Science.gov

Sample records for live microscopy film

  1. Acoustic microscopy of living cells.

    PubMed Central

    Hildebrand, J A; Rugar, D; Johnston, R N; Quate, C F

    1981-01-01

    This paper reports preliminary results of the observation by acoustic microscopy of living cells in vitro. The scanning acoustic microscope uses high-frequency sound waves to produce images with submicrometer resolution. The contrast observed in acoustic micrographs of living cells depends on the acoustic properties (i.e., density, stiffness, and attenuation) and on the topographic contour of the cell. Variation in distance separating the acoustic lens and the viewed cell also has a profound effect on the image. When the substratum is located at the focal plane, thick regions of the cell show a darkening that can be related to cellular acoustic attenuation (a function of cytoplasmic viscosity). When the top of the cell is placed near the focal plane, concentric bright and dark rings appear in the image. The location of the rings can be related to cell topography, and the ring contrast can be correlated to the stiffness and density of the cell. In addition, the character of the images of single cells varies dramatically when the substratum upon which they are grown is changed to a different material. By careful selection of the substratum, the information content of the acoustic images can be increased. Our analysis of acoustic images of actively motile cells indicates that leading lamella are less dense or stiff than the quiescent trailing processes of the cells. Images PMID:6940179

  2. Scanning Ion Conductance Microscopy of Live Keratinocytes

    NASA Astrophysics Data System (ADS)

    Hegde, V.; Mason, A.; Saliev, T.; Smith, F. J. D.; McLean, W. H. I.; Campbell, P. A.

    2012-07-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (

  3. Atomic Force Microscopy of Living Cells

    NASA Astrophysics Data System (ADS)

    Ushiki, Tatsuo; Yamamoto, Susumu; Hitomi, Jiro; Ogura, Shigeaki; Umemoto, Takeshi; Shigeno, Masatsugu

    2000-06-01

    This paper is a review of our results of the application of atomic force microscopy (AFM) to the three-dimensional observation of living cells. First, we showed AFM images of living cultured cells in fluid. Contact mode AFM of living cells provided precise information on the shape of cellular processes (such as spike-like processes or lamellipodia) at the cellular margin. The contour of cytoskeletal elements just beneath the cell membrane was also clearly observable on the upper surface of the cells. Secondly, we showed the data on the discrepancy between the AFM images of living cells and fixed cells. These findings were useful for evaluating AFM images of living cells. Finally, we described the time-lapse AFM of living cells. A fluid chamber system enabled us to obtain AFM images of living cells for over 1 h at time intervals of 2-4 min. A series of these AFM images were useful for examining the movements of cellular processes in relation to subcellular cytoskeletal elements. Time-lapse movies produced by sequential AFM images also gave a realistic view of the cellular dynamics.

  4. Confocal microscopy of the living eye.

    PubMed

    Cavanagh, H D; Jester, J V; Essepian, J; Shields, W; Lemp, M A

    1990-01-01

    Confocal microscopy is an imaging paradigm that allows optical sectioning of almost any material with increased axial and lateral spatial resolution and better image contrast. We have applied this technology to the study of the living eye of cats, albino rabbits, and humans. The technique allows in vivo, noninvasive, real time images of the eye at magnifications (630x) which allow resolution of anatomical detail at the cellular level. In this paper we report details of our current instrument techniques and some of our results. The past development, present state-of-the-art, and projected future advances and applications of this novel microscopy are discussed. Preliminary observations are reported for all layers of the cornea, the limbus, and wound-healing responses in single animals. PMID:2407380

  5. Circumventing photodamage in live-cell microscopy

    PubMed Central

    Magidson, Valentin; Khodjakov, Alexey

    2013-01-01

    Fluorescence microscopy has become an essential tool in cell biology. This technique allows researchers to visualize the dynamics of tissue, cells, individual organelles and macromolecular assemblies inside the cell. Unfortunately, fluorescence microscopy is not completely ‘non-invasive’ as the high-intensity excitation light required for excitation of fluorophores is inherently toxic for live cells. Physiological changes induced by excessive illumination can lead to artifacts and abnormal responses. In this chapter we review major factors that contribute to phototoxicity and discuss practical solutions for circumventing photodamage. These solutions include the proper choice of image acquisition parameters, optimization of filter sets, hardware synchronization, and the use of intelligent illumination to avoid unnecessary light exposure. PMID:23931522

  6. Scanning ion conductance microscopy of living cells.

    PubMed Central

    Korchev, Y E; Bashford, C L; Milovanovic, M; Vodyanoy, I; Lab, M J

    1997-01-01

    Currently there is a great interest in using scanning probe microscopy to study living cells. However, in most cases the contact the probe makes with the soft surface of the cell deforms or damages it. Here we report a scanning ion conductance microscope specially developed for imaging living cells. A key feature of the instrument is its scanning algorithm, which maintains the working distance between the probe and the sample such that they do not make direct physical contact with each other. Numerical simulation of the probe/sample interaction, which closely matches the experimental observations, provides the optimum working distance. The microscope scans highly convoluted surface structures without damaging them and reveals the true topography of cell surfaces. The images resemble those produced by scanning electron microscopy, with the significant difference that the cells remain viable and active. The instrument can monitor small-scale dynamics of cell surfaces as well as whole-cell movement. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:9251784

  7. Intravital microscopy to image membrane trafficking in live rats

    PubMed Central

    Masedunskas, Andrius; Sramkova, Monika; Parente, Laura; Weigert, Roberto

    2014-01-01

    Summary Intravital microscopy (IVM) is a powerful tool that enables imaging various biological processes in live animals. Here, we describe a series of procedures designed to image subcellular structures, such as endsosomes and secretory vesicles in the salivary glands (SGs) of live rats. To this aim, we used fluorescently labeled molecules and/or fluorescently-tagged proteins that were transiently transfected in the live animal. PMID:23027003

  8. Live-Animal Imaging of Renal Function by Multiphoton Microscopy

    PubMed Central

    Dunn, Kenneth W.; Sutton, Timothy A.; Sandoval, Ruben M.

    2015-01-01

    Intravital microscopy, microscopy of living animals, is a powerful research technique that combines the resolution and sensitivity found in microscopic studies of cultured cells with the relevance and systemic influences of cells in the context of the intact animal. The power of intravital microscopy has recently been extended with the development of multiphoton fluorescence microscopy systems capable of collecting optical sections from deep within the kidney at subcellular resolution, supporting high-resolution characterizations of the structure and function of glomeruli, tubules, and vasculature in the living kidney. Fluorescent probes are administered to an anesthetized, surgically prepared animal, followed by image acquisition for up to 3 hr. Images are transferred via a high-speed network to specialized computer systems for digital image analysis. This general approach can be used with different combinations of fluorescent probes to evaluate processes such as glomerular permeability, proximal tubule endocytosis, microvascular flow, vascular permeability, mitochondrial function, and cellular apoptosis/necrosis. PMID:23042524

  9. X-ray microscopy of live biological micro-organisms

    NASA Astrophysics Data System (ADS)

    Raja Al-Ani, Ma'an Nassar

    Real-time, compact x-ray microscopy has the potential to benefit many scientific fields, including microbiology, pharmacology, organic chemistry, and physics. Single frame x-ray micro-radiography, produced by a compact, solid-state laser plasma source, allows scientists to use x-ray emission for elemental analysis, and to observe biological specimens in their natural state. In this study, x-ray images of mouse kidney tissue, live bacteria, Pseudomonas aeruginosa and Burkholderia cepacia, and the bacteria's interaction with the antibiotic gentamicin, are examined using x-ray microscopy. For the purposes of comparing between confocal microscopy and x-ray microscopy, we introduced to our work the technique of gold labeling. Indirect immunofluorescence staining and immuno-gold labeling were applied on human lymphocytes and human tumor cells. Differential interference contrast microscopy (DIC) showed the lymphocyte body and nucleus, as did x-ray microscopy. However, the high resolution of x-ray microscopy allows us to differentiate between the gold particles bound to the antibodies and the free gold. A compact, tabletop Nd: glass laser is used in this study to produce x-rays from an Yttrium target. An atomic force microscope is used to scan the x-ray images from the developed photo-resist. The use of compact, tabletop laser plasma sources, in conjunction with x-ray microscopy, is a new technique that has great potential as a flexible, user-friendly scientific research tool.

  10. Intravital Microscopy for Imaging the Tumor Microenvironment in Live Mice.

    PubMed

    Naumenko, Victor; Jenne, Craig; Mahoney, Douglas J

    2016-01-01

    The development of intravital microscopy has provided unprecedented capacity to study the tumor microenvironment in live mice. The dynamic behavior of cancer, stromal, vascular, and immune cells can be monitored in real time, in situ, in both primary tumors and metastatic lesions, allowing treatment responses to be observed at single cell resolution and therapies tracked in vivo. These features provide a unique opportunity to elucidate the cellular mechanisms underlying the biology and treatment of cancer. We describe here a method for imaging the microenvironment of subcutaneous tumors grown in mice using intravital microscopy. PMID:27581025

  11. Scanned probe microscopy for thin film superconductor development

    SciTech Connect

    Moreland, J.

    1996-12-31

    Scanned probe microscopy is a general term encompassing the science of imaging based on piezoelectric driven probes for measuring local changes in nanoscale properties of materials and devices. Techniques like scanning tunneling microscopy, atomic force microscopy, and scanning potentiometry are becoming common tools in the production and development labs in the semiconductor industry. The author presents several examples of applications specific to the development of high temperature superconducting thin films and thin-film devices.

  12. Quantitative phase microscopy and synthetic aperture tomography of live cells

    NASA Astrophysics Data System (ADS)

    Lue, Niyom

    For more than a decade MIT's George R. Harrison Spectroscopy Laboratory has been developing quantitative phase microscopy (QPM) for biological study. Measurements of a point field were made in the mid 90s, then extended to the full 2D field, and recently, to 3D by using tomography. In the first part of this thesis improvements in the techniques of Fourier Phase Microscopy (FPM) and Hilbert Phase Microscopy (HPM) and their applications to characterize cells and tissues are reported. Tomographic phase microscopy (TPM) provides quantitative information and highly detailed structural information about a live cell, but in its current form it can only examine one cell at a time. Many biological applications including statistical analysis of a large collection of cells such as flow cytometry need a tomography technique that can measure many cells at a time. For the second part of this thesis we have developed a new tomography technique that can measure many cells continuously. In this study we demonstrate the new technique by translating a live cell across a focused beam. This beam is composed of many angular plane waves, and by applying a so-called synthetic aperture algorithm we retrieve individual wave components of the focused beam. We demonstrate for the first time that we can retrieve the field of the focused beam and synthesize any arbitrary angular plane wave. We then construct a 3D map of the variations of the refractive index in a live cell from a series of these synthesized angular plane waves. This new technique is the first step needed to analyze cells flowing through a beam to provide a high-throughput 3D refractive index tomograms that can be used as a new kind of statistical optical assay of living cells.

  13. Multimodal light-sheet microscopy for fluorescence live imaging

    NASA Astrophysics Data System (ADS)

    Oshima, Y.; Kajiura-Kobayashi, H.; Nonaka, S.

    2012-03-01

    Light-sheet microscopy, it is known as single plane illumination microscope (SPIM), is a fluorescence imaging technique which can avoid phototoxic effects to living cells and gives high contrast and high spatial resolution by optical sectioning with light-sheet illumination in developmental biology. We have been developed a multifunctional light-sheet fluorescence microscopy system with a near infrared femto-second fiber laser, a high sensitive image sensor and a high throughput spectrometer. We performed that multiphoton fluorescence images of a transgenic fish and a mouse embryo were observed on the light-sheet microscope. As the results, two photon images with high contrast and high spatial resolution were successfully obtained in the microscopy system. The system has multimodality, not only mutiphoton fluorescence imaging, but also hyperspectral imaging, which can be applicable to fluorescence unmixing analysis and Raman imaging. It enables to obtain high specific and high throughput molecular imaging in vivo and in vitro.

  14. Nonlinear optical microscopy for imaging thin films and surfaces

    SciTech Connect

    Smilowitz, L.B.; McBranch, D.W.; Robinson, J.M.

    1995-03-01

    We have used the inherent surface sensitivity of second harmonic generation to develop an instrument for nonlinear optical microscopy of surfaces and interfaces. We have demonstrated the use of several nonlinear optical responses for imaging thin films. The second harmonic response of a thin film of C{sub 60} has been used to image patterned films. Two photon absorption light induced fluorescence has been used to image patterned thin films of Rhodamine 6G. Applications of nonlinear optical microscopy include the imaging of charge injection and photoinduced charge transfer between layers in semiconductor heterojunction devices as well as across membranes in biological systems.

  15. Atomic force microscopy to detect internal live processes in insects

    NASA Astrophysics Data System (ADS)

    Dokukin, M. E.; Guz, N. V.; Vasilyev, S.; Sokolov, I.

    2010-01-01

    Here we report on the use of atomic force microscopy (AFM) to study surface oscillations coming from internal live processes of insects. With a specially designed AFM stage to keep an insect motion partially restricted, the AFM can record internal oscillations on different parts of the insect. We demonstrate the method for a fly, mosquito, and lady beetle. We show that AFM can provide information about the spectral behavior that has not been studied so far, 10-600 Hz range, detecting amplitudes down to subnanometer level.

  16. Tomographic phase microscopy of living three-dimensional cell cultures.

    PubMed

    Kuś, Arkadiusz; Dudek, Michał; Kemper, Björn; Kujawińska, Małgorzata; Vollmer, Angelika

    2014-04-01

    A successful application of self-interference digital holographic microscopy in combination with a sample-rotation-based tomography module for three-dimensional (3-D) label-free quantitative live cell imaging with subcellular resolution is demonstrated. By means of implementation of a hollow optical fiber as the sample cuvette, the observation of living cells in different 3-D matrices is enabled. The fiber delivers a stable and accurate rotation of a cell or cell cluster, providing quantitative phase data for tomographic reconstruction of the 3-D refractive index distribution with an isotropic spatial resolution. We demonstrate that it is possible to clearly distinguish and quantitatively analyze several cells grouped in a "3-D cluster" as well as subcellular organelles like the nucleoli and local internal refractive index changes. PMID:24723114

  17. [A tracking algorithm for live mitochondria in fluorescent microscopy images].

    PubMed

    Xu, Junmei; Li, Yang; Du, Sidan; Zhao, Kanglian

    2012-04-01

    Quantitative analysis of biological image data generally involves the detection of many pixel spots. In live mitochondria video image, for which fluorescent microscopy is often used, the signal-to-noise ratio (SNR) can be extremely low, making the detection and tracking of mitochondria particle difficult. It is especially not easy to get the movement curve when the movement of the mitochondria involves its self-move and the motion caused by the neuron. An tracking algorithm for live mitochondria is proposed in this paper. First the whole image sequence is frame-to-frame registered, in which the edge corners are chosen to be the feature points. Then the mitochondria particles are tracked by frame-to-frame displacement vector. The algorithm proposed has been applied to the dynamic image sequence including neuron and mitochondria, saving time without manually picking up the feature points. It provides an new method and reference for medical image processing and biotechnological research. PMID:22616189

  18. Scanning Tunneling Microscopy analysis of space-exposed polymer films

    NASA Technical Reports Server (NTRS)

    Kalil, Carol R.; Young, Philip R.

    1993-01-01

    The characterization of the surface of selected space-exposed polymer films by Scanning Tunneling Microscopy (STM) is reported. Principles of STM, an emerging new technique for materials analysis, are reviewed. The analysis of several films which received up to 5.8 years of low Earth orbital (LEO) exposure onboard the NASA Long Duration Exposure Facility (LDEF) is discussed. Specimens included FEP Teflon thermal blanket material, Kapton film, and several experimental polymer films. Ultraviolet and atomic oxygen-induced crazing and erosion are described. The intent of this paper is to demonstrate how STM is enhancing the understanding of LEO space environmental effects on polymer films.

  19. Practical fabrication of microfluidic platforms for live-cell microscopy.

    PubMed

    Lorusso, Daniel; Nikolov, Hristo N; Milner, Jaques S; Ochotny, Noelle M; Sims, Stephen M; Dixon, S Jeffrey; Holdsworth, David W

    2016-10-01

    We describe a simple fabrication technique - targeted towards non-specialists - that allows for the production of leak-proof polydimethylsiloxane (PDMS) microfluidic devices that are compatible with live-cell microscopy. Thin PDMS base membranes were spin-coated onto a glass-bottom cell culture dish and then partially cured via microwave irradiation. PDMS chips were generated using a replica molding technique, and then sealed to the PDMS base membrane by microwave irradiation. Once a mold was generated, devices could be rapidly fabricated within hours. Fibronectin pre-treatment of the PDMS improved cell attachment. Coupling the device to programmable pumps allowed application of precise fluid flow rates through the channels. The transparency and minimal thickness of the device enabled compatibility with inverted light microscopy techniques (e.g. phase-contrast, fluorescence imaging, etc.). The key benefits of this technique are the use of standard laboratory equipment during fabrication and ease of implementation, helping to extend applications in live-cell microfluidics for scientists outside the engineering and core microdevice communities. PMID:27523472

  20. Scanning Ion Conductance Microscopy for living cell membrane potential measurement

    NASA Astrophysics Data System (ADS)

    Panday, Namuna

    Recently, the existence of multiple micro-domains of extracellular potential around individual cells have been revealed by voltage reporter dye using fluorescence microscopy. One hypothesis is that these long lasting potential patterns play a vital role in regulating important cell activities such as embryonic patterning, regenerative repair and reduction of cancerous disorganization. We used multifunctional Scanning Ion Conductance Microscopy (SICM) to study these extracellular potential patterns of single cell with higher spatial resolution. To validate this novel technique, we compared the extracellular potential distribution on the fixed HeLa cell surface and Polydimethylsiloxane (PDMS) surface and found significant difference. We then measured the extracellular potential distributions of living melanocytes and melanoma cells and found both the mean magnitude and spatial variation of extracellular potential of the melanoma cells are bigger than those of melanocytes. As compared to the voltage reporter dye based fluorescence microscope method, SICM can achieve quantitative potential measurements of non-labeled living cell membranes with higher spatial resolution.

  1. Comparison of Atomic Force Microscopy and Scanning Ion Conductance Microscopy for Live Cell Imaging.

    PubMed

    Seifert, Jan; Rheinlaender, Johannes; Novak, Pavel; Korchev, Yuri E; Schäffer, Tilman E

    2015-06-23

    Atomic force microscopy (AFM) and scanning ion conductance microscopy (SICM) are excellent and commonly used techniques for imaging the topography of living cells with high resolution. We present a direct comparison of AFM and SICM for imaging microvilli, which are small features on the surface of living cells, and for imaging the shape of whole cells. The imaging quality on microvilli increased significantly after cell fixation for AFM, whereas for SICM it remained constant. The apparent shape of whole cells in the case of AFM depended on the imaging force, which deformed the cell. In the case of SICM, cell deformations were avoided, owing to the contact-free imaging mechanism. We estimated that the lateral resolution on living cells is limited by the cell's elastic modulus for AFM, while it is not for SICM. By long-term, time-lapse imaging of microvilli dynamics, we showed that the imaging quality decreased with time for AFM, while it remained constant for SICM. PMID:26011471

  2. Atomic-force microscopy of submicron films of electroactive polymer

    NASA Astrophysics Data System (ADS)

    Karamov, D. D.; Kornilov, V. M.; Lachinov, A. N.; Kraikin, V. A.; Ionova, I. A.

    2016-07-01

    Atomic-force microscopy is used to study the supramolecular structure of submicron films of electroactive thermally stable polymer (polydiphenylenephthalide (PDP)). It has been demonstrated that PDP films produced using centrifuging are solid homogeneous films with thicknesses down to several nanometers, which correspond to two or three monomolecular layers. The film volume is structurized at thicknesses greater than 100 nm. The study of the rheological properties of solutions used for film production yields a crossover point that separates the domains of strongly diluted and semidiluted solutions. A transition from the globular structure to the associate structure is observed in films that are produced using solutions with a boundary concentration. A model of the formation of polymer film that involves the presence of associates in the original solution is discussed.

  3. Bioluminescence microscopy: application to ATP measurements in single living cells

    NASA Astrophysics Data System (ADS)

    Brau, Frederic; Helle, Pierre; Bernengo, Jean C.

    1997-12-01

    Bioluminescence microscopy can be used to measure intracellular cofactors and ionic concentrations (Ca2+, K+, ATP, NADH), as an alternative to micro- spectrophotometry and micro-fluorimetry, due to the development of sensitive detectors (cooled photomultipliers tubes and CCD). The main limitation comes from the very small and brief intensity of the emitted light. Our instrumentation based on an inverted microscope, equipped with high aperture immersion lenses is presented. Light intensity measurements are carried out through a photomultiplier sorted for low dark current and cooled at -5 degree(s)C to reduce thermal noise. Our first aim is to quantify ATP on single living cells using the firefly luciferin-luciferase couple. Experimental and kinetic aspects are presented to emphasize the potentialities of the technique.

  4. Nonoptically probing near-field microscopy for the observation of biological living specimens

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshimasa; Murakami, Manabu; Egami, Chikara; Sugihara, Okihiro; Okamoto, Naomichi; Tsuchimori, Masaaki; Watanabe, Osamu; Nakamura, Osamu

    2001-04-01

    We present the observation of living specimens with subwavelength resolution by using the nonoptically probing near-field microscopy we have developed recently. In the near-field microscope, the optical field distributions near the specimens are recorded as the surface topography of a photosensitive film, and the topographical distributions are readout with an atomic-force microscopy. Since the near-field microscope does not require the scanning of a probe tip for illumination or detection or scattering of light, it is possible to observe moving biological specimens and fast phenomena. We demonstrate the observation of a moving paramecium and euglena gracilis with subwavelength resolution. The observation of the nucleus inside a euglena cell was also demonstrated.

  5. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy.

    PubMed

    Chen, Weili; Long, Kenneth D; Yu, Hojeong; Tan, Yafang; Choi, Ji Sun; Harley, Brendan A; Cunningham, Brian T

    2014-11-21

    We demonstrate photonic crystal enhanced fluorescence (PCEF) microscopy as a surface-specific fluorescence imaging technique to study the adhesion of live cells by visualizing variations in cell-substrate gap distance. This approach utilizes a photonic crystal surface incorporated into a standard microscope slide as the substrate for cell adhesion, and a microscope integrated with a custom illumination source as the detection instrument. When illuminated with a monochromatic light source, angle-specific optical resonances supported by the photonic crystal enable efficient excitation of surface-confined and amplified electromagnetic fields when excited at an on-resonance condition, while no field enhancement occurs when the same photonic crystal is illuminated in an off-resonance state. By mapping the fluorescence enhancement factor for fluorophore-tagged cellular components between on- and off-resonance states and comparing the results to numerical calculations, the vertical distance of labelled cellular components from the photonic crystal substrate can be estimated, providing critical and quantitative information regarding the spatial distribution of the specific components of cells attaching to a surface. As an initial demonstration of the concept, 3T3 fibroblast cells were grown on fibronectin-coated photonic crystals with fluorophore-labelled plasma membrane or nucleus. We demonstrate that PCEF microscopy is capable of providing information about the spatial distribution of cell-surface interactions at the single-cell level that is not available from other existing forms of microscopy, and that the approach is amenable to large fields of view, without the need for coupling prisms, coupling fluids, or special microscope objectives. PMID:25265458

  6. Dynamic Metabolism Studies of Live Bacterial Films

    SciTech Connect

    Majors, Paul D.; Mclean, Jeffrey S.

    2008-11-01

    Bacterial film (biofilm) microbes exist within spatial (nutrient, electron-acceptor, pH, etc.) gradients of their own making. Correspondingly, biofilm bacteria are physiologically and functionally distinct from free-floating bacteria and from their own species at differing biofilm depths. This article describes our efforts to develop noninvasive nuclear magnetic resonance (NMR) technologies for biofilm-metabolism studies. This involves integrating NMR with controlled-cultivation methods to interrogate microbial physiology live and under known growth conditions. NMR is uniquely capable of providing depth-resolved metabolic and transport information in a non-invasive, non-sample-consuming fashion, providing information required for experimental reactive transport studies. We have studied mono-species biofilms relevant to environment remediation and human health. We describe these technologies, discuss their advantages and limitations, and give examples of their application.

  7. Atomic force microscopy analysis of rat pulmonary surfactant films.

    PubMed

    Jiao, Xiujun; Keating, Eleonora; Tadayyon, Seyed; Possmayer, Fred; Zuo, Yi Y; Veldhuizen, Ruud A W

    2011-10-01

    Pulmonary surfactant facilitates breathing by forming a surface tension reducing film at the air-liquid interface of the alveoli. The objective was to characterize the structure of surfactant films using endogenous rat surfactant. Solid-support surfactant films, at different surface pressures, were obtained using a Langmuir balance and were analyzed using atomic force microscopy. The results showed a lipid film structure with three distinct phases: liquid expanded, liquid ordered and liquid condensed. The area covered by the liquid condensed domains increased as surface pressure increased. The presence of liquid ordered phase within these structures correlated with the cholesterol content. At a surface pressure of 50 mN/m, stacks of bilayers appeared. Several structural details of these films differ from previous observations made with goat and exogenous surfactants. Overall, the data indicate that surfactant films demonstrate phase separation at low surface pressures and multilayer formation at higher pressure, features likely important for normal surfactant function. PMID:21704443

  8. Microstructural evaluation of ? bilayer film by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yuan; Liu, Wei; Wang, Ruilan; Xuan, Yi; Li, Lin; Li, Hongchen; Xi, Xiao Xing

    1998-07-01

    The microstructure of 0022-3727/31/14/005/img11Cu0022-3727/31/14/005/img12 bilayer film grown on 0022-3727/31/14/005/img13 substrate was studied by high-resolution transmission electron microscopy (HREM). The results showed that the 0022-3727/31/14/005/img14 film is epitaxially grown on the 0022-3727/31/14/005/img13 substrate with c axis orientation. Planar defects, grain boundaries, moiré patterns, a axis oriented 0022-3727/31/14/005/img14 and impurity particulates are found in the 0022-3727/31/14/005/img14 film. The 0022-3727/31/14/005/img18 film was grown on the 0022-3727/31/14/005/img14 film with a columnar structure. However, some region of the 0022-3727/31/14/005/img18 film is single crystalline, but with strain bands. The development of strain bands in the 0022-3727/31/14/005/img18 film could be a result of lattice mismatch between 0022-3727/31/14/005/img14 and 0022-3727/31/14/005/img18 films and the surface roughness of the 0022-3727/31/14/005/img14 film. In consequence, the dielectric properties of the strained STO film are greatly decreased compared to the bulk single crystalline STO.

  9. Scanning tunneling microscopy studies of diamond films and optoelectronic materials

    NASA Technical Reports Server (NTRS)

    Perez, Jose M.

    1993-01-01

    In this report, we report on progress achieved from 12/1/92 to 10/1/93 under the grant entitled 'Scanning Tunneling Microscopy Studies of Diamond Films and Optoelectronic Materials'. We have set-up a chemical vapor deposition (CVD) diamond film growth system and a Raman spectroscopy system to study the nucleation and growth of diamond films with atomic resolution using scanning tunneling microscopy (STM). A unique feature of the diamond film growth system is that diamond films can be transferred directly to the ultrahigh vacuum (UHV) chamber of a scanning tunneling microscope without contaminating the films by exposure to air. The University of North Texas (UNT) provided $20,000 this year as matching funds for the NASA grant to purchase the diamond growth system. In addition, UNT provided a Coherent Innova 90S Argon ion laser, a Spex 1404 double spectrometer, and a Newport optical table costing $90,000 to set-up the Raman spectroscopy system. The CVD diamond growth system and Raman spectroscopy system will be used to grow and characterize diamond films with atomic resolution using STM as described in our proposal. One full-time graduate student and one full-time undergraduate student are supported under this grant. In addition, several graduate and undergraduate students were supported during the summer to assist in setting-up the diamond growth and Raman spectroscopy systems. We have obtained research results concerning STM of the structural and electronic properties of CVD grown diamond films, and STM and scanning tunneling spectroscopy of carbon nanotubes. In collaboration with the transmission electron microscopy (TEM) group at UNT, we have also obtained results concerning the optoelectronic material siloxene. These results were published in refereed scientific journals, submitted for publication, and presented as invited and contributed talks at scientific conferences.

  10. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells

    PubMed Central

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-01-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution. PMID:26390855

  11. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells.

    PubMed

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-01-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution. PMID:26390855

  12. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells

    NASA Astrophysics Data System (ADS)

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-09-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.

  13. Electron microscopy of iron chalcogenide FeTe(Se) films

    NASA Astrophysics Data System (ADS)

    Shchichko, I. O.; Presnyakov, M. Yu.; Stepantsov, E. A.; Kazakov, S. M.; Antipov, E. V.; Makarova, I. P.; Vasil'ev, A. L.

    2015-05-01

    The structure of Fe1 + δTe1 - x Se x films ( x = 0; 0.05) grown on single-crystal MgO and LaAlO3 substrates has been investigated by transmission and scanning transmission electron microscopy. The study of Fe1.11Te/MgO structures has revealed two crystallographic orientation relationships between the film and substrate. It is shown that the lattice mismatch between the film and substrate is compensated for by the formation of misfit dislocations. The Burgers vector projection is determined. The stresses in the film can partially be compensated for due to the formation of an intermediate disordered layer. It is shown that a FeTe0.5Se0.5 film grown on a LaAlO3 substrate is single-crystal and that the FeTe0.5Se0.5/LaAlO3 interface in a selected region is coherent. The orientation relationships between the film and substrate are also determined for this case.

  14. Electron microscopy of iron chalcogenide FeTe(Se) films

    SciTech Connect

    Shchichko, I. O.; Presnyakov, M. Yu.; Stepantsov, E. A.; Kazakov, S. M.; Antipov, E. V.; Makarova, I. P.; Vasil’ev, A. L.

    2015-05-15

    The structure of Fe{sub 1+δ}Te{sub 1−x}Se{sub x} films (x = 0; 0.05) grown on single-crystal MgO and LaAlO{sub 3} substrates has been investigated by transmission and scanning transmission electron microscopy. The study of Fe{sub 1.11}Te/MgO structures has revealed two crystallographic orientation relationships between the film and substrate. It is shown that the lattice mismatch between the film and substrate is compensated for by the formation of misfit dislocations. The Burgers vector projection is determined. The stresses in the film can partially be compensated for due to the formation of an intermediate disordered layer. It is shown that a FeTe{sub 0.5}Se{sub 0.5} film grown on a LaAlO{sub 3} substrate is single-crystal and that the FeTe{sub 0.5}Se{sub 0.5}/LaAlO{sub 3} interface in a selected region is coherent. The orientation relationships between the film and substrate are also determined for this case.

  15. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  16. Cleaved thin-film probes for scanning tunneling microscopy.

    PubMed

    Siahaan, T; Kurnosikov, O; Barcones, B; Swagten, H J M; Koopmans, B

    2016-01-22

    We introduce an alternative type of probe for scanning tunneling microscopy (STM). Instead of using a needle-like tip made from a piece of metallic wire, a sharp-edged cleaved insulating substrate, which is initially covered by a thin conductive film, is used. The sharp tip is formed at the intersection of the two cleaved sides. Using this approach a variety of materials for STM probes can be used, and functionalization of STM probes is possible. The working principle of different probes made of metallic (Pt, Co, and CoB), indium-tin oxide, as well as Cu/Pt and Co/Pt multilayer films are demonstrated by STM imaging of clean Cu(001) and Cu(111) surfaces as well as the epitaxial Co clusters on Cu(111). PMID:26636763

  17. Thin dielectric film thickness determination by advanced transmission electron microscopy

    SciTech Connect

    Diebold, A.C.; Foran, B.; Kisielowski, C.; Muller, D.; Pennycook, S.; Principe, E.; Stemmer, S.

    2003-09-01

    High Resolution Transmission Electron Microscopy (HR-TEM) has been used as the ultimate method of thickness measurement for thin films. The appearance of phase contrast interference patterns in HR-TEM images has long been confused as the appearance of a crystal lattice by non-specialists. Relatively easy to interpret crystal lattice images are now directly observed with the introduction of annular dark field detectors for scanning TEM (STEM). With the recent development of reliable lattice image processing software that creates crystal structure images from phase contrast data, HR-TEM can also provide crystal lattice images. The resolution of both methods was steadily improved reaching now into the sub Angstrom region. Improvements in electron lens and image analysis software are increasing the spatial resolution of both methods. Optimum resolution for STEM requires that the probe beam be highly localized. In STEM, beam localization is enhanced by selection of the correct aperture. When STEM measurement is done using a highly localized probe beam, HR-TEM and STEM measurement of the thickness of silicon oxynitride films agree within experimental error. In this paper, the optimum conditions for HR-TEM and STEM measurement are discussed along with a method for repeatable film thickness determination. The impact of sample thickness is also discussed. The key result in this paper is the proposal of a reproducible method for film thickness determination.

  18. Tunable thin-film optical filters for hyperspectral microscopy

    NASA Astrophysics Data System (ADS)

    Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2013-02-01

    Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.

  19. Thin-film tunable filters for hyperspectral fluorescence microscopy

    PubMed Central

    Favreau, Peter; Hernandez, Clarissa; Lindsey, Ashley Stringfellow; Alvarez, Diego F.; Rich, Thomas; Prabhat, Prashant

    2013-01-01

    Abstract. Hyperspectral imaging is a powerful tool that acquires data from many spectral bands, forming a contiguous spectrum. Hyperspectral imaging was originally developed for remote sensing applications; however, hyperspectral techniques have since been applied to biological fluorescence imaging applications, such as fluorescence microscopy and small animal fluorescence imaging. The spectral filtering method largely determines the sensitivity and specificity of any hyperspectral imaging system. There are several types of spectral filtering hardware available for microscopy systems, most commonly acousto-optic tunable filters (AOTFs) and liquid crystal tunable filters (LCTFs). These filtering technologies have advantages and disadvantages. Here, we present a novel tunable filter for hyperspectral imaging—the thin-film tunable filter (TFTF). The TFTF presents several advantages over AOTFs and LCTFs, most notably, a high percentage transmission and a high out-of-band optical density (OD). We present a comparison of a TFTF-based hyperspectral microscopy system and a commercially available AOTF-based system. We have characterized the light transmission, wavelength calibration, and OD of both systems, and have then evaluated the capability of each system for discriminating between green fluorescent protein and highly autofluorescent lung tissue. Our results suggest that TFTFs are an alternative approach for hyperspectral filtering that offers improved transmission and out-of-band blocking. These characteristics make TFTFs well suited for other biomedical imaging devices, such as ophthalmoscopes or endoscopes. PMID:24077519

  20. High speed microscopy techniques for signaling detection in live cells

    NASA Astrophysics Data System (ADS)

    de Mauro, C.; Cecchetti, C. A.; Alfieri, D.; Borile, Giulia; Urbani, A.; Mongillo, M.; Pavone, F. S.

    2014-05-01

    Alterations in intracellular cardiomyocyte calcium handling have a key role in initiating and sustaining arrhythmias. Arrhythmogenic calcium leak from sarcoplasmic reticulum (SR) can be attributed to all means by which calcium exits the SR store in an abnormal fashion. Abnormal SR calcium exit maymanifest as intracellular Ca2+ sparks and/or Ca2+ waves. Ca2+ signaling in arrhythmogenesis has been mainly studied in isolated cardiomyocytes and given that the extracellular matrix influences both Ca2+ and membrane potential dynamics in the intact heart and underlies environmentally mediated changes, understanding how Ca2+ and voltage are regulated in the intact heart will represent a tremendous advancement in the understanding of arrhythmogenic mechanisms. Using novel high-speed multiphoton microscopy techinques, such as multispot and random access, we investigated animal models with inherited and acquired arrhythmias to assess the role of Ca2+ and voltage signals as arrhythmia triggers in cell and subcellular components of the intact heart and correlate these with electrophysiology.

  1. Visualization of live primary cilia dynamics using fluorescence microscopy

    PubMed Central

    Ott, Carolyn; Lippincott-Schwartz, Jennifer

    2013-01-01

    Here we describe methods that are useful for exploring the formation and functions of primary cilia in living cells. First we describe multiple protocols for visualizing solitary cilia that extend away from the cell body. Primary cilia collect, synthesize, and transmit information about the extracellular space into the cell body to promote critical cellular responses. Problems with cilia formation or function can lead to dramatic changes in cell physiology. These methods can be used to assess cilia formation and length, the location of the cilium relative to other cellular structures, and localization of specific proteins to the cilium. The second protocol describes how to quantify movement of fluorescent molecules within the cilium. The microtubules that form the structural scaffold of the cilium are also critical avenues for kinesin and dynein-mediated movement of proteins within the cilium. Assessing intraflagellar dynamics can provide insight into mechanisms of ciliary-mediated signal perception and transmission. PMID:23208547

  2. Recent advancements in structured-illumination microscopy toward live-cell imaging.

    PubMed

    Hirano, Yasuhiro; Matsuda, Atsushi; Hiraoka, Yasushi

    2015-08-01

    Fluorescence microscopy allows us to observe fluorescently labeled molecules in diverse biological processes and organelle structures within living cells. However, the diffraction limit restricts its spatial resolution to about half of its wavelength, limiting the capability of biological observation at the molecular level. Structured-illumination microscopy (SIM), a type of super-resolution microscopy, doubles the spatial resolution in all three dimensions by illuminating the sample with a patterned excitation light, followed by computer reconstruction. SIM uses a relatively low illumination power compared with other methods of super-resolution microscopy and is easily available for multicolor imaging. SIM has great potential for meeting the requirements of live-cell imaging. Recent developments in diverse types of SIM have achieved higher spatial (∼50 nm lateral) and temporal (∼100 Hz) resolutions. Here, we review recent advancements in SIM and discuss its application in noninvasive live-cell imaging. PMID:26133185

  3. Silicon Carbide Epitaxial Films Studied by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Silicon carbide (SiC) holds great potential as an electronic material because of its wide band gap energy, high breakdown electric field, thermal stability, and resistance to radiation damage. Possible aerospace applications of high-temperature, high-power, or high-radiation SiC electronic devices include sensors, control electronics, and power electronics that can operate at temperatures up to 600 C and beyond. Commercially available SiC devices now include blue light-emitting diodes (LED's) and high-voltage diodes for operation up to 350 C, with other devices under development. At present, morphological defects in epitaxially grown SiC films limit their use in device applications. Research geared toward reducing the number of structural inhomogeneities can benefit from an understanding of the type and nature of problems that cause defects. The Atomic Force Microscope (AFM) has proven to be a useful tool in characterizing defects present on the surface of SiC epitaxial films. The in-house High-Temperature Integrated Electronics and Sensors (HTIES) Program at the NASA Lewis Research Center not only extended the dopant concentration range achievable in epitaxial SiC films, but it reduced the concentration of some types of defects. Advanced structural characterization using the AFM was warranted to identify the type and structure of the remaining film defects and morphological inhomogeneities. The AFM can give quantitative information on surface topography down to molecular scales. Acquired, in part, in support of the Advanced High Temperature Engine Materials Technology Program (HITEMP), the AFM had been used previously to detect partial fiber debonding in composite material cross sections. Atomic force microscopy examination of epitaxial SiC film surfaces revealed molecular-scale details of some unwanted surface features. Growth pits propagating from defects in the substrate, and hillocks due, presumably, to existing screw dislocations in the substrates, were

  4. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  5. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    SciTech Connect

    Lansåker, Pia C. Niklasson, Gunnar A.; Granqvist, Claes G.; Hallén, Anders

    2014-10-15

    Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness d{sub g}—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM) combined with image analysis as well as by atomic force microscopy (AFM). The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for d{sub g} were obtained by SEM with image analysis and by AFM.

  6. Scanning Tunneling Microscopy Studies of Diamond Films and Optoelectronic Materials

    NASA Technical Reports Server (NTRS)

    Perez, Jose M.

    1996-01-01

    We present a summary of the research, citations of publications resulting from the research and abstracts of such publications. We have made no inventions in the performance of the work in this project. The main goals of the project were to set up a Chemical Vapor Deposition (CVD) diamond growth system attached to an UltraHigh Vacuum (UHV) atomic resolution Scanning Tunneling Microscopy (STM) system and carry out experiments aimed at studying the properties and growth of diamond films using atomic resolution UHV STM. We successfully achieved these goals. We observed, for the first time, the atomic structure of the surface of CVD grown epitaxial diamond (100) films using UHV STM. We studied the effects of atomic hydrogen on the CVD diamond growth process. We studied the electronic properties of the diamond (100) (2x1) surface, and the effect of alkali metal adsorbates such as Cs on the work function of this surface using UHV STM spectroscopy techniques. We also studied, using STM, new electronic materials such as carbon nanotubes and gold nanostructures. This work resulted in four publications in refereed scientific journals and five publications in refereed conference proceedings.

  7. Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells

    PubMed Central

    Day, Richard N.; Davidson, Michael W.

    2012-01-01

    Summary The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for fluorescence (or Förster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts, and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs. PMID:22396229

  8. Two-Color STED Microscopy of Living Synapses Using A Single Laser-Beam Pair

    PubMed Central

    Tønnesen, Jan; Nadrigny, Fabien; Willig, Katrin I.; Wedlich-Söldner, Roland; Nägerl, U. Valentin

    2011-01-01

    The advent of superresolution microscopy has opened up new research opportunities into dynamic processes at the nanoscale inside living biological specimens. This is particularly true for synapses, which are very small, highly dynamic, and embedded in brain tissue. Stimulated emission depletion (STED) microscopy, a recently developed laser-scanning technique, has been shown to be well suited for imaging living synapses in brain slices using yellow fluorescent protein as a single label. However, it would be highly desirable to be able to image presynaptic boutons and postsynaptic spines, which together form synapses, using two different fluorophores. As STED microscopy uses separate laser beams for fluorescence excitation and quenching, incorporation of multicolor imaging for STED is more difficult than for conventional light microscopy. Although two-color schemes exist for STED microscopy, these approaches have several drawbacks due to their complexity, cost, and incompatibility with common labeling strategies and fluorophores. Therefore, we set out to develop a straightforward method for two-color STED microscopy that permits the use of popular green-yellow fluorescent labels such as green fluorescent protein, yellow fluorescent protein, Alexa Fluor 488, and calcein green. Our new (to our knowledge) method is based on a single-excitation/STED laser-beam pair to simultaneously excite and quench pairs of these fluorophores, whose signals can be separated by spectral detection and linear unmixing. We illustrate the potential of this approach by two-color superresolution time-lapse imaging of axonal boutons and dendritic spines in living organotypic brain slices. PMID:22098754

  9. Live correlative light-electron microscopy to observe molecular dynamics in high resolution.

    PubMed

    Kobayashi, Shouhei; Iwamoto, Masaaki; Haraguchi, Tokuko

    2016-08-01

    Fluorescence microscopy (FM) is a powerful tool for observing specific molecular components in living cells, but its spatial resolution is relatively low. In contrast, electron microscopy (EM) provides high-resolution information about cellular structures, but it cannot provide temporal information in living cells. To achieve molecular selectivity in imaging at high resolution, a method combining EM imaging with live-cell fluorescence imaging, known as live correlative light-EM (CLEM), has been developed. In this method, living cells are first observed by FM, fixed in situ during the live observation and then subjected to EM observation. Various fluorescence techniques and tools can be applied for FM, resulting in the generation of various modified methods that are useful for understanding cellular structure in high resolution. Here, we review the methods of CLEM and live-cell imaging associated with CLEM (live CLEM). Such methods can greatly advance the understanding of the function of cellular structures on a molecular level, and thus are useful for medical fields as well as for basic biology. PMID:27385786

  10. Making microscopy count: quantitative light microscopy of dynamic processes in living plants.

    PubMed

    Fricker, Mark D; Moger, Julian; Littlejohn, George R; Deeks, Michael J

    2016-08-01

    Cell theory has officially reached 350 years of age as the first use of the word 'cell' in a biological context can be traced to a description of plant material by Robert Hooke in his historic publication 'Micrographia: or some physiological definitions of minute bodies'. The 2015 Royal Microscopical Society Botanical Microscopy meeting was a celebration of the streams of investigation initiated by Hooke to understand at the subcellular scale how plant cell function and form arises. Much of the work presented, and Honorary Fellowships awarded, reflected the advanced application of bioimaging informatics to extract quantitative data from micrographs that reveal dynamic molecular processes driving cell growth and physiology. The field has progressed from collecting many pixels in multiple modes to associating these measurements with objects or features that are meaningful biologically. The additional complexity involves object identification that draws on a different type of expertise from computer science and statistics that is often impenetrable to biologists. There are many useful tools and approaches being developed, but we now need more interdisciplinary exchange to use them effectively. In this review we show how this quiet revolution has provided tools available to any personal computer user. We also discuss the oft-neglected issue of quantifying algorithm robustness and the exciting possibilities offered through the integration of physiological information generated by biosensors with object detection and tracking. PMID:27145353

  11. Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes.

    PubMed

    Wei, Lu; Hu, Fanghao; Chen, Zhixing; Shen, Yihui; Zhang, Luyuan; Min, Wei

    2016-08-16

    Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. In particular, fluorescence microscopy with the expanding choices of fluorescent probes has provided a comprehensive toolkit to tag and visualize various molecules of interest with exquisite specificity and high sensitivity. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because common fluorescent labels, which are relatively bulky, could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, a bioorthogonal chemical imaging platform has recently been introduced. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes and stable isotopes), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, and biocompatibility for imaging small biomolecules in live systems. In this Account, we review recent technical achievements for visualizing a broad spectrum of small biomolecules, including ribonucleosides and deoxyribonucleosides, amino acids, fatty acids, choline, glucose, cholesterol, and small-molecule drugs in live biological systems ranging from individual cells to animal tissues and model organisms. Importantly, this platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, we discuss further chemical and spectroscopic strategies for multicolor bioorthogonal chemical imaging, a valuable technique in the era of "omics". As a unique tool for biological discovery, this platform has been applied to

  12. Characterization of MSB Synapses in Dissociated Hippocampal Culture with Simultaneous Pre- and Postsynaptic Live Microscopy

    PubMed Central

    Reilly, James E.; Hanson, Hugo H.; Fernández-Monreal, Mónica; Hof, Patrick R.; Phillips, Greg R.

    2011-01-01

    Multisynaptic boutons (MSBs) are presynaptic boutons in contact with multiple postsynaptic partners. Although MSB synapses have been studied with static imaging techniques such as electron microscopy (EM), the dynamics of individual MSB synapses have not been directly evaluated. It is known that the number of MSB synapses increases with synaptogenesis and plasticity but the formation, behavior, and fate of individual MSB synapses remains largely unknown. To address this, we developed a means of live imaging MSB synapses to observe them directly over time. With time lapse confocal microscopy of GFP-filled dendrites in contact with VAMP2-DsRed-labeled boutons, we recorded both MSBs and their contacting spines hourly over 15 or more hours. Our live microscopy showed that, compared to spines contacting single synaptic boutons (SSBs), MSB-contacting spines exhibit elevated dynamic behavior. These results are consistent with the idea that MSBs serve as intermediates in synaptic development and plasticity. PMID:22028887

  13. Multiphoton fluorescence microscopy of the live kidney in health and disease.

    PubMed

    Small, David M; Sanchez, Washington Y; Roy, Sandrine; Hickey, Michael J; Gobe, Glenda C

    2014-02-01

    The structural and functional heterogeneity of the kidney ensures a diversity of response in health and disease. Multiphoton microscopy has improved our understanding of kidney physiology and pathophysiology by enabling the visualization of the living kidney in comparison with the static view of previous technologies. The use of multiphoton microscopy with rodent models in conjunction with endogenous fluorescence and exogenous infused dyes permits the measurement of renal processes, such as glomerular permeability, juxtaglomerular apparatus function, tubulointerstitial function, tubulovascular interactions, vascular flow rate, and the intrarenal renin-angiotensin-aldosterone system. Subcellular processes, including mitochondrial dynamics, reactive oxygen species production, cytosolic ion concentrations, and death processes apoptosis and necrosis, can also be measured by multiphoton microscopy. This has allowed valuable insight into the pathophysiology of diabetic nephropathy, renal ischemia-reperfusion injury, hypertensive nephropathy, as well as inflammatory responses of the kidney. The current review presents an overview of multiphoton microscopy with a focus on techniques for imaging the kidney and gives examples of instances where multiphoton microscopy has been utilized to study renal pathophysiology in the living kidney. With continued advancements in the field of biological optics and increased adoption in experimental nephrology, multiphoton microscopy will undoubtedly continue to create new paradigms in kidney disease. PMID:24525825

  14. Widefield microscopy for live imaging of lipid domains and membrane dynamics

    PubMed Central

    Wheeler, Guy; Tyler, Kevin M.

    2011-01-01

    Within the lateral organisation of plasma membranes of polarized cell types there exist heterogenous microdomains of distinct lipid composition, the small size of which (10–200 nm) makes them difficult to discern with traditional microscopic techniques, but which can be distinguished on the basis of lipid packing. These microdomains or rafts can be concentrated in larger more visible liquid-ordered regions, particularly by cross-linking of their constituents as in the immunological synapse or in features of the polarized cell such as pseudopodia or flagella. One technique, Laurdan fluorescence microscopy, has proven very useful for distinguishing such regions but has hitherto relied on 2-photon confocal microscopy. This has to some extent limited its utility to living systems and its widespread adoption in studying membrane dynamics on the surface of living cells. Here we describe and validate the adaptation of a standard widefield fluorescence microscope for live imaging of Laurdan stained cell membranes. PMID:21126508

  15. Visualization of Live Cochlear Stereocilia at a Nanoscale Resolution Using Hopping Probe Ion Conductance Microscopy.

    PubMed

    Vélez-Ortega, A Catalina; Frolenkov, Gregory I

    2016-01-01

    The mechanosensory apparatus that detects sound-induced vibrations in the cochlea is located on the apex of the auditory sensory hair cells and it is made up of actin-filled projections, called stereocilia. In young rodents, stereocilia bundles of auditory hair cells consist of 3-4 rows of stereocilia of decreasing height and varying thickness. Morphological studies of the auditory stereocilia bundles in live hair cells have been challenging because the diameter of each stereocilium is near or below the resolution limit of optical microscopy. In theory, scanning probe microscopy techniques, such as atomic force microscopy, could visualize the surface of a living cell at a nanoscale resolution. However, their implementations for hair cell imaging have been largely unsuccessful because the probe usually damages the bundle and disrupts the bundle cohesiveness during imaging. We overcome these limitations by using hopping probe ion conductance microscopy (HPICM), a non-contact scanning probe technique that is ideally suited for the imaging of live cells with a complex topography. Organ of Corti explants are placed in a physiological solution and then a glass nanopipette-which is connected to a 3D-positioning piezoelectric system and to a patch clamp amplifier-is used to scan the surface of the live hair cells at nanometer resolution without ever touching the cell surface.Here, we provide a detailed protocol for the imaging of mouse or rat stereocilia bundles in live auditory hair cells using HPICM. We provide information about the fabrication of the nanopipettes, the calibration of the HPICM setup, the parameters we have optimized for the imaging of live stereocilia bundles and, lastly, a few basic image post-processing manipulations. PMID:27259929

  16. A Microfluidic Platform for Correlative Live-Cell and Super-Resolution Microscopy

    PubMed Central

    Tam, Johnny; Cordier, Guillaume Alan; Bálint, Štefan; Sandoval Álvarez, Ángel; Borbely, Joseph Steven; Lakadamyali, Melike

    2014-01-01

    Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images. PMID:25545548

  17. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy.

    PubMed

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Swann, Karl; Borri, Paola

    2016-06-15

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. PMID:27151947

  18. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy

    PubMed Central

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. PMID:27151947

  19. Thickness microscopy based on photothermal radiometry for the measurement of thin films.

    PubMed

    Wang, Liping; Prekel, Helmut; Liu, Hengbiao; Deng, Yanzhuo; Hu, Jiming; Goch, Gert

    2009-03-01

    The photothermal detection technique is an innovative and non-contact method to investigate the properties of films on workpieces. This paper describes a novel experimental set-up for thickness microscopy based on photothermal radiometry. The correlation between the thermal wave signal and the film thickness is deduced and evaluated to determine the film thickness with a lateral resolution of less than 1mm. Results indicate that the thickness microscopy is a useful method to characterize thin films and has the potential to be applied in-process. PMID:19046925

  20. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    PubMed

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes. PMID:27515076

  1. Individual classification of buried transistors in live microprocessors by functional infrared emission spectral microscopy

    NASA Astrophysics Data System (ADS)

    Oblefias, Wilma; Soriano, Maricor; Tarun, Alvarado; Saloma, Caesar

    2006-10-01

    The authors classify good, leaky, and broken field effect transistors (FET's) in a live 90nm flip-chip microprocessor using functional infrared emission spectral microscopy. The FET's are in the active layer that is sandwiched between a thick heat-absorbing silicon material and a highly reflecting grid of metal interconnects. Together they are optically imaged only as a single bright blob. They classify FET's individually from their distinct electroluminescence spectra that are recovered efficiently by spectral decomposition of the detected composite spectrum. Leaky FET's have no apparent structural damage and are detectable only in live microprocessors.

  2. Live cell imaging based on surface plasmon-enhanced fluorescence microscopy using random nanostructures

    NASA Astrophysics Data System (ADS)

    Oh, Youngjin; Lee, Wonju; Son, Taehwang; Kim, Sook Young; Shin, Jeon-Soo; Kim, Donghyun

    2014-02-01

    Localized surface plasmon enhanced microscopy based on nanoislands of random spatial distribution was demonstrated for imaging live cells and molecular interactions. Nanoislands were produced without lithography by high temperature annealing under various processing conditions. The localization of near-field distribution that is associated with localized surface plasmon on metallic random nanoislands was analyzed theoretically and experimentally in comparison with periodic nanostructures. For experimental validation in live cell imaging, mouse macrophage-like cell line stained with Alexa Fluor 488 was prepared on nanoislands. The results suggest the possibility of attaining the imaging resolution on the order of 80 nm.

  3. Wavelength-Dependent Differential Interference Contrast Microscopy: Selectively Imaging Nanoparticle Probes in Live Cells

    SciTech Connect

    Sun, Wei; Wang, Gufeng; Fang, Ning; and Yeung, Edward S.

    2009-11-15

    Gold and silver nanoparticles display extraordinarily large apparent refractive indices near their plasmon resonance (PR) wavelengths. These nanoparticles show good contrast in a narrow spectral band but are poorly resolved at other wavelengths in differential interference contrast (DIC) microscopy. The wavelength dependence of DIC contrast of gold/silver nanoparticles is interpreted in terms of Mie's theory and DIC working principles. We further exploit this wavelength dependence by modifying a DIC microscope to enable simultaneous imaging at two wavelengths. We demonstrate that gold/silver nanoparticles immobilized on the same glass slides through hybridization can be differentiated and imaged separately. High-contrast, video-rate images of living cells can be recorded both with and without illuminating the gold nanoparticle probes, providing definitive probe identification. Dual-wavelength DIC microscopy thus presents a new approach to the simultaneous detection of multiple probes of interest for high-speed live-cell imaging.

  4. Tracking Cytoskeletal Dynamics in Living Neurons via Combined Atomic Force and Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Spedden, Elise; Kaplan, David; Staii, Cristian

    2013-03-01

    Living cells are active mechanical structures which evolve within and in response to their local microenvironments. Various cell types possess different mechanical properties and respond uniquely to growth, environmental changes, and the application of chemical stimuli. Here we present a powerful approach which combines high resolution Atomic Force Microscopy with Fluorescence Microscopy to systematically obtain real-time micrometer and sub-micrometer resolution elasticity maps for live neuronal cells cultured on glass substrates. Through this approach we measure the topography, the elastic properties, and the dynamics of neuronal cells, and identify changes in cytoskeletal components during axonal growth, chemical modification, and changes in ambient temperature. We will also show high resolution elasticity measurements of the cell body and of axons/dendrites during growth, as well as identification of cytoskeletal components during cell growth and environmental changes.

  5. Dynamic cell culture: a microfluidic function generator for live cell microscopy.

    PubMed

    Lee, Philip J; Gaige, Terry A; Hung, Paul J

    2009-01-01

    We present a microfluidic system for time-lapsed, live cell microscopy with the ability to control solution exchange via a dynamic flow controller. The application specific microfluidic plates are designed to maintain adherent and non-adherent cell types for multiple days with continuous medium perfusion. Upstream channels with flow controlled via custom software allow the delivery of unique exposure profiles to the cultured cells, such as square waves, step functions, ramps, etc. PMID:19209350

  6. Live cell imaging with chemical specificity using dual frequency CARS microscopy.

    PubMed

    Pope, Iestyn; Langbein, Wolfgang; Borri, Paola; Watson, Peter

    2012-01-01

    Live cell microscopy using fluorescent proteins and small fluorescent probes is a well-established and essential tool for cell biology; however, there is a considerable need for noninvasive techniques able to study tissue and cell dynamics without the need to introduce chemical or genetically encoded probes. Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging tool for cell biologists to examine live cell dynamics with chemical specificity in a label-free, noninvasive way. CARS is a multiphoton process offering intrinsic three-dimensional submicron resolution, where the image contrast is obtained from light inelastically scattered by the vibrations of endogenous chemical bonds. CARS is particularly well suited to study lipid biology, since the CARS signal of localized lipids (exhibiting a large amount of identical bonds in the focal volume) is very strong. Conversely, photostable, lipid-specific markers for fluorescence microscopy are difficult to produce and the process of labeling often affects lipid localization and function, making imaging lipids in live cells challenging, and accurate quantification often impossible. Here, we describe in detail the principles behind our experimental setup for performing CARS microscopy of lipid droplets on live cells. Since typical vibrational resonances in liquid have coherence times in the picosecond range, CARS is preferably implemented with picosecond lasers which are however expensive and less efficient than femtosecond lasers, which could also be used for other multiphoton techniques such as two-photon fluorescence. In our setup, we show that femtosecond lasers can be spectrally focused in a simple, alignment insensitive, and cost-effective way to achieve a vibrational excitation similar to picosecond lasers. This opens the way to integrate CARS and two-photon fluorescence in a single multimodal instrument for its widespread application. We also describe our dual frequency CARS system which eliminates

  7. Transmission electron microscopy of undermined passive films on stainless steel

    SciTech Connect

    Isaacs, H.S.; Zhu, Y.; Sabatini, R.L.; Ryan, M.P.

    1999-06-01

    A study has been made of the passive film remaining over pits on stainless steel using a high resolution transmission electron microscope. Type 305 stainless steel was passivated in a borate buffer solution and pitted in ferric chloride. Passive films formed at 0.2 V relative to a saturated calomel electrode were found to be amorphous. Films formed at higher potentials showed only broad diffraction rings. The passive film was found to cover a remnant lacy structure formed over pits passivated at 0.8 V. The metallic strands of the lace were roughly hemitubular in shape with the curved surface facing the center of the pit.

  8. Polarized Fluorescence Microscopy to Study Cytoskeleton Assembly and Organization in Live Cells.

    PubMed

    McQuilken, Molly; Mehta, Shalin B; Verma, Amitabh; Harris, Grant; Oldenbourg, Rudolf; Gladfelter, Amy S

    2015-01-01

    The measurement of not only the location but also the organization of molecules in live cells is crucial to understanding diverse biological processes. Polarized light microscopy provides a nondestructive means to evaluate order within subcellular domains. When combined with fluorescence microscopy and GFP-tagged proteins, the approach can reveal organization within specific populations of molecules. This unit describes a protocol for measuring the architectural dynamics of cytoskeletal components using polarized fluorescence microscopy and OpenPolScope open-access software (http://www.openpolscope.org). The protocol describes installation of linear polarizers or a liquid crystal (LC) universal compensator, calibration of the system, polarized fluorescence imaging, and analysis. The use of OpenPolScope software and hardware allows for reliable, user-friendly image acquisition to measure and analyze polarized fluorescence. PMID:26061244

  9. Polarized Fluorescence Microscopy to Study Cytoskeleton Assembly and Organization in live cells

    PubMed Central

    McQuilken, Molly; Mehta, Shalin B.; Verma, Amitabh; Harris, Grant; Oldenbourg, Rudolf; Gladfelter, Amy S.

    2015-01-01

    The measurement of not only the location but also the organization of molecules in live cells is crucial to understanding diverse biological processes. Polarized light microscopy provides a nondestructive means to evaluate order within subcellular domains. When combined with fluorescence microscopy and GFP-tagged proteins, the approach can reveal organization within specific populations of molecules. This unit describes a protocol for measuring the architectural dynamics of cytoskeletal components using polarized fluorescence microscopy and OpenPolScope open-access software (www.openpolscope.org). The protocol describes installation of linear polarizers or a liquid crystal (LC) universal compensator, calibration of the system, polarized fluorescence imaging, and analysis. The use of OpenPolScope software and hardware allows for reliable, user-friendly image acquisition to measure and analyze polarized fluorescence. PMID:26061244

  10. N-Way FRET Microscopy of Multiple Protein-Protein Interactions in Live Cells

    PubMed Central

    Hoppe, Adam D.; Scott, Brandon L.; Welliver, Timothy P.; Straight, Samuel W.; Swanson, Joel A.

    2013-01-01

    Fluorescence Resonance Energy Transfer (FRET) microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET) to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells. PMID:23762252

  11. Light sheet microscopy for tracking single molecules on the apical surface of living cells.

    PubMed

    Li, Yu; Hu, Ying; Cang, Hu

    2013-12-12

    Single particle tracking is a powerful tool to study single molecule dynamics in living biological samples. However, current tracking techniques, which are based mainly on epifluorescence, confocal, or TIRF microscopy, have difficulties in tracking single molecules on the apical surface of a cell. We present here a three-dimensional (3D) single particle tracking technique that is based on prism coupled light-sheet microscopy (PCLSM). This novel design provides a signal-to-noise ratio comparable to confocal microscopy while it has the capability of illuminating at arbitrary depth. We demonstrate tracking of single EGF molcules on the apical surface of live cell membranes from their binding to EGF receptors until they are internalized or photobleached. We found that EGF exhibits multiple diffusion behaviors on live A549 cell membranes. At room temperature, the average diffusion coefficient of EGF on A549 cells was measured to be 0.13 μm(2)/s. Depletion of cellular cholesterol with methyl-β-cyclodextrin leads to a broader distribution of diffusion coefficients and an increase of the average diffusion coefficient at room temperature. This light-sheet based 3D single particle tracking technique solves the technique difficulty of tracking single particles on apical membranes and is able to document the whole "lifetime" of a particle from binding till photobleaching or internalization. PMID:23895420

  12. N-way FRET microscopy of multiple protein-protein interactions in live cells.

    PubMed

    Hoppe, Adam D; Scott, Brandon L; Welliver, Timothy P; Straight, Samuel W; Swanson, Joel A

    2013-01-01

    Fluorescence Resonance Energy Transfer (FRET) microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET) to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells. PMID:23762252

  13. Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Langehanenberg, Patrik; Kosmeier, Sebastian; Schlichthaber, Frank; Remmersmann, Christian; von Bally, Gert; Rommel, Christina; Dierker, Christian; Schnekenburger, Jürgen

    The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.

  14. Intravital microscopy: a novel tool to study cell biology in living animals

    PubMed Central

    Weigert, Roberto; Sramkova, Monika; Parente, Laura; Masedunskas, Andrius

    2011-01-01

    Intravital microscopy encompasses various optical microscopy techniques aimed at visualizing biological processes in live animals. In the last decade, the development of non-linear optical microscopy resulted in an enormous increase of in vivo studies, which have addressed key biological questions in fields such as neurobiology, immunology and tumor biology. Recently, few studies have shown that subcellular processes can be imaged dynamically in the live animal at a resolution comparable to that achieved in cell cultures, providing new opportunities to study cell biology under physiological conditions. The overall aim of this review is to give the reader a general idea of the potential applications of intravital microscopy with a particular emphasis on subcellular imaging. An overview of some of the most exciting studies in this field will be presented using resolution as a main organizing criteria. Indeed, first we will focus on those studies in which organs where imaged at the tissue level, then on those focusing on single cells imaging, and finally on those imaging subcellular organelles and structures. PMID:20372919

  15. A bright and long-pulse illumination for ultrahigh-speed microscopy of living specimens

    NASA Astrophysics Data System (ADS)

    Nakano, Hitoshi; Yokoi, Sayoko; Yoshida, Shigeru; Yamada, Makoto; Takeuchi, Takeshi; Takehara, Kosei; Etoh, T. Goji

    2010-01-01

    Ultrahigh-speed microscopy of living specimens requires ultrabright illumination. Moreover, the duration of illumination should be sufficiently long, on the order of at least several tens of milliseconds, in order to investigate the dynamic state of living specimens. However, specimens are exposed to a high risk of damage by the intense illumination. The brightness and pulse duration of illumination have to be continuously controlled for use in the ultrahigh-speed microscopy of living specimens. Commercial or laboratory-made illumination systems do not satisfy the abovementioned requirements. In this paper, the development of a bright and long-pulse illumination system for ultrahigh-speed microscopy of living specimens is presented. A xenon flashlamp with an arc length of 1.5 mm has been used as the light source. The electrical power supply consists of a voltage-regulated circuit, a capacitor bank, and a control circuit including an insulated-gate bipolar transistor as a gating device, which provides a large rectangular current pulse with the duration in the range to the order of several tens of milliseconds. The brightness, pulse duration, and repetition rate can be easily and continuously controlled. The illumination developed in the present study is installed in an inverted fluorescence microscope equipped with a high-speed camera in order to evaluate the performance as an illumination source. A fluorescent image of the living spermatozoa of a mouse obtained at a frame rate of 8 kHz shows good contrast. Such an image cannot be obtained using a commercial illumination system.

  16. Topography and friction properties of macromolecular thin films using atomic-force-microscopy technology

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Gan, D. J.; Kreiling, S.; Song, C. S.; Lu, S. Q.; Wang, Z. J.

    The research work in this letter is on the microtribological properties of poly(ether ketone ketone) (PEKK) and sulfonated PEKK (S-PEKK) thin films. Polystyrene (PS) was used as a reference for the investigation. Atomic-force-microscopy (AFM) techniques were used for observing the topography and friction properties of the macromolecular thin films at the nanometer scale. The polymeric thin films were fabricated by spin coating at a speed of 4000 rotations per minute (rpm).

  17. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy.

    PubMed

    Zhang, Xi; Zhang, Mingshu; Li, Dong; He, Wenting; Peng, Jianxin; Betzig, Eric; Xu, Pingyong

    2016-09-13

    Two long-standing problems for superresolution (SR) fluorescence microscopy are high illumination intensity and long acquisition time, which significantly hamper its application for live-cell imaging. Reversibly photoswitchable fluorescent proteins (RSFPs) have made it possible to dramatically lower the illumination intensities in saturated depletion-based SR techniques, such as saturated depletion nonlinear structured illumination microscopy (NL-SIM) and reversible saturable optical fluorescence transition microscopy. The characteristics of RSFPs most critical for SR live-cell imaging include, first, the integrated fluorescence signal across each switching cycle, which depends upon the absorption cross-section, effective quantum yield, and characteristic switching time from the fluorescent "on" to "off" state; second, the fluorescence contrast ratio of on/off states; and third, the photostability under excitation and depletion. Up to now, the RSFPs of the Dronpa and rsEGFP (reversibly switchable EGFP) families have been exploited for SR imaging. However, their limited number of switching cycles, relatively low fluorescence signal, and poor contrast ratio under physiological conditions ultimately restrict their utility in time-lapse live-cell imaging and their ability to reach the desired resolution at a reasonable signal-to-noise ratio. Here, we present a truly monomeric RSFP, Skylan-NS, whose properties are optimized for the recently developed patterned activation NL-SIM, which enables low-intensity (∼100 W/cm(2)) live-cell SR imaging at ∼60-nm resolution at subsecond acquisition times for tens of time points over broad field of view. PMID:27562163

  18. Light-induced cell damage in live-cell super-resolution microscopy

    PubMed Central

    Wäldchen, Sina; Lehmann, Julian; Klein, Teresa; van de Linde, Sebastian; Sauer, Markus

    2015-01-01

    Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20–24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of ~1 kW cm−2 at 640 nm for several minutes, the maximum dose at 405 nm is only ~50 J cm−2, emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities. PMID:26481189

  19. Light-induced cell damage in live-cell super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Wäldchen, Sina; Lehmann, Julian; Klein, Teresa; van de Linde, Sebastian; Sauer, Markus

    2015-10-01

    Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20-24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of ~1 kW cm-2 at 640 nm for several minutes, the maximum dose at 405 nm is only ~50 J cm-2, emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities.

  20. Light-induced cell damage in live-cell super-resolution microscopy.

    PubMed

    Wäldchen, Sina; Lehmann, Julian; Klein, Teresa; van de Linde, Sebastian; Sauer, Markus

    2015-01-01

    Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20-24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of ~1 kW cm(-2) at 640 nm for several minutes, the maximum dose at 405 nm is only ~50 J cm(-2), emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities. PMID:26481189

  1. FLIM-FRET microscopy to visualize transcription factor interactions in the nucleus of the living cell

    NASA Astrophysics Data System (ADS)

    Day, Richard N.; Demarco, Ignacio A.; Voss, Ty C.; Chen, Ye; Periasamy, Ammasi

    2004-06-01

    Wide-field fluorescence microscopy was used to monitor the co-localization of the homeodomain (HD) transcription factor Pit-1 and the basic-leucine zipper protein CCAAT/enhancer binding protein alpha (C/EBPa), each labeled with fluorescent proteins (FP) in the living cell nucleus. Fluorescence resonance energy transfer (FRET) microscopy was used to resolve the angstrom-scale spatial relationships of these expressed proteins, and the effect of a Pit-1 point mutation on the interaction with C/EBPa was characterized. Two-photon excitation fluorescence lifetime imaging microscopy (2p-FLIM) was then used as an independent method to detect these protein interactions. The excited-state lifetime for the cyan FP (CFP) labeling C/EBPa was determined, and the measurements were repeated in cells co-expressing yellow FP (YFP) labeled-proteins. The CFP lifetime was decreased in the presence of the YFP acceptor, which is consistent with donor quenching by FRET. This was verified by acceptor photobleaching, which caused a shift in the donor lifetime to that similar to the donor alone. However, a significant limitation of this technique was demonstrated by the observation that high-energy 2p-excitation resulted in CFP photobleaching and a parallel decrease in its excited-state lifetime. The key question is whether the sensitivity of this imaging approach will be sufficient to acquire significant data from living cells expressing physiological levels of the labeled proteins.

  2. Morphological Measurement of Living Cells in Methanol with Digital Holographic Microscopy

    PubMed Central

    Wang, Yunxin; Yang, Yishu; Wang, Dayong; Ouyang, Liting; Zhang, Yizhuo; Zhao, Jie; Wang, Xinlong

    2013-01-01

    Cell morphology is the research foundation in many applications related to the estimation of cell status, drug response, and toxicity screening. In biomedical field, the quantitative phase detection is an inevitable trend for living cells. In this paper, the morphological change of HeLa cells treated with methanol of different concentrations is detected using digital holographic microscopy. The compact image-plane digital holographic system is designed based on fiber elements. The quantitative phase image of living cells is obtained in combination with numerical analysis. The statistical analysis shows that the area and average optical thickness of HeLa cells treated with 12.5% or 25% methanol reduce significantly, which indicates that the methanol with lower concentration could cause cellular shrinkage. The area of HeLa cells treated with 50% methanol is similar to that of normal cells (P > 0.05), which reveals the fixative effect of methanol with higher concentration. The maximum optical thickness of the cells treated with 12.5%, 25%, and 50% methanol is greater than that of untreated cells, which implies the pyknosis of HeLa cells under the effect of methanol. All of the results demonstrate that digital holographic microscopy has supplied a noninvasive imaging alternative to measure the morphological change of label-free living cells. PMID:23424605

  3. New method for fast morphological characterization of organic polycrystalline films by polarized optical microscopy

    NASA Astrophysics Data System (ADS)

    He, Xiao-Chuan; Yang, Jian-Bing; Yan, Dong-Hang; Weng, Yu-Xiang

    2015-07-01

    A new method to visualize the large-scale crystal grain morphology of organic polycrystalline films is proposed. First, optical anisotropic transmittance images of polycrystalline zinc phthalocyanine (ZnPc) films vacuum deposited by weak epitaxial growth (WEG) method were acquired with polarized optical microscopy (POM). Then morphology properties including crystal grain size, distribution, relative orientation, and crystallinity were derived from these images by fitting with a transition dipole model. At last, atomic force microscopy (AFM) imaging was carried out to confirm the fitting and serve as absolute references. This method can be readily generalized to other organic polycrystalline films, thus providing an efficient way to access the large-scale morphologic properties of organic polycrystalline films, which may prove to be useful in industry as a film quality monitoring method. Project supported by the National Natural Science Foundation of China (Grant No. 20933010) and the National Basic Research Program of China (Grant No. 2013CB834800).

  4. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Trabelsi, Heykel; Soumillion, Patrice; Dufrêne, Yves F.

    2013-12-01

    Force-distance (FD) curve-based atomic force microscopy is a valuable tool to simultaneously image the structure and map the biophysical properties of biological samples at the nanoscale. Traditionally, FD-based atomic force microscopy has been severely limited by its poor temporal and lateral resolutions. Here we report the use of advanced FD-based technology combined with biochemically sensitive tips to image filamentous bacteriophages extruding from living bacteria at unprecedented speed and resolution. Directly correlated multiparametric images of the structure, adhesion and elasticity of infected bacteria demonstrate that the sites of assembly and extrusion localize at the bacterial septum in the form of soft nanodomains surrounded by stiff cell wall material. The quantitative nano-bio-imaging method presented here offers a wealth of opportunities for mapping the physical properties and molecular interactions of complex biosystems, from viruses to tissues.

  5. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation

    PubMed Central

    Zipfel, Warren R.; Williams, Rebecca M.; Christie, Richard; Nikitin, Alexander Yu; Hyman, Bradley T.; Webb, Watt W.

    2003-01-01

    Multicolor nonlinear microscopy of living tissue using two- and three-photon-excited intrinsic fluorescence combined with second harmonic generation by supermolecular structures produces images with the resolution and detail of standard histology without the use of exogenous stains. Imaging of intrinsic indicators within tissue, such as nicotinamide adenine dinucleotide, retinol, indoleamines, and collagen provides crucial information for physiology and pathology. The efficient application of multiphoton microscopy to intrinsic imaging requires knowledge of the nonlinear optical properties of specific cell and tissue components. Here we compile and demonstrate applications involving a range of intrinsic molecules and molecular assemblies that enable direct visualization of tissue morphology, cell metabolism, and disease states such as Alzheimer's disease and cancer. PMID:12756303

  6. Parallel Monitoring of Living Cell Cultures by Means of Digital-Holography and Fluorescent Microscopy

    NASA Astrophysics Data System (ADS)

    Murav'eva, M. S.; Dudenkova, V. V.; Rybnikov, A. I.; Zakharov, Yu. N.

    2015-01-01

    We propose using the method of holographic microscopy to detect fine morphologic changes in living cells. An "LSM 510" laser confocal scanning microscope is modified to allow recording digital microholograms which can be used to reconstruct the amplitude and phase of the radiation transmitting through the sample. Measuring the phase increment of the object beam in cells and the intercellular space yields information on the optical length of the ray path in the cells (spatial dimensions and the refractive index), which in turn contains information on changes in the morphology and intracellular contents. Calcium activity is studied by means of fluorescent microscopy which makes it possible to detect minor variations in the intracellular concentration of calcium ions. By studying the dynamics of calcium oscillations and variations in the optical thickness, conclusions are made about the interrelation of functional and morphological variations, and comparative analysis of these variations is performed.

  7. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria.

    PubMed

    Alsteens, David; Trabelsi, Heykel; Soumillion, Patrice; Dufrêne, Yves F

    2013-01-01

    Force-distance (FD) curve-based atomic force microscopy is a valuable tool to simultaneously image the structure and map the biophysical properties of biological samples at the nanoscale. Traditionally, FD-based atomic force microscopy has been severely limited by its poor temporal and lateral resolutions. Here we report the use of advanced FD-based technology combined with biochemically sensitive tips to image filamentous bacteriophages extruding from living bacteria at unprecedented speed and resolution. Directly correlated multiparametric images of the structure, adhesion and elasticity of infected bacteria demonstrate that the sites of assembly and extrusion localize at the bacterial septum in the form of soft nanodomains surrounded by stiff cell wall material. The quantitative nano-bio-imaging method presented here offers a wealth of opportunities for mapping the physical properties and molecular interactions of complex biosystems, from viruses to tissues. PMID:24336094

  8. Three-Dimensional FRET Reconstruction Microscopy for Analysis of Dynamic Molecular Interactions in Live Cells

    PubMed Central

    Hoppe, Adam D.; Shorte, Spencer L.; Swanson, Joel A.; Heintzmann, Rainer

    2008-01-01

    Analysis of cellular pathways requires concentration measurements of dynamically interacting molecules within the three-dimensional (3D) space of single living cells. Förster resonance energy transfer (FRET) microscopy from widefield, from confocal, and potentially from superresolution microscopes can access this information; however, these measurements are distorted by the inherent 3D blurring of optical imaging, spectral overlap of fluorophores, and detection noise. We propose a mathematical model of these processes and demonstrate, through simulation, how these distortions limit the dynamic range and sensitivity of conventional FRET microscopy. Using this model, we devise and validate a new approach (called 3D-FRET stoichiometry reconstruction, 3DFSR) for reconstructing 3D distributions of bound and free fluorescent molecules. Previous attempts to reconstruct 3D-FRET data relied on sequential spectral unmixing and deconvolution, a process that corrupts the detection statistics. We demonstrate that 3DFSR is superior to these approaches since it simultaneously models spectral mixing, optical blurring, and detection noise. To achieve the full potential of this technique, we developed an instrument capable of acquiring 3D-FRET data rapidly and sensitively from single living cells. Compared with conventional FRET microscopy, our 3D-FRET reconstruction technique and new instrumentation provides orders of magnitude gains in both sensitivity and accuracy wherein sustained high-resolution four-dimensional (x,y,z,t) imaging of molecular interactions inside living cells was achieved. These results verify previous observations that Cdc42 signaling is localized to the advancing margins of forming phagosomes in macrophages. PMID:18339754

  9. Semitransparent nanostructured films for imaging mass spectrometry and optical microscopy.

    PubMed

    Forsythe, Jay G; Broussard, Joshua A; Lawrie, Jenifer L; Kliman, Michal; Jiao, Yang; Weiss, Sharon M; Webb, Donna J; McLean, John A

    2012-12-18

    Semitransparent porous silicon substrates have been developed for pairing nanostructure-initiator mass spectrometry (NIMS) imaging with traditional optical-based microscopy techniques. Substrates were optimized to generate the largest NIMS signal while maintaining sufficient transparency to allow visible light to pass through for optical microscopy. Using these substrates, both phase-contrast and NIMS images of phospholipids from a scratch-wounded cell monolayer were obtained. NIMS images were generated using a spatial resolution of 14 μm. Coupled with further improvements in spatial resolution, this approach may allow for the localization of intact biological molecules within cells without the need for labeling. PMID:23146026

  10. Measuring the elastic properties of living cells with atomic force microscopy indentation.

    PubMed

    Mackay, Joanna L; Kumar, Sanjay

    2013-01-01

    Atomic force microscopy (AFM) is a powerful and versatile tool for probing the mechanical properties of biological samples. This chapter describes the procedures for using AFM indentation to measure the elastic moduli of living cells. We include step-by-step instructions for cantilever calibration and data acquisition using a combined AFM/optical microscope system, as well as a detailed protocol for data analysis. Our protocol is written specifically for the BioScope™ Catalyst™ AFM system (Bruker AXS Inc.); however, most of the general concepts can be readily translated to other commercial systems. PMID:23027009

  11. Fluorescent Rhodamines and Fluorogenic Carbopyronines for Super-Resolution STED Microscopy in Living Cells.

    PubMed

    Butkevich, Alexey N; Mitronova, Gyuzel Yu; Sidenstein, Sven C; Klocke, Jessica L; Kamin, Dirk; Meineke, Dirk N H; D'Este, Elisa; Kraemer, Philip-Tobias; Danzl, Johann G; Belov, Vladimir N; Hell, Stefan W

    2016-03-01

    A range of bright and photostable rhodamines and carbopyronines with absorption maxima in the range of λ=500-630 nm were prepared, and enabled the specific labeling of cytoskeletal filaments using HaloTag technology followed by staining with 1 μm solutions of the dye-ligand conjugates. The synthesis, photophysical parameters, fluorogenic behavior, and structure-property relationships of the new dyes are discussed. Light microscopy with stimulated emission depletion (STED) provided one- and two-color images of living cells with an optical resolution of 40-60 nm. PMID:26844929

  12. Fluorescent Rhodamines and Fluorogenic Carbopyronines for Super‐Resolution STED Microscopy in Living Cells

    PubMed Central

    Mitronova, Gyuzel Yu.; Sidenstein, Sven C.; Klocke, Jessica L.; Kamin, Dirk; Meineke, Dirk N. H.; D'Este, Elisa; Kraemer, Philip‐Tobias; Danzl, Johann G.

    2016-01-01

    Abstract A range of bright and photostable rhodamines and carbopyronines with absorption maxima in the range of λ=500–630 nm were prepared, and enabled the specific labeling of cytoskeletal filaments using HaloTag technology followed by staining with 1 μm solutions of the dye–ligand conjugates. The synthesis, photophysical parameters, fluorogenic behavior, and structure–property relationships of the new dyes are discussed. Light microscopy with stimulated emission depletion (STED) provided one‐ and two‐color images of living cells with an optical resolution of 40–60 nm. PMID:26844929

  13. Label-free detection of anticancer drug paclitaxel in living cells by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Derely, L.; Vegh, A.-G.; Durand, J.-C.; Gergely, C.; Larroque, C.; Fauroux, M.-A.; Cuisinier, F. J. G.

    2013-03-01

    Confocal Raman microscopy, a non-invasive, label-free, and high spatial resolution imaging technique is employed to trace the anticancer drug paclitaxel in living Michigan Cancer Foundation-7 (MCF-7) cells. The Raman images were treated by K-mean cluster analysis to detect the drug in cells. Distribution of paclitaxel in cells is verified by calculating the correlation coefficient between the reference spectrum of the drug and the whole Raman image spectra. A time dependent gradual diffusion of paclitaxel all over the cell is observed suggesting a complementary picture of the pharmaceutical action of this drug based on rapid binding of free tubulin to crystallized paclitaxel.

  14. Study of environmental biodegradation of LDPE films in soil using optical and scanning electron microscopy.

    PubMed

    Mumtaz, Tabassum; Khan, M R; Hassan, Mohd Ali

    2010-07-01

    An outdoor soil burial test was carried out to evaluate the degradation of commercially available LDPE carrier bags in natural soil for up to 2 years. Biodegradability of low density polyethylene films in soil was monitored using both optical and scanning electron microscopy (SEM). After 7-9 months of soil exposure, microbial colonization was evident on the film surface. Exposed LDPE samples exhibit progressive changes towards degradation after 17-22 months. SEM images reveal signs of degradation such as exfoliation and formation of cracks on film leading to disintegration. The possible degradation mode and consequences on the use and disposal of LDPE films is discussed. PMID:20207547

  15. Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Rinehart, Matthew T.; Drake, Tyler K.; Robles, Francisco E.; Rohan, Lisa C.; Katz, David; Wax, Adam

    2011-12-01

    Quantitative phase microscopy is applied to image temporal changes in the refractive index (RI) distributions of solutions created by microbicidal films undergoing hydration. We present a novel method of using an engineered polydimethylsiloxane structure as a static phase reference to facilitate calibration of the absolute RI across the entire field. We present a study of dynamic structural changes in microbicidal films during hydration and subsequent dissolution. With assumptions about the smoothness of the phase changes induced by these films, we calculate absolute changes in the percentage of film in regions across the field of view.

  16. Transition of oxide film configuration and the critical stress inferred by scanning probe microscopy at nanoscale

    NASA Astrophysics Data System (ADS)

    Fang, Xufei; Li, Yan; Zhang, Changxing; Dong, Xuelin; Feng, Xue

    2016-09-01

    Scanning probe microscopy (SPM) equipped in high temperature nanoindentation instrument is adopted to in situ characterize the oxide film growth on Ni-base single crystal at nanoscale. SPM images reveal a transition of oxide film configuration that the originally flat surface roughens during oxidation. Based on the stress-diffusion coupling effect during oxidation, the stress evolution in the oxide film and the evolution of surface configuration are analyzed. A new method to infer the critical stress in the oxide film at the transition point is proposed by measuring the undulated surface wavelength based on the surface morphology obtained by SPM.

  17. Conductive atomic force microscopy study of local electronic transport in ZnTe thin films

    SciTech Connect

    Kshirsagar, Sachin D.; Krishna, M. Ghanashyam; Tewari, Surya P.

    2013-02-05

    ZnTe thin films obtained by the electron beam evaporation technique were subjected to thermal annealing at 500 Degree-Sign C for 2 hours. The as deposited films were amorphous but transformed to the crystalline state under influence of the thermal treatment. There is increase in optical absorption due to the heat treatment caused by increase in free carrier concentration. Conductive atomic force microscopy shows the presence of electronic inhomogeneities in the films. This is attributed to local compositional variations in the films. I-V analysis in these systems indicates formation of Schottky junction at the metal semiconductor (M-S) interface.

  18. Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy

    PubMed Central

    Sun, Yuansheng; Day, Richard N; Periasamy, Ammasi

    2011-01-01

    Fluorescence lifetime imaging microscopy (FLIM) is now routinely used for dynamic measurements of signaling events inside living cells, including detection of protein-protein interactions. An understanding of the basic physics of fluorescence lifetime measurements is required to use this technique. In this protocol, we describe both the time-correlated single photon counting and the frequency-domain methods for FLIM data acquisition and analysis. We describe calibration of both FLIM systems, and demonstrate how they are used to measure the quenched donor fluorescence lifetime that results from Förster resonance energy transfer (FRET ). We then show how the FLIM-FRET methods are used to detect the dimerization of the transcription factor CCAAT/enhancer binding protein-α in live mouse pituitary cell nuclei. Notably, the factors required for accurate determination and reproducibility of lifetime measurements are described. With either method, the entire protocol including specimen preparation, imaging and data analysis takes ~2 d. PMID:21886099

  19. Imaging Complex Protein Metabolism in Live Organisms by Stimulated Raman Scattering Microscopy with Isotope Labeling

    PubMed Central

    2016-01-01

    Protein metabolism, consisting of both synthesis and degradation, is highly complex, playing an indispensable regulatory role throughout physiological and pathological processes. Over recent decades, extensive efforts, using approaches such as autoradiography, mass spectrometry, and fluorescence microscopy, have been devoted to the study of protein metabolism. However, noninvasive and global visualization of protein metabolism has proven to be highly challenging, especially in live systems. Recently, stimulated Raman scattering (SRS) microscopy coupled with metabolic labeling of deuterated amino acids (D-AAs) was demonstrated for use in imaging newly synthesized proteins in cultured cell lines. Herein, we significantly generalize this notion to develop a comprehensive labeling and imaging platform for live visualization of complex protein metabolism, including synthesis, degradation, and pulse–chase analysis of two temporally defined populations. First, the deuterium labeling efficiency was optimized, allowing time-lapse imaging of protein synthesis dynamics within individual live cells with high spatial–temporal resolution. Second, by tracking the methyl group (CH3) distribution attributed to pre-existing proteins, this platform also enables us to map protein degradation inside live cells. Third, using two subsets of structurally and spectroscopically distinct D-AAs, we achieved two-color pulse–chase imaging, as demonstrated by observing aggregate formation of mutant hungtingtin proteins. Finally, going beyond simple cell lines, we demonstrated the imaging ability of protein synthesis in brain tissues, zebrafish, and mice in vivo. Hence, the presented labeling and imaging platform would be a valuable tool to study complex protein metabolism with high sensitivity, resolution, and biocompatibility for a broad spectrum of systems ranging from cells to model animals and possibly to humans. PMID:25560305

  20. Diabetes increases stiffness of live cardiomyocytes measured by atomic force microscopy nanoindentation.

    PubMed

    Benech, Juan C; Benech, Nicolás; Zambrana, Ana I; Rauschert, Inés; Bervejillo, Verónica; Oddone, Natalia; Damián, Juan P

    2014-11-15

    Stiffness of live cardiomyocytes isolated from control and diabetic mice was measured using the atomic force microscopy nanoindentation method. Type 1 diabetes was induced in mice by streptozotocin administration. Histological images of myocardium from mice that were diabetic for 3 mo showed disorderly lineup of myocardial cells, irregularly sized cell nuclei, and fragmented and disordered myocardial fibers with interstitial collagen accumulation. Phalloidin-stained cardiomyocytes isolated from diabetic mice showed altered (i.e., more irregular and diffuse) actin filament organization compared with cardiomyocytes from control mice. Sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a) pump expression was reduced in homogenates obtained from the left ventricle of diabetic animals compared with age-matched controls. The apparent elastic modulus (AEM) for live control or diabetic isolated cardiomyocytes was measured using the atomic force microscopy nanoindentation method in Tyrode buffer solution containing 1.8 mM Ca(2+) and 5.4 mM KCl (physiological condition), 100 nM Ca(2+) and 5.4 mM KCl (low extracellular Ca(2+) condition), or 1.8 mM Ca(2+) and 140 mM KCl (contraction condition). In the physiological condition, the mean AEM was 112% higher for live diabetic than control isolated cardiomyocytes (91 ± 14 vs. 43 ± 7 kPa). The AEM was also significantly higher in diabetic than control cardiomyocytes in the low extracellular Ca(2+) and contraction conditions. These findings suggest that the material properties of live cardiomyocytes were affected by diabetes, resulting in stiffer cells, which very likely contribute to high diastolic LV stiffness, which has been observed in vivo in some diabetes mellitus patients. PMID:25163520

  1. Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling.

    PubMed

    Wei, Lu; Shen, Yihui; Xu, Fang; Hu, Fanghao; Harrington, Jamie K; Targoff, Kimara L; Min, Wei

    2015-03-20

    Protein metabolism, consisting of both synthesis and degradation, is highly complex, playing an indispensable regulatory role throughout physiological and pathological processes. Over recent decades, extensive efforts, using approaches such as autoradiography, mass spectrometry, and fluorescence microscopy, have been devoted to the study of protein metabolism. However, noninvasive and global visualization of protein metabolism has proven to be highly challenging, especially in live systems. Recently, stimulated Raman scattering (SRS) microscopy coupled with metabolic labeling of deuterated amino acids (D-AAs) was demonstrated for use in imaging newly synthesized proteins in cultured cell lines. Herein, we significantly generalize this notion to develop a comprehensive labeling and imaging platform for live visualization of complex protein metabolism, including synthesis, degradation, and pulse-chase analysis of two temporally defined populations. First, the deuterium labeling efficiency was optimized, allowing time-lapse imaging of protein synthesis dynamics within individual live cells with high spatial-temporal resolution. Second, by tracking the methyl group (CH3) distribution attributed to pre-existing proteins, this platform also enables us to map protein degradation inside live cells. Third, using two subsets of structurally and spectroscopically distinct D-AAs, we achieved two-color pulse-chase imaging, as demonstrated by observing aggregate formation of mutant hungtingtin proteins. Finally, going beyond simple cell lines, we demonstrated the imaging ability of protein synthesis in brain tissues, zebrafish, and mice in vivo. Hence, the presented labeling and imaging platform would be a valuable tool to study complex protein metabolism with high sensitivity, resolution, and biocompatibility for a broad spectrum of systems ranging from cells to model animals and possibly to humans. PMID:25560305

  2. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips.

    PubMed

    Rico, Félix; Roca-Cusachs, Pere; Gavara, Núria; Farré, Ramon; Rotger, Mar; Navajas, Daniel

    2005-08-01

    Atomic force microscopy (AFM) allows the acquisition of high-resolution images and the measurement of mechanical properties of living cells under physiological conditions. AFM cantilevers with blunted pyramidal tips are commonly used to obtain images of living cells. Measurement of mechanical properties with these tips requires a contact model that takes into account their blunted geometry. The aim of this work was to develop a contact model of a blunted pyramidal tip and to assess the suitability of pyramidal tips for probing mechanical properties of soft gels and living cells. We developed a contact model of a blunted pyramidal tip indenting an elastic half-space. We measured Young's modulus (E) and the complex shear modulus (G*= G' +i G" ) of agarose gels and A549 alveolar epithelial cells with pyramidal tips and compared them with those obtained with spherical tips. The gels exhibited an elastic behavior with almost coincident loading and unloading force curves and negligible values of G". E fell sharply with indentation up to approximately 300 nm , showing a linear regime for deeper indentations. A similar indentation dependence of E with twofold lower values at the linear regime was obtained with the spherical tip fitted with Hertz's model. The dependence of E on indentation in cells paralleled that found in gels. Cells exhibited viscoelastic behavior with G"/G' approximately 1/4 . Pyramidal tips commonly used for AFM imaging are suitable for probing mechanical properties of soft gels and living cells. PMID:16196611

  3. Microscopy of thin polymer blend films of polystyrene and poly-n-butyl-methacrylate

    NASA Astrophysics Data System (ADS)

    Schmitt, T.; Guttmann, P.; Schmidt, O.; Müller-Buschbaum, P.; Stamm, M.; Schönhense, G.; Schmahl, G.

    2000-05-01

    The structure of thin polymer blend films of polystyrene (PS) and poly-n-butyl-methacrylate (PnBMA) was examined with Transmission X-ray Microscopy (TXM), Scanning Force Microscopy (SFM), X-Ray Photoemission Electron Microscopy (X-PEEM) and Optical Microscopy (OM). Thin films were prepared by spin casting of a toluene solution of the polymer mixture onto silicon wafers retaining the native oxide. Depending on blend composition and annealing conditions smooth films with and without holes or films with well pronounced surface features (ribbons or islands) were produced. By TXM measurements a high lateral resolution study of the as cast and the annealed polymer blend samples was performed. The contrast in TXM is due to different absorption of x-radiation of the used polymers and due to variation in thickness. With X-PEEM the lateral distribution of the two polymers near the surface was mapped by employing the characteristic Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of the polymers. The TXM technique is a microscopic method integrating over the total film thickness, whereas the X-PEEM technique is a highly surface sensitive method. TXM and X-PEEM are therefore complementary methods which provide important information on the structure of thin polymer blend films additional to the standard techniques SFM and OM.

  4. Influence of Cu-Ti thin film surface properties on antimicrobial activity and viability of living cells.

    PubMed

    Wojcieszak, Damian; Kaczmarek, Danuta; Antosiak, Aleksandra; Mazur, Michal; Rybak, Zbigniew; Rusak, Agnieszka; Osekowska, Malgorzata; Poniedzialek, Agata; Gamian, Andrzej; Szponar, Bogumila

    2015-11-01

    The paper describes properties of thin-film coatings based on copper and titanium. Thin films were prepared by co-sputtering of Cu and Ti targets in argon plasma. Deposited coatings consist of 90at.% of Cu and 10at.% of Ti. Characterization of the film was made on the basis of investigations of microstructure and physicochemical properties of the surface. Methods such as scanning electron microscopy, x-ray microanalysis, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, optical profilometry and wettability measurements were used to assess the properties of deposited thin films. An impact of Cu-Ti coating on the growth of selected bacteria and viability of the living cells (line L929, NCTC clone 929) was described in relation to the structure, surface state and wettability of the film. It was found that as-deposited films were amorphous. However, in such surroundings the nanocrystalline grains of 10-15nm and 25-35nm size were present. High surface active area with a roughness of 8.9nm, had an effect on receiving relatively high water contact angle value (74.1°). Such wettability may promote cell adhesion and result in an increase of the probability of copper ion transfer from the film surface into the cell. Thin films revealed bactericidal and fungicidal effects even in short term-contact. High activity of prepared films was directly related to high amount (ca. 51 %) of copper ions at 1+ state as x-ray photoelectron spectroscopy results have shown. PMID:26249564

  5. Live-Cell Superresolution Imaging by Pulsed STED Two-Photon Excitation Microscopy

    PubMed Central

    Takasaki, Kevin T.; Ding, Jun B.; Sabatini, Bernardo L.

    2013-01-01

    Two-photon laser scanning microscopy (2PLSM) allows fluorescence imaging in thick biological samples where absorption and scattering typically degrade resolution and signal collection of one-photon imaging approaches. The spatial resolution of conventional 2PLSM is limited by diffraction, and the near-infrared wavelengths used for excitation in 2PLSM preclude the accurate imaging of many small subcellular compartments of neurons. Stimulated emission depletion (STED) microscopy is a superresolution imaging modality that overcomes the resolution limit imposed by diffraction and allows fluorescence imaging of nanoscale features. Here, we describe the design and operation of a superresolution two-photon microscope using pulsed excitation and STED lasers. We examine the depth dependence of STED imaging in acute tissue slices and find enhancement of 2P resolution ranging from approximately fivefold at 20 μm to approximately twofold at 90-μm deep. The depth dependence of resolution is found to be consistent with the depth dependence of depletion efficiency, suggesting resolution is limited by STED laser propagation through turbid tissue. Finally, we achieve live imaging of dendritic spines with 60-nm resolution and demonstrate that our technique allows accurate quantification of neuronal morphology up to 30-μm deep in living brain tissue. PMID:23442955

  6. Combining constitutive materials modeling with atomic force microscopy to understand the mechanical properties of living cells

    PubMed Central

    McElfresh, Mike; Baesu, Eveline; Balhorn, Rod; Belak, James; Allen, Michael J.; Rudd, Robert E.

    2002-01-01

    The goal of this work is to study the properties of living cells and cell membranes by using atomic force microscopy. During atomic force microscopy (AFM) measurement, there is a strong mechanical coupling between the AFM tip and the cell. The purpose of this paper is to present a model of the overall mechanical response of the cell that allows us to separate out the mechanical response of the cell from the local surface interactions we wish to quantify. These local interactions include recognition (or binding) events between molecules bound to an AFM tip (e.g., an antibody) and molecules or receptors on the cell surface (e.g., the respective antigen). The computational model differs from traditional Hertzian contact models by explicitly taking into account the mechanics of the biomembrane and cytoskeleton. The model also accounts for the mechanical response of the living cell during arbitrary deformation. The indentation of a bovine sperm cell is used to test the validity of this model, and further experiments are proposed to fully parameterize the model. PMID:11983924

  7. Determination of the actuator sensitivity of electromechanical polypropylene films by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Peltonen, Jouko; Paajanen, Mika; Lekkala, Jukka

    2000-10-01

    The actuator functionality of electromechanical polypropylene films was studied using atomic force microscopy. The film carries a permanent electric charge and includes microbubbles as a result of two-dimensional stretching of the film. The thickness change of various film structures covered with electrodes was measured as a function of external voltage. The dependence was found to be nonlinear, the thickness change in the range 0.001%-0.1% of the total film thickness and affected by the internal charge density of the film. Applying a capacitor model including an air gap within the polymer layer enabled the determination of the Young's modulus, the interfacial charge density and the actuator sensitivity of the studied structures.

  8. Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy.

    PubMed

    Liu, Yuanming; Lam, Kwok Ho; Kirk Shung, K; Li, Jiangyu; Zhou, Qifa

    2013-05-14

    Conventional composite sol-gel method has been modified to enhance the piezoelectric performance of ceramic thick films. Lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT) thick films were fabricated using the modified sol-gel method for ultrasonic transducer applications. In this work, piezoresponse force microscopy was employed to evaluate the piezoelectric characteristics of PZT and PMN-PT composite sol-gel thick films. The images of the piezoelectric response and the strain-electric field hysteresis loop behavior were measured. The effective piezoelectric coefficient (d33,eff) of the films was determined from the measured loop data. It was found that the effective local piezoelectric coefficient of both PZT and PMN-PT composite films is comparable to that of their bulk ceramics. The promising results suggest that the modified composite sol-gel method is a promising way to prepare the high-quality, crack-free ceramic thick films. PMID:23798771

  9. On atomic force microscopy and the constitutive behavior of living cells

    PubMed Central

    Na, S.; Sun, Z.; Meininger, G. A.

    2004-01-01

    Atomic force microscopy (AFM) is one of many new technologies available to study the mechanical properties and mechanobiological responses of living cells. Despite the widespread usage of this technology, there has been little attempt to develop new theoretical frameworks to interpret the associated data. Rather, most analyses rely on the classical Hertz solution for the indentation of an elastic half-space within the context of linearized elasticity. In contrast, we propose a fully nonlinear, constrained mixture model for adherent cells that allows one to account separately for the contributions of the three primary structural constituents of the cytoskeleton. Moreover, we extend a prior solution for a small indentation superimposed on a finite equibiaxial extension by incorporating in this mixture model for the special case of an initially random distribution of constituents (actin, intermediate filaments, and microtubules). We submit that this theoretical framework will allow an improved interpretation of indentation force–depth data from a sub-class of atomic force microscopy tests and will serve as an important analytical check for future finite element models. The latter will be necessary to exploit further the capabilities of both atomic force microscopy and nonlinear mixture theories for cell behavior. PMID:15322929

  10. Accurate cell counts in live mouse embryos using optical quadrature and differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.

    2006-02-01

    Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.

  11. A convenient, optimized pipeline for isolation, fluorescence microscopy and molecular analysis of live single cells

    PubMed Central

    2014-01-01

    Background Heterogeneity within cell populations is relevant to the onset and progression of disease, as well as development and maintenance of homeostasis. Analysis and understanding of the roles of heterogeneity in biological systems require methods and technologies that are capable of single cell resolution. Single cell gene expression analysis by RT-qPCR is an established technique for identifying transcriptomic heterogeneity in cellular populations, but it generally requires specialized equipment or tedious manipulations for cell isolation. Results We describe the optimization of a simple, inexpensive and rapid pipeline which includes isolation and culture of live single cells as well as fluorescence microscopy and gene expression analysis of the same single cells by RT-qPCR. We characterize the efficiency of single cell isolation and demonstrate our method by identifying single GFP-expressing cells from a mixed population of GFP-positive and negative cells by correlating fluorescence microscopy and RT-qPCR. Conclusions Single cell gene expression analysis by RT-qPCR is a convenient means for investigating cellular heterogeneity, but is most useful when correlating observations with additional measurements. We demonstrate a convenient and simple pipeline for multiplexing single cell RT-qPCR with fluorescence microscopy which is adaptable to other molecular analyses. PMID:24834016

  12. Intravital Microscopy for Imaging Subcellular Structures in Live Mice Expressing Fluorescent Proteins

    PubMed Central

    Masedunskas, Andrius; Porat-Shliom, Natalie; Tora, Muhibullah; Milberg, Oleg; Weigert, Roberto

    2013-01-01

    Here we describe a procedure to image subcellular structures in live rodents that is based on the use of confocal intravital microscopy. As a model organ, we use the salivary glands of live mice since they provide several advantages. First, they can be easily exposed to enable access to the optics, and stabilized to facilitate the reduction of the motion artifacts due to heartbeat and respiration. This significantly facilitates imaging and tracking small subcellular structures. Second, most of the cell populations of the salivary glands are accessible from the surface of the organ. This permits the use of confocal microscopy that has a higher spatial resolution than other techniques that have been used for in vivo imaging, such as two-photon microscopy. Finally, salivary glands can be easily manipulated pharmacologically and genetically, thus providing a robust system to investigate biological processes at a molecular level. In this study we focus on a protocol designed to follow the kinetics of the exocytosis of secretory granules in acinar cells and the dynamics of the apical plasma membrane where the secretory granules fuse upon stimulation of the beta-adrenergic receptors. Specifically, we used a transgenic mouse that co-expresses cytosolic GFP and a membrane-targeted peptide fused with the fluorescent protein tandem-Tomato. However, the procedures that we used to stabilize and image the salivary glands can be extended to other mouse models and coupled to other approaches to label in vivo cellular components, enabling the visualization of various subcellular structures, such as endosomes, lysosomes, mitochondria, and the actin cytoskeleton. PMID:24022089

  13. Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells

    NASA Astrophysics Data System (ADS)

    Holdsworth, David W.; Nikolov, Hristo N.; Au, Jen; Beaucage, Kim; Kishimoto, Jessica; Dixon, S. Jeffrey

    2012-03-01

    Cells exhibit the ability to sense and respond to local mechanical stimuli, leading to changes in function. This capability, referred to as mechanotransduction, is essential to normal tissue function, but the exact mechanisms by which cells sense local forces (strain, shear, compression and vibration) remain unclear. Recent studies in small animals and humans indicate that the frequency of cyclic mechanical stimuli is important, with physiological responses observed for stimuli ranging between 1 and 90 Hz. To better understand the cellular and molecular mechanisms underlying mechanotransduction, it will be important to observe cells in real time, using optical microscopy during high-frequency mechanical stimulation. We have developed a motion-control platform that can produce sinusoidal vibration of live cells during simultaneous high-speed microscopy and fluorimetry, at frequencies up to 100 Hz with peak acceleration up to 9.8 m s-2. The platform is driven by a voice coil and acceleration is measured with an accelerometer (Dytran 7521A1). The motion waveform was verified by high-speed imaging, using a digital camera (Casio EX-F1) operating at 1200 frames s-1 attached to an inverted microscope (Nikon Diaphot). When operating at 45 Hz and 2.94 m s-2 peak acceleration, the observed motion waveform exhibited sinusoidal behaviour, with measured peak-to-peak amplitude of 72 μm. Cultured osteoblast-like cells (UMR-106) were subjected to 2.94 m s-2 vibration at 45 Hz and remained attached and viable. This device provides - for the first time - the capability to mechanically stimulate living cells while simultaneously observing responses with optical microscopy.

  14. Fine structures of organic photovoltaic thin films probed by frequency-shift electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Araki, Kento; Ie, Yutaka; Aso, Yoshio; Matsumoto, Takuya

    2016-07-01

    The localized charge and electrostatic properties of organic photovoltaic thin films are predominating factors for controlling energy conversion efficiency. The surface potential and electrostatic structures of organic photovoltaic thin films were investigated by frequency shift mode Kelvin force microscopy (KFM) and electrostatic force microscopy (EFM). The KFM images of a poly[2-methoxy-5-(3‧,7‧-dimethyloctyloxy)-1,4-phenylene vinylene]/phenyl-C61-butyric-acid-methyl ester (PCBM) blend thin film reveals that the PCBM domains precipitate as the topmost layer on the thin films. We find fine structures that were not observed in the topography and KFM images. The bias dependence of the EFM images suggests that the EFM contrast reflects the field-induced polarization, indicating the presence of charge trapping sites.

  15. "Learn and Live": A Documentary Film from the George Lucas Educational Foundation.

    ERIC Educational Resources Information Center

    Burness, Patty

    "Learn & Live," a documentary film created by The George Lucas Educational Foundation and hosted by actor Robin Williams, profiles four K-12 school programs that are seeing positive results. In addition to these stories, the film shares insights from experts in education and technology to help explain why the innovations profiled in the film are…

  16. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes

    NASA Astrophysics Data System (ADS)

    Puricelli, Luca; Galluzzi, Massimiliano; Schulte, Carsten; Podestà, Alessandro; Milani, Paolo

    2015-03-01

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells' fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cellular elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here, we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured Young's modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in Young's modulus induced by the action of a cytoskeleton-targeting drug.

  17. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes

    SciTech Connect

    Puricelli, Luca; Galluzzi, Massimiliano; Schulte, Carsten; Podestà, Alessandro Milani, Paolo

    2015-03-15

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells’ fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cellular elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here, we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured Young’s modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in Young’s modulus induced by the action of a cytoskeleton-targeting drug.

  18. Scanning Hall probe microscopy of supercurrents in YBCO films

    NASA Astrophysics Data System (ADS)

    Dinner, Rafael Baruch

    High-temperature superconductors were discovered 20 years ago, inspiring dreams of levitating trains fed by superconducting power lines. The cuprates, particularly YBa2Cu3O7-delta (YBCO), still promise to fulfill such applications, but must be made to carry higher current density, Jc, which is limited by the rapid onset of dissipation. The dissipation arises from the movement of magnetic vortices in the material, driven by the magnetic field of the current. It is therefore natural to use magnetic imaging to understand these limits on the current. Initially, I fix a mesoscopic ring of YBCO to a micro-Hall sensor and demonstrate that the sensor is capable of detecting small numbers of vortices. I then proceed with magnetic imaging, constructing a cryogenic scanning Hall probe microscope that combines a 1 x 4 cm scan range with 200 nm positioning resolution by coupling stepper motors to high-resolution drivers and reducing gears. It enables me to image an entire sample, then zoom in on regions of interest, down to the level of an individual quantized vortex. Applying this capability to current-carrying YBCO strips, I generate magnetic movies of the materials' periodic response to applied ac currents. From the movies, I reconstruct current density by inverting the Biot-Savart law, and electric field by approximating dB/dt and using Faraday's law. I thereby obtain complete, space- and time-resolved characterizations of the materials, including maps of ac power losses. After demonstrating this analysis on a single-crystal film, I image two "coated conductors"---YBCO grown on metal tape. I find relatively homogeneous flux penetration in a film grown by pulsed laser deposition (PLD) on an ion beam assisted deposition (IBAD) substrate, which contrasts with the weak-link behavior of grain boundaries in a film grown by metalorganic deposition (MOD) on rolling assisted biaxially textured substrate (RABiTS). Nonetheless, the in-plane meandering of the MOD film's boundaries

  19. Friction force microscopy study of annealed diamond-like carbon film

    SciTech Connect

    Choi, Won Seok; Joung, Yeun-Ho; Heo, Jinhee; Hong, Byungyou

    2012-10-15

    In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH{sub 4}) and hydrogen (H{sub 2}) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp{sup 3} content is decreased from 75.2% to 24.1% while the sp{sup 2} content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.

  20. FRET microscopy for real-time monitoring of signaling events in live cells using unimolecular biosensors.

    PubMed

    Sprenger, Julia U; Perera, Ruwan K; Götz, Konrad R; Nikolaev, Viacheslav O

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy continues to gain increasing interest as a technique for real-time monitoring of biochemical and signaling events in live cells and tissues. Compared to classical biochemical methods, this novel technology is characterized by high temporal and spatial resolution. FRET experiments use various genetically-encoded biosensors which can be expressed and imaged over time in situ or in vivo. Typical biosensors can either report protein-protein interactions by measuring FRET between a fluorophore-tagged pair of proteins or conformational changes in a single protein which harbors donor and acceptor fluorophores interconnected with a binding moiety for a molecule of interest. Bimolecular biosensors for protein-protein interactions include, for example, constructs designed to monitor G-protein activation in cells, while the unimolecular sensors measuring conformational changes are widely used to image second messengers such as calcium, cAMP, inositol phosphates and cGMP. Here we describe how to build a customized epifluorescence FRET imaging system from single commercially available components and how to control the whole setup using the Micro-Manager freeware. This simple but powerful instrument is designed for routine or more sophisticated FRET measurements in live cells. Acquired images are processed using self-written plug-ins to visualize changes in FRET ratio in real-time during any experiments before being stored in a graphics format compatible with the build-in ImageJ freeware used for subsequent data analysis. This low-cost system is characterized by high flexibility and can be successfully used to monitor various biochemical events and signaling molecules by a plethora of available FRET biosensors in live cells and tissues. As an example, we demonstrate how to use this imaging system to perform real-time monitoring of cAMP in live 293A cells upon stimulation with a β-adrenergic receptor agonist and blocker. PMID

  1. Crystallographic mapping of ferroelectric thin films using piezoresponse force microscopy and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Lowe, M.; Hegarty, T.; Mingard, K.; Li, J.; Cain, M.

    2008-08-01

    Ferroelectric lead zirconate titanate (PZT) thin films have been analysed using electron backscatter diffraction (EBSD). Grain orientation mapping has been demonstrated, showing that features smaller than 100 nm may be successfully indexed. In conjunction with piezoresponse force microscopy (PFM), which was used to map and quantify the piezoelectric response from the same region of the films with a resolution of 10 nm, an analysis of the effects of grain orientation on the measured response at the nanoscale was possible. The microtexture of the film showed the presence of both mono- and multi-domains within grains exhibiting sizes of hundreds of nanometres.

  2. Detection of thin film NMR spectrum by Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Saun, Seung-Bo; Kwon, Sungmin; Lee, Soonchil; Won, Soonho

    2014-03-01

    NMR is widely used in many fields due to its powerful advantages such as nondestructive, chemically selective detection, and local probing. However, because of its low sensitivity, it is difficult to investigate thin film samples by conventional NMR. MRFM is the combined technic of NMR and Scanning Probe Microscopy (SPM), and it enabled exceptional sensitivity increasement of NMR detection. We succeeded in detecting general thin film NMR spectrum for the first time by modifying the MRFM. CaF2 34nm thin film NMR was detected and we observed 20 Gauss spectrum in proximity to bulk spectrum which is about 10 Gauss.

  3. Fluctuation microscopy studies of medium-range ordering in amorphous diamond-like carbon films.

    SciTech Connect

    Chen, X.; Sullivan, J. P.; Friedmann, T. A.; Gibson, J. M.; Cedarville Univ.; SNL

    2004-04-12

    In this letter, we report fluctuation microscopy studies of medium-range ordering in amorphous diamond-like carbon films and the effect of annealing on this ordering. Annealed and unannealed diamond-like carbon films have almost identical short-range order. Our fluctuation microscopy results, however, indicate the presence of medium range order or clustering in the films on a lateral length scale that exceeds 1 nm. Within the clustered regions, the dominant local ordering appears to be diamond-like, and graphite-like ordering is not observed. Thermal annealing up to 600 {sup o}C leads to an increase in diamond-like clustering with no onset of graphite-like clustering. However, after high temperature annealing up to 1000 {sup o}C, graphite-like clustering becomes apparent as a result of the conversion of diamond-like carbon to graphite-like carbon. The results on the as-deposited films and films annealed up to 600 {sup o}C suggest that a spontaneous medium range ordering process occurs in diamond-like carbon films during and subsequent to film growth, and this may play an important role in stress relaxation.

  4. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725

  5. Microtubules in Plant Cells: Strategies and Methods for Immunofluorescence, Transmission Electron Microscopy, and Live Cell Imaging.

    PubMed

    Celler, Katherine; Fujita, Miki; Kawamura, Eiko; Ambrose, Chris; Herburger, Klaus; Holzinger, Andreas; Wasteneys, Geoffrey O

    2016-01-01

    Microtubules (MTs) are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labeling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves. We discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide chemical fixation, high-pressure freezing/freeze substitution, and post-fixation staining protocols for preserving MTs for transmission electron microscopy and tomography. PMID:26498784

  6. A general method to improve fluorophores for live-cell and single-molecule microscopy.

    PubMed

    Grimm, Jonathan B; English, Brian P; Chen, Jiji; Slaughter, Joel P; Zhang, Zhengjian; Revyakin, Andrey; Patel, Ronak; Macklin, John J; Normanno, Davide; Singer, Robert H; Lionnet, Timothée; Lavis, Luke D

    2015-03-01

    Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N,N-dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range. PMID:25599551

  7. Intravital Microscopy Reveals Differences in the Kinetics of Endocytic Pathways between Cell Cultures and Live Animals

    PubMed Central

    Masedunskas, Andrius; Porat-Shliom, Natalie; Rechache, Kamil; Aye, Myo-Pale’; Weigert, Roberto

    2012-01-01

    Intravital microscopy has enabled imaging of the dynamics of subcellular structures in live animals, thus opening the door to investigating membrane trafficking under physiological conditions. Here, we sought to determine whether the architecture and the environment of a fully developed tissue influences the dynamics of endocytic processes. To this aim, we imaged endocytosis in the stromal cells of rat salivary glands both in situ and after they were isolated and cultured on a solid surface. We found that the internalization of transferrin and dextran, two molecules that traffic via distinct mechanisms, is substantially altered in cultured cells, supporting the idea that the three dimensional organization of the tissue and the cues generated by the surrounding environment strongly affect membrane trafficking events. PMID:24710546

  8. Coherence-controlled holographic microscopy for live-cell quantitative phase imaging in turbid media

    NASA Astrophysics Data System (ADS)

    Lostak, M.; Collakova, J.; Slaby, T.; Krizova, A.; Vesely, P.; Chmelik, R.

    2016-03-01

    In this work we present the coherence controlled holographic microscopy (CCHM)1 and its ability to image the living cells in turbid media2. The CCHM method and its advantages are introduced. A 'coherence gate effect'3, that enables imaging in turbid media, occurs owing to the low coherence illumination in our setup. The coherence gate effect is briefly theoretically explained and comparison of images with different illumination sources is shown. After that, the possibility of imaging in turbid media is applied to investigation of cell reactions to cytopathic turbid emulsions. In our experiments we used human cancer cells treated by biologically active phospholipids (BAPs). Cellular events leading to cell death, that would otherwise remain hidden in turbid media, are clearly observable and according to them cell fate can be deduced.

  9. Automatic detection of cell divisions (mitosis) in live-imaging microscopy images using Convolutional Neural Networks.

    PubMed

    Shkolyar, Anat; Gefen, Amit; Benayahu, Dafna; Greenspan, Hayit

    2015-08-01

    We propose a semi-automated pipeline for the detection of possible cell divisions in live-imaging microscopy and the classification of these mitosis candidates using a Convolutional Neural Network (CNN). We use time-lapse images of NIH3T3 scratch assay cultures, extract patches around bright candidate regions that then undergo segmentation and binarization, followed by a classification of the binary patches into either containing or not containing cell division. The classification is performed by training a Convolutional Neural Network on a specially constructed database. We show strong results of AUC = 0.91 and F-score = 0.89, competitive with state-of-the-art methods in this field. PMID:26736369

  10. Microtubules in Plant Cells: Strategies and Methods for Immunofluorescence, Transmission Electron Microscopy and Live Cell Imaging

    PubMed Central

    Celler, Katherine; Fujita, Miki; Kawamura, Eiko; Ambrose, Chris; Herburger, Klaus; Wasteneys, Geoffrey O.

    2016-01-01

    Microtubules are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labelling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves. We discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide chemical fixation, high pressure freezing/freeze substitution, and post-fixation staining protocols for preserving MTs for transmission electron microscopy and tomography. PMID:26498784

  11. A general method to improve fluorophores for live-cell and single-molecule microscopy

    PubMed Central

    Grimm, Jonathan B.; English, Brian P.; Chen, Jiji; Slaughter, Joel P.; Zhang, Zhengjian; Revyakin, Andrey; Patel, Ronak; Macklin, John J.; Normanno, Davide; Singer, Robert H.; Lionnet, Timothée; Lavis, Luke D.

    2014-01-01

    Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here, we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N,N-dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range. PMID:25599551

  12. Investigation of nucleation and growth processes of diamond films by atomic force microscopy

    NASA Technical Reports Server (NTRS)

    George, M. A.; Burger, A.; Collins, W. E.; Davidson, J. L.; Barnes, A. V.; Tolk, N. H.

    1994-01-01

    The nucleation and growth of plasma-enhanced chemical-vapor deposited polycrystalline diamond films were studied using atomic force microscopy (AFM). AFM images were obtained for (1) nucleated diamond films produced from depositions that were terminated during the initial stages of growth, (2) the silicon substrate-diamond film interface side of diamond films (1-4 micrometers thick) removed from the original surface of the substrate, and (3) the cross-sectional fracture surface of the film, including the Si/diamond interface. Pronounced tip effects were observed for early-stage diamond nucleation attributed to tip convolution in the AFM images. AFM images of the film's cross section and interface, however, were not highly affected by tip convolution, and the images indicate that the surface of the silicon substrate is initially covered by a small grained polycrystalline-like film and the formation of this precursor film is followed by nucleation of the diamond film on top of this layer. X-ray photoelectron spectroscopy spectra indicate that some silicon carbide is present in the precursor layer.

  13. Investigation of nucleation and growth processes of diamond films by atomic force microscopy

    NASA Technical Reports Server (NTRS)

    George, M. A.; Burger, A.; Collins, Warren E.; Hu, Z.

    1995-01-01

    The nucleation and growth of plasma enhanced chemical vapor deposited (PECVD) polycrystalline diamond films were studied using atomic force microscopy (AFM). AFM images were obtained for: (1) nucleated diamond films produced from depositions that were terminated during the initial stages of growth, (2) the silicon substrate-diamond film interface side of diamond films (1-4 micrometers thick) removed from the original surface of the substrate, and (3) cross-sectional fracture surface of the film, including the Si/diamond interface. Pronounced tip effects were observed for early-stage diamond nucleation attributed to tip convolution in the AFM images. AFM images of the films cross-section and interface however were not affected by tip convolution, and the images indicate that the surface of the silicon substrate is initially covered by small grained polycrystalline-like film and the formation of this precursor film is followed by nucleation of the diamond film on top of this layer. X-ray photoelectron spectroscoy (XPS) spectra indicates that some silicon carbide is present in the precursor layer.

  14. Unidirectional Living Growth of Self-Assembled Protein Nanofibrils Revealed by Super-resolution Microscopy.

    PubMed

    Beun, Lennart H; Albertazzi, Lorenzo; van der Zwaag, Daan; de Vries, Renko; Cohen Stuart, Martien A

    2016-05-24

    Protein-based nanofibrils are emerging as a promising class of materials that provide unique properties for applications such as biomedical and food engineering. Here, we use atomic force microscopy and stochastic optical reconstruction microscopy imaging to elucidate the growth dynamics, exchange kinetics, and polymerization mechanism for fibrils composed of a de novo designed recombinant triblock protein polymer. This macromolecule features a silk-inspired self-assembling central block composed of GAGAGAGH repeats, which are known to fold into a β roll with turns at each histidine and, once folded, to stack, forming a long, ribbon-like structure. We find several properties that allow the growth of patterned protein nanofibrils: the self-assembly takes place on only one side of the growing fibrils by the essentially irreversible addition of protein polymer subunits, and these fibril ends remain reactive indefinitely in the absence of monomer ("living ends"). Exploiting these characteristics, we can grow stable diblock protein nanofibrils by the sequential addition of differently labeled proteins. We establish control over the block length ratio by simply varying monomer feed conditions. Our results demonstrate the use of engineered protein polymers in creating precisely patterned protein nanofibrils and open perspectives for the hierarchical self-assembly of functional biomaterials. PMID:27124596

  15. Free-living spirochetes from Cape Cod microbial mats detected by electron microscopy

    NASA Technical Reports Server (NTRS)

    Teal, T. H.; Chapman, M.; Guillemette, T.; Margulis, L.

    1996-01-01

    Spirochetes from microbial mats and anaerobic mud samples collected in salt marshes were studied by light microscopy, whole mount and thin section transmission electron microscopy. Enriched in cellobiose-rifampin medium, selective for Spirochaeta bajacaliforniensis, seven distinguishable spirochete morphotypes were observed. Their diameters ranged from 0.17 micron to > 0.45 micron. Six of these morphotypes came from southwest Cape Cod, Massachusetts: five from Microcoleus-dominated mat samples collected at Sippewissett salt marsh and one from anoxic mud collected at School Street salt marsh (on the east side of Eel Pond). The seventh morphotype was enriched from anoxic mud sampled from the north central Cape Cod, at the Sandy Neck salt marsh. Five of these morphotypes are similar or identical to previously described spirochetes (Leptospira, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirosymplokos deltaeiberi and Treponema), whereas the other two have unique features that suggest they have not been previously described. One of the morphotypes resembles Spirosymplokos deltaeiberi (the largest free-living spirochete described), in its large variable diameter (0.4-3.0 microns), cytoplasmic granules, and spherical (round) bodies with composite structure. This resemblance permits its tentative identification as a Sippewissett strain of Spirosymplokos deltaeiberi. Microbial mats samples collected in sterile Petri dishes and stored dry for more than four years yielded many organisms upon rewetting, including small unidentified spirochetes in at least 4 out of 100 enrichments.

  16. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart

    PubMed Central

    Huang, Chao; Kaza, Aditya K.; Hitchcock, Robert W.; Sachse, Frank B.

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5–9 lines, which is comparable to 4–8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery. PMID:25309455

  17. Localization of bleomycin in a single living cell using three-photon excitation microscopy

    NASA Astrophysics Data System (ADS)

    Abraham, Anil T.; Brautigan, David L.; Hecht, Sidney M.; Periasamy, Ammasi

    2001-04-01

    Bleomycin has been used in the clinic as a chemotherapeutic agent for the treatment of several neoplasms, including non-Hodgkins lymphomas, squamous cell carcinomas, and testicular tumors. The effectiveness of bleomycin is believed to be derived from its ability to bind and oxidatively cleave DNA in the presence of a iron cofactor in vivo. A substantial amount of data on BLM has been collected, there is little information concerning the effects of bleomycin in living cells. In order to obtain data pertinent to the effects of BLM in intact cells, we have exploited the intrinsic fluorescence property of bleomycin to monitor the uptake of the drug in mammalian cells. We employed two light microscopy techniques, a wide-field and three-photon excitation (760 nm) fluorescence microscopy. Treatment of HeLa cells with bleomycin resulted in rapid to localization within the cells. In addition data collected from the wide field experiments, three-photon excitation of BLM which considerably reduced the phototoxic effect compared with UV light excitation in the wide-field microscopy indicated co-localization of the drug to regions of the cytoplasm occupied by the endoplasmic reticulum probe, DiOC5. The data clearly indicates that the cellular uptake of bleomycin after one minute includes the nucleus as well as in cytoplasm. Contrary to previous studies, which indicate chromosomal DNA as the target of bleomycin, the current findings suggest that the drug is distributed to many areas within the cell, including the endoplasmic reticulum, an organelle that is known to contain ribonucleic acids.

  18. Adhesion of living cells revealed by variable-angle total internal reflection fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cardoso Dos Santos, Marcelina; Vézy, Cyrille; Jaffiol, Rodolphe

    2016-02-01

    Total Internal Reflection Fluorescence Microscopy (TIRFM) is a widespread technique to study cellular process occurring near the contact region with the glass substrate. In this field, determination of the accurate distance from the surface to the plasma membrane constitutes a crucial issue to investigate the physical basis of cellular adhesion process. However, quantitative interpretation of TIRF pictures regarding the distance z between a labeled membrane and the substrate is not trivial. Indeed, the contrast of TIRF images depends on several parameters more and less well known (local concentration of dyes, absorption cross section, angular emission pattern…). The strategy to get around this problem is to exploit a series of TIRF pictures recorded at different incident angles in evanescent regime. This technique called variable-angle TIRF microscopy (vaTIRFM), allowing to map the membrane-substrate separation distance with a nanometric resolution (10-20 nm). vaTIRFM was developed by Burmeister, Truskey and Reichert in the early 1990s with a prism-based TIRF setup [Journal of Microscopy 173, 39-51 (1994)]. We propose a more convenient prismless setup, which uses only a rotatable mirror to adjust precisely the laser beam on the back focal plane of the oil immersion objective (no azimuthal scanning is needed). The series of TIRF images permit us to calculate accurately membrane-surface distances in each pixel. We demonstrate that vaTIRFM are useful to quantify the adhesion of living cells for specific and unspecific membrane-surface interactions, achieved on various functionalized substrates with polymers (BSA, poly-L-lysin) or extracellular matrix proteins (collagen and fibronectin).

  19. Partial dark-field microscopy for investigating domain structures of double-layer microsphere film

    PubMed Central

    Heon Kim, Joon; Su Park, Jung

    2015-01-01

    A lateral dislocation in a double-layer microsphere film is very difficult to identify because the constituent domains have the same two-dimensional crystalline orientation. Orientation-sensitive optical techniques cannot resolve this issue. Here, we demonstrate that partial dark-field (pDF) optical microscopy can be very effective in identifying this type of domain boundary and dislocation of a close-packed microsphere double-layer. Using the hexagonal symmetry of the close-packed microsphere film and the light-focusing property of microspheres, the partially blocked dark-field condenser can provide much higher contrast than other optical microscopy modes can in identifying the laterally dislocated domains. The former can also distinguish domains with different crystalline orientation by rotating the pDF stop. The simplicity of the pDF mode will make it an ideal tool for the structural study of close-packed double-layer microsphere films. PMID:25959375

  20. The in situ observation of epitaxial diamond thin film nucleation and growth using emission electron microscopy

    NASA Astrophysics Data System (ADS)

    Kordesch, Martin E.

    1994-05-01

    A method for activation of high resistivity, (100) texture CVD diamond films with gold, to improve low field electron emission is described. A model based on the dielectric breakdown of the diamond film is proposed and a test experiment, which consists of heating the gold layer to a point where the gold forms sub-micron spheroids on the diamond surface, is described which supports the model. The deposition of carbon and sulfur on Mo(310) is characterized with scanning Auger Microscopy. Correlation between Photoelectron emission Microscopy, scanning Auger Microscopy and Auger spectroscopy can be made, so that individual features in PEEM and SAM images can be identified by elemental composition. The initial design of a Seeded Supersonic Molecular Beam system for diamond deposition is described.

  1. Wide-field medium-repetition-rate multiphoton microscopy reduces photodamage of living cells.

    PubMed

    Macias-Romero, C; Zubkovs, V; Wang, S; Roke, S

    2016-04-01

    Demands of higher spatial and temporal resolutions in linear and nonlinear imaging keep pushing the limits of optical microscopy. We showed recently that a multiphoton microscope with 200 kHz repetition rate and wide-field illumination has a 2-3 orders of magnitude improved throughput compared to a high repetition rate confocal scanning microscope. Here, we examine the photodamage mechanisms and thresholds in live cell imaging for both systems. We first analyze theoretically the temperature increase in an aqueous solution resulting from illuminating with different repetition rates (keeping the deposited energy and irradiated volume constant). The analysis is complemented with photobleaching experiments of a phenolsulfonphthalein (phenol red) solution. Combining medium repetition rates and wide-field illumination promotes thermal diffusivity, which leads to lower photodamage and allows for higher peak intensities. A three day proliferation assay is also performed on living cells to confirm these results: dwell times can be increased by a factor of 3×10(6) while still preserving cell proliferation. By comparing the proliferation data with the endogenous two-photon fluorescence decay, we propose to use the percentage of the remaining endogenous two-photon fluorescence after exposure as a simple in-situ viability test. These findings enable the possibility of long-term imaging and reduced photodamage. PMID:27446668

  2. Wide-field medium-repetition-rate multiphoton microscopy reduces photodamage of living cells

    PubMed Central

    Macias-Romero, C.; Zubkovs, V.; Wang, S.; Roke, S.

    2016-01-01

    Demands of higher spatial and temporal resolutions in linear and nonlinear imaging keep pushing the limits of optical microscopy. We showed recently that a multiphoton microscope with 200 kHz repetition rate and wide-field illumination has a 2–3 orders of magnitude improved throughput compared to a high repetition rate confocal scanning microscope. Here, we examine the photodamage mechanisms and thresholds in live cell imaging for both systems. We first analyze theoretically the temperature increase in an aqueous solution resulting from illuminating with different repetition rates (keeping the deposited energy and irradiated volume constant). The analysis is complemented with photobleaching experiments of a phenolsulfonphthalein (phenol red) solution. Combining medium repetition rates and wide-field illumination promotes thermal diffusivity, which leads to lower photodamage and allows for higher peak intensities. A three day proliferation assay is also performed on living cells to confirm these results: dwell times can be increased by a factor of 3×106 while still preserving cell proliferation. By comparing the proliferation data with the endogenous two-photon fluorescence decay, we propose to use the percentage of the remaining endogenous two-photon fluorescence after exposure as a simple in-situ viability test. These findings enable the possibility of long-term imaging and reduced photodamage.

  3. Two-photon microscopy of living cells by simultaneously exciting multiple endogenous fluorophores and fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Li, Dong; Qu, Jianan Y.

    2010-02-01

    Endogenous fluorophores, such as reduced nicotinamide adenine dinucleotide (NADH), keratin, and tryptophan, have been used as contrast agents for imaging metabolism and morphology of living cells and tissues. Multilabeling which maps the distribution of different targets is an indispensable technique in many biomedical and biochemical studies. Therefore, two-photon excitation fluorescence (TPEF) microscopy of endogenous fluorophores combining with in vivo fluorescence labeling techniques such as genetically encoded fluorescent protein could be a powerful tool for imaging living cells and tissues. However, the challenge is that the excitation and emission wavelengths of these endogenous fluorophores and fluorescence labels are very different. A multi-color ultrafast source is required for the excitation of multiple fluorescence molecules. In this study, we developed a two-photon imaging system with excitations from the pump femtosecond laser and the selected Supercontinuum generated from a photonic crystal fiber (PCF). Multiple endogenous fluorophores and fluorescent proteins such as NADH, tryptophan, green fluorescent protein (GFP), and yellow fluorescent protein (YFP) were excited in their optimal wavelengths alternately or simultaneously. A time- and spectral-resolved detection system was used to record the TPEF signals. This detection technique separated the TPEF signals from multiple sources in time and spectral domains. Cellular organelles such as nucleus, mitochondria, microtubule and Endoplasmic Reticulum (ER), were clearly revealed in the TPEF images.

  4. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy.

    PubMed

    York, Andrew G; Parekh, Sapun H; Dalle Nogare, Damian; Fischer, Robert S; Temprine, Kelsey; Mione, Marina; Chitnis, Ajay B; Combs, Christian A; Shroff, Hari

    2012-07-01

    We demonstrate three-dimensional (3D) super-resolution in live multicellular organisms using structured illumination microscopy (SIM). Sparse multifocal illumination patterns generated by a digital micromirror device (DMD) allowed us to physically reject out-of-focus light, enabling 3D subdiffractive imaging in samples eightfold thicker than had been previously imaged with SIM. We imaged samples at one 2D image per second, at resolutions as low as 145 nm laterally and 400 nm axially. In addition to dual-labeled, whole fixed cells, we imaged GFP-labeled microtubules in live transgenic zebrafish embryos at depths >45 μm. We captured dynamic changes in the zebrafish lateral line primordium and observed interactions between myosin IIA and F-actin in cells encapsulated in collagen gels, obtaining two-color 4D super-resolution data sets spanning tens of time points and minutes without apparent phototoxicity. Our method uses commercially available parts and open-source software and is simpler than existing SIM implementations, allowing easy integration with wide-field microscopes. PMID:22581372

  5. Mechanical stimulation of individual stereocilia of living cochlear hair cells by atomic force microscopy.

    PubMed

    Langer, M G; Koitschev, A; Haase, H; Rexhausen, U; Hörber, J K; Ruppersberg, J P

    2000-02-01

    This paper describes the investigation of elastical properties and imaging of living cochlear hair bundles of inner (IHC) and outer hair cells (OHC) on the level of individual stereocilia. A custom-made AFM-setup was used, allowing to scan the mechano-sensitive structures of the inner ear under direct control of an upright differential interference contrast (DIC) microscope with a water-immersion objective. Scanning electron microscopy (SEM) images of the identical hair bundles obtained after AFM investigation demonstrated that forces up to 1.5 nanonewton (nN) did not cause obvious damage of the surface morphology of the stereocilia. These are the first images of hair bundles of living sensory cells of the organ of Corti by AFM. They display the tips of individual stereocilia and the typical V-shape of ciliary bundles. Since line scans clearly show that slope and force interaction depend on the elastical properties of stereocilia, quantitative stiffness measurements and stimulation of single transduction channels are suggested. PMID:10741679

  6. Real-time intravital microscopy of individual nanoparticle dynamics in liver and tumors of live mice

    PubMed Central

    van de Ven, Anne L; Kim, Pilhan; Ferrari, Mauro; Yun, Seok Hyun

    2013-01-01

    Intravital microscopy is emerging as an important experimental tool for the research and development of multi-functional therapeutic nanoconstructs. The direct visualization of nanoparticle dynamics within live animals provides invaluable insights into the mechanisms that regulate nanotherapeutics transport and cell-particle interactions. Here we present a protocol to image the dynamics of nanoparticles within the liver and tumors of live mice immediately following systemic injection using a high-speed (30-400 fps) confocal or multi-photon laser-scanning fluorescence microscope. Techniques for quantifying the real-time accumulation and cellular association of individual particles with a size ranging from several tens of nanometers to micrometers are described, as well as an experimental strategy for labeling Kupffer cells in the liver in vivo. Experimental design considerations and controls are provided, as well as minimum equipment requirements. The entire protocol takes approximately 4-8 hours and yields quantitative information. These techniques can serve to study a wide range of kinetic parameters that drive nanotherapeutics delivery, uptake, and treatment response. PMID:25383179

  7. Comparative morphology analysis of live blood platelets using scanning ion conductance and robotic dark-field microscopy.

    PubMed

    Kraus, Max-Joseph; Seifert, Jan; Strasser, Erwin F; Gawaz, Meinrad; Schäffer, Tilman E; Rheinlaender, Johannes

    2016-09-01

    Many conventional microscopy techniques for investigating platelet morphology such as electron or fluorescence microscopy require highly invasive treatment of the platelets such as fixation, drying and metal coating or staining. Here, we present two unique but entirely different microscopy techniques for direct morphology analysis of live, unstained platelets: scanning ion conductance microscopy (SICM) and robotic dark-field microscopy (RDM). We demonstrate that both techniques allow for a quantitative evaluation of the morphological features of live adherent platelets. We show that their morphology can be quantified by both techniques using the same geometric parameters and therefore can be directly compared. By imaging the same identical platelets subsequently with SICM and RDM, we found that area, perimeter and circularity of the platelets are directly correlated between SICM and dark-field microscopy (DM), while the fractal dimension (FD) differed between the two microscopy techniques. We show that SICM and RDM are both valuable tools for the ex vivo investigation of the morphology of live platelets, which might contribute to new insights into the physiological and pathophysiological role of platelet spreading. PMID:27063564

  8. Structural Characterisation of Complex Oxide & Rare Earth Manganite Thing Films by Microscopy

    NASA Astrophysics Data System (ADS)

    Jehanathan, Neerushana

    This PhD thesis presents the work on specific complex oxides and rare earth manganite thin films which were characterized mainly by transmission electron microscopy (TEM). The scientific results are divided in two main parts: the first part is devoted to the complex oxide films and the second to the rare earth manganite films. I. Complex oxides: The compositional influence of Cr, Al and Y on the microstructure of Mg-Cr-O, Mg-Al-O, Mg-Y-0 and Y-Al-O films synthesized by a reactive magnetron sputtering technique is reported. The study was based on a series of films with a range of compositions (metal ratios) deposited on Si substrates (without external substrate heating). The film thickness is about 1 μm (±200 nm). The effect of high temperatures (973 K to 1223 K) on the microstructural evolution of Mg-AlO, Mg-Cr-O and Y-Al-O films with specific metal ratios is also reported. II. Rare Earth Manganite Films: The microstructure and defect characterisation of hexagonal ReMnO3 (Re=Y, Tb, Dy, Ho and Er) thin films and multilayers is reported. The effect of off-stoichiometry on the microstructure of some hexagonal ReMnO3 (Re=Er, Dy and Ho) films with specific cationic ratios is also discussed. These thin films and multilayers were deposited on (111) YSZ and (111) Pt/TiO2/SiO 2/Si (stack) substrates by liquid injection metal organic chemical vapour deposition (MOCVD). The thickness of the films and multilayers is between 10 nm and 500 nm.

  9. The Growth and Mechanical Properties of Living Neurons Measured via Atomic Force and Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Spedden, Elise

    In this thesis we explore specific properties of the cytoskeleton and growth of living neurons via atomic force and fluorescence microscopies. We make the first comparative elastic modulus measurements on three types of neuronal cells plated on three types of substrate adhesion factors. We discover that during phases of active neurite extension the soma of cortical neurons stiffens reversibly due to changes in microtubule aggregation. Additionally, we demonstrate that mechanical properties of cortical neurons measured near physiological temperatures are primarily dependent on the microtubule component of the cytoskeleton. We further explore the response of the neuronal cytoskeleton to changes in ambient temperature. The elastic modulus of cortical neuron somas is discovered to increase dramatically upon a drop in ambient temperature. We determine through fluorescent staining and chemical modification of the cytoskeleton that this stiffening is due primarily to a change in the mechanically dominant component of the cytoskeleton from microtubules at 37ºC to actin at 25ºC precipitated by changes in myosin II dynamics within the cell. We make the first direct mechanical measurements of the pericellular brush layer on living neurons, demonstrating that the traditionally observed viscoelastic behavior of the neuronal soma is due to the properties of this brush layer. When the brush layer is excluded, the underlying soma is discovered to be both stiffer than previously observed, and elastic, with no loading-speed dependence to the elastic modulus under the test conditions. We additionally demonstrate that the soma elastic modulus, brush length, and brush density are all dependent on the ambient temperature. Finally, through fluorescent and bright field microscopies we track the outgrowth of living neurons on patterned directional surfaces, demonstrating that asymmetrical ratchet topographies unidirectionally bias axonal outgrowth. We model the outgrowth of the neurons

  10. In-situ spectro-microscopy on organic films: Mn-Phthalocyanine on Ag(100)

    NASA Astrophysics Data System (ADS)

    Al-Mahboob, Abdullah; Sadowski, Jerzy T.; Vescovo, Elio

    2013-03-01

    Metal phthalocyanines are attracting significant attention, owing to their potential for applications in chemical sensors, solar cells and organic magnets. As the electronic properties of molecular films are determined by their crystallinity and molecular packing, the optimization of film quality is important for improving the performance of organic devices. Here, we present the results of in situ low-energy electron microscopy / photoemission electron microscopy (LEEM/PEEM) studies of incorporation-limited growth of manganese-phthalocyanine (MnPc) on Ag(100) surfaces. MnPc thin films were grown on both, bulk Ag(100) surface and thin Ag(100)/Fe(100) films, where substrate spin-polarized electronic states can be modified through tuning the thickness of the Ag film. We also discuss the electronic structure and magnetic ordering in MnPc thin films, investigated by angle- and spin-resolved photoemission spectroscopy. Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which are supported by the U.S. Dept. of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  11. Few-layer graphene as a support film for transmission electron microscopy imaging of nanoparticles.

    PubMed

    McBride, James R; Lupini, Andrew R; Schreuder, Michael A; Smith, Nathanael J; Pennycook, Stephen J; Rosenthal, Sandra J

    2009-12-01

    One consistent limitation for high-resolution imaging of small nanoparticles is the high background signal from the amorphous carbon support film. With interest growing for smaller and smaller nanostructures, state of the art electron microscopes are becoming necessary for rudimentary tasks, such as nanoparticle sizing. As a monolayer of carbon, free-standing graphene represents the ultimate support film for nanoparticle imaging. In this work, conventional high-resolution transmission electron microscopy (HRTEM) and aberration-corrected scanning transmission electron microscopy (STEM) were used to assess the benefits and feasibility of few-layer graphene support films. Suspensions of few-layer graphene to produce the support films were prepared by simple sonication of exfoliated graphite. The greatest benefit was observed for conventional HRTEM, where lattice resolved imaging of sub 2 nm CdSe nanocrystals was achieved. The few-layer graphene films were also used as a support film for C(s)-corrected STEM and electron energy loss spectroscopy of CuInSe(2) nanocrystals. PMID:20356171

  12. Development of single shot soft x-ray contact microscopy system for nano-scale dynamics measurement of living biological specimen

    NASA Astrophysics Data System (ADS)

    Kishimoto, Maki; Kado, Masataka; Ishino, Masahiko; Tamotsu, Satoshi; Yasuda, Keiko; Shinohara, Kunio

    2012-07-01

    We have been developing a picosecond single shot soft x-ray contact microscopy system for observing the nanometer-scale inner structure of the living biological specimen in a hydrated condition. The microscopy system consists of an intense IR pump laser system for generating laser-induced plasma as a soft x-ray source and x-ray microscope chamber. The pump laser system employs OPCPA (Optical Parametric Chirped Pulse Amplification) technique to obtain a high contrast pump laser pulse, and we can generate water-window x-rays effectively by combining it to an ultra-thin metal target. The x-ray microscope chamber is composed of a vacuum chamber, a focusing lens, a metal film target, an in-vacuum type sample holder. The pump laser pulse is focused on the metal film target with a focusing lens. The soft x-rays from the laser-induced plasma illuminates bio-specimens on the PMMA photo resist set in the in-vacuum sample holder. The photo resist is developed and the x-ray transmission image recorded on the photo resist is read out by AFM. We took x-ray images of hydrated Leydig cells from mouse testicle and demonstrated that the developed x-ray microscopy system has a spatial resolution of about 100 nm.

  13. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells

    NASA Astrophysics Data System (ADS)

    Shibata, Mikihiro; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei

    2015-03-01

    Visualization of morphological dynamics of live cells with nanometer resolution under physiological conditions is highly desired, but challenging. It has been demonstrated that high-speed atomic force microscopy is a powerful technique for visualizing dynamics of biomolecules under physiological conditions. However, application of high-speed atomic force microscopy for imaging larger objects such as live mammalian cells has been complicated because of the collision between the cantilever and samples. Here, we demonstrate that attaching an extremely long (~3 μm) and thin (~5 nm) tip by amorphous carbon to the cantilever allows us to image the surface structure of live cells with the spatiotemporal resolution of nanometers and seconds. We demonstrate that long-tip high-speed atomic force microscopy is capable of imaging morphogenesis of filopodia, membrane ruffles, pit formation, and endocytosis in COS-7, HeLa cells and hippocampal neurons.

  14. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells

    PubMed Central

    Shibata, Mikihiro; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei

    2015-01-01

    Visualization of morphological dynamics of live cells with nanometer resolution under physiological conditions is highly desired, but challenging. It has been demonstrated that high-speed atomic force microscopy is a powerful technique for visualizing dynamics of biomolecules under physiological conditions. However, application of high-speed atomic force microscopy for imaging larger objects such as live mammalian cells has been complicated because of the collision between the cantilever and samples. Here, we demonstrate that attaching an extremely long (~3 μm) and thin (~5 nm) tip by amorphous carbon to the cantilever allows us to image the surface structure of live cells with the spatiotemporal resolution of nanometers and seconds. We demonstrate that long-tip high-speed atomic force microscopy is capable of imaging morphogenesis of filopodia, membrane ruffles, pit formation, and endocytosis in COS-7, HeLa cells and hippocampal neurons. PMID:25735540

  15. Observation of Individual Fluorine Atom from Highly Oriented Poly (tetrafluoroethylene) Films by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.,; Paley, Mark S.

    1999-01-01

    Direct observation of the film thickness, molecular structure and individual fluorine atoms from highly oriented poly(tetrafluoroethylene) (PTFE) films were achieved using atomic force microscopy (AFM). A thin PTFE film is mechanically deposited onto a smooth glass substrate at specific temperatures by a friction transfer technique. Atomic resolution images of these films show that the chain-like helical structures of the PTFE macromolecules are aligned parallel to each other with an intermolecular spacing of 5.72 A, and individual fluorine atoms are clearly observed along these twisted molecular chains with an interatomic spacing of 2.75 A. Furthermore, the first direct AFM measurements for the radius of the fluorine-helix, and of the carbon-helix in sub-angstrom scale are reported as 1.70 A and 0.54 A respectively.

  16. Observation of Individual Fluorine Atoms from Highly Oriented Poly(Tetrafluoroethylene) Films by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Lee, J. A.

    2000-01-01

    Direct observation of the film thickness, molecular structure, and individual fluorine atoms from highly oriented poly(tetrafluoroethylene) (PTFE) films were achieved using atomic force microscopy (AFM). A thin PTFE film is mechanically deposited onto a smooth glass substrate at specific temperatures by a friction-transfer technique. Atomic resolution images of these films show that the chain-like helical structures of the PTFE macromolecules are aligned parallel to each other with an intermolecular spacing of 5.72 A, and individual fluorine atoms are clearly observed along these twisted molecular chains with an interatomic spacing of 2.75 A. Furthermore, the first direct AFM measurements for the radius of the fluorine-helix, and of the carbon-helix in sub-angstrom scale are reported as 1.7 and 0.54 A respectively.

  17. Characterization of polysilicon films by Raman spectroscopy and transmission electron microscopy: A comparative study

    SciTech Connect

    Tallant, D.R.; Headley, T.J.; Medernach, J.W.; Geyling, F.

    1993-11-12

    Samples of chemically-vapor-deposited micrometer and sub-micrometer-thick films of polysilicon were analyzed by transmission electron microscopy (TEM) in cross-section and by Raman spectroscopy with illumination at their surface. TEM and Raman spectroscopy both find varying amounts of polycrystalline and amorphous silicon in the wafers. Raman spectra obtained using blue, green and red excitation wavelengths to vary the Raman sampling depth are compared with TEM cross-sections of these films. Films showing crystalline columnar structures in their TEM micrographs have Raman spectra with a band near 497 cm{sup {minus}1} in addition to the dominant polycrystalline silicon band (521 cm{sup {minus}1}). The TEM micrographs of these films have numerous faulted regions and fringes indicative of nanometer-scale silicon structures, which are believed to correspond to the 497cm{sup {minus}1} Raman band.

  18. Mechanical characterization of porous nano-thin films by use of atomic force acoustic microscopy.

    PubMed

    Kopycinska-Müller, M; Clausner, A; Yeap, K-B; Köhler, B; Kuzeyeva, N; Mahajan, S; Savage, T; Zschech, E; Wolter, K-J

    2016-03-01

    The indentation modulus of thin films of porous organosilicate glass with a nominal porosity content of 30% and thicknesses of 350nm, 200nm, and 46nm is determined with help of atomic force acoustic microscopy (AFAM). This scanning probe microscopy based technique provides the highest possible depth resolution. The values of the indentation modulus obtained for the 350nm and 200nm thin films were respectively 6.3GPa±0.2GPa and 7.2GPa±0.2GPa and free of the substrate influence. The sample with the thickness of 46nm was tested in four independent measurement sets. Cantilevers with two different tip radii of about 150nm and less than 50nm were applied in different force ranges to obtain a result for the indentation modulus that was free of the substrate influence. A detailed data analysis yielded value of 8.3GPa±0.4GPa for the thinnest film. The values of the indentation modulus obtained for the thin films of porous organosilicate glasses increased with the decreasing film thickness. The stiffening observed for the porous films could be explained by evolution of the pore topology as a function of the film thickness. To ensure that our results were free of the substrate influence, we analyzed the ratio of the sample deformation as well as the tip radius to the film thickness. The results obtained for the substrate parameter were compared for all the measurement series and showed, which ones could be declared as free of the substrate influence. PMID:26799327

  19. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    SciTech Connect

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V.; Ihlefeld, J.

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  20. Evaluating the Performance of Time-Gated Live-Cell Microscopy with Lanthanide Probes

    PubMed Central

    Rajendran, Megha; Miller, Lawrence W.

    2015-01-01

    Probes and biosensors that incorporate luminescent Tb(III) or Eu(III) complexes are promising for cellular imaging because time-gated microscopes can detect their long-lifetime (approximately milliseconds) emission without interference from short-lifetime (approximately nanoseconds) fluorescence background. Moreover, the discrete, narrow emission bands of Tb(III) complexes make them uniquely suited for multiplexed imaging applications because they can serve as Förster resonance energy transfer (FRET) donors to two or more differently colored acceptors. However, lanthanide complexes have low photon emission rates that can limit the image signal/noise ratio, which has a square-root dependence on photon counts. This work describes the performance of a wide-field, time-gated microscope with respect to its ability to image Tb(III) luminescence and Tb(III)-mediated FRET in cultured mammalian cells. The system employed a UV-emitting LED for low-power, pulsed excitation and an intensified CCD camera for gated detection. Exposure times of ∼1 s were needed to collect 5–25 photons per pixel from cells that contained micromolar concentrations of a Tb(III) complex. The observed photon counts matched those predicted by a theoretical model that incorporated the photophysical properties of the Tb(III) probe and the instrument’s light-collection characteristics. Despite low photon counts, images of Tb(III)/green fluorescent protein FRET with a signal/noise ratio ≥ 7 were acquired, and a 90% change in the ratiometric FRET signal was measured. This study shows that the sensitivity and precision of lanthanide-based cellular microscopy can approach that of conventional FRET microscopy with fluorescent proteins. The results should encourage further development of lanthanide biosensors that can measure analyte concentration, enzyme activation, and protein-protein interactions in live cells. PMID:26200860

  1. CARS microscopy for the monitoring of fat deposition mechanisms in a living organism

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Hellerer, Thomas; Hillertz, Per; Brackmann, Christian; Axäng, Claes; Pilon, Marc

    2006-02-01

    We introduce near-infrared Coherent Anti-Stokes Raman Scattering (CARS) microscopy as a method for the monitoring of fat deposition in a living organism by directly probing the CH II vibration of the lipids without the need for staining or labeling. This study nicely brings forward all the advantages of the technique: deep probe depth, low excitation powers, high 3-dimensional resolution, and visualization without the interference of exogenous label molecules, or fixation and staining procedures. Differences in fat deposition during the life cycle of the nematode Caenorhabditis elegans were evaluated quantitatively from the CARS microscopy images, showing that the technique can be used to study mechanisms that regulate lipid storage. Beside the wild type nematode, the feeding-deficient mutant pha-3 was studied. It was shown that the embryonal accumulation of energy stores is enough for the development of a full-sized pre-adult larva, being possible also for the mutant. However, the volume density of lipid stores at the fourth and last pre-adult development stage seems to determine its adult body size. Whereas the wild type larva maintains its size when becoming adult, though at the cost of reduced lipid density, the feeding deficient mutant instead has to reduce its body size in order to reach the same volume density of lipid stores. Both strains start off their adult life with a volume fraction of lipid stores corresponding to 6-7%; the wild type with a radius of 24+/-2 µm and the pha-3 mutant with a significantly smaller radius of 16+/-3 μm.

  2. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy

    PubMed Central

    Takahashi, Yasufumi; Shevchuk, Andrew I.; Novak, Pavel; Babakinejad, Babak; Macpherson, Julie; Unwin, Patrick R.; Shiku, Hitoshi; Gorelik, Julia; Klenerman, David; Korchev, Yuri E.; Matsue, Tomokazu

    2012-01-01

    We describe voltage-switching mode scanning electrochemical microscopy (VSM-SECM), in which a single SECM tip electrode was used to acquire high-quality topographical and electrochemical images of living cells simultaneously. This was achieved by switching the applied voltage so as to change the faradaic current from a hindered diffusion feedback signal (for distance control and topographical imaging) to the electrochemical flux measurement of interest. This imaging method is robust, and a single nanoscale SECM electrode, which is simple to produce, is used for both topography and activity measurements. In order to minimize the delay at voltage switching, we used pyrolytic carbon nanoelectrodes with 6.5–100 nm radii that rapidly reached a steady-state current, typically in less than 20 ms for the largest electrodes and faster for smaller electrodes. In addition, these carbon nanoelectrodes are suitable for convoluted cell topography imaging because the RG value (ratio of overall probe diameter to active electrode diameter) is typically in the range of 1.5–3.0. We first evaluated the resolution of constant-current mode topography imaging using carbon nanoelectrodes. Next, we performed VSM-SECM measurements to visualize membrane proteins on A431 cells and to detect neurotransmitters from a PC12 cells. We also combined VSM-SECM with surface confocal microscopy to allow simultaneous fluorescence and topographical imaging. VSM-SECM opens up new opportunities in nanoscale chemical mapping at interfaces, and should find wide application in the physical and biological sciences. PMID:22611191

  3. Evaluating the performance of time-gated live-cell microscopy with lanthanide probes.

    PubMed

    Rajendran, Megha; Miller, Lawrence W

    2015-07-21

    Probes and biosensors that incorporate luminescent Tb(III) or Eu(III) complexes are promising for cellular imaging because time-gated microscopes can detect their long-lifetime (approximately milliseconds) emission without interference from short-lifetime (approximately nanoseconds) fluorescence background. Moreover, the discrete, narrow emission bands of Tb(III) complexes make them uniquely suited for multiplexed imaging applications because they can serve as Förster resonance energy transfer (FRET) donors to two or more differently colored acceptors. However, lanthanide complexes have low photon emission rates that can limit the image signal/noise ratio, which has a square-root dependence on photon counts. This work describes the performance of a wide-field, time-gated microscope with respect to its ability to image Tb(III) luminescence and Tb(III)-mediated FRET in cultured mammalian cells. The system employed a UV-emitting LED for low-power, pulsed excitation and an intensified CCD camera for gated detection. Exposure times of ∼1 s were needed to collect 5-25 photons per pixel from cells that contained micromolar concentrations of a Tb(III) complex. The observed photon counts matched those predicted by a theoretical model that incorporated the photophysical properties of the Tb(III) probe and the instrument's light-collection characteristics. Despite low photon counts, images of Tb(III)/green fluorescent protein FRET with a signal/noise ratio ≥ 7 were acquired, and a 90% change in the ratiometric FRET signal was measured. This study shows that the sensitivity and precision of lanthanide-based cellular microscopy can approach that of conventional FRET microscopy with fluorescent proteins. The results should encourage further development of lanthanide biosensors that can measure analyte concentration, enzyme activation, and protein-protein interactions in live cells. PMID:26200860

  4. Polarized fluorescence microscopy analysis of patterned, polymerized perfluorotetradecanoic acid-pentacosadiynoic acid thin films

    NASA Astrophysics Data System (ADS)

    Araghi, Hessamaddin Younesi; Giri, Neeraj K.; Paige, Matthew F.

    2014-08-01

    Photoillumination of mixed films comprised of the photopolymerizable fatty acid 10,12 pentacosadiynoic acid and perfluorotetradecanoic acid deposited onto glass substrates gives rise to the formation of oriented polydiacetylene photopolymer fibers. The degree of polymer fiber orientation was investigated using dual-view, polarized fluorescence microscopy of the polydiacetylene, which allowed for characterization of individual fluorescent polymer fibers after photopolymerization, as well as comparison of the orientation of different fibers within the same sample. Measurements indicated that individual fibers consisted of multiple photopolymer strands with various orientations, and that there was a preferred orientation for fibers in the film as a whole. The fibers were preferentially oriented at an angle of approximately 60° to the direction of film compression during deposition from a Langmuir trough, with orientation being the result of mechanical stress exerted by the compression barriers coupled with rotation of the polymer fibers during film draining. These measurements were complemented with conventional “bulk” fluorescence polarization experiments, and compared with mixed film structures described previously for these systems at the air-water interface using Brewster angle microscopy.

  5. Polarized fluorescence microscopy analysis of patterned, polymerized perfluorotetradecanoic acid-pentacosadiynoic acid thin films.

    PubMed

    Araghi, Hessamaddin Younesi; Giri, Neeraj K; Paige, Matthew F

    2014-08-14

    Photoillumination of mixed films comprised of the photopolymerizable fatty acid 10,12 pentacosadiynoic acid and perfluorotetradecanoic acid deposited onto glass substrates gives rise to the formation of oriented polydiacetylene photopolymer fibers. The degree of polymer fiber orientation was investigated using dual-view, polarized fluorescence microscopy of the polydiacetylene, which allowed for characterization of individual fluorescent polymer fibers after photopolymerization, as well as comparison of the orientation of different fibers within the same sample. Measurements indicated that individual fibers consisted of multiple photopolymer strands with various orientations, and that there was a preferred orientation for fibers in the film as a whole. The fibers were preferentially oriented at an angle of approximately 60° to the direction of film compression during deposition from a Langmuir trough, with orientation being the result of mechanical stress exerted by the compression barriers coupled with rotation of the polymer fibers during film draining. These measurements were complemented with conventional "bulk" fluorescence polarization experiments, and compared with mixed film structures described previously for these systems at the air-water interface using Brewster angle microscopy. PMID:24747858

  6. Optical spectroscopy and scanning tunneling microscopy studies of molecular adsorbates and anisotropic ultrathin films. Final report

    SciTech Connect

    Hemminger, J.C.

    1998-09-01

    The bonding, chemistry and ordering of molecular adsorbates on well defined single crystal surfaces and in ultrathin films was to be studied in an effort to develop sufficient fundamental understanding to allow the controlled preparation of anisotropic ultrathin films of organic monolayers. In this research the authors combine the use of optical probes (Raman spectroscopy, laser induced thermal desorption with Fourier transform mass spectrometry detection) with scanning tunneling microscopy (STM) and conventional methods of UHV surface science (Auger electron spectroscopy, x-ray photoelectron spectroscopy, low energy electron diffraction, and thermal desorption spectroscopy). The conventional surface probes provide well tested methods for the preparation and characterization of single crystal substrates. The optical probes used in the experiments provide powerful methods for the molecular identification of adsorbates in monolayers and ultrathin films. Scanning tunneling microscopy provides one with the ability to determine the detailed molecular level ordering of the molecular adsorbates. The emphasis of this research is on more complex molecular absorbates some of which are monomer precursors to ultrathin polymer films. Enhanced methods of Raman spectroscopy have been developed for the study of monolayer adsorbates on surfaces in ultrahigh vacuum environments. This report gives an overview of recent research results, including the construction of UHV variable temperature STM, analysis of STM images, growth and chemistry of intermetallic single crystal ultrathin films, and electron beam induced chemistry of tetracyanoquinodimethane.

  7. Measuring Exciton Diffusion in Conjugated Polymer Films with Super-resolution Microscopy

    NASA Astrophysics Data System (ADS)

    Penwell, Samuel; Ginsberg, Lucas; Noriega Manez, Rodrigo; Ginsberg, Naomi

    2015-03-01

    Conjugated polymers are highly tunable organic semiconductors, which can be solution processed to form thin films, making them prime candidates for organic photovoltaic devices. One of the most important parameters in a conjugated polymer solar cell is the exciton diffusion length, which depends on intermolecular couplings, and is typically on the order of 10 nm. This mean exciton migration can vary dramatically between films and within a single film due to heterogeneities in morphology on length scales of 10's to 100's nm. To study the variability of exciton diffusion and morphology within individual conjugated polymer films, we are adapting stimulated emission depletion microscopy. STED is typically used in biology with well-engineered fluorescent labels or on NV-centers in diamond. I will, however, describe how we have demonstrated STED in conjugated polymer films of MEH-PPV and CN-PPV by taking care to first understand the film's photophysical properties. This new approach provides a way to study exciton diffusion by utilizing subdiffraction optical excitation volumes. In this way, we will obtain a spatiotemporal map of exciton distributions that will help to correlate the energetic landscape to film morphology at the nanoscale. This research is supported in part by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under Contract No. DE-AC05-06.

  8. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    SciTech Connect

    Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar; Singh, V.N.

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  9. Identification of Fluorescent Compounds with Non-Specific Binding Property via High Throughput Live Cell Microscopy

    PubMed Central

    Nath, Sangeeta; Spencer, Virginia A.; Han, Ju; Chang, Hang; Zhang, Kai; Fontenay, Gerald V.; Anderson, Charles; Hyman, Joel M.; Nilsen-Hamilton, Marit; Chang, Young-Tae; Parvin, Bahram

    2012-01-01

    Introduction Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved. Method Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties. Results The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i) mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii) retention and spatial localization of chemical compounds vary within and between each cell line; and (iii) the structural similarities of compounds can infer their non-specific binding properties. Conclusion We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented. PMID:22242152

  10. Back-etch method for plan view transmission electron microscopy sample preparation of optically opaque films.

    PubMed

    Yao, Bo; Coffey, Kevin R

    2008-04-01

    Back-etch methods have been widely used to prepare plan view transmission electron microscopy (TEM) samples of thin films on membranes by removal of the Si substrate below the membrane by backside etching. The conventional means to determine when to stop the etch process is to observe the color of the light transmitted through the sample, which is sensitive to the remaining Si thickness. However, most metallic films thicker than 75 nm are opaque, and there is no detectable color change prior to film perforation. In this paper, a back-etch method based on the observation of an abrupt change of optical reflection contrast is introduced as a means to determine the etch endpoint to prepare TEM samples for these films. As the acid etchant removes the Si substrate material a rough interface is generated. This interface becomes a relatively smooth and featureless region when the etchant reaches the membrane (film/SiO2). This featureless region is caused by the mirror reflection of the film plane (film/SiO2 interface) through the optically transparent SiO2 layer. The lower etch rate of SiO2 (compared with Si) gives the operator enough time to stop the etching without perforating the film. A clear view of the morphology and control of Si roughness during etching are critical to this method, which are discussed in detail. The procedures of mounting wax removal and sample rinsing are also described in detail, as during these steps damage to the membrane may easily occur without appropriate consideration. As examples, the preparation of 100-nm-thick Fe-based amorphous alloy thin film and 160-nm-thick Cu-thin film samples for TEM imaging is described. PMID:18227137

  11. Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopy

    NASA Astrophysics Data System (ADS)

    Bosse, J. L.; Timofeeva, M.; Tovee, P. D.; Robinson, B. J.; Huey, B. D.; Kolosov, O. V.

    2014-10-01

    The thermal properties of amorphous and crystalline phases in chalcogenide phase change materials (PCM) play a key role in device performance for non-volatile random-access memory. Here, we report the nanothermal morphology of amorphous and crystalline phases in laser pulsed GeTe and Ge2Sb2Te5 thin films by scanning thermal microscopy (SThM). By SThM measurements and quantitative finite element analysis simulations of two film thicknesses, the PCM thermal conductivities and thermal boundary conductances between the PCM and SThM probe are independently estimated for the amorphous and crystalline phase of each stoichiometry.

  12. Preparation and atomic force microscopy of CTAB stabilized polythiophene nanoparticles thin film

    NASA Astrophysics Data System (ADS)

    Graak, Pinki; Devi, Ranjna; Kumar, Dinesh; Singh, Vishal; Kumar, Sacheen

    2016-05-01

    Polythiophene nanoparticles were synthesized by iron catalyzed oxidative polymerization method. Polythiophene formation was detected by UV-Visible spectroscopy with λmax 375nm. Thin films of CTAB stabilized polythiophene nanoparticles was deposited on n-type silicon wafer by spin coating technique at 3000rpm in three cycles. Thickness of the thin films was computed as 300-350nm by ellipsometry. Atomic force micrscopyrevealws the particle size of polymeric nanoparticles in the range of 30nm to 100nm. Roughness of thinfilm was also analyzed from the atomic force microscopy data by Picoimage software. The observed RMS value lies in the range of 6 nm to 12 nm.

  13. Nanosecond switching in GeSe phase change memory films by atomic force microscopy

    SciTech Connect

    Bosse, James L.; Huey, Bryan D.; Grishin, Ilya; Kolosov, Oleg V.; Gyu Choi, Yong; Cheong, Byung-ki; Lee, Suyoun

    2014-02-03

    Nanosecond scale threshold switching is investigated with conducting atomic force microscopy (AFM) for an amorphous GeSe film. Switched bits exhibit 2–3 orders of magnitude variations in conductivity, as demonstrated in phase change based memory devices. Through the nm-scale AFM probe, this crystallization was achieved with pulse durations of as low as 15 ns, the fastest reported with scanning probe based methods. Conductance AFM imaging of the switched bits further reveals correlations between the switched volume, pulse amplitude, and pulse duration. The influence of film heterogeneities on switching is also directly detected, which is of tremendous importance for optimal device performance.

  14. Study of the leakage field of magnetic force microscopy thin-film tips using electron holography

    SciTech Connect

    Frost, B.G.; van Hulst, N.F.; Lunedei, E.; Matteucci, G.

    1996-03-01

    Electron holography is applied for the study of the leakage field of thin-film ferromagnetic tips used as probes in magnetic force microscopy. We used commercially available pyramidal tips covered on one face with a thin NiCo film, which were then placed in a high external magnetic field directed along the pyramid axis. Good agreement between simulated and experimental electron phase difference maps allows to measure the local flux from the ferromagnetic tips and therefore to evaluate the perturbation induced by the microprobe stray field on the sample area. {copyright} {ital 1996 American Institute of Physics.}

  15. Dynamic electrical response of thin dielectric films measured by Electrostatic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Williams, Clayton; Klein, Levente

    2002-03-01

    Electrostatic Force Microscopy measurements have been performed on thin dielectric films on conducting substrates. Cantilever oscillation amplitude versus distance curves are measured as a function of the frequency of the voltage applied between tip and sample. When a DC voltage is applied, the oscillation amplitude versus distance curve is significantly different from that when a low frequency (500 Hz) AC voltage is applied (cantilever resonance at 125 kHz). The frequency dependence of the AC force response for different dielectric films (SiO2 and Al_2O_3) are studied. The frequency dependence is accounted for by the movement of charge near the sample surface with a finite response time.

  16. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    SciTech Connect

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides.

  17. Pulse splitter-based nonlinear microscopy for live-cardiomyocyte imaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhonghai; Qin, Wan; Shao, Yonghong; Ma, Siyu; Borg, Thomas K.; Gao, Bruce Z.

    2014-02-01

    Second harmonic generation (SHG) microscopy is a new imaging technique used in sarcomeric-addition studies. However, during the early stage of cell culture in which sarcomeric additions occur, the neonatal cardiomyocytes that we have been working with are very sensitive to photodamage, the resulting high rate of cell death prevents systematic study of sarcomeric addition using a conventional SHG system. To address this challenge, we introduced use of the pulse-splitter system developed by Na Ji et al. in our two photon excitation fluorescence (TPEF) and SHG hybrid microscope. The system dramatically reduced photodamage to neonatal cardiomyocytes in early stages of culture, greatly increasing cell viability. Thus continuous imaging of live cardiomyocytes was achieved with a stronger laser and for a longer period than has been reported in the literature. The pulse splitter-based TPEF-SHG microscope constructed in this study was demonstrated to be an ideal imaging system for sarcomeric addition-related investigations of neonatal cardiomyocytes in early stages of culture.

  18. Atomic force microscopy as nano-stethoscope to study living organisms, insects

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia

    2012-02-01

    Atomic force microscopy (AFM) is a known method to study various surfaces. Here we report on the use of AFM to study surface oscillations (coming from the work of internal organs) of living organisms, like insects. As an example, ladybird beetles (Hippodamia convergens) measured in different parts of the insect at picometer level. This allows us to record a much broader spectral range of possible surface vibrations (up to several kHz) than the previously studied oscillations due to breathing, heartbeat cycles, coelopulses, etc. (up to 5 -10 Hz). The used here AFM method allows collecting signal from the area as small as ˜100nm2 (0.0001μm2) with an example of noise level of (2±0.2)x10-3 nm r.m.s. at the range of frequencies >50Hz (potentially, up to a MHz). Application of this method to humans is discussed. The method, being a relatively non-invasive technique providing a new type of information, may be useful in developing of what could be called ``nanophysiology.''

  19. Long-term live cell microscopy studies of lipid droplet fusion dynamics in adipocytes[S

    PubMed Central

    Jüngst, Christian; Klein, Matthias; Zumbusch, Andreas

    2013-01-01

    During the adipogenic differentiation process of mesenchymal stem cells, lipid droplets (LDs) grow slowly by transferring lipids between each other. Recent findings hint at the possibility that a fusion pore is involved. In this study, we analyze lipid transfer data obtained in long-term label-free microscopy studies in the framework of a Hagen-Poiseuille model. The data obtained show a LD fusion process in which the lipid transfer directionality depends on the size difference between LDs, whereas the respective rates depend on the size difference and additionally on the diameter of the smaller LDs. For the data analysis, the viscosity of the transferred material has to be known. We demonstrate that a viscosity-dependent molecular rotor dye can be used to measure LD viscosities in live cells. On this basis, we calculate the diameter of a putative lipid transfer channel which appears to have a direct dependence on the diameter of the smaller of the two participating LDs. PMID:24103784

  20. Chronic imaging of amyloid plaques in the live mouse brain using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Bacskai, Brian J.; Kajdasz, Stephen T.; Christie, R. H.; Zipfel, Warren R.; Williams, Rebecca M.; Kasischke, Karl A.; Webb, Watt W.; Hyman, B. T.

    2001-04-01

    Transgenic mice expressing the human Amyloid Precursor Protein (APP) develop amyloid plaques as they age. These plaques resemble those found in the human disease. Multiphoton laser scanning microscopy combined with a novel surgical approach was used to measure amyloid plaque dynamics chronically in the cortex of living transgenic mice. Thioflavine S (thioS) was used as a fluorescent marker of amyloid deposits. Multiphoton excitation allowed visualization of amyloid plaques up to 200 micrometers deep into the brain. The surgical site could be imaged repeatedly without overt damage to the tissue, and individual plaques within this volume could be reliably identified over periods of several days to several months. On average, plaque sizes remained constant over time, supporting a model of rapid deposition, followed by relative stability. Alternative reporters for in vivo histology include thiazine red, and FITC-labeled amyloid-(Beta) peptide. We also present examples of multi-color imaging using Hoechst dyes and FITC-labeled tomato lectin. These approaches allow us to observe cell nuclei or microglia simultaneously with amyloid-(Beta) deposits in vivo. Chronic imaging of a variety of reporters in these transgenic mice should provide insight into the dynamics of amyloid-(Beta) activity in the brain.

  1. ANG-2 for quantitative Na(+) determination in living cells by time-resolved fluorescence microscopy.

    PubMed

    Roder, Phillip; Hille, Carsten

    2014-12-01

    Sodium ions (Na(+)) play an important role in a plethora of cellular processes, which are complex and partly still unexplored. For the investigation of these processes and quantification of intracellular Na(+) concentrations ([Na(+)]i), two-photon coupled fluorescence lifetime imaging microscopy (2P-FLIM) was performed in the salivary glands of the cockroach Periplaneta americana. For this, the novel Na(+)-sensitive fluorescent dye Asante NaTRIUM Green-2 (ANG-2) was evaluated, both in vitro and in situ. In this context, absorption coefficients, fluorescence quantum yields and 2P action cross-sections were determined for the first time. ANG-2 was 2P-excitable over a broad spectral range and displayed fluorescence in the visible spectral range. Although the fluorescence decay behaviour of ANG-2 was triexponential in vitro, its analysis indicates a Na(+)-sensitivity appropriate for recordings in living cells. The Na(+)-sensitivity was reduced in situ, but the biexponential fluorescence decay behaviour could be successfully analysed in terms of quantitative [Na(+)]i recordings. Thus, physiological 2P-FLIM measurements revealed a dopamine-induced [Na(+)]i rise in cockroach salivary gland cells, which was dependent on a Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity. It was concluded that ANG-2 is a promising new sodium indicator applicable for diverse biological systems. PMID:25311309

  2. Imaging Mitochondrial Organization in Living Primate Oocytes and Embryos using Multiphoton Microscopy

    NASA Astrophysics Data System (ADS)

    Squirrell, J. M.; Schramm, R. D.; Paprocki, A. M.; Wokosin, D. L.; Bavister, B. D.

    2003-06-01

    We employed multiphoton laser scanning microscopy (MPLSM) to image changes in mitochondrial distribution in living rhesus monkey embryos. This method of imaging does not impair development; thus, the same specimen can be visualized multiple times at various developmental stages. Not only does this increase the amount of information that can be gathered on a single specimen but it permits the correlation of early events with subsequent development in the same specimen. Here we demonstrate the utility of MPLSM for determining changes in mitochondrial organization at various developmental stages and show that rhesus zygotes possess a distinct accumulation of mitochondria between the pronuclei prior to syngamy. We present evidence that suggests that this pronuclear accumulation may be positively correlated with development to the blastocyst stage—in the same embryo—thereby illustrating how MPLSM can be used to correlate cellular dynamics of primate oocytes and early embryos with their developmental potential. Understanding the relationship between mitochondrial distribution and the subsequent development of mammalian embryos, particularly primates, will increase our ability to improve embryo culture technologies, including those used for human assisted reproduction.

  3. Photothermal confocal multicolor microscopy of nanoparticles and nanodrugs in live cells.

    PubMed

    Nedosekin, Dmitry A; Foster, Stephen; Nima, Zeid A; Biris, Alexandru S; Galanzha, Ekaterina I; Zharov, Vladimir P

    2015-08-01

    Growing biomedical applications of non-fluorescent nanoparticles (NPs) for molecular imaging, disease diagnosis, drug delivery, and theranostics require new tools for real-time detection of nanomaterials, drug nano-carriers, and NP-drug conjugates (nanodrugs) in complex biological environments without additional labeling. Photothermal (PT) microscopy (PTM) has enormous potential for absorption-based identification and quantification of non-fluorescent molecules and NPs at a single molecule and 1.4 nm gold NP level. Recently, we have developed confocal PTM providing three-dimensional (3D) mapping and spectral identification of multiple chromophores and fluorophores in live cells. Here, we summarize recent advances in the application of confocal multicolor PTM for 3D visualization of single and clustered NPs, alone and in individual cells. In particular, we demonstrate identification of functionalized magnetic and gold-silver NPs, as well as graphene and carbon nanotubes in cancer cells and among blood cells. The potential to use PTM for super-resolution imaging (down to 50 nm), real-time NP tracking, guidance of PT nanotherapy, and multiplex cancer markers targeting, as well as analysis of non-linear PT phenomena and amplification of nanodrug efficacy through NP clustering and nano-bubble formation are also discussed. PMID:26133539

  4. Multiplexed high-content analysis of mitochondrial morphofunction using live-cell microscopy.

    PubMed

    Iannetti, Eligio F; Smeitink, Jan A M; Beyrath, Julien; Willems, Peter H G M; Koopman, Werner J H

    2016-09-01

    Mitochondria have a central role in cellular (patho)physiology, and they display a highly variable morphology that is probably coupled to their functional state. Here we present a protocol that allows unbiased and automated quantification of mitochondrial 'morphofunction' (i.e., morphology and membrane potential), cellular parameters (size, confluence) and nuclear parameters (number, morphology) in intact living primary human skin fibroblasts (PHSFs). Cells are cultured in 96-well plates and stained with tetramethyl rhodamine methyl ester (TMRM), calcein-AM (acetoxy-methyl ester) and Hoechst 33258. Next, multispectral fluorescence images are acquired using automated microscopy and processed to extract 44 descriptors. Subsequently, the descriptor data are subjected to a quality control (QC) algorithm based upon principal component analysis (PCA) and interpreted using univariate, bivariate and multivariate analysis. The protocol requires a time investment of ∼4 h distributed over 2 d. Although it is specifically developed for PHSFs, which are widely used in preclinical research, the protocol is portable to other cell types and can be scaled up for implementation in high-content screening. PMID:27560174

  5. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Claude Boccara, A.; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  6. Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects

    PubMed Central

    Shang, Li; Nienhaus, Karin; Jiang, Xiue; Yang, Linxiao; Landfester, Katharina; Mailänder, Volker; Simmet, Thomas

    2014-01-01

    Summary Engineered nanomaterials are known to enter human cells, often via active endocytosis. Mechanistic details of the interactions between nanoparticles (NPs) with cells are still not well enough understood. NP size is a key parameter that controls the endocytic mechanism and affects the cellular uptake yield. Therefore, we have systematically analyzed the cellular uptake of fluorescent NPs in the size range of 3.3–100 nm (diameter) by live cells. By using spinning disk confocal microscopy in combination with quantitative image analysis, we studied the time courses of NP association with the cell membrane and subsequent internalization. NPs with diameters of less than 10 nm were observed to accumulate at the plasma membrane before being internalized by the cells. In contrast, larger NPs (100 nm) were directly internalized without prior accumulation at the plasma membrane, regardless of their surface charges. We attribute this distinct size dependence to the requirement of a sufficiently strong local interaction of the NPs with the endocytic machinery in order to trigger the subsequent internalization. PMID:25551067

  7. Local photo-assisted poling of azo copolymer films by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    S-S Chien, F.; Y Lin, C.; Hsu, C. C.

    2008-12-01

    Azo copolymers are nonlinear-optical materials, in which polar orientation can be induced by optical poling or electrical poling. We report a new efficient approach to performing photo-assisted poling (PAP) by atomic force microscopy (AFM) for azo copolymer films containing disperse-red-1 chromophores, and to characterize the polar orientation by electrostatic force microscopy (EFM) at the submicrometre scale. Both PAP and contact electrification effects can be generated by the physical interaction between the probes and the films. We demonstrated that these two effects can be distinguished by the relationship between the signs of the charges (bound charges and transferred charges) and the probe bias. Finally, we achieve local PAP far below the glass transition temperature by AFM operated in the tapping mode, and the response of the polar chromophores to local PAP can be studied by EFM.

  8. Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films

    NASA Astrophysics Data System (ADS)

    Choukourov, A.; Grinevich, A.; Slavinska, D.; Biederman, H.; Saito, N.; Takai, O.

    2008-03-01

    Composite Ti/hydrocarbon plasma polymer films with different Ti concentration were deposited on silicon by dc magnetron sputtering of titanium in an atmosphere of argon and hexane. As measured by Kelvin force microscopy and visco-elastic atomic force microscopy, respectively, surface potential and hardness increase with increasing Ti content. Adhesion force to silicon and to fibrinogen molecules was stronger for the Ti-rich films as evaluated from the AFM force-distance curves. Fibrinogen forms a very soft layer on these composites with part of the protein molecules embedded in the outermost region of the plasma polymer. An increase of the surface charge due to fibrinogen adsorption has been observed and attributed to positively charged αC domains of fibrinogen molecule.

  9. Interfacial defects in thin refractory metal films imaged by low-energy electron microscopy

    NASA Astrophysics Data System (ADS)

    Świȩch, W.; Mundschau, M.; Flynn, C. P.

    1999-05-01

    Low-energy electron microscopy is employed to image defects at buried interfaces through the strains they cause at the front surface. The interfacial defects studied here occur in high quality films of Mo(110) grown by molecular beam epitaxy on Al2O3(112¯0). The defects include steps and inclusions on the original sapphire surface and interfacial dislocations created where epitaxial strain causes slip.

  10. Ultrasoft magnetic films investigated with Lorentz tranmission electron microscopy and electron holography.

    PubMed

    De Hosson, Jeff Th M; Chechenin, Nicolai G; Alsem, Daan-Hein; Vystavel, Tomas; Kooi, Bart J; Chezan, Antoni R; Boerma, Dik O

    2002-08-01

    As a tribute to the scientific work of Professor Gareth Thomas in the field of structure-property relationships this paper delineates a new possibility of Lorentz transmission electron microscopy (LTEM) to study the magnetic properties of soft magnetic films. We show that in contrast to the traditional point of view, not only does the direction of the magnetization vector in nano-crystalline films make a correlated small-angle wiggling, but also the magnitude of the magnetization modulus fluctuates. This fluctuation produces a rapid modulation in the LTEM image. A novel analysis of the ripple structure in nano-crystalline Fe-Zr-N film corresponds to an amplitude of the transversal component of the magnetization deltaMy of 23 mT and a longitudinal fluctuation of the magnetization of the order of deltaMx = 30 mT. The nano-crystalline (Fe99Zr1)1-xNx films have been prepared by DC magnetron reactive sputtering with a thickness between 50 and 1000 nm. The grain size decreased monotonically with N content from typically 100 nm in the case of N-free films to less than 10 nm for films containing 8 at%. The specimens were examined with a JEOL 2010F 200 kV transmission electron microscope equipped with a post column energy filter (GIF 2000 Gatan Imaging Filter). For holography, the microscope is mounted with a biprism (JEOL biprism with a 0.6 microm diameter platinum wire). PMID:12533225

  11. Scanning tunneling microscopy study of the superconducting properties of three-atomic-layer Pb films

    SciTech Connect

    Wang, Yilin; Li, Zhi; Wang, Lili; He, Ke; Ma, Xucun; Chen, Mu; Xue, Qi-Kun

    2013-12-09

    Ultrathin Pb films with a thickness of three monolayers (ML) were prepared on α-√(3)×√(3)Pb/Si(111) (Pb-SIC) substrate by molecular beam epitaxy. Despite significant defect scattering, low temperature scanning tunneling microscopy reveals a high superconducting transition temperature T{sub c} of 6.9 K, compared with the bulk T{sub c} (7.2 K). By applying external magnetic field, magnetic vortices were directly imaged, which demonstrates the robustness of superconductivity. By comparing to nearly free-standing Pb films on graphitized SiC (0001) substrate, we suggest that the higher T{sub c} of 3 ML Pb films on Pb-SIC originates from the combined effects of quantum confinement and substrate-enhanced electron-phonon coupling.

  12. Secondary resonance magnetic force microscopy using an external magnetic field for characterization of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dongzi; Mo, Kangxin; Ding, Xidong; Zhao, Liangbing; Lin, Guocong; Zhang, Yueli; Chen, Dihu

    2015-09-01

    A bimodal magnetic force microscopy (MFM) that uses an external magnetic field for the detection and imaging of magnetic thin films is developed. By applying the external modulation magnetic field, the vibration of a cantilever probe is excited by its magnetic tip at its higher eigenmode. Using magnetic nanoparticle samples, the capacity of the technique which allows single-pass imaging of topography and magnetic forces is demonstrated. For the detection of magnetic properties of thin film materials, its signal-to-noise ratio and sensitivity are demonstrated to be superior to conventional MFM in lift mode. The secondary resonance MFM technique provides a promising tool for the characterization of nanoscale magnetic properties of various materials, especially of magnetic thin films with weak magnetism.

  13. Depth characterization of photopolymerized films by confocal Raman microscopy using an immersion objective.

    PubMed

    Courtecuisse, François; Dietlin, Céline; Croutxé-Barghorn, Céline; Van der Ven, Leendert G J

    2011-10-01

    The depth characterization of photopolymer films by confocal Raman microscopy is often troublesome due to refraction effects. To minimize these effects, we used an oil immersion objective and a method was developed to avoid penetration of the oil without damaging the sample surface. Since the surface may be sticky if oxygen in the air inhibits the photopolymerization, a protective layer could not be put onto the film. Therefore, the method consists in using a thin polypropylene foil as substrate for the coating and placing the sample upside down under the objective. In this manner, the immersion oil could be deposited on top of the polypropylene. The advantage of this setup is that the oil, polypropylene substrate, and photopolymer film have close refractive indices. Basic calculations showed that the depth resolution is hardly affected in that configuration and double-bond conversion profiles could be plotted as a function of reliable nominal depth. The validity of the methodology was confirmed by experiments carried out with a dry metallurgical objective on the sample surface, face up, where refraction effects are still minor. In addition, infrared spectroscopy, which was used to follow the photopolymerization, corroborated the Raman conversion of the films over their thickness. The confocal Raman microscopy method can be applied to various photopolymerized systems to characterize their behavior towards oxygen inhibition and other heterogeneities in conversion arising from inner filter effects or interactions between additives for instance. PMID:21986072

  14. Simultaneous pH measurement in endocytic and cytosolic compartments in living cells using confocal microscopy.

    PubMed

    Lucien, Fabrice; Harper, Kelly; Pelletier, Pierre-Paul; Volkov, Leonid; Dubois, Claire M

    2014-01-01

    Intracellular pH is tightly regulated and differences in pH between the cytoplasm and organelles have been reported(1). Regulation of cellular pH is crucial for homeostatic control of physiological processes that include: protein, DNA and RNA synthesis, vesicular trafficking, cell growth and cell division. Alterations in cellular pH homeostasis can lead to detrimental functional changes and promote progression of various diseases(2). Various methods are available for measuring intracellular pH but very few of these allow simultaneous measurement of pH in the cytoplasm and in organelles. Here, we describe in detail a rapid and accurate method for the simultaneous measurement of cytoplasmic and organellar pH by using confocal microscopy on living cells(3). This goal is achieved with the use of two pH-sensing ratiometric dyes that possess selective cellular compartment partitioning. For instance, SNARF-1 is compartmentalized inside the cytoplasm whereas HPTS is compartmentalized inside endosomal/lysosomal organelles. Although HPTS is commonly used as a cytoplasmic pH indicator, this dye can specifically label vesicles along the endosomal-lysosomal pathway after being taken up by pinocytosis(3,4). Using these pH-sensing probes, it is possible to simultaneously measure pH within the endocytic and cytoplasmic compartments. The optimal excitation wavelength of HPTS varies depending on the pH while for SNARF-1, it is the optimal emission wavelength that varies. Following loading with SNARF-1 and HPTS, cells are cultured in different pH-calibrated solutions to construct a pH standard curve for each probe. Cell imaging by confocal microscopy allows elimination of artifacts and background noise. Because of the spectral properties of HPTS, this probe is better suited for measurement of the mildly acidic endosomal compartment or to demonstrate alkalinization of the endosomal/lysosomal organelles. This method simplifies data analysis, improves accuracy of pH measurements and can

  15. Piezoelectricity and ferroelectricity of cellular polypropylene electrets films characterized by piezoresponse force microscopy

    SciTech Connect

    Miao, Hongchen; Sun, Yao; Zhou, Xilong; Li, Yingwei; Li, Faxin

    2014-08-14

    Cellular electrets polymer is a new ferroelectret material exhibiting large piezoelectricity and has attracted considerable attentions in researches and industries. Property characterization is very important for this material and current investigations are mostly on macroscopic properties. In this work, we conduct nanoscale piezoelectric and ferroelectric characterizations of cellular polypropylene (PP) films using piezoresponse force microscopy (PFM). First, both the single-frequency PFM and dual-frequency resonance-tracking PFM testings were conducted on the cellular PP film. The localized piezoelectric constant d{sub 33} is estimated to be 7–11pC/N by correcting the resonance magnification with quality factor and it is about one order lower than the macroscopic value. Next, using the switching spectroscopy PFM (SS-PFM), we studied polarization switching behavior of the cellular PP films. Results show that it exhibits the typical ferroelectric-like phase hysteresis loops and butterfly-shaped amplitude loops, which is similar to that of a poly(vinylidene fluoride) (PVDF) ferroelectric polymer film. However, both the phase and amplitude loops of the PP film are intensively asymmetric, which is thought to be caused by the nonzero remnant polarization after poling. Then, the D-E hysteresis loops of both the cellular PP film and PVDF film were measured by using the same wave form as that used in the SS-PFM, and the results show significant differences. Finally, we suggest that the ferroelectric-like behavior of cellular electrets films should be distinguished from that of typical ferroelectrics, both macroscopically and microscopically.

  16. Confocal Raman microscopy for investigation of the level of differentiation in living neuroblastoma tumor cells

    NASA Astrophysics Data System (ADS)

    Scalfi-Happ, Claudia; Jauss, Andrea; Hollricher, Olaf; Fulda, Simone; Hauser, Carmen; Steiner, Rudolf; Rück, Angelika

    2007-07-01

    The investigation of living cells at physiological conditions requires very sensitive, sophisticated, non invasive methods. In this study, Raman spectral imaging is used to identify different biomolecules inside of cells. Raman spectroscopy, a chemically and structurally sensitive measuring technique, is combined with high resolution confocal microscopy. In Raman spectral imaging mode, a complete Raman spectrum is recorded at every confocal image point, giving insight into the chemical composition of each sample compartment. Neuroblastoma is the most common solid extra-cranial tumor in children. One of the unique features of neuroblastoma cells is their ability to differentiate spontaneously, eventually leading to complete remission. Since differentiation agents are currently used in the clinic for neuroblastoma therapy, there is a special need to develop non-invasive and sensitive new methods to monitor neuroblastoma cell differentiation. Neuroblastoma cells at different degrees of differentiation were analysed with the confocal Raman microscope alpha300 R (WITec GmbH, Germany), using a frequency doubled Nd:YAG laser at 532 nm and 10 mW for excitation. Integration time per spectrum was 80-100 ms. A lateral resolution in submicrometer range was achieved by using a 60x water immersion lens with a numerical aperture of 1,0. Raman images of cells were generated from these sets of data by either integrating over specific Raman bands, by basis analysis using reference spectra or by cluster analysis. The automated evaluation of all spectra results in spectral unmixed images providing insight into the chemical composition of the sample. With these procedures, different cell organelles, cytosol, membranes could be distinguished. Since neuroblastoma cells at high degree of differentiation overproduce noradrenaline, an attempt was made to trace the presence of this neurotransmitter as a marker for differentiation. The results of this work may have applications in the

  17. Instabilities and waves in thin films of living fluids

    NASA Astrophysics Data System (ADS)

    Sankararaman, Sumithra; Ramaswamy, Sriram

    2009-03-01

    We formulate the thin-film hydrodynamics of a suspension of polar self-driven particles and show that it is prone to several instabilities through the interplay of activity, polarity and the existence of a free surface. Our approach extends, to self-propelling systems, the work of Ben Amar and Cummings [Phys Fluids 13 (2001) 1160] on thin-film nematics. Based on our estimates the instabilities should be seen in bacterial suspensions and the lamellipodium, and are potentially relevant to the morphology of biofilms. We suggest several experimental tests of our theory.

  18. Instabilities and waves in thin films of living fluids.

    PubMed

    Sankararaman, Sumithra; Ramaswamy, Sriram

    2009-03-20

    We formulate the thin-film hydrodynamics of a suspension of polar self-driven particles and show that it is prone to several instabilities through the interplay of activity, polarity, and the existence of a free surface. Our approach extends, to self-propelling systems, the work of Ben Amar and Cummings [Phys. Fluids 13 1160 (2001)10.1063/1.1359748] on thin-film nematics. Based on our estimates the instabilities should be seen in bacterial suspensions and the lamellipodium, and are potentially relevant to the morphology of biofilms. We suggest several experimental tests of our theory. PMID:19392245

  19. Instabilities and Waves in Thin Films of Living Fluids

    NASA Astrophysics Data System (ADS)

    Sankararaman, Sumithra; Ramaswamy, Sriram

    2009-03-01

    We formulate the thin-film hydrodynamics of a suspension of polar self-driven particles and show that it is prone to several instabilities through the interplay of activity, polarity, and the existence of a free surface. Our approach extends, to self-propelling systems, the work of Ben Amar and Cummings [Phys. FluidsPHFLE61070-6631 13 1160 (2001)10.1063/1.1359748] on thin-film nematics. Based on our estimates the instabilities should be seen in bacterial suspensions and the lamellipodium, and are potentially relevant to the morphology of biofilms. We suggest several experimental tests of our theory.

  20. Photoacoustic microscopy based on polydimethylsiloxane thin film Fabry-Perot optical interferometer

    NASA Astrophysics Data System (ADS)

    Park, Soongho; Eom, Jonghyun; Shin, Jun Geun; Rim, Sunghwan; Lee, Byeong Ha

    2016-03-01

    We present a photoacoustic microscopy (PAM) system based on a Fabry-Perot Interferometer (FPI) consisting of a transparent Polydimethylsiloxane (PDMS) thin film. Most of the PAM systems have limitations with the system alignment because the ultrasound transducers for detection are not transparent. Therefore, the excitation laser source should avoid the opaque transducer to illuminate the sample, which makes the system difficult to build-up. Especially, the system volume is highly limited to be compact. In our experiment, to solve these difficulties, a FPI based on the PDMS film has been implemented and applied to measure the acoustic wave signal. The system uses a FPI as an acoustic wave detector instead of a conventional ultrasound transducer. A tunable laser was used to choose the quadrature-point at which the signal has the highly sensitve and linear response to the acoustic wave. Also a 20Hz pulsed Nd:YAG laser was used to generate acoustic waves from a sample. When the acoustic waves arrive at the PDMS film, one of the surfaces of the film is modulated at the detecting point, which gives the tuned FPI interference signal. From the signal arriving time, the depth location of the sample is calculated. As a primary experiment using the PDMS thin film as an ultrasound transducer, a couple of narrow black friction tapes located in a water container were used as the samples. This proposed imaging method can be used in various applications for the detection and measurement of acoustic waves.

  1. X-ray microscopy study of chromonic liquid crystal dry film texture

    NASA Astrophysics Data System (ADS)

    Kaznatcheev, K. V.; Dudin, P.; Lavrentovich, O. D.; Hitchcock, A. P.

    2007-12-01

    Soft x-ray spectromicroscopy has been used to investigate the degree of the molecular alignment of sulfonated benzo[de]benzo[4.5]imidazo[2,1-a]isoquinoline[7,1], a lyotropic chromonic liquid crystal (LCLC). LCLC thin films cast from concentrated aqua solution (20%wt.) , aligned by shear flow and dried, show strong linear dichroism in their C-, N-, O-, S- K edge near edge x-ray spectra (NEXAFS). The carbon K edge has been used for quantitative evaluation of the orientational texture of the films at a submicron spatial scale. This has verified there is predominantly in-plane alignment of the LC director. To highlight the role of hydrophobic-hydrophilic interactions, two stereoisomers of the same dye has been synthesized with different positioning of terminal sulfonate groups, in the form of a mixture of isomers with sulfonate groups in 2,10 and 2,11 positions (Y104 compound) and in a 5,10-disulfo arrangement (Y105). Both compounds develop characteristic herringbone-type texture with similar domain sizes. Polarized optical microscopy and higher resolution x-ray microscopy show sinusoidal-like undulations of the molecular director, with occasional crisscross appearance. Such behavior is found to be consistent with earlier observation of striations, characteristic of the columnar phase. The drastic difference in the degree of undulation ( ±15° in Y104 and ±7° in Y105 films) and long period of undulation (approaching the film thickness) requires further analysis. It was also found that the degree of in-plane order within domains changes from 0.8 for Y104 to >0.9 in Y105 films.

  2. X-ray microscopy study of chromonic liquid crystal dry film texture.

    PubMed

    Kaznatcheev, K V; Dudin, P; Lavrentovich, O D; Hitchcock, A P

    2007-12-01

    Soft x-ray spectromicroscopy has been used to investigate the degree of the molecular alignment of sulfonated benzo[de]benzo[4.5]imidazo[2,1-a]isoquinoline[7,1], a lyotropic chromonic liquid crystal (LCLC). LCLC thin films cast from concentrated aqua solution (20%wt.) , aligned by shear flow and dried, show strong linear dichroism in their C-, N-, O-, S- K edge near edge x-ray spectra (NEXAFS). The carbon K edge has been used for quantitative evaluation of the orientational texture of the films at a submicron spatial scale. This has verified there is predominantly in-plane alignment of the LC director. To highlight the role of hydrophobic-hydrophilic interactions, two stereoisomers of the same dye has been synthesized with different positioning of terminal sulfonate groups, in the form of a mixture of isomers with sulfonate groups in 2,10 and 2,11 positions (Y104 compound) and in a 5,10-disulfo arrangement (Y105). Both compounds develop characteristic herringbone-type texture with similar domain sizes. Polarized optical microscopy and higher resolution x-ray microscopy show sinusoidal-like undulations of the molecular director, with occasional crisscross appearance. Such behavior is found to be consistent with earlier observation of striations, characteristic of the columnar phase. The drastic difference in the degree of undulation ( +/-15 degrees in Y104 and +/-7 degrees in Y105 films) and long period of undulation (approaching the film thickness) requires further analysis. It was also found that the degree of in-plane order within domains changes from 0.8 for Y104 to >0.9 in Y105 films. PMID:18233857

  3. Cross-sectional electrostatic force microscopy of thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Ballif, C.; Moutinho, H. R.; Al-Jassim, M. M.

    2001-01-01

    In a recent work, we showed that atomic force microscopy (AFM) is a powerful technique to image cross sections of polycrystalline thin films. In this work, we apply a modification of AFM, namely, electrostatic force microscopy (EFM), to investigate the electronic properties of cleaved II-VI and multijunction thin-film solar cells. We cleave the devices in such a way that they are still working with their nominal photovoltaic efficiencies and can be polarized for the measurements. This allows us to differentiate between surface effects (work function and surface band bending) and bulk device properties. In the case of polycrystalline CdTe/CdS/SnO2/glass solar cells, we find a drop of the EFM signal in the area of the CdTe/CdS interface (±50 nm). This drop varies in amplitude and sign according to the applied external bias and is compatible with an n-CdS/p-CdTe heterojunction model, thereby invalidating the possibility of a deeply buried n-p CdTe homojunction. In the case of a triple-junction GaInP/GaAs/Ge device, we observe a variation of the EFM signal linked to both the material work-function differences and to the voltage bias applied to the cell. We attempt a qualitative explanation of the results and discuss the implications and difficulties of the EFM technique for the study of such thin-film devices.

  4. Response of living cells to nanostructured polyelectrolyte matrices studied by means of 1-, 2-photon excitation microscopy

    NASA Astrophysics Data System (ADS)

    Diaspro, Alberto; Krol, Silke; Silvano, Daniela; Fronte, Paola; Cavalleri, Ornella; Chirico, Giuseppe; Beltrame, Francesco; Ramoino, Paola; Gliozzi, Alessandra

    2003-06-01

    Three-dimensional confocal laser scanning microscopy (CLSM) and two-photon excitation microscopy (TPEM) were used to study the response of cellular systems to fuzzy organized nanostructured polyelectrolytes used both as microcontainers and microcarriers for drug delivery. These nanostructured systems are named Nanocapsules and represent a new class of controllable colloids. CLSM and TPEM uniquely allow to follow the fate of encapsulated living cells and to track the pathway of nanocapsules introduced into cellular systems. For the former situation, it will be shown how living cells can be encapsulated and demonstrated the preservation of the metabolic and duplicating activity. In this case the role of the Nanocapsule is as microcontainer endowed of functionalized surface and of protective ability. The latter situation, is related to feeding living cells with Nanocapsules. This experiment serves in elucidating the comprehension of the potential cytotoxicity and of the ability of Nanocapsules to reach specific targets where active compounds can be released. Cellular systems used within this research are Saccharomyces cerevisiae and Paramecium primaurelia living cells. In the case of encapsulation of Saccharomyces cerevisiae living cells, the most relevant result is that, after encapsulation, cells preserve their metabolic activities and they are still able to divide. At this stage is also relevant the utilization of spectroscopic methods like fluorescence lifetime and second harmonic imaging. These hybrid polyelectrolyte-cells can provide a cheap model system in a wide range of biophysical and biotechnological applications, thanks to the tunable properties of the polyelectrolyte shell.

  5. Dynamic structure and protein expression of the live embryonic heart captured by 2-photon light sheet microscopy and retrospective registration

    PubMed Central

    Trivedi, Vikas; Truong, Thai V.; Trinh, Le A.; Holland, Daniel B.; Liebling, Michael; Fraser, Scott E.

    2015-01-01

    We present an imaging and image reconstruction pipeline that captures the dynamic three-dimensional beating motion of the live embryonic zebrafish heart at subcellular resolution. Live, intact zebrafish embryos were imaged using 2-photon light sheet microscopy, which offers deep and fast imaging at 70 frames per second, and the individual optical sections were assembled into a full 4D reconstruction of the beating heart using an optimized retrospective image registration algorithm. This imaging and reconstruction platform permitted us to visualize protein expression patterns at endogenous concentrations in zebrafish gene trap lines. PMID:26114028

  6. In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Mao, Youdong; Sun, Quanmei; Wang, Xiufeng; Ouyang, Qi; Han, Li; Jiang, Lei; Han, Dong

    2009-07-01

    Atomic force microscopy (AFM) is difficult to achieve in living mammals but is necessary for understanding mechanical properties of tissues in their native form in organisms. Here we report in vivo nanomechanical imaging of blood-vessel tissues directly in living mammalians by AFM combined with surgical operations. Nanomechanical heterogeneity of blood vessels is observed across the diverse microenvironments of the same tissues in vivo. This method is further used to measure the counteractive nanomechanical changes in real time during drug-induced vasodilation and vasoconstriction in vivo, demonstrating appealing potential in characterization of in vivo nanomechanical dynamics of native tissues.

  7. Monitoring plasmid replication in live mammalian cells over multiple generations by fluorescence microscopy.

    PubMed

    Norby, Kathryn; Chiu, Ya-Fang; Sugden, Bill

    2012-01-01

    Few naturally-occurring plasmids are maintained in mammalian cells. Among these are genomes of gamma-herpesviruses, including Epstein-Barr virus (EBV) and Kaposi's Sarcoma-associated herpesvirus (KSHV), which cause multiple human malignancies (1-3). These two genomes are replicated in a licensed manner, each using a single viral protein and cellular replication machinery, and are passed to daughter cells during cell division despite their lacking traditional centromeres (4-8). Much work has been done to characterize the replications of these plasmid genomes using methods such as Southern blotting and fluorescence in situ hybridization (FISH). These methods are limited, though. Quantitative PCR and Southern blots provide information about the average number of plasmids per cell in a population of cells. FISH is a single-cell assay that reveals both the average number and the distribution of plasmids per cell in the population of cells but is static, allowing no information about the parent or progeny of the examined cell. Here, we describe a method for visualizing plasmids in live cells. This method is based on the binding of a fluorescently tagged lactose repressor protein to multiple sites in the plasmid of interest (9). The DNA of interest is engineered to include approximately 250 tandem repeats of the lactose operator (LacO) sequence. LacO is specifically bound by the lactose repressor protein (LacI), which can be fused to a fluorescent protein. The fusion protein can either be expressed from the engineered plasmid or introduced by a retroviral vector. In this way, the DNA molecules are fluorescently tagged and therefore become visible via fluorescence microscopy. The fusion protein is blocked from binding the plasmid DNA by culturing cells in the presence of IPTG until the plasmids are ready to be viewed. This system allows the plasmids to be monitored in living cells through several generations, revealing properties of their synthesis and partitioning to

  8. 3D-localization microscopy and tracking of FoF1-ATP synthases in living bacteria

    NASA Astrophysics Data System (ADS)

    Renz, Anja; Renz, Marc; Klütsch, Diana; Deckers-Hebestreit, Gabriele; Börsch, Michael

    2015-03-01

    FoF1-ATP synthases are membrane-embedded protein machines that catalyze the synthesis of adenosine triphosphate. Using photoactivation-based localization microscopy (PALM) in TIR-illumination as well as structured illumination microscopy (SIM), we explore the spatial distribution and track single FoF1-ATP synthases in living E. coli cells under physiological conditions at different temperatures. For quantitative diffusion analysis by mean-squared-displacement measurements, the limited size of the observation area in the membrane with its significant membrane curvature has to be considered. Therefore, we applied a 'sliding observation window' approach (M. Renz et al., Proc. SPIE 8225, 2012) and obtained the one-dimensional diffusion coefficient of FoF1-ATP synthase diffusing on the long axis in living E. coli cells.

  9. Investigation of Li-doped ferroelectric and piezoelectric ZnO films by electric force microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ni, H. Q.; Lu, Y. F.; Liu, Z. Y.; Qiu, H.; Wang, W. J.; Ren, Z. M.; Chow, S. K.; Jie, Y. X.

    2001-08-01

    We have grown Li-doped ZnO films on silicon (100) using the rf planar magnetron sputtering method. The surface charges induced piezoelectrically by defect and by polarization can be observed by electric force microscopy. The Li-doped ZnO films have been proven to be ferroelectric. The Raman spectra of ZnO and Li-doped ZnO films have been measured.

  10. Live-cell analysis of plant reproduction: live-cell imaging, optical manipulation, and advanced microscopy technologies.

    PubMed

    Kurihara, Daisuke; Hamamura, Yuki; Higashiyama, Tetsuya

    2013-05-01

    Sexual reproduction ensures propagation of species and enhances genetic diversity within populations. In flowering plants, sexual reproduction requires complicated and multi-step cell-to-cell communications among male and female cells. However, the confined nature of plant reproduction processes, which occur in the female reproductive organs and several cell layers of the pistil, limits our ability to observe these events in vivo. In this review, we discuss recent live-cell imaging in in vitro systems and the optical manipulation techniques that are used to capture the dynamic mechanisms representing molecular and cellular communications in sexual plant reproduction. PMID:23438900

  11. Temperature dependence dynamical permeability characterization of magnetic thin film using near-field microwave microscopy.

    PubMed

    Hung, Le Thanh; Phuoc, Nguyen N; Wang, Xuan-Cong; Ong, C K

    2011-08-01

    A temperature dependence characterization system of microwave permeability of magnetic thin film up to 5 GHz in the temperature range from room temperature up to 423 K is designed and fabricated as a prototype measurement fixture. It is based on the near field microwave microscopy technique (NFMM). The scaling coefficient of the fixture can be determined by (i) calibrating the NFMM with a standard sample whose permeability is known; (ii) by calibrating the NFMM with an established dynamic permeability measurement technique such as shorted microstrip transmission line perturbation method; (iii) adjusting the real part of the complex permeability at low frequency to fit the value of initial permeability. The algorithms for calculating the complex permeability of magnetic thin films are analyzed. A 100 nm thick FeTaN thin film deposited on Si substrate by sputtering method is characterized using the fixture. The room temperature permeability results of the FeTaN film agree well with results obtained from the established short-circuited microstrip perturbation method. Temperature dependence permeability results fit well with the Landau-Lifshitz-Gilbert equation. The temperature dependence of the static magnetic anisotropy H(K)(sta), the dynamic magnetic anisotropy H(K)(dyn), the rotational anisotropy H(rot), together with the effective damping coefficient α(eff), ferromagnetic resonance f(FMR), and frequency linewidth Δf of the thin film are investigated. These temperature dependent magnetic properties of the magnetic thin film are important to the high frequency applications of magnetic devices at high temperatures. PMID:21895260

  12. Measuring Exciton Migration in Conjugated Polymer Films with Ultrafast Time Resolved Stimulated Emission Depletion Microscopy

    NASA Astrophysics Data System (ADS)

    Penwell, Samuel

    Conjugated polymers are highly tunable organic semiconductors, which can be solution processed to form thin films, making them prime candidates for organic photovoltaic devices. One of the most important parameters in a conjugated polymer solar cell is the exciton diffusion length, which depends on intermolecular couplings, and is typically on the order of 10 nm. This mean exciton migration can vary dramatically between films and within a single film due to heterogeneities in morphology on length scales of 10's to 100's nm. To study the variability of exciton diffusion and morphology within individual conjugated polymer films, we are adapting stimulated emission depletion (STED) microscopy. STED is typically used in biology with sparse well-engineered fluorescent labels or on NV-centers in diamond. I will, however, describe how we have demonstrated the extension of STED to conjugated polymer films and nanoparticles of MEH-PPV and CN-PPV, despite the presence of two photon absorption, by taking care to first understand the material's photophysical properties. We then further adapt this approach, by introducing a second ultrafast STED pulse at a variable delay. Excitons that migrate away from the initial subdiffraction excitation volume during the ps-ns time delay, are preferentially quenched by the second STED pulse, while those that remain in the initial volume survive. The resulting effect of the second STED pulse is modulated by the degree of migration over the ultrafast time delay, thus providing a new method to study exciton migration. Since this technique utilizes subdiffraction optical excitation and detection volumes with ultrafast time resolution, it provides a means of spatially and temporally resolving measurements of exciton migration on the native length and time scales. In this way, we will obtain a spatiotemporal map of exciton distributions and migration that will help to correlate the energetic landscape to film morphology at the nanoscale.

  13. Lensfree super-resolution holographic microscopy using wetting films on a chip

    NASA Astrophysics Data System (ADS)

    Mudanyali, Onur; Bishara, Waheb; Ozcan, Aydogan

    2011-08-01

    We investigate the use of wetting films to significantly improve the imaging performance of lensfree pixel super-resolution on-chip microscopy, achieving < 1 μm spatial resolution over a large imaging area of ~24 mm2. Formation of an ultra-thin wetting film over the specimen effectively creates a micro-lens effect over each object, which significantly improves the signal-to-noise-ratio and therefore the resolution of our lensfree images. We validate the performance of this approach through lensfree on-chip imaging of various objects having fine morphological features (with dimensions of e.g., ≤0.5 μm) such as Escherichia coli (E. coli), human sperm, Giardia lamblia trophozoites, polystyrene micro beads as well as red blood cells. These results are especially important for the development of highly sensitive field-portable microscopic analysis tools for resource limited settings.

  14. Atomic force microscopy of AgBr crystals and adsorbed gelatin films

    SciTech Connect

    Haugstad, G.; Gladfelter, W.L.; Keyes, M.P.; Weberg, E.B.

    1993-06-01

    Atomic force microscopy of the (111) surface of macroscopic AgBr crystals revealed steps ranging in height from two atomic layers up to 10 nm, lying predominantly along the (110) and (112) families of crystal directions. Rods of elemental Ag, formed via photoreduction, were observed along the (110) family of directions. Images of adsorbed gelatin films revealed circular pores with diameters of order 10-100 nm, extending to the AgBr surface. The length of deposition time, the pH and concentration of the gelatin solution, and the presence of steps on the AgBr surface were observed to affect the size, number, and location of pores in the gelatin films. 12 refs., 7 figs.

  15. Thickness-dependent thin-film resistivity: Application of quantitative scanning-tunneling-microscopy imaging

    NASA Astrophysics Data System (ADS)

    Reiss, G.; Hastreiter, E.; Brückl, H.; Vancea, J.

    1991-02-01

    The dependence of thin-film resistivity on the thickness is known to be strongly influenced by the interaction of the conduction electrons with the surface. Great efforts have been made in recent years, mainly concerning the quantum-mechanical description of the surface scattering. Detailed discussions of this problem, however, suffer from the lack of information concerning the real topography of thin-film surfaces. The development of scanning tunneling microscopy (STM) now gives the chance of direct, quantitative imaging. In this paper, we use the topographic information of STM to improve the fitting of theoretical descriptions to the measured thickness-dependence of the resistivity. The transport parameters obtained from these calculations show a high degree of physical consistency.

  16. Lensfree super-resolution holographic microscopy using wetting films on a chip.

    PubMed

    Mudanyali, Onur; Bishara, Waheb; Ozcan, Aydogan

    2011-08-29

    We investigate the use of wetting films to significantly improve the imaging performance of lensfree pixel super-resolution on-chip microscopy, achieving < 1 µm spatial resolution over a large imaging area of ~24 mm(2). Formation of an ultra-thin wetting film over the specimen effectively creates a micro-lens effect over each object, which significantly improves the signal-to-noise-ratio and therefore the resolution of our lensfree images. We validate the performance of this approach through lensfree on-chip imaging of various objects having fine morphological features (with dimensions of e.g., ≤0.5 µm) such as Escherichia coli (E. coli), human sperm, Giardia lamblia trophozoites, polystyrene micro beads as well as red blood cells. These results are especially important for the development of highly sensitive field-portable microscopic analysis tools for resource limited settings. PMID:21935102

  17. Formation and disruption of current paths of anodic porous alumina films by conducting atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G.

    2010-11-01

    Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.

  18. Lensfree super-resolution holographic microscopy using wetting films on a chip

    PubMed Central

    Mudanyali, Onur; Bishara, Waheb; Ozcan, Aydogan

    2011-01-01

    We investigate the use of wetting films to significantly improve the imaging performance of lensfree pixel super-resolution on-chip microscopy, achieving < 1 µm spatial resolution over a large imaging area of ~24 mm2. Formation of an ultra-thin wetting film over the specimen effectively creates a micro-lens effect over each object, which significantly improves the signal-to-noise-ratio and therefore the resolution of our lensfree images. We validate the performance of this approach through lensfree on-chip imaging of various objects having fine morphological features (with dimensions of e.g., ≤0.5 µm) such as Escherichia coli (E. coli), human sperm, Giardia lamblia trophozoites, polystyrene micro beads as well as red blood cells. These results are especially important for the development of highly sensitive field-portable microscopic analysis tools for resource limited settings. PMID:21935102

  19. Visualization of the solubilization process of the plasma membrane of a living cell by waveguide evanescent field fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Abdollah; Ma, Heun Kan; Dixon, S. Jeffrey; Mittler, Silvia

    2012-07-01

    Waveguide evanescent field fluorescence microscopy (WEFF) is a novel microscopy technology that allows imaging of a cell's plasma membrane in the vicinity of a glass substrate with high axial resolution, low background and little photobleaching. Time-lapse imaging can be performed to investigate changes in cell morphology in the presence or absence of chemical agents. WEFF microscopy provides a method to investigate plasma membranes of living cells and allows a comparison to simplified model membranes immobilized on planar substrates. The interaction of the nonionic detergent Triton X-100 with plasma membranes of osteoblasts in an aqueous environment was investigated. Solubilization of the membranes very close to the waveguide surface was visualized and related to the three-stage solubilisation model proposed for liposomes and supported lipid bilayers. Findings for the plasma membranes of cells are in excellent agreement with results reported for these artificial model systems.

  20. A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy.

    PubMed

    Tao, Wen; Rubart, Michael; Ryan, Jennifer; Xiao, Xiao; Qiao, Chunping; Hato, Takashi; Davidson, Michael W; Dunn, Kenneth W; Day, Richard N

    2015-12-01

    The commercial availability of multiphoton microscope systems has nurtured the growth of intravital microscopy as a powerful technique for evaluating cell biology in the relevant context of living animals. In parallel, new fluorescent protein (FP) biosensors have become available that enable studies of the function of a wide range of proteins in living cells. Biosensor probes that exploit Förster resonance energy transfer (FRET) are among the most sensitive indicators of an array of cellular processes. However, differences between one-photon and two-photon excitation (2PE) microscopy are such that measuring FRET by 2PE in the intravital setting remains challenging. Here, we describe an approach that simplifies the use of FRET-based biosensors in intravital 2PE microscopy. Based on a systematic comparison of many different FPs, we identified the monomeric (m) FPs mTurquoise and mVenus as particularly well suited for intravital 2PE FRET studies, enabling the ratiometric measurements from linked FRET probes using a pair of experimental images collected simultaneously. The behavior of the FPs is validated by fluorescence lifetime and sensitized emission measurements of a set of FRET standards. The approach is demonstrated using a modified version of the AKAR protein kinase A biosensor, first in cells in culture, and then in hepatocytes in the liver of living mice. The approach is compatible with the most common 2PE microscope configurations and should be applicable to a variety of different FRET probes. PMID:26333599

  1. Hot Electron Scattering in Thin Metal Films Utilizing Ballistic Electron Emission Microscopy

    NASA Astrophysics Data System (ADS)

    Durcan, Christopher; Nolting, Westly; Balsano, Robert; Labella, Vincent

    Electron scattering in nm-thick metal films has fundamental and technological importance. Ballistic Electron Emission Microscopy (BEEM) an STM based technique can be utilized to measure the scattering rate and understand the scattering mechanisms. By injecting electrons from the STM tip in the energy range of 0.2 eV- 1.5 eV into the metal base of a metal semiconductor diode and measuring the amount of current collected in the semiconductor a Schottky barrier height can be measured. In addition, by measuring the decay in the collector or BEEM current vs. metal film thickness, an electron attenuation length can be measured. One question has always been; what are these BEEM attenuation lengths sensitive to? Intrinsic properties of the metal, or extrinsic effects such as the structure of the film? By measuring the attenuation length of W and Cr and comparing to prior measurements of Cu, Ag, Au a comparison between the BEEM attenuation length and resistivity can be achieved over an order of magnitude in resistivity. The results show an inverse relationship that one expects for mean free path and resistivity, indicating that BEEM measurements are sensitive to the intrinsic properties of the metal and not solely the structure of the films.

  2. Nanoscale characterization of oxidized ultrathin Co-films by ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Eng Johnson Goh, Kuan; Wang, Simin; Tan, Siew Ting Melissa; Zhang, Zheng; Kawai, Hiroyo; Troadec, Cedric; Ng, Vivian

    2016-01-01

    In anticipation of devices scaling down further to the few nanometer regime, the ability to characterize material localized within the few nm of a critical device region poses a current challenge, particularly when the material is already buried under other material layers such as under a metal contact. Conventional techniques typically provide indirect information of the nanoscale material quality through a surface or volume averaging perspective. Here we present a study of local (nm range) oxidation in few nanometer thick Co-films using Ballistic Electron Emission Microscopy/Spectroscopy (BEEM/BEES). Co films were grown on n-Si(111) substrates, oxidized in ambient atmosphere before capping with a thin Au film to prevent further oxidation and enable BEEM measurements. In addition to BEES, the temporal progression of Co oxidation was also tracked by X-ray Photoelectron Spectroscopy. At room temperature, we report that the electron injection thresholds are sufficiently different for local regions with Co and oxidized-Co enabling their distinction in BEEM measurements. Our results demonstrate the possibility of using BEEM for nanoscale spatial mapping of the oxidized regions in Co-films, and this can provide critical information toward the successful fabrication of next generation Co-based nano-devices.

  3. Analysis of high quality monatomic chromium films used in biological high resolution scanning electron microscopy.

    PubMed

    Apkarian, R P

    1994-01-01

    During the recent employment of field emission (FE) in-lens scanning electron microscopes (SEMs), refractory metal deposition technology has co-evolved to provide enhanced contrast of 1-10 nm hydrocarbon based biological structures imaged at high magnifications (> 200,000 times). Pioneer development employing the Penning sputter system in a high vacuum chamber proved that imaging of chromium (Cr) coated biological specimens contained enriched secondary electron (SE)-(I) contrasts. Single nanometer size fibrillar and particulate ectodomains within the context of complex biological membranes were accurately imaged without significant enlargement using the high resolution SE-I mode (HRSEM). This paper reports the transmission electron microscopy (TEM) testing of ultrathin (0.5-2.0 nm) Cr films deposited by planar magnetron sputter coating (PMSC). Essential parameters necessary to reproduce quality sputtered films of refractory metals used in HRSEM studies were described for the vacuum system and target operation conditions (current, voltage, and target distance). HRSEM imaging of biological specimens is presented to assess contrast attained from ultrathin fine grain Cr films deposited by PMSC. High magnification images were recorded to illustrate high quality contrasts attainable by HRSEM at low (1-5 kV) and high (10-30 kV) voltages. Dispersed molecules on formvar coated grids were sputter coated with a 1 nm thick Cr film before employing scanning transmission (STEM)/SEM modes of the FESEM to establish non-decorative image accuracy in the transmitted electron mode. PMID:7701300

  4. Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy

    PubMed Central

    Maragliano, C.; Lilliu, S.; Dahlem, M. S.; Chiesa, M.; Souier, T.; Stefancich, M.

    2014-01-01

    In the last years there has been a renewed interest for zinc oxide semiconductor, mainly triggered by its prospects in optoelectronic applications. In particular, zinc oxide thin films are being widely used for photovoltaic applications, in which the determination of the electrical conductivity is of great importance. Being an intrinsically doped material, the quantification of its doping concentration has always been challenging. Here we show how to probe the charge carrier density of zinc oxide thin films by Scanning Kelvin Probe Microscopy, a technique that allows measuring the contact potential difference between the tip and the sample surface with high spatial resolution. A simple electronic energy model is used for correlating the contact potential difference with the doping concentration in the material. Limitations of this technique are discussed in details and some experimental solutions are proposed. Two-dimensional doping concentration images acquired on radio frequency-sputtered intrinsic zinc oxide thin films with different thickness and deposited under different conditions are reported. We show that results inferred with this technique are in accordance with carrier concentration expected for zinc oxide thin films deposited under different conditions and obtained from resistivity and mobility measurements. PMID:24569599

  5. Structural studies of tetrathiafulvalene-tetracyanoquinodimethane thin films by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Ara, Norihiko; Kawazu, Akira; Shigekawa, Hidemi; Yase, Kiyoshi; Yoshimura, Masamichi

    1995-06-01

    Thin films of tetrathiafulvanene-tetracyanoquinodimethane (TTF-TCNQ) grown on mica substrates by vacuum deposition were studied by scanning tunneling microscopy (STM). STM images displayed the usual arrangement of alternative TTF and TCNQ columns aligned parallel to the crystal b axis. However, in addition to the same phase as that of a TTF-TCNQ bulk crystal, a new phase is observed. In this new phase the tilt angles the TCNQ and TTF molecular planes make with the a×b axis are different from those observed in the normal phase. This new phase can be explained by the introduction of a stacking fault on the surface.

  6. Magnetic force microscopy of conducting nanodots in NiO thin films

    NASA Astrophysics Data System (ADS)

    Meang, Wan Joo; Seo, Jeongdae; Ahn, Yoonho; Son, J. Y.

    2016-03-01

    We report a nanoscale magnetic conducting filament in a resistive random access memory (RRAM) device by the direct investigation of conducting nanobits in NiO thin films using magnetic force microscopy. The conducting nanobit in a NiO RRAM capacitor formed by CAFM and KFM exhibited a typical bistable resistive switching characteristic. The magnetizations of the conducting nanobit were measured as a function of the set-reset switching cycle and as the switching cycles were increased, a strong ferromagnetic signal was observed. The metallic Ni formation in the nanoscale magnetic conducting filament could be a possible reason for the origin of the magnetism. [Figure not available: see fulltext.

  7. Comparison of Friction Characteristics on TN and VA Mode Alignment Films with Friction Force Microscopy

    NASA Astrophysics Data System (ADS)

    Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul

    Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.

  8. Critical invisible defect detection system of thin film transistor panels using Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Park, Yonmook; Heo, Keun

    2016-07-01

    In this paper, a novel method that can perform measurements of the contact potential difference (CPD) between a tip and a thin film transistor (TFT) panel using the Kelvin probe force microscopy (KPFM) is proposed for inspection of critical invisible defects on TFT panels. In this application, the surface potential of a TFT panel is inferred from the electrostatic interaction force between a tip and a TFT panel induced by the electric field. The experimental results are given to illustrate that the KPFM provides a novel and feasible way to detect the most critical invisible defects on TFT panels.

  9. Investigation of radiation-induced transformations in thin NbN films by analytical electron microscopy

    NASA Astrophysics Data System (ADS)

    Prikhodko, К; Gurovich, B.; Dement'eva, M.; Kutuzov, L.; Komarov, D.

    2016-04-01

    This work demonstrates implementation of low energy electron energy loss technique (EELS) in scanning transmission electron microscopy (STEM) to investigate the changes of free electron density at room temperature in ultra-thin NbN films under composite ion beam irradiation up to the deses of ∼3 d.p.a. for nitrogen atoms. It was found the constant value of the free electron density ∼1.6 ·1029 m-3 in this dose range while the irradiated material was characterized by metal type of electrical conductivity.

  10. Correlation of Gear Surface Fatigue Lives to Lambda Ratio (Specific Film Thickness)

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy Lewis

    2013-01-01

    The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness being the ratio of lubricant film thickness to the composite surface roughness. Three studies done at NASA to investigate gearing pitting life are revisited in this work. All tests were done at a common load. In one study, ground gears were tested using a variety of lubricants that included a range of viscosities, and therefore the gears operated with differing film thicknesses. In a second and third study, the performance of gears with ground teeth and superfinished teeth were assessed. Thicker oil films provided longer lives as did improved surface finish. These datasets were combined into a common dataset using the concept of specific film thickness. This unique dataset of more 258 tests provides gear designers with some qualitative information to make gear design decisions.

  11. Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy

    PubMed Central

    Shaked, Natan T.; Satterwhite, Lisa L.; Bursac, Nenad; Wax, Adam

    2010-01-01

    We apply wide-field interferometric microscopy techniques to acquire quantitative phase profiles of ventricular cardiomyocytes in vitro during their rapid contraction with high temporal and spatial resolution. The whole-cell phase profiles are analyzed to yield valuable quantitative parameters characterizing the cell dynamics, without the need to decouple thickness from refractive index differences. Our experimental results verify that these new parameters can be used with wide field interferometric microscopy to discriminate the modulation of cardiomyocyte contraction dynamics due to temperature variation. To demonstrate the necessity of the proposed numerical analysis for cardiomyocytes, we present confocal dual-fluorescence-channel microscopy results which show that the rapid motion of the cell organelles during contraction preclude assuming a homogenous refractive index over the entire cell contents, or using multiple-exposure or scanning microscopy. PMID:21258502

  12. Raman and fluorescence microscopy to study the internalization and dissolution of photosensitizer nanoparticles into living cells

    NASA Astrophysics Data System (ADS)

    Scalfi-Happ, Claudia; Steiner, Rudolf; Wittig, Rainer; Graefe, Susanna; Ryabova, Anastasia; Loschenov, Victor

    2015-07-01

    In this present study we applied Raman and fluorescence microscopy to investigate the internalisation, cellular distribution and effects on cell metabolism of photosensitizer nanoparticles for photodynamic therapy in fibroblasts and macrophages.

  13. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice

    PubMed Central

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, YongKeun

    2016-01-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated. PMID:27605489

  14. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice.

    PubMed

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, YongKeun

    2016-01-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated. PMID:27605489

  15. Digital Correction of Motion Artifacts in Microscopy Image Sequences Collected from Living Animals Using Rigid and Non-Rigid Registration

    PubMed Central

    Lorenz, Kevin S.; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2013-01-01

    Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail, and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artifacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and non-rigid components. The rigid registration component corrects global image translations, while the non-rigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung, and salivary gland of living rodents. PMID:22092443

  16. Digital correction of motion artefacts in microscopy image sequences collected from living animals using rigid and nonrigid registration.

    PubMed

    Lorenz, K S; Salama, P; Dunn, K W; Delp, E J

    2012-02-01

    Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artefacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and nonrigid components. The rigid registration component corrects global image translations, whereas the nonrigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung and salivary gland of living rodents. PMID:22092443

  17. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    SciTech Connect

    Zhang, Yun

    2008-12-18

    The purpose of this research was to expand the chemiluminescence microscopy applications in live bacterial/mammalian cell imaging and to improve the detection sensitivity for ATP leaking or release events. We first demonstrated that chemiluminescence (CL) imaging can be used to interrogate single bacterial cells. While using a luminometer allows detecting ATP from cell lysate extracted from at least 10 bacterial cells, all previous cell CL detection never reached this sensitivity of single bacteria level. We approached this goal with a different strategy from before: instead of breaking bacterial cell membrane and trying to capture the transiently diluted ATP with the firefly luciferase CL assay, we introduced the firefly luciferase enzyme into bacteria using the modern genetic techniques and placed the CL reaction substrate D-luciferin outside the cells. By damaging the cell membrane with various antibacterial drugs including antibiotics such as Penicillins and bacteriophages, the D-luciferin molecules diffused inside the cell and initiated the reaction that produces CL light. As firefly luciferases are large protein molecules which are retained within the cells before the total rupture and intracellular ATP concentration is high at the millmolar level, the CL reaction of firefly luciferase, ATP and D-luciferin can be kept for a relatively long time within the cells acting as a reaction container to generate enough photons for detection by the extremely sensitive intensified charge coupled device (ICCD) camera. The result was inspiring as various single bacterium lysis and leakage events were monitored with 10-s temporal resolution movies. We also found a new way of enhancing diffusion D-luciferin into cells by dehydrating the bacteria. Then we started with this novel single bacterial CL imaging technique, and applied it for quantifying gene expression levels from individual bacterial cells. Previous published result in single cell gene expression quantification

  18. In Situ Characterization of Ultrathin Films by Scanning Electrochemical Impedance Microscopy.

    PubMed

    Estrada-Vargas, Arturo; Bandarenka, Aliaksandr; Kuznetsov, Volodymyr; Schuhmann, Wolfgang

    2016-03-15

    Control over the properties of ultrathin films plays a crucial role in many fields of science and technology. Although nondestructive optical and electrical methods have multiple advantages for local surface characterization, their applicability is very limited if the surface is in contact with an electrolyte solution. Local electrochemical methods, e.g., scanning electrochemical microscopy (SECM), cannot be used as a robust alternative yet because their methodological aspects are not sufficiently developed with respect to these systems. The recently proposed scanning electrochemical impedance microscopy (SEIM) can efficiently elucidate many key properties of the solid/liquid interface such as charge transfer resistance or interfacial capacitance. However, many fundamental aspects related to SEIM application still remain unclear. In this work, a methodology for the interpretation of SEIM data of "charge blocking systems" has been elaborated with the help of finite element simulations in combination with experimental results. As a proof of concept, the local film thickness has been visualized using model systems at various tip-to-sample separations. Namely, anodized aluminum oxide (Al2O3, 2-20 nm) and self-assembled monolayers based on 11-mercapto-1-undecanol and 16-mercapto-1-hexadecanethiol (2.1 and 2.9 nm, respectively) were used as model systems. PMID:26871004

  19. Prior Exposure to Creatures from a Horror Film: Live versus Photographic Representations.

    ERIC Educational Resources Information Center

    Weiss, Audrey J.; And Others

    1993-01-01

    Finds that exposure to graphic photographs of worms taken from a horror film increased children's enjoyment of the horror movie segment and reduced fear reactions to the scene. Shows that exposure to a live earthworm was effective in reducing fear reactions to the movie only among boys but did alter children's affective reactions to and judgments…

  20. Coherent Raman scattering microscopy for label-free imaging of live amphioxus

    NASA Astrophysics Data System (ADS)

    Yu, Zhilong; Chen, Tao; Zhang, Xiannian; Shen, Jie; Chen, Junyuan; Huang, Yanyi

    2012-03-01

    The existence of notochord distinguishes chordates from other phyla. Amphioxus is the only animal that keeps notochord during the whole life. Notochord is a unique organ for amphioxus, with its vertically arranged muscular notochordal plates, which is different from notochords in embryos of other chordates. We use stimulated Raman scattering (SRS) microscopy as a non-invasive technique to image the chemical components in amphioxus notochord. SRS provides chemical specificity as spontaneous Raman does and offers a higher sensitivity for fast acquisition. Unlike coherent anti- Stokes Raman scattering (CARS) microscopy, SRS microscopy doesn't have non-resonant background and can better differentiate different components in the specimen. We verify that the notochord is a protein-rich organ, which agrees well with the result of conventional staining methods. Detailed structures in notochordal plates and notochordal sheath are revealed by SRS microscopy with diffraction limited resolution. Our experiment shows that SRS microscopy is an excellent imaging tool for biochemical research with its intrinsic chemical selectivity, high spatiotemporal resolution and native 3D optical sectioning ability.

  1. Influence of Oxygen Partial Pressure on the Fermi Level of ZnO Films Investigated by Kelvin Probe Force Microscopy

    NASA Astrophysics Data System (ADS)

    Su, Ting; Zhang, Hai-Feng

    2012-12-01

    The influence of oxygen partial pressure on the Fermi level of ZnO films prepared by pulsed laser deposition is investigated. The contact potential difference of the ZnO films fabricated under various oxygen partial pressures is studied systematically using Kelvin probe force microscopy. The Fermi level shifted by 0.35 eV as oxygen partial pressure increased. This indicates a significant change in the electronic structure and energy balance in ZnO films. This fact provides a consistent explanation that the changes in carrier concentration, resistivity and mobility of ZnO films are attributed to oxygen vacancy induced shift of the Fermi level.

  2. NMR spin-lattice relaxation time T(1) of thin films obtained by magnetic resonance force microscopy.

    PubMed

    Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil

    2015-05-01

    We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment. PMID:25828244

  3. NMR spin-lattice relaxation time T1 of thin films obtained by magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil

    2015-05-01

    We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment.

  4. Atomic force imaging microscopy investigation of the interaction of ultraviolet radiation with collagen thin films

    NASA Astrophysics Data System (ADS)

    Stylianou, A.; Yova, D.; Alexandratou, E.; Petri, A.

    2013-02-01

    Collagen is the major fibrous protein in the extracellular matrix and consists a significant component of skin, bone, cartilage and tendon. Due to its unique properties, it has been widely used as scaffold or culture substrate for tissue regeneration or/and cell-substrate interaction studies. The ultraviolet light-collagen interaction investigations are crucial for the improvement of many applications such as that of the UV irradiation in the field of biomaterials, as sterilizing and photo-cross-linking method. The aim of this paper was to investigate the mechanisms of UV-collagen interactions by developing a collagen-based, well characterized, surface with controlled topography of collagen thin films in the nanoscale range. The methodology was to quantify the collagen surface modification induced on ultraviolet radiation and correlate it with changes induced in cells. Surface nanoscale characterization was performed by Atomic Force Microscopy (AFM) which is a powerful tool and offers quantitative and qualitative information with a non-destructive manner. In order to investigate cells behavior, the irradiated films were used for in vitro cultivation of human skin fibroblasts and the cells morphology, migration and alignment were assessed with fluorescence microscopy imaging and image processing methods. The clarification of the effects of UV light on collagen thin films and the way of cells behavior to the different modifications that UV induced to the collagen-based surfaces will contribute to the better understanding of cell-matrix interactions in the nanoscale and will assist the appropriate use of UV light for developing biomaterials.

  5. Nanoscale investigation of viscoelasticity in thin polymer films using environmental scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Schmidt, Ronald Henry

    The tribological and rheological behavior of thin polymer films at the nanometer length scale has become a topic of extreme technological and scientific interest. The friction and wear characteristics of ultrathin organic coatings are critical in magnetic storage media devices, as well as emerging technologies such as microelectromechanical devices. In the microelectronics industry, the ability to produce ultrathin coatings of photoresists and electron resists that are free of scratches and thickness fluctuations is a crucial step in any lithography process. Fortunately the need to understand the behavior of ultrathin organic films has coincided with the development of the scanning probe microscope (SPM) which is able to impose shear and tensile forces, and image the resulting deformations, on the nanometer scale. In contrast to traditional scientific disciplines like condensed matter physics and physical chemistry, the "nanoscience" community has only recently begun to examine the role of temperature in material response. This is largely because piezoelectric transducers are incompatible with substantial temperature elevation. A recent advance in SPM design has isolated the transducer and accompanying electronics from the sample, enabling investigators to heat samples to temperatures as high as 170°C without affecting the performance of the instrument. Using an environmental SPM, we examined the temperature and rate dependence of tip-imposed plastic and viscoelastic deformations in thin polymer films. Viscous flow in defects in nonwetting films was investigated as well. Chapter 1 provides a brief review of viscoelastic and plastic deformations in bulk polymers, the glass transition temperature, and the effect of confining polymer molecules to an interface on the observed glass transition temperature. Chapter 2 discusses scanning probe microscopy instrumentation, techniques, and applications to polymer thin film tribology. In Chapters 3 and 4, results are

  6. High resolution transmission electron microscopy study of diamond films grown from fullerene precursors

    SciTech Connect

    Luo, J.S.; Gruen, D.M.; Krauss, A.R.

    1995-07-01

    High-resolution transmission electron microscopy (HRTEM) has been used to investigate the microstructure of diamond films grown by plasma-assisted chemical vapor deposition using fullerene precursors. HRTEM observations of as-grown films revealed an array of larger crystals (>200 nm) within a polycrystalline matrix of much smaller crystallites (<20 nm). The randomly oriented small crystallites were nearly free of structural imperfections such as stacking faults or twins, while the larger ones had preferred <110> orientations with respect to the Si (100) substrate and showed evidence of structural defects on the periphery of the crystals. The most common defects were V-shaped {Sigma}9 twin boundaries, which are generally believed to serve as re-entrant sites for diamond nucleation and growth. The observation of growth steps on both (111) and (110) surfaces seems to support a reaction model in which fragments of C{sub 60}, including C{sub 2}, are considered the growth species. In particular, the nanocrystallinity of the films is most likely due to a high carbon cluster density from C{sub 60} fragmentation at or near the diamond surface, which can serve as nucleation sites for the growth of new crystallites.

  7. Electrostatic force microscopy studies of surface defects on GaAs/Ge films

    SciTech Connect

    Xu, Q.; Hsu, J.W.

    1999-03-01

    We apply electrostatic force microscopy (EFM) to study defects in GaAs films grown on Ge. On a GaAs film with surface antiphase boundaries (APBs), we reproducibly measure the surface contact potential (SCP) at the APBs to be (30{plus_minus}5) mV higher than that of the domains, due to the surface Fermi level at APBs being pinned closer to the valence band maximum. On a thick film which contains buried APBs and wedge-shaped depressions on the surface, we find that the SCP of the wedge-shaped depressions is (25{plus_minus}5) mV lower than that of the GaAs surface. Hence, these wedge-shaped depressions have defect electronic states different from those of APBs. The capacitance gradient ({partial_derivative}C/{partial_derivative}z) contrasts on the two samples are also shown to arise from different origins. Factors that can affect the measured SCP and {partial_derivative}C/{partial_derivative}z values are discussed. We demonstrate a new application of EFM to distinguish different types of defects by measuring variations in relative SCP (thus the work function or position of Fermi level) and/or {partial_derivative}C/{partial_derivative}z on sample surfaces. The spatial resolutions of SCP and {partial_derivative}C/{partial_derivative}z are 30 nm, limited by the tip size. {copyright} {ital 1999 American Institute of Physics.}

  8. Live Cell Microscopy-Based RNAi Screening in the Moss Physcomitrella patens.

    PubMed

    Miki, Tomohiro; Nakaoka, Yuki; Goshima, Gohta

    2016-01-01

    RNA interference (RNAi) is a powerful technique enabling the identification of the genes involved in a certain cellular process. Here, we discuss protocols for microscopy-based RNAi screening in protonemal cells of the moss Physcomitrella patens, an emerging model system for plant cell biology. Our method is characterized by the use of conditional (inducible) RNAi vectors, transgenic moss lines in which the RNAi vector is integrated, and time-lapse fluorescent microscopy. This method allows for effective and efficient screening of >100 genes involved in various cellular processes such as mitotic cell division, organelle distribution, or cell growth. PMID:27581297

  9. Long-term quantitative phase-contrast imaging of living cells by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pan, F.; Wang, Z.; Wang, F.; Rong, L.; Shang, P.; Xiao, W.

    2011-04-01

    The dynamic analysis of biological living samples is one of the particular interests in life sciences. An improved digital holographic microscope for long-term quantitative phase-contrast imaging of living cells is presented in this paper. The optical configuration is optimized in the form of a free-space-fiber hybrid system which promotes the flexibility of imaging in complex or semi-enclosed experimental environment. Aberrations compensation is implemented taking into account the additional phase aberration induced by liquid culture medium in long-term observation. The proposed approach is applied to investigate living samples of MC3T3-E1 and MLO-Y4 cells. The experimental results demonstrate its availability in the analysis of cellular changes.

  10. Ultrastructural imaging and molecular modeling of live bacteria using soft x-ray contact microscopy with nanoseconds laser plasma radiation

    SciTech Connect

    Kado, M.; Richardson, M.C.; Gabel, K.; Torres, D.; Rajyaguru, J.; Muszynski, M.J.

    1995-12-31

    Detection for clinical diagnosis and study of microbial cell is performed by a combination of low magnification optical microscopy and direct and indirect labeling techniques. Visual ultrastructural studies on subcellular organelles are possible with variations of electron microscopy (thin section, scanning and freeze fracture), although specimen preparation steps such as fixation, dehydration, resin embedding, ultra-thin sectioning, coating and staining are very specialized, extensive and may introduce artifacts in the original sample. The development of high resolution x-ray microscopy is a new technique well suited to observe the intact structure of a biological specimen at high resolution without any artifacts. Here, x ray images of the various live bacteria, such as Staphylococcus and Streptococcus, and micromolecule such as chromosomal DNA from Escherichia coli, and Lipopolysaccharide from Burkholderia cepacia, are obtained with soft x-ray contact microscopy. A compact tabletop type glass laser system is used to produce x rays from Al, Si, and Au targets. The PMMA photoresists are used to record x-ray images. An AFM (atomic force microscope) is used to reproduce the x-ray images from the developed photoresists. The performance of the 50 nm spatial resolutions are achieved and images are able to be discussed on the biological view.