) than for 4 yrB (59 ± 3%) and NB (62 ± 3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2 yrB) decoupled N and P cycling, as manifested in litter C : N : P stoichiometry and in microbial biomass N : P ratio and enzymatic activities. Furthermore, these data indicate that fire induced a transient shift to N-limited ecosystem conditions

  3. Changes in a middle school food environment affect food behavior and food choices.

    PubMed

    Wordell, Doug; Daratha, Kenn; Mandal, Bidisha; Bindler, Ruth; Butkus, Sue Nicholson

    2012-01-01

    Increasing rates of obesity among children ages 12 to 19 years have led to recommendations to alter the school food environment. The purpose of this study was to determine whether there are associations between an altered school food environment and food choices of middle school students both in and outside of school. In a midsized western city, two of six middle schools allowed only bottled water in vending machines, only milk and fruit on à la carte menus, and offered a seasonal fruit and vegetable bar. Three years after the intervention was initiated, seventh- and eighth-grade students attending the two intervention schools and four control middle schools were surveyed about their food choices. A total of 2,292 surveys were completed. Self-reported frequency of consumption for nine food groups in the survey was low; consumption was higher outside than in school. Boys consumed more milk than girls although girls consumed more fruits and vegetables. Significant socioeconomic differences existed. Compared with students who paid the full lunch fee, students qualifying for free and reduced-price meals consumed more milk and juice in schools but less outside school; more candy and energy drinks in school; and more sweet drinks, candy, pastries, and energy drinks outside school. Students in intervention schools were 24% more likely to consume milk outside school, 27% less likely to consume juice in school, and 56% less likely to consume sweet pastries in school. There were no differences in fruit and vegetable consumption reported by children in control and intervention schools. Overall, there was a positive association between a modified school food environment and student food behavior in and outside school. Policies related to the school food environment are an important strategy to address the obesity epidemic in our country. PMID:22709644

  4. Species sorting and patch dynamics in harlequin metacommunities affect the relative importance of environment and space.

    PubMed

    Leibold, Mathew A; Loeuille, Nicolas

    2015-12-01

    Metacommunity theory indicates that variation in local community structure can be partitioned into components including those related to local environmental conditions vs. spatial effects and that these can be quantified using statistical methods based on variation partitioning. It has been hypothesized that joint associations of community composition with environment and space could be due to patch dynamics involving colonization-extinction processes in environmentally heterogeneous landscapes but this has yet to be theoretically shown. We develop a two-patch, type-two, species competition model in such a "harlequin" landscape (where different patches have different environments) to evaluate how composition is related to environmental and spatial effects as a function of background extinction rate. Using spatially implicit analytical models, we find that the environmental association of community composition declines with extinction rate as expected. Using spatially explicit simulation models, we further find that there is an increase in the spatial structure with extinction due to spatial patterning into clusters that are not related to environmental conditions but that this increase is limited. Natural metacommunities often show both environment and spatial determination even under conditions of relatively high isolation and these could be more easily explained by our model than alternative metacommunity models. PMID:26909428

  5. Can't See the Wood for the Litter: Evaluation of Litter Behavior Modification in a Forest

    ERIC Educational Resources Information Center

    Lindemann-Matthies, Petra; Bonigk, Isabel; Benkowitz, Dorothee

    2012-01-01

    This study investigated elementary school children's (n = 171) litter behavior during guided forest tours following two different treatments. Four classes received a verbal appeal not to litter in the forest, while another four classes received both a verbal appeal and a demonstration of the desired litter behavior (picking up litter, putting it…

  6. No Litter Will Make a Better Place.

    ERIC Educational Resources Information Center

    Rodgers, Amy

    1987-01-01

    Describes a community anti-litter campaign developed by second grades, involving letter writing, dramatics, photography, and the creation of posters and a videotape. Identifies skills from the Kentucky Essential Skills list that were taught by the project. (SV)

  7. Habitats as Complex Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?

    PubMed Central

    Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2014-01-01

    Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

  8. Microbial biomass and soil carbon after 8 and 9 years of field applications of alum-treated and untreated poultry litter and inorganic nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amendment with aluminum sulfate (alum) is considered a best management practice for its benefits in poultry production and increased retention of nutrients in the litter. However, little is known about how long-term applications of alum-treated litter to soil will affect the microbial community and ...

  9. Early Social Environment Affects the Endogenous Oxytocin System: A Review and Future Directions

    PubMed Central

    Alves, Emily; Fielder, Andrea; Ghabriel, Nerelle; Sawyer, Michael; Buisman-Pijlman, Femke T. A.

    2015-01-01

    Endogenous oxytocin plays an important role in a wide range of human functions including birth, milk ejection during lactation, and facilitation of social interaction. There is increasing evidence that both variations in the oxytocin receptor (OXTR) and concentrations of oxytocin are associated with differences in these functions. The causes for the differences that have been observed in tonic and stimulated oxytocin release remain unclear. Previous reviews have suggested that across the life course, these differences may be due to individual factors, e.g., genetic variation (of the OXTR), age or sex, or be the result of early environmental influences, such as social experiences, stress, or trauma partly by inducing epigenetic changes. This review has three aims. First, we briefly discuss the endogenous oxytocin system, including physiology, development, individual differences, and function. Second, current models describing the relationship between the early life environment and the development of the oxytocin system in humans and animals are discussed. Finally, we describe research designs that can be used to investigate the effects of the early environment on the oxytocin system, identifying specific areas of research that need further attention. PMID:25814979

  10. Characterization of high-yield performance as affected by genotype and environment in rice.

    PubMed

    Chen, Song; Zeng, Fang-rong; Pao, Zong-zhi; Zhang, Guo-ping

    2008-05-01

    We characterized yield-relevant characters and their variations over genotypes and environments (locations and years) by examining two rice varieties (9746 and Jinfeng) with high yield potential. 9746 and Jinfeng were planted in two locations of Shanghai, China, during 2005 and 2006. The results show that there was a large variation in grain yield between locations and years. The realization of high yield potential for the two types of rice was closely related to the improved sink size, such as more panicles per square meter or grains per panicle. Stem and leaf biomasses were mainly accumulated from tillering stage to heading stage, and showed slow decline during grain filling. Meanwhile, some photosynthetic characters including net photosynthesis rate (Pn), leaf area index (LAI), specific leaf area (SLA), fluorescence parameter (maximum quantum yield of PSII, Fv/Fm), chlorophyll content (expressed as SPAD value), as well as nutrient (N, P, K) uptake were also measured to determine their variations over genotypes and environments and their relationships with grain yield. Although there were significant differences between years or locations for most measurements, SLA at tillering and heading stages, Fv/Fm and LAI at heading stage, stem biomass at heading and maturity stages, and leaf nitrogen concentration at tillering and heading stages remained little changed, indicating their possible applications as selectable characters in breeding programs. It was also found that stem nitrogen accumulation at tillering stage is one of the most important and stable traits for high yield formation. PMID:18500775

  11. New index for the stability of a type I collagen affected by hydrophobic environment.

    PubMed

    Nezu, Takashi; Morikawa, Tomohiro; Sasaki, Kaori; Saitoh, Setsuo; Taira, Masayuki; Terada, Yoshihiro; Araki, Yoshima

    2007-05-01

    Effects of hydrophobic environment adjusted by various alcohols on the structural stability of calfskin collagen (CSC) were studied to elucidate the nature of collagen-monomer interaction in adhesion. The stability of CSC in aqueous alcohol solutions was represented by its denaturation temperature, Td, measured by DSC. The hydrophobicity of the alcohol solutions was quantified with their specific dielectric constants, epsilon(r), calculated from their concentrations. The effect of each alcohol to stabilize or destabilize CSC was evaluated by the initial slope of each Td vs. epsilon(r) plot, denoted as -(dTd/d epsilon(r))ini and termed as stabilization power. Results showed that a hydrophobic environment with a smaller epsilon(r) lowered the stabilization power. Stabilization power ranged from -3 (strong destabilization) for phenol (epsilon(r) =12) to +0.3 (weak stabilization) for glycerol (epsilon(r)=47). In view of the encouraging results obtained in this study, the new index was therefore helpful in predicting the effects of new dental materials of known epsilon(r) values on the stability of dentinal collagen. PMID:17694747

  12. Biotic interactions affect the colonization behavior of aquatic detritivorous macroinvertebrates in a heterogeneous environment

    NASA Astrophysics Data System (ADS)

    Verschut, Thomas A.; Meineri, Eric; Basset, Alberto

    2015-05-01

    It has previously been suggested that macroinvertebrates actively search for suitable patches to colonize. However, it is not well understood how the spatial arrangement of patches can affect colonization rates. In this study, we determined the importance of the environmental factors (distance, connectivity and resource availability) for patch colonization in an experimental system using Gammarus aequicauda (Amphipoda), Lekanesphaera hookeri (Isopoda) and Ecrobia ventrosa (Gastropoda). Furthermore, we also assessed how the relative importance of each of these environmental factors differed in interactions between the three species. The single species experiments showed that distance was the most important factor for G. aequicauda and E. ventrosa. However, while E. ventrosa preferred patches close to the release point, G. aequicauda strongly preferred patches further from the release point. High resource availability was a strong determinant for the patch colonization of G. aequicauda and L. hookeri. Connectivity was only of moderate importance in the study system for L. hookeri and E. ventrosa. The effects of the environmental factors were strongly affected by interspecific interactions in the multispecies experiments. For G. aequicauda, the distance preference was lowered in the presence of E. ventrosa. Moreover, while for L. hookeri the effect of resource availability was ruled out by the species interactions, resource availability gained importance for E. ventrosa in the presence of any of the other species. Our results suggest a strong link between environmental factors and biotic interactions in the colonization of habitat patches and indicate that the effect of biotic interactions is especially important for species sharing similar traits.

  13. The importance of evaluating the physicochemical and toxicological properties of a contaminant for remediating environments affected by chemical incidents.

    PubMed

    Wyke, S; Peña-Fernández, A; Brooke, N; Duarte-Davidson, R

    2014-11-01

    In the event of a major chemical incident or accident, appropriate tools and technical guidance need to be available to ensure that a robust approach can be adopted for developing a remediation strategy. Remediation and restoration strategies implemented in the aftermath of a chemical incident are a particular concern for public health. As a result an innovative methodology has been developed to help design an effective recovery strategy in the aftermath of a chemical incident that has been developed; the UK Recovery Handbook for Chemical Incidents (UKRHCI). The handbook consists of a six-step decision framework and the use of decision trees specifically designed for three different environments: food production systems, inhabited areas and water environments. It also provides a compendium of evidence-based recovery options (techniques or methods for remediation) that should be selected in relation to their efficacy for removing contaminants from the environment. Selection of effective recovery options in this decision framework involves evaluating the physicochemical and toxicological properties of the chemical(s) involved. Thus, the chemical handbook includes a series of tables with relevant physicochemical and toxicological properties that should be assessed in function of the environment affected. It is essential that the physicochemical properties of a chemical are evaluated and interpreted correctly during the development of a remedial plan in the aftermath of a chemical incident to ensure an effective remedial response. This paper presents a general overview of the key physicochemical and toxicological properties of chemicals that should be evaluated when developing a recovery strategy. Information on how physicochemical properties have impacted on previous remedial responses reported in the literature is also discussed and a number of challenges for remediation are highlighted to include the need to develop novel approaches to remediate sites contaminated

  14. Factors affecting crystallization, dispersion, and aggregation of calcium oxalate monohydrate in various urinary environments

    NASA Astrophysics Data System (ADS)

    Christmas, Kimberly Gail

    The mechanisms for the formation of kidney stones are not well understood. One possible mechanism is the formation of aggregates in the nephron tubules of the kidneys. However, altering the urinary environment may be a method to help prevent the recurrence of the formation of kidney stones. The primary inorganic constituent found in kidney stones of North American patients is calcium oxalate monohydrate (COM). In this research, studies on the effect of mixing rate on COM precipitation showed that rapid mixing compared to slow mixing produced smaller particle sizes and a narrower particle size distribution due to the more uniform supersaturation level. The findings are consistent with the general contention that mixing directly influences nucleation rate while mixing rate has relatively little influence over rate of growth in precipitation processes. Screening and central composite experimental designs are used to determine the effect of various factors on the aggregation and dispersion characteristics of previously grown calcium oxalate monohydrate (COM) crystals in artificial urinary environments of controlled variables. The variables examined are pH, calcium, oxalate, pyrophosphate, citrate, and protein concentrations in ultrapure water and artificial urine. Optical density measurements, zeta potential analysis, particle size analyzer, optical microscopy, AFM force measurements, protein adsorption, and ions and small molecule adsorption have been used to assess the state of aggregation and dispersion of the COM crystals and to elucidate the mechanisms involved in such a complex system. The data indicate that our model protein, mucin, acts as a dispersant. This is attributed to steric hindrance resulting from the adsorbed mucoprotein. Oxalate, however, promotes aggregation. Interesting interactions between protein and oxalate along with protein and citrate are observed. Such interactions (synergistic or antagonistic) are found to depend on the concentrations of

  15. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome

    PubMed Central

    Mills, Philippa B.; Camuzeaux, Stephane S.M.; Footitt, Emma J.; Mills, Kevin A.; Gissen, Paul; Fisher, Laura; Das, Krishna B.; Varadkar, Sophia M.; Zuberi, Sameer; McWilliam, Robert; Stödberg, Tommy; Plecko, Barbara; Baumgartner, Matthias R.; Maier, Oliver; Calvert, Sophie; Riney, Kate; Wolf, Nicole I.; Livingston, John H.; Bala, Pronab; Morel, Chantal F.; Feillet, François; Raimondi, Francesco; Del Giudice, Ennio; Chong, W. Kling; Pitt, Matthew

    2014-01-01

    The first described patients with pyridox(am)ine 5’-phosphate oxidase deficiency all had neonatal onset seizures that did not respond to treatment with pyridoxine but responded to treatment with pyridoxal 5’-phosphate. Our data suggest, however, that the clinical spectrum of pyridox(am)ine 5’-phosphate oxidase deficiency is much broader than has been reported in the literature. Sequencing of the PNPO gene was undertaken for a cohort of 82 individuals who had shown a reduction in frequency and severity of seizures in response to pyridoxine or pyridoxal 5’-phosphate. Novel sequence changes were studied using a new cell-free expression system and a mass spectrometry-based assay for pyridoxamine phosphate oxidase. Three groups of patients with PNPO mutations that had reduced enzyme activity were identified: (i) patients with neonatal onset seizures responding to pyridoxal 5’-phosphate (n = 6); (ii) a patient with infantile spasms (onset 5 months) responsive to pyridoxal 5’-phosphate (n = 1); and (iii) patients with seizures starting under 3 months of age responding to pyridoxine (n = 8). Data suggest that certain genotypes (R225H/C and D33V) are more likely to result in seizures that to respond to treatment with pyridoxine. Other mutations seem to be associated with infertility, miscarriage and prematurity. However, the situation is clearly complex with the same combination of mutations being seen in patients who responded and did not respond to pyridoxine. It is possible that pyridoxine responsiveness in PNPO deficiency is affected by prematurity and age at the time of the therapeutic trial. Other additional factors that are likely to influence treatment response and outcome include riboflavin status and how well the foetus has been supplied with vitamin B6 by the mother. For some patients there was a worsening of symptoms on changing from pyridoxine to pyridoxal 5’-phosphate. Many of the mutations in PNPO affected residues involved in binding flavin

  16. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome.

    PubMed

    Mills, Philippa B; Camuzeaux, Stephane S M; Footitt, Emma J; Mills, Kevin A; Gissen, Paul; Fisher, Laura; Das, Krishna B; Varadkar, Sophia M; Zuberi, Sameer; McWilliam, Robert; Stödberg, Tommy; Plecko, Barbara; Baumgartner, Matthias R; Maier, Oliver; Calvert, Sophie; Riney, Kate; Wolf, Nicole I; Livingston, John H; Bala, Pronab; Morel, Chantal F; Feillet, François; Raimondi, Francesco; Del Giudice, Ennio; Chong, W Kling; Pitt, Matthew; Clayton, Peter T

    2014-05-01

    The first described patients with pyridox(am)ine 5'-phosphate oxidase deficiency all had neonatal onset seizures that did not respond to treatment with pyridoxine but responded to treatment with pyridoxal 5'-phosphate. Our data suggest, however, that the clinical spectrum of pyridox(am)ine 5'-phosphate oxidase deficiency is much broader than has been reported in the literature. Sequencing of the PNPO gene was undertaken for a cohort of 82 individuals who had shown a reduction in frequency and severity of seizures in response to pyridoxine or pyridoxal 5'-phosphate. Novel sequence changes were studied using a new cell-free expression system and a mass spectrometry-based assay for pyridoxamine phosphate oxidase. Three groups of patients with PNPO mutations that had reduced enzyme activity were identified: (i) patients with neonatal onset seizures responding to pyridoxal 5'-phosphate (n = 6); (ii) a patient with infantile spasms (onset 5 months) responsive to pyridoxal 5'-phosphate (n = 1); and (iii) patients with seizures starting under 3 months of age responding to pyridoxine (n = 8). Data suggest that certain genotypes (R225H/C and D33V) are more likely to result in seizures that to respond to treatment with pyridoxine. Other mutations seem to be associated with infertility, miscarriage and prematurity. However, the situation is clearly complex with the same combination of mutations being seen in patients who responded and did not respond to pyridoxine. It is possible that pyridoxine responsiveness in PNPO deficiency is affected by prematurity and age at the time of the therapeutic trial. Other additional factors that are likely to influence treatment response and outcome include riboflavin status and how well the foetus has been supplied with vitamin B6 by the mother. For some patients there was a worsening of symptoms on changing from pyridoxine to pyridoxal 5'-phosphate. Many of the mutations in PNPO affected residues involved in binding flavin mononucleotide or

  17. The influential child: How children affect their environment and influence their own risk and resilience.

    PubMed

    Davidov, Maayan; Knafo-Noam, Ariel; Serbin, Lisa A; Moss, Ellen

    2015-11-01

    Views regarding children's influence on their environment and their own development have undergone considerable changes over the years. Following Bell's (1968) seminal paper, the notion of children's influence and the view of socialization as a bidirectional process have gradually gained wide acceptance. However, empirical research implementing this theoretical advancement has lagged behind. This Special Section compiles a collection of new empirical works addressing multiple forms of influential child processes, with special attention to their consequences for children's and others' positive functioning, risk and resilience. By addressing a wide variety of child influences, this Special Section seeks to advance integration of influential child processes into myriad future studies on development and psychopathology and to promote the translation of such work into preventive interventions. PMID:26439055

  18. Environment-related and host-related factors affecting the occurrence of lice on rodents in Central Europe.

    PubMed

    Stanko, Michal; Fričová, Jana; Miklisová, Dana; Khokhlova, Irina S; Krasnov, Boris R

    2015-06-01

    We studied the effects of environment- (habitat, season) and host-related (sex, body mass) factors on the occurrence of four species of lice (Insecta:Phthiraptera:Anoplura) on six rodent species (Rodentia:Muridae). We asked how these factors influence the occurrence of lice on an individual host and whether different rodent-louse associations demonstrate consistent trends in these effects. We found significant effects of at least one environment-related and at least one host-related factor on the louse occurrence in five of six host-louse associations. The effect of habitat was significant in two associations with the occurrence of lice being more frequent in lowland than in mountain habitats. The effect of season was significant in five associations with a higher occurrence of infestation during the warm season in four associations and the cold season in one association. Host sex affected significantly the infestation by lice in three associations with a higher frequency of infestation in males. Host body mass affected the occurrence of lice in all five associations, being negative in wood mice and positive in voles. In conclusion, lice were influenced not only by the host- but also by environment-related factors. The effects of the latter could be mediated via life history parameters of a host. PMID:25651932

  19. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    PubMed

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-01

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms. PMID:25912312

  20. Gene–environment interplay in Drosophila melanogaster: Chronic food deprivation in early life affects adult exploratory and fitness traits

    PubMed Central

    Burns, James Geoffrey; Svetec, Nicolas; Rowe, Locke; Mery, Frederic; Dolan, Michael J.; Boyce, W. Thomas; Sokolowski, Marla B.

    2012-01-01

    Early life adversity has known impacts on adult health and behavior, yet little is known about the gene–environment interactions (GEIs) that underlie these consequences. We used the fruit fly Drosophila melanogaster to show that chronic early nutritional adversity interacts with rover and sitter allelic variants of foraging (for) to affect adult exploratory behavior, a phenotype that is critical for foraging, and reproductive fitness. Chronic nutritional adversity during adulthood did not affect rover or sitter adult exploratory behavior; however, early nutritional adversity in the larval period increased sitter but not rover adult exploratory behavior. Increasing for gene expression in the mushroom bodies, an important center of integration in the fly brain, changed the amount of exploratory behavior exhibited by sitter adults when they did not experience early nutritional adversity but had no effect in sitters that experienced early nutritional adversity. Manipulation of the larval nutritional environment also affected adult reproductive output of sitters but not rovers, indicating GEIs on fitness itself. The natural for variants are an excellent model to examine how GEIs underlie the biological embedding of early experience. PMID:23045644

  1. Transgenerational sex determination: the embryonic environment experienced by a male affects offspring sex ratio

    PubMed Central

    Warner, Daniel A.; Uller, Tobias; Shine, Richard

    2013-01-01

    Conditions experienced during embryonic development can have lasting effects, even carrying across generations. Most evidence for transgenerational effects comes from studies of female mammals, with much less known about egg-laying organisms or paternally-mediated effects. Here we show that offspring sex can be affected by the incubation temperature its father experiences years earlier. We incubated eggs of an Australian lizard with temperature-dependent sex determination under three thermal regimes; some eggs were given an aromatase inhibitor to produce sons at temperatures that usually produce only daughters. Offspring were raised to maturity and freely interbred within field enclosures. After incubating eggs of the subsequent generation and assigning parentage, we found that the developmental temperature experienced by a male significantly influences the sex of his future progeny. This transgenerational effect on sex ratio may reflect an epigenetic influence on paternally-inherited DNA. Clearly, sex determination in reptiles is far more complex than is currently envisaged. PMID:24048344

  2. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams.

    PubMed

    Iñiguez-Armijos, Carlos; Rausche, Sirkka; Cueva, Augusta; Sánchez-Rodríguez, Aminael; Espinosa, Carlos; Breuer, Lutz

    2016-07-01

    Tropical montane ecosystems of the Andes are critically threatened by a rapid land-use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest-pasture-urban) on stream physico-chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico-chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land-use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf-shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land-use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of

  3. Litter Inputs and Soil Aggregation in Midwestern Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Masters, M. D.; Smyth, E. M.; DeLucia, E. H.

    2014-12-01

    Perennial C4 grasses represent alternatives to corn for the production of ethanol because of low management costs and high biomass production. To evaluate the effects of perennial grasses on the agricultural soils of the Midwest, native switchgrass and a sterile hybrid of the Asian grass Miscanthus were planted at the University of Illinois Energy Farm in 2008. Through five years of growth, above and belowground plant biomass, litter, and soil were compared with soils in plots growing a corn-corn-soy rotation typical of the area. Above- and belowground plant biomass in Miscanthus and switchgrass averaged higher than corn/soy following two years of perennial establishment, with belowground biomass exceeding corn/soy by approximately 5-fold in the year after establishment (2010) and 25-fold by 2012. Measurements of root distribution and turnover rates indicate that roots are the primary contribution of new carbon to soils under perennial crops. Physical fractionation of the soils into water stable aggregates showed 4-14% increases in macroaggregate fractions under perennial crops; the large aggregates are adhered together by organic material and indicative of the increased presence of labile carbon forms like plant roots, fungi, and plant and microbial exudates. Carbon and nitrogen analyses of the fractions show that while overall carbon has not increased significantly in whole soil, soils under perennial grasses are concentrating carbon by 5-17% in the macroaggregates after just 5 years. Native switchgrass roots (buried) and litter (surface-applied) decompose faster than Miscanthus roots and litter, but slower than corn roots and litter buried to simulate incorporation by tillage. Switchgrass soil shows the highest degree of macroaggregate formation, pointing to a high rate of litter and root decomposition and incorporation into soil structure. While macroaggregates are relatively labile soil structures compared to microaggregates and free silt and clay, they offer

  4. Factors affecting metacognition of undergraduate nursing students in a blended learning environment.

    PubMed

    Hsu, Li-Ling; Hsieh, Suh-Ing

    2014-06-01

    This paper is a report of a study to examine the influence of demographic, learning involvement and learning performance variables on metacognition of undergraduate nursing students in a blended learning environment. A cross-sectional, correlational survey design was adopted. Ninety-nine students invited to participate in the study were enrolled in a professional nursing ethics course at a public nursing college. The blended learning intervention is basically an assimilation of classroom learning and online learning. Simple linear regression showed significant associations between frequency of online dialogues, the Case Analysis Attitude Scale scores, the Case Analysis Self Evaluation Scale scores, the Blended Learning Satisfaction Scale scores, and Metacognition Scale scores. Multiple linear regression indicated that frequency of online dialogues, the Case Analysis Self Evaluation Scale and the Blended Learning Satisfaction Scale were significant independent predictors of metacognition. Overall, the model accounted for almost half of the variance in metacognition. The blended learning module developed in this study proved successful in the end as a catalyst for the exercising of metacognitive abilities by the sample of nursing students. Learners are able to develop metacognitive ability in comprehension, argumentation, reasoning and various forms of higher order thinking through the blended learning process. PMID:24888995

  5. Reassembling the "Environment": Science, Affect, and Multispecies Educative Practice at the Aquarium of the Pacific

    NASA Astrophysics Data System (ADS)

    Lloro-Bidart, Teresa Katrina

    Drawing on 14 months of ethnographic fieldwork at the Aquarium of the Pacific and Michel Foucault's governmentality and biopolitics as an overarching theoretical frame, this dissertation engages in a political ecological analysis to explore how the institution, its staff, and nonhumans work to produce various sorts of knowledge about the environment. I argue that the educative assemblages imagined and formed there, which are intimately linked to institutional fiscal survivability, politically deploy nonhuman animals in the Aquarium's "edutainment" project. Through the use of storytelling as a pedagogical tool to entertain, invoke compassion, and convey science to the public, staff encourage guests to have tactile, auditory, and visual encounters with live ocean creatures in order to construct a natural world worthy of being saved, due to its instrumental and intrinsic value. I show how this public conservation re-education project attempts to highlight the voices of the animals being represented there, but not necessarily the voices of the animals actually residing there. I also draw out the implications of these representative practices and argue that the institution ought to utilize staff-nonhuman relationships, which are grounded in care and empathy, as a framework for developing visitor-nonhuman relationships.

  6. Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact.

    PubMed

    Semprucci, F; Frontalini, F; Sbrocca, C; du Châtelet, E Armynot; Bout-Roumazeilles, V; Coccioni, R; Balsamo, M

    2015-05-01

    The effects of the human impact on the coastal environments and relative biota can be different and even greater than those derived by natural fluctuations. The major disturbance causes in the coastal systems are rivers that may be important sources of nutrients and pollutants, particularly in a semi-closed basin such as the Adriatic Sea. In this context, we investigated the distribution of both meiobenthic and nematode assemblages in the Central Adriatic Sea to evaluate whether and how they are influenced by riverine discharges and which faunal descriptors are the most effective in detecting this type of stress. On the basis of our results, the disturbance effects in the studied area might be caused by both local streams and Po plume, and even if the latter might be considered of lesser extent, it is worthy to note its real impact at a short distance from the coastline. Meiobenthic assemblage structure appears as a good tool for detecting short-term responses of the benthic domain, whereas nematode assemblages seem more useful for defining long-term responses. Accordingly, the former highlighted from poor to sufficient ecological quality status (EQS) of this area, whereas the latter from moderate to bad EQS. Life strategy traits prove to be the most informative faunal descriptor due to their high correspondence with the environmental variables and particularly with this type of disturbance. PMID:25877645

  7. How age-related strategy switching deficits affect wayfinding in complex environments.

    PubMed

    Harris, Mathew A; Wolbers, Thomas

    2014-05-01

    Although most research on navigation in aging focuses on allocentric processing deficits, impaired strategy switching may also contribute to navigational decline. Using a specifically designed task involving navigating a town-like virtual environment, we assessed the ability of young and old participants to switch from following learned routes to finding novel shortcuts. We found large age differences in the length of routes taken during testing and in use of shortcuts, as, while nearly all young participants switched from the egocentric route-following strategy to the allocentric wayfinding strategy, none of the older participants stably switched. Although secondary tasks confirmed that older participants were impaired both at strategy switching and allocentric processing, the difficulty in using shortcuts was selectively related to impaired strategy switching. This may in turn relate to dysfunction of the prefrontal-noradrenergic network responsible for coordinating switching behavior. We conclude that the large age difference in performance at the shortcutting task demonstrates for the first time, how strategy switching deficits can have a severe impact on navigation in aging. PMID:24239438

  8. Space Environment Factors Affecting the Performance of International Space Station Materials: The First Two Years of Flight Operations

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Peldey, Michael; Mayeaux, Brian; Milkatarian, Ronald R.; Golden, John; Boeder, paul; Kern, John; Barsamian, Hagop; Alred, John; Soares, Carlos; Christiansen, Eric; Schneider, Todd; Edwards, Dave

    2003-01-01

    In this paper, the natural and induced space environment factors affecting materials performance on ISS are described in some detail. The emphasis will be on ISS flight experience and the more significant design and development issues of the last two years. The intent is to identify and document the set of space environment factors, affecting materials, that are producing the largest impacts on the ISS flight hardware verification and acceptance process and on ISS flight operations. Orbital inclination (S1.6 ) and altitude (nominal3S0 km to 400 km altitude) determine the set of natural environment factors affecting the functional life of materials and subsystems on ISS. ISS operates in the F2 region of Earth's ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, and solar UV, VUV, and x-ray radiation, as well as galactic cosmic rays, trapped radiation, and solar cosmic rays (1,2). The high latitude orbital environment also exposes external surfaces to significantly less well-defined or predictable fluxes of higher energy trapped electrons and auroral electrons (3 ,4). The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. Environment factors induced by ISS flight operations include ram-wake effects, magnetic induction voltages arising from flight through Earth's magnetic field, hypergolic thruster plume impingement from proximity operations of visiting vehicles, materials outgassing, venting and dumping of fluids, ISS thruster operations, as well as specific electrical power system interactions with the ionospheric plasma (S-7). ISS must fly in a very limited number of approved flight attitudes leading to location specific environmental exposures and extreme local thermal environments (8). ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals (atomic oxygen) are largely excluded (9-11). At high

  9. Lignin degradation during plant litter photodegradation

    NASA Astrophysics Data System (ADS)

    Lin, Y.; King, J. Y.

    2014-12-01

    Lignin is the second most abundant compound, after cellulose, synthesized by plants. Numerous studies have demonstrated that initial lignin concentration is negatively correlated with litter decomposition rate under both laboratory and field conditions. Thus lignin is commonly considered to be a "recalcitrant" compound during litter decomposition. However, lignin can also serve as a radiation-absorbing compound during photodegradation, the process through which solar radiation breaks down organic matter. Here, we synthesize recent studies concerning lignin degradation during litter photodegradation and report results from our study on how photodegradation changes lignin chemistry at a molecular scale. Recent field studies have found that litter with high initial lignin concentration does not necessarily exhibit high mass loss during photodegradation. A meta-analysis (King et al. 2012) even found a weak negative correlation between initial lignin concentration and photodegradation rate. Contradicting results have been reported with regard to the change in lignin concentration during photodegradation. Some studies have found significant loss of lignin during photodegradation, while others have not. In most studies, loss of lignin only accounts for a small proportion of the overall mass loss. Using NMR spectroscopy, we found significant loss of lignin structural units containing beta-aryl ether linkages during photodegradation of a common grass litter, Bromus diandrus, even though conventional forage fiber analysis did not reveal changes in lignin concentration. Both our NMR and fiber analyses supported the idea that photodegradation induced loss of hemicellulose, which was mainly responsible for the litter mass loss during photodegradation. Our results suggest that photodegradation induces degradation, but not necessarily complete breakdown, of lignin structures and consequently exposes hemicellulose and cellulose to microbial decomposition. We conclude that lignin

  10. How Environment Affects Star Formation: Tracing Activity in High Redshift Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Alberts, Stacey; Pope, A.; Brodwin, M.; Atlee, D. W.; Lin, Y.; Chary, R.; Dey, A.; Eisenhardt, P. R.; Gettings, D.; Gonzalez, A. H.; Jannuzi, B.; Mancone, C.; Moustakas, J.; Snyder, G. F.; Stanford, S. A.; Stern, D.; Weiner, B. J.; Zeimann, G.

    2014-01-01

    The emerging picture of the evolution of cluster galaxies indicates that the epoch of z>1 is a crucial period of active star formation and mass assembly in clusters. In this dissertation, I leverage a uniformly-selected cluster sample from the IRAC Shallow Cluster Survey (ISCS) with Herschel imaging to analyse the star formation (SF) activity in cluster galaxies over the past ten billion years. This analysis is two-fold: 1) using 274 clusters across the 9 square degree Bootes field, I perform a stacking analysis of mass-limited samples of cluster and field galaxies using wide-field Herschel observations over a long redshift baseline, z=0.3-1.5. I find that the average SF activity in cluster galaxies is evolving faster than in the field, with field-like SF in the cluster cores and enhanced SF activity in the cluster outskirts at z>1.2. By further breaking down my analysis by galaxy mass and type, I determine which mechanisms are capable of driving this evolution. 2) I use unique, deep Herschel imaging of 11 spectroscopically-confirmed clusters from z=1.1-1.8 to study the properties of individual infrared bright cluster galaxies as a function of redshift and cluster-centric radius. Combined with ancillary data, I determine the star formation, dust, and AGN properties of the most active cluster galaxies and tie the evolution of these properties back to the environment by comparing to field populations. By combining these two approaches, I constrain cluster galaxy properties during a pivotal epoch of dust-obscured star formation activity and mass assembly in some of the most extreme structures in the Universe.

  11. Changes of the soil environment affected by fly ash dumping site of the electric power plant

    NASA Astrophysics Data System (ADS)

    Weber, Jerzy; Gwizdz, Marta; Jamroz, Elzbieta; Debicka, Magdalena; Kocowicz, Andrzej

    2014-05-01

    In this study the effect of fly ash dumping site of the electric power plant on the surrounding soil environment was investigated. The fly ash dumping site collect wastes form brown coal combustion of Belchatow electric power station, central Poland. The dumping site is surrounding by forest, where pine trees overgrow Podzols derived from loose quartz sands. The soil profiles under study were located at a distance of 50, 100, 400 and 500 m from the dumping site, while control profiles were located 8 km away from the landfill. In all horizons of soil profiles the mpain hysico-chemical and chemical properties were determined. The humic substances were extracted from ectohumus horizons by Shnitzer's method, purified using XAD resin and freeze-dried. The fulvic acids were passed through a cation exchange column and freeze-dried. Optical density, elemental composition and atomic ratios were determined in the humic and fulvic acids. Organic carbon by KMnO4 oxidation was also determined in the organic soil horizons. The fly ash from the landfill characterized by high salinity and strong alkaline reaction (pH=10), which contributed significantly to the changes of the pH values in soils horizons. The alkalization of soils adjacent to the landfill was found, which manifested in increasing of pH values in the upper soil horizons. The impact of the landfill was also noted in the changes of the soil morphology of Podzols analysed. As a result of the alkalization, Bhs horizons have been converted into a Bs horizons. Leaching of low molecular humus fraction - typical for podzolization - has been minimized as a result of pH changes caused by the impact of the landfill, and originally occurring humic substances in the Bhs horizon (present in the control profiles) have been probably transported out of the soil profile and then into the groundwater.

  12. Effects of a trait-based parameterisation of litter decomposition

    NASA Astrophysics Data System (ADS)

    Kleinen, Thomas; Brovkin, Victor; van Bodegom, Peter; Kattge, Jens; Wirth, Christian

    2013-04-01

    Stocks of plant litter play an important role in the terrestrial carbon cycle. On a regional scale, litter stocks influence fire regimes, soil fertility, and soil organic matter formation. On the global scale, these factors influence global CO2 and climate. In many dynamic global vegetation models, the decomposition of plant litter is treated rather simplistically by aggregating leaf and woody litter into a single litter pool and using a common decomposition rate for all litter pools without taking different plant species or litter types into account. Measurements, on the other hand, clearly show that a) leaf litter decomposes much faster than woody litter, b) litter from different plant species decomposes at different rates, and c) the temperature sensitivity of woody litter decomposition also is species-dependent. The common modelling approach therefore clearly is incompatible with measurements. As a consequence, we modified the dynamic global vegetation model LPJ by a) introducing different litter pools for leaf and woody litter and by b) linking plant functional types to decomposition rates, as well as temperature sensitivities, of wood and leaf litter determined from two databases of plant traits. These changes give a more realistic distribution of litter stocks in most biomes, with the exception of boreal forests. In a projection for future climate, using the SRES A2 scenario, the modified parameterisation leads to an increase in litter stocks by 35 PgC, as well as a decrease in atmospheric CO2 by 3 ppm by 2100. Despite the increase in litter stocks, the fire emissions increase less than when using the original parameterization, since the litter is redistributed to more humid regions.

  13. Season mediates herbivore effects on litter and soil microbial abundance and activity in a semi-arid woodland

    SciTech Connect

    Classen, Aimee T; Overby, Stephen; Hart, Stephen C; Koch, George W; Whitham, Thomas G

    2007-01-01

    Herbivores can directly impact ecosystem function by altering litter quality entering an ecosystem or indirectly by affecting a shift in the microbial community that mediate nutrient processes. We examine herbivore susceptibility and resistance effects on litter microarthropod and soil microbial communities to test the general hypothesis that herbivore driven changes in litter inputs will feedback to the microbial community. Our study population consisted of individual trees that are susceptible or resistant to the stem-boring moth (Dioryctria albovittella) and trees that herbivores have been manually removed since 1982. Moth herbivory increased pi on litter nitrogen concentrations (16%) and canopy precipitation infiltration (28%), both significant factors influencing litter and soil microbial populations. Our research resulted in three major conclusions: 1) In spite of an increase in litter quality, herbivory does not change litter microarthropod abundance or species richness. 2) Herbivore susceptibility alters bulk soil microbial communities, but not soil properties. 3) Season has a strong influence on microbial communities, and their response to herbivore inputs, in this semi-arid ecosystem.

  14. Broiler diet modification and litter storage: impacts on phosphorus in litters, soils, and runoff.

    PubMed

    McGrath, Joshua M; Sims, J Thomas; Maguire, Rory O; Saylor, William W; Angel, C Roselina; Turner, Benjamin L

    2005-01-01

    Modifying broiler diets to mitigate water quality concerns linked to excess phosphorus (P) in regions of intensive broiler production has recently increased. Our goals were to evaluate the effects of dietary modification, using phytase and reduced non-phytate phosphorus (NPP) supplementation, on P speciation in broiler litters, changes in litter P forms during long-term storage, and subsequent impacts of diets on P in runoff from litter-amended soils. Four diets containing two levels of NPP with and without phytase were fed to broilers in a three-flock floor pen study. After removal of the third flock, litters were stored for 440 d at their initial moisture content (MC; 24%) and at a MC of 40%. Litter P fractions and orthophosphate and phytate P concentrations were determined before and after storage. After storage, litters were incorporated with a sandy and silt loam and simulated rainfall was applied. Phytase and reduced dietary NPP significantly reduced litter total P. Reducing dietary NPP decreased water-extractable inorganic phosphorus (IP) and the addition of dietary phytase reduced NaOH- and HCl-extractable organic P in litter, which correlated well with orthophosphate and phytic acid measured by 31P nuclear magnetic resonance (NMR), respectively. Although dry storage caused little change in P speciation, wet storage increased concentrations of water-soluble IP, which increased reactive P in runoff from litter-amended soils. Therefore, diet modification with phytase and reduced NPP could be effective in reducing P additions on a watershed scale. Moreover, efforts to minimize litter MC during storage may reduce the potential for dissolved P losses in runoff. PMID:16151241

  15. Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level

    NASA Astrophysics Data System (ADS)

    Straková, Petra; Anttila, Jani; Spetz, Peter; Kitunen, Veikko; Tapanila, Tarja; Laiho, Raija

    2010-05-01

    drawdown, compared to respective values of 394-658, 5.6-9.3, 0.22-24.4, 161-293 and 44-81 for the pristine conditions. The direct effects of WL drawdown on litter quality were overruled by the indirect effects via changes in vegetation composition. The short-term (reflecting transient conditions) and long-term (reflecting longer-lasting situation of already adapted ecosystem) effects were very different. Our results imply that the long-term effects will strongly affect the soil properties and C cycle of peatlands.

  16. Marine litter on the floor of deep submarine canyons of the Northwestern Mediterranean Sea: The role of hydrodynamic processes

    NASA Astrophysics Data System (ADS)

    Tubau, Xavier; Canals, Miquel; Lastras, Galderic; Rayo, Xavier; Rivera, Jesus; Amblas, David

    2015-05-01

    Marine litter represents a widespread type of pollution in the World's Oceans. This study is based on direct observation of the seafloor by means of Remotely Operated Vehicle (ROV) dives and reports litter abundance, type and distribution in three large submarine canyons of the NW Mediterranean Sea, namely Cap de Creus, La Fonera and Blanes canyons. Our ultimate objective is establishing the links between active hydrodynamic processes and litter distribution, thus going beyond previous, essentially descriptive studies. Litter was monitored using the Liropus 2000 ROV. Litter items were identified in 24 of the 26 dives carried out in the study area, at depths ranging from 140 to 1731 m. Relative abundance of litter objects by type, size and apparent weight, and distribution of litter in relation to depth and canyon environments (i.e. floor and flanks) were analysed. Plastics are the dominant litter component (72%), followed by lost fishing gear, disregarding their composition (17%), and metal objects (8%). Most of the observed litter seems to be land-sourced. It reaches the ocean through wind transport, river discharge and after direct dumping along the coastline. While coastal towns and industrial areas represent a permanent source of litter, tourism and associated activities relevantly increase litter production during summer months ready to be transported to the deep sea by extreme events. After being lost, fishing gear such as nets and long-lines has the potential of being harmful for marine life (e.g. by ghost fishing), at least for some time, but also provides shelter and a substrate on which some species like cold-water corals are capable to settle and grow. La Fonera and Cap de Creus canyons show the highest mean concentrations of litter ever seen on the deep-sea floor, with 15,057 and 8090 items km-2, respectively, and for a single dive litter observed reached 167,540 items km-2. While most of the largest concentrations were found on the canyon floors at

  17. Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: a review.

    PubMed

    Schaller, Jörg; Brackhage, Carsten; Mkandawire, Martin; Dudel, E Gert

    2011-11-01

    The focus of this article is to combine two main areas of research activities in freshwater ecosystems: the effect of inorganic pollutants on freshwater ecosystems and litter decomposition as a fundamental ecological process in streams. The decomposition of plant litter in aquatic systems as a main energy source in running water ecosystems proceeds in three distinct temporal stages of leaching, conditioning and fragmentation. During these stages metals and metalloids may be fixed by litter, its decay products and the associated organisms. The global-scale problem of contaminated freshwater ecosystems by metals and metalloids has led to many investigations on the acute and chronic toxicity of these elements to plants and animals as well as the impact on animal activity under laboratory conditions. Where sorption properties and accumulation/remobilization potential of metals in sediments and attached microorganisms are quite well understood, the combination of both research areas concerning the impact of higher trophic levels on the modification of sediment sorption conditions and the influence of metal/metalloid pollution on decomposition of plant litter mediated by decomposer community, as well as the effect of high metal load during litter decay on organism health under field conditions, has still to be elucidated. So far it was found that microbes and invertebrate shredder (species of the genera Gammarus and Asellus) have a significant influence on metal fixation on litter. Not many studies focus on the impact of other functional groups affecting litter decay (e.g. grazer and collectors) or other main processes in freshwater ecosystems like bioturbation (e.g. Tubifex, Chironomus) on metal fixation/release. PMID:21907393

  18. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands.

    PubMed

    Ward, Susan E; Orwin, Kate H; Ostle, Nicholas J; Briones, J I; Thomson, Bruce C; Griffiths, Robert I; Oakley, Simon; Quirk, Helen; Bardget, Richard D

    2015-01-01

    Historically, slow decomposition rates have resulted in the accumulation of large amounts of carbon in northern peatlands. Both climate warming and vegetation change can alter rates of decomposition, and hence affect rates of atmospheric CO2 exchange, with consequences for climate change feedbacks. Although warming and vegetation change are happening concurrently, little is known about their relative and interactive effects on decomposition processes. To test the effects of warming and vegetation change on decomposition rates, we placed litter of three dominant species (Calluna vulgaris, Eriophorum vaginatum, Hypnum jutlandicum) into a peatland field experiment that combined warming.with plant functional group removals, and measured mass loss over two years. To identify potential mechanisms behind effects, we also measured nutrient cycling and soil biota. We found that plant functional group removals exerted a stronger control over short-term litter decomposition than did approximately 1 degrees C warming, and that the plant removal effect depended on litter species identity. Specifically, rates of litter decomposition were faster when shrubs were removed from the plant community, and these effects were strongest for graminoid and bryophyte litter. Plant functional group removals also had strong effects on soil biota and nutrient cycling associated with decomposition, whereby shrub removal had cascading effects on soil fungal community composition, increased enchytraeid abundance, and increased rates of N mineralization. Our findings demonstrate that, in addition to litter quality, changes in vegetation composition play a significant role in regulating short-term litter decomposition and belowground communities in peatland, and that these impacts can be greater than moderate warming effects. Our findings, albeit from a relatively short-term study, highlight the need to consider both vegetation change and its impacts below ground alongside climatic effects when

  19. Factors influencing leaf litter decomposition: An intersite decomposition experiment across China

    USGS Publications Warehouse

    Zhou, G.; Guan, L.; Wei, X.; Tang, X.; Liu, S.; Liu, J.; Zhang, Dongxiao; Yan, J.

    2008-01-01

    The Long-Term Intersite Decomposition Experiment in China (hereafter referred to as LTIDE-China) was established in 2002 to study how substrate quality and macroclimate factors affect leaf litter decomposition. The LTIDE-China includes a wide variety of natural and managed ecosystems, consisting of 12 forest types (eight regional broadleaf forests, three needle-leaf plantations and one broadleaf plantation) at eight locations across China. Samples of mixed leaf litter from the south subtropical evergreen broadleaf forest in Dinghushan (referred to as the DHS sample) were translocated to all 12 forest types. The leaf litter from each of other 11 forest types was placed in its original forest to enable comparison of decomposition rates of DHS and local litters. The experiment lasted for 30 months, involving collection of litterbags from each site every 3 months. Our results show that annual decomposition rate-constants, as represented by regression fitted k-values, ranged from 0.169 to 1.454/year. Climatic factors control the decomposition rate, in which mean annual temperature and annual actual evapotranspiration are dominant and mean annual precipitation is subordinate. Initial C/N and N/P ratios were demonstrated to be important factors of regulating litter decomposition rate. Decomposition process may apparently be divided into two phases controlled by different factors. In our study, 0.75 years is believed to be the dividing line of the two phases. The fact that decomposition rates of DHS litters were slower than those of local litters may have been resulted from the acclimation of local decomposer communities to extraneous substrate. ?? 2008 Springer Science+Business Media B.V.

  20. Biological and climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments

    NASA Astrophysics Data System (ADS)

    Portillo-Estrada, M.; Pihlatie, M.; Korhonen, J. F. J.; Levula, J.; Frumau, A. K. F.; Ibrom, A.; Lembrechts, J. J.; Morillas, L.; Horváth, L.; Jones, S. K.; Niinemets, Ü.

    2015-11-01

    Projection of carbon and nitrogen cycles to future climates is associated with large uncertainties, in particular due to uncertainties how changes in climate alter soil turnover, including litter decomposition. In addition, future conditions are expected to result in changes in vegetation composition, and accordingly in litter type and quality, but it is unclear how such changes could potentially alter litter decomposition. Litter transplantation experiments were carried out across 6 European sites (4 forest and 2 grasslands) spanning a large geographical and climatic gradient (5.6-11.4 °C in annual temperature 511-878 mm in precipitation) to gain insight into biological (litter origin and type, soil type) and climatic controls on litter decomposition. The decomposition k rates were overall higher in warmer and wetter sites than in colder and drier sites, and positively correlated to the litter total specific leaf area. Also, litter N content increased as less litter mass remained and decay went further. Surprisingly, this study demonstrates that climatic controls on litter decomposition are quantitatively more important than species, litter origin and soil type. Cumulative climatic variables, precipitation and air temperature (ignoring days with air temperatures below 0 °C), were appropriate to predict the litter remaining mass during decomposition (Mr). And Mr and cumulative air temperature were found to be the best predictors for litter carbon and nitrogen remaining during decomposition. We concluded with an equation for predicting the decomposition k rate by using mean annual air temperature and litter total specific leaf area.

  1. Elevated atmospheric carbon dioxide and leaf litter chemistry: Influences on microbial respiration and net nitrogen mineralization

    SciTech Connect

    Randlett, D.L.; Zak, D.R.; Pregitzer, K.S.; Curtis, P.S.

    1996-09-01

    Elevated atmospheric CO{sub 2} has the potential to influence rates of C and N cycling in terrestrial ecosystems by altering plant litter chemistry and slowing rates of organic matter decomposition. We tested the hypothesis that the chemistry of leaf litter produced at elevated CO{sub 2} would slow C and N transformations in soil. Soils were amended with Populus leaf produced under two levels of atmospheric CO{sub 2} (ambient and twice-ambient) and soil N availability (low and high). Kinetic parameters for microbial respiration and net N mineralization were determined on soil with and without litter during a 32-wk lab incubation. Product accumulation curves for CO{sub 2}-C and inorganic N were fit to a first order rate equation [y=A(1-e{sup -kt})] using nonlinear regression analyses. Although CO{sub 2} treatment affected soluble sugar concentration in leaf litter (ambient =120 g kg{sup -1}, elevated =130 g kg{sup -1}), it did not affect starch concentration or C/N ratio. Microbial respiration, microbial biomass, and leaf litter C/N ratio were affected by soil N availability but not by atmospheric CO{sub 2}. Net N mineralization was a linear function of time and was not significantly different for leaves grown at ambient (50 mg N kg{sup -1}) and elevated CO{sub 2} (35 mg N kg{sup -1}). Consequently, we found no evidence for the hypothesis that leaf litter produced at elevated atmospheric CO{sub 2} will dampen the rates of C and N cycling in soil. 35 refs., 1 fig., 4 tabs.

  2. UVB exposure does not accelerate rates of litter decomposition in a semiarid riparian ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive e...

  3. Evaluation of amendments to manage nitrogen loss and microbiological quality in poultry litter.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter is a valuable nutrient source for crop production that requires proper management to garner environmentally and financially sustainable benefits. Successful management to reduce ammonia (NH3-N) and its harmful side-effects for poultry and the environment can be aided by the use of lit...

  4. Effect of surface incorporation of broiler litter applied to no-till cotton on runoff quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-yr field study was conducted on an Atwood silt loam (fine-silty, mixed, thermic Typic Paleudalfs) marginal upland soil to evaluate if incorporation of broiler litter into the soil surface in a no-till cotton affect runoff nutrient concentrations. The treatments consisted of 7.8 Mg ha-1 broiler l...

  5. Litters of photosynthetically divergent grasses exhibit differential metabolic responses to warming and elevated CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climatic stress induced by warming can alter plant metabolism, leading to changes in litter chemistry that can affect soil carbon cycling. Elevated CO2 could partly mitigate warming induced moisture stress, and the degree of this mitigation may vary with plant functional types. We hypothesized that,...

  6. Seasonal changes in phosphorus and phosphatase compositions in soils enriched with poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Season and soil depth may play an important role in phosphorus (P) dynamics and mineralization in soil because of changes in soil moisture, temperature and microbial activity. This study was conducted to quantify P fractions and enzymatic activity from poultry litter (PL) application as affected by ...

  7. Behavior of steelhead fry in a laboratory stream is affected by fish density but not rearing environment

    USGS Publications Warehouse

    Riley, Stephen C.; Tatara, Christopher P.; Berejikian, Barry A.; Flagg, Thomas A.

    2009-01-01

    We quantified the aggression, feeding, dominance, position choice, and territory size of naturally reared steelhead Oncorhynchus mykiss fry stocked with two types of hatchery-reared fry (from conventional and enriched rearing environments) at two densities in experimental flumes to determine how rearing environment and fish density affect the behavior of steelhead fry. We found that fry density had a significant effect on most response variables but that rearing treatment did not. The rates of threats and attacks were positively correlated with fry density, but the overall feeding rate was negatively correlated. Naturally reared fry were dominant more often at low densities, and hatchery-reared fry were dominant more often at high densities. There were no significant effects of hatchery rearing treatment on aggression, feeding, dominance, or territory size. The only significant effect of rearing treatment was on the position of naturally reared fry, which occupied more upstream positions when stocked with conventional than with enriched hatchery-reared fry. Overall, rearing environment had relatively little influence on the behavior of steelhead fry. Our results indicate that stocking hatchery-reared steelhead fry at low densities may have effects on similar-size wild fish comparable to an equivalent increase in the density of wild fish. We suggest that releasing hatchery-reared steelhead fry as a supplementation strategy may have few direct negative ecological effects on wild fry.

  8. Age and duration of inflammatory environment differentially affect the neuroimmune response and catecholaminergic neurons in the midbrain and brainstem.

    PubMed

    Bardou, Isabelle; Kaercher, Roxanne M; Brothers, Holly M; Hopp, Sarah C; Royer, Sarah; Wenk, Gary L

    2014-05-01

    Neuroinflammation and degeneration of ascending catecholaminergic systems occur early in the neurodegenerative process. Age and the duration of a pro-inflammatory environment induced by continuous intraventricular lipopolysaccharide (LPS) differentially affect the expression profile of pro- and anti-inflammatory genes and proteins as well as the number of activated microglia (express major histocompatibility complex II; MHC II) and the integrity and density of ascending catecholaminergic neural systems originating from the locus coeruleus (LC) and substantia nigra pars compacta (SNpc) in rats. LPS infusion increased gene expression and/or protein levels for both pro- and anti-inflammatory biomarkers. Although LPS infusion stimulated a robust increase in IL-1ß gene and protein expression, this increase was blunted with age. LPS infusion also increased the density of activated microglia cells throughout the midbrain and brainstem. Corresponding to the development of a pro-inflammatory environment, LC and SNpc neurons immunopositive for tyrosine-hydroxylase (the rate-limiting synthetic enzyme for dopamine and norepinephrine) decreased in number, along with a decrease in tyrosine-hydroxylase gene expression in the midbrain and/or brainstem region. Our data support the concept that continuous exposure to a pro-inflammatory environment drives exaggerated changes in the production and release of inflammatory mediators that interact with age to impair functional capacity of the SNpc and LC. PMID:24315728

  9. Plastic litter accumulation on high-water strandline of urban beaches in Mumbai, India.

    PubMed

    Jayasiri, H B; Purushothaman, C S; Vennila, A

    2013-09-01

    Today, almost every beach on every coastline is threatened by human activities. The inadequate recycling and poor management of waste in developing countries has resulted in considerable quantities of plastic contaminating beaches. Though India has long coastline of 5,420 km along the mainland with 43 % of sandy beaches, data on litter accumulation, particularly the plastics, which are one of the most common and persistent pollutants in marine environment, are scanty. The abundance and distribution of plastic litter was quantitatively assessed in four sandy beaches in Mumbai, India, bimonthly from May 2011 to March 2012. Triplicates of 2 × 2 m (4 m(2)) quadrats were sampled in each beach with a total of 72 quadrats. Overall, average abundance of 11.6 items m(-2) (0.25-282.5 items m(-2)) and 3.24 g m(-2) (0.27-15.53 g m(-2)) plastic litter was recorded in Mumbai beaches. Plastic litter accumulation significantly varied temporally and spatially at p = 0.05. Significantly higher plastic litter accumulation was recorded in Juhu beach. Furthermore, the highest abundance by weight was recorded in November and May numerically. More than 80 % of plastic particles were within the size range of 5-100 mm both by number and weight. Moreover, coloured plastics were predominant with 67 % by number of items and 51 % by weight. Probably, the intense use of beaches for recreation, tourism, and religious activities has increased the potential for plastic contamination in urban beaches in Mumbai. PMID:23430068

  10. Effects of Experimental Nitrogen and Phosphorus Addition on Litter Decomposition in an Old-Growth Tropical Forest

    PubMed Central

    Chen, Hao; Dong, Shaofeng; Liu, Lei; Ma, Chuan; Zhang, Tao; Zhu, Xiaomin; Mo, Jiangming

    2013-01-01

    The responses of litter decomposition to nitrogen (N) and phosphorus (P) additions were examined in an old-growth tropical forest in southern China to test the following hypotheses: (1) N addition would decrease litter decomposition; (2) P addition would increase litter decomposition, and (3) P addition would mitigate the inhibitive effect of N addition. Two kinds of leaf litter, Schima superba Chardn. & Champ. (S.S.) and Castanopsis chinensis Hance (C.C.), were studied using the litterbag technique. Four treatments were conducted at the following levels: control, N-addition (150 kg N ha−1 yr−1), P-addition (150 kg P ha−1 yr−1) and NP-addition (150 kg N ha−1 yr−1 plus 150 kg P ha−1 yr−1). While N addition significantly decreased the decomposition of both litters, P addition significantly inhibited decomposition of C.C., but did not affect the decomposition of S.S. The negative effect of N addition on litter decomposition might be related to the high N-saturation in this old-growth tropical forest; however, the negative effect of P addition might be due to the suppression of “microbial P mining”. Significant interaction between N and P addition was found on litter decomposition, which was reflected by the less negative effect in NP-addition plots than those in N-addition plots. Our results suggest that P addition may also have negative effect on litter decomposition and that P addition would mitigate the negative effect of N deposition on litter decomposition in tropical forests. PMID:24391895

  11. A Longitudinal Investigation of the Affective Environment in Families with Young Children: From Infancy to Early School Age

    PubMed Central

    Barry, Robin A.; Kochanska, Grazyna

    2010-01-01

    We examined the affective environment in 102 families studied longitudinally when children were 7, 15, 25, 38, 52, and 67 months. At each assessment, every mother-child and father-child dyad was observed in typical daily contexts. Each person’s emotions of affection, joy, and anger were coded. Both parents rated marital quality when children were 15, 52, and 67 months. Growth curve analyses, using Actor-Partner Interdependence Modeling, examined (a) developmental changes in emotions, (b) within-relationship influence of the partner’s emotions, (c) across-relationship influences of emotions in other parent’s interactions with the child, and (d) associations between marital quality and emotions over time. Parents’ emotional expressiveness was highest early in the child’s development, and declined thereafter. Children’s anger was highest at 15 months, and declined thereafter, and their positive emotions, particularly with mothers, increased over time. Generally, one’s positive emotions and better marital quality were associated with greater positive emotion within- and across-relationships, whereas one’s anger was associated with greater anger within- and across-relationships. However, any emotion expression elicited greater affection in the interaction partner. Parents’ neuroticism did not account for the convergence of emotions across relationships. PMID:20364900

  12. A note on the effects of perches and litter substrate on leg weakness in broiler chickens.

    PubMed

    Su, G; Sørensen, P; Kestin, S C

    2000-09-01

    Two trials were conducted to investigate the effect of availability of perches on indices of leg weakness in broiler chickens. A third trial investigated the effect of litter substrate on similar indices of leg weakness in broiler chickens. Leg weakness traits examined were walking ability and tibial dyschondroplasia, tibial curvature, foot burn, and hock burn. Body weight was also measured in all trials. The presence of perches in the rearing pens had no effect on any of the indices of leg weakness examined in either trial. There were no consistent effects of perches on BW. Litter substrate significantly affected some indices of leg weakness; birds reared on wheat straw had poorer walking ability and more foot burn than birds reared on wood shavings, and birds reared on hemp waste were intermediate between them. There was no effect of litter substrate on tibial dyschondroplasia or tibial curvature. Turning the straw litter regularly and adding fresh supplies when necessary did not significantly improve indices of leg weakness. It was concluded that wood shavings provide a better litter substrate than straw, but that perches have no beneficial effect on reducing leg weakness in broilers. PMID:11020069

  13. Within-litter variation in birth weight: impact of nutritional status in the sow*

    PubMed Central

    Yuan, Tao-lin; Zhu, Yu-hua; Shi, Meng; Li, Tian-tian; Li, Na; Wu, Guo-yao; Bazer, Fuller W.; Zang, Jian-jun; Wang, Feng-lai; Wang, Jun-jun

    2015-01-01

    Accompanying the beneficial improvement in litter size from genetic selection for high-prolificacy sows, within-litter variation in birth weight has increased with detrimental effects on post-natal growth and survival due to an increase in the proportion of piglets with low birth-weight. Causes of within-litter variation in birth weight include breed characteristics that affect uterine space, ovulation rate, degree of maturation of oocytes, duration of time required for ovulation, interval between ovulation and fertilization, uterine capacity for implantation and placentation, size and efficiency of placental transport of nutrients, communication between conceptus/fetus and maternal systems, as well as nutritional status and environmental influences during gestation. Because these factors contribute to within-litter variation in birth weight, nutritional status of the sow to improve fetal-placental development must focus on the following three important stages in the reproductive cycle: pre-mating or weaning to estrus, early gestation and late gestation. The goal is to increase the homogeneity of development of oocytes and conceptuses, decrease variations in conceptus development during implantation and placentation, and improve birth weights of newborn piglets. Though some progress has been made in nutritional regulation of within-litter variation in the birth weight of piglets, additional studies, with a focus on and insights into molecular mechanisms of reproductive physiology from the aspects of maternal growth and offspring development, as well as their regulation by nutrients provided to the sow, are urgently needed. PMID:26055904

  14. The effects of leaf litter nutrient pulses on Alliaria petiolata performance

    PubMed Central

    Carr, David E.

    2015-01-01

    Nutrient pulses can facilitate species establishment and spread in new habitats, particularly when one species more effectively uses that nutrient pulse. Biological differences in nutrient acquisition between native and exotic species may facilitate invasions into a variety of habitats including deciduous forest understories. Alliaria petiolata (Bieb.) Cavara & Grande is an important invader of deciduous forest understories throughout much of North America. These understory communities contain many species which perform the majority of their growth and reproduction before canopy closure in spring. Because A. petiolata is a wintergreen biennial that can be active during autumn and winter, it may utilize nutrients released from decaying leaf litter before its competitors. To investigate this we manipulated the timing of leaf litter addition (fall or spring) and experimentally simulated the nutrient pulse from decaying leaves using artificial fertilizer. To determine whether A. petiolata affected the abundance of understory competitors, we also removed A. petiolata from one treatment. A. petiolata that received early nutrients exhibited greater growth. Treatments receiving fall leaf litter or artificial nutrients had greater A. petiolata adult biomass than plots receiving spring nutrient additions (leaf litter or artificial nutrients). However, fall leaf litter addition had no effect on the richness of competitor species. Thus, wintergreen phenology may contribute to the spread of A. petiolata through deciduous forest understories, but may not explain community-level impacts of A. petiolata in deciduous forests. PMID:26312176

  15. Litter type control on soil C and N stabilization dynamics in a temperate forest.

    PubMed

    Hatton, Pierre-Joseph; Castanha, Cristina; Torn, Margaret S; Bird, Jeffrey A

    2015-03-01

    While plant litters are the main source of soil organic matter (SOM) in forests, the controllers and pathways to stable SOM formation remain unclear. Here, we address how litter type ((13) C/(15) N-labeled needles vs. fine roots) and placement-depth (O vs. A horizon) affect in situ C and N dynamics in a temperate forest soil after 5 years. Litter type rather than placement-depth controlled soil C and N retention after 5 years in situ, with belowground fine root inputs greatly enhancing soil C (x1.4) and N (x1.2) retention compared with aboveground needles. While the proportions of added needle and fine root-derived C and N recovered into stable SOM fractions were similar, they followed different transformation pathways into stable SOM fractions: fine root transfer was slower than for needles, but proportionally more of the remaining needle-derived C and N was transferred into stable SOM fractions. The stoichiometry of litter-derived C vs. N within individual SOM fractions revealed the presence at least two pools of different turnover times (per SOM fraction) and emphasized the role of N-rich compounds for long-term persistence. Finally, a regression approach suggested that models may underestimate soil C retention from litter with fast decomposition rates. PMID:25358112

  16. Accumulation kinetics and equilibrium partitioning coefficients for semivolatile organic pollutants in forest litter.

    PubMed

    Nizzetto, Luca; Liu, Xiang; Zhang, Gan; Komprdova, Klara; Komprda, Jiri

    2014-01-01

    Soils are important stores of environmentally cycling semivolatile organic contaminants (SVOCs) and represent relevant atmospheric secondary sources whenever environmental conditions favor re-emission. The exchange between air and soil is controlled by resistances posed by interfacial matrices such as the ubiquitously distributed vegetation litter. For the first time, this study focused on the experimental characterization of accumulation parameters for SVOCs in litter under real field conditions. The logarithm of the litter-air equilibrium partitioning coefficient ranged 6.8-8.9 and had a similar dependence on logKOA as that of plant foliage and soil data. Uptake and release rates were also KOA dependent with values (relevant for real environmental conditions) ranging 30,000-150,000 d(-1) and 0.0004-0.0134 d(-1), respectively. The overall mass transfer coefficient v controlling litter-air exchange (0.03-1.4 cm s(-1)) was consistent with previously reported data of v for foliage in forest canopies after normalization on leaf area index. Obtained data suggest that litter holds the potential for influencing atmospheric fugacity in proximity to soil, likely affecting overall exchange of SVOCs between the soil reservoir and the atmosphere. PMID:24320106

  17. The effects of leaf litter nutrient pulses on Alliaria petiolata performance.

    PubMed

    Heckman, Robert W; Carr, David E

    2015-01-01

    Nutrient pulses can facilitate species establishment and spread in new habitats, particularly when one species more effectively uses that nutrient pulse. Biological differences in nutrient acquisition between native and exotic species may facilitate invasions into a variety of habitats including deciduous forest understories. Alliaria petiolata (Bieb.) Cavara & Grande is an important invader of deciduous forest understories throughout much of North America. These understory communities contain many species which perform the majority of their growth and reproduction before canopy closure in spring. Because A. petiolata is a wintergreen biennial that can be active during autumn and winter, it may utilize nutrients released from decaying leaf litter before its competitors. To investigate this we manipulated the timing of leaf litter addition (fall or spring) and experimentally simulated the nutrient pulse from decaying leaves using artificial fertilizer. To determine whether A. petiolata affected the abundance of understory competitors, we also removed A. petiolata from one treatment. A. petiolata that received early nutrients exhibited greater growth. Treatments receiving fall leaf litter or artificial nutrients had greater A. petiolata adult biomass than plots receiving spring nutrient additions (leaf litter or artificial nutrients). However, fall leaf litter addition had no effect on the richness of competitor species. Thus, wintergreen phenology may contribute to the spread of A. petiolata through deciduous forest understories, but may not explain community-level impacts of A. petiolata in deciduous forests. PMID:26312176

  18. The origin of litter chemical complexity during decomposition.

    PubMed

    Wickings, Kyle; Grandy, A Stuart; Reed, Sasha C; Cleveland, Cory C

    2012-10-01

    The chemical complexity of decomposing plant litter is a central feature shaping the terrestrial carbon (C) cycle, but explanations of the origin of this complexity remain contentious. Here, we ask: How does litter chemistry change during decomposition, and what roles do decomposers play in these changes? During a long-term (730 days) litter decomposition experiment, we tracked concurrent changes in decomposer community structure and function and litter chemistry using high-resolution molecular techniques. Contrary to the current paradigm, we found that the chemistry of different litter types diverged, rather than converged, during decomposition due to the activities of decomposers. Furthermore, the same litter type exposed to different decomposer communities exhibited striking differences in chemistry, even after > 90% mass loss. Our results show that during decomposition, decomposer community characteristics regulate changes in litter chemistry, which could influence the functionality of litter-derived soil organic matter (SOM) and the turnover and stabilisation of soil C. PMID:22897741

  19. INVASIVE GRASS ALTERS LITTER DECOMPOSITION BY INFLUENCING MACRO-DETRITIVORES

    EPA Science Inventory

    Nitrogen fertilization experiments have produced results with inconsistent rates of plant litter decomposition, a phenomenon that may be explained if the influence of animal detritivores (macro-detritivores) on litter mass loss is greater than that of microbial decomposers whose ...

  20. Reflectance of litter accumulation levels at five wavelengths within the 0.5- to 2.5 micron waveband

    NASA Technical Reports Server (NTRS)

    Gerbermann, A. H.; Everitt, J. H.; Gausman, H. W. (Principal Investigator)

    1982-01-01

    Reflectance was measured for 1-m2 range grass plots with two canopy treatments (standing and clipped) and four levels of litter accumulation and for grain sorghum with two canopy treatments. Reflectance was significantly higher at the 0.65- to 1.65-, and 2.20-micrometer. Wavelengths for both grass and grain sorghum canopies when the canopies were clipped and the resulting litter was removed. The natural accumulation of litter under the grass canopy did not significantly affect reflectance. The 1.65- and 2.20-micrometer wavelength reflectances of the live grass and the intact litter were 21.8% and 16.2%, respectively, and those of grain sorghum were 21.8% and 16.5%, respectively.

  1. Effects of stoichiometry and temperature perturbations on beech leaf litter decomposition, enzyme activities and protein expression

    NASA Astrophysics Data System (ADS)

    Keiblinger, K. M.; Schneider, T.; Roschitzki, B.; Schmid, E.; Eberl, L.; Hämmerle, I.; Leitner, S.; Richter, A.; Wanek, W.; Riedel, K.; Zechmeister-Boltenstern, S.

    2012-11-01

    Microbes are major players in leaf litter decomposition and therefore advances in the understanding of their control on element cycling are of paramount importance. Our aim was to investigate the influence of leaf litter stoichiometry in terms of carbon (C) : nitrogen (N) : phosphorus (P) ratios on the decomposition processes and to track changes in microbial community structures and functions in response to temperature stress treatments. To elucidate how the stoichiometry of beech leaf litter (Fagus sylvatica L.) and stress treatments interactively affect the microbial decomposition processes, a terrestrial microcosm experiment was conducted. Beech litter from different Austrian sites covering C:N ratios from 39 to 61 and C:P ratios from 666 to 1729 were incubated at 15 °C and 60% moisture for six months. Part of the microcosms were then subjected to severe changes in temperature (+30 °C and -15 °C) to monitor the influence of temperature stress. Extracellular enzyme activities were assayed and respiratory activities measured. A semi-quantitative metaproteomics approach (1D-SDS PAGE combined with liquid chromatography and tandem mass spectrometry; unique spectral counting) was employed to investigate the impact of the applied stress treatments in dependency of litter stoichiometry on structure and function of the decomposing community. In litter with narrow C:nutrient (C:N, C:P) ratios, microbial decomposers were most abundant. Cellulase, chitinase, phosphatase and protease activity decreased after heat and freezing treatments. Decomposer communities and specific functions varied with site, i.e. stoichiometry. The applied stress combined with the respective time of sampling evoked changes of enzyme activities and litter pH. Freezing treatments resulted in a decline in residual plant litter material and increased fungal abundance, indicating slightly accelerated decomposition. Overall, a strong effect of litter stoichiometry on microbial community structures and

  2. Simulation of Birch and Pine Litter Influence on Early Stage of Reclaimed Soil Formation Process under Controlled Conditions.

    PubMed

    Woś, Bartłomiej; Pietrzykowski, Marcin

    2015-07-01

    The impact of litter decomposition on chemical substrate properties and element leaching during early soil formation in afforested post-mine sites and the influence of different tree species are key issues in new ecosystem development. Scots pine ( L.) and common birch ( Roth) are important pioneering species used in afforestation of post-mine sites in central and eastern Europe. The aim of this study was to assess the impact of litter decomposition of these species on the chemical properties of mine soil substrates. The impact of litter decomposition on soil properties was tested on quaternary and neogene substrates with different textures (sands, loams, and mixtures of clays and sands) in a controlled incubation experiment using PVC columns. Simulation of precipitation and leaching was undertaken for 10 wk at a temperature of 16°C with distilled water (200 mL wk) through cylinders with litter, substrate + litter, and control substrate (no litter). Filtrated water solution was collected once a week for laboratory analysis, and the concentrations of dissolved organic C, total N, K, Ca, Mg, and P were determined. The study results indicate a stronger impact of the common birch on the chemical properties of reclaimed mine soils compared with pine. After the experiment, birch litter caused significant changes in pH in quaternary sands, concentration of P in quaternary loams (Ql) and mixtures of neogene clays and quaternary sands (QsNc), exchangeable Ca in QsNc, and Mg in Ql and QsNc compared with pine litter. Birch, in comparison to pine, may affect the intensity of early-stage soil-forming processes by increasing nutrient availability and transport into the soil profile, which may affect the development of soil microbial communities. This process results in different soil properties under the two tree species. PMID:26437090

  3. Water quality benefits of subsurface-banded poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broiler chicken production is an important industry in Alabama and several other states. Broiler litter is commonly used as a fertilizer on pastures and cropland. This litter has commonly been land-applied near the broiler houses and this has resulted in long-term repeated application of litter to...

  4. Distribution of Bacteria at Different Poultry Litter Depths

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common practice in the commercial broiler industry is to reuse litter over multiple broiler flocks. Morbidity, mortality, and condemnation have been attributed to pathogenic bacteria which reside in used litter. Information that describes how bacteria are distributed throughout the litter bed is...

  5. Long-term litter decomposition controlled by manganese redox cycling

    PubMed Central

    Keiluweit, Marco; Nico, Peter; Harmon, Mark E.; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

    2015-01-01

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn2+ provided by fresh plant litter to produce oxidative Mn3+ species at sites of active decay, with Mn eventually accumulating as insoluble Mn3+/4+ oxides. Formation of reactive Mn3+ species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn3+-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn3+ species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant–soil system may have a profound impact on litter decomposition rates. PMID:26372954

  6. Nutrition of cotton fertilized with poultry litter versus ammonium nitrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter has proven to be an effective fertilizer for cotton in the upland soils of the southeastern US. Fertilizing with poultry litter often results in better lint yield than fertilizing with single-nutrient synthetic fertilizers. This superiority of litter to synthetic fertilizers for cot...

  7. Long-term litter decomposition controlled by manganese redox cycling.

    PubMed

    Keiluweit, Marco; Nico, Peter; Harmon, Mark E; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

    2015-09-22

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates. PMID:26372954

  8. Subsurface Banded Broiler Litter Improves Cotton Yield and Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broiler litter is typically land-applied as a fertilizer by surface broadcasting, a practice that results in volatilization loss of N as NH3. This loss may be drastically reduced or eliminated by the use of a newly developed precision litter implement designed to apply the litter in bands just belo...

  9. Arousal regulation and affective adaptation to human responsiveness by a robot that explores and learns a novel environment.

    PubMed

    Hiolle, Antoine; Lewis, Matthew; Cañamero, Lola

    2014-01-01

    In the context of our work in developmental robotics regarding robot-human caregiver interactions, in this paper we investigate how a "baby" robot that explores and learns novel environments can adapt its affective regulatory behavior of soliciting help from a "caregiver" to the preferences shown by the caregiver in terms of varying responsiveness. We build on two strands of previous work that assessed independently (a) the differences between two "idealized" robot profiles-a "needy" and an "independent" robot-in terms of their use of a caregiver as a means to regulate the "stress" (arousal) produced by the exploration and learning of a novel environment, and (b) the effects on the robot behaviors of two caregiving profiles varying in their responsiveness-"responsive" and "non-responsive"-to the regulatory requests of the robot. Going beyond previous work, in this paper we (a) assess the effects that the varying regulatory behavior of the two robot profiles has on the exploratory and learning patterns of the robots; (b) bring together the two strands previously investigated in isolation and take a step further by endowing the robot with the capability to adapt its regulatory behavior along the "needy" and "independent" axis as a function of the varying responsiveness of the caregiver; and (c) analyze the effects that the varying regulatory behavior has on the exploratory and learning patterns of the adaptive robot. PMID:24860492

  10. Arousal regulation and affective adaptation to human responsiveness by a robot that explores and learns a novel environment

    PubMed Central

    Hiolle, Antoine; Lewis, Matthew; Cañamero, Lola

    2014-01-01

    In the context of our work in developmental robotics regarding robot–human caregiver interactions, in this paper we investigate how a “baby” robot that explores and learns novel environments can adapt its affective regulatory behavior of soliciting help from a “caregiver” to the preferences shown by the caregiver in terms of varying responsiveness. We build on two strands of previous work that assessed independently (a) the differences between two “idealized” robot profiles—a “needy” and an “independent” robot—in terms of their use of a caregiver as a means to regulate the “stress” (arousal) produced by the exploration and learning of a novel environment, and (b) the effects on the robot behaviors of two caregiving profiles varying in their responsiveness—“responsive” and “non-responsive”—to the regulatory requests of the robot. Going beyond previous work, in this paper we (a) assess the effects that the varying regulatory behavior of the two robot profiles has on the exploratory and learning patterns of the robots; (b) bring together the two strands previously investigated in isolation and take a step further by endowing the robot with the capability to adapt its regulatory behavior along the “needy” and “independent” axis as a function of the varying responsiveness of the caregiver; and (c) analyze the effects that the varying regulatory behavior has on the exploratory and learning patterns of the adaptive robot. PMID:24860492

  11. External factors affecting decision-making and use of evidence in an Australian public health policy environment.

    PubMed

    Zardo, Pauline; Collie, Alex; Livingstone, Charles

    2014-05-01

    This study examined external factors affecting policy and program decision-making in a specific public health policy context: injury prevention and rehabilitation compensation in the Australian state of Victoria. The aim was twofold: identify external factors that affect policy and program decision-making in this specific context; use this evidence to inform targeting of interventions aimed at increasing research use in this context. Qualitative interviews were undertaken from June 2011 to January 2012 with 33 employees from two state government agencies. Key factors identified were stakeholder feedback and action, government and ministerial input, legal feedback and action, injured persons and the media. The identified external factors were able to significantly influence policy and program decision-making processes: acting as both barriers and facilitators, depending on the particular issue at hand. The factors with the most influence were the Minister and government, lawyers, and agency stakeholders, particularly health providers, trade unions and employer groups. This research revealed that interventions aimed at increasing use of research in this context must target and harness the influence of these groups. This research provides critical insights for researchers seeking to design interventions to increase use of research in policy environments and influence decision-making in Victorian injury prevention and rehabilitation compensation. PMID:24632115

  12. Ecological restoration of litter in mined areas

    NASA Astrophysics Data System (ADS)

    Teresinha Gonçalves Bizuti, Denise; Nino Diniz, Najara; Schweizer, Daniella; de Marchi Soares, Thaís; Casagrande, José Carlos; Henrique Santin Brancalion, Pedro

    2016-04-01

    The success of ecological restoration projects depends on going monitoring of key ecological variables to determine if a desired trajectory has been established and, in the case of mining sites, nutrient cycling recovery plays an utmost importance. This study aimed to quantify and compare the annual litter production in native forests, and in restoration sites established in bauxite mines. We collected samples in 6 native forest remnants and 6 year-old restoration sites every month for a period of one year, in the city of Poços de Caldas/MG, SE Brazil. 120 wire collectors were used (0,6x0,6) and suspended 30cm above the soil surface. The material was dried until constant weight, weighed and fractionated in leaves, branches and reproductive material. The average annual litter production was 2,6 Mg ha-1 in native forests and 2,1 in forest in restoration sites, differing statistically. Litter production was higher in the rainy season, especially in September. Among the litter components, the largest contributor to total production was the fraction leaves, with 55,4% of the total dry weight of material collected, followed by reproductive material which contributed 24,5% and branches, with 20%. We conclude that the young areas in restoration process already restored important part, but still below the production observed in native areas.

  13. Critical litter moisture maximizes ammonia generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural breakdown of litter (bedding material mixed with deposits of feces, feathers, spilled feed and water) generates ammonia in poultry houses. Good management practices can reduce ammonia concentrations in poultry houses. Findings from a recent publication indicate there is a critical litt...

  14. Prospects for phosphorus recovery from poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land disposal of poultry litter is an environmental concern in regions with intense poultry production because there is not enough land for crop utilization of its nutrients, especially phosphorus (P). This situation promotes soil P surplus and potential pollution of water resources. Although poultr...

  15. Poultry litter moisture management to reduce ammonia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia generation in poultry houses results from the natural breakdown of litter (bedding material mixed with deposits of feces, feathers, spilled feed and water). Good management practices can reduce ammonia concentrations in poultry houses. This factsheet relates findings from a recent publicat...

  16. Evaluation of ammonia emissions from broiler litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia emissions from poultry litter results in air pollution and can cause high levels of ammonia in poultry houses, which negatively impacts bird performance. The objectives of this study were to: (1) conduct a nitrogen (N) mass balance in broiler houses by measuring the N inputs (bedding, chick...

  17. Temporary Storage of Poultry Broiler Litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transportation and storage of poultry broiler litter during the winter months is critical to implementing comprehensive nutrient/waste management plans, but acceptable temporary storage near the site of spreading can be difficult to arrange. Alternative, less expensive methods for temporary storage...

  18. Temporary Storage of Poultry Broiler Litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Row crop farmers have been reluctant to use broiler litter on their crops because of the difficulty getting it transported and spread at planting time in the spring. Temporary field storage near the site of spreading will help with this problem and encourage more row crop farmers to use poultry lit...

  19. Treating poultry litter with aluminum sulfate (alum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a USDA/ARS factsheet on how to treat poultry litter with aluminum sulfate (alum) to reduce ammonia emissions. Over half of the nitrogen excreted from chickens is lost to the atmosphere as ammonia before the manure is removed from the poultry houses. Research has shown that additions of alu...

  20. The management of phosphorus in poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter provides an important source of plant nutrients including nitrogen, phosphorus, potassium, calcium, magnesium and sulphur. The potential for phosphorus (P) surplus at the farm scale can increase when farming systems change from cropping to intensive poultry and animal production, as P...

  1. Extension Leads Model City Litter Fight

    ERIC Educational Resources Information Center

    Magnuson, Doris

    1971-01-01

    A three-year war on litter is in effect in the Portland, Maine, area, as a result of the University of Maine's enlisting the county extension service to help the local Model Cities program clean up the inner city. Article details problems and progress in meeting the objectives. (PD)

  2. Litter Study: A School Research Project

    ERIC Educational Resources Information Center

    McCollum, Dannel

    1976-01-01

    Describes a project done to verify or dispute the breakdown in litter content proposed by Keep America Beautiful, Inc. (KAB). Decisions made relating to quantity of materials, area to be studied, and a complete description of the project are given. (EB)

  3. Utilization of poultry litter for pesticide bioremediation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural chemical products such as pesticides have been used to increase crop production, especially in undeveloped countries. Poultry litter, the combination of feces and bedding materials, has also been used as an alternative to improve soil quality for crop production. However, information re...

  4. Leaf litter dynamics and litter consumption in two temperate South Australian mangrove forests

    NASA Astrophysics Data System (ADS)

    Imgraben, Sarah; Dittmann, Sabine

    2008-02-01

    The dynamics and consumption of mangrove litter were investigated in two temperate Avicennia marina dominated forests in South Australia in order to compare production and fate of leaf litter with records from tropical and temperate mangroves. Litterfall was measured using traps over four months in the summer of 2004/2005. Average amount of litter was 2.1 and 3.2 g dwt m - 2 d - 1 , respectively, at the two study sites. Leaves accounted for most of the litterfall, followed by propagules and wood. Litterfall varied over time, and depending on the site and inundation time. The standing stock of leaf litter on the forest floor amounted to 15.5 g m - 2 dwt in March 2005. Decomposition determined by litter bags suggested that leaves lost ˜ 50% of their weight in the first two weeks of exposure, with little further weight loss over longer exposure times. Leaf consumption was investigated with a series of laboratory experiments, using the grapsid crab Helograpsus haswellianus, two snail species ( Salinator fragilis and Austrocochlea concamerata) and the polychaete Neanthes vaalii as potential consumers. There was no consumption of new leaves, and the only significant consumption of aged leaves was found for female H. haswellianus. H. haswellianus consumed 0.1 g dwt d - 1 of senescent leaves in the experiment, equivalent to 0.18 g m - 2 d - 1 in the field (average crab density 1.8 ind m - 2 ), or 9.4% of the average daily leaf litterfall. Experiments with propagules revealed no significant consumption by the crabs. High decomposition and low consumption rates of crabs account for the high accumulation and possible export of leaf litter from these mangroves. Leaf litter availability is not a limiting factor for invertebrate consumers in these temperate mangrove forests, and the low consumption rates imply a major difference in the fate of leaf litter between tropical and temperate mangrove systems.

  5. The Role of Organic Phosphorus in Alum ability to Reduce Phosphorus Solubility in Poultry Litter and Litter Amended Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alum (Al2[SO4]3) addition to litter in poultry houses is an effective strategy for reducing phosphorus (P) solubility in the litter and litter-amended soils, thereby reducing the potential for soluble P losses in runoff. Although there has been much research on the subject, there is still uncertaint...

  6. Sow and litter factors influencing colostrum yield and nutritional composition.

    PubMed

    Declerck, I; Dewulf, J; Piepers, S; Decaluwé, R; Maes, D

    2015-03-01

    One of the main characteristics of colostrum intake (CI), colostrum yield (CY), and colostrum composition (CC) in pigs is its variability. The present observational study aimed to investigate factors influencing CY and CC in 10 commercial herds. In total, 100 sows of 5 different breeds and their 1,455 live-born piglets were included. Sows' CY was estimated by the CI of their suckling piglets. Colostrum composition was analyzed by LactoScope Fourier transform infrared spectroscopy. Colostrum yield averaged 3,500 ± 110 g and the percentage of colostral fat (CF), protein, and lactose in colostrum averaged 5.39 ± 0.12, 16.49 ± 0.14, and 2.02 ± 0.05 %, respectively. The effect of sow, litter, and parturition factors on CY and CC were evaluated with a linear mixed regression model with herd included as a random factor. Sows with a gestation length (GL) of 113 d had a higher CY (4,178 ± 506 g) than sows with a GL of 114 to 115 d (3,342 ± 107 g; = 0.04). An interaction was found between the litter birth weight of suckling piglets (LW) and GL ( = 0.03). In sows with a GL of 114 to 115 d, CY increased with higher LW ( = 0.009). A shorter interval between birth and first suckling of the litter was related to a higher CY ( < 0.01). The percentage of fat in colostrums was higher in Hypor sows (6.35 ± 0.51) than in PIC (4.98 ± 0.27; = 0.001), Topigs 20 (5.05 ± 0.14; < 0.001), and Danbred (5.34 ± 0.22; < 0.001) sows. The percentage of CF was negatively associated with parity ( = 0.02) and positively associated with the number of live-born piglets ( = 0.03). The percentages of colostral protein and lactose were not significantly associated with any factor in the multivariable model. In conclusion, this study demonstrated that CY and CF are affected by different sow and litter factors. Pig producers may implement these observations in their management to maximize production or reproduction potential by optimizing CI, CY, and CC. PMID:26020907

  7. Type of litter determines the formation and properties of charred material during wildfires

    NASA Astrophysics Data System (ADS)

    Chavez, Bruno; Fonturbel, M. Teresa; Salgado, Josefa; García-Oliva, Felipe; Vega, Jose A.; Merino, Agustin

    2014-05-01

    Wildfire is one of the most important disturbances all over the World, affecting both the amount and composition of forest floor and mineral soils. In comparison with unburnt areas, wildfire-affected forest floor usually shows lower contents of labile C compounds and higher concentrations of recalcitrant aromatic forms. These changes in composition can have important impact on biogeochemical cycles and therefore ecosystem functions. Although burning of different types of litter can lead to different amount and types of pyrogenic compounds, this aspect has not been evaluated yet. The effect of wildfire on SOM composition and stability were evaluated in five major types of non-wood litter in Mediterranean ecosystems: Pinus nigra, E. arborea, P. pinaster, U. europaeus and Eucalyptus globulus. In each of these ecosystems, forest floor samples from different soil burn severities were sampled. Soil burnt severities were based on visual signs of changes in forest floor and deposition of ash. Pyrogenic carbon quality were analysed using elementary analysis, solid-state 13 C nuclear magnetic resonance spectroscopy, Reflectance Infrared Fourier Transform (FTIR) and thermal analysis (simultaneous DSC-TG). The study showed that the different types of litter influenced the formation and characteristics of charred material. They differed in the temperature at which they start to be formed, the amounts of charred compounds and in their chemical composition. The resulting charred materials from the different litter, showed an important variability in the degree of carbonitation/aromatization. Unlike the biochar obtained through pyrolysis of woody sources, which contains exclusively aromatic structures, in the charred material produced in some litter, lignin, cellulose and even cellulose persist even in the high soil burnt severity. Coinciding with increases in aromatic contents, important decreases in atomic H/C and O/C ratios were recorded. However, the values found in some

  8. Life in varying environments: experimental evidence for delayed effects of juvenile environment on adult life history.

    PubMed

    Helle, Heikki; Koskela, Esa; Mappes, Tapio

    2012-05-01

    1. The effects of environment experienced during early development on phenotype as an adult has started to gain vast amounts of interest in various taxa. Some evidence on long-term effects of juvenile environment is available, but replicated experimental studies in wild animals are still lacking. 2. Here we report the first replicated experiment in wild mammals which examines the long-term effects of juvenile and adult environments on individual fitness (reproduction, survival and health). The early development of bank vole (Myodes glareolus) individuals took place in either food-supplemented or un-supplemented outdoor enclosures. After the summer, adult individuals were reciprocally changed to either a similar or opposite resource environment to overwinter. 3. Adult environment had an overriding effect on reproductive success of females so that females overwintering in food-supplemented enclosures had a higher probability of breeding and advanced the initiation of breeding. However, the characteristics of their litters were determined by juvenile environment: females initially grown in food-supplemented conditions subsequently produced larger litters with bigger pups and a male-biased sex ratio. 4. In males, individuals growing in un-supplemented conditions had the highest survival irrespective of adult environment during winter, whereas in females, neither the juvenile nor adult environments affected their survival significantly. The physiological condition of voles in spring, as determined by haematological parameters, was also differentially affected by juvenile (plasma proteins and male testosterone) and adult (haematocrit) environments. 5. Our results suggest that (i) life-history trajectories of voles are not strictly specialized to a certain environment and (ii) the plastic life-history responses to present conditions can actually be caused by delayed effects of the juvenile environment. More generally, the results are important for understanding

  9. C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition

    PubMed Central

    Barantal, Sandra; Schimann, Heidy; Fromin, Nathalie; Hättenschwiler, Stephan

    2014-01-01

    Plant leaf litter generally decomposes faster as a group of different species than when individual species decompose alone, but underlying mechanisms of these diversity effects remain poorly understood. Because resource C : N : P stoichiometry (i.e. the ratios of these key elements) exhibits strong control on consumers, we supposed that stoichiometric dissimilarity of litter mixtures (i.e. the divergence in C : N : P ratios among species) improves resource complementarity to decomposers leading to faster mixture decomposition. We tested this hypothesis with: (i) a wide range of leaf litter mixtures of neotropical tree species varying in C : N : P dissimilarity, and (ii) a nutrient addition experiment (C, N and P) to create stoichiometric similarity. Litter mixtures decomposed in the field using two different types of litterbags allowing or preventing access to soil fauna. Litter mixture mass loss was higher than expected from species decomposing singly, especially in presence of soil fauna. With fauna, synergistic litter mixture effects increased with increasing stoichiometric dissimilarity of litter mixtures and this positive relationship disappeared with fertilizer addition. Our results indicate that litter stoichiometric dissimilarity drives mixture effects via the nutritional requirements of soil fauna. Incorporating ecological stoichiometry in biodiversity research allows refinement of the underlying mechanisms of how changing biodiversity affects ecosystem functioning. PMID:25320173

  10. Bioaccumulation and biological effects of cigarette litter in marine worms.

    PubMed

    Wright, Stephanie L; Rowe, Darren; Reid, Malcolm J; Thomas, Kevin V; Galloway, Tamara S

    2015-01-01

    Marine debris is a global environmental issue. Smoked cigarette filters are the predominant coastal litter item; 4.5 trillion are littered annually, presenting a source of bioplastic microfibres (cellulose acetate) and harmful toxicants to marine environments. Despite the human health risks associated with smoking, little is known of the hazards cigarette filters present to marine life. Here we studied the impacts of smoked cigarette filter toxicants and microfibres on the polychaete worm Hediste diversicolor (ragworm), a widespread inhabitant of coastal sediments. Ragworms exposed to smoked cigarette filter toxicants in seawater at concentrations 60 fold lower than those reported for urban run-off exhibited significantly longer burrowing times, >30% weight loss, and >2-fold increase in DNA damage compared to ragworms maintained in control conditions. In contrast, ragworms exposed to smoked cigarette filter microfibres in marine sediment showed no significant effects. Bioconcentration factors for nicotine were 500 fold higher from seawater than from sediment. Our results illustrate the vulnerability of organisms in the water column to smoking debris and associated toxicants, and highlight the risks posed by smoked cigarette filter debris to aquatic life. PMID:26369692

  11. Bioaccumulation and biological effects of cigarette litter in marine worms

    PubMed Central

    Wright, Stephanie L.; Rowe, Darren; Reid, Malcolm J.; Thomas, Kevin V.; Galloway, Tamara S.

    2015-01-01

    Marine debris is a global environmental issue. Smoked cigarette filters are the predominant coastal litter item; 4.5 trillion are littered annually, presenting a source of bioplastic microfibres (cellulose acetate) and harmful toxicants to marine environments. Despite the human health risks associated with smoking, little is known of the hazards cigarette filters present to marine life. Here we studied the impacts of smoked cigarette filter toxicants and microfibres on the polychaete worm Hediste diversicolor (ragworm), a widespread inhabitant of coastal sediments. Ragworms exposed to smoked cigarette filter toxicants in seawater at concentrations 60 fold lower than those reported for urban run-off exhibited significantly longer burrowing times, >30% weight loss, and >2-fold increase in DNA damage compared to ragworms maintained in control conditions. In contrast, ragworms exposed to smoked cigarette filter microfibres in marine sediment showed no significant effects. Bioconcentration factors for nicotine were 500 fold higher from seawater than from sediment. Our results illustrate the vulnerability of organisms in the water column to smoking debris and associated toxicants, and highlight the risks posed by smoked cigarette filter debris to aquatic life. PMID:26369692

  12. Dual role of lignin in plant litter decomposition in terrestrial ecosystems

    PubMed Central

    Austin, Amy T.; Ballaré, Carlos L.

    2010-01-01

    Plant litter decomposition is a critical step in the formation of soil organic matter, the mineralization of organic nutrients, and the carbon balance in terrestrial ecosystems. Biotic decomposition in mesic ecosystems is generally negatively correlated with the concentration of lignin, a group of complex aromatic polymers present in plant cell walls that is recalcitrant to enzymatic degradation and serves as a structural barrier impeding microbial access to labile carbon compounds. Although photochemical mineralization of carbon has recently been shown to be important in semiarid ecosystems, litter chemistry controls on photodegradative losses are not understood. We evaluated the importance of litter chemistry on photodegradation of grass litter and cellulose substrates with varying levels of lignin [cellulose-lignin (CL) substrates] under field conditions. Using wavelength-specific light attenuation filters, we found that light-driven mass loss was promoted by both UV and visible radiation. The spectral dependence of photodegradation correlated with the absorption spectrum of lignin but not of cellulose. Field incubations demonstrated that increasing lignin concentration reduced biotic decomposition, as expected, but linearly increased photodegradation. In addition, lignin content in CL substrates consistently decreased in photodegradative incubations. We conclude that lignin has a dual role affecting litter decomposition, depending on the dominant driver (biotic or abiotic) controlling carbon turnover. Under photodegradative conditions, lignin is preferentially degraded because it acts as an effective light-absorbing compound over a wide range of wavelengths. This mechanistic understanding of the role of lignin in plant litter decomposition will allow for more accurate predictions of carbon dynamics in terrestrial ecosystems. PMID:20176940

  13. Composition of organic matter in earthworm casts depending on litter quality

    NASA Astrophysics Data System (ADS)

    Ellerbrock, R. H.; Gerke, H. H.; Schrader, S.; Leue, M.

    2009-04-01

    Earthworms contribute to decomposition and stabilization of organic matter (OM) in soil. The digestion during intestinal passage inside worms may lead to a change in the composition of OM. It is largely unknown if and how the type of litter the earthworm is feeding on is affecting the OM composition in the casts. Fourier Transform infrared spectroscopy (FTIR) is used to determine the hydrophobic CH- (A) and the hydrophilic CO- (B) functional groups in OM. The objective was to compare the A/B- ratios of litter samples with that of (i) the corresponding casts of the primary decomposer Lumbricus terrestris and (ii) the water contact angles of ground cast samples and at intact cast surfaces. Litter from 10 different plant species including leaves of birch, beech, oak, spruce, pear, mustard and wheat straw (3 replicates) was offered separately to L. terrestris in microcosms containing a Luvisol soil. The OM composition of litter and that of casts, collected from the soil surface after 4-weeks was analyzed with FTIR (DRIFT technique). The A/B ratio of casts was generally increased as compared to that of the soil. For most litter types, the A/B ratio of cast was relatively similar except for casts from birch (Betula pendula) and pear (Pyrus communis) where the OM show a 3-times higher A/B ratio as compared to wheat (Triticum aestivum) or beech (Fagus sylvatica) casts. The higher A/B ratios seem to be related to the relative higher C/N ratios in the casts from Betula pendula and Pyrus communis feeding experiments. The results indicate that digestion of litter by the worm may change OM composition. The assumption that earthworm casts may enrich hydrophobic OM components could be verified only partly. However particulate and soluble OM fractions in the earthworm casts could have contributed to such differentiation.

  14. Influence of Leaf Litter Moisture on the Efficiency of the Winkler Method for Extracting Ants

    PubMed Central

    Delsinne, Thibaut D.; Arias-Penna, Tania M.

    2012-01-01

    The Winkler extraction is one of the two fundamental sampling techniques of the standardized “Ants of the Leaf Litter” protocol, which aims to allow qualitative and quantitative comparisons of ant (Hymenoptera: Formicidae) assemblages. To achieve this objective, it is essential that the standard 48—hour extraction provides a reliable picture of the assemblages under study. Here, we tested to what extent the efficiency of the ant extraction is affected by the initial moisture content of the leaf litter sample. In an Ecuadorian mountain rainforest, the leaf litter present under rainfall—excluded and rainfall—allowed plots was collected, its moisture content measured, and its ant fauna extracted with a mini—Winkler apparatus for a 48—hour and a 96—hour period. The efficiency of the Winkler method to extract ant individuals over a 48—hour period decreased with the moisture content of the leaf litter sample. However, doubling the extraction time did not improve the estimations of the ant species richness, composition, and relative abundance. Although the moisture content of the leaf litter slightly affected the ant sampling, our results indicated that a 48—hour Winkler extraction, as recommended by the “Ants of the Leaf Litter” protocol, is sufficient to allow reliable comparisons of ant assemblages. PMID:22962850

  15. Changes in litter near an aluminum reduction plant

    USGS Publications Warehouse

    Beyer, W.N.; Fleming, W.J.; Swineford, D.

    1987-01-01

    Litter was collected from eight sites at distances as far as 33 km from an AI reduction plant in western Tennessee. As a result of an accumulation of fine litter (< 4.75 mm) the weight of the litter per unit area was abnormally high at the two sites within 2 km of the plant. Compared to litter collected far from the plant, it had a lower fiber content, was more sapric, and was less acid. Fluoride emissions from the plant were suggested as the probable cause of litter changes. Concentrations of water-extractable and acid-extractable F- in the litter, the 0- to 5-cm soil layer, and the 5- to 15-cm soil layer were strongly correlated with distance from the plant. Total acid-extractable F- in the litter and upper 15 cm of soil was about 41 times as much at the closest site (700 mg/kg) as at the most distant sites (12 and 16 mg/kg). In a bioassay of litter from our study sites, woodlice (Porcellio scaber Latr.) had an abnormally high mortality in litter that contained 440 mg/kg or more of acid-extractable F-. However, when F- was added as NaF to litter, a significant increase in mortality was observed only in treatments exceeding 800 mg/kg. The decrease in the rate of decomposition of the litter might eventually induce a deficiency of soil macronutrients, but none was detected.

  16. Evidence for the importance of litter as a co-substrate for MCPA dissipation in an agricultural soil.

    PubMed

    Saleh, Omar; Pagel, Holger; Enowashu, Esther; Devers, Marion; Martin-Laurent, Fabrice; Streck, Thilo; Kandeler, Ellen; Poll, Christian

    2016-03-01

    Environmental controls of 2-methyl-4-chlorophenoxyacetic acid (MCPA) degradation are poorly understood. We investigated whether microbial MCPA degraders are stimulated by (maize) litter and whether this process depends on concentrations of MCPA and litter. In a microcosm experiment, different amounts of litter (0, 10 and 20 g kg(-1)) were added to soils exposed to three levels of the herbicide (0, 5 and 30 mg kg(-1)). The treated soils were incubated at 20 °C for 6 weeks, and samples were taken after 1, 3 and 6 weeks of incubation. In soils with 5 mg kg(-1) MCPA, about 50 % of the MCPA was dissipated within 1 week of the incubation. Almost complete dissipation of the herbicide had occurred by the end of the incubation with no differences between the three litter amendments. At the higher concentration (30 mg kg(-1)), MCPA endured longer in the soil, with only 31 % of the initial amount being removed at the end of the experiment in the absence of litter. Litter addition greatly increased the dissipation rate with 70 and 80 % of the herbicide being dissipated in the 10 and 20 g kg(-1) litter treatments, respectively. Signs of toxic effects of MCPA on soil bacteria were observed from related phospholipid fatty acid (PLFA) analyses, while fungi showed higher tolerance to the increased MCPA levels. The abundance of bacterial tfdA genes in soil increased with the co-occurrence of litter and high MCPA concentration, indicating the importance of substrate availability in fostering MCPA-degrading bacteria and thereby improving the potential for removal of MCPA in the environment. PMID:25943518

  17. Temporal dynamics of biotic and abiotic drivers of litter decomposition.

    PubMed

    García-Palacios, Pablo; Shaw, E Ashley; Wall, Diana H; Hättenschwiler, Stephan

    2016-05-01

    Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single-pool approach applying control variables uniformly to the entire decay process. PMID:26947573

  18. Litterfall, litter and associated chemistry in a dry sclerophyll eucalypt forest and a pine plantation in south-eastern Australia: 2. Nutrient recycling by litter, throughfall and stemflow

    NASA Astrophysics Data System (ADS)

    Crockford, R. H.; Richardson, D. P.

    1998-03-01

    This paper concerns recycling of the major nutrients (N, P, Ca, Mg, Na and K) by litterfall, throughfall and stemflow in a dry sclerophyll eucalypt forest and a nearby Pinus radiata plantation of similar tree density and basal area. With the exception of Mg, the concentration of these nutrients in eucalypt leaf-fall were substantially higher than in pine needlefall. The eucalypt nutrient input was greater owing to larger mass of litterfall, as well as higher concentrations. There were inverse relationships between N and P concentrations and amount of leaf-fall for the eucalypts and needlefall for the pines. Mg was positively correlated with eucalypt leaf-fall. For the other components and elements the relationships were random.The proportion of particular nutrients recycled by litterfall, and throughfall and stemflow, varied for both forests. For Ca, only 6 and 12%, for eucalypts and pines respectively, was recycled by throughfall and stemflow, compared with 52 and 68% of potassium. The amount of nitrogen recycled differed between the forests, in a way that was consistent with the eucalypts being native to a nitrogen-poor environment. Amounts of floor-litter collected in the eucalypt forest from two fairly distinct layers, the loose and cohesive litter, were similar. The concentrations of Mg and Na were similar in both layers, but the other elements varied substantially. The N concentration of the cohesive litter was more than double that of the loose layer, whereas its P concentration was only 10% of the loose layer value.Selected chemical analyses on the total tree biomass of the eucalypt forest showed that the concentration of elements increased in the order; wood, twigs, fine twigs and leaf, and from large diameter wood to fine twigs. However, the concentration in fine twig and leaf components varied between the elements. For Ca, P and K, the fine twig values were greater than the leaf values, but the reverse applied to the other elements. The concentrations of

  19. Decay Rates and Semi-stable Fraction Formation after 12 years of Foliar Litter Decomposition in Canadian Forests

    NASA Astrophysics Data System (ADS)

    Trofymow, J. A.; Smyth, C.; Moore, T.; Prescott, C.; Titus, B.; Siltanen, M.; Visser, S.; Preston, C. M.; Nault, J.

    2009-12-01

    Litter decay in early and midphases of decomposition have been shown to highly influenced by climate and substrate quality, however factors affecting decay during the late semi-stable phase are less well understood. The Canadian Intersite Decomposition Experiment (CIDET) was established in 1992 with the objective of providing data on the long-term rates of litter decomposition and nutrient mineralization for a range of forested ecoclimatic regions in Canada. Such data were needed to help verify models used for national C accounting, as well as aid in the development of other soil C models. CIDET examined the annual decay, over a 12-year period, of 10 standard foliar litters and 2 wood substrates at 18 forested upland and 3 wetland sites ranging from the cool temperate to subarctic regions, a nearly 20oC span in temperature. On a subset of sites and litter types, changes in litter C chemistry over time were also determined. Over the first 6 years, C/N ratio and iron increased, NMR showed an overall decline in O-alkyl C (carbohydrates) and increase in alkyl, aromatic, phenolic, and carboxyl C. Proximate analysis showed the acid unhydrolyzable residue (AUR) increases, but true lignin did not accumulate, in contrast to the conceptual ligno-cellulose model of decomposition. Litter decay during first phase was related to initial litter quality (AUR and water soluble extract), winter precipitation, but not temperature, suggesting the importance of leaching during this phase. Decay rate “k” during the mid phase was related to temperature, initial litter quality (AUR and AUR/N), summer precipitation, but not soil N. In most cases decay had approached an asymptote before end of experiment. Although annual temperature was the best single predictor for 12-year asymptotes, summer precipitation and forest floor pH and C/N ratio were the best set of combined predictors. The changes in the decay factors during different phases may explain some of the discrepancies in the

  20. Metaproteome analysis of the microbial community during leaf litter decomposition - the impact of stoichiometry and temperature perturbations

    NASA Astrophysics Data System (ADS)

    Keiblinger, K. M.; Schneider, T.; Leitner, S.; Hämmerle, I.; Riedel, K.; Zechmeister-Boltenstern, S.

    2012-04-01

    Leaf litter decomposition is the breakdown of dead plant material, a terrestrial ecosystem process of paramount importance. Nutrients released during decomposition play a key role for microbial growth and plant productivity. These processes are controlled by abiotic factors, such as climate, and by biotic factors, such as litter nutrient concentration and stoichiometry (carbon:nutrient ratio) and activity of soil organisms. Future climate change scenarios predict temperature perturbations, therefore following changes of microbial community composition and possible feedbacks on ecosystem processes are of key interest; especially as our knowledge about the microbial regulation of these processes is still scarce. Our aim was to elucidate how temperature perturbations and leaf litter stoichiometry affect the composition of the microbial decomposer community. To this end a terrestrial microcosm experiment using beech (Fagus sylvatica) litter with different stoichiometry was conducted. In a semi-quantitative metaproteomics approach (1D-SDS PAGE combined with liquid chromatography and tandem mass spectrometry; unique spectral counting) we used the intrinsic metabolic function of proteins to relate specific microbial activities to their phylogenetic origin in multispecies communities. Decomposer communities varied on litter with different stoichiometry so that microbial decomposers (fungi and bacteria) were favoured in litter with narrow C:nutrient ratios. The fungal community was dominated by Ascomycota (Eurotiomycetes, Sordariomycetes) and Basidiomycota (Agaricomycetes) and the bacterial community was dominated by Proteobacteria, Actinobacteria and Firmicutes. The extracellular enzymes we detected belonged mainly to classes of xylanases, pectinases, cellulases and proteases and were almost exclusively of fungal origin (particularly Ascomycota). Temperature stress (heat and frost) evoked strong changes in community composition, enzyme activities, dissolved organic

  1. How nurses and their work environment affect patient experiences of the quality of care: a qualitative study

    PubMed Central

    2014-01-01

    Background Healthcare organisations monitor patient experiences in order to evaluate and improve the quality of care. Because nurses spend a lot of time with patients, they have a major impact on patient experiences. To improve patient experiences of the quality of care, nurses need to know what factors within the nursing work environment are of influence. The main focus of this research was to comprehend the views of Dutch nurses on how their work and their work environment contribute to positive patient experiences. Methods A descriptive qualitative research design was used to collect data. Four focus groups were conducted, one each with 6 or 7 registered nurses in mental health care, hospital care, home care and nursing home care. A total of 26 nurses were recruited through purposeful sampling. The interviews were audiotaped, transcribed and subjected to thematic analysis. Results The nurses mentioned essential elements that they believe would improve patient experiences of the quality of nursing care: clinically competent nurses, collaborative working relationships, autonomous nursing practice, adequate staffing, control over nursing practice, managerial support and patient-centred culture. They also mentioned several inhibiting factors, such as cost-effectiveness policy and transparency goals for external accountability. Nurses feel pressured to increase productivity and report a high administrative workload. They stated that these factors will not improve patient experiences of the quality of nursing care. Conclusions According to participants, a diverse range of elements affect patient experiences of the quality of nursing care. They believe that incorporating these elements into daily nursing practice would result in more positive patient experiences. However, nurses work in a healthcare context in which they have to reconcile cost-efficiency and accountability with their desire to provide nursing care that is based on patient needs and preferences, and

  2. The effect of saprophagous macrofauna on litter decomposition

    NASA Astrophysics Data System (ADS)

    Frouz, Jan

    2016-04-01

    Previous experiments show that feeding of the larvae of Bibionidae on lef litter cause short term increase of respiration but in long term the decomposition of bibio feces is slower than decomposition of litter from which feces were produced. To understand why excrements of decompose more slowly than leaf litter, we fed Bibio marci larvae the litter of tree species differing in litter quality (Alnus glutinosa, Salix caprea, and Quercus robur) and then measured respiration induced by litter and excrements. We also measured respiration induced by the same litter artificially modified to mimic faunal effects; the litter was modified by grinding, grinding with alkalinization to pH 11, grinding with coating by kaolinite, and grinding with both alkalinization and coating. Decomposition of excrements tended to be slower for willow and was significantly slower for oak and alder than for the corresponding litter. With oak, decomposition was slower for all artificially modified litter than for non-modified litter. The reduction in the decomposition was similar for excrements and for alder and willow litter that was ground, coated, and alkalinized. In alder, a similar reduction was found in ground and alkalinized litter. 13C NMR indicated that gut passage increases aliphatic components and decreases polysaccharides. Pyrolysis indicated that gut passage increases the ratio of guaiacyl to hydroxymethyl derivatives in lignin. Our findings indicate that the decreased decomposition rate of excrements might result from the removal of easily available polysaccharides, the increase in aliphatic components, an increase in the resistant components of lignin, the accumulation of microbial cell walls, and the binding of nitrogen into complexes with aromatic components. Several of these mechanisms are supported or determined by litter alkalinization during gut passage.

  3. Genotype × Herbivore Effect on Leaf Litter Decomposition in Betula Pendula Saplings: Ecological and Evolutionary Consequences and the Role of Secondary Metabolites

    PubMed Central

    Silfver, Tarja; Paaso, Ulla; Rasehorn, Mira; Rousi, Matti; Mikola, Juha

    2015-01-01

    Plant genetic variation and herbivores can both influence ecosystem functioning by affecting the quantity and quality of leaf litter. Few studies have, however, investigated the effects of herbivore load on litter decomposition at plant genotype level. We reduced insect herbivory using an insecticide on one half of field-grown Betula Pendula saplings of 17 genotypes, representing random intrapopulation genetic variation, and allowed insects to naturally colonize the other half. We hypothesized that due to induced herbivore defence, saplings under natural herbivory produce litter of higher concentrations of secondary metabolites (terpenes and soluble phenolics) and have slower litter decomposition rate than saplings under reduced herbivory. We found that leaf damage was 89 and 53% lower in the insecticide treated saplings in the summer and autumn surveys, respectively, which led to 73% higher litter production. Litter decomposition rate was also affected by herbivore load, but the effect varied from positive to negative among genotypes and added up to an insignificant net effect at the population level. In contrast to our hypothesis, concentrations of terpenes and soluble phenolics were higher under reduced than natural herbivory. Those genotypes, whose leaves were most injured by herbivores, produced litter of lowest mass loss, but unlike we expected, the concentrations of terpenes and soluble phenolics were not linked to either leaf damage or litter decomposition. Our results show that (1) the genetic and herbivore effects on B. pendula litter decomposition are not mediated through variation in terpene or soluble phenolic concentrations and suggest that (2) the presumably higher insect herbivore pressure in the future warmer climate will not, at the ecological time scale, affect the mean decomposition rate in genetically diverse B. pendula populations. However, (3) due to the significant genetic variation in the response of decomposition to herbivory, evolutionary

  4. Communication, support and psychosocial work environment affecting psychological distress among working women aged 20 to 39 years in Japan.

    PubMed

    Honda, Ayumi; Date, Yutaka; Abe, Yasuyo; Aoyagi, Kiyoshi; Honda, Sumihisa

    2016-01-29

    When compared with their older counterparts, younger women are more likely to have depressive symptoms because they more often experience interrupted work history and a heavy childrearing burden. The purposes of the present study were 1) to investigate the possible association of psychosocial work environment with psychological distress and 2) to examine the way by which communication and support in the workplace affect to psychological distress among young women. We studied 198 women aged 20 to 39 yr in a cross-sectional study. The Kessler Scale-10 (K10 Scale) was used to examine psychological distress. In employees who experienced interpersonal conflict, those who had little or no conversations with their supervisor and/or co-workers had a significantly increased risk of psychological distress (OR, 4.2), and those who received little or no support from their supervisor and/or co-workers had a significantly increased risk of psychological distress (OR, 3.8) compared to those who had more frequent communication and received more support. Harmonious communication in the workplace can help prevent psychological distress among employees, which in turn may enable them to be satisfied with their work. PMID:26320729

  5. Communication, support and psychosocial work environment affecting psychological distress among working women aged 20 to 39 years in Japan

    PubMed Central

    HONDA, Ayumi; DATE, Yutaka; ABE, Yasuyo; AOYAGI, Kiyoshi; HONDA, Sumihisa

    2015-01-01

    When compared with their older counterparts, younger women are more likely to have depressive symptoms because they more often experience interrupted work history and a heavy childrearing burden. The purposes of the present study were 1) to investigate the possible association of psychosocial work environment with psychological distress and 2) to examine the way by which communication and support in the workplace affect to psychological distress among young women. We studied 198 women aged 20 to 39 yr in a cross-sectional study. The Kessler Scale-10 (K10 Scale) was used to examine psychological distress. In employees who experienced interpersonal conflict, those who had little or no conversations with their supervisor and/or co-workers had a significantly increased risk of psychological distress (OR, 4.2), and those who received little or no support from their supervisor and/or co-workers had a significantly increased risk of psychological distress (OR, 3.8) compared to those who had more frequent communication and received more support. Harmonious communication in the workplace can help prevent psychological distress among employees, which in turn may enable them to be satisfied with their work. PMID:26320729

  6. Environment.

    ERIC Educational Resources Information Center

    White, Gilbert F.

    1980-01-01

    Presented are perspectives on the emergence of environmental problems. Six major trends in scientific thinking are identified including: holistic approaches to examining environments, life support systems, resource management, risk assessment, streamlined methods for monitoring environmental change, and emphasis on the global framework. (Author/SA)

  7. Trees as templates for tropical litter arthropod diversity.

    PubMed

    Donoso, David A; Johnston, Mary K; Kaspari, Michael

    2010-09-01

    Increased tree species diversity in the tropics is associated with even greater herbivore diversity, but few tests of tree effects on litter arthropod diversity exist. We studied whether tree species influence patchiness in diversity and abundance of three common soil arthropod taxa (ants, gamasid mites, and oribatid mites) in a Panama forest. The tree specialization hypothesis proposes that tree-driven habitat heterogeneity maintains litter arthropod diversity. We tested whether tree species differed in resource quality and quantity of their leaf litter and whether more heterogeneous litter supports more arthropod species. Alternatively, the abundance-extinction hypothesis states that arthropod diversity increases with arthropod abundance, which in turn tracks resource quantity (e.g., litter depth). We found little support for the hypothesis that tropical trees are templates for litter arthropod diversity. Ten tree species differed in litter depth, chemistry, and structural variability. However, the extent of specialization of invertebrates on particular tree taxa was low and the more heterogeneous litter between trees failed to support higher arthropod diversity. Furthermore, arthropod diversity did not track abundance or litter depth. The lack of association between tree species and litter arthropods suggests that factors other than tree species diversity may better explain the high arthropod diversity in tropical forests. PMID:20349247

  8. Human Vestibular Function, Rotating Litter Chair - Skylab Experiment M131

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This 1970 photograph shows the Rotating Litter Chair, a major component of Skylab's Human Vestibular Function experiment (M131). The experiment was a set of medical studies designed to determine the effect of long-duration space missions on astronauts' coordination abilities. The M131 experiment tested the astronauts susceptibility to motion sickness in the Skylab environment, acquired data fundamental to an understanding of the functions of human gravity reception under prolonged absence of gravity, and tested for changes in the sensitivity of the semicircular canals. Data from this experiment was collected before, during, and after flight. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  9. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material.

    PubMed

    Erhagen, Björn; Öquist, Mats; Sparrman, Tobias; Haei, Mahsa; Ilstedt, Ulrik; Hedenström, Mattias; Schleucher, Jürgen; Nilsson, Mats B

    2013-12-01

    The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O-aromatic compounds, and increased with increased contents of alkyl- and O-alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the (13) C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate. PMID:23907960

  10. Ultraviolet photodegradation facilitates microbial litter decomposition in a Mediterranean climate.

    PubMed

    Baker, Nameer R; Allison, Steven D

    2015-07-01

    Rates of litter decomposition in dryland ecosystems are consistently underestimated by decomposition models driven by temperature, moisture, and litter chemistry. The most common explanation for this pattern is that ultraviolet radiation (UV) increases decomposition through photodegradation of the litter lignin fraction. Alternatively, UV could increase decomposition through effects on microbial activity. To assess the mechanisms underlying UV photodegradation in a semiarid climate, we exposed high- and low-lignin litter to ambient and blocked UV over 15 months in a Mediterranean ecosystem. We hypothesized that UV would increase litter mass loss, that UV would preferentially increase mass loss of the lignin fraction, and that UV would have a negative effect on microbial activity. Consistent with our first hypothesis, we found that UV-blocking reduced litter mass loss from 16% to 1% in high-lignin litter and from 29% to 17% in low-lignin litter. Contrary to our second hypothesis, UV treatment did not have a significant effect on lignin content in either litter type. Instead, UV-blocking significantly reduced cellulose and hemicellulose mass loss in both litter types. Contrary to our third hypothesis, we observed a positive effect of UV on both fungal abundance and the potential activities of several assayed extracellular enzymes. Additionally, under ambient UV only, we found significant correlations between potential activities of cellulase and oxidase enzymes and both the concentrations and degradation rates of their target compounds. Our results indicate that UV is a significant driver of litter mass loss in Mediterranean ecosystems, but not solely because UV directly degrades carbon compounds such as lignin. Rather, UV facilitates microbial degradation of litter compounds, such as cellulose and hemicellulose. Thus, unexpectedly high rates of litter decomposition previously attributed directly to UV in dryland ecosystems may actually derive from a synergistic

  11. Litter and soil properties are not altered by invasive deer browsing in forests of NW Patagonia

    NASA Astrophysics Data System (ADS)

    Relva, María Andrea; Castán, Elisa; Mazzarino, María Julia

    2014-01-01

    It is largely accepted that large mammalian herbivores can indirectly influence ecosystem properties by changing the quantity and quality of litter inputs to soil through selective browsing on plant communities. However, idiosyncratic effects (positive, neutral and negative) have been found for different vegetation types, herbivory and soil properties. In this study we tested whether browsing by exotic deer introduced into Patagonian forests 90 years ago alters physical, chemical and biological soil properties and litter quantity and quality. As in many terrestrial ecosystems, N is the main nutrient that limits plant growth in Patagonia. Consequently, any disturbance that alters the N cycle, such as changes in the type or intensity of herbivory, is expected to affect these forest ecosystems. We compared soil and total litter from inside and outside five 7-yr old exclosures located on Isla Victoria, Parque Nacional Nahuel Huapi, Argentina. Despite introduced deer has significantly affected the composition, abundance and structure of the understory vegetation, we found no differences between browsed and unbrowsed areas in the physical (bulk density, moisture), chemical (pH, base cations, organic C and total N) and biological (potential microbial respiration and net N mineralization) soil properties. This could be attributable to the high capacity of volcanic soils to stabilize organic matter, buffering disturbance-induced changes. However, the quantity and quality (C, N and C/N ratio) of total litter were also not different between browsed and unbrowsed areas. Although non-significant differences were found between treatments in both compartments, litter and soil, most variables showed a slight trend toward higher values in unbrowsed areas. This suggests that 7 years of browsing exclusion would be not enough to detect changes induced by browsing, particularly in highly stable volcanic soils.

  12. Leaf litter decay process and the growth performance of Aedes albopictus larvae (Diptera: Culicidae).

    PubMed

    Dieng, Hamady; Mwandawiro, Charles; Boots, Michael; Morales, Ronald; Satho, Tomomitsu; Tuno, Nobuko; Tsuda, Yoshio; Takagi, Masahiro

    2002-06-01

    Larvae of the mosquito Ae. albopictus typically develop in small aquatic sites such as tree holes and artificial containers. Organic detritus, in particular decaying leaves, is therefore their major carbon source. Here we demonstrate the importance of leaf characteristics, and in particular their rates of decay, in determining the development and survivorship of larvae. We compared the effects of a rapidly decaying leaf, the maple Acer buergerianum (Angiospermae: Aceraceae) and a slowly decaying leaf, the camphor Cinnamomum japonicum (Angiospermae: Lauraceae), on the larval development of Ae. albopictus at different larval densities in laboratory microcosms. Overall, the maple leaves provided a better substrate and the observed growth patterns could be explained on the basis of a difference in nutritive and chemical contents of the two leaf types. At the highest population density, the duration of the larval period was much shorter in maple litter microcosms. Larval mortality gradually increased with population density in the camphor treatment. In contrast in the rapidly decaying leaf litter microcosms, mortality remained low even as densities increased. Mean pupal size was greater in the individuals fed on the rapidly decaying leaf litter as well as at lower density. Size is likely to be correlated with fitness in the field. In general, rapidly decaying leaf litter will favor mosquito growth resulting in quicker development and higher population sizes. This work emphasizes the importance of the local environment on the development of vector mosquitoes and has important implications for control. PMID:12125870

  13. Pelage insulation, litter size, and ambient temperature impact maternal energy intake and offspring development during lactation

    PubMed Central

    Paul, Matthew J.; Tuthill, Christiana; Kauffman, Alexander S.; Zucker, Irving

    2010-01-01

    Energy balance during lactation critically influences survival and growth of a mother’s offspring, and hence, her reproductive success. Most experiments have investigated the influence of a single factor (e.g., ambient temperature [Ta] or litter size) on the energetics of lactation. Here, we determined the impact of multiple interventions, including increased conductive heat loss consequent to dorsal fur removal, cold exposure (Ta of 5°C versus 23°C), and differential lactational load from litters of different sizes (2 or 4 pups), on maternal energy balance and offspring development of Siberian hamsters (Phodopus sungorus). Lower Ta, fur removal, and larger litters were associated with increased maternal food consumption. Females exposed to multiple challenges (e.g., both fur loss and lower Ta) ate substantially more food than those exposed to a single challenge, with no apparent ceiling to elevated food intake (increases up to 538%). Thus, energy intake of dams under these conditions does not appear to be limited by feeding behavior or the size of the digestive tract. Housing at 5°C attenuated pup weight gain and increased pup mortality to more than 5 times that of litters housed at 23°C. Increases in the dam’s conductive heat loss induced by fur removal did not affect pup weight gain or survival, suggesting that effects of low Ta on pup weight gain and survival reflect limitations in the pups’ ability to ingest or incorporate energy. PMID:20184907

  14. CARBON AND NITROGEN STORAGE IN SOIL AND LITTER OF SOUTHERN CALIFORNIAN SEMI-ARID SHRUBLANDS

    PubMed Central

    Vourlitis, George L.; Zorba, Gypsi; Pasquini, Sarah C.; Mustard, Robert

    2009-01-01

    Semi-arid shrublands of southern California, including chaparral and coastal sage, are found in widely varying elevation and microclimatic regimes and are subjected to disturbance such as fire and atmospheric N deposition that have the capacity to alter soil and litter C and N storage. Here we present a case study where soil and litter C and N were measured over 19 months in post-fire chaparral and mature coastal sage stands to assess whether differences in soil and litter C and N between these diverse shrublands could be attributed to differences in elevation, stand age, rainfall, and/or estimated N deposition exposure. Our results indicate that atmospheric N deposition exposure, either alone or in conjunction with other environmental variables (elevation, rainfall, and/or stand age), was the most frequent predictor of the spatial pattern in the soil and litter N and C variables observed. These results are consistent with those reported for high-elevation coniferous forests arrayed along an N deposition gradient in southern California, suggesting that N deposition may affect the soil N and C storage of semiarid shrublands and woodlands in a qualitatively similar manner. PMID:21654933

  15. ELF communications system ecological monitoring program: Litter decomposition and microflora studies

    NASA Astrophysics Data System (ADS)

    Bruhn, Johann N.; Bagley, Susan T.; Pickens, James B.

    1994-10-01

    The U.S. Navy has completed a program monitoring flora, fauna, and ecological relationships for possible effects from electromagnetic fields produced by its Extremely Low Frequency (ELF) Communications System. This report documents studies of litter decomposition and soil microflora conducted near its transmitting antenna in Michigan. From 1982 through 1993 researchers from the Michigan Technological University (MTU) monitored overall litter decomposition, as well as microflora (bacteria and fungi) important both as processors of organic material and causative agents of tree disease. Studies were performed in areas near (treatment) and far (control) from the ELF antenna Study parameters included total number of streptomycete individuals and species; mass loss of maple, oak, and pine leaf litter; and frequency of red pine mortality from Armillaria root disease. The MTU research team used several statistical models; however, nested analysis of covariance was the most frequently used test. Based on the results of their study, MTU investigators conclude that the EM fields produced by the Naval Radio Transmitting Facility-Republic, Michigan did not affect soil bacteria populations or the spread of the root disease. Loss of foliar mass suggests a statistically significant, but modest, increase in the rate of litter decomposition, possibly associated with electromagnetic exposure.

  16. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.

    PubMed

    Funck, J Arce; Clivot, H; Felten, V; Rousselle, P; Guérold, F; Danger, M

    2013-11-15

    The functioning of forested headwater streams is intimately linked to the decomposition of leaf litter by decomposers, mainly aquatic hyphomycetes, which enables the transfer of allochthonous carbon to higher trophic levels. Evaluation of this process is being increasingly used as an indicator of ecosystem health and ecological integrity. Yet, even though the individual impacts of contaminants and nutrient availability on decomposition have been well studied, the understanding of their combined effects remains limited. In the current study, we investigated whether the toxic effects of a reemerging contaminant, silver (Ag), on leaf litter decomposition could be partly overcome in situations where microorganisms were benefitting from high phosphorus (P) availability, the latter being a key chemical element that often limits detritus decomposition. We also investigated whether these interactive effects were mediated by changes in the structure of the aquatic hyphomycete community. To verify these hypotheses, leaf litter decomposition by a consortium of ten aquatic hyphomycete species was followed in a microcosm experiment combining five Ag contamination levels and three P concentrations. Indirect effects of Ag and P on the consumption of leaf litter by the detritivorous crustacean, Gammarus fossarum, were also evaluated. Ag significantly reduced decomposition but only at the highest concentration tested, independently of P level. By contrast, P and Ag interactively affected fungal biomass. Both P level and Ag concentrations shaped microbial communities without significantly affecting the overall species richness. Finally, the levels of P and Ag interacted significantly on G. fossarum feeding rates, high [Ag] reducing litter consumption and low P availability tending to intensify the feeding rate. Given the high level of contaminant needed to impair the decomposition process, it is unlikely that a direct effect of Ag on leaf litter decomposition could be observed in

  17. Quality of soluble organic C, N, and P produced by different types and species of litter: root litter versus leaf litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In forested ecosystems, the quality of dissolved organic matter (DOM) produced by freshly senesced litter may differ by litter type and species, and these differences may influence the amount of DOM that is respired versus that which may either contribute to soil organic matter accumulation or be le...

  18. Gap locations influence the release of carbon, nitrogen and phosphorus in two shrub foliar litter in an alpine fir forest

    PubMed Central

    He, Wei; Wu, Fuzhong; Yang, Wanqin; Zhang, Danju; Xu, Zhenfeng; Tan, Bo; Zhao, Yeyi; Justine, Meta Francis

    2016-01-01

    Gap formation favors the growth of understory plants and affects the decomposition process of plant debris inside and outside of gaps. Little information is available regarding how bioelement release from shrub litter is affected by gap formation during critical periods. The release of carbon (C), nitrogen (N), and phosphorus (P) in the foliar litter of Fargesia nitida and Salix paraplesia in response to gap locations was determined in an alpine forest of the eastern Qinghai-Tibet Plateau via a 2-year litter decomposition experiment. The daily release rates of C, N, and P increased from the closed canopy to the gap centers during the two winters, the two later growing seasons and the entire 2 years, whereas this trend was reversed during the two early growing seasons. The pairwise ratios among C, N, and P converged as the litter decomposition proceeded. Compared with the closed canopy, the gap centers displayed higher C:P and N:P ratio but a lower C:N ratio as the decomposition proceeded. Alpine forest gaps accelerate the release of C, N, and P in decomposing shrub litter, implying that reduced snow cover resulting from vanishing gaps may inhibit the release of these elements in alpine forests. PMID:26906762

  19. Gap locations influence the release of carbon, nitrogen and phosphorus in two shrub foliar litter in an alpine fir forest.

    PubMed

    He, Wei; Wu, Fuzhong; Yang, Wanqin; Zhang, Danju; Xu, Zhenfeng; Tan, Bo; Zhao, Yeyi; Justine, Meta Francis

    2016-01-01

    Gap formation favors the growth of understory plants and affects the decomposition process of plant debris inside and outside of gaps. Little information is available regarding how bioelement release from shrub litter is affected by gap formation during critical periods. The release of carbon (C), nitrogen (N), and phosphorus (P) in the foliar litter of Fargesia nitida and Salix paraplesia in response to gap locations was determined in an alpine forest of the eastern Qinghai-Tibet Plateau via a 2-year litter decomposition experiment. The daily release rates of C, N, and P increased from the closed canopy to the gap centers during the two winters, the two later growing seasons and the entire 2 years, whereas this trend was reversed during the two early growing seasons. The pairwise ratios among C, N, and P converged as the litter decomposition proceeded. Compared with the closed canopy, the gap centers displayed higher C:P and N:P ratio but a lower C:N ratio as the decomposition proceeded. Alpine forest gaps accelerate the release of C, N, and P in decomposing shrub litter, implying that reduced snow cover resulting from vanishing gaps may inhibit the release of these elements in alpine forests. PMID:26906762

  20. On-farm evaluation of aluminum sulfate (alum) as a poultry litter amendment: effects on litter properties.

    PubMed

    Sims, J T; Luka-McCafferty, N J

    2002-01-01

    Aluminum sulfate [alum; Al2(SO4)3] amendment of poultry litters has been suggested as a best management practice to help reduce the potential environmental effects of poultry production. Past research has shown that alum treatment reduced NH3 emissions from litters, decreased the loss in runoff of P and trace metals from litter-amended soils, improved poultry health, and reduced the costs of poultry production. We conducted a large scale, "on-farm" evaluation of alum as a poultry (broiler) litter amendment on the Delmarva peninsula to determine the effect of alum on (i) litter properties and elemental composition and (ii) the solubility of several elements in litter that are of particular concern for water quality (Al, As, Cu, P, and Zn). Alum was applied over a 16-mo period to 97 poultry houses on working poultry farms; 97 houses on other farms served as controls (no alum). Litter samples were analyzed initially and after approximately seven alum applications. We found that alum decreased litter pH and the water solubility of P, As, Cu, and Zn. Alum-treated houses also had higher litter total N, NH4-N, and total S concentrations and thus a greater overall fertilizer value than litters from the control houses. Higher litter NH4-N values also suggest that alum reduced NH3 losses from litters. Thus, alum appears to have promise as a best management practice (BMP) for poultry production. Future research should focus on the long-term transformations of P, Al, As, Cu, and Zn in soils amended with alum-treated litters. PMID:12469858

  1. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments

    NASA Astrophysics Data System (ADS)

    Portillo-Estrada, Miguel; Pihlatie, Mari; Korhonen, Janne F. J.; Levula, Janne; Frumau, Arnoud K. F.; Ibrom, Andreas; Lembrechts, Jonas J.; Morillas, Lourdes; Horváth, László; Jones, Stephanie K.; Niinemets, Ülo

    2016-03-01

    Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical composition, but it is unclear how such changes could potentially alter litter decomposition. Litter transplantation experiments were carried out across six European sites (four forests and two grasslands) spanning a large geographical and climatic gradient (5.6-11.4 °C in annual temperature 511-878 mm in precipitation) to gain insight into the climatic controls on litter decomposition as well as the effect of litter origin and species. The decomposition k rates were overall higher in warmer and wetter sites than in colder and drier sites, and positively correlated with the litter total specific leaf area. Also, litter N content increased as less litter mass remained and decay went further. Surprisingly, this study demonstrates that climatic controls on litter decomposition are quantitatively more important than species or site of origin. Cumulative climatic variables, precipitation, soil water content and air temperature (ignoring days with air temperatures below zero degrees Celsius), were appropriate to predict the litter remaining mass during decomposition (Mr). Mr and cumulative air temperature were found to be the best predictors for litter carbon and nitrogen remaining during the decomposition. Using mean annual air temperature, precipitation, soil water content and litter total specific leaf area as parameters we were able to predict the annual decomposition rate (k) accurately.

  2. How salinity and temperature combine to affect physiological state and performance in red knots with contrasting non-breeding environments.

    PubMed

    Gutiérrez, Jorge S; Soriano-Redondo, Andrea; Dekinga, Anne; Villegas, Auxiliadora; Masero, José A; Piersma, Theunis

    2015-08-01

    Migratory shorebirds inhabit environments that may yield contrasting salinity-temperature regimes-with widely varying osmoregulatory demands, even within a given species-and the question is: by which physiological means and at which organisational level do they show adjustments with respect to these demands? Red knots Calidris canutus winter in coastal areas over a range of latitudes. The nominal subspecies winters in salty areas in the tropics, whereas the subspecies Calidris canutus islandica winters in north-temperate regions of comparatively lower salinities and temperatures. In this study, both subspecies of red knot were acclimated to different salinity (28/40‰)-temperature (5/35 °C) combinations for 2-week periods. We then measured food/salt intakes, basal metabolic rate (BMR), body mass and temperature, fat and salt gland scores, gizzard mass, heat-shock proteins, heterophils/lymphocytes (H/L) ratio and plasma Na(+) to assess the responses of each taxon to osmoregulatory challenges. High salinity (HS)-warm-acclimated birds reduced food/salt intake, BMR, body mass, fat score and gizzard mass, showing that salt/heat loads constrained energy acquisition rates. Higher salt gland scores in saltier treatments indicated that its size was adjusted to higher osmoregulatory demands. Elevated plasma Na(+) and H/L ratio in high-salinity-warm-acclimated birds indicated that salt/heat loads might have a direct effect on the water-salt balance and stress responses of red knots. Subspecies had little or no effect on most measured parameters, suggesting that most adjustments reflect phenotypic flexibility rather than subspecific adaptations. Our results demonstrate how salinity and temperature affect various phenotypic traits in a migrant shorebird, highlighting the importance of considering these factors jointly when evaluating the environmental tolerances of air-breathing marine taxa. PMID:25851406

  3. Universal Distribution of Litter Decay Rates

    NASA Astrophysics Data System (ADS)

    Forney, D. C.; Rothman, D. H.

    2008-12-01

    Degradation of litter is the result of many physical, chemical and biological processes. The high variability of these processes likely accounts for the progressive slowdown of decay with litter age. This age dependence is commonly thought to result from the superposition of processes with different decay rates k. Here we assume an underlying continuous yet unknown distribution p(k) of decay rates [1]. To seek its form, we analyze the mass-time history of 70 LIDET [2] litter data sets obtained under widely varying conditions. We construct a regularized inversion procedure to find the best fitting distribution p(k) with the least degrees of freedom. We find that the resulting p(k) is universally consistent with a lognormal distribution, i.e.~a Gaussian distribution of log k, characterized by a dataset-dependent mean and variance of log k. This result is supported by a recurring observation that microbial populations on leaves are log-normally distributed [3]. Simple biological processes cause the frequent appearance of the log-normal distribution in ecology [4]. Environmental factors, such as soil nitrate, soil aggregate size, soil hydraulic conductivity, total soil nitrogen, soil denitrification, soil respiration have been all observed to be log-normally distributed [5]. Litter degradation rates depend on many coupled, multiplicative factors, which provides a fundamental basis for the lognormal distribution. Using this insight, we systematically estimated the mean and variance of log k for 512 data sets from the LIDET study. We find the mean strongly correlates with temperature and precipitation, while the variance appears to be uncorrelated with main environmental factors and is thus likely more correlated with chemical composition and/or ecology. Results indicate the possibility that the distribution in rates reflects, at least in part, the distribution of microbial niches. [1] B. P. Boudreau, B.~R. Ruddick, American Journal of Science,291, 507, (1991). [2] M

  4. Debris is not a cheese: litter in coastal Louisiana

    USGS Publications Warehouse

    Lindstedt, Dianne M.; Holmes, Joseph C., Jr.

    1989-01-01

    An 18-month study of six Louisiana beaches determined the extent, composition, and possible sources of beach litter. Data showed that from 2590 to 23,154 items may be encountered along any one-mile stretch of Louisiana beach, depending upon location and season, and that densities of litter ranged from 5 to 28 items per 100 m2. Plastics constituted 47% of the total, followed by polystyrene at 16% and glass at 10%. Drink-related items accounted for 40% of the identifiable material; operational wastes, 21%; galley wastes, 15%; personal items, 11%; and fishing items, 6%. Litter laws already exist at state and federal levels. Strict enforcement of Annex V of MARPOL should significantly reduce plastic beach litter. Solutions to beach litter will come from public participation in adopt-a-beach programs and statewide clean-ups and from educational programs focusing on existing laws, proper disposal methods, recycling, and the threat litter poses to wildlife and public health.

  5. Changes in poultry litter toxicity with simulated acid rain

    SciTech Connect

    Gupta, G.; Krishnamurthy, S. )

    1991-01-01

    The Delmarva Peninsula on the Eastern Shore of Maryland ranks 4th in the nation in poultry production and generates 9,500 metric tons of poultry manure/litter per day. The poultry litter contains many macro and micro nutrients and is an excellent source of fertilizer. The litter also contains antibiotics, heavy metals, hormones and many microorganisms. Land application of this litter has been the only means of its utilization and disposal. With rainfall, surface water run-off (leachate), from land on which litter has been applied, reaches the Cheasapeake Bay from this region. This leachate with its high organic and inorganic salt contents and high biochemical oxygen demand can severely disrupt the aquatic life and cause fish kills. The objective of this research was to study the effect of simulated acid rain (pH 3, 4 and 5) on the toxicity of poultry litter extracts.

  6. Dry-season ultraviolet radiation primes litter for wet season decomposition in a Mediterranean grassland

    NASA Astrophysics Data System (ADS)

    Baker, N. R.; Allison, S. D.

    2013-12-01

    Traditional decomposition models developed in mesic ecosystems often consistently underestimate rates of decomposition in more arid ecosystems such as deserts and Mediterranean grasslands. Photodegradation of plant litter by ultraviolet radiation (UV) is hypothesized to be one of the mechanisms accounting for the greater-than-expected rates of decomposition observed in these ecosystems. Putatively, photodegradation preferentially degrades complex aromatic compounds in litter such as lignin, whose decomposition is considered a rate-limiting step in the microbial decomposition of plant litter. This study tested the effects of attenuated ultraviolet radiation on the decomposition of two litter types over the course of a year in a Southern California Mediterranean grassland. The two types of litter differed primarily in lignin content to test for a differential effect of UV on high-lignin versus low-lignin litter. Rates of litter mass loss, changes in litter chemistry, and changes in microbial activity and microbial biomass were observed, and assays of extracellular enzymes were conducted at 5 points through the year, beginning during the dry season and continuing until the end of the following dry season. Litter exposed to attenuated ultraviolet radiation during the dry season had lower rates of mass loss than litter exposed to ambient radiation (6.1% vs. 8.6%, respectively, p < 0.04). Extracellular enzyme activities were significantly affected by UV attenuation, as low lignin samples exposed to attenuated UV displayed elevated cellulase enzyme activity potential during the wet season, while high lignin samples displayed decreased oxidative enzyme activity potential during the wet season. For example, potential activity of the cellulase cellobiohydrolase in low-lignin, ambient UV samples was 5286 μmol/hr*g during the wet season, compared to 7969 μmol/hr*g in attenuated UV samples (p < 0.003). Conversely, potential activity of the oxidative enzyme peroxidase in high

  7. Effects of dietary enrichment with a marine oil-based n-3 LCPUFA supplement in sows with predicted birth weight phenotypes on birth litter quality and growth performance to weaning.

    PubMed

    Smit, M N; Spencer, J D; Patterson, J L; Dyck, M K; Dixon, W T; Foxcroft, G R

    2015-03-01

    , but was higher (P<0.01) in LBW than MHBW litters. IgG concentration in sow serum was similar between treatments and litter birth weight categories. In conclusion, litter birth weight phenotype was repeatable within sows and LBW litters showed the benchmarks of intra-uterine growth retardation (lower placental weight and brain sparing effects). As maternal mLCPUFA supplementation decreased litter size overall, only improved litter growth rate until weaning in MHBW litters, and did not affect pre-weaning mortality, maternal mLCPUFA supplementation was not an effective strategy in our study for mitigating negative effects of a LBW litter phenotype. PMID:25263665

  8. Leaf litter decomposition of four different deciduous tree species - resource stoichiometry, nutrient release and microbial community composition

    NASA Astrophysics Data System (ADS)

    Leitner, S.; Keiblinger, K. M.; Zechmeister-Boltenstern, S.

    2012-04-01

    Recently, there has been increasing interest in the role of microbial communities for ecosystem processes like litter decomposition and nutrient cycling. For example, fungi are thought to be key players during litter decomposition in terrestrial ecosystems because they are able to degrade recalcitrant compounds like lignin and also dominate the decomposition of cellulose and hemicellulose, whereas bacteria seem to play an important role for lignin decomposition especially under anaerobic conditions. However, our knowledge about the contribution of bacteria and fungi to decomposition is still scarce. The aim of the present study was to elucidate how the microbial decomposer community is affected by resource stoichiometry and how changes in community composition affect litter decomposition and nutrient cycling. To this end, we collected leaf litter of four deciduous tree species (beech (Fagus), oak (Quercus), alder (Alnus) and ash tree (Fraxinus)) at four different seasons (winter, spring, summer and autumn) in an Austrian forest (Schottenwald, 48°14'N16°15'E; MAT=9°C; soil type: dystric cambiosol; soil C:N=16) in 2010. We determined litter nutrient content (micro- and macronutrients) and extractable nutrients and assessed the microbial community by PFLA analysis to test the following hypotheses: (i) tree species affects microbial community composition, (ii) microbial community composition changes over the course of the year, and (iii) narrow litter C:nutrient ratios favour nutrient release. Our data show that litter of different tree species varied in their stoichiometry, with C:N ratios between 16 (alder) and 46 (beech) and C:P ratios between 309 (ash) and 1234 (alder). Tree species had a significant impact on microbial community composition: highest amounts of actinomycetes and protozoa were observed for alder, while arbuscular mycorrhizae were lowest for oak. Bacteria were favoured by litter with narrow C:N shortly after litterfall. During litter decomposition

  9. Stoichiometry of Microbial Decomposition Priming in Plant Litter and Soil

    NASA Astrophysics Data System (ADS)

    Schaefer, D.; Qiao, N.

    2011-12-01

    Microbial priming is accelerated conversion of plant residues and soil organic carbon to CO2. It is caused by small additions of labile carbon and nitrogen compounds, but microbial stoichiometry suggests that this description is incomplete. The temperature dependence of soil organic carbon cycling models may be related to diffusion of labile resources to microbial cells. Incomplete treatment of stoichiometrically significant elements in these models may also limit their ability to predict carbon fluxes if plant species, diseases or defoliators are affected by climate changes. We explore this by incubating decomposable substrates (leaves, wood, humus and mineral soil) with resources added as dissolved inorganic nitrogen (ammonium and nitrate separately), phosphorus and sugar, added in different amounts and proportions. We measure CO2 production by infrared absorption. Contribution of sugar to CO2 production is assessed by mass spectrometry. High concentrations for each resource are 16X the low, and middle concentrations are 4X the low. The ratios are centered on 200:10:1. We explore C:N:P resource ratios and additions over wide ranges; subsequently to examine narrower ranges of interest. For C:N:P incubations, C and N effects are always significant on CO2 production, with P in only half of the treatments. Literature suggests that leaf-litter decomposition is stimulated by N (occasionally P) additions, but results for soils have been mixed. We find N to be inhibitory only when added in "stoichiometic excess" to added C. Stimulation of microbial respiration is generally strongest with C:N:P additions in "Redfield-like" ratios, but the response is far below linear. Humus has a stronger response to C than do leaves and wood. This is consistent with a chronic energy limitation for soil microbes, even where their environments contain large amounts of total C. For all substrates, the addition of N as nitrate leads to significantly more CO2 than the same amount of ammonium

  10. Factors affecting reproductive performance of white-tailed deer subjected to fixed-time artificial insemination or natural mating.

    PubMed

    Mellado, Miguel; Orta, Claudia G; Lozano, Eloy A; García, Jose E; Veliz, Francisco G; de Santiago, Angeles

    2013-01-01

    The objectives of this study were to examine the effects of several factors affecting fawning rate, litter size, litter weight and neonatal fawn mortality in white-tailed deer inseminated either transcervically or by means of laparoscopy. Oestrus synchronisation with a controlled internal drug release (CIDR)-based protocol and fixed-time artificial insemination (FTAI) was conducted in 130 white-tailed deer (Odocoileus virginianus texanus) during three reproductive seasons (2007-2009; 271 services) in a game-hunting ranch in a hot-arid environment (26°4' N, 101°25' W). Ninety additional non-treated does were exposed to bucks for natural mating. Fawning rate did not differ between AI methods (40.0 vs 45.0% for transcervical and laparoscopic AI, respectively). Overall fawning rate (proportion of all does fawning after FTAI and a subsequent period of buck exposure) did not differ between transcervical (89.5%), laparoscopic (80.3%) or natural (88.9%) insemination. Litter size per fawning doe was higher (P<0.05) in naturally-served does (1.65±0.48) than in transcervically-inseminated does (1.40±0.51) or in laparoscopically-inseminated does (1.48±0.50). The main conclusion was that no enhancement of fawning rate or litter size occurred as a result of intrauterine deposition of semen by laparoscopy compared with the transcervical insemination technique. PMID:23464502

  11. Effect of aluminum sulfate on litter composition and ammonia emission in a single flock of broilers up to 42 days of age.

    PubMed

    Madrid, J; López, M J; Orengo, J; Martínez, S; Valverde, M; Megías, M D; Hernández, F

    2012-08-01

    ammonia emissions from 37 to 42 days of age were significantly reduced by the alum treatment (P < 0.001), representing a reduction of 73.3%. The lower pH values might have reduced ammonia volatilization from the litter, with a corresponding positive effect on the building environment and poultry health. For these reasons, litter amendment with alum could be recommended as a way of reducing the pollution potential of European broiler facilities during a single flock cycle. PMID:23217236

  12. Hyperspectral remote sensing tools for quantifying plant litter and invasive species in arid ecosystems

    USGS Publications Warehouse

    Nagler, Pamela L.; Sridhar, B.B. Maruthi; Olsson, Aaryn Dyami; Glenn, Edward P.; van Leeuwen, Willem J.D.

    2012-01-01

    Green vegetation can be distinguished using visible and infrared multi-band and hyperspectral remote sensing methods. The problem has been in identifying and distinguishing the non-photosynthetically active radiation (PAR) landscape components, such as litter and soils, and from green vegetation. Additionally, distinguishing different species of green vegetation is challenging using the relatively few bands available on most satellite sensors. This chapter focuses on hyperspectral remote sensing characteristics that aim to distinguish between green vegetation, soil, and litter (or senescent vegetation). Quantifying litter by remote sensing methods is important in constructing carbon budgets of natural and agricultural ecosystems. Distinguishing between plant types is important in tracking the spread of invasive species. Green leaves of different species usually have similar spectra, making it difficult to distinguish between species. However, in this chapter we show that phenological differences between species can be used to detect some invasive species by their distinct patterns of greening and dormancy over an annual cycle based on hyperspectral data. Both applications require methods to quantify the non-green cellulosic fractions of plant tissues by remote sensing even in the presence of soil and green plant cover. We explore these methods and offer three case studies. The first concerns distinguishing surface litter from soil using the Cellulose Absorption Index (CAI), as applied to no-till farming practices where plant litter is left on the soil after harvest. The second involves using different band combinations to distinguish invasive saltcedar from agricultural and native riparian plants on the Lower Colorado River. The third illustrates the use of the CAI and NDVI in time-series analyses to distinguish between invasive buffelgrass and native plants in a desert environment in Arizona. Together the results show how hyperspectral imagery can be applied to

  13. Agricultural Activities of a Meadow Eliminated Plant Litter from the Periphery of a Farmland in Inner Mongolia, China

    PubMed Central

    Kawada, Kiyokazu; Borjigin, Wuyunna; Nakamura, Toru

    2015-01-01

    The purpose of our investigation was to clarify the effects of agriculture on the process of loss of litter at the periphery of a farmland. This study revealed the generation process of an ecologically unusual phenomenon that is observed around cropland in semi-arid regions. We hypothesized that the vegetation around a farmland cannot supply plant litter to the ground surface because the ecological structure has been changed by agricultural activities. The study was conducted at Xilingol steppe, Xilingol League, Inner Mongolia Autonomous Region, China. Four study lines were established from the edge of an arable field to the surrounding meadow and parallel to the wind direction during the strong wind season. Key measurement for each line was set at the border between the farmland and steppe. Four study sites were set at intervals along each line. Plant litter, soil particle size distribution, plant species composition, plant volume, and species diversity were investigated. Despite using the same mowing method at the meadows of all study sites, the litter at the only periphery of the farmland completely disappeared. Soil particle size distribution in steppe, which was adjacent to the farmland, was similar to that of the farmland. Plant community structure at the periphery of the farmland was different from that of the far side from the farmland. This implies that soil scattered from the farmland affected the species composition of the steppe. Consequently, the change in plant community structure induced litter loss because of mowing. We concluded that plant litter was lost near the farmland because of the combined effects of farming and mowing. The results support our hypothesis that the vegetation around a farmland cannot supply plant litter because the ecological structure has been changed by agricultural activities. PMID:26241943

  14. Crayfish impact desert river ecosystem function and litter-dwelling invertebrate communities through association with novel detrital resources.

    PubMed

    Moody, Eric K; Sabo, John L

    2013-01-01

    Shifts in plant species distributions due to global change are increasing the availability of novel resources in a variety of ecosystems worldwide. In semiarid riparian areas, hydric pioneer tree species are being replaced by drought-tolerant plant species as water availability decreases. Additionally, introduced omnivorous crayfish, which feed upon primary producers, allochthonous detritus, and benthic invertebrates, can impact communities at multiple levels through both direct and indirect effects mediated by drought-tolerant plants. We tested the impact of both virile crayfish (Orconectes virilis) and litter type on benthic invertebrates and the effect of crayfish on detrital resources across a gradient of riparian vegetation drought-tolerance using field cages with leaf litter bags in the San Pedro River in Southeastern Arizona. Virile crayfish increased breakdown rate of novel drought-tolerant saltcedar (Tamarix ramosissima), but did not impact breakdown of drought-tolerant seepwillow (Baccharis salicifolia) or hydric Fremont cottonwood (Populus fremontii) and Gooding's willow (Salix goodingii). Effects on invertebrate diversity were observed at the litter bag scale, but no effects were found at the cage scale. Crayfish decreased alpha diversity of colonizing macroinvertebrates, but did not affect beta diversity. In contrast, the drought-tolerant litter treatment decreased beta diversity relative to hydric litter. As drought-tolerant species become more abundant in riparian zones, their litter will become a larger component of the organic matter budget of desert streams which may serve to homogenize the litter-dwelling community and support elevated populations of virile crayfish. Through impacts at multiple trophic levels, crayfish have a significant effect on desert stream ecosystems. PMID:23667600

  15. Effects of Enrichment and Litter Parity on Reproductive Performance and Behavior in BALB/c and 129/Sv Mice.

    PubMed

    Whitaker, Julia W; Moy, Sheryl S; Pritchett-Corning, Kathleen R; Fletcher, Craig A

    2016-01-01

    We examined the effect of adding species-appropriate environmental enrichment items to breeding cages of BALB/cAnNCrl and 129S2/SvPasCrl mice. The 3 enrichment conditions were: 1) cotton nesting material; 2) nesting material plus a paper shelter and rolled paper bedding; and 3) an igloo dome with an exercise wheel in addition to the shelter-group enrichments. We measured litter size, litter survival to weaning age, average pup weight at 21 d, and the interlitter interval to evaluate reproductive performance. A random subset of the first- or second-litter offspring from each enrichment condition and strain was assessed in multiple behavioral tests. Enrichment significantly affected anxiety-like behavior and sociability, with the direction of change dependent on strain and sex. Litter parity had greater effects on some reproductive parameters than did the enrichment condition, and this effect was not solely due to a difference between the first compared with subsequent litters. The significant effects of litter parity on the number of pups born and weaned, female pup weight, and interlitter interval were dependent on the enrichment condition in BALB/c but not 129/Sv mice. Offspring from the first or second litter were included in a generational component to investigate whether enrichment effects on reproduction persist in adult offspring after transfer to a different facility for breeding. Natal cage enrichment had no effect on any reproductive parameter in the transferred mice. Overall, additional enrichment beyond nesting material had a beneficial effect on the interlitter interval in BALB/c mice and on the number of pups weaned in 129/Sv mice. PMID:27423144

  16. Crayfish Impact Desert River Ecosystem Function and Litter-Dwelling Invertebrate Communities through Association with Novel Detrital Resources

    PubMed Central

    Moody, Eric K.; Sabo, John L.

    2013-01-01

    Shifts in plant species distributions due to global change are increasing the availability of novel resources in a variety of ecosystems worldwide. In semiarid riparian areas, hydric pioneer tree species are being replaced by drought-tolerant plant species as water availability decreases. Additionally, introduced omnivorous crayfish, which feed upon primary producers, allochthonous detritus, and benthic invertebrates, can impact communities at multiple levels through both direct and indirect effects mediated by drought-tolerant plants. We tested the impact of both virile crayfish (Orconectes virilis) and litter type on benthic invertebrates and the effect of crayfish on detrital resources across a gradient of riparian vegetation drought-tolerance using field cages with leaf litter bags in the San Pedro River in Southeastern Arizona. Virile crayfish increased breakdown rate of novel drought-tolerant saltcedar (Tamarix ramosissima), but did not impact breakdown of drought-tolerant seepwillow (Baccharis salicifolia) or hydric Fremont cottonwood (Populus fremontii) and Gooding's willow (Salix goodingii). Effects on invertebrate diversity were observed at the litter bag scale, but no effects were found at the cage scale. Crayfish decreased alpha diversity of colonizing macroinvertebrates, but did not affect beta diversity. In contrast, the drought-tolerant litter treatment decreased beta diversity relative to hydric litter. As drought-tolerant species become more abundant in riparian zones, their litter will become a larger component of the organic matter budget of desert streams which may serve to homogenize the litter-dwelling community and support elevated populations of virile crayfish. Through impacts at multiple trophic levels, crayfish have a significant effect on desert stream ecosystems. PMID:23667600

  17. Leaching of nutrients and trace elements from stockpiled turkey litter into soil.

    PubMed

    Shah, Sanjay B; Hutchison, Kimberly J; Hesterberg, Dean L; Grabow, Garry L; Huffman, Rodney L; Hardy, David H; Parsons, James T

    2009-01-01

    In addition to nutrients, poultry are fed trace elements (e.g., As) for therapeutic purposes. Although a large proportion of the nutrients are assimilated by the birds, nearly all of the As is excreted. Hence, turkey litter constituents can leach into the soil and contaminate shallow ground water when it is stockpiled uncovered on bare soil. This study quantified the leaching of turkey litter constituents from uncovered stockpiles into the underlying soil. Four stockpiles were placed on Orangeburg loamy sand in summer 2004 for 162 d; 14 d after their removal, four stockpiles were created over the same footprints and left over winter for 162 d. Soil samples at depths of 7.6 to 30.5 cm and 30.5 to 61 cm adjacent to and beneath the stockpiles were compared for pH, electrical conductivity, total C, dissolved organic C, N species, P, water-extractable (WE)-P, As, WE-As, Cu, Mn, and Zn. All WE constituents affected the 7.6- to 30.5-cm layer, and some leached deeper; for example, NH(4)(+)-N concentrations were 184 and 62 times higher in the shallow and deep layers, respectively. During winter stockpiling, WE-As concentrations beneath the stockpiles tripled and doubled in the 7.6- to 30.5-cm and 30.5- to 61-cm layers, respectively, with WE-As being primarily as As(V). Heavy dissolved organic C and WE-P leaching likely increased solubilization of soil As, although WE-As concentrations were low due to the Al-rich soil and low-As litter. When used as drinking water, shallow ground water should be monitored on farms with a history of litter stockpiling on bare soil; high litter As; and high soil As, Fe, and Mn concentrations. PMID:19329693

  18. Restoration of Tidal Flow to Impounded Salt Marsh Exerts Mixed Effect on Leaf Litter Decomposition

    NASA Astrophysics Data System (ADS)

    Henry, B. A.; Schade, J. D.; Foreman, K.

    2015-12-01

    Salt marsh impoundments (e.g. roads, levees) disconnect marshes from ocean tides, which impairs ecosystem services and often promotes invasive species. Numerous restoration projects now focus on removing impoundments. Leaf litter decomposition is a central process in salt marsh carbon and nutrient cycles, and this study investigated the extent to which marsh restoration alters litter decomposition rates. We considered three environmental factors that can potentially change during restoration: salinity, tidal regime, and dominant plant species. A one-month field experiment (Cape Cod, MA) measured decay of litter bags in impounded, restored, and natural marshes under ambient conditions. A two-week lab experiment measured litter decay in controlled incubations under experimental treatments for salinity (1ppt and 30 ppt), tidal regime (inundated and 12 hr wet-dry cycles), and plant species (native Spartina alterniflora and invasive Phragmites australis). S. alterniflora decomposed faster in situ than P. australis (14±1.0% mass loss versus 0.74±0.69%). Corroborating this difference in decomposition, S. alterniflora supported greater microbial respiration during lab incubation, measured as CO2 flux from leaf litter and biological oxygen demand of water containing leached organic matter (OM). However, nutrient analysis of plant tissue and leached OM show P. australis released more nitrogen than S. alterniflora. Low salinity treatments in both lab and field experiments decayed more rapidly than high salinity treatments, suggesting that salinity inhibited microbial activity. Manipulation of inundation regime did not affect decomposition. These findings suggest the reintroduction of tidal flow to an impounded salt marsh can have mixed effects; recolonization by the native cordgrass could supply labile OM to sediment and slow carbon sequestration, while an increase in salinity might inhibit decomposition and accelerate sequestration.

  19. Quantitative Analysis of Major Factors Affecting Black Carbon Transport and Concentrations in the Unique Atmospheric Structures of Urban Environment

    NASA Astrophysics Data System (ADS)

    Liang, Marissa Shuang

    combined contribution from both traffic and atmospheric circulation accounted for observed spatiotemporal variability in PM2.5 concentrations. Based on these experimental and quantitative analyses, a three-dimensional model is proposed for contaminant's transport in highly urbanized Cincinnati region. Furthermore this dissertation explored implications on roadside pollutant evaluation, and on the risk analysis of future fuel substitution using biodiesel. The Gaussian-type models are poor in determining the effective emission factor particularly under nocturnal thermal inversion for which the effective emission factor is a function of lapse rate in the morning. The Gaussian models are applicable in daytime after the breakdown of thermal inversion. Lastly, among three types of fuels examined, the proposed butanol-added biodiesel-diesel blend (D80B15Bu5) yielded a good compromise between black carbon and NOx emissions while maintaining proper combustion properties. It is also found that the emission contained less black carbon and had higher organic carbon (OC) and elemental (EC) ratio than tested petroleum diesel. As demonstrated in other parts of this study, the OC-enriched emission will likely affect the black carbon occurrence and PM concentrations in the urban environments. Overall, it is suggested that urban formation and biofuel usage define the environmental impacts of black carbon, and are the focus for climate change mitigation and adaptation.

  20. Freshwater environment affects growth rate and muscle fibre recruitment in seawater stages of Atlantic salmon (Salmo salar L.).

    PubMed

    Johnston, Ian A; Manthri, Sujatha; Alderson, Richard; Smart, Alistair; Campbell, Patrick; Nickell, David; Robertson, Billy; Paxton, Charles G M; Burt, M Louise

    2003-04-01

    The influence of freshwater environment on muscle growth in seawater was investigated in an inbred population of farmed Atlantic salmon (Salmo salar L.). The offspring from a minimum of 64 families per group were incubated at either ambient temperature (ambient treatment) or in heated water (heated treatment). Growth was investigated using a mixed-effect statistical model with repeated measures, which included terms for treatment effect and random fish effects for individual growth rate (alpha) and the instantaneous growth rate per unit change in temperature (gamma). Prior to seawater transfer, fish were heavier in the heated (61.6+/-1.0 g; N=298) than in the ambient (34.1+/-0.4 g; N=206) treatments, reflecting their greater growth opportunity: 4872 degree-days and 4281 degree-days, respectively. However, the subsequent growth rate of the heated group was lower, such that treatments had a similar body mass (3.7-3.9 kg) after approximately 450 days in seawater. The total cross-sectional area of fast muscle and the number (FN) and size distribution of the fibres was determined in a subset of the fish. We tested the hypothesis that freshwater temperature regime affected the rate of recruitment and hypertrophy of muscle fibres. There were differences in FN between treatments and a significant age x treatment interaction but no significant cage effect (ANOVA). Cessation of fibre recruitment was identified by the absence of fibres of <10 micro m diameter. The maximum fibre number was 22.4% more in the ambient (9.3 x 10(5)+/-2.0 x 10(4) than in the heated (7.6 x 10(5)+/-1.5 x 10(4)) treatments (N=44 and 40 fish, respectively; P<0.001). For fish that had completed fibre recruitment, there was a significant correlation between FN and individual growth rate, explaining 35% of the total variation. The density of myogenic progenitor cells was quantified using an antibody to c-met and was approximately 2-fold higher in the ambient than in the heated group, equivalent to 2-3% of