Sample records for live vaccine strain

  1. Titration of individual strains in trivalent live-attenuated influenza vaccine without neutralization.

    PubMed

    Sirinonthanawech, Naraporn; Surichan, Somchaiya; Namsai, Aphinya; Puthavathana, Pilaipan; Auewarakul, Prasert; Kongchanagul, Alita

    2016-11-01

    Formulation and quality control of trivalent live-attenuated influenza vaccine requires titration of infectivity of individual strains in the trivalent mix. This is usually performed by selective neutralization of two of the three strains and titration of the un-neutralized strain in cell culture or embryonated eggs. This procedure requires standard sera with high neutralizing titer against each of the three strains. Obtaining standard sera, which can specifically neutralize only the corresponding strain of influenza viruses and is able to completely neutralize high concentration of virus in the vaccine samples, can be a problem for many vaccine manufacturers as vaccine stocks usually have very high viral titers and complete neutralization may not be obtained. Here an alternative approach for titration of individual strain in trivalent vaccine without the selective neutralization is presented. This was done by detecting individual strains with specific antibodies in an end-point titration of a trivalent vaccine in cell culture. Similar titers were observed in monovalent and trivalent vaccines for influenza A H3N2 and influenza B strains, whereas the influenza A H1N1 strain did not grow well in cell culture. Viral interference among the vaccine strains was not observed. Therefore, providing that vaccine strains grow well in cell culture, this assay can reliably determine the potency of individual strains in trivalent live-attenuated influenza vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Comparison of the live attenuated yellow fever vaccine 17D-204 strain to its virulent parental strain Asibi by deep sequencing.

    PubMed

    Beck, Andrew; Tesh, Robert B; Wood, Thomas G; Widen, Steven G; Ryman, Kate D; Barrett, Alan D T

    2014-02-01

    The first comparison of a live RNA viral vaccine strain to its wild-type parental strain by deep sequencing is presented using as a model the yellow fever virus (YFV) live vaccine strain 17D-204 and its wild-type parental strain, Asibi. The YFV 17D-204 vaccine genome was compared to that of the parental strain Asibi by massively parallel methods. Variability was compared on multiple scales of the viral genomes. A modeled exploration of small-frequency variants was performed to reconstruct plausible regions of mutational plasticity. Overt quasispecies diversity is a feature of the parental strain, whereas the live vaccine strain lacks diversity according to multiple independent measurements. A lack of attenuating mutations in the Asibi population relative to that of 17D-204 was observed, demonstrating that the vaccine strain was derived by discrete mutation of Asibi and not by selection of genomes in the wild-type population. Relative quasispecies structure is a plausible correlate of attenuation for live viral vaccines. Analyses such as these of attenuated viruses improve our understanding of the molecular basis of vaccine attenuation and provide critical information on the stability of live vaccines and the risk of reversion to virulence.

  3. Comparison of the Live Attenuated Yellow Fever Vaccine 17D-204 Strain to Its Virulent Parental Strain Asibi by Deep Sequencing

    PubMed Central

    Beck, Andrew; Tesh, Robert B.; Wood, Thomas G.; Widen, Steven G.; Ryman, Kate D.; Barrett, Alan D. T.

    2014-01-01

    Background. The first comparison of a live RNA viral vaccine strain to its wild-type parental strain by deep sequencing is presented using as a model the yellow fever virus (YFV) live vaccine strain 17D-204 and its wild-type parental strain, Asibi. Methods. The YFV 17D-204 vaccine genome was compared to that of the parental strain Asibi by massively parallel methods. Variability was compared on multiple scales of the viral genomes. A modeled exploration of small-frequency variants was performed to reconstruct plausible regions of mutational plasticity. Results. Overt quasispecies diversity is a feature of the parental strain, whereas the live vaccine strain lacks diversity according to multiple independent measurements. A lack of attenuating mutations in the Asibi population relative to that of 17D-204 was observed, demonstrating that the vaccine strain was derived by discrete mutation of Asibi and not by selection of genomes in the wild-type population. Conclusions. Relative quasispecies structure is a plausible correlate of attenuation for live viral vaccines. Analyses such as these of attenuated viruses improve our understanding of the molecular basis of vaccine attenuation and provide critical information on the stability of live vaccines and the risk of reversion to virulence. PMID:24141982

  4. A comparative study of live attenuated F strain-derived Mycoplasma gallisepticum vaccines

    USDA-ARS?s Scientific Manuscript database

    Commercially available attenuated strains of Mycoplasma gallisepticum (MG) are commonly used within the layer industry to control MG-induced mycoplasmosis. Among these are two live MG vaccines derived from the moderately pathogenic MG “chick F” strain. In the present study, the commercially availa...

  5. Oral vaccination against bubonic plague using a live avirulent Yersinia pseudotuberculosis strain.

    PubMed

    Blisnick, Thierry; Ave, Patrick; Huerre, Michel; Carniel, Elisabeth; Demeure, Christian E

    2008-08-01

    We evaluated the possibility of using Yersinia pseudotuberculosis as a live vaccine against plague because it shares high genetic identity with Y. pestis while being much less virulent, genetically much more stable, and deliverable orally. A total of 41 Y. pseudotuberculosis strains were screened by PCR for the absence of the high pathogenicity island, the superantigens YPM, and the type IV pilus and the presence of the pYV virulence plasmid. One strain (IP32680) fulfilled these criteria. This strain was avirulent in mice upon intragastric or subcutaneous inoculation and persisted for 2 months in the mouse intestine without clinical signs of disease. IP32680 reached the mesenteric lymph nodes, spleen, and liver without causing major histological lesions and was cleared after 13 days. The antibodies produced in vaccinated animals recognized both Y. pseudotuberculosis and Y. pestis antigens efficiently. After a subcutaneous challenge with Y. pestis CO92, bacteria were found in low amounts in the organs and rarely in the blood of vaccinated animals. One oral IP32680 inoculation protected 75% of the mice, and two inoculations induced much higher antibody titers and protected 88% of the mice. Our results thus validate the concept that an attenuated Y. pseudotuberculosis strain can be an efficient, inexpensive, safe, and easy-to-produce live vaccine for oral immunization against bubonic plague.

  6. Oral Vaccination against Bubonic Plague Using a Live Avirulent Yersinia pseudotuberculosis Strain

    PubMed Central

    Blisnick, Thierry; Ave, Patrick; Huerre, Michel; Carniel, Elisabeth; Demeure, Christian E.

    2008-01-01

    We evaluated the possibility of using Yersinia pseudotuberculosis as a live vaccine against plague because it shares high genetic identity with Y. pestis while being much less virulent, genetically much more stable, and deliverable orally. A total of 41 Y. pseudotuberculosis strains were screened by PCR for the absence of the high pathogenicity island, the superantigens YPM, and the type IV pilus and the presence of the pYV virulence plasmid. One strain (IP32680) fulfilled these criteria. This strain was avirulent in mice upon intragastric or subcutaneous inoculation and persisted for 2 months in the mouse intestine without clinical signs of disease. IP32680 reached the mesenteric lymph nodes, spleen, and liver without causing major histological lesions and was cleared after 13 days. The antibodies produced in vaccinated animals recognized both Y. pseudotuberculosis and Y. pestis antigens efficiently. After a subcutaneous challenge with Y. pestis CO92, bacteria were found in low amounts in the organs and rarely in the blood of vaccinated animals. One oral IP32680 inoculation protected 75% of the mice, and two inoculations induced much higher antibody titers and protected 88% of the mice. Our results thus validate the concept that an attenuated Y. pseudotuberculosis strain can be an efficient, inexpensive, safe, and easy-to-produce live vaccine for oral immunization against bubonic plague. PMID:18505804

  7. Use of a current varicella vaccine as a live polyvalent vaccine vector.

    PubMed

    Murakami, Kouki; Mori, Yasuko

    2016-01-04

    Varicella-zoster virus (VZV) is the causative agent of varicella and zoster. The varicella vaccine was developed to control VZV infection in children. The currently available Oka vaccine strain is the only live varicella vaccine approved by the World Health Organization. We previously cloned the complete genome of the Oka vaccine strain into a bacterial artificial chromosome vector and then successfully reconstituted the virus. We then used this system to generate a recombinant Oka vaccine virus expressing mumps virus gene(s). The new recombinant vaccine may be an effective polyvalent live vaccine that provides protection against both varicella and mumps viruses. In this review, we discussed about possibility of polyvalent live vaccine(s) using varicella vaccine based on our recent studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Formulation and Stabilization of Francisella tularensis Live Vaccine Strain

    PubMed Central

    OHTAKE, SATOSHI; MARTIN, RUSSELL A.; SAXENA, ATUL; LECHUGA-BALLESTEROS, DAVID; SANTIAGO, ARACELI E; BARRY, EILEEN M.; TRUONG-LE, VU

    2012-01-01

    Francisella tularensis live vaccine strain (F. tularensis LVS), a promising vaccine candidate for protection against F. tularensis exposure, is a particularly thermolabile vaccine and difficult to stabilize sufficiently for storage under refrigerated conditions. Our preliminary data show that F. tularensis LVS can be stabilized in the dried state using foam drying, a modified freeze drying method, with sugar-based formulations. The process was conducted under mild drying conditions, which resulted in a good titer retention following processing. The inclusion of osmolytes in the growth media resulted in an acceleration of growth kinetics, although no change in osmotolerance was observed. The optimized F. tularensis formulation, which contained trehalose, gelatin, and Pluronic F68 demonstrated stability for approximately 1.5 weeks at 37°C (i.e., time required for the vaccine to decrease in potency by 1 log10 colony forming unit) and for 12 weeks at 25°C. At refrigerator storage condition (4°C), stabilized F. tularensis LVS vaccine exhibited no activity loss for at least 12 weeks. This stabilization method utilizes conventional freeze dryers and pharmaceutically approved stabilizers, and thus can be readily implemented at many manufacturing sites for large-scale production of stabilized vaccines. The improved heat stability of the F. tularensis LVS could mitigate risks of vaccine potency loss during long-term storage, shipping, and distribution. PMID:21491457

  9. A clinical trial of WRL 105 strain live attenuated influenza vaccine comparing four methods of intranasal vaccination.

    PubMed Central

    Freestone, D. S.; Bowker, C. H.; Letley, E.; Ferris, R. D.; White, W. G.; Barnes, G. M.

    1976-01-01

    A single intranasal dose of 10(7-0) EID50 recombinant WRL 105 strain live attenuated influenza vaccine was administered intranasally to 193 volunteers either as nose drops or by one of three spray devices which produced sprays of differing physical characteristics. In volunteers with homologous haemagglutinating inhibiting antibody titres of less than or equal to 20 before vaccination, seroconversion rates varied widely from 80% following the administration of drops to 71%, 57% and 28% with the three spray devices. In the week following vaccination 16 (22%) of 74 volunteers who were found to show a fourfold or greater antibody response to took analgesics to control symptoms in comparison with 4 (7%) of 58 volunteers who exhibited no serological response to vaccination (P less than 0-05). However, neither the occurrence of upper respiratory nor systemic symptoms were significantly different in these two groups and the degree of attenuation of the recombinant WRL 105 strain appears to be acceptable for future use. PMID:1064672

  10. Respiratory and oral vaccination improves protection conferred by the live vaccine strain against pneumonic tularemia in the rabbit model

    PubMed Central

    Stinson, Elizabeth; Smith, Le'Kneitah P.; Cole, Kelly Stefano; Barry, Eileen M.; Reed, Douglas S.

    2016-01-01

    Tularemia is a severe, zoonotic disease caused by a gram-negative bacterium, Francisella tularensis. We have previously shown that rabbits are a good model of human pneumonic tularemia when exposed to aerosols containing a virulent, type A strain, SCHU S4. We further demonstrated that the live vaccine strain (LVS), an attenuated type B strain, extended time to death when given by scarification. Oral or aerosol vaccination has been previously shown in humans to offer superior protection to parenteral vaccination against respiratory tularemia challenge. Both oral and aerosol vaccination with LVS were well tolerated in the rabbit with only minimal fever and no weight loss after inoculation. Plasma antibody titers against F. tularensis were higher in rabbits that were vaccinated by either oral or aerosol routes compared to scarification. Thirty days after vaccination, all rabbits were challenged with aerosolized SCHU S4. LVS given by scarification extended time to death compared to mock-vaccinated controls. One orally vaccinated rabbit did survive aerosol challenge, however, only aerosol vaccination extended time to death significantly compared to scarification. These results further demonstrate the utility of the rabbit model of pneumonic tularemia in replicating what has been reported in humans and macaques as well as demonstrating the utility of vaccination by oral and respiratory routes against an aerosol tularemia challenge. PMID:27511964

  11. Respiratory and oral vaccination improves protection conferred by the live vaccine strain against pneumonic tularemia in the rabbit model.

    PubMed

    Stinson, Elizabeth; Smith, Le'Kneitah P; Cole, Kelly Stefano; Barry, Eileen M; Reed, Douglas S

    2016-10-01

    Tularemia is a severe, zoonotic disease caused by a gram-negative bacterium, Francisella tularensis We have previously shown that rabbits are a good model of human pneumonic tularemia when exposed to aerosols containing a virulent, type A strain, SCHU S4. We further demonstrated that the live vaccine strain (LVS), an attenuated type B strain, extended time to death when given by scarification. Oral or aerosol vaccination has been previously shown in humans to offer superior protection to parenteral vaccination against respiratory tularemia challenge. Both oral and aerosol vaccination with LVS were well tolerated in the rabbit with only minimal fever and no weight loss after inoculation. Plasma antibody titers against F. tularensis were higher in rabbits that were vaccinated by either oral or aerosol routes compared to scarification. Thirty days after vaccination, all rabbits were challenged with aerosolized SCHU S4. LVS given by scarification extended time to death compared to mock-vaccinated controls. One orally vaccinated rabbit did survive aerosol challenge, however, only aerosol vaccination extended time to death significantly compared to scarification. These results further demonstrate the utility of the rabbit model of pneumonic tularemia in replicating what has been reported in humans and macaques as well as demonstrating the utility of vaccination by oral and respiratory routes against an aerosol tularemia challenge. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Live attenuated tetravalent dengue vaccine.

    PubMed

    Bhamarapravati, N; Sutee, Y

    2000-05-26

    The development of a live attenuated tetravalent dengue vaccine is currently the best strategy to obtain a vaccine against dengue viruses. The Mahidol University group developed candidate live attenuated vaccines by attenuation through serial passages in certified primary cell cultures. Dengue serotype 1, 2 and 4 viruses were developed in primary dog kidney cells, whereas dengue serotype 3 was serially passaged in primary African green monkey kidney cells. Tissue culture passaged strain viruses were subjected to biological marker studies. Candidate vaccines have been tested as monovalent (single virus), bivalent (two viruses), trivalent (three viruses) and tetravalent (all four serotype viruses) vaccines in Thai volunteers. They were found to be safe and immunogenic in both adults and children. The Mahidol live attenuated dengue 2 virus was also tested in American volunteers and resulted in good immune response indistinguishable from those induced in Thai volunteers. The master seeds from the four live attenuated virus strains developed were provided to Pasteur Merieux Connaught of France for production on an industrial scale following good manufacturing practice guidelines.

  13. T-cell-mediated cross-strain protective immunity elicited by prime-boost vaccination with a live attenuated influenza vaccine.

    PubMed

    Li, Junwei; Arévalo, Maria T; Chen, Yanping; Chen, Shan; Zeng, Mingtao

    2014-10-01

    Antigenic drift and shift of influenza viruses require frequent reformulation of influenza vaccines. In addition, seasonal influenza vaccines are often mismatched to the epidemic influenza strains. This stresses the need for a universal influenza vaccine. BALB/c mice were vaccinated with the trivalent live attenuated (LAIV; FluMist) or inactivated (TIV; FluZone) influenza vaccines and challenged with PR8 (H1N1), FM/47 (H1N1), or HK/68 (H3N2) influenza virus. Cytokines and antibody responses were tested by ELISA. Furthermore, different LAIV dosages were applied in BALB/c mice. LAIV vaccinated mice were also depleted of T-cells and challenged with PR8 virus. LAIV induced significant protection against challenge with the non-vaccine strain PR8 influenza virus. Furthermore, protective immunity against PR8 was dose-dependent. Of note, interleukin 2 and interferon gamma cytokine secretion in the lung alveolar fluid were significantly elevated in mice vaccinated with LAIV. Moreover, T-cell depletion of LAIV vaccinated mice compromised protection, indicating that T-cell-mediated immunity is required. In contrast, passive transfer of sera from mice vaccinated with LAIV into naïve mice failed to protect against PR8 challenge. Neutralization assays in vitro confirmed that LAIV did not induce cross-strain neutralizing antibodies against PR8 virus. Finally, we showed that three doses of LAIV also provided protection against challenge with two additional heterologous viruses, FM/47 and HK/68. These results support the potential use of the LAIV as a universal influenza vaccine under a prime-boost vaccination regimen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Developing live vaccines against Yersinia pestis

    PubMed Central

    Sun, Wei; Roland, Kenneth L.; Curtiss, Roy

    2014-01-01

    Three great plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people and it has been linked to biowarfare in the past. Plague is endemic in many parts of the world. In addition, the risk of plague as a bioweapon has prompted increased research to develop plague vaccines against this disease. Injectable subunit vaccines are being developed in the United States and United Kingdom. However, the live attenuated Y. pestis-EV NIIEG strain has been used as a vaccine for more than 70 years in the former Soviet Union and in some parts of Asia and provides a high degree of efficacy against plague. This vaccine has not gained general acceptance because of safety concerns. In recent years, modern molecular biological techniques have been applied to Y. pestis to construct strains with specific defined mutations designed to create safe, immunogenic vaccines with potential for use in humans and as bait vaccines to reduce the load of Y. pestis in the environment. In addition, a number of live, vectored vaccines have been reported using attenuated viral vectors or attenuated Salmonella strains to deliver plague antigens. Here we summarize the progress of live attenuated vaccines against plague. PMID:21918302

  15. Efficacy, Safety, and Interactions of a Live Infectious Bursal Disease Virus Vaccine for Chickens Based on Strain IBD V877.

    PubMed

    Geerligs, Harm J; Ons, Ellen; Boelm, Gert Jan; Vancraeynest, Dieter

    2015-03-01

    Infectious bursal disease (IBD) is a highly contagious disease in young chickens which can result in high morbidity and mortality and also in great economic losses. The main target for the virus is the lymphoid tissue with a special predilection for the bursa of Fabricius. Several vaccines are available to control the disease. Intermediate plus vaccines are used in chickens with high maternal antibody titers which face high infection pressure. An example of an intermediate plus vaccine is a live vaccine based on IBD strain V877. The results of an efficacy study in commercial broilers with different levels of maternally derived antibodies (MDA) showed that the V877-based IBD vaccine can break through maternal antibody titers of higher than 1100 as determined by an IBD ELISA. The safety of the vaccine was demonstrated in a study in which specific-pathogen-free (SPF) chickens were vaccinated with a tenfold dose of the vaccine strain and a tenfold dose of the vaccine strain after five back passages in SPF chickens. The vaccine virus caused lesions, as could be expected for an intermediate plus vaccine, but the scores were not much higher than the maximal scores allowed for mild IBD vaccines in the European Pharmacopoeia, and reversion to virulence was absent. In studies in SPF chickens, there were no negative impacts by the IBD V877 vaccine on the efficacy of a live QX-like IB vaccine and a live Newcastle disease La Sota vaccine in vaccination challenge studies, although the IBD vaccine had a negative effect on the antibody response generated by the QX-like IB vaccine. It is concluded that the IBD V877 vaccine has the capacity to break through high levels of MDA, has a satisfactory safety profile, and interactions with other live vaccines are limited. In order to limit bursal lesions after vaccination it is recommended to confirm the presence of MDA before vaccinating with the V877 vaccine.

  16. Live attenuated hepatitis A vaccines developed in China.

    PubMed

    Xu, Zhi-Yi; Wang, Xuan-Yi

    2014-01-01

    Two live, attenuated hepatitis A vaccines, H 2 and LA-1 virus strains, were developed through serial passages of the viruses in cell cultures at 32 °C and 35 °C respectively. Both vaccines were safe and immunogenic, providing protection against clinical hepatitis A in 95% of the vaccinees, with a single dose by subcutaneous injection. The vaccine recipients were not protected from asymptomatic, subclinical hepatitis A virus (HAV) infection, which induced a similar antibody response as for unvaccinated subjects. A second dose caused anamnestic response and can be used for boosting. Oral immunization of human with H 2 vaccine or of marmoset with LA-1 vaccine failed, and no evidence was found for person-to-person transmission of the H 2 strain or for marmoset-to-marmoset transmission of LA-1 strain, by close contact. H 2 strain was genetically stable when passaged in marmosets, humans or cell cultures at 37 °C; 3 consecutive passages of the virus in marmosets did not cause virulence mutation. The live vaccines offer the benefits of low cost, single dose injection, long- term protection, and increased duration of immunity through subclinical infection. Improved sanitation and administration of 150 million doses of the live vaccines to children had led to a 90% reduction in the annual national incidence rate of hepatitis A in China during the 16-year period, from 1991 to 2006. Hepatitis A immunization with both live and inactivated HA vaccines was implemented in the national routine childhood immunization program in 2008 and around 92% of the 16 million annual births received the affordable live, attenuated vaccines at 18 months of age. Near elimination of the disease was achieved in China for 14 years following introduction of the H 2 live vaccine into the Expanded Immunization Program (EPI) in 1992.

  17. Live attenuated hepatitis A vaccines developed in China

    PubMed Central

    Xu, Zhi-Yi; Wang, Xuan-Yi

    2014-01-01

    Two live, attenuated hepatitis A vaccines, H2 and LA-1 virus strains, were developed through serial passages of the viruses in cell cultures at 32 °C and 35 °C respectively. Both vaccines were safe and immunogenic, providing protection against clinical hepatitis A in 95% of the vaccinees, with a single dose by subcutaneous injection. The vaccine recipients were not protected from asymptomatic, subclinical hepatitis A virus (HAV) infection, which induced a similar antibody response as for unvaccinated subjects. A second dose caused anamnestic response and can be used for boosting. Oral immunization of human with H2 vaccine or of marmoset with LA-1 vaccine failed, and no evidence was found for person-to-person transmission of H2 strain or for marmoset-to-marmoset transmission of LA-1 strain by close contact. H2 strain was genetically stable when passaged in marmosets, humans or cell cultures at 37 °C; 3 consecutive passages of the virus in marmosets did not cause virulence mutation. The live vaccines offer the benefits of low cost, single dose injection, long- term protection, and increased duration of immunity through subclinical infection. Improved sanitation and administration of 150 million doses of the live vaccines to children had led to a 90% reduction in the annual national incidence rate of hepatitis A in China during the 16-year period, from 1991 to 2006. Hepatitis A (HA) immunization with both live and inactivated HA vaccines was implemented in the national routine childhood immunization program in 2008 and around 92% of the 16 million annual births received the affordable live, attenuated vaccines at 18 months of age. Near elimination of the disease was achieved in a county of China for 14 years following introduction of the H2 live vaccine into the Expanded Immunization Program (EPI) in 1992. PMID:24280971

  18. [History of development of the live poliomyelitis vaccine from Sabin attenuated strains in 1959 and idea of poliomyelitis eradication].

    PubMed

    Lashkevich, V A

    2013-01-01

    In 1958 Poliomyelitis Institute in Moscow and Institute of Experimental Medicine in St. Petersburg received from A. Sabin the attenuated strains of poliomyelitis virus. The characteristics of the strains were thoroughly studied by A. A. Smorodintsev and coworkers. They found that the virulence of the strains fluctuated slightly in 10 consecutive passages through the intestine of the non-immune children. A part of the Sabin material was used by A. A. Smorodintsev and M. P. Chumakov in the beginning of 1959 for immunizing approximately 40000 children in Estonia, Lithuania, and Latvia. Epidemic poliomyelitis rate in these republics decreased from approximately 1000 cases yearly before vaccination to less than 20 in the third quarter of 1959. This was a convincing proof of the efficacy and safety of the vaccine from the attenuated Sabin strains. In 1959, according to A. Sabin's recommendation, a technology of live vaccine production was developed at the Poliomyelitis Institute, and several experimental lots of vaccine were prepared. In the second part of 1959, 13.5 million children in USSR were immunized. The epidemic poliomyelitis rate decreased 3-5 times in different regions without paralytic cases, which could be attributed to the vaccination. These results were the final proof of high efficiency and safety of live poliomyelitis vaccine from the attenuated Sabin strains. Based on these results, A. Sabin and M. P. Chumakov suggested in 1960 the idea of poliomyelitis eradication using mass immunization of children with live vaccine. 72 million persons up to 20 years old were vaccinated in USSR in 1960 with a 5 times drop in the paralytic rate. 50-year-long use of live vaccine results in poliomyelitis eradication in almost all countries worldwide. More than 10 million children were rescued from the death and palsy. Poliomyelitis eradication in a few countries where it still exists depends not on medical services but is defined by the attitude of their leaders to fight

  19. IL-10 restrains IL-17 to limit lung pathology characteristics following pulmonary infection with Francisella tularensis live vaccine strain.

    PubMed

    Slight, Samantha R; Monin, Leticia; Gopal, Radha; Avery, Lyndsay; Davis, Marci; Cleveland, Hillary; Oury, Tim D; Rangel-Moreno, Javier; Khader, Shabaana A

    2013-11-01

    IL-10 production during intracellular bacterial infections is generally thought to be detrimental because of its role in suppressing protective T-helper cell 1 (Th1) responses. Francisella tularensis is a facultative intracellular bacterium that activates both Th1 and Th17 protective immune responses. Herein, we report that IL-10-deficient mice (Il10(-/-)), despite having increased Th1 and Th17 responses, exhibit increased mortality after pulmonary infection with F. tularensis live vaccine strain. We demonstrate that the increased mortality observed in Il10(-/-)-infected mice is due to exacerbated IL-17 production that causes increased neutrophil recruitment and associated lung pathology. Thus, although IL-17 is required for protective immunity against pulmonary infection with F. tularensis live vaccine strain, its production is tightly regulated by IL-10 to generate efficient induction of protective immunity without mediating pathology. These data suggest a critical role for IL-10 in maintaining the delicate balance between host immunity and pathology during pulmonary infection with F. tularensis live vaccine strain. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Anaplasma marginale Yucatan (Mexico) Strain. Assessment of low virulence and potential use as a live vaccine.

    PubMed

    Rodríguez Camarillo, Sergio D; García Ortiz, Miguel Angel; Rojas Ramírez, Edmundo E; Cantó Alarcón, Germinal J; Preciado de la Torre, Jesús F; Rosario Cruz, Rodrigo; Ramos Aragón, Juan A; Aboytes Torres, Ramón

    2008-12-01

    Anaplasma marginale Yucatan strain was found to have low virulence in cattle. We studied the virulence of this isolate by experimental inoculation of 113 susceptible cattle at increasing doses, after which only one animal required treatment for clinical disease. Subsequently, 104 cattle received a live vaccine of this strain by inoculation, which induced immunoprotection after heterologous challenged exposure with a different A. marginale isolate. In this study 14% of the immunized cattle required treatment as compared with the control nonimmunized cattle, in which 56% required treatment. The A. marginale vaccine strains used for the immunization studies had MSP1a variable regions that were different from those used for the challenge exposure.

  1. Mumps vaccine virus strains and aseptic meningitis.

    PubMed

    Bonnet, Marie-Claude; Dutta, Anil; Weinberger, Clement; Plotkin, Stanley A

    2006-11-30

    Mumps immunization can easily be included in national schedules, particularly if combined with measles or measles and rubella vaccines, but debate continues concerning the relative safety of various licensed mumps vaccine strains. The opportunities for control of mumps are also being affected by differences in the cost of the vaccines prepared with different strains of mumps virus. The present report evaluates available data on the association of the Urabe and other strains of mumps vaccine with the occurrence of aseptic meningitis. We also review the comparative immunogenicity and efficacies of the most widely used mumps vaccines in controlled clinical trials and field evaluations, and briefly examine relative cost as it relates to the implementation of national immunization programs. We conclude that extensive experience with the most widely used mumps vaccine strains in many countries has shown that the risk-benefit ratio of live mumps vaccines is highly favourable for vaccination, despite the occasional occurence of aseptic meningitis.

  2. Immunisation of chickens with live Salmonella vaccines - Role of booster vaccination.

    PubMed

    Methner, U

    2018-05-17

    It is accepted that booster vaccinations of chickens with live Salmonella vaccines are essential part of vaccinations schemes to induce an effective adaptive immune response. As manufacturer of registered live Salmonella vaccines recommend different times of booster the question raises whether the duration between the first and second immunisation might influence the protective effect against Salmonella exposure. Chickens were immunised with a live Salmonella Enteritidis vaccine on day 1 of age followed by a booster vaccination at different intervals (day 28, 35 or 42 of age) to study the effects on the colonisation and invasion of the Salmonella vaccine strain, the humoral immune response and the efficacy against infection with Salmonella Enteritidis on day 56 of age. Immunisation of all groups resulted in a very effective adaptive immune response and a high degree of protection against severe Salmonella exposure, however, the time of booster had only an unverifiable influence on either the colonisation of the vaccine strain, the development of the humoral immune response or the colonisation of the Salmonella challenge strain. Therefore, the first oral immunisation of the chicks on day 1 of age seems to be of special importance and prerequisite for the development of the effective immune response. A booster immunisation should be carried out, however, the time of booster may vary between week 3 and week 7 of age of the chickens without adversely impact on the efficacy of the adaptive immune response or the protective effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Evaluation of the thermal stability of a novel strain of live-attenuated mumps vaccine (RS-12 strain) lyophilized in different stabilizers.

    PubMed

    Jamil, Razieh Kamali; Taqavian, Mohammad; Sadigh, Zohreh-Azita; Shahkarami, Mohammad-Kazem; Esna-Ashari, Fatemeh; Hamkar, Rasool; Hosseini, Seyedeh-Marzieh; Hatami, Alireza

    2014-04-01

    The stability of live-attenuated viral vaccines is important for immunization efficacy. Here, the thermostabilities of lyophilized live-attenuated mumps vaccine formulations in two different stabilizers, a trehalose dihydrate-based stabilizer and a stabilizer containing sucrose, human serum albumin and sorbitol were investigated using accelerated stability tests at 4°C, 25°C and 37°C at time points between 4h (every 4h for the first 24h) and 1 week. Even under the harshest storage conditions of 37°C for 1 week, the 50% cell culture infective dose (CCID50) determined from titrations in Vero cells dropped by less than 10-fold using each stabilizer formulation and thus complied with the World Health Organization's requirements for the potency of live-attenuated mumps vaccines. However, as the half-life of the RS-12 strain mumps virus infectivity was lengthened substantially at elevated temperatures using the trehalose dihydrate (TD)-based stabilizer, this stabilizer is recommended for vaccine use. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Live attenuated human rotavirus vaccine, Rotarix.

    PubMed

    Bernstein, David I

    2006-10-01

    Rotavirus infections are the leading cause of severe gastroenteritis in young children worldwide. Recently two new rotavirus vaccines have entered the world market. This review provides a summary of the rationale, development, and evaluation of one of these vaccines, Rotarix. Rotarix is a live oral rotavirus vaccine developed from a single protective human strain following multiple passages in tissue culture to attenuate the strain. The vaccine is administered as two oral doses at approximately 2 and 4 months of age. Large safety and efficacy trials have shown the vaccine is safe, not associated with intussusception, and effective against the most common circulating human serotypes. Efficacy against severe rotavirus gastroenteritis and hospitalization have ranged from 85 to 100 percent.

  5. Hereditary Hemochromatosis Restores the Virulence of Plague Vaccine Strains

    PubMed Central

    Quenee, Lauriane E.; Hermanas, Timothy M.; Ciletti, Nancy; Louvel, Helene; Miller, Nathan C.; Elli, Derek; Blaylock, Bill; Mitchell, Anthony; Schroeder, Jay; Krausz, Thomas; Kanabrocki, Joseph; Schneewind, Olaf

    2012-01-01

    Nonpigmented Yersinia pestis (pgm) strains are defective in scavenging host iron and have been used in live-attenuated vaccines to combat plague epidemics. Recently, a Y. pestis pgm strain was isolated from a researcher with hereditary hemochromatosis who died from laboratory-acquired plague. We used hemojuvelin-knockout (Hjv−/−) mice to examine whether iron-storage disease restores the virulence defects of nonpigmented Y. pestis. Unlike wild-type mice, Hjv−/− mice developed lethal plague when challenged with Y. pestis pgm strains. Immunization of Hjv−/− mice with a subunit vaccine that blocks Y. pestis type III secretion generated protection against plague. Thus, individuals with hereditary hemochromatosis may be protected with subunit vaccines but should not be exposed to live-attenuated plague vaccines. PMID:22896664

  6. Vaccination with a modified-live bovine viral diarrhea virus (BVDV) type 1a vaccine completely protected calves against challenge with BVDV type 1b strains.

    PubMed

    Xue, Wenzhi; Mattick, Debra; Smith, Linda; Umbaugh, Jerry; Trigo, Emilio

    2010-12-10

    Vaccination plays a significant role in the control of bovine viral diarrhea virus (BVDV) infection and spread. Recent studies revealed that type 1b is the predominant BVDV type 1 subgenotype, representing more than 75% of field isolates of BVDV-1. However, nearly all current, commercially available BVDV type 1 vaccines contain BVDV-1a strains. Previous studies have indicated that anti-BVDV sera, induced by BVDV-1a viruses, show less neutralization activity to BVDV-1b isolates than type 1a. Therefore, it is critically important to evaluate BVDV-1a vaccines in their ability to prevent BVDV-1b infection in calves. In current studies, calves were vaccinated subcutaneously, intradermally or intranasally with a single dose of a multivalent, modified-live viral vaccine containing a BVDV-1a strain, and were challenged with differing BVDV-1b strains to determine the efficacy and duration of immunity of the vaccine against these heterologous virus strains. Vaccinated calves, in all administration routes, were protected from respiratory disease caused by the BVDV-1b viruses, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding and greater white blood cell counts than non-vaccinated control animals. The BVDV-1a vaccine elicited efficacious protection in calves against each BVDV-1b challenge strain, with a duration of immunity of at least 6 months. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Experience with live rubella virus vaccine combined with live vaccines against measles and mumps*

    PubMed Central

    Smorodintsev, A. A.; Nasibov, M. N.; Jakovleva, N. V.

    1970-01-01

    Vaccination of pre-school children in the 1-7-years age-group for the specific prophylaxis of mumps and rubella is often difficult to arrange because of the already large number of inoculations given to these children. Combined vaccines to protect against measles, mumps and rubella should therefore be a valuable development. The existence of effective live vaccines for each of these 3 diseases makes possible the production of a single preparation suitable for subcutaneous inoculation. Tests on vaccine strains of measles (Leningrad-16), mumps (Leningrad-3) and rubella (Leningrad-8) viruses in various combinations have established that divalent or trivalent vaccines remain clinically harmless, highly immunogenic and epidemiologically effective. Single subcutaneous administrations of live measles vaccine combined with mumps or rubella vaccines or both, when given to children aged 1-8 years, brough about a high percentage of serological conversions and an increase in antibodies to a level comparable with that achieved with the corresponding monovalent vaccines. Morbidity from the 3 diseases was reduced among those vaccinated with the trivalent vaccine by 10 or more times, i.e., by about the same factor as when monovalent or divalent vaccines were used. PMID:5310140

  8. Next-Generation Bacillus anthracis Live Attenuated Spore Vaccine Based on the htrA- (High Temperature Requirement A) Sterne Strain

    PubMed Central

    Chitlaru, Theodor; Israeli, Ma’ayan; Bar-Haim, Erez; Elia, Uri; Rotem, Shahar; Ehrlich, Sharon; Cohen, Ofer; Shafferman, Avigdor

    2016-01-01

    Anthrax is a lethal disease caused by the gram-positive spore-producing bacterium Bacillus anthracis. Live attenuated vaccines, such as the nonencapsulated Sterne strain, do not meet the safety standards mandated for human use in the Western world and are approved for veterinary purposes only. Here we demonstrate that disrupting the htrA gene, encoding the chaperone/protease HtrA (High Temperature Requirement A), in the virulent Bacillus anthracis Vollum strain results in significant virulence attenuation in guinea pigs, rabbits and mice, underlying the universality of the attenuated phenotype associated with htrA knockout. Accordingly, htrA disruption was implemented for the development of a Sterne-derived safe live vaccine compatible with human use. The novel B. anthracis SterneΔhtrA strain secretes functional anthrax toxins but is 10–104-fold less virulent than the Sterne vaccine strain depending on animal model (mice, guinea pigs, or rabbits). In spite of this attenuation, double or even single immunization with SterneΔhtrA spores elicits immune responses which target toxaemia and bacteremia resulting in protection from subcutaneous or respiratory lethal challenge with a virulent strain in guinea pigs and rabbits. The efficacy of the immune-protective response in guinea pigs was maintained for at least 50 weeks after a single immunization. PMID:26732659

  9. Oral vaccination with a live Salmonella Enteritidis/Typhimurium bivalent vaccine in layers induces cross-protection against caecal and internal organ colonization by a Salmonella Infantis strain.

    PubMed

    Eeckhaut, Venessa; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip

    2018-05-01

    Salmonella is an important zoonotic agent, and poultry products remain one of the main sources of infection for humans. Salmonella Infantis is an emerging serotype in poultry worldwide, reflected by an increased prevalence in poultry flocks, on broiler meat and in human foodborne illness cases. In the current study, the efficacy of oral administration of a live monovalent Salmonella Enteritidis and a live bivalent Salmonella Enteritidis/Typhimurium vaccine, against a Salmonella Enteritidis and Infantis infection, was determined. Oral administration of the live vaccines to day-old chickens caused a decrease in caecal colonization by Salmonella Enteritidis, but not Infantis, at day 7, when challenged at day 2. Vaccination with the bivalent vaccine at day 1 resulted in a decreased spleen colonization by both Salmonella Infantis and Enteritidis. Twice (at day 1 and week 6) and thrice vaccination (at day 1, week 6 and 16) of laying hens with the bivalent vaccine resulted in a decreased caecal colonization by Salmonella Enteritidis and Infantis, and significantly lower oviduct colonization levels by Salmonella Enteritidis. These data show cross-protection against Salmonella Infantis by oral administration of live vaccine strains belonging to other serogroups. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains.

    PubMed

    Tano, Yoshio; Shimizu, Hiroyuki; Martin, Javier; Nishimura, Yorihiro; Simizu, Bunsiti; Miyamura, Tatsuo

    2007-10-10

    A candidate inactivated poliovirus vaccine derived from live-attenuated Sabin strains (sIPV), which are used in the oral poliovirus vaccine (OPV), was prepared in a large-production scale. The modification of viral antigenic epitopes during the formalin inactivation process was investigated by capture ELISA assays using type-specific and antigenic site-specific monoclonal antibodies (MoAbs). The major antigenic site 1 was modified during the formalin inactivation of Sabin 1. Antigenic sites 1-3 were slightly modified during the formalin inactivation of Sabin 2 strain. Sites 1 and 3 were altered on inactivated Sabin 3 virus. These alterations were different to those shown by wild-type Saukett strain, used in conventional IPV (cIPV). It has been previously reported that type 1 sIPV showed higher immunogenicity to type 1 cIPV whereas types 2 and 3 sIPV induced lower level of immunogenicity than their cIPV counterparts. Our results suggest that the differences in epitope structure after formalin inactivation may account, at least in part, for the observed differences in immunogenicity between Sabin and wild-type inactivated poliovaccines.

  11. Development and Characterization of an Infectious cDNA Clone of the Modified Live Virus Vaccine Strain of Equine Arteritis Virus

    PubMed Central

    Zhang, Jianqiang; Go, Yun Young; Huang, Chengjin M.; Meade, Barry J.; Lu, Zhengchun; Snijder, Eric J.; Timoney, Peter J.

    2012-01-01

    A stable full-length cDNA clone of the modified live virus (MLV) vaccine strain of equine arteritis virus (EAV) was developed. RNA transcripts generated from this plasmid (pEAVrMLV) were infectious upon transfection into mammalian cells, and the resultant recombinant virus (rMLV) had 100% nucleotide identity to the parental MLV vaccine strain of EAV. A single silent nucleotide substitution was introduced into the nucleocapsid gene (pEAVrMLVB), enabling the cloned vaccine virus (rMLVB) to be distinguished from parental MLV vaccine as well as other field and laboratory strains of EAV by using an allelic discrimination real-time reverse transcription (RT)-PCR assay. In vitro studies revealed that the cloned vaccine virus rMLVB and the parental MLV vaccine virus had identical growth kinetics and plaque morphologies in equine endothelial cells. In vivo studies confirmed that the cloned vaccine virus was very safe and induced high titers of neutralizing antibodies against EAV in experimentally immunized horses. When challenged with the heterologous EAV KY84 strain, the rMLVB vaccine virus protected immunized horses in regard to reducing the magnitude and duration of viremia and virus shedding but did not suppress the development of signs of EVA, although these were reduced in clinical severity. The vaccine clone pEAVrMLVB could be further manipulated to improve the vaccine efficacy as well as to develop a marker vaccine for serological differentiation of EAV naturally infected from vaccinated animals. PMID:22739697

  12. Biological safety concepts of genetically modified live bacterial vaccines.

    PubMed

    Frey, Joachim

    2007-07-26

    Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment

  13. Full-length genome sequence analysis of an avian leukosis virus subgroup J (ALV-J) as contaminant in live poultry vaccine: The commercial live vaccines might be a potential route for ALV-J transmission.

    PubMed

    Wang, P; Lin, L; Li, H; Shi, M; Gu, Z; Wei, P

    2018-02-25

    One avian leukosis virus subgroup J (ALV-J) strain was isolated from 67 commercial live poultry vaccines produced by various manufacturers during 2013-2016 in China. The complete genomes of the isolate were sequenced and it was found that the genes gag and pol of the strain were relatively conservative, while the gp85 gene of the strain GX14YYA1 had the highest similarities with a field strain GX14ZS14, which was isolated from the chickens of a farm that had once used the same vaccine as the one found to be contaminated with the GX14YYA1. This is the first report of ALV-J contaminant in live poultry vaccine in China. Our finding demonstrates that vaccination of the commercial live vaccines might be a potential new route for ALV-J transmission in chickens and highlights the need for more extensive monitoring of the commercial live vaccines in China. © 2018 Blackwell Verlag GmbH.

  14. Efficacy of vaccination with La Sota strain vaccine to control Newcastle disease in village chickens in Nepal.

    PubMed

    Shrestha, Sulochana; Dhawan, Mamta; Donadeu, Meritxell; Dungu, Baptiste

    2017-02-01

    The efficacy of vaccination with Newcastle disease (ND) La Sota and R 2 B (Mukteswar) modified live strain vaccines was determined by experimental challenge and with ND La Sota vaccine under field conditions in Nepal. Booster vaccination with ND La Sota vaccine after a primary vaccination with ND La Sota vaccine, induced a geometric mean titre (GMT) of 5.0 log 2 haemagglutination inhibition (HI) units, compared to a GMT of 6.0 log 2 HI units following booster vaccination with R 2 B vaccine 1 month after primary vaccination with ND La Sota vaccine. Both vaccines provided 100% protection against challenge with a local field ND strain. Furthermore, booster vaccination with ND La Sota vaccine induced protective levels of antibody after field use in villages in Jhapa, and no outbreaks of ND occurred during the study period. The ND La Sota modified live vaccine is immunogenic and efficacious and is a suitable vaccine for use in vaccination programmes in village chickens in the rural areas of Nepal.

  15. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines

    PubMed Central

    Sridhar, Saranya; Brokstad, Karl A.; Cox, Rebecca J.

    2015-01-01

    Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2–17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection. PMID:26343192

  16. Identification and development of a promising novel mumps vaccine candidate strain.

    PubMed

    Liang, Yan; Ma, Shaohui; Liu, Longding; Zhao, Hongling; Wang, Lichun; Jiang, Li; Xie, Zhongping; Dong, Chenghong; Li, Qihan

    2010-12-01

    Mumps epidemics are usually caused by airborne transmission of mumps virus (MuV) and have high morbidity in non-immunized children. Epidemiological studies in many regions of China show that the genotype F viral strain is the most prevalent. However, the genotype A strain is currently used to prepare vaccines. Regional epidemiological MuV data suggest a significant application for the development of live attenuated mumps vaccines targeting specific genotypes. This article reports the isolation and culture of a genotype F MuV candidate strain that could be used to prepare a live attenuated mumps vaccine. This strain is shown to have good immunological efficacy and stability in neurovirulence evaluations. This work should facilitate the implementation of mumps vaccination in mainland China by targeting the most prevalent MuV genotype, genotype F. Copyright © 2010 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  17. Genetically Engineered, Live Attenuated Vaccines Protect Nonhuman Primates Against Aerosol Challenge with a Virulent IE Strain of Venezuelan Equine Encephalitis Virus

    DTIC Science & Technology

    2005-01-21

    integrated moving average ( ARIMA ) model [15,19]. Fore- casted values for the postexposure time periods were based on the training model extrapolated...Smith JF. Genetically engineered, live attenuated vaccines or Venezuelan equine encephalitis: testing in animal models . Vaccine 2003;21(25–26):3854–62...encephalitis: testing in animal models . Vaccine 2003;21(25-26):3854-62] and IE strains of VEE viruses. 15. SUBJECT TERMS Venezuelan equine

  18. Preparation and Efficacy of a Live Newcastle Disease Virus Vaccine Encapsulated in Chitosan Nanoparticles

    PubMed Central

    Gao, Ting-ting; Li, Wei; Zhao, Yan; Zhang, Feng-qiang; Wu, Jin; Cui, Xianlan; Wang, Yun-Feng

    2012-01-01

    Background Newcastle disease (ND) is a highly contagious viral disease of poultry caused by pathogenic strains of the Newcastle disease virus (NDV). Live NDV vaccines are administered by drinking water, eyedrops or coarse aerosol spray. To further enhance mucosal immune responses, chitosan nanoparticles were developed for the mucosal delivery of a live NDV vaccine. Methodology/Principal Findings A lentogenic live-virus vaccine (strain LaSota) against NDV encapsulated in chitosan nanoparticles were developed using an ionic crosslinking method. Chitosan nanoparticles containing the lentogenic live-virus vaccine against NDV (NDV-CS-NPs) were produced with good morphology, high stability, a mean diameter of 371.1 nm, an encapsulation rate of 77% and a zeta potential of +2.84 mV. The Western blotting analysis showed that NDV structural proteins were detected in NDV-CS-NPs. The virus release assay results of NDV-CS-NPs indicated that NDV was released from NDV-CS-NPs. Chickens immunized orally or intranasally with NDV-CS-NPs were fully protected whereas one out of five chickens immunized with the LaSota live NDV vaccine and three out of five chickens immunized with the inactivated NDV vaccine were dead after challenge with the highly virulent NDV strain F48E9. Conclusions/Significance NDV-CS-NPs induced better protection of immunized specific pathogen free chickens compared to the live NDV vaccine strain LaSota and the inactivated NDV vaccine. This study lays a foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles. PMID:23285276

  19. Immunogenicity and safety of a novel MMR vaccine (live, freeze-dried) containing the Edmonston-Zagreb measles strain, the Hoshino mumps strain, and the RA 27/3 rubella strain: Results of a randomized, comparative, active controlled phase III clinical trial.

    PubMed

    Sood, Ashwani; Mitra, Monjori; Joshi, Himanshu Arvind; Nayak, Uma Siddhartha; Siddaiah, Prashanth; Babu, T Ramesh; Mahapatro, Samarendra; Sanmukhani, Jayesh; Gupta, Gaurav; Mittal, Ravindra; Glueck, Reinhard

    2017-07-03

    This phase III clinical trial was conducted to evaluate the immunogenicity and safety of the single-dose and multi-dose formulations of a novel MMR vaccine (live, freeze-dried) developed by M/s Cadila Healthcare Limited, India (Cadila MMR vaccine), containing the Hoshino mumps strain, compared to that of an existing MMR vaccine (live, freeze-dried) developed by M/s Serum Institute of India Limited, India (Serum MMR vaccine). These two vaccines have similar measles and rubella strains, but different mumps strains (Hoshino in Cadila MMR vaccine, and L-Zagreb in Serum MMR vaccine). Three hundred and twenty-eight subjects of either sex, aged 15-18 months, were randomized in a 2:1 ratio to receive either the Cadila or Serum MMR vaccine. Immunogenicity assessments (IgG antibodies against measles, mumps, and rubella viruses) were done at baseline and 42 d after vaccination. Solicited (local and systemic) and unsolicited adverse events were recorded for up to 42 d following vaccination. The Cadila MMR vaccine was found to be non-inferior to the Serum MMR vaccine in terms of end-of-study proportion of subjects seropositive for anti-measles antibodies (100.0% in both groups), anti-mumps antibodies (94.5% vs. 94.0%), and anti-rubella antibodies (95.5% vs. 91.0%). Both vaccines were well tolerated by all study participants; the most common adverse event reported in both groups was fever, followed by rash. The results of this phase III clinical trial show that the novel Cadila MMR vaccine is non-inferior to the Serum MMR vaccine.

  20. Live bacterial vaccines--a review and identification of potential hazards.

    PubMed

    Detmer, Ann; Glenting, Jacob

    2006-06-23

    The use of live bacteria to induce an immune response to itself or to a carried vaccine component is an attractive vaccine strategy. Advantages of live bacterial vaccines include their mimicry of a natural infection, intrinsic adjuvant properties and their possibility to be administered orally. Derivatives of pathogenic and non-pathogenic food related bacteria are currently being evaluated as live vaccines. However, pathogenic bacteria demands for attenuation to weaken its virulence. The use of bacteria as vaccine delivery vehicles implies construction of recombinant strains that contain the gene cassette encoding the antigen. With the increased knowledge of mucosal immunity and the availability of genetic tools for heterologous gene expression the concept of live vaccine vehicles gains renewed interest. However, administration of live bacterial vaccines poses some risks. In addition, vaccination using recombinant bacteria results in the release of live recombinant organisms into nature. This places these vaccines in the debate on application of genetically modified organisms. In this review we give an overview of live bacterial vaccines on the market and describe the development of new live vaccines with a focus on attenuated bacteria and food-related lactic acid bacteria. Furthermore, we outline the safety concerns and identify the hazards associated with live bacterial vaccines and try to give some suggestions of what to consider during their development.

  1. Genetic characterization of L-Zagreb mumps vaccine strain.

    PubMed

    Ivancic, Jelena; Gulija, Tanja Kosutic; Forcic, Dubravko; Baricevic, Marijana; Jug, Renata; Mesko-Prejac, Majda; Mazuran, Renata

    2005-04-01

    Eleven mumps vaccine strains, all containing live attenuated virus, have been used throughout the world. Although L-Zagreb mumps vaccine has been licensed since 1972, only its partial nucleotide sequence was previously determined (accession numbers , and ). Therefore, we sequenced the entire genome of L-Zagreb vaccine strain (Institute of Immunology Inc., Zagreb, Croatia). In order to investigate the genetic stability of the vaccine, sequences of both L-Zagreb master seed and currently produced vaccine batch were determined and no difference between them was observed. A phylogenetic analysis based on SH gene sequence has shown that L-Zagreb strain does not belong to any of established mumps genotypes and that it is most similar to old, laboratory preserved European strains (1950s-1970s). L-Zagreb nucleotide and deduced protein sequences were compared with other mumps virus sequences obtained from the GenBank. Emphasis was put on functionally important protein regions and known antigenic epitopes. The extensive comparisons of nucleotide and deduced protein sequences between L-Zagreb vaccine strain and other previously determined mumps virus sequences have shown that while the functional regions of HN, V, and L proteins are well conserved among various mumps strains, there can be a substantial amino acid difference in antigenic epitopes of all proteins and in functional regions of F protein. No molecular pattern was identified that can be used as a distinction marker between virulent and attenuated strains.

  2. [Comparative evaluation of neurovirulence of domestic and foreign live mumps vaccine].

    PubMed

    Maksimova, O A; Popov, V F; Bektimirov, T A; Grigor'eva, L V; Iunasova, T N; Kaplunova, O P; Sharova, O K

    2001-01-01

    Morphological and immunofluorescent study of changes in the central nervous system of monkeys with mumps was carried out in order to determine the criteria of neurovirulence of different mumps virus strains. Quantitative evaluation showed a lower residual neurovirulence of L-3 strain vs. Jeryl Lynn and Urabe Am9 strains. Use of new methodological approaches to evaluation of mumps vaccine strain neurovirulence will improve the safety control of live mumps vaccines.

  3. Pigs immunized with Chinese highly pathogenic PRRS virus modified live vaccine are protected from challenge with North American PRRSV strain NADC-20.

    PubMed

    Galliher-Beckley, Amy; Li, Xiangdong; Bates, John T; Madera, Rachel; Waters, Andrew; Nietfeld, Jerome; Henningson, Jamie; He, Dongsheng; Feng, Wenhai; Chen, Ruiai; Shi, Jishu

    2015-07-09

    Modified live virus (MLV) vaccines developed to protect against PRRSV circulating in North America (NA) offer limited protection to highly pathogenic (HP) PRRSV strains that are emerging in Asia. MLV vaccines specific to HP-PRRSV strains commercially available in China provide protection to HP-PRRSV; however, the efficacy of these HP-PRRSV vaccines to current circulating NA PRRS viruses has not been reported. The aim of this study is to investigate whether pigs vaccinated with attenuated Chinese HP-PRRSV vaccine (JXA1-R) are protected from infection by NA PRRSV strain NADC-20. We found that pigs vaccinated with JXA1-R were protected from challenges with HV-PRRSV or NADC-20 as shown by fewer days of clinical fever, reduced lung pathology scores, and lower PRRS virus load in the blood. PRRSV-specific antibodies, as measured by IDEXX ELISA, appeared one week after vaccination and virus neutralizing antibodies were detected four weeks post vaccination. Pigs vaccinated with JXA1-R developed broadly neutralizing antibodies with high titers to NADC-20, JXA1-R, and HV-PRRSV. In addition, we also found that IFN-α and IFN-β occurred at higher levels in the lungs of pigs vaccinated with JXA1-R. Taken together, our studies provide the first evidence that JXA1-R can confer protection in pigs against the heterologous NA PRRSV strain NADC-20. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. [Effectiveness of a combined live mumps-measles vaccine].

    PubMed

    Unanov, S S; Korzh, Iu N; Dorofeev, V M; Iuminova, N V; Myshliaeva, L A

    1987-01-01

    The reactogenic and areactogenic properties of a live combined mumps-measles vaccine (MMV) prepared in primary cultures of Japanese quail embryo cells from attenuated strains of mumps (L-3) and measles (L-16) viruses were under study. The observations involved 648 infants varying in ages from 1 to 3 years, seronegative to measles and mumps viruses, without the history of the disease and vaccinations against these infections or contraindications to vaccinations. The infants were vaccinated with 5 batches of MMV with different portions of the mumps and measles components. The vaccinees and controls (placebo injections) were observed for 30 days postvaccination. The live MMV was shown to be a safe, well tolerated preparation with low reactogenicity and a high antigenic activity.

  5. Classical Swine Fever Outbreak after Modified Live LOM Strain Vaccination in Naive Pigs, South Korea

    PubMed Central

    Je, Sang H.; Kwon, Taeyong; Yoo, Sung J.; Lee, Dong-Uk; Lee, SeungYoon; Richt, Juergen A.

    2018-01-01

    We report classical swine fever outbreaks occurring in naive pig herds on Jeju Island, South Korea, after the introduction of the LOM vaccine strain. Two isolates from sick pigs had >99% identity with the vaccine stain. LOM strain does not appear safe; its use in the vaccine should be reconsidered. PMID:29553332

  6. Live attenuated herpes zoster vaccine for HIV-infected adults.

    PubMed

    Shafran, S D

    2016-04-01

    Multiple guidelines exist for the use of live viral vaccines for measles-mumps-rubella (MMR), varicella and yellow fever in people with HIV infections, but these guidelines do not make recommendations regarding live attenuated herpes zoster vaccine (LAHZV), which is approved for people over 50 years in the general population. LAHZV is made with the same virus used in varicella vaccine. The incidence of herpes zoster remains increased in people with HIV infection, even when on suppressive antiretroviral therapy, and a growing proportion of HIV-infected patients are over 50 years of age. The purpose of this article is to review the use of varicella vaccine and LAHZV in people with HIV infection and to make recommendations about the use of LAHZV in adults with HIV infection. A PubMed search was undertaken using the terms 'herpes zoster AND HIV' and 'varicella AND HIV'. Reference lists were also reviewed for pertinent citations. Varicella vaccine is recommended in varicella-susceptible adults, as long as they have a CD4 count > 200 cells/μL, the same CD4 threshold used for MMR and yellow fever vaccines. No transmission of vaccine strain Varicella zoster virus has been documented in people with HIV infections with a CD4 count above this threshold. LAHZV was administered to 295 HIV-infected adults with a CD4 count > 200 cells/μL, and was safe and immunogenic with no cases of vaccine strain infection. It is recommended that LAHZV be administered to HIV-infected adults with a CD4 count above 200 cells/μL, the same CD4 threshold used for other live attenuated viral vaccines. © 2015 British HIV Association.

  7. Development, validation and field evaluation of a quantitative real-time PCR able to differentiate between field Mycoplasma synoviae and the MS-H-live vaccine strain.

    PubMed

    Dijkman, R; Feberwee, A; Landman, W J M

    2017-08-01

    A quantitative PCR (qPCR) able to differentiate between field Mycoplasma synoviae and MS-H vaccine strain was developed, validated and evaluated. It was developed using nucleotide differences in the obg gene. Analytical specificity and sensitivity assessed using DNA from 194 M. synoviae field samples, three different batches of MS-H vaccine and from 43 samples representing four other avian Mycoplasma species proved to be 100%. The detection limit for field M. synoviae and MS-H vaccine strain was 10 2-3 and 10 2 colony-forming units PCR equivalents/g trachea mucus, respectively. The qPCR was able to detect both, field M. synoviae and MS-H vaccine strain in ratios of 1:100 determined both using spiked and field samples. One hundred and twenty samples from M. synoviae-infected non-vaccinated birds, 110 samples from M. synoviae-vaccinated birds from a bird experiment and 224 samples from M. synoviae negative (serology and PCR) birds were used to determine the relative sensitivity and specificity using a previously described M. synoviae PCR as reference. The relative sensitivity and specificity for field M. synoviae were 95.0% and 99.6%, respectively, and 94.6% and 100% for the MS-H-live vaccine, respectively. Field validation and confirmation by multi locus sequence typing revealed that the qPCR correctly distinguished between MS-H and field M. synoviae. Evaluation of the differentiating M. synoviae qPCR in three commercial flocks suggested transmission of MS-H-live vaccine from vaccinated to non-vaccinated flocks at the same farm. Furthermore, it showed evidence for the colonization with field M. synoviae in MS-H-vaccinated flocks.

  8. Vaccine-induced rabies case in a cow (Bos taurus): Molecular characterisation of vaccine strain in brain tissue.

    PubMed

    Vuta, Vlad; Picard-Meyer, Evelyne; Robardet, Emmanuelle; Barboi, Gheorghe; Motiu, Razvan; Barbuceanu, Florica; Vlagioiu, Constantin; Cliquet, Florence

    2016-09-22

    Rabies is a fatal neuropathogenic zoonosis caused by the rabies virus of the Lyssavirus genus, Rhabdoviridae family. The oral vaccination of foxes - the main reservoir of rabies in Europe - using a live attenuated rabies virus vaccine was successfully conducted in many Western European countries. In July 2015, a rabies vaccine strain was isolated from the brain tissues of a clinically suspect cow (Bos taurus) in Romania. The nucleotide analysis of both N and G gene sequences showed 100% identity between the rabid animal, the GenBank reference SAD B19 strain and five rabies vaccine batches used for the national oral vaccination campaign targeting foxes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Completed sequences analysis on the Chinese attenuated yellow fever 17D vaccine strain and the WHO standard yellow fever 17D vaccine strain].

    PubMed

    Li, Jing; Yu, Yong-Xin; Dong, Guan-Mu

    2009-04-01

    To compare the molecular characteristics of the Chinese attenuated yellow fever 17D vaccine strain and the WHO reference yellow fever 17D vaccine strain. The primers were designed according to the published nucleotide sequences of YFV 17D strains in GenBank. Total RNA of was extracted by the Trizol and reverse transcripted. The each fragments of the YFV genome were amplified by PCR and sequenced subsequently. The fragments of the 5' and 3' end of the two strains were cloned into the pGEM T-easy vector and then sequenced. The nucleotide acid and amino acid sequences of the homology to both strains were 99% with each other. No obvious nulceotide changes were found in the sequences of the entire genome of each 17D strains. Moreover, there was no obvious changes in the E protein genes. But the E173 of YF17D Tiantan, associted with the virulence, had mutantions. And the two live attenuated yellow fever 17D vaccine strains fell to the same lineage by the phylogenetic analysis. The results indicated that the two attenuated yellow fever 17D vaccine viruses accumulates mutations at a very low frequency and the genomes were relative stable.

  10. Molecular characterization of chicken infectious anemia virus from contaminated live-virus vaccines.

    PubMed

    Li, Yang; Hu, Yan; Cui, Shuai; Fu, Jiayuan; Wang, Yixin; Cui, Zhizhong; Fang, Lichun; Chang, Shuang; Zhao, Peng

    2017-05-01

    The aim of this study was to investigate possible causes of the pervasiveness of chicken infectious anemia virus (CIAV) infection in chickens in recent years in China. A total of 14 batches of live-virus vaccines were examined using PCR to detect CIAV contamination, of which only 2 samples (a Newcastle disease vaccine and a fowl pox vaccine) tested positive for CIAV. These Newcastle and fowl pox vaccines were then inoculated into 1-day-old specific-pathogen-free chickens. Serum samples were collected from chickens infected with the PCR-positive vaccines, and these tested positive for CIAV-specific antibodies as tested using ELISA. In addition, DNA samples isolated from the serum samples also tested positive by PCR. The results indicated that the samples were contaminated with CIAV and identified 2 exogenous CIAV strains, designated CIAV-N22 and CIAV-F10, in the respective samples. The full genome sequences of these novel CIAV strains were sequenced and analyzed. Phylogenetic tree analysis indicated that the CIAV-F10 strain might represent a recombinant viral strain arising from the parental CIAV strains JQ690762 and KJ728816. Overall, the results suggested that vaccination with CIAV-contaminated vaccines contributed to the prevalence and spread of CIAV infection in chickens. Furthermore, the CIAV contaminant was likely subsequently transmitted to commercial chickens through congenital transmission. Our findings therefore highlight the need for more extensive screening of live-virus vaccines for poultry in China to reduce the threat of contamination with exogenous viruses. © 2016 Poultry Science Association Inc.

  11. Preliminary assessment of the safety and immunogenicity of live oral cholera vaccine strain CVD 103-HgR in healthy Thai adults.

    PubMed Central

    Migasena, S; Pitisuttitham, P; Prayurahong, B; Suntharasamai, P; Supanaranond, W; Desakorn, V; Vongsthongsri, U; Tall, B; Ketley, J; Losonsky, G

    1989-01-01

    A single dose (5 x 10(8) organisms) of attenuated A- B+ Vibrio cholerae classical Inaba recombinant vaccine strain CVD 103-HgR or placebo was administered to 24 healthy young Thai adults in a randomized, placebo-controlled, double-blind trial of safety and immunogenicity. None of the volunteers experienced untoward reactions. The vaccine strain was recovered from 2 of 12 vaccines. The vibriocidal antibody response (the best immunological correlate of protection) was good: 11 of 12 vaccinees (92%) manifested significant serotype-homologous Inaba antibody rises with a peak reciprocal geometric mean titer (RGMT) postvaccination of 3,417; 9 of 12 exhibited significant serotype-heterologous Ogawa antibody rises (prevaccination RGMT, 180; peak RGMT, 2,874). Nine of 12 vaccinees had significant rises in serum antitoxin. None of the controls exhibited rises in vibriocidal or antitoxic antibody. This preliminary study further confirms the safety and immunogenicity of CVD 103-HgR live oral cholera vaccine and paves the way for larger community studies of this candidate cholera vaccine. PMID:2807523

  12. Protective immune response of chickens to oral vaccination with thermostable live Fowlpox virus vaccine (strain TPV-1) coated on oiled rice.

    PubMed

    Wambura, Philemon N; Godfrey, S K

    2010-03-01

    The objective of the present study was to develop and evaluate a local vaccine (strain TPV-1) against Fowl pox (FP) in chickens. Two separate groups of chickens were vaccinated with FP vaccine through oral (coated on oiled rice) and wing web stab routes, respectively. The results showed that the haemagglutination-inhibition (HI) antibody titres in both vaccinated groups were comparable and significantly higher (P < 0.05) than the control chickens. It was further revealed that 14 days after vaccination HI GMT of > or =2 log(2) was recorded in chickens vaccinated by oral and wing web stab routes whereas 35 days after vaccination the HI antibody titres reached 5.6 log(2) and 6.3 log(2), respectively. Moreover, in both groups the birds showed 100% protection against challenge virus at 35 days after vaccination. The findings from the present study have shown that oral route is equally effective as wing web stab route for vaccination of chickens against FP. However, the oral route can be used in mass vaccination of birds thus avoid catching individual birds for vaccination. It was noteworthy that strain TPV-1 virus could be propagated by a simple allantoic cavity inoculation and harvesting of allantoic fluid where it survived exposure at 57 degrees C for 2 hours. If the oral vaccination technique is optimized it may be used in controlling FP in scavenging and feral chickens. In conclusion, the present study has shown that FP vaccine (strain TPV-1) was safe, thermostable, immunogenic and efficacious in vaccinated chickens.

  13. Low Dose Vaccination with Attenuated Francisella tularensis Strain SchuS4 Mutants Protects against Tularemia Independent of the Route of Vaccination

    PubMed Central

    Rockx-Brouwer, Dedeke; Chong, Audrey; Wehrly, Tara D.; Child, Robert; Crane, Deborah D.

    2012-01-01

    Tularemia, caused by the Gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. <100 organisms, may address this concern. Herein we describe the ability of three defined, attenuated mutants of F. tularensis SchuS4, deleted for FTT0369c, FTT1676, or FTT0369c and FTT1676, respectively, to engender protective immunity against tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia. PMID:22662210

  14. Live Streptococcus suis type 5 strain XS045 provides cross-protection against infection by strains of types 2 and 9.

    PubMed

    Jiang, Xiaowu; Yang, Yunkai; Zhu, Lexin; Gu, Yuanxing; Shen, Hongxia; Shan, Ying; Li, Xiaoliang; Wu, Jiusheng; Fang, Weihuan

    2016-12-12

    Streptococcus suis is one of the common pathogens causing diseases in pigs and covers 35 serotypes with the type 2 strains being more pathogenic and zoonotic. Existing inactivated or subunit vaccines, in clinical use or under trial, could not provide cross protection against other serotypes. We identified a natural low-virulence S. suis type 5 strain XS045 as a live vaccine candidate because it is highly adhesive to the cultured HEp-2 cells, but with no apparent pathogenicity in mice and piglets. We further demonstrate that subcutaneous administration of the live XS045 strain to mice induced high antibody responses and was able to provide cross protection against challenges by a type 2 strain HA9801 (100% protection) and a type 9 strain JX13 (85% protection). Induction of high-titer antibodies with opsonizing activity as well as their cross-reactivity to surface proteins of the types 2 and 9 strains and anti-adhesion effect could be the mechanisms of cross protection. This is the first report that a live vaccine candidate S. suis type 5 strain could induce cross-protection against strains of types 2 and 9. This candidate strain is to be further examined for safety in pigs of different ages and breeds as well as for its protection against other serotypes or other strains of the type 2, a serotype of particular importance from public health concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The delicate balance in genetically engineering live vaccines

    PubMed Central

    Galen, James E.; Curtiss, Roy

    2014-01-01

    Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will further explore the adaptation of attenuated strains to create multivalent vaccine platforms for immunization against multiple unrelated pathogens. These carrier vaccines are engineered to deliver sufficient levels of protective antigens to appropriate lymphoid inductive sites to elicit both carrier-specific and foreign antigen-specific immunity. Although many of these technologies were originally developed for use in Salmonella vaccines, application of the essential logic of these approaches will be extended to development of other enteric vaccines where possible. A central theme driving our discussion will stress that the ultimate success of an engineered vaccine rests on achieving the proper balance between attenuation and immunogenicity. Achieving this balance will avoid over-activation of inflammatory responses, which results in unacceptable reactogenicity, but will retain sufficient metabolic fitness to enable the live vaccine to reach deep tissue inductive sites and trigger protective immunity. The breadth of examples presented herein will clearly demonstrate that genetic engineering offers the potential for rapidly propelling vaccine development forward into novel applications and therapies which will significantly expand the role of vaccines in public health. PMID:24370705

  16. Current Efforts and Future Prospects in the Development of Live Mycobacteria as Vaccines

    PubMed Central

    Porcelli, Steven A.; Ng, Tony W.; Saavedra-Avila, Noemi A; Kennedy, Steven C.; Carreno, Leandro J.

    2016-01-01

    Summary The development of more effective vaccines against Mycobacterium tuberculosis (Mtb) remains a major goal in the effort to reduce the enormous global burden of disease caused by this pathogen. Whole-cell vaccines based on live mycobacteria with attenuated virulence represent an appealing approach, providing broad antigen exposure and intrinsic adjuvant properties to prime durable immune responses. However, designing vaccine strains with an optimal balance between attenuation and immunogenicity has proven to be extremely challenging. Recent basic and clinical research efforts have broadened our understanding of Mtb pathogenesis and created numerous new vaccine candidates that are designed to overcome different aspects of immune evasion by Mtb. In this review, we provide an overview of current efforts to create improved vaccines against tuberculosis based on modifications of live attenuated mycobacteria. In addition, we discuss the use of such vaccine strains as vectors for stimulating protective immunity against other infectious diseases and cancers. PMID:26366616

  17. Real-time reverse transcription polymerase chain reaction method for detection of Canine distemper virus modified live vaccine shedding for differentiation from infection with wild-type strains.

    PubMed

    Wilkes, Rebecca P; Sanchez, Elena; Riley, Matthew C; Kennedy, Melissa A

    2014-01-01

    Canine distemper virus (CDV) remains a common cause of infectious disease in dogs, particularly in high-density housing situations such as shelters. Vaccination of all dogs against CDV is recommended at the time of admission to animal shelters and many use a modified live virus (MLV) vaccine. From a diagnostic standpoint for dogs with suspected CDV infection, this is problematic because highly sensitive diagnostic real-time reverse transcription polymerase chain reaction (RT-PCR) tests are able to detect MLV virus in clinical samples. Real-time PCR can be used to quantitate amount of virus shedding and can differentiate vaccine strains from wild-type strains when shedding is high. However, differentiation by quantitation is not possible in vaccinated animals during acute infection, when shedding is low and could be mistaken for low level vaccine virus shedding. While there are gel-based RT-PCR assays for differentiation of vaccine strains from field strains based on sequence differences, the sensitivity of these assays is unable to match that of the real-time RT-PCR assay currently used in the authors' laboratory. Therefore, a real-time RT-PCR assay was developed that detects CDV MLV vaccine strains and distinguishes them from wild-type strains based on nucleotide sequence differences, rather than the amount of viral RNA in the sample. The test is highly sensitive, with detection of as few as 5 virus genomic copies (corresponding to 10(-1) TCID(50)). Sequencing of the DNA real-time products also allows phylogenetic differentiation of the wild-type strains. This test will aid diagnosis during outbreaks of CDV in recently vaccinated animals.

  18. Strain-specific reverse transcriptase PCR assay: means to distinguish candidate vaccine from wild-type strains of respiratory syncytial virus.

    PubMed Central

    Zheng, H; Peret, T C; Randolph, V B; Crowley, J C; Anderson, L J

    1996-01-01

    Candidate live-virus vaccines for respiratory syncytial virus are being developed and are beginning to be evaluated in clinical trials. To distinguish candidate vaccine strains from wild-type strains isolated during these trials, we developed PCR assays specific to two sets of candidate vaccine strains. The two sets were a group A strain (3A), its three attenuated, temperature-sensitive variant strains, a group B strain (2B), and its four attenuated, temperature-sensitive variant strains. The PCR assays were evaluated by testing 18 group A wild-type strains, the 3A strains, 9 group B wild-type strains, and the 2B strains. PCR specific to group A wild-type strains amplified only group A wild-type strains, and 3A-specific PCR amplified only 3A strains. PCR specific to group B wild-type strains amplified all group A and group B strains but gave a 688-bp product for group B wild-type strains, a 279-bp product for 2B strains, a 547-bp product for all group A strains, and an additional 688-bp product for some group A strains, including 3A strains. These types of PCR assays can, in conjunction with other methods, be used to efficiently distinguish candidate vaccine strains from other respiratory syncytial virus strains. PMID:8789010

  19. [Genetic recombination in vaccine poliovirus: comparative study in strains excreted in course of vaccination by oral poliovirus vaccine and circulating strains].

    PubMed

    Haddad-Boubaker, S; Ould-Mohamed-Abdallah, M V; Ben-Yahia, A; Triki, H

    2010-12-01

    Recombination is one of the major mechanisms of evolution in poliovirus. In this work, recombination was assessed in children during vaccination with OPV and among circulating vaccine strains isolated in Tunisia during the last 15 years in order to identify a possible role of recombination in the response to the vaccine or the acquisition of an increased transmissibility. This study included 250 poliovirus isolates: 137 vaccine isolates, excreted by children during primary vaccination with OPV and 113 isolates obtained from acute flaccid paralytic (AFP) cases and healthy contacts. Recombination was first assessed using a double PCR-RFLP, and sequencing. Nineteen per cent of recombinant strains were identified: 20% of strains excreted by vaccinees among 18% of circulating strains. The proportion of recombinant in isolates of serotype1 was very low in the two groups while the proportions of recombinants in serotypes 2 and 3 were different. In vaccinees, the frequency of recombinants in serotype3 decreased during the course of vaccination: 54% after the first dose, 32% after the second and 14% after the third dose. These results suggest that recombination enhances the ability of serotype3 vaccine strains to induce an immune response. Apart from recent vaccination, it may contribute to a more effective transmissibility of vaccine strains among human population. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  20. Biopolymer encapsulated live influenza virus as a universal CD8+ T cell vaccine against influenza virus.

    PubMed

    Boesteanu, Alina C; Babu, Nadarajan S; Wheatley, Margaret; Papazoglou, Elisabeth S; Katsikis, Peter D

    2010-12-16

    Current influenza virus vaccines primarily elicit antibodies and can be rendered ineffective by antigenic drift and shift. Vaccines that elicit CD8+ T cell responses targeting less variable proteins may function as universal vaccines that have broad reactivity against different influenza virus strains. To generate such a universal vaccine, we encapsulated live influenza virus in a biopolymer and delivered it to mice subcutaneously. This vaccine was safe, induced potent CD8+ T cell immunity and protected mice against heterosubtypic lethal challenge. Safety of subcutaneous (SQ) vaccination was tested in Rag-/-γc-/- double knockout mice which we show cannot control intranasal infection. Biopolymer encapsulation of live influenza virus could be used to develop universal CD8+ T cell vaccines against heterosubtypic and pandemic strains. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Evaluation of a Salmonella Strain Lacking the Secondary Messenger C-di-GMP and RpoS as a Live Oral Vaccine

    PubMed Central

    García, Begoña; Gil, Carmen; García-Ona, Enrique; Burgui, Saioa; Casares, Noelia; Hervás-Stubbs, Sandra; Lasarte, Juan José; Lasa, Iñigo

    2016-01-01

    Salmonellosis is one of the most important bacterial zoonotic diseases transmitted through the consumption of contaminated food, with chicken and pig related products being key reservoirs of infection. Although numerous studies on animal vaccination have been performed in order to reduce Salmonella prevalence, there is still a need for an ideal vaccine. Here, with the aim of constructing a novel live attenuated Salmonella vaccine candidate, we firstly analyzed the impact of the absence of cyclic-di-GMP (c-di-GMP) in Salmonella virulence. C-di-GMP is an intracellular second messenger that controls a wide range of bacterial processes, including biofilm formation and synthesis of virulence factors, and also modulates the host innate immune response. Our results showed that a Salmonella multiple mutant in the twelve genes encoding diguanylate cyclase proteins that, as a consequence, cannot synthesize c-di-GMP, presents a moderate attenuation in a systemic murine infection model. An additional mutation of the rpoS gene resulted in a synergic attenuating effect that led to a highly attenuated strain, referred to as ΔXIII, immunogenic enough to protect mice against a lethal oral challenge of a S. Typhimurium virulent strain. ΔXIII immunogenicity relied on activation of both antibody and cell mediated immune responses characterized by the production of opsonizing antibodies and the induction of significant levels of IFN-γ, TNF-α, IL-2, IL-17 and IL-10. ΔXIII was unable to form a biofilm and did not survive under desiccation conditions, indicating that it could be easily eliminated from the environment. Moreover, ΔXIII shows DIVA features that allow differentiation of infected and vaccinated animals. Altogether, these results show ΔXIII as a safe and effective live DIVA vaccine. PMID:27537839

  2. Correlation of genetic variability with safety of mumps vaccine Urabe AM9 strain.

    PubMed

    Amexis, G; Fineschi, N; Chumakov, K

    2001-08-15

    The Urabe AM9 strain of mumps vaccine live is known for its genetic instability and some vaccines derived from this strain were withdrawn from the market due to an excessive number of vaccine-associated parotitis and meningitis cases. To identify the molecular basis of this instability, we determined complete nucleotide sequences of several stocks of the Urabe strain used for vaccine production by different manufacturers and of two clinical isolates from cases of vaccine-associated meningitis. In contrast to previously published studies relating the Lys335 --> Glu mutation in the viral HN gene with neurovirulence of mumps virus, we could not confirm any association of this mutation with the safety of mumps vaccine. Each of the three vaccine stocks studied had its own characteristic profile of mutations that was identified by cDNA sequencing and quantitated by mutant analysis by PCR and restriction enzyme cleavage. Determination of the mutational profile of mumps vaccine lots could allow vaccine manufacturers to characterize seed viruses and monitor the consistency of vaccine production to prevent emergence of virulent revertants.

  3. Identification of vaccine-derived rotavirus strains in children with acute gastroenteritis in Japan, 2012-2015.

    PubMed

    Kaneko, Mei; Takanashi, Sayaka; Thongprachum, Aksara; Hanaoka, Nozomu; Fujimoto, Tsuguto; Nagasawa, Koo; Kimura, Hirokazu; Okitsu, Shoko; Mizuguchi, Masashi; Ushijima, Hiroshi

    2017-01-01

    Two live attenuated oral rotavirus vaccines, Rotarix and RotaTeq, have been introduced as voluntary vaccination in Japan since 2011 and 2012, respectively. Effectiveness of the vaccines has been confirmed, whereas concerns such as shedding of the vaccine strains and gastroenteritis cases caused by vaccine strains are not well assessed. We aimed to identify the vaccine strains in children with acute gastroenteritis (AGE) to investigate the prevalence of AGE caused by vaccination or horizontal transmission of vaccine strains. A total of 1,824 stool samples were collected from children with AGE at six outpatient clinics in 2012-2015. Among all, 372 group A rotavirus (RVA) positive samples were screened for vaccine components by real-time RT-PCR which were designed to differentiate vaccine strains from rotavirus wild-type strains with high specificity. For samples possessing both vaccine and wild-type strains, analyses by next-generation sequencing (NGS) were conducted to characterize viruses existed in the intestine. As a result, Rotarix-derived strains were identified in 6 of 372 (1.6%) RVA positive samples whereas no RotaTeq strain was detected. Among six samples, four possessed Rotarix-derived strains while two possessed both Rotarix-derived strains and wild-type strains. In addition, other pathogens such as norovirus, enterovirus and E.coli were detected in four samples. The contribution of these vaccine strains to each patient's symptoms was unclear as all of the cases were vaccinated 2-14 days before sample collection. Proportion of average coverage for each segmented gene by NGS strongly suggested the concurrent infection of the vaccine-derived strain and the wild-type strain rather than reassortment of these two strains in one sample. This is the first study to report the prevalence of vaccine-derived strains in patients with RVA AGE in Japan as 1.6% without evidence of horizontal transmission. The results emphasized the importance of continuous monitoring on

  4. Identification of vaccine-derived rotavirus strains in children with acute gastroenteritis in Japan, 2012-2015

    PubMed Central

    Kaneko, Mei; Thongprachum, Aksara; Hanaoka, Nozomu; Fujimoto, Tsuguto; Nagasawa, Koo; Kimura, Hirokazu; Okitsu, Shoko; Mizuguchi, Masashi; Ushijima, Hiroshi

    2017-01-01

    Two live attenuated oral rotavirus vaccines, Rotarix and RotaTeq, have been introduced as voluntary vaccination in Japan since 2011 and 2012, respectively. Effectiveness of the vaccines has been confirmed, whereas concerns such as shedding of the vaccine strains and gastroenteritis cases caused by vaccine strains are not well assessed. We aimed to identify the vaccine strains in children with acute gastroenteritis (AGE) to investigate the prevalence of AGE caused by vaccination or horizontal transmission of vaccine strains. A total of 1,824 stool samples were collected from children with AGE at six outpatient clinics in 2012–2015. Among all, 372 group A rotavirus (RVA) positive samples were screened for vaccine components by real-time RT-PCR which were designed to differentiate vaccine strains from rotavirus wild-type strains with high specificity. For samples possessing both vaccine and wild-type strains, analyses by next-generation sequencing (NGS) were conducted to characterize viruses existed in the intestine. As a result, Rotarix-derived strains were identified in 6 of 372 (1.6%) RVA positive samples whereas no RotaTeq strain was detected. Among six samples, four possessed Rotarix-derived strains while two possessed both Rotarix-derived strains and wild-type strains. In addition, other pathogens such as norovirus, enterovirus and E.coli were detected in four samples. The contribution of these vaccine strains to each patient’s symptoms was unclear as all of the cases were vaccinated 2–14 days before sample collection. Proportion of average coverage for each segmented gene by NGS strongly suggested the concurrent infection of the vaccine-derived strain and the wild-type strain rather than reassortment of these two strains in one sample. This is the first study to report the prevalence of vaccine-derived strains in patients with RVA AGE in Japan as 1.6% without evidence of horizontal transmission. The results emphasized the importance of continuous

  5. Flu myths: dispelling the myths associated with live attenuated influenza vaccine.

    PubMed

    Tosh, Pritish K; Boyce, Thomas G; Poland, Gregory A

    2008-01-01

    Live attenuated influenza vaccine (LAIV), commercially available since 2003, has not gained widespread acceptance among prescribers. This underuse can be traced to several misperceptions and fears regarding LAIV. This review examines both the facts (safety, immunogenicity, and effectiveness) and the most pervasive myths about LAIV. Live attenuated influenza vaccine is a safe, highly immunogenic, and effective vaccine. It is well tolerated; only mild and transient upper respiratory infection symptoms occur with LAIV vs placebo, even in higher-risk patients with asthma or the early stages of human immunodeficiency virus. It is immunogenic, especially in induction of mucosal immunity. In certain populations, LAIV is as effective as, and in some cases more effective than, inactivated influenza in preventing influenza infection. It appears to be more effective in preventing influenza infection than trivalent inactivated influenza vaccine when the vaccine virus strain does not closely match that of the circulating wild-type virus. Many myths and misperceptions about the vaccine exist, foremost among them the myth of genetic reversion. Independent mutation in 4 gene segments would be required for reversion of the vaccine strain of influenza virus to a wild type, an unlikely and as yet unobserved event. Although shedding of vaccine virus is common, transmission of vaccine virus has been documented only in a single person, who remained asymptomatic. In the age groups for which it is indicated, LAIV is a safe and effective vaccine to prevent influenza infection.

  6. Interleukin-17 protects against the Francisella tularensis live vaccine strain but not against a virulent F. tularensis type A strain.

    PubMed

    Skyberg, Jerod A; Rollins, Maryclare F; Samuel, Joshua W; Sutherland, Marjorie D; Belisle, John T; Pascual, David W

    2013-09-01

    Francisella tularensis is a highly infectious intracellular bacterium that causes the zoonotic infection tularemia. While much literature exists on the host response to F. tularensis infection, the vast majority of work has been conducted using attenuated strains of Francisella that do not cause disease in humans. However, emerging data indicate that the protective immune response against attenuated F. tularensis versus F. tularensis type A differs. Several groups have recently reported that interleukin-17 (IL-17) confers protection against the live vaccine strain (LVS) of Francisella. While we too have found that IL-17Rα(-/-) mice are more susceptible to F. tularensis LVS infection, our studies, using a virulent type A strain of F. tularensis (SchuS4), indicate that IL-17Rα(-/-) mice display organ burdens and pulmonary gamma interferon (IFN-γ) responses similar to those of wild-type mice following infection. In addition, oral LVS vaccination conferred equivalent protection against pulmonary challenge with SchuS4 in both IL-17Rα(-/-) and wild-type mice. While IFN-γ was found to be critically important for survival in a convalescent model of SchuS4 infection, IL-17 neutralization from either wild-type or IFN-γ(-/-) mice had no effect on morbidity or mortality in this model. IL-17 protein levels were also higher in the lungs of mice infected with the LVS rather than F. tularensis type A, while IL-23p19 mRNA expression was found to be caspase-1 dependent in macrophages infected with LVS but not SchuS4. Collectively, these results demonstrate that IL-17 is dispensable for host immunity to type A F. tularensis infection, and that induced and protective immunity differs between attenuated and virulent strains of F. tularensis.

  7. Yellow fever live attenuated vaccine: A very successful live attenuated vaccine but still we have problems controlling the disease.

    PubMed

    Barrett, Alan D T

    2017-10-20

    Yellow fever (YF) is regarded as the original hemorrhagic fever and has been a major public health problem for at least 250years. A very effective live attenuated vaccine, strain 17D, was developed in the 1930s and this has proved critical in the control of the disease. There is little doubt that without the vaccine, YF virus would be considered a biosafety level 4 pathogen. Significantly, YF is currently the only disease where an international vaccination certificate is required under the International Health Regulations. Despite having a very successful vaccine, there are occasional issues of supply and demand, such as that which occurred in Angola and Democratic Republic of Congo in 2016 when there was insufficient vaccine available. For the first time fractional dosing of the vaccine was approved on an emergency basis. Thus, continued vigilance and improvements in supply and demand are needed in the future. Copyright © 2017. Published by Elsevier Ltd.

  8. The double-edged sword: How evolution can make or break a live-attenuated virus vaccine

    PubMed Central

    Hanley, Kathryn A.

    2012-01-01

    Even students who reject evolution are often willing to consider cases in which evolutionary biology contributes to, or undermines, biomedical interventions. Moreover the intersection of evolutionary biology and biomedicine is fascinating in its own right. This review offers an overview of the ways in which evolution has impacted the design and deployment of live-attenuated virus vaccines, with subsections that may be useful as lecture material or as the basis for case studies in classes at a variety of levels. Live- attenuated virus vaccines have been modified in ways that restrain their replication in a host, so that infection (vaccination) produces immunity but not disease. Applied evolution, in the form of serial passage in novel host cells, is a “classical” method to generate live-attenuated viruses. However many live-attenuated vaccines exhibit reversion to virulence through back-mutation of attenuating mutations, compensatory mutations elsewhere in the genome, recombination or reassortment, or changes in quasispecies diversity. Additionally the combination of multiple live-attenuated strains may result in competition or facilitation between individual vaccine viruses, resulting in undesirable increases in virulence or decreases in immunogenicity. Genetic engineering informed by evolutionary thinking has led to a number of novel approaches to generate live-attenuated virus vaccines that contain substantial safeguards against reversion to virulence and that ameliorate interference among multiple vaccine strains. Finally, vaccines have the potential to shape the evolution of their wild type counterparts in counter-productive ways; at the extreme vaccine-driven eradication of a virus may create an empty niche that promotes the emergence of new viral pathogens. PMID:22468165

  9. A novel live attenuated anthrax spore vaccine based on an acapsular Bacillus anthracis Sterne strain with mutations in the htrA, lef and cya genes.

    PubMed

    Chitlaru, Theodor; Israeli, Ma'ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Ehrlich, Sharon; Cohen, Ofer; Shafferman, Avigdor

    2017-10-20

    We recently reported the development of a novel, next-generation, live attenuated anthrax spore vaccine based on disruption of the htrA (High Temperature Requirement A) gene in the Bacillus anthracis Sterne veterinary vaccine strain. This vaccine exhibited a highly significant decrease in virulence in murine, guinea pig and rabbit animal models yet preserved the protective value of the parental Sterne strain. Here, we report the evaluation of additional mutations in the lef and cya genes, encoding for the toxin components lethal factor (LF) and edema factor (EF), to further attenuate the SterneΔhtrA strain and improve its compatibility for human use. Accordingly, we constructed seven B. anthracis Sterne-derived strains exhibiting different combinations of mutations in the htrA, cya and lef genes. The various strains were indistinguishable in growth in vitro and in their ability to synthesise the protective antigen (PA, necessary for the elicitation of protection). In the sensitive murine model, we observed a gradual increase (ΔhtrA<ΔhtrAΔcya<ΔhtrAΔlef<ΔhtrAΔlefΔcya) in attenuation - up to 10 8 -fold relative to the parental Sterne vaccine strain. Most importantly, all various SterneΔhtrA derivative strains did not differ in their ability to elicit protective immunity in guinea pigs. Immunisation of guinea pigs with a single dose (10 9 spores) or double doses (>10 7 spores) of the most attenuated triple mutant strain SterneΔhtrAlef MUT Δcya induced a robust immune response, providing complete protection against a subsequent respiratory lethal challenge. Partial protection was observed in animals vaccinated with a double dose of as few as 10 5 spores. Furthermore, protective immune status was maintained in all vaccinated guinea pigs and rabbits for at least 40 and 30weeks, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Identification of sequence changes in live attenuated goose parvovirus vaccine strains developed in Asia and Europe.

    PubMed

    Shien, J-H; Wang, Y-S; Chen, C-H; Shieh, H K; Hu, C-C; Chang, P-C

    2008-10-01

    Live attenuated vaccines have been used for control of the disease caused by goose parvovirus (GPV), but the mechanism involved in attenuation of GPV remains elusive. This report presents the complete nucleotide sequences of two live attenuated strains of GPV (82-0321V and VG32/1) that were independently developed in Taiwan and Europe, together with the parental strain of 82-0321V and a field strain isolated in Taiwan in 2006. Sequence comparisons showed that 82-0321V and VG32/1 had multiple deletions and substitutions in the inverted terminal repeats region when compared with their parental strain or the field virus, but these changes did not affect the formation of the hairpin structure essential for viral replication. Moreover, 82-0321V and VG32/1 had five amino acid changes in the non-structural protein, but these changes were located at positions distant from known functional motifs in the non-structural protein. In contrast, 82-0321V had nine changes and VG32/1 had 11 changes in their capsid proteins (VP1), and the majority of these changes occurred at positions close to the putative receptor binding sites of VP1, as predicted using the structure of adeno-associated virus 2 as the model system. Taken together, the results suggest that changes in sequence near the receptor binding sites of VP1 might be responsible for attenuation of GPV. This is the first report of complete nucleotide sequences of GPV other than the virulent B strain, and suggests a possible mechanism for attenuation of GPV.

  11. Evaluation of Mycoplasma gallisepticum (MG) ts-304 vaccine as a live attenuated vaccine in turkeys.

    PubMed

    Kanci, Anna; Wijesurendra, Dinidu S; Wawegama, Nadeeka K; Underwood, Gregory J; Noormohammadi, Amir H; Markham, Philip F; Browning, Glenn F

    2018-04-25

    Mycoplasma gallisepticum (MG) is an important pathogen of poultry worldwide that causes chronic respiratory disease (CRD) in chickens and infectious sinusitis in turkeys. Vaxsafe MG (strain ts-11) is a live attenuated temperature sensitive vaccine that has been proven to be effective in controlling CRD in chickens, but it is not efficacious in turkeys. The gapA gene, which encodes a mature cytadhesin protein with a molecular weight of approximately 105 kDa, is not expressed in strain ts-11 because a 20 base pair reiterated sequence introduces a frame shift and causes premature truncation of the translated peptide. A GapA positive clone, MG ts-304, isolated from strain ts-11 has been shown to have enhanced efficacy in chickens. Here we describe studies we conducted to assess the safety and efficacy of the MG ts-304 vaccine candidate in turkeys. We found that MG ts-304 was able to colonise the trachea of 3-week-old turkeys and was safe, even at a tenfold overdose, inducing no adverse clinical signs of respiratory disease or significant gross lesions in the respiratory tract (air sacs or trachea), and was poorly transmissible to in-contact birds. We also showed that it was efficacious when administered to 3-week-old turkeys, inducing protective immunity against challenge with the M.gallisepticum wild-type strain Ap3AS. MG ts-304 is therefore a promising live attenuated vaccine candidate for use in turkeys. Copyright © 2018. Published by Elsevier Ltd.

  12. Safety and tolerability of a live oral Salmonella typhimurium vaccine candidate in SIV-infected nonhuman primates.

    PubMed

    Ault, Alida; Tennant, Sharon M; Gorres, J Patrick; Eckhaus, Michael; Sandler, Netanya G; Roque, Annelys; Livio, Sofie; Bao, Saran; Foulds, Kathryn E; Kao, Shing-Fen; Roederer, Mario; Schmidlein, Patrick; Boyd, Mary Adetinuke; Pasetti, Marcela F; Douek, Daniel C; Estes, Jacob D; Nabel, Gary J; Levine, Myron M; Rao, Srinivas S

    2013-12-02

    Nontyphoidal Salmonella (NTS) serovars are a common cause of acute food-borne gastroenteritis worldwide and can cause invasive systemic disease in young infants, the elderly, and immunocompromised hosts, accompanied by high case fatality. Vaccination against invasive NTS disease is warranted where the disease incidence and mortality are high and multidrug resistance is prevalent, as in sub-Saharan Africa. Live-attenuated vaccines that mimic natural infection constitute one strategy to elicit protection. However, they must particularly be shown to be adequately attenuated for consideration of immunocompromised subjects. Accordingly, we examined the safety and tolerability of an oral live attenuated Salmonella typhimurium vaccine candidate, CVD 1921, in an established chronic simian immunodeficiency virus (SIV)-infected rhesus macaque model. We evaluated clinical parameters, histopathology, and measured differences in mucosal permeability to wild-type and vaccine strains. Compared to the wild-type S. typhimurium strain I77 in both SIV-infected and SIV-uninfected nonhuman primate hosts, this live-attenuated vaccine shows reduced shedding and systemic spread, exhibits limited pathological disease manifestations in the digestive tract, and induces low levels of cellular infiltration in tissues. Furthermore, wild-type S. typhimurium induces increased intestinal epithelial damage and permeability, with infiltration of neutrophils and macrophages in both SIV-infected and SIV-uninfected nonhuman primates compared to the vaccine strain. Based on shedding, systemic spread, and histopathology, the live-attenuated S. typhimurium strain CVD 1921 appears to be safe and well-tolerated in the nonhuman primate model, including chronically SIV-infected rhesus macaques. Copyright © 2013. Published by Elsevier Ltd.

  13. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections

    PubMed Central

    Stanfield, Brent; Kousoulas, Konstantin Gus

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) and its closely related type-2 (HSV-2) viruses cause important clinical manifestations in humans including acute ocular disease and genital infections. These viruses establish latency in the trigeminal ganglionic and dorsal root neurons, respectively. Both viruses are widespread among humans and can frequently reactivate from latency causing disease. Currently, there are no vaccines available against herpes simplex viral infections. However, a number of promising vaccine approaches are being explored in pre-clinical investigations with few progressing to early phase clinical trials. Consensus research findings suggest that robust humoral and cellular immune responses may partially control the frequency of reactivation episodes and reduce clinical symptoms. Live-attenuated viral vaccines have long been considered as a viable option for generating robust and protective immune responses against viral pathogens. Varicella zoster virus (VZV) belongs to the same alphaherpesvirus subfamily with herpes simplex viruses. A live-attenuated VZV vaccine has been extensively used in a prophylactic and therapeutic approach to combat primary and recurrent VZV infection indicating that a similar vaccine approach may be feasible for HSVs. In this review, we summarize pre-clinical approaches to HSV vaccine development and current efforts to test certain vaccine approaches in human clinical trials. Also, we discuss the potential advantages of using a safe, live-attenuated HSV-1 vaccine strain to protect against both HSV-1 and HSV-2 infections. PMID:27114893

  14. Use of the mice passive protection test to evaluate the humoral response in goats vaccinated with Sterne 34F2 live spore vaccine.

    PubMed

    Phaswana, P H; Ndumnego, O C; Koehler, S M; Beyer, W; Crafford, J E; van Heerden, H

    2017-09-07

    The Sterne live spore vaccine (34F2) is the most widely used veterinary vaccine against anthrax in animals. Antibody responses to several antigens of Bacillus anthracis have been described with a large focus on those against protective antigen (PA). The focus of this study was to evaluate the protective humoral immune response induced by the live spore anthrax vaccine in goats. Boer goats vaccinated twice (week 0 and week 12) with the Sterne live spore vaccine and naive goats were used to monitor the anti-PA and toxin neutralizing antibodies at week 4 and week 17 (after the second vaccine dose) post vaccination. A/J mice were passively immunized with different dilutions of sera from immune and naive goats and then challenged with spores of B. anthracis strain 34F2 to determine the protective capacity of the goat sera. The goat anti-PA ELISA titres indicated significant sero-conversion at week 17 after the second doses of vaccine (p = 0.009). Mice receiving undiluted sera from goats given two doses of vaccine (twice immunized) showed the highest protection (86%) with only 20% of mice receiving 1:1000 diluted sera surviving lethal challenge. The in vitro toxin neutralization assay (TNA) titres correlated to protection of passively immunized A/J mice against lethal infection with the vaccine strain Sterne 34F2 spores using immune goat sera up to a 1:10 dilution (r s  ≥ 0.522, p = 0.046). This study suggests that the passive mouse protection model could be potentially used to evaluate the protective immune response in livestock animals vaccinated with the current live vaccine and new vaccines.

  15. Comparative safety, immunogenicity, and efficacy of several anti‐H5N1 influenza experimental vaccines in a mouse and chicken models (Testing of killed and live H5 vaccine)

    PubMed Central

    Gambaryan, Alexandra S.; Lomakina, Natalia F.; Boravleva, Elizaveta Y.; Kropotkina, Ekaterina A.; Mashin, Vadim V.; Krasilnikov, Igor V.; Klimov, Alexander I.; Rudenko, Larisa G.

    2011-01-01

    Please cite this paper as: Gambaryan et al. (2011) Comparative safety, immunogenicity, and efficacy of several anti‐H5N1 influenza experimental vaccines in a mouse and chicken models. Parallel testing of killed and live H5 vaccine. Influenza and Other Respiratory Viruses 6(3), 188–195. Objective  Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. Method  Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non‐glycoprotein genes of the experimental live vaccines were from H2N2 cold‐adapted master strain A/Leningrad/134/17/57 (VN‐Len and Ku‐Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN‐Gull and Ku‐Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. Results  All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold‐adapted H1N1 vaccine reduced the mortality near to zero level. Conclusions  The high yield, safety, and protectivity of VN‐Len and Ku‐Len made them promising strains for the production of inactivated and live

  16. Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle

    PubMed Central

    2014-01-01

    Background Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals. The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. Results In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All

  17. Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle.

    PubMed

    Romera, Sonia Alejandra; Puntel, Mariana; Quattrocchi, Valeria; Del Médico Zajac, Paula; Zamorano, Patricia; Blanco Viera, Javier; Carrillo, Consuelo; Chowdhury, Shafiqul; Borca, Manuel V; Sadir, Ana M

    2014-01-08

    Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals.The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All animals vaccinated with

  18. Comparative safety, immunogenicity, and efficacy of several anti-H5N1 influenza experimental vaccines in a mouse and chicken models (Testing of killed and live H5 vaccine).

    PubMed

    Gambaryan, Alexandra S; Lomakina, Natalia F; Boravleva, Elizaveta Y; Kropotkina, Ekaterina A; Mashin, Vadim V; Krasilnikov, Igor V; Klimov, Alexander I; Rudenko, Larisa G

    2012-05-01

    Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non-glycoprotein genes of the experimental live vaccines were from H2N2 cold-adapted master strain A/Leningrad/134/17/57 (VN-Len and Ku-Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN-Gull and Ku-Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold-adapted H1N1 vaccine reduced the mortality near to zero level. The high yield, safety, and protectivity of VN-Len and Ku-Len made them promising strains for the production of inactivated and live vaccines against H5N1 viruses. © 2011 Blackwell Publishing Ltd.

  19. Rescue of a vaccine strain of peste des petits ruminants virus: In vivo evaluation and comparison with standard vaccine

    PubMed Central

    Muniraju, Murali; Mahapatra, Mana; Buczkowski, Hubert; Batten, Carrie; Banyard, Ashley C.; Parida, Satya

    2015-01-01

    Across the developing world peste des petits ruminants virus places a huge disease burden on agriculture, primarily affecting the production of small ruminant. The disease is most effectively controlled by vaccinating sheep and goats with live attenuated vaccines that provide lifelong immunity. However, the current vaccines and serological tests are unable to enable Differentiation between naturally Infected and Vaccinated Animals (DIVA). This factor precludes meaningful assessment of vaccine coverage and epidemiological surveillance based on serology, in turn reducing the efficiency of control programmes. The availability of a recombinant PPRV vaccine with a proven functionality is a prerequisite for the development of novel vaccines that may enable the development of DIVA tools for PPRV diagnostics. In this study, we have established an efficient reverse genetics system for PPRV Nigeria 75/1 vaccine strain and, further rescued a version of PPRV Nigeria 75/1 vaccine strain that expresses eGFP as a novel transcription cassette and a version of PPRV Nigeria 75/1 vaccine strain with mutations in the haemagglutinin (H) gene to enable DIVA through disruption of binding to H by the C77 monoclonal antibody used in the competitive (c) H-ELISA. All three rescued viruses showed similar growth characteristics in vitro in comparison to parent vaccine strain and, following in vivo assessment the H mutant provided full protection in goats. Although the C77 monoclonal antibody used in the cH-ELISA was unable to bind to the mutated form of H in vitro, the mutation was not sufficient to enable DIVA in vivo. PMID:25444790

  20. Live porcine reproductive and respiratory syndrome virus vaccines: Current status and future direction.

    PubMed

    Renukaradhya, Gourapura J; Meng, Xiang-Jin; Calvert, Jay G; Roof, Michael; Lager, Kelly M

    2015-08-07

    Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) was reported in the late 1980s. PRRS still is a huge economic concern to the global pig industry with a current annual loss estimated at one billion US dollars in North America alone. It has been 20 years since the first modified live-attenuated PRRSV vaccine (PRRSV-MLV) became commercially available. PRRSV-MLVs provide homologous protection and help in reducing shedding of heterologous viruses, but they do not completely protect pigs against heterologous field strains. There have been many advances in understanding the biology and ecology of PRRSV; however, the complexities of virus-host interaction and PRRSV vaccinology are not yet completely understood leaving a significant gap for improving breadth of immunity against diverse PRRS isolates. This review provides insights on immunization efforts using infectious PRRSV-based vaccines since the 1990s, beginning with live PRRSV immunization, development and commercialization of PRRSV-MLV, and strategies to overcome the deficiencies of PRRSV-MLV through use of replicating viral vectors expressing multiple PRRSV membrane proteins. Finally, powerful reverse genetics systems (infectious cDNA clones) generated from more than 20 PRRSV isolates of both genotypes 1 and 2 viruses have provided a great resource for exploring many innovative strategies to improve the safety and cross-protective efficacy of live PRRSV vaccines. Examples include vaccines with diminished ability to down-regulate the immune system, positive and negative marker vaccines, multivalent vaccines incorporating antigens from other porcine pathogens, vaccines that carry their own cytokine adjuvants, and chimeric vaccine viruses with the potential for broad cross-protection against heterologous strains. To combat this devastating pig disease in the future, evaluation and commercialization of such improved live PRRSV vaccines is a shared goal among PRRSV researchers, pork

  1. [Immune response to live influenza vaccine].

    PubMed

    Naĭkhin, A N; Rekstin, A R; Barantseva, I B; Donina, S A; Desheva, Iu A; Grigor'eva, E P; Kiseleva, I V; Rudenko, L G

    2002-01-01

    Priority data on the induction, by using a Russian live cold-adapted reassortant influenza vaccine (LIV), of the cellular and humoral immunity with regard for attenuation and genetic reassortment of vaccine stains as well as with regard for the age of vaccinated persons and the production of Th1 (IFNY, IL-2) and Th2 (IL-4) cytokine markers in vitro are presented. It was demonstrated in vivo that a pathogenic virus of the A group by far more actively induced the lymphocyte apoptosis as compared with attenuated genetically reassorted stains. Unlike the influenza pathogenic virus, the genetically attenuated and reassorted strain did not produce any negative effects on the induction of cellular immunity. A comparative study of the LIV immunogenic properties in vaccinated persons showed an advantage of LIV over inactivated influenza vaccine (IIV) in stimulating the cellular and local immunity in the elderly. Unlike IIV, LIV induced an active and balanced immune response developing due to Th1 and Th2 activation. LIV was found to stimulate well enough the production of IFN and IL-2 in both young and old persons.

  2. A chronicle of serologic response in commercial layer chickens to vaccination with commercial F strain Mycoplasma gallisepticum vaccine.

    PubMed

    Branton, S L; Leigh, S A; Purswell, J L; Evans, J D; Collier, S D; Olanrewaju, H A; Pharr, G T

    2010-09-01

    Vaccination of multi-age layer operations, wherein one million plus commercial layer chickens are housed, has been spurious until the development of a self-propelled, constant-speed spray vaccinator. Still, even with its use, live Mycoplasma gallisepticum (MG) vaccinations have been questionable in terms of seroconversion. Using the vaccinator as a research tool over the past 5 yr, factors have been elucidated which impact seroconversion to one live MG vaccine in particular, the F strain of MG (FMG). These factors include the type of nozzle used to spray the vaccine, the temperature of the water used to rehydrate and administer the vaccine, and the pH and osmolarity of the fluid used to apply the vaccine. In the present study, one farm was monitored for its seroconversion rates over 4 1/2 yr, during which time the FMG vaccination protocol was amended as factors were identified that enhanced seroconversion rates. The results of this study showed that implementation and inclusion of the optimized factors into the vaccination protocol for FMG enhanced seroconversion rates because they went from an initial 50%-55% positive seroconversion rate to a consistent 100% positive seroconversion rate over the 56-mo study period.

  3. Preparation for emergence of an Eastern European porcine reproductive and respiratory syndrome virus (PRRSV) strain in Western Europe: Immunization with modified live virus vaccines or a field strain confers partial protection.

    PubMed

    Renson, P; Fablet, C; Le Dimna, M; Mahé, S; Touzain, F; Blanchard, Y; Paboeuf, F; Rose, N; Bourry, O

    2017-05-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic losses for the swine industry worldwide. In the past several years, highly pathogenic strains that lead to even greater losses have emerged. For the Western European swine industry, one threat is the possible introduction of Eastern European PRRSV strains (example Lena genotype 1.3) which were shown to be more virulent than common Western resident strains under experimental conditions. To prepare for the possible emergence of this strain in Western Europe, we immunized piglets with a Western European PRRSV field strain (Finistere: Fini, genotype 1.1), a new genotype 1 commercial modified live virus (MLV) vaccine (MLV1) or a genotype 2 commercial MLV vaccine (MLV2) to evaluate and compare the level of protection that these strains conferred upon challenge with the Lena strain 4 weeks later. Results show that immunization with Fini, MLV1 or MLV2 strains shortened the Lena-induced hyperthermia. In the Fini group, a positive effect was also demonstrated in growth performance. The level of Lena viremia was reduced for all immunized groups (significantly so for Fini and MLV2). This reduction in Lena viremia was correlated with the level of Lena-specific IFNγ-secreting cells. In conclusion, we showed that a commercial MLV vaccine of genotype 1 or 2, as well as a field strain of genotype 1.1 may provide partial clinical and virological protection upon challenge with the Lena strain. The cross-protection induced by these immunizing strains was not related with the level of genetic similarity to the Lena strain. The slightly higher level of protection established with the field strain is attributed to a better cell-mediated immune response. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Reverse spillover of avian viral vaccine strains from domesticated poultry to wild birds.

    PubMed

    Rohaim, M A; El Naggar, R F; Helal, A M; Hussein, H A; Munir, Muhammad

    2017-06-16

    Transmission of viruses from the commercial poultry to wild birds is an emerging paradigm of livestock-wildlife interface. Here, we report the identification and isolation of vaccine strains of avian paramyxovirus serotype 1 (APMV1) and avian coronaviruses (ACoV) from different wild bird species across eight Egyptian governorates between January 2014 and December 2015. Surveillance of avian respiratory viruses in free-ranging wild birds (n=297) identified three species that harboured or excreted APMV1 and ACoVs. Genetic characterization and phylogenetic analysis of recovered viruses revealed a close association with the most widely utilized vaccine strains in the country. These results highlight the potential spillover of vaccine-viruses probably due to extensive use of live-attenuated vaccines in the commercial poultry, and close interaction between domesticated and wild bird populations. Further exploring the full spectrum of vaccine-derived viral vaccine strains in wild birds might help to assess the emergence of future wild-birds origin viruses. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Live Attenuated Influenza Vaccines by Computer-Aided Rational Design

    PubMed Central

    Mueller, Steffen; Coleman, J. Robert; Papamichail, Dimitris; Ward, Charles B.; Nimnual, Anjaruwee; Futcher, Bruce; Skiena, Steven; Wimmer, Eckard

    2010-01-01

    Influenza claims 250,000 - 500,000 lives annually worldwide. Despite existing vaccines and enormous efforts in biomedical research, these staggering numbers have not changed significantly over the last two decades1, motivating the search for new, more effective, vaccines that can be rapidly designed and easily produced. Using influenza virus strain A/PR/8/34, we describe a systematic, rational approach, termed Synthetic Attenuated Virus Engineering (SAVE), to develop new, efficacious live attenuated influenza virus vaccine candidates through genome-scale changes in codon pair bias. Attenuation is based on many hundreds of nucleotide changes across the viral genome, offering high genetic stability and a wide margin of safety. The method can be applied rapidly to any emerging influenza virus in its entirety, an advantage that is significant for dealing with seasonal epidemics and pandemic threats, such as H5N1- or 2009-H1N1 influenza. PMID:20543832

  6. Biosafety evaluation of recombinant live oral bacterial vaccines in the context of European regulation.

    PubMed

    Favre, Didier; Viret, Jean-François

    2006-05-01

    Live bacterial vaccines represent a highly valid preventive strategy in the fight against infectious disease. However, the road from research to market is peppered with hurdles, one of which is the requirement for high biosafety characteristics, which the candidate vaccine has to display. In Europe, the European Agency for the evaluation of medicinal products (EMEA) is the relevant authority regulating the licensure of genetically engineered vaccines. For this purpose, the agency may rely on several directives and guidelines defined in the past 15 years. As for live vaccines containing genetically modified organisms (GMOs) susceptible to be released into the environment, Directive 2001/18/EC determines the framework and principles of an environmental risk assessment (ERA) process, the results of which constitute an important section of the vaccine registration package submitted to registration authorities. In this article, we address the implications of current European regulations for the approval of live oral bacterial vaccines with emphasis on the assessment of potential risks associated with environmental release. Biosafety aspects of already registered and some promising live bacterial vaccine strains will be briefly discussed.

  7. Live attenuated vaccines: Historical successes and current challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minor, Philip D., E-mail: Philip.Minor@nibsc.org

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up inmore » clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues.« less

  8. Generation of a novel live rabies vaccine strain with a high level of safety by introducing attenuating mutations in the nucleoprotein and glycoprotein.

    PubMed

    Nakagawa, Keisuke; Nakagawa, Kento; Omatsu, Tsutomu; Katayama, Yukie; Oba, Mami; Mitake, Hiromichi; Okada, Kazuma; Yamaoka, Satoko; Takashima, Yasuhiro; Masatani, Tatsunori; Okadera, Kota; Ito, Naoto; Mizutani, Tetsuya; Sugiyama, Makoto

    2017-10-09

    The current live rabies vaccine SAG2 is attenuated by only one mutation (Arg-to-Glu) at position 333 in the glycoprotein (G333). This fact generates a potential risk of the emergence of a pathogenic revertant by a back mutation at this position during viral propagation in the body. To circumvent this risk, it is desirable to generate a live vaccine strain highly and stably attenuated by multiple mutations. However, the information on attenuating mutations other than that at G333 is very limited. We previously reported that amino acids at positions 273 and 394 in the nucleoprotein (N273/394) (Leu and His, respectively) of fixed rabies virus Ni-CE are responsible for the attenuated phenotype by enhancing interferon (IFN)/chemokine gene expressions in infected neural cells. In this study, we found that amino acid substitutions at N273/394 (Phe-to-Leu and Tyr-to-His, respectively) attenuated the pathogenicity of the oral live vaccine ERA, which has a virulent-type Arg at G333. Then we generated ERA-N273/394-G333 attenuated by the combination of the above attenuating mutations at G333 and N273/394, and checked its safety. Similar to the ERA-G333, which is attenuated by only the mutation at G333, ERA-N273/394-G333 did not cause any symptoms in adult mice after intracerebral inoculation, indicating a low level of residual pathogenicity of ERA-N273/394-G333. Further examination revealed that infection with ERA-N273/394-G333 induces IFN-β and CXCL10 mRNA expressions more strongly than ERA-G333 infection in a neuroblastoma cell line. Importantly, we found that the ERA-N273/394-G333 stain has a lower risk for emergence of a pathogenic revertant than does the ERA-G333. These results indicate that ERA-N273/394-G333 has a potential to be a promising candidate for a live rabies vaccine strain with a high level of safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Rotavirus vaccine strain transmission by vaccinated infants in the foster home.

    PubMed

    Miura, Hiroki; Kawamura, Yoshiki; Sugata, Ken; Koshiyama, Nozomi; Yoshikawa, Akiko; Komoto, Satoshi; Taniguchi, Koki; Ihira, Masaru; Yoshikawa, Tetsushi

    2017-01-01

    Previous studies have demonstrated the transmission of rotavirus vaccine strains from vaccinated children to nonvaccinated siblings. We sought to fully elucidate the safety of rotavirus (RV) vaccination in closed contact circumstance, such as the foster home for future assessment of the vaccine safety in an neonatal intensive care unit. Stool samples were collected from 4 RV vaccinated (160 samples) and 23 unvaccinated (766 samples) infants. RV viral RNA loads were measured using real-time reverse transcription polymerase chain reaction (RT-PCR). RV vaccine strain RNA was persistently detected in stool samples collected from the four vaccine recipients and one unvaccinated infant, but not in the stool samples collected from the 22 other unvaccinated infants. The unvaccinated infant who tested positive for the RV vaccine strain was vaccinated prior to enrollment in this study. The quantitative real-time RT-PCR data revealed a peak viral RNA load 1 week after vaccination followed by a gradual decrease. The current study suggests that RV vaccination may be safe in a close contact environment because there was limited transmission from RV vaccinated to unvaccinated infants. J. Med. Virol. 89:79-84, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. A review of immunogenicity and tolerability of live attenuated Hepatitis A vaccine in children

    PubMed Central

    Rao, Sameer; Mao, J. S.; Motlekar, Salman; Fangcheng, Zhuang; Kadhe, Ganesh

    2016-01-01

    ABSTRACT Changing epidemiology of Hepatitis A virus (HAV) has led to an increased susceptibility of adolescents and adults to the infection. Vaccination can remarkably reduce the incidence and associated morbidity of HAV infection. This review is focused on the safety and efficacy of H2 strain derived live attenuated Hepatitis A vaccine. We found the vaccine to be highly immunogenic with minimal or negligible safety issues. Moreover, a single dose of live attenuated vaccine persists a long term immune response and can be a preferred option for developing countries. In 2014, Indian Academy of Paediatrics (IAP) also updated their recommendations for H2 vaccine as a single dose as against the previous 2 dose schedule. A focused approach to include the vaccine in national immunization program should be explored. PMID:27532370

  11. A review of immunogenicity and tolerability of live attenuated Hepatitis A vaccine in children.

    PubMed

    Rao, Sameer; Mao, J S; Motlekar, Salman; Fangcheng, Zhuang; Kadhe, Ganesh

    2016-12-01

    Changing epidemiology of Hepatitis A virus (HAV) has led to an increased susceptibility of adolescents and adults to the infection. Vaccination can remarkably reduce the incidence and associated morbidity of HAV infection. This review is focused on the safety and efficacy of H2 strain derived live attenuated Hepatitis A vaccine. We found the vaccine to be highly immunogenic with minimal or negligible safety issues. Moreover, a single dose of live attenuated vaccine persists a long term immune response and can be a preferred option for developing countries. In 2014, Indian Academy of Paediatrics (IAP) also updated their recommendations for H2 vaccine as a single dose as against the previous 2 dose schedule. A focused approach to include the vaccine in national immunization program should be explored.

  12. Identification of IBV QX vaccine markers : Should vaccine acceptance by authorities require similar identifications for all live IBV vaccines?

    PubMed

    Listorti, Valeria; Laconi, Andrea; Catelli, Elena; Cecchinato, Mattia; Lupini, Caterina; Naylor, Clive J

    2017-10-09

    IBV genotype QX causes sufficient disease in Europe for several commercial companies to have started developing live attenuated vaccines. Here, one of those vaccines (L1148) was fully consensus sequenced alongside its progenitor field strain (1148-A) to determine vaccine markers, thereby enabling detection on farms. Twenty-eight single nucleotide substitutions were associated with the 1148-A attenuation, of which any combination can identify vaccine L1148 in the field. Sixteen substitutions resulted in amino acid coding changes of which half were in spike. One change in the 1b gene altered the normally highly conserved final 5 nucleotides of the transcription regulatory sequence of the S gene, common to all IBV QX genes. No mutations can currently be associated with the attenuation process. Field vaccination strategies would greatly benefit by such comparative sequence data being mandatorily submitted to regulators prior to vaccine release following a successful registration process. Copyright © 2017. Published by Elsevier Ltd.

  13. [PERSPECTIVES OF DEVELOPMENT OF LIVE RECOMBINANT ANTHRAX VACCINES BASED ON OPPORTUNISTIC AND APATHOGENIC MICROORGANISMS].

    PubMed

    Popova, P Yu; Mikshis, N I

    2016-01-01

    Live genetic engineering anthrax vaccines on the platform of avirulent and probiotic micro-organisms are a safe and adequate alternative to preparations based on attenuated Bacillus anthracis strains. Mucosal application results in a direct contact of the vaccine preparations with mucous membranes in those organs arid tissues of the macro-organisms, that are exposed to the pathogen in the first place, resulting in a development of local and systemic immune response. Live recombinant anthrax vaccines could be used both separately as well as in a prime-boost immunization scheme. The review focuses on immunogenic and protective properties of experimental live genetic engineering prearations, created based on members of geni of Salmonella, Lactobacillus and adenoviruses.

  14. Characterisation of a live Salmonella vaccine stably expressing the Mycobacterium tuberculosis Ag85B–ESAT6 fusion protein

    PubMed Central

    Hall, Lindsay J.; Clare, Simon; Pickard, Derek; Clark, Simon O.; Kelly, Dominic L.F.; Ghany, Moataz Abd El; Hale, Christine; Dietrich, Jes; Andersen, Peter; Marsh, Philip D.; Dougan, Gordon

    2009-01-01

    A recombinant Salmonella enterica serovar Typhimurium (S. Typhimurium) vaccine strain was constructed that stably expressed the Mycobacterium tuberculosis fusion antigen Ag85B–ESAT6 from the chromosome. Live oral vaccination of mice with the Salmonella/Ag85B–ESAT6 strain generated a potent anti-Ag85B–ESAT6 TH1 response with high antibody titres with a IgG2a-bias and significant IFN-γ production lasting over a 120-day period. When mice primed with the Salmonella/Ag85B–ESAT6 vaccine were mucosally boosted with the Ag85B–ESAT6 antigen and adjuvant the IFN-γ responses increased markedly. To determine the protective efficacy of this vaccine strain, guinea pigs were immunised and followed for a 30-week period after aerosol challenge with M. tuberculosis. The heterologous prime-boost strategy of live Salmonella vaccine followed by a systemic boost of antigen and adjuvant reduced the levels of M. tuberculosis bacteria in the lungs and spleen to the same extent as BCG. Additionally, this vaccination regimen was observed to be statistically equivalent in terms of protection to immunisation with BCG. Thus, live oral priming with the recombinant Salmonella/Ag85B–ESAT6 and boosting with Ag85B–ESAT6 plus the adjuvant LTK63 represents an effective mucosal vaccination regimen. PMID:19755145

  15. Circulation of a type 1 recombinant vaccine-derived poliovirus strain in a limited area in Romania.

    PubMed

    Combiescu, M; Guillot, S; Persu, A; Baicus, A; Pitigoi, D; Balanant, J; Oprisan, G; Crainic, R; Delpeyroux, F; Aubert-Combiescu, A

    2007-01-01

    After intensive immunisation campaigns with the oral polio vaccine (OPV) as part of the Global Polio Eradication Initiative, poliomyelitis due to wild viruses has disappeared from most parts of the world, including Europe. Here, we report the characterization of a serotype 1 vaccine-derived poliovirus (VDPV) isolated from one acute flaccid paralysis (AFP) case with tetraplegia and eight healthy contacts belonging to the same small socio-cultural group having a low vaccine coverage living in a small town in Romania. The genomes of the isolated strains appeared to be tripartite type 1/type 2/type 1 vaccine intertypic recombinant genomes derived from a common ancestor strain. The presence of 1.2% nucleotide substitutions in the VP1 capsid protein coding region of most of the strains indicated a circulation time of about 14 months. These VDPVs were thermoresistant and, in transgenic mice expressing the human poliovirus receptor, appeared to have lost the attenuated phenotype. These results suggest that small populations with low vaccine coverage living in globally well-vaccinated countries can be the origin of VDPV emergence and circulation. These results reaffirm the importance of active surveillance for acute flaccid paralysis and poliovirus in both polio-free and polio-endemic countries.

  16. Persistence and spreading of field and vaccine strains of infectious laryngotracheitis virus (ILTV) in vaccinated and unvaccinated geographic regions, in Brazil.

    PubMed

    Chacón, Jorge Luis; Núñez, Luis Fabian Naranjo; Vejarano, Maria Pilar; Parra, Silvana Hipatia Santander; Astolfi-Ferreira, Claudete Serrano; Ferreira, Antonio José Piantino

    2015-08-01

    Infectious laryngotracheitis (ILT) is a highly infectious respiratory disease that causes morbidity and mortality in commercial chickens. Despite the use of attenuated vaccines, ILT outbreaks have been described in broiler and long-lived birds. Molecular approaches, including polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing, are used to characterize ILT viruses (ILTVs) detected in vaccinated and unvaccinated geographical regions. As part of an ILT control program implemented in a region of commercial layer production, samples of conjunctiva, trachea, and trigeminal ganglia were collected from chickens in a vaccinated and quarantined region over a period of 8 years after initiation of vaccination. To determine the origin of new ILT outbreaks in unvaccinated regions, samples collected from ill chickens were also analyzed. Chicken embryo origin (CEO) vaccine viruses and the Bastos field strain were detected circulating in healthy chickens in the vaccinated region. CEO strains and field viruses molecularly related to the Bastos strain were also detected outside of the quarantined region in chickens showing clinical signs of ILT. This study reveals the persistence and circulation of a wild field strain, despite the intensive use of tissue culture origin (TCO) and CEO vaccines in a quarantined region. Spreading of CEO viruses to unvaccinated regions and the capacity of this virus to establish latent infections and cause severe outbreaks were also observed.

  17. Concomitant or sequential administration of live attenuated japanese encephalitis chimeric virus vaccine and yellow fever 17D vaccine

    PubMed Central

    Nasveld, Peter E; Marjason, Joanne; Bennett, Sonya; Aaskov, John; Elliott, Suzanne; McCarthy, Karen; Kanesa-thasan, Niranjan; Feroldi, Emmanuel

    2010-01-01

    A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever (YF) vaccine (YF-17D strain; Stamaril®, Sanofi Pasteur) or administered sequentially. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE virus strains was determined using a 50% serum-dilution plaque reduction neutralization test (PRNT50). Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82–100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart. PMID:20864814

  18. Comparison of monovalent and trivalent live attenuated influenza vaccines in young children.

    PubMed

    Gruber, W C; Kirschner, K; Tollefson, S; Thompson, J; Reed, G; Edwards, K M; Wright, P F

    1993-07-01

    Fifty children, 6 months to 2 years of age, were vaccinated intranasally with a trivalent preparation containing 10(6) TCID50 each of H1N1 and H3N2 and 10(4) (n = 14) or 10(6) (n = 36) TCID50 of B live, attenuated, cold-adapted (ca) influenza strains. The same doses were administered as monovalent vaccines to 69 comparably aged children. Forty-five controls were given placebo. No clinically significant adverse reactions to vaccines were observed. Of children seronegative to H1N1 or H3N2, > or = 90% were infected by these vaccine strains. Trivalent vaccine containing 10(4) TCID50 of B infected only 27% of children seronegative to B (3/11), which was markedly reduced from the 88% infection rate (7/8) following monovalent B vaccine of the same dose (P = .02); increasing the B dose to 10(6) TCID50 increased the infection rate to 81% (21/26). Replication of ca influenza viruses in tissue culture matched vaccine responses. Trivalent ca influenza vaccines can be formulated that are safe and immunogenic in young children.

  19. Use of modified live feline panleukopenia virus vaccine to immunize dogs against canine parvovirus.

    PubMed

    Pollock, R V; Carmichael, L E

    1983-02-01

    Modified live feline panleukopenia virus (FPLV) vaccine protected dogs against canine parvovirus (CPV) infection. However, unlike the long-lived (greater than or equal to 20-month) immunity engendered by CPV infection, the response of dogs to living FPLV was variable. Doses of FPLV (snow leopard strain) in excess of 10(5.7) TCID50 were necessary for uniform immunization; smaller inocula resulted in decreased success rates. The duration of immunity, as measured by the persistence of hemagglutination-inhibiting antibody, was related to the magnitude of the initial response to vaccination; dogs with vigorous initial responses resisted oronasal CPV challenge exposure 6 months after vaccination, and hemagglutination-inhibiting antibodies persisted in such dogs for greater than 1 year. Limited replication of FPLV in dogs was demonstrated, but unlike CPV, the feline virus did not spread to contact dogs or cats. Adverse reactions were not associated with living FPLV vaccination, and FPLV did not interfere with simultaneous response to attenuated canine distemper virus.

  20. DNA-launched live-attenuated vaccines for biodefense applications

    PubMed Central

    Pushko, Peter; Lukashevich, Igor S.; Weaver, Scott C.; Tretyakova, Irina

    2016-01-01

    Summary A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses. PMID:27055100

  1. Risk analysis of inter-species reassortment through a Rift Valley fever phlebovirus MP-12 vaccine strain.

    PubMed

    Ly, Hoai J; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro

    2017-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Arabian Peninsula. The causative agent, Rift Valley fever phlebovirus (RVFV), belongs to the genus Phlebovirus in the family Phenuiviridae and causes high rates of abortions in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral maintenance by mosquito vectors has led to sporadic RVF outbreaks in ruminants and humans in endemic countries, and effective vaccination of animals and humans may minimize the impact of this disease. A live-attenuated MP-12 vaccine strain is one of the best characterized RVFV strains, and was conditionally approved as a veterinary vaccine in the U.S. Live-attenuated RVF vaccines including MP-12 strain may form reassortant strains with other bunyavirus species. This study thus aimed to characterize the occurrence of genetic reassortment between the MP-12 strain and bunyavirus species closely related to RVFV. The Arumowot virus (AMTV) and Gouleako goukovirus (GOLV), are transmitted by mosquitoes in Africa. The results of this study showed that GOLV does not form detectable reassortant strains with the MP-12 strain in co-infected C6/36 cells. The AMTV also did not form any reassortant strains with MP-12 strain in co-infected C6/36 cells, due to the incompatibility among N, L, and Gn/Gc proteins. A lack of reassortant formation could be due to a functional incompatibility of N and L proteins derived from heterologous species, and due to a lack of packaging via heterologous Gn/Gc proteins. The MP-12 strain did, however, randomly exchange L-, M-, and S-segments with a genetic variant strain, rMP12-GM50, in culture cells. The MP-12 strain is thus unlikely to form any reassortant strains with AMTV or GOLV in nature.

  2. Prior DNA vaccination does not interfere with the live-attenuated measles vaccine.

    PubMed

    Premenko-Lanier, Mary; Rota, Paul; Rhodes, Gary; Bellini, William; McChesney, Michael

    2004-01-26

    The currently used live-attenuated measles vaccine is very effective although maternal antibody prevents its administration prior to 6 months of age. We are investigating the ability of a DNA vaccine encoding the measles viral hemagglutinin, fusion and nucleoprotein to protect newborn infants from measles. Here, we show that a measles DNA vaccine protects juvenile macaques from pathogenic measles virus challenge and that macaques primed and boosted with this DNA vaccine have anemnestic antibody and cell-mediated responses after vaccination with a live-attenuated canine distemper-measles vaccine. Therefore, this DNA vaccine administered to newborn infants may not hinder the subsequent use of live-attenuated measles vaccine.

  3. Secreted Expression of the Cap Gene of Porcine Circovirus Type 2 in Classical Swine Fever Virus C-Strain: Potential of C-Strain Used as a Vaccine Vector.

    PubMed

    Zhang, Lingkai; Li, Yongfeng; Xie, Libao; Wang, Xiao; Gao, Xulei; Sun, Yuan; Qiu, Hua-Ji

    2017-10-16

    Bivalent vaccines based on live attenuated viruses expressing a heterologous protein are an attractive strategy to address co-infections with various pathogens in the field. Considering the excellent efficacy and safety of the lapinized live attenuated vaccine C-strain (HCLV strain) of classical swine fever virus (CSFV), we proposed that C-strain has the potential as a viral vector for developing bivalent vaccines. To this end, we generated three recombinant viruses based on C-strain, one expressing the capsid ( Cap ) gene of porcine circovirus type 2 (PCV2) with the nuclear localization signal (NLS) (rHCLV-2ACap), and the other two expressing the PCV2 Cap gene without the NLS yet containing the signal peptide of the prolactin gene (rHCLV-pspCap) or that of the ubiquitin-specific peptidase gene (rHCLV-uspCap). All the recombinant viruses exhibited phenotypes similar to those of the parental virus and produced high-level anti-CSFV neutralizing antibodies (NAbs) in rabbits. Interestingly, rHCLV-uspCap and rHCLV-pspCap, but not rHCLV-2ACap, elicited detectable anti-Cap and -PCV2 NAbs in rabbits. Taken together, our data demonstrate that C-strain can be used as a viral vector to develop bivalent vaccines.

  4. Secreted Expression of the Cap Gene of Porcine Circovirus Type 2 in Classical Swine Fever Virus C-Strain: Potential of C-Strain Used as a Vaccine Vector

    PubMed Central

    Zhang, Lingkai; Li, Yongfeng; Xie, Libao; Wang, Xiao; Gao, Xulei; Sun, Yuan; Qiu, Hua-Ji

    2017-01-01

    Bivalent vaccines based on live attenuated viruses expressing a heterologous protein are an attractive strategy to address co-infections with various pathogens in the field. Considering the excellent efficacy and safety of the lapinized live attenuated vaccine C-strain (HCLV strain) of classical swine fever virus (CSFV), we proposed that C-strain has the potential as a viral vector for developing bivalent vaccines. To this end, we generated three recombinant viruses based on C-strain, one expressing the capsid (Cap) gene of porcine circovirus type 2 (PCV2) with the nuclear localization signal (NLS) (rHCLV-2ACap), and the other two expressing the PCV2 Cap gene without the NLS yet containing the signal peptide of the prolactin gene (rHCLV-pspCap) or that of the ubiquitin-specific peptidase gene (rHCLV-uspCap). All the recombinant viruses exhibited phenotypes similar to those of the parental virus and produced high-level anti-CSFV neutralizing antibodies (NAbs) in rabbits. Interestingly, rHCLV-uspCap and rHCLV-pspCap, but not rHCLV-2ACap, elicited detectable anti-Cap and -PCV2 NAbs in rabbits. Taken together, our data demonstrate that C-strain can be used as a viral vector to develop bivalent vaccines. PMID:29035292

  5. A modified live canine parvovirus strain with novel plaque characteristics. I. Viral attenuation and dog response.

    PubMed

    Carmichael, L E; Joubert, J C; Pollock, R V

    1981-10-01

    A canine parvovirus (CPV) strain (C-780916) was found attenuated for pups at 80, but not after 51 serial passages in dog kidney cell (DKC) cultures. A variant viral population ('large plaque') emerged after prolonged cultivation in DKC cultures that may be associated with reduced native virulence. Dogs vaccinated with modified CPV developed high hemagglutination-inhibiting (HI) antibody titers within 4 days of incoluation and antibody persisted. Vaccinated animals shed small amounts of virus in the feces that spread to contact dogs. After five back-passages in dogs the modified strain was not pathogenic for pups and the plaque characteristics of the virus isolated from the feces were typical of the attenuated strain. The modified live CPV did not cause infection of the fetus when inoculated parenterally into pregnant bitches at various stages of gestation. It was not pathogenic for neonatal pups. These results suggest that a safe and effective live homologous (CPV) vaccine has been developed which should aid substantially in controlling CPV infection.

  6. Influenza Vaccine, Live Intranasal

    MedlinePlus

    ... have gotten any other vaccines in the past 4 weeks. Live vaccines given too close together might not work as well. have taken influenza antiviral medication in the past 48 hours. have a very stuffy nose.

  7. Efficacy of a modified live Flavobacterium columnare vaccine in fish.

    PubMed

    Shoemaker, Craig A; Klesius, Phillip H; Drennan, John D; Evans, Joyce J

    2011-01-01

    Flavobacterium columnare is an aquatic bacterium that is responsible for columnaris disease. This aquatic pathogen has a worldwide distribution and is highly infectious to both warm and cold water fish. A modified live F. columnare vaccine was developed by repeated passage of a virulent strain on increasing concentrations of rifampicin that resulted in attenuation. Here we report vaccination/challenge trials to evaluate efficacy and safety. In separate laboratory trials, immersion vaccination of channel catfish (Ictalurus punctatus) fry between 10 to 48 days post hatch (DPH) with experimental vaccine or licensed product resulted in relative percent survival (RPS) between 57-94% following challenge. Similarly, a vaccination/challenge trial using largemouth bass (Micropterus salmoides) fry at 10 DPH was performed using various doses of licensed product under laboratory conditions. Results demonstrated safety of the vaccine and significant protection following challenge with RPS values between 74-94%, depending on vaccine dose. Together, these trials demonstrate the vaccine administered to early life-stage channel catfish and largemouth bass is safe and reduces mortality following challenge with F. columnare. Published by Elsevier Ltd.

  8. [Comparison of genotype characteristics between the circulating mumps virus strain in Beijing area and the vaccine strain].

    PubMed

    Chen, Meng; Zhang, Tie-gang; Chen, Li-juan; Wu, Jiang; Yang, Jie; Zhang, Wei

    2009-11-01

    To compare the genetic characteristics of mumps virus strain circulating in Beijing with vaccine strain and to preliminarily analysis the reasons of vaccine ineffectiveness. The following methods were used: Isolation and identification of the mumps virus which had been circulating in Beijing, immunization history analysis, SH gene sequence analysis and comparison genotype homology with reference strains and analysis of the key amino acid sites of HN variation. In 38 mumps cases that virus had been isolated from, another seven cases were IgM negative. In 2007 and 2008, the positive rates on virus isolation, RT-PCR and IgM-decreased significantly, while the cases with immunization history had an increase. Cases without histories of vaccination had both higher positive rates on virus isolation and IgM. Thirty-eight strains belonged to F genotype virus, but vaccine strain was A genotype. The circulating viruses showed 5.6% sequence divergence on SH gene nucleotide and 16.0% - 18.1% from vaccine strain. Conservative hydrophobic amino acids on SH protein of some Beijing strains had changed. For example, there were 6 strains, from No.8: L-->F. The circulating viruses showed 2.3% sequence divergence on HN protein amino acid sequences and 4.2% - 5.3% from vaccine strain. Amino acids sites, which deciding the ability of cross-neutralization of the Beijing strains and vaccine strains were different. At the 354 and 356 sites, all the Beijing strains were different from the vaccine strains. The N-glycosylation sites on HN of Beijing strains were also different from those on vaccine strains. Locations 464 - 466 appeared to be NCS on Beijing strain, but locations 464 - 466 were NCR on the vaccine strains. Another 18 unknown function amino acids sites of all Beijing strains were different from those on vaccine strains. In recent years, genotype F became the main genotype of circulating strains in Beijing without genotype variation, but larger difference was found between them

  9. Tularemia vaccine: Safety, reactogenicity, "Take" skin reactions, and antibody responses following vaccination with a new lot of the Francisella tularensis live vaccine strain - A phase 2 randomized clinical Trial.

    PubMed

    Mulligan, Mark J; Stapleton, Jack T; Keitel, Wendy A; Frey, Sharon E; Chen, Wilbur H; Rouphael, Nadine; Edupuganti, Srilatha; Beck, Allison; Winokur, Patricia L; El Sahly, Hana M; Patel, Shital M; Atmar, Robert L; Graham, Irene; Anderson, Edwin; El-Kamary, Samer S; Pasetti, Marcela F; Sztein, Marcelo B; Hill, Heather; Goll, Johannes B

    2017-08-24

    Tularemia is caused by Francisella tularensis, a gram-negative bacterium that has been weaponized as an aerosol. For protection of personnel conducting biodefense research, the United States Army required clinical evaluation of a new lot of tularemia live vaccine strain manufactured in accordance with Current Good Manufacturing Practices. A phase 2 randomized clinical trial compared the new lot (DVC-LVS) to the existing vaccine that has been in use for decades (USAMRIID-LVS). The vaccines were delivered by scarification to 228 participants. Safety, reactogenicity, take and/or antibody levels were assessed on days 0, 1, 2, 8, 14, 28, 56, and 180. Both vaccines were safe and had acceptable reactogenicity profiles during six months of follow-up. There were no serious or grade 3 and 4 laboratory adverse events. Moderate systemic reactogenicity (mostly headache or feeling tired) was reported by ∼23% of participants receiving either vaccine. Injection site reactogenicity was mostly mild itchiness and pain. The frequencies of vaccine take skin reactions were 73% (95% CI, 64, 81) for DVC-LVS and 80% (95% CI, 71, 87) for USAMRIID-LVS. The 90% CI for the difference in proportions was -6.9% (-16.4, 2.6). The rates of seroconversion measured by microagglutination assay on days 28 or 56 were 94% (95% CI, 88, 98; n=98/104) for DVC-LVS and 94% (95% CI, 87, 97; n=103/110) for USAMRIID-LVS (p=1.00). Day 14 sera revealed more rapid seroconversion for DVC-LVS relative to USAMRIID-LVS: 82% (95% CI, 73, 89) versus 55% (95% CI, 45, 65), respectively (p<0.0001). The DVC-LVS vaccine had similar safety, reactogenicity, take and antibody responses compared to the older USAMRIID vaccine, and was superior for early (day 14) antibody production. Vaccination take was not a sensitive surrogate for seroconversion in a multi-center study where personnel at five research clinics performed assessments. ClinicalTrials.gov identifier NCT01150695. Copyright © 2017 The Authors. Published by Elsevier

  10. Mumps Hoshino and Torii vaccine strains were distinguished from circulating wild strains.

    PubMed

    Sawada, Akihito; Yamaji, Yoshiaki; Nakayama, Tetsuo

    2013-06-01

    Aseptic meningitis and acute parotitis have been observed after mumps vaccination. Mumps outbreaks have been reported in Japan because of low vaccine coverage, and molecular differentiation is required to determine whether these cases are vaccine associated. RT-nested PCR was performed in the small hydrophobic gene region, and viruses were differentiated by restriction fragment length polymorphism assay. A total of 584 nucleotides were amplified. The PCR product of the Hoshino strain was cut into two fragments (313 and 271 nucleotides) by MfeI; that of the Torii strain was digested with EcoT22I, resulting in 332- and 252-nucleotide fragments. Both strains were genotype B and had an XbaI site, resulting in two fragments: 299 and 285 nucleotides. Current circulating wild types were cut only by XbaI or MfeI. However, the MfeI site of the wild types was different from that of the Hoshino strain, resulting in 451- and 133-nucleotide fragments. Using three restriction enzymes, two mumps vaccine strains were distinguished from wild types, and this separation was applied to the identification of vaccine-related adverse events.

  11. Autodisplay: Development of an Efficacious System for Surface Display of Antigenic Determinants in Salmonella Vaccine Strains

    PubMed Central

    Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B.; Lattemann, Claus T.

    2003-01-01

    To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp6074-86), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp6074-86 was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp6074-86-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-γ secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains. PMID:12654812

  12. Autodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains.

    PubMed

    Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B; Lattemann, Claus T

    2003-04-01

    To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp60(74-86)), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp60(74-86) was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp60(74-86)-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-gamma secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains.

  13. Field study of vaccination of cattle with Brucella abortus strains RB51 and 19 under high and low disease prevalence.

    PubMed

    Lord, V R; Schurig, G G; Cherwonogrodzky, J W; Marcano, M J; Melendez, G E

    1998-08-01

    To assess humoral and protective immunity in cattle vaccinated by 12 months with Brucella abortus vaccine strains RB51 and 19 under field conditions of high and low brucellosis prevalence. 450 seronegative female cattle: 330 three to eight months old (calves), and 120 ten to twelve months old (heifers). Ranch A had high prevalence (39%) of brucellosis, and ranch B had low prevalence (2%), as determined by results of conventional serologic testing: agar gel immunodiffusion and the ring test. Seronegative cattle were vaccinated once or twice with 5 x 10(9) colony-forming units of B abortus strain RB51 or once with strain 19. After vaccinating 285 cattle with strain RB51 and 165 with strain 19, 74 (26%) and 30 (18%), respectively, were bred to seropositive bulls, then were kept within the infected herd of origin. All cattle vaccinated with strain 19 seroconverted 30 days later. All 285 cattle vaccinated with strain RB51 had negative results for all serologic tests, including agar gel immunodiffusion. All RB51-vaccinated cattle that became pregnant had negative results for the ring test and for conventional serologic tests after their first calving. Strain RB51 can be used as a live organism vaccine without inducing antibody titers that interfere with serodiagnosis, and induced 100% protection against field strain B abortus-induced abortion in cattle vaccinated at least 1 year before mating to an infected bull. Vaccination with strain 19 under similar conditions was less effective than vaccination with strain RB51.

  14. Vaccination of school children with live mumps virus vaccine.

    PubMed

    Furesz, J; Nagler, F P

    1970-05-30

    Live, attenuated mumps virus vaccine (Mumpsvax) was administered to 146 school children 6 to 9 years of age. One child developed clinical mumps nine days after vaccination; epidemiological and serological data strongly suggest that this child had become infected before vaccination. Apart from this single instance there were no apparent clinical reactions that could be ascribed to the administration of the vaccine. Sixty-three of the 146 children with no clinical history of mumps had an initial serum neutralizing antibody titre of less than 1:2. Specific antibodies to mumps virus were detected in 93.5% of the sera of the susceptible children 28 days after vaccination, and the geometric mean antibody titre of these sera was low (1:6). Of the 80 initially seropositive children 21 (26.2%) showed a significant antibody response to the vaccine and this was influenced by the pre-existing antibody level. These data have further demonstrated the safety and efficacy of the live mumps vaccine in children.

  15. Vaccination of School Children With Live Mumps Virus Vaccine

    PubMed Central

    Furesz, J.; Nagler, F. P.

    1970-01-01

    Live, attenuated mumps virus vaccine (Mumpsvax) was administered to 146 school children 6 to 9 years of age. One child developed clinical mumps nine days after vaccination; epidemiological and serological data strongly suggest that this child had become infected before vaccination. Apart from this single instance there were no apparent clinical reactions that could be ascribed to the administration of the vaccine. Sixty-three of the 146 children with no clinical history of mumps had an initial serum neutralizing antibody titre of less than 1:2. Specific antibodies to mumps virus were detected in 93.5% of the sera of the susceptible children 28 days after vaccination, and the geometric mean antibody titre of these sera was low (1:6). Of the 80 initially seropositive children 21 (26.2%) showed a significant antibody response to the vaccine and this was influenced by the pre-existing antibody level. These data have further demonstrated the safety and efficacy of the live mumps vaccine in children. PMID:5420994

  16. Live Attenuated Tularemia Vaccines for Protection Against Respiratory Challenge With Virulent F. tularensis subsp. tularensis

    PubMed Central

    Jia, Qingmei; Horwitz, Marcus A.

    2018-01-01

    Francisella tularensis is the causative agent of tularemia and a Tier I bioterrorism agent. In the 1900s, several vaccines were developed against tularemia including the killed “Foshay” vaccine, subunit vaccines comprising F. tularensis protein(s) or lipoproteins(s) in an adjuvant formulation, and the F. tularensis Live Vaccine Strain (LVS); none were licensed in the U.S.A. or European Union. The LVS vaccine retains toxicity in humans and animals—especially mice—but has demonstrated efficacy in humans, and thus serves as the current gold standard for vaccine efficacy studies. The U.S.A. 2001 anthrax bioterrorism attack spawned renewed interest in vaccines against potential biowarfare agents including F. tularensis. Since live attenuated—but not killed or subunit—vaccines have shown promising efficacy and since vaccine efficacy against respiratory challenge with less virulent subspecies holarctica or F. novicida, or against non-respiratory challenge with virulent subsp. tularensis (Type A) does not reliably predict vaccine efficacy against respiratory challenge with virulent subsp. tularensis, the route of transmission and species of greatest concern in a bioterrorist attack, in this review, we focus on live attenuated tularemia vaccine candidates tested against respiratory challenge with virulent Type A strains, including homologous vaccines derived from mutants of subsp. holarctica, F. novicida, and subsp. tularensis, and heterologous vaccines developed using viral or bacterial vectors to express F. tularensis immunoprotective antigens. We compare the virulence and efficacy of these vaccine candidates with that of LVS and discuss factors that can significantly impact the development and evaluation of live attenuated tularemia vaccines. Several vaccines meet what we would consider the minimum criteria for vaccines to go forward into clinical development—safety greater than LVS and efficacy at least as great as LVS, and of these, several meet the

  17. A Bivalent Typhoid Live Vector Vaccine Expressing both Chromosome- and Plasmid-Encoded Yersinia pestis Antigens Fully Protects against Murine Lethal Pulmonary Plague Infection

    PubMed Central

    Wang, Jin Yuan; Carrasco, Jose A.; Lloyd, Scott A.; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D.; Nataro, James P.; Pasetti, Marcela F.

    2014-01-01

    Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity. PMID:25332120

  18. Comparative study and evaluation of further attenuated, live measles vaccines alone and in combination with mumps and rubella vaccines.

    PubMed

    Wegmann, A; Glück, R; Just, M; Mischler, R; Paroz, P; Germanier, R

    1986-01-01

    The further attenuated Enders (FAE) measles vaccine strain and the Edmonston B-Zagreb (EZ) measles vaccine strain were compared. In VERO-cells plaque sizes of FAE varied between 0.5 and 1 mm, those of EZ between 1 and 2 mm in diameter. The lots available in Switzerland during a 2 year period showed virus titers of 10(3.1) to 10(4.0) TCID50 per dose in the one vaccine (FAE) and of 10(3.1) to 10(4.5) TCID50 per dose in the other (EZ). Clinical investigations were performed with FAE and EZ monovalent and trivalent (measles + mumps + rubella) vaccine preparations. The virus titers of the vaccine lots used were 10(3.1) to 10(4.0) TCID50 per dose. The overall seroconversion rates of 96% to 100% indicate that both types of vaccine have comparable immunization properties. Stability tests demonstrated good stability of both the FAE and the EZ vaccines. Thus conservation at 37 degrees C was possible for 2 and 4 weeks, respectively, and at 41 degrees C for 6 and 6 days, respectively, without undue loss of live virus content (less than 1 log 10). Since the EZ vaccine is derived from human diploid cells, it is particularly suitable for the vaccination of persons with a history of allergy to avian proteins.

  19. Urgent challenges in implementing live attenuated influenza vaccine.

    PubMed

    Singanayagam, Anika; Zambon, Maria; Lalvani, Ajit; Barclay, Wendy

    2018-01-01

    Conflicting reports have emerged about the effectiveness of the live attenuated influenza vaccine. The live attenuated influenza vaccine appears to protect particularly poorly against currently circulating H1N1 viruses that are derived from the 2009 pandemic H1N1 viruses. During the 2015-16 influenza season, when pandemic H1N1 was the predominant virus, studies from the USA reported a complete lack of effectiveness of the live vaccine in children. This finding led to a crucial decision in the USA to recommend that the live vaccine not be used in 2016-17 and to switch to the inactivated influenza vaccine. Other countries, including the UK, Canada, and Finland, however, have continued to recommend the use of the live vaccine. This policy divergence and uncertainty has far reaching implications for the entire global community, given the importance of the production capabilities of the live attenuated influenza vaccine for pandemic preparedness. In this Personal View, we discuss possible explanations for the observed reduced effectiveness of the live attenuated influenza vaccine and highlight the underpinning scientific questions. Further research to understand the reasons for these observations is essential to enable informed public health policy and commercial decisions about vaccine production and development in coming years. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Influenza virus surveillance, vaccine strain selection, and manufacture.

    PubMed

    Stöhr, Klaus; Bucher, Doris; Colgate, Tony; Wood, John

    2012-01-01

    As outlined in other chapters, the influenza virus, existing laboratory diagnostic abilities, and disease epidemiology have several peculiarities that impact on the timing and processes for the annual production of influenza vaccines. The chapter provides an overview on the key biological and other factors that influence vaccine production. They are the reason for an "annual circle race" beginning with global influenza surveillance during the influenza season in a given year to the eventual supply of vaccines 12 months later in time before the next seasonal outbreak and so on. As influenza vaccines are needed for the Northern and Southern Hemisphere outbreaks in fall and spring, respectively, global surveillance and vaccine production has become a year round business. Its highlights are the WHO recommendations on vaccine strains in February and September and the eventual delivery of vaccine doses in time before the coming influenza season. In between continues vaccine strain and epidemiological surveillance, preparation of new high growth reassortments, vaccine seed strain preparation and development of standardizing reagents, vaccine bulk production, fill-finishing and vaccine release, and in some regions, clinical trials for regulatory approval.

  1. Cell-mediated and humoral immune responses induced by scarification vaccination of human volunteers with a new lot of the live vaccine strain of Francisella tularensis.

    PubMed Central

    Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C

    1992-01-01

    Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic. Images PMID:1400988

  2. Peptide nanofiber hydrogel adjuvanted live virus vaccine enhances cross-protective immunity to porcine reproductive and respiratory syndrome virus

    PubMed Central

    Li, Xiangdong; Galliher-Beckley, Amy; Huang, Hongzhou; Sun, Xiuzhi; Shi, Jishu

    2013-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in swine farms worldwide and is a major source of economic loss and animal suffering. Rapid genetic variation of PRRSV makes it difficult for current vaccines to confer protection against newly emerging strains. We recently demonstrated that a novel peptide nanofiber hydrogel (H9e) could act as a potent adjuvant for killed H1N1 vaccines. Therefore, the objective of this study was to evaluate H9e as an adjuvant for PRRSV modified live virus (MLV) vaccines. Pigs were vaccinated with Ingelvac PRRSV MLV with or without H9e adjuvant before being challenged with the VR-2332 (parental vaccine strain) or MN184A (genetically diverse strain) PRRSV. Pigs vaccinated with MLV+H9e had higher levels of circulating vaccine virus. More importantly, pigs vaccinated with MLV+H9e had improved protection against challenge by both PRRSV strains, as demonstrated by reduced challenge-induced viremia compared with pigs vaccinated with MLV alone. Pigs vaccinated with MLV+H9e had lower frequency of T-regulatory cells and IL-10 production but higher frequency of Th/memory cells and IFN-γ secretion than that in pigs vaccinated with MLV alone. Taken together, our studies suggest that the peptide nanofiber hydrogel H9e, when combined with the PRRSV MLV vaccine, can enhance vaccine efficacy against two different PRRSV strains by modulating both host humoral and cellular immune responses. PMID:23933333

  3. Long-term viremia and fecal shedding in pups after modified-live canine parvovirus vaccination.

    PubMed

    Decaro, Nicola; Crescenzo, Giuseppe; Desario, Costantina; Cavalli, Alessandra; Losurdo, Michele; Colaianni, Maria Loredana; Ventrella, Gianpiero; Rizzi, Stefania; Aulicino, Stefano; Lucente, Maria Stella; Buonavoglia, Canio

    2014-06-24

    Canine parvovirus (CPV) modified live virus vaccines are able to infect vaccinated dogs replicating in the bloodstream and enteric mucosa. However, the exact duration and extent of CPV vaccine-induced viremia and fecal shedding are not known. With the aim to fill this gap, 26 dogs were administered two commercial vaccines containing a CPV-2 or CPV-2b strain and monitored for 28 days after vaccination. By using real-time PCR, vaccine-induced viremia and shedding were found to be long lasting for both vaccinal strains. Vaccinal CPV-2b shedding was detected for a shorter period than CPV-2 (12 against 19 mean days) but with greater viral loads, whereas viremia occurred for a longer period (22 against 19 mean days) and with higher titers for CPV-2b. Seroconversion appeared as early as 7 and 14 days post-vaccination for CPV-2b and CPV-2 vaccines, respectively. With no vaccine there was any diagnostic interference using in-clinic or hemagglutination test, since positive results were obtained only by fecal real-time PCR testing. The present study adds new insights into the CPV vaccine persistence in the organism and possible interference with diagnostic tests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Bovine viral diarrhea virus fetal persistent infection after immunization with a contaminated modified-live virus vaccine.

    PubMed

    Palomares, Roberto A; Marley, Shonda M; Givens, M Daniel; Gallardo, Rodrigo A; Brock, Kenny V

    2013-05-01

    The objective was to determine whether a multivalent modified-live virus vaccine containing noncytopathic bovine viral diarrhea virus (BVDV) administered off-label to pregnant cattle can result in persistently infected fetuses and to assess whether vaccinal strains can be shed to unvaccinated pregnant cattle commingling with vaccinates. Nineteen BVDV-naïve pregnant heifers were randomly assigned to two groups: cattle vaccinated near Day 77 of gestation with modified-live virus vaccine containing BVDV-1a (WRL strain), bovine herpes virus-1, parainfluenza 3, and bovine respiratory syncytial virus (Vx group; N = 10) or control unvaccinated cattle (N = 9). During the course of the study a voluntary stop-sale/recall was conducted by the manufacturer because of the presence of a BVDV contaminant in the vaccine. At Day 175 of gestation, fetuses were removed by Cesarean section and fetal tissues were submitted for virus isolation, and quantitative reverse transcription polymerase chain reaction using BVDV-1- and BVDV-2-specific probes. Nucleotide sequencing of viral RNA was performed for quantitative reverse transcription polymerase chain reaction-positive samples. Two vaccinated and two control heifers aborted their pregnancies, but their fetuses were unavailable for BVDV testing. Virus was isolated from all eight fetuses in the Vx group heifers and from 2 of 7 fetuses in the control unvaccinated heifers. Only BVDV-2 was detected in fetuses from the Vx group, and only BVDV-1 was detected in the two fetuses from the control group. Both BVDV-1 and BVDV-2 were detected in the vaccine. In conclusion, vaccination of pregnant heifers with a contaminated modified-live BVDV vaccine resulted in development of BVDV-2 persistently infected fetuses in all tested vaccinated animals. Furthermore, BVDV was apparently shed to unvaccinated heifers causing fetal infections from which only BVDV-1 was detected. Published by Elsevier Inc.

  5. RESPONSE OF VOLTA CHILDREN TO JET INOCULATION OF COMBINED LIVE MEASLES, SMALLPOX AND YELLOW FEVER VACCINES.

    PubMed

    MEYER, H M; HOSTETLER, D D; BERNHEIN, B C; ROGERS, N G; LAMBIN, P; CHASSARY, A; LABUSQUIERE, R; SMADEL, J E

    1964-01-01

    An earlier study established that Upper Volta children respond to vaccination with the Enders live attenuated measles strain in the same general fashion as do children in the USA. The present report describes a second pilot project carried out in Ouagadougou, Upper Volta. During this investigation various mixtures of live measles, smallpox and 17D yellow fever vaccines were introduced into susceptible infants by jet injection. Combining the attenuated virus vaccines did not alter or accentuate the characteristic clinical reactions elicited by the individual components, nor was there evidence of significant immunological interference. From this experience it is concluded that combined vaccination with these agents may be safely and effectively employed in larger programmes as the need dictates.

  6. Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R

    PubMed Central

    Zai, Xiaodong; Zhang, Jun; Liu, Ju; Liu, Jie; Li, Liangliang; Yin, Ying; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-01-01

    Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2−) that produce anthrax toxin but cannot produce the capsule. Anthrax toxins, especially LT, have key effects on both the immunogenicity and toxicity of human anthrax vaccines. Thus, determining quantities and biological activities of LT proteins expressed by the A16R strain is meaningful. Here, we explored LT expression patterns of the A16R strain in culture conditions using another vaccine strain Sterne as a control. We developed a sandwich ELISA and cytotoxicity-based method for quantitative detection of PA and LF. Expression and degradation of LT proteins were observed in culture supernatants over time. Additionally, LT proteins expressed by the A16R and Sterne strains were found to be monomeric and showed cytotoxic activity, which may be the main reason for side effects of live anthrax vaccines. Our work facilitates the characterization of anthrax vaccines components and establishment of a quality control standard for vaccine production which may ultimately help to ensure the efficacy and safety of the human anthrax vaccine A16R. PMID:26927174

  7. Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R.

    PubMed

    Zai, Xiaodong; Zhang, Jun; Liu, Ju; Liu, Jie; Li, Liangliang; Yin, Ying; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-02-25

    Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2-) that produce anthrax toxin but cannot produce the capsule. Anthrax toxins, especially LT, have key effects on both the immunogenicity and toxicity of human anthrax vaccines. Thus, determining quantities and biological activities of LT proteins expressed by the A16R strain is meaningful. Here, we explored LT expression patterns of the A16R strain in culture conditions using another vaccine strain Sterne as a control. We developed a sandwich ELISA and cytotoxicity-based method for quantitative detection of PA and LF. Expression and degradation of LT proteins were observed in culture supernatants over time. Additionally, LT proteins expressed by the A16R and Sterne strains were found to be monomeric and showed cytotoxic activity, which may be the main reason for side effects of live anthrax vaccines. Our work facilitates the characterization of anthrax vaccines components and establishment of a quality control standard for vaccine production which may ultimately help to ensure the efficacy and safety of the human anthrax vaccine A16R.

  8. Safety and efficacy of an attenuated Chinese QX-like infectious bronchitis virus strain as a candidate vaccine.

    PubMed

    Zhao, Ye; Cheng, Jin-long; Liu, Xiao-yu; Zhao, Jing; Hu, Yan-xin; Zhang, Guo-zhong

    2015-10-22

    Infectious bronchitis (IB) is a highly contagious respiratory and urogenital disease of chickens caused by infectious bronchitis virus (IBV). This disease is of considerable economic importance and is primarily controlled through biosecurity and immunization with live attenuated and inactivated IB vaccines of various serotypes. In the present study, we tested the safety and efficacy of an attenuated predominant Chinese QX-like IBV strain. The results revealed that the attenuated strain has a clear decrease in pathogenicity for specific-pathogen-free (SPF) chickens compared with the parent strain. Strain YN-inoculated birds had clinical signs of varying severity with 30% mortality, while the attenuated group appeared healthy, with less tissue damage. The attenuated strain also had relatively low tissue replication rates and higher antibody levels. The superior protective efficacy of the attenuated strain was observed when vaccinated birds were challenged with a homologous or heterologous field IBV strain, indicating the potential of the attenuated YN (aYN) as a vaccine. Producing a vaccine targeting the abundant serotype in China is essential to reducing the economic impact of IB on the poultry industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  10. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  11. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  12. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  13. Intramuscular Immunization of Mice with the Live-Attenuated Herpes Simplex Virus 1 Vaccine Strain VC2 Expressing Equine Herpesvirus 1 (EHV-1) Glycoprotein D Generates Anti-EHV-1 Immune Responses in Mice.

    PubMed

    Liu, Shiliang A; Stanfield, Brent A; Chouljenko, Vladimir N; Naidu, Shan; Langohr, Ingeborg; Del Piero, Fabio; Ferracone, Jacqueline; Roy, Alma A; Kousoulas, Konstantin G

    2017-06-15

    Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHV XP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals ( P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations ( P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge ( P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4 + T cells and CD8 + T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals. IMPORTANCE A novel virus

  14. Safety studies with the oral rabies virus vaccine strain SPBN GASGAS in the small Indian mongoose (Herpestes auropunctatus).

    PubMed

    Ortmann, Steffen; Vos, Ad; Kretzschmar, Antje; Walther, Nomusa; Kaiser, Christiane; Freuling, Conrad; Lojkic, Ivana; Müller, Thomas

    2018-03-13

    Oral vaccination of the small Indian mongoose against rabies has been suggested as a potential tool to eliminate mongoose-mediated rabies on several Caribbean islands. A recently developed oral rabies virus vaccine strain, SPBN GASGAS, has already been shown to be efficacious in this reservoir species. Since, all available oral rabies vaccines are based on replication-competent viruses and vaccine baits are distributed unsupervised in the environment, enhanced safety standards for such vaccine types are required. The results of safety studies, including overdose, repeated doses, dissemination and different routes of administration, in the target species are presented. It was shown that the construct was apathogenic, irrespective of dose and route of administration. Even when it was inoculated directly in the brain, it did not induce rabies infection. Furthermore, the vaccine strain did not spread within the target species after direct oral instillation beyond the site of entry. The vaccine strain SPBN GASGAS meets the safety requirements for live rabies virus vaccines in this target species, the small Indian mongoose.

  15. In-depth genome analyses of viruses from vaccine-derived rabies cases and corresponding live-attenuated oral rabies vaccines.

    PubMed

    Pfaff, Florian; Müller, Thomas; Freuling, Conrad M; Fehlner-Gardiner, Christine; Nadin-Davis, Susan; Robardet, Emmanuelle; Cliquet, Florence; Vuta, Vlad; Hostnik, Peter; Mettenleiter, Thomas C; Beer, Martin; Höper, Dirk

    2018-02-10

    Live-attenuated rabies virus strains such as those derived from the field isolate Street Alabama Dufferin (SAD) have been used extensively and very effectively as oral rabies vaccines for the control of fox rabies in both Europe and Canada. Although these vaccines are safe, some cases of vaccine-derived rabies have been detected during rabies surveillance accompanying these campaigns. In recent analysis it was shown that some commercial SAD vaccines consist of diverse viral populations, rather than clonal genotypes. For cases of vaccine-derived rabies, only consensus sequence data have been available to date and information concerning their population diversity was thus lacking. In our study, we used high-throughput sequencing to analyze 11 cases of vaccine-derived rabies, and compared their viral population diversity to the related oral rabies vaccines using pairwise Manhattan distances. This extensive deep sequencing analysis of vaccine-derived rabies cases observed during oral vaccination programs provided deeper insights into the effect of accidental in vivo replication of genetically diverse vaccine strains in the central nervous system of target and non-target species under field conditions. The viral population in vaccine-derived cases appeared to be clonal in contrast to their parental vaccines. The change from a state of high population diversity present in the vaccine batches to a clonal genotype in the affected animal may indicate the presence of a strong bottleneck during infection. In conclusion, it is very likely that these few cases are the consequence of host factors and not the result of the selection of a more virulent genotype. Furthermore, this type of vaccine-derived rabies leads to the selection of clonal genotypes and the selected variants were genetically very similar to potent SAD vaccines that have undergone a history of in vitro selection. Copyright © 2018. Published by Elsevier Ltd.

  16. Validation of a pXO2-A PCR Assay To Explore Diversity among Italian Isolates of Bacillus anthracis Strains Closely Related to the Live, Attenuated Carbosap Vaccine

    PubMed Central

    Muscillo, M.; La Rosa, G.; Sali, M.; De Carolis, E.; Adone, R.; Ciuchini, F.; Fasanella, A.

    2005-01-01

    Several circulating Bacillus anthracis strains isolated in Italy and belonging to the A1.a cluster, genotype 3 (A1.a-3) are genotypically indistinguishable from Carbosap, a live attenuated vaccine strain, containing both pXO1 and pXO2 plasmids. The genotype was assessed by using eight-locus multilocus variable-number tandem repeat analysis. We describe here the use of a ninth locus able to explore variability among strains that have the same genotype. It is important to be able to genotype the wild isolate of B. anthracis strains from outbreaks of anthrax in areas where Carbosap vaccination of cattle and sheep is common practice. A total of 27 representative field strains isolated in Italy and four vaccinal strains, namely, Carbosap, Sterne, Pasteur I, and Pasteur II, were characterized by a ninth marker, called pXO2-A. Twenty-three field strains were genotype 3 and therefore identical to Carbosap. The marker was in the pXO2 plasmid and is based on the polymorphism of the already-known VX2-3 locus. Detection was obtained by PCR with fluorescence-labeled forward primers in order to produce appropriate fragments for capillary electrophoresis with an ABI 310 genetic analyzer. Genetic relationships showed heterogeneity in all of the examined samples. Interestingly, with respect to genotype 3, samples grouped into eight different subtypes, A to H, and the subtype G, had only two samples indistinguishable from Carbosap. The results of the present study confirm the validity of a hierarchical progressive protocol for discrimination among closely related isolates. PMID:16145138

  17. Safety of classical swine fever virus vaccine strain LOM in pregnant sows and their offspring.

    PubMed

    Lim, Seong-In; Song, Jae-Young; Kim, Jaejo; Hyun, Bang-Hun; Kim, Ha-Young; Cho, In-Soo; Kim, Byounghan; Woo, Gye-Hyeong; Lee, Jung-Bok; An, Dong-Jun

    2016-04-12

    The present study aimed to evaluate the safety of the classical swine fever virus (CSFV) vaccine strain LOM in pregnant sows. Pregnant sows with free CSFV antibody were inoculated with a commercial LOM vaccine during early pregnancy (day 38; n=3) or mid-pregnancy (days 49-59; n=11). In pregnant sows vaccinated during the early stages of gestation, abortion (day 109) was observed in one case, with two stillbirths and seven mummified fetuses. The viability of live-born piglets was 34.9% in sows vaccinated during mid-pregnancy compared with 81.8% in the control group. Post-mortem examination of the organs of the sows and piglets did not reveal any pathological lesions caused by CSFV; however, CSFV RNA was detected in the organs of several vaccinated sows and their litters. The LOM strain was transmitted from sows with free CSFV antibody to their fetus, but did not appear to induce immune tolerance in the offspring from vaccinated pregnant sows. Side effects were not observed in pregnant sows with antibody to the LOM strain: transmission from sow to their litters and stillbirth or mummified fetuses. The LOM strain may induce sterile immunity and provide rapid, long-lasting, and complete protection against CSFV; however, it should be contraindicated in pregnant sows due to potential adverse effects in pregnant sows with free CSFV antibody. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Oral immunisation of laying hens with the live vaccine strains of TAD Salmonella vac E and TAD Salmonella vac T reduces internal egg contamination with Salmonella Enteritidis.

    PubMed

    Gantois, Inne; Ducatelle, Richard; Timbermont, Leen; Boyen, Filip; Bohez, Lotte; Haesebrouck, Freddy; Pasmans, Frank; van Immerseel, Filip

    2006-09-11

    Eggs are a major source of human infections with Salmonella. Therefore controlling egg contamination in laying hen flocks is one of the main targets for control programmes. A study was carried out to assess the effect of oral vaccination with TAD Salmonella vac E, TAD Salmonella vac T and with both vaccines TAD Salmonella vac E and TAD Salmonella vac T, on colonization of the reproductive tract and internal egg contamination of laying hens with Salmonella Enteritidis. Three groups of 30 laying hens were vaccinated at 1 day, 6 weeks and 16 weeks of age with either one of the vaccine strains, or a combination of both vaccine strains, while a fourth group was left unvaccinated. At 24 weeks of age, the birds were intravenously challenged with 0.5 ml containing 5 x 10(7)cfu Salmonella Enteritidis PT4 S1400/94. The number of oviducts from which Salmonella was isolated, was significantly lower in the vaccinated than in the non-vaccinated hens at 3 weeks post-challenge. Significantly less egg contents were Salmonella positive in the birds vaccinated with TAD Salmonella vac E or TAD Salmonella vac T (12/105 batches of eggs in both groups) than in the unvaccinated birds (28/105 batches of eggs). Internal egg contamination in the hens vaccinated with both TAD Salmonella vac E and TAD Salmonella vac T was even more reduced, as over the whole experiment, only one batch of eggs was positive. In conclusion, these data indicate that vaccination of laying hens with these live vaccines could be considered as a valuable tool in controlling internal egg contamination.

  19. Generation of influenza A viruses as live but replication-incompetent virus vaccines.

    PubMed

    Si, Longlong; Xu, Huan; Zhou, Xueying; Zhang, Ziwei; Tian, Zhenyu; Wang, Yan; Wu, Yiming; Zhang, Bo; Niu, Zhenlan; Zhang, Chuanling; Fu, Ge; Xiao, Sulong; Xia, Qing; Zhang, Lihe; Zhou, Demin

    2016-12-02

    The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus. Copyright © 2016, American Association for the Advancement of Science.

  20. The effect of a live vaccine on the horizontal transmission of Mycoplasma gallisepticum.

    PubMed

    Feberwee, A; Landman, W J M; von Banniseht-Wysmuller, Th; Klinkenberg, D; Vernooij, J C M; Gielkens, A L J; Stegeman, J A

    2006-10-01

    The effect of a live Mycoplasma gallisepticum vaccine on the horizontal transmission of this Mycoplasma species was quantified in an experimental animal transmission model in specific pathogen free White Layers. Two identical trials were performed, each consisting of two experimental groups and one control group. The experimental groups each consisted of 20 birds 21 weeks of age, which were housed following a pair-wise design. One group was vaccinated twice with a commercially available live attenuated M. gallisepticum vaccine, while the other group was not vaccinated. Each pair of the experimental group consisted of a challenged chicken (10(4) colony-forming units intratracheally) and a susceptible in-contact bird. The control group consisted of 10 twice-vaccinated birds housed in pairs and five individually housed non-vaccinated birds. The infection was monitored by serology, culture and quantitative polymerase chain reaction. The vaccine strain and the challenge strain were distinguished by a specific polymerase chain reaction and by random amplified polymorphic DNA analysis. In both experiments, all non-vaccinated challenged chickens and their in-contact 'partners' became infected with M. gallisepticum. In the vaccinated challenged and corresponding in-contact birds, a total of 19 and 13 chickens, respectively, became infected with M. gallisepticum. Analysis of the M. gallisepticum shedding patterns showed a significant effect of vaccination on the shedding levels of the vaccinated in-contact chickens. Moreover, the Cox Proportional Hazard analysis indicated that the rate of M. gallisepticum transmission from challenged to in-contact birds in the vaccinated group was 0.356 times that of the non-vaccinated group. In addition, the overall estimate of R (the average number of secondary cases infected by one typical infectious case) of the vaccinated group (R = 4.3, 95% confidence interval = 1.6 to 49.9) was significantly lower than that of the non-vaccinated group

  1. Tackling the issue of environmental survival of live Salmonella Typhimurium vaccines: deletion of the lon gene.

    PubMed

    Leyman, Bregje; Boyen, Filip; Van Parys, Alexander; Verbrugghe, Elin; Haesebrouck, Freddy; Pasmans, Frank

    2012-12-01

    Vaccination is an important measure to control Salmonella contamination in the meat production chain. A previous study showed that both the ΔrfaJ and ΔrfaL strains are suitable markers and allow serological differentiation of infected and vaccinated animals. The aim of this study was to verify whether deletion of the lon gene in a Salmonella Typhimurium ΔrfaJ marker strain resulted in decreased environmental survival. Our results indicate that deletion of the lon gene in the ΔrfaJ strain did not affect invasiveness in IPEC-J2 cells and resulted in an increased susceptibility to UV, disinfectants (such as hydrogen peroxide and tosylchloramide sodium) and citric acid. Immunization of pigs with inactivated ΔrfaJ or ΔlonΔrfaJ vaccines allowed differentiation of infected and vaccinated pigs. Furthermore, deletion of the lon gene did not reduce the protection conferred by live wild type or ΔrfaJ vaccines against subsequent challenge with a virulent Salmonella Typhimurium strain in BALB/c mice. Based on our results in mice, we conclude that deletion of lon in ΔrfaJ contributes to environmental safety of the ΔrfaJ DIVA strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Pan-Influenza A Protection by Prime-Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model.

    PubMed

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime-boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro , CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo . Heterologous combination of prime (H1)-boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a "truly" universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results

  3. Pan-Influenza A Protection by Prime–Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model

    PubMed Central

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime–boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro, CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo. Heterologous combination of prime (H1)–boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a “truly” universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising

  4. Generation by Reverse Genetics of an Effective, Stable, Live-Attenuated Newcastle Disease Virus Vaccine Based on a Currently Circulating, Highly Virulent Indonesian Strain

    PubMed Central

    Xiao, Sa; Nayak, Baibaswata; Samuel, Arthur; Paldurai, Anandan; Kanabagattebasavarajappa, Mallikarjuna; Prajitno, Teguh Y.; Bharoto, Eny E.; Collins, Peter L.; Samal, Siba K.

    2012-01-01

    Newcastle disease virus (NDV) can cause severe disease in chickens. Although NDV vaccines exist, there are frequent reports of outbreaks in vaccinated chickens. During 2009–2010, despite intense vaccination, NDV caused major outbreaks among commercial poultry farms in Indonesia. These outbreaks raised concern regarding the protective immunity of current vaccines against circulating virulent strains in Indonesia. In this study, we investigated whether a recombinant attenuated Indonesian NDV strain could provide better protection against prevalent Indonesian viruses. A reverse genetics system for the highly virulent NDV strain Banjarmasin/010/10 (Ban/010) isolated in Indonesia in 2010 was constructed. The Ban/010 virus is classified in genotype VII of class II NDV, which is genetically distinct from the commercial vaccine strains B1 and LaSota, which belong to genotype II, and shares only 89 and 87% amino acid identity for the protective antigens F and HN, respectively. A mutant virus, named Ban/AF, was developed in which the virulent F protein cleavage site motif “RRQKR↓F” was modified to an avirulent motif “GRQGR↓L” by three amino acid substitutions (underlined). The Ban/AF vaccine virus did not produce syncytia or plaques in cell culture, even in the presence of added protease. Pathogenicity tests showed that Ban/AF was completely avirulent. Ban/AF replicated efficiently during 10 consecutive passages in chickens and remained genetically stable. Serological analysis showed that Ban/AF induced higher neutralization and hemagglutination inhibition antibody titers against the prevalent viruses than the commercial vaccines B1 or LaSota. Both Ban/AF and commercial vaccines provided protection against clinical disease and mortality after challenge with virulent NDV strain Ban/010 (genotype VII) or GB Texas (genotype II). However, Ban/AF significantly reduced challenge virus shedding from the vaccinated birds compared to B1 vaccine. These results suggest

  5. Inhibitory effect of breast milk on infectivity of live oral rotavirus vaccines.

    PubMed

    Moon, Sung-Sil; Wang, Yuhuan; Shane, Andi L; Nguyen, Trang; Ray, Pratima; Dennehy, Penelope; Baek, Luck Ju; Parashar, Umesh; Glass, Roger I; Jiang, Baoming

    2010-10-01

    Live oral rotavirus vaccines have been less immunogenic and efficacious among children in poor developing countries compared with middle income and industrialized countries for reasons that are not yet completely understood. We assessed whether the neutralizing activity of breast milk could lower the titer of vaccine virus and explain this difference in vitro. Breast milk samples were collected from mothers who were breast-feeding infants 4 to 29 weeks of age (ie, vaccine eligible age) in India (N = 40), Vietnam (N = 77), South Korea (N = 34), and the United States (N = 51). We examined breast milk for rotavirus-specific IgA and neutralizing activity against 3 rotavirus vaccine strains-RV1, RV5 G1, and 116E using enzyme immunoassays. The inhibitory effect of breast milk on RV1 was further examined by a plaque reduction assay. Breast milk from Indian women had the highest IgA and neutralizing titers against all 3 vaccine strains, while lower but comparable median IgA and neutralizing titers were detected in breast milk from Korean and Vietnamese women, and the lowest titers were seen in American women. Neutralizing activity was greatest against the 2 vaccine strains of human origin, RV1 and 116E. This neutralizing activity in one half of the breast milk specimens from Indian women could reduce the effective titer of RV1 by ∼2 logs, of 116E by 1.5 logs, and RV5 G1 strain by ∼1 log more than that of breast milk from American women. The lower immunogenicity and efficacy of rotavirus vaccines in poor developing countries could be explained, in part, by higher titers of IgA and neutralizing activity in breast milk consumed by their infants at the time of immunization that could effectively reduce the potency of the vaccine. Strategies to overcome this negative effect, such as delaying breast-feeding at the time of immunization, should be evaluated.

  6. [A case of orchitis following vaccination with freeze-dried live attenuated mumps vaccine].

    PubMed

    Suzuki, Masayasu; Takizawa, Akitoshi; Furuta, Akira; Yanada, Shuichi; Iwamuro, Shinya; Tashiro, Kazuya

    2002-05-01

    In Japan, freeze-dried live attenuated mumps vaccine has been used optionally since 1981. The effectiveness of mumps vaccination has been established by worldwide research since 1971. On the other hand, because of it's live activity several untoward effects have been reported. Vaccination-related mumps orchitis is a rare adverse effect of mumps vaccine. Only 9 cases of vaccination-related mumps orchitis have been reported in Japan. We describe a case of orchitis following mumps vaccination in adolescence. A 16 years-old male has admitted because of acute orchitis with high fever and painful swelling of right testis. The patient had received vaccination with freeze-dried live attenuated mumps vaccine 16 days before admission. After admission, the bed-rest had completely relieved the symptoms on 6th hospital day. The impaired testis has maintained normal size and consistency 6 months after discharge.

  7. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing... administration. (iii) Observe all animals for signs of rabies until scheduled time to sacrifice. If animals show...

  8. Development and biological properties of a new live attenuated mumps vaccine.

    PubMed

    Saika, Shizuko; Kidokoro, Minoru; Kubonoya, Hiroko; Ito, Kozo; Ohkawa, Tokitada; Aoki, Athuko; Nagata, Noriyo; Suzuki, Kazuyoshi

    2006-01-01

    To develop a new live attenuated mumps vaccine, a wild mumps Y7 strain isolated from a patient who developed mild parotitis was treated with nitrosoguanidine and ultraviolet, followed by selection of a temperature-sensitive clone. The selected clone, Y125, showed stable temperature-sensitivity in Vero cells. Intraspinal inoculation of marmosets with the Y125 produced only minimal histopathological changes, while intracerebral inoculation of neonatal rats revealed that the Y125 did not cause hydrocephalus. Both these effects of the Y125 were similar to those of the non-neurovirulent Jeryl Lynn strain. Furthermore, subcutaneous inoculation of the Y125 induced high levels of neutralizing antibodies in all Cercopithecus monkeys examined. Although the safety and immunogenicity should be confirmed in further field trials in humans, the present results indicate that the Y125 could be a promising vaccine candidate.

  9. Real-time RT-PCR assays to differentiate wild-type group A rotavirus strains from Rotarix(®) and RotaTeq(®) vaccine strains in stool samples.

    PubMed

    Gautam, Rashi; Esona, Mathew D; Mijatovic-Rustempasic, Slavica; Ian Tam, Ka; Gentsch, Jon R; Bowen, Michael D

    2014-01-01

    Group A rotaviruses (RVA) are the leading cause of severe diarrhea in young children worldwide. Two live-attenuated RVA vaccines, Rotarix(®) and RotaTeq(®) are recommended by World Health Organization (WHO) for routine immunization of all infants. Rotarix(®) and RotaTeq(®) vaccines have substantially reduced RVA associated mortality but occasionally have been associated with acute gastroenteritis (AGE) cases identified in vaccinees and their contacts. High-throughput assays are needed to monitor the prevalence of vaccine strains in AGE cases and emergence of new vaccine-derived strains following RVA vaccine introduction. In this study, we have developed quantitative real-time RT-PCR (qRT-PCR) assays for detection of Rotarix(®) and RotaTeq(®) vaccine components in stool samples. Real-time RT-PCR assays were designed for vaccine specific targets in the genomes of Rotarix(®) (NSP2, VP4) and RotaTeq(®) (VP6, VP3-WC3, VP3-human) and validated on sequence confirmed stool samples containing vaccine strains, wild-type RVA strains, and RVA-negative stools. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Rotarix(®) NSP2 and VP4 qRT-PCR assays exhibited 92-100% sensitivity, 99-100% specificity, 94-105% efficiency, and a limit of detection of 2-3 copies per reaction. RotaTeq(®) VP6, VP3-WC3, and VP3-human qRT-PCR assays displayed 100% sensitivity, 94-100% specificity, 91-102% efficiency and limits of detection of 1 copy, 2 copies, and 140 copies, respectively. These assays permit rapid identification of Rotarix(®) and RotaTeq(®) vaccine components in stool samples from clinical and surveillance studies and will be helpful in determining the frequency of vaccine strain-associated AGE.

  10. Real-time RT-PCR assays to differentiate wild-type group A rotavirus strains from Rotarix® and RotaTeq® vaccine strains in stool samples

    PubMed Central

    Gautam, Rashi; Esona, Mathew D; Mijatovic-Rustempasic, Slavica; Ian Tam, Ka; Gentsch, Jon R; Bowen, Michael D

    2014-01-01

    Group A rotaviruses (RVA) are the leading cause of severe diarrhea in young children worldwide. Two live-attenuated RVA vaccines, Rotarix® and RotaTeq® are recommended by World Health Organization (WHO) for routine immunization of all infants. Rotarix® and RotaTeq® vaccines have substantially reduced RVA associated mortality but occasionally have been associated with acute gastroenteritis (AGE) cases identified in vaccinees and their contacts. High-throughput assays are needed to monitor the prevalence of vaccine strains in AGE cases and emergence of new vaccine-derived strains following RVA vaccine introduction. In this study, we have developed quantitative real-time RT-PCR (qRT-PCR) assays for detection of Rotarix® and RotaTeq® vaccine components in stool samples. Real-time RT-PCR assays were designed for vaccine specific targets in the genomes of Rotarix® (NSP2, VP4) and RotaTeq® (VP6, VP3-WC3, VP3-human) and validated on sequence confirmed stool samples containing vaccine strains, wild-type RVA strains, and RVA-negative stools. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Rotarix® NSP2 and VP4 qRT-PCR assays exhibited 92–100% sensitivity, 99–100% specificity, 94–105% efficiency, and a limit of detection of 2–3 copies per reaction. RotaTeq® VP6, VP3-WC3, and VP3-human qRT-PCR assays displayed 100% sensitivity, 94–100% specificity, 91–102% efficiency and limits of detection of 1 copy, 2 copies, and 140 copies, respectively. These assays permit rapid identification of Rotarix® and RotaTeq® vaccine components in stool samples from clinical and surveillance studies and will be helpful in determining the frequency of vaccine strain-associated AGE. PMID:24342877

  11. Evaluation of protective efficacy of live attenuated Salmonella enterica serovar Gallinarum vaccine strains against fowl typhoid in chickens.

    PubMed

    Laniewski, Paweł; Mitra, Arindam; Karaca, Kemal; Khan, Ayub; Prasad, Rajeev; Curtiss, Roy; Roland, Kenneth L

    2014-09-01

    Salmonella enterica serovar Gallinarum is the etiological agent of fowl typhoid, which constitutes a considerable economic problem for poultry growers in developing countries. The vaccination of chickens seems to be the most effective strategy to control the disease in those areas. We constructed S. Gallinarum strains with a deletion of the global regulatory gene fur and evaluated their virulence and protective efficacy in Rhode Island Red chicks and Brown Leghorn layers. The fur deletion mutant was avirulent and, when delivered orally to chicks, elicited excellent protection against lethal S. Gallinarum challenge. It was not as effective when given orally to older birds, although it was highly immunogenic when delivered by intramuscular injection. We also examined the effect of a pmi mutant and a combination of fur deletions with mutations in the pmi and rfaH genes, which affect O-antigen synthesis, and ansB, whose product inhibits host T-cell responses. The S. Gallinarum Δpmi mutant was only partially attenuated, and the ΔansB mutant was fully virulent. The Δfur Δpmi and Δfur ΔansB double mutants were attenuated but not protective when delivered orally to the chicks. However, a Δpmi Δfur strain was highly immunogenic when administered intramuscularly. All together, our results show that the fur gene is essential for the virulence of S. Gallinarum, and the fur mutant is effective as a live recombinant vaccine against fowl typhoid. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Persistence of poliovirus-neutralizing antibodies 2-16 years after immunization with live attenuated vaccine. A seroepidemiologic survey in the mainland of Venice.

    PubMed Central

    Trivello, R.; Renzulli, G.; Farisano, G.; Bonello, C.; Moschen, M.; Gasparini, V.; Benussi, G.

    1988-01-01

    A seroepidemiological survey was conducted on subjects who had received a full vaccination course with live attenuated poliovirus 2-16 years before. For strains 1 and 2 prevalence of seropositives and median values dropped gradually during the first 10 years; strain 3 showed a much earlier decline. Environmental displacement of wild poliovirus by the attenuated, less immunogenic strain might eventually induce a 'gap', should complacency hamper needed vaccination efforts. PMID:2850939

  13. The reactogenicity and immunogenicity of the Urabe Am 9 live mumps vaccine and persistence of vaccine induced antibodies in healthy young children.

    PubMed

    Ehrengut, W; Georges, A M; André, F E

    1983-04-01

    The immunogenicity and reactogenicity of the Urabe Am 9 mumps virus vaccine strain were studied after the administration of different doses of the vaccine to 197 children ranging in age from seven and a half months to nine years and without a history of mumps. There was no effect of dose on the response in serum neutralizing antibodies in the range of 10(2.9) to 10(4.7) TCID50/dose. In the 90 subjects without detectable serum neutralization antibodies before vaccination seroconversion was obtained in 94.4% after 42 days. Half of a group of 34 seropositive children who were tested also showed a fourfold or greater rise in antibodies. Persistence of vaccine-enhanced haemagluttinin-inhibition (EHI) antibodies was satisfactory as only two of 46 vaccinees followed-up for between 27 and 32 months had undetectable levels of EHI antibodies and the geometric mean titre of vaccine-induced EHI antibodies had only fallen to about one-third by 32 months after vaccination. Although there was serological evidence of a subclinical re-infection in three subjects, to date none of the vaccinees has had clinical mumps indicating that the vaccine confers protection against disease. The vaccine was well tolerated. Furthermore, the majority of the few 'reactions' reported were probably not vaccine-related. It is concluded that the Urabe Am 9 is an acceptable strain for use in live mumps vaccines.

  14. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    PubMed Central

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  15. Trivalent live attenuated intranasal influenza vaccine administered during the 2003-2004 influenza type A (H3N2) outbreak provided immediate, direct, and indirect protection in children.

    PubMed

    Piedra, Pedro A; Gaglani, Manjusha J; Kozinetz, Claudia A; Herschler, Gayla B; Fewlass, Charles; Harvey, Dianne; Zimmerman, Nadine; Glezen, W Paul

    2007-09-01

    Live attenuated influenza vaccine may protect against wild-type influenza illness shortly after vaccine administration by innate immunity. The 2003-2004 influenza A (H3N2) outbreak arrived early, and the circulating strain was antigenically distinct from the vaccine strain. The objective of this study was to determine the effectiveness of influenza vaccines for healthy school-aged children when administered during the influenza outbreak. An open-labeled, nonrandomized, community-based influenza vaccine trial was conducted in children 5 to 18 years old. Age-eligible healthy children received trivalent live attenuated influenza vaccine. Trivalent inactivated influenza vaccine was given to children with underlying health conditions. Influenza-positive illness was compared between vaccinated and nonvaccinated children. Medically attended acute respiratory illness and pneumonia and influenza rates for Scott and White Health Plan vaccinees were compared with age-eligible Scott and White Health Plan nonparticipants in the intervention communities. Herd protection was assessed by comparing age-specific medically attended acute respiratory illness rates in Scott and White Health Plan members in the intervention and comparison communities. We administered 1 dose of trivalent live attenuated influenza vaccine or trivalent inactivated influenza vaccine to 6569 and 1040 children, respectively (31.5% vaccination coverage), from October 10 to December 30, 2003. The influenza outbreak occurred from October 12 to December 20, 2003. Significant protection against influenza-positive illness (37.3%) and pneumonia and influenza events (50%) was detected in children who received trivalent live attenuated influenza vaccine but not trivalent inactivated influenza vaccine. Trivalent live attenuated influenza vaccine recipients had similar protection against influenza-positive illness within 14 days compared with >14 days (10 of 25 vs 9 of 30) after vaccination. Indirect effectiveness

  16. Recombinant canine distemper virus serves as bivalent live vaccine against rabies and canine distemper.

    PubMed

    Wang, Xijun; Feng, Na; Ge, Jinying; Shuai, Lei; Peng, Liyan; Gao, Yuwei; Yang, Songtao; Xia, Xianzhu; Bu, Zhigao

    2012-07-20

    Effective, safe, and affordable rabies vaccines are still being sought. Attenuated live vaccine has been widely used to protect carnivores from canine distemper. In this study, we generated a recombinant canine distemper virus (CDV) vaccine strain, rCDV-RVG, expressing the rabies virus glycoprotein (RVG) by using reverse genetics. The recombinant virus rCDV-RVG retained growth properties similar to those of vector CDV in Vero cell culture. Animal studies demonstrated that rCDV-RVG was safe in mice and dogs. Mice inoculated intracerebrally or intramuscularly with rCDV-RVG showed no apparent signs of disease and developed a strong rabies virus (RABV) neutralizing antibody response, which completely protected mice from challenge with a lethal dose of street virus. Canine studies showed that vaccination with rCDV-RVG induced strong and long-lasting virus neutralizing antibody responses to RABV and CDV. This is the first study demonstrating that recombinant CDV has the potential to serve as bivalent live vaccine against rabies and canine distemper in animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effects of live and killed vaccines against Mycoplasma gallisepticum on the performance characteristics of commercial layer chickens.

    PubMed

    Jacob, R; Branton, S L; Evans, J D; Leigh, S A; Peebles, E D

    2014-06-01

    Different vaccine strains of Mycoplasma gallisepticum have been used on multiple-age commercial layer farms in an effort to protect birds against virulent field-strain infections. Use of the F-strain of M. gallisepticum (FMG), as an overlay vaccine during lay, may be necessary because of the lower level of protection afforded by M. gallisepticum vaccines of low virulence given before lay. Two replicate trials were conducted to investigate effects of live and killed M. gallisepticum vaccines administered individually and in combination before lay, in conjunction with an FMG vaccine overlay after peak egg production (EP), on the performance characteristics of commercial layers. The following treatments were utilized at 10 wk of age (woa): 1) control (no vaccinations); 2) ts11 strain M. gallisepticum (ts11MG) vaccine; 3) M. gallisepticum-Bacterin vaccine (MG-Bacterin); and 4) ts11MG and MG-Bacterin vaccines combination. At 45 woa, half of the birds were overlaid with an FMG vaccine. Hen mortality, BW, egg weight, percentage hen-day EP, egg blood spots, and egg meat spots were determined at various time periods between 18 and 52 woa. The data from each trial were pooled. Treatment did not affect performance in interval I (23 to 45 woa). However, during interval II (46 to 52 woa), the EP of control and MG-Bacterin-vaccinated birds that later received an FMG vaccine overlay was lower than that in the other treatment groups. Furthermore, treatment application reduced bird BW during interval II. Despite the effects on BW and EP, no differences were observed for egg blood or meat spots among the various treatments. It is suggested that the vaccination of commercial layers before lay with ts11MG, but not MG-Bacterin, may reduce the negative impacts of an FMG overlay vaccination given during lay. These results establish that the vaccination of pullets with ts11MG in combination with the vaccination of hens with an FMG overlay, for continual protection against field-strain M

  18. Development of a highly sensitive PCR/DNA chip method to detect mycoplasmas in a veterinary modified live vaccine.

    PubMed

    Mbelo, Sylvie; Gay, Virginie; Blanchard, Stephanie; Abachin, Eric; Falque, Stephanie; Lechenet, Jacques; Poulet, Hervé; de Saint-Vis, Blandine

    2018-05-09

    Mycoplasmas are potential contaminants that introduce undesirable changes in mammalian cell cultures. They frequently contaminate cell substrates and other starting materials used for manufacturing cell-derived biologics, such as vaccines and pharmaceutical products. Mycoplasma purity testing of live vaccines, active ingredients, raw material, and seed lots is required during vaccine production. Previously, testing using a time-consuming, costly 28-day culture assay, which lacks sensitivity for species that do not grow in culture, was required in the European Pharmacopoeia (Ph. Eur). But now nucleic acid amplification techniques (NATs) can be used. NATs provide rapid results and are sensitive. We evaluated the sensitivity and specificity of a commercially-available NAT to detect individual mycoplasma DNA in a veterinary modified live vaccine using five reference strains recommended by the Ph. Eur. Our results showed that this NAT-based method can be used to detect mycoplasma in spiked live vaccine, without interference from the vaccine components, with a limit of detection of 10 CFU/mL, as required by the Ph. Eur. Its specificity was demonstrated since no mycoplasmas were detected in non-spiked vaccine. This method is undergoing validation as a replacement for the conventional culture method in the production of veterinary live vaccines. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Burkholderia mallei CLH001 Attenuated Vaccine Strain Is Immunogenic and Protects against Acute Respiratory Glanders

    PubMed Central

    Hatcher, Christopher L.; Mott, Tiffany M.; Muruato, Laura A.; Sbrana, Elena

    2016-01-01

    Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain. PMID:27271739

  20. Vaccination with Brucella abortus rough mutant RB51 protects BALB/c mice against virulent strains of Brucella abortus, Brucella melitensis, and Brucella ovis.

    PubMed Central

    Jiménez de Bagüés, M P; Elzer, P H; Jones, S M; Blasco, J M; Enright, F M; Schurig, G G; Winter, A J

    1994-01-01

    Vaccination of BALB/c mice with live Brucella abortus RB51, a stable rough mutant, produced protection against challenge with virulent strains of Brucella abortus, Brucella melitensis, and Brucella ovis. Passive-transfer experiments indicated that vaccinated mice were protected against B. abortus 2308 through cell-mediated immunity, against B. ovis PA through humoral immunity, and against B. melitensis 16M through both forms of immunity. Live bacteria were required for the induction of protective cell-mediated immunity; vaccination with whole killed cells of strain RB51 failed to protect mice against B. abortus 2308 despite development of good delayed-type hypersensitivity reactions. Protective antibodies against the heterologous species were generated in vaccinated mice primarily through anamnestic responses following challenge infections. Growth of the antigenically unrelated bacterium Listeria monocytogenes in the spleens of vaccinated mice indicated that nonspecific killing by residual activated macrophages contributed minimally to protection. These results encourage the continued investigation of strain RB51 as an alternative vaccine against heterologous Brucella species. However, its usefulness against B. ovis would be limited if, as suggested here, epitopes critical for protective cell-mediated immunity are not shared between B. abortus and B. ovis. Images PMID:7927779

  1. 9 CFR 113.300 - General requirements for live virus vaccines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... vaccines. 113.300 Section 113.300 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Virus Vaccines § 113.300 General requirements for live virus vaccines. When prescribed in an applicable Standard Requirement or in the filed Outline of Production, a live virus vaccine shall meet the...

  2. 9 CFR 113.300 - General requirements for live virus vaccines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vaccines. 113.300 Section 113.300 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Virus Vaccines § 113.300 General requirements for live virus vaccines. When prescribed in an applicable Standard Requirement or in the filed Outline of Production, a live virus vaccine shall meet the...

  3. 9 CFR 113.300 - General requirements for live virus vaccines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... vaccines. 113.300 Section 113.300 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Virus Vaccines § 113.300 General requirements for live virus vaccines. When prescribed in an applicable Standard Requirement or in the filed Outline of Production, a live virus vaccine shall meet the...

  4. 9 CFR 113.300 - General requirements for live virus vaccines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... vaccines. 113.300 Section 113.300 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Virus Vaccines § 113.300 General requirements for live virus vaccines. When prescribed in an applicable Standard Requirement or in the filed Outline of Production, a live virus vaccine shall meet the...

  5. Principles underlying rational design of live attenuated influenza vaccines

    PubMed Central

    Jang, Yo Han

    2012-01-01

    Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs. PMID:23596576

  6. A critical review on a globally-licensed, live, orally-administrable, monovalent human rotavirus vaccine: Rotarix.

    PubMed

    Nakagomi, Toyoko; Nakagomi, Osamu

    2009-08-01

    Rotavirus is the major cause of severe gastroenteritis in children worldwide, and two, live, orally-administrable vaccines are licensed globally. They are Rotarix, a monovalent, human rotavirus-based vaccine (GlaxoSmithKline), and RotaTeq, a pentavalent, bovine-human reassortant vaccine (Merck). The RIX4414 strain, a G1P[8] virus, is contained in the Rotarix vaccine. It grows efficiently in the human intestine, as evidenced by vaccine virus shedding into faeces. Efficient multiplication of RIX4414 in the intestines may play a role in stimulating immune effectors other than neutralizing antibodies that may explain the protective immunity against fully heterotypic G2P[4] strains. The protective efficacy against severe rotavirus gastroenteritis afforded by Rotarix is consistently better against strains that share with RIX4414 both G and P serotypes (i.e., G1P[8]), or only P serotype (i.e., G3P[8], G4P[8] and G9P[8]). The Rotarix vaccine is safe regarding intussusception if its first dose is administered between 6 and 12 weeks of age and the last dose by 24 weeks of age with a minimum interval of 4 weeks between the two doses. The expansion by Advisory Committee on Immunization Practices, USA, of the age limit for the first dose to age <15 weeks, and the last dose by 8 months requires close monitoring.

  7. Humoral response to calicivirus in captive tigers given a dual-strain vaccine.

    PubMed

    Harrison, Tara M; Harrison, Scott H; Sikarskie, James G; Armstrong, Douglas

    2014-03-01

    The current feline vaccine with a single strain of calicivirus has been used for captive tigers, yet it may not protect against virulent systemic calicivirus infections. A cross-institutional study investigated the humoral response to a new dual-strain, killed-virus calicivirus vaccine for nine captive tigers. The subspecies of these tigers were Amur (Panthera tigris altaica), Bengal (Panthera tigris tigris), and Malayan (Panthera tigris jacksoni). Serum neutralization titers for virulent feline calicivirus strain FCV-DD1 were higher following dual-strain vaccine administration. There were no reports of adverse vaccine reactions. Dual-strain vaccination may afford broadened cross-protection against different calicivirus strains and is desirable to reduce the risk of virulent systemic calicivirus disease in tigers.

  8. Live attenuated influenza vaccine (LAIV) impacts innate and adaptive immune responses.

    PubMed

    Lanthier, Paula A; Huston, Gail E; Moquin, Amy; Eaton, Sheri M; Szaba, Frank M; Kummer, Lawrence W; Tighe, Micheal P; Kohlmeier, Jacob E; Blair, Patrick J; Broderick, Michael; Smiley, Stephen T; Haynes, Laura

    2011-10-13

    Influenza A infection induces a massive inflammatory response in the lungs that leads to significant illness and increases the susceptibility to secondary bacterial pneumonia. The most efficient way to prevent influenza infection is through vaccination. While inactivated vaccines induce protective levels of serum antibodies to influenza hemaglutinin (HA) and neuraminidase (NA) surface proteins, these are strain specific and offer little protection against heterosubtypic influenza viruses. In contrast, live attenuated influenza vaccines (LAIVs) induce a T cell response in addition to antibody responses against HA and NA surface proteins. Importantly, LAIV vaccination induces a response in a mouse model that protects against illness due to heterosubtypic influenza strains. While it is not completely clear what is the mechanism of action of LAIV heterosubtypic protection in humans, it has been shown that LAIV induces heterosubtypic protection in mice that is dependent upon a Type 1 immune response and requires CD8 T cells. In this study, we show that LAIV-induced immunity leads to significantly reduced viral titers and inflammatory responses in the lungs of mice following heterosubtypic infection. Not only are viral titers reduced in LAIV vaccinated mice, the amounts of inflammatory cytokines and chemokines in lung tissue are significantly lower. Additionally, we show that LAIV vaccination of healthy adults also induces a robust Type 1 memory response including the production of chemokines and cytokines involved in T cell activation and recruitment. Thus, our results indicate that LAIV vaccination functions by inducing immune memory which can act to modulate the immune response to subsequent heterosubtypic challenge by influencing both innate and adaptive responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Removal of gelatin from live vaccines and DTaP-an ultimate solution for vaccine-related gelatin allergy.

    PubMed

    Kuno-Sakai, Harumi; Kimura, Mikio

    2003-12-01

    From the early 1990s infants started to receive acellular pertussis vaccine combined with diphtheria and tetanus toxoids (DTaP) before live vaccines such as measles, rubella, and mumps vaccines, which contained gelatin as a stabilizer. Then, an increasing number of cases of anaphylactic/allergic reactions to those live vaccines were reported. Almost all these cases had a previous history of receiving three or four doses of DTaP containing gelatin.Anaphylactic/allergic reactions to live measles vaccine were analyzed using information obtained from the Reporting System, a retrospective study, as well as from the Monitoring System, a prospective study. Dramatic decreases in anaphylactic/allergic reactions to live measles vaccines were observed immediately after each manufacturer marketed gelatin-free or gelatin (hypo-allergic)-containing live measles vaccine, and since the end of 1998 reports on anaphylactic/allergic reactions to live measles vaccine have almost ceased.

  10. Serologic response of roosters to gradient dosage levels of a commercially available live F strain-derived Mycoplasma gallisepticum vaccine over time

    USDA-ARS?s Scientific Manuscript database

    Spray application is a commonly used time- and labor-efficient means to deliver live Mycoplasma gallisepticum (MG) vaccine to laying hens in commercial production facilities. The dosage of vaccine received by spray vaccinated birds can vary due to variation in the spray plume and vaccine suspension...

  11. Results of a study of the reactogenic and immunogenic properties of live anti-poliomyelitis vaccine

    PubMed Central

    Smorodintsev, A. A.; Davidenkova, E. F.; Drobyshevskaya, A. I.; Ilyenko, V. I.; Gorev, N. E.; Kurnosova, L. M.; Klyuchareva, T. E.

    1959-01-01

    The authors have studied the harmlessness and immunogenic properties of live poliomyelitis vaccine made in Leningrad from Sabin strains of low pathogenicity for monkeys. More than 20 000 children of pre-school (6 months to 3 years) and school age (7-14 years) were each given 100 000 tissue-culture infective doses of virus of types 1, 2 and 3, injected either in three stages at monthly intervals in the form of monovaccines, or in two stages, a monovaccine of type 1 being followed after a month's interval by injection of a divalent vaccine of types 2 and 3. The vaccination caused no symptoms of lesions of the central nervous system or other organs. In the blood of the inoculated children there was a regular build-up of virus-neutralizing antibodies to the serotypes mentioned, the intensity of which depended on the antibody level before vaccination and was in a constant relationship to the multiplication of the virus in the intestinal canal. The antibody titre was maintained at high levels for 6-9 months after immunization and fell a little after 12-18 months. The vaccinal virus is easily transferred from vaccinated children to contact groups, which are gradually vaccinated by this natural means. Lengthy and numerous passages of vaccinal strains through the intestinal canal of normal, susceptible children showed that strains may periodically appear which have a higher neurotropic activity for monkeys. This activity, however, did not increase in subsequent passage and returned to the initial level. PMID:13832218

  12. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses

    PubMed Central

    Nishiyama, Shoko; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF. PMID:26322023

  13. High-Resolution Melting-Curve Analysis of obg Gene to Differentiate the Temperature-Sensitive Mycoplasma synoviae Vaccine Strain MS-H from Non-Temperature-Sensitive Strains

    PubMed Central

    Shahid, Muhammad A.; Markham, Philip F.; Marenda, Marc S.; Agnew-Crumpton, Rebecca; Noormohammadi, Amir H.

    2014-01-01

    Temperature-sensitive (ts +) vaccine strain MS-H is the only live attenuated M. synoviae vaccine commercially available for use in poultry. With increasing use of this vaccine to control M. synoviae infections, differentiation of MS-H from field M. synoviae strains and from rarely occurring non-temperature-sensitive (ts –) MS-H revertants has become important, especially in countries where local strains are indistinguishable from MS-H by sequence analysis of variable lipoprotein haemagglutinin (vlhA) gene. Single nucleotide polymorphisms (SNPs) in the obg of MS-H have been found to associate with ts phenotype. In this study, four PCRs followed by high-resolution melting (HRM)-curve analysis of the regions encompassing these SNPs were developed and evaluated for their potential to differentiate MS-H from 36 M. synoviae strains/isolates. The nested-obg PCR-HRM differentiated ts + MS-H vaccine not only from field M. synoviae strains/isolates but also from ts – MS-H revertants. The mean genotype confidence percentages, 96.9±3.4 and 8.8±11.2 for ts + and ts – strains, respectively, demonstrated high differentiating power of the nested-obg PCR-HRM. Using a combination of nested-obg and obg-F3R3 PCR-HRM, 97% of the isolates/strains were typed according to their ts phenotype with all MS-H isolates typed as MS-H. A set of respiratory swabs from MS-H vaccinated specific pathogen free chickens and M. synoviae infected commercial chicken flocks were tested using obg PCR-HRM system and results were consistent with those of vlhA genotyping. The PCR-HRM system developed in this study, proved to be a rapid and reliable tool using pure M. synoviae cultures as well as direct clinical specimens. PMID:24643035

  14. Rift Valley Fever vaccines: An overview of the safety and efficacy of the live-attenuated MP-12 vaccine candidate

    PubMed Central

    Ikegami, Tetsuro

    2017-01-01

    Introduction Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Arabian Peninsula. High rates of abortion among infected ruminants and hemorrhagic fever in infected humans are major public health concerns. Commercially available veterinary RVF vaccines are important for preventing the spread of the Rift Valley fever virus (RVFV) in endemic countries; however, RVFV outbreaks continue to occur frequently in endemic countries in the 21st century. In the U.S., the live-attenuated MP-12 vaccine has been developed for both animal and human vaccination. This vaccine strain is well attenuated, and a single dose induces neutralizing antibodies in both ruminants and humans. Areas covered This review describes scientific evidences of MP-12 vaccine efficacy and safety, as well as MP-12 variants recently developed by reverse genetics, in comparison with other RVF vaccines. Expert commentary The containment of active RVF outbreaks and long-term protection from RVF exposure to infected mosquitoes are important goals for RVF vaccination. MP-12 vaccine will allow immediate vaccination of susceptible animals in case of an unexpected RVF outbreak in the U.S., whereas MP-12 vaccine may be also useful for the RVF control in endemic regions. PMID:28425834

  15. Rift Valley fever vaccines: an overview of the safety and efficacy of the live-attenuated MP-12 vaccine candidate.

    PubMed

    Ikegami, Tetsuro

    2017-06-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Arabian Peninsula. High rates of abortion among infected ruminants and hemorrhagic fever in infected humans are major public health concerns. Commercially available veterinary RVF vaccines are important for preventing the spread of the Rift Valley fever virus (RVFV) in endemic countries; however, RVFV outbreaks continue to occur frequently in endemic countries in the 21st century. In the U.S., the live-attenuated MP-12 vaccine has been developed for both animal and human vaccination. This vaccine strain is well attenuated, and a single dose induces neutralizing antibodies in both ruminants and humans. Areas covered: This review describes scientific evidences of MP-12 vaccine efficacy and safety, as well as MP-12 variants recently developed by reverse genetics, in comparison with other RVF vaccines. Expert commentary: The containment of active RVF outbreaks and long-term protection from RVF exposure to infected mosquitoes are important goals for RVF vaccination. MP-12 vaccine will allow immediate vaccination of susceptible animals in case of an unexpected RVF outbreak in the U.S., whereas MP-12 vaccine may be also useful for the RVF control in endemic regions.

  16. Live Attenuated Influenza Vaccine Enhances Colonization of Streptococcus pneumoniae and Staphylococcus aureus in Mice

    PubMed Central

    Mina, Michael J.; McCullers, Jonathan A.; Klugman, Keith P.

    2014-01-01

    ABSTRACT Community interactions at mucosal surfaces between viruses, like influenza virus, and respiratory bacterial pathogens are important contributors toward pathogenesis of bacterial disease. What has not been considered is the natural extension of these interactions to live attenuated immunizations, and in particular, live attenuated influenza vaccines (LAIVs). Using a mouse-adapted LAIV against influenza A (H3N2) virus carrying the same mutations as the human FluMist vaccine, we find that LAIV vaccination reverses normal bacterial clearance from the nasopharynx and significantly increases bacterial carriage densities of the clinically important bacterial pathogens Streptococcus pneumoniae (serotypes 19F and 7F) and Staphylococcus aureus (strains Newman and Wright) within the upper respiratory tract of mice. Vaccination with LAIV also resulted in 2- to 5-fold increases in mean durations of bacterial carriage. Furthermore, we show that the increases in carriage density and duration were nearly identical in all aspects to changes in bacterial colonizing dynamics following infection with wild-type (WT) influenza virus. Importantly, LAIV, unlike WT influenza viruses, had no effect on severe bacterial disease or mortality within the lower respiratory tract. Our findings are, to the best of our knowledge, the first to demonstrate that vaccination with a live attenuated viral vaccine can directly modulate colonizing dynamics of important and unrelated human bacterial pathogens, and does so in a manner highly analogous to that seen following wild-type virus infection. PMID:24549845

  17. Clinical development of a novel inactivated poliomyelitis vaccine based on attenuated Sabin poliovirus strains.

    PubMed

    Verdijk, Pauline; Rots, Nynke Y; Bakker, Wilfried A M

    2011-05-01

    Following achievement of polio eradication, the routine use of all live-attenuated oral poliovirus vaccines should be discontinued. However, the costs per vaccine dose for the alternative inactivated poliovirus vaccine (IPV) are significantly higher and the current production capacity is not sufficient for worldwide distribution of the vaccine. In order to achieve cost-prize reduction and improve affordability, IPV production processes and dose-sparing strategies should be developed to facilitate local manufacture at a relatively lower cost. The use of attenuated Sabin instead of wild-type polio strains will provide additional safety during vaccine production and permits production in low-cost settings. Sabin-IPV is under development by several manufacturers. This article gives an overview of results from clinical trials with Sabin-IPV and discusses the requirements and challenges in the clinical development of this novel IPV.

  18. 9 CFR 113.71 - Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Chlamydia Psittaci Vaccine (Feline... VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.71 Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia. Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia, shall be...

  19. 9 CFR 113.71 - Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Chlamydia Psittaci Vaccine (Feline... VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.71 Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia. Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia, shall be...

  20. 9 CFR 113.71 - Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Chlamydia Psittaci Vaccine (Feline... VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.71 Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia. Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia, shall be...

  1. 9 CFR 113.71 - Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Chlamydia Psittaci Vaccine (Feline... VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.71 Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia. Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia, shall be...

  2. 9 CFR 113.71 - Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Chlamydia Psittaci Vaccine (Feline... VECTORS STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.71 Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia. Chlamydia Psittaci Vaccine (Feline Pneumonitis), Live Chlamydia, shall be...

  3. Genetic heterogeneity of L-Zagreb mumps virus vaccine strain.

    PubMed

    Kosutic-Gulija, Tanja; Forcic, Dubravko; Santak, Maja; Ramljak, Ana; Mateljak-Lukacevic, Sanja; Mazuran, Renata

    2008-07-10

    The most often used mumps vaccine strains Jeryl Lynn (JL), RIT4385, Urabe-AM9, L-Zagreb and L-3 differ in immunogenicity and reactogenicity. Previous analyses showed that JL, Urabe-AM9 and L-3 are genetically heterogeneous. We identified the heterogeneity of L-Zagreb throughout the entire genome. Two major variants were defined: variant A being identical to the consensus sequence of viral seeds and vaccine(s) and variant B which differs from variant A in three nucleotide positions. The difference between viral variants in L-Zagreb strain is insufficient for distinct viral strains to be defined. We demonstrated that proportion of variants in L-Zagreb viral population depends on cell substrate used for viral replication in vitro and in vivo. L-Zagreb strain should be considered as a single strain composed of at least two variant viral genomes.

  4. Construction and Characterization of a Nonproliferative El Tor Cholera Vaccine Candidate Derived from Strain 638

    PubMed Central

    Valle, Edgar; Ledón, Talena; Cedré, Bárbara; Campos, Javier; Valmaseda, Tania; Rodríguez, Boris; García, Luis; Marrero, Karen; Benítez, Jorge; Rodríguez, Sandra; Fando, Rafael

    2000-01-01

    In recent clinical assays, our cholera vaccine candidate strain, Vibrio cholerae 638 El Tor Ogawa, was well tolerated and immunogenic in Cuban volunteers. In this work we describe the construction of 638T, a thymidine auxotrophic version of improved environmental biosafety. In so doing, the thyA gene from V. cholerae was cloned, sequenced, mutated in vitro, and used to replace the wild-type allele. Except for its dependence on thymidine for growth in minimal medium, 638T is essentially indistinguishable from 638 in the rate of growth and morphology in complete medium. The two strains showed equivalent phenotypes with regard to motility, expression of the celA marker, colonization capacity in the infant mouse cholera model, and immunogenicity in the adult rabbit cholera model. However, the ability of this new strain to survive environmental starvation was limited with respect to that of 638. Taken together, these results suggest that this live, attenuated, but nonproliferative strain is a new, promising cholera vaccine candidate. PMID:11035753

  5. New Generation Live Vaccines against Human Respiratory Syncytial Virus Designed by Reverse Genetics

    PubMed Central

    Collins, Peter L.; Murphy, Brian R.

    2005-01-01

    Development of a live pediatric vaccine against human respiratory syncytial virus (RSV) is complicated by the need to immunize young infants and the difficulty in balancing attenuation and immunogenicity. The ability to introduce desired mutations into infectious virus by reverse genetics provides a method for identifying and designing highly defined attenuating mutations. These can be introduced in combinations as desired to achieve gradations of attenuation. Attenuation is based on several strategies: multiple independent temperature-sensitive point mutations in the polymerase, a temperature-sensitive point mutation in a transcription signal, a set of non–temperature-sensitive mutations involving several genes, deletion of a viral RNA synthesis regulatory protein, and deletion of viral IFN α/β antagonists. The genetic stability of the live vaccine can be increased by judicious choice of mutations. The virus also can be engineered to increase the level of expression of the protective antigens. Protective antigens from antigenically distinct RSV strains can be added or swapped to increase the breadth of coverage. Alternatively, the major RSV protective antigens can be expressed from transcription units added to an attenuated parainfluenza vaccine virus, making a bivalent vaccine. This would obviate the difficulties inherent in the fragility and inefficient in vitro growth of RSV, simplifying vaccine design and use. PMID:16113487

  6. 9 CFR 113.67 - Erysipelothrix Rhusiopathiae Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Erysipelothrix Rhusiopathiae Vaccine... REQUIREMENTS Live Bacterial Vaccines § 113.67 Erysipelothrix Rhusiopathiae Vaccine. Erysipelothrix Rhusiopathiae Vaccine shall be prepared as a desiccated live culture of an avirulent or modified strain of...

  7. 9 CFR 113.67 - Erysipelothrix Rhusiopathiae Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Erysipelothrix Rhusiopathiae Vaccine... REQUIREMENTS Live Bacterial Vaccines § 113.67 Erysipelothrix Rhusiopathiae Vaccine. Erysipelothrix Rhusiopathiae Vaccine shall be prepared as a desiccated live culture of an avirulent or modified strain of...

  8. 9 CFR 113.67 - Erysipelothrix Rhusiopathiae Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Erysipelothrix Rhusiopathiae Vaccine... REQUIREMENTS Live Bacterial Vaccines § 113.67 Erysipelothrix Rhusiopathiae Vaccine. Erysipelothrix Rhusiopathiae Vaccine shall be prepared as a desiccated live culture of an avirulent or modified strain of...

  9. 9 CFR 113.67 - Erysipelothrix Rhusiopathiae Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Erysipelothrix Rhusiopathiae Vaccine... REQUIREMENTS Live Bacterial Vaccines § 113.67 Erysipelothrix Rhusiopathiae Vaccine. Erysipelothrix Rhusiopathiae Vaccine shall be prepared as a desiccated live culture of an avirulent or modified strain of...

  10. 9 CFR 113.67 - Erysipelothrix Rhusiopathiae Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Erysipelothrix Rhusiopathiae Vaccine... REQUIREMENTS Live Bacterial Vaccines § 113.67 Erysipelothrix Rhusiopathiae Vaccine. Erysipelothrix Rhusiopathiae Vaccine shall be prepared as a desiccated live culture of an avirulent or modified strain of...

  11. Burkholderia mallei CLH001 Attenuated Vaccine Strain Is Immunogenic and Protects against Acute Respiratory Glanders.

    PubMed

    Hatcher, Christopher L; Mott, Tiffany M; Muruato, Laura A; Sbrana, Elena; Torres, Alfredo G

    2016-08-01

    Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Current status of flavivirus vaccines.

    PubMed

    Barrett, A D

    2001-12-01

    Although there are approximately 68 flaviviruses recognized, vaccines have been developed to control very few human flavivirus diseases. Licensed live attenuated vaccines have been developed for yellow fever (strain 17D) and Japanese encephalitis (strain SA14-14-2) viruses, and inactivated vaccines have been developed for Japanese encephalitis and tick-borne encephalitis viruses. The yellow fever live attenuated 17D vaccine is one of the most efficacious and safe vaccines developed to date and has been used to immunize more than 300 million people. A number of experimental vaccines are being developed, most notably for dengue. Candidate tetravalent live attenuated dengue vaccines are undergoing clinical trials. Other vaccines are being developed using reverse genetics, DNA vaccines, and recombinant immunogens. In addition, the yellow fever 17D vaccine has been used as a backbone to generate chimeric viruses containing the premembrane and envelope protein genes from other flaviviruses. The "Chimerivax" platform has been used to construct chimeric Japanese encephalitis and dengue viruses that are in different phases of development. Similar strategies are being used by other laboratories.

  13. Genetic heterogeneity of L-Zagreb mumps virus vaccine strain

    PubMed Central

    Kosutic-Gulija, Tanja; Forcic, Dubravko; Šantak, Maja; Ramljak, Ana; Mateljak-Lukacevic, Sanja; Mazuran, Renata

    2008-01-01

    Background The most often used mumps vaccine strains Jeryl Lynn (JL), RIT4385, Urabe-AM9, L-Zagreb and L-3 differ in immunogenicity and reactogenicity. Previous analyses showed that JL, Urabe-AM9 and L-3 are genetically heterogeneous. Results We identified the heterogeneity of L-Zagreb throughout the entire genome. Two major variants were defined: variant A being identical to the consensus sequence of viral seeds and vaccine(s) and variant B which differs from variant A in three nucleotide positions. The difference between viral variants in L-Zagreb strain is insufficient for distinct viral strains to be defined. We demonstrated that proportion of variants in L-Zagreb viral population depends on cell substrate used for viral replication in vitro and in vivo. Conclusion L-Zagreb strain should be considered as a single strain composed of at least two variant viral genomes. PMID:18616793

  14. 9 CFR 113.64 - General requirements for live bacterial vaccines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... bacterial vaccines. 113.64 Section 113.64 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.64 General requirements for live bacterial vaccines... bacterial vaccine shall meet the requirements in this section. (a) Purity test. Final container samples of...

  15. 9 CFR 113.64 - General requirements for live bacterial vaccines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bacterial vaccines. 113.64 Section 113.64 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.64 General requirements for live bacterial vaccines... bacterial vaccine shall meet the requirements in this section. (a) Purity test. Final container samples of...

  16. 9 CFR 113.64 - General requirements for live bacterial vaccines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... bacterial vaccines. 113.64 Section 113.64 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.64 General requirements for live bacterial vaccines... bacterial vaccine shall meet the requirements in this section. (a) Purity test. Final container samples of...

  17. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs.

    PubMed

    Muñoz-González, Sara; Perez-Simó, Marta; Muñoz, Marta; Bohorquez, José Alejandro; Rosell, Rosa; Summerfield, Artur; Domingo, Mariano; Ruggli, Nicolas; Ganges, Llilianne

    2015-07-09

    Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.

  18. The challenges of classical swine fever control: modified live and E2 subunit vaccines.

    PubMed

    Huang, Yu-Liang; Deng, Ming-Chung; Wang, Fun-In; Huang, Chin-Cheng; Chang, Chia-Yi

    2014-01-22

    Classical swine fever (CSF) is an economically important, highly contagious disease of swine worldwide. CSF is caused by classical swine fever virus (CSFV), and domestic pigs and wild boars are its only natural hosts. The two main strategies used to control CSF epidemic are systematic prophylactic vaccination and a non-vaccination stamping-out policy. This review compares the protective efficacy of the routinely used modified live vaccine (MLV) and E2 subunit vaccines and summarizes the factors that influence the efficacy of the vaccines and the challenges that both vaccines face to CSF control. Although MLV provide earlier and more complete protection than E2 subunit vaccines, it has the drawback of not allowing differentiation between infected and vaccinated animals (DIVA). The marker vaccine of E2 protein with companion discriminatory test to detect antibodies against E(rns) allows DIVA and is a promising strategy for future control and eradication of CSF. Maternal derived antibody (MDA) is the critical factor in impairing the efficacy of both MLV and E2 subunit vaccines, so the well-designed vaccination programs of sows and piglets should be considered together. Because of the antigen variation among various genotypes of CSFV, antibodies raised by either MLV or subunit vaccine neutralize genotypically homologous strains better than heterologous ones. However, although this is not a major concern for MLV as the induced immune responses can protect pigs against the challenge of various genotypes of CSFVs, it is critical for E2 subunit vaccines. It is thus necessary to evaluate whether the E2 subunit vaccine can completely protect against the current prevalent strains in the field. An ideal new generation of vaccine should be able to maintain the high protective efficiency of MLV and overcome the problem of antigenic variations while allowing for DIVA. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Gallid herpesvirus 3 SB-1 strain as a recombinant viral vector for poultry vaccination.

    PubMed

    Sadigh, Yashar; Powers, Claire; Spiro, Simon; Pedrera, Miriam; Broadbent, Andrew; Nair, Venugopal

    2018-01-01

    Live herpesvirus-vectored vaccines are widely used in veterinary medicine to protect against many infectious diseases. In poultry, three strains of herpesvirus vaccines are used against Marek's disease (MD). However, of these, only the herpesvirus of turkeys (HVT) has been successfully developed and used as a recombinant vaccine vector to induce protection against other avian viral diseases such as infectious bursal disease (IBD), Newcastle disease (ND) or avian influenza (AI). Although effective when administered individually, recombinant HVT vectors have limitations when combined in multivalent vaccines. Thus there is a need for developing additional viral vectors that could be combined with HVT in inducing protection against multiple avian diseases in multivalent vaccines. Gallid herpesvirus 3 (GaHV3) strain SB-1 is widely used by the poultry industry as bivalent vaccine in combination with HVT to exploit synergistic effects against MD. Here, we report the development and application of SB-1 as a vaccine vector to express the VP2 capsid antigen of IBD virus. A VP2 expression cassette was introduced into the SB-1 genome at three intergenic locations (UL3/UL4, UL10/UL11 and UL21/UL22) using recombineering methods on the full-length pSB-1 infectious clone of the virus. We show that the recombinant SB-1 vectors expressing VP2 induced neutralising antibody responses at levels comparable to that of commercial HVT-based VAXXITEK HVT+IBD vaccine. Birds vaccinated with the experimental recombinant SB-1 vaccine were protected against clinical disease after challenge with the very virulent UK661 IBDV isolate, demonstrating its value as an efficient viral vector for developing multivalent vaccines against avian diseases.

  20. [Evaluation of immunogenicity and safety of 2 immunizations with allantoic intranasal live influenza vaccine Ultragrivac].

    PubMed

    Shishkina, L N; Mazurkova, N A; Ternovoĭ, V A; Bulychev, L E; Tumanov, Iu V; Skarnovich, M O; Kabanov, A S; Ryndiuk, N N; Kuzubov, V I; Mironov, A N; Stavskiĭ, E A; Drozdov, I G

    2011-01-01

    Evaluate reactogenicity, safety and immunogenicity in phase 2 clinical trials of 2 immunization schedules with Ultragrivac--an allantoic intranasal life influenza vaccine based on A/17/ duck/Potsdam/86/92 [17/H5] reassortant strain. 4 groups of volunteers participated in the study: group 1--40 individuals were vaccinated twice with a 10 day interval; group 2--40 individuals were vaccinated twice with a 21 day interval; group 3 (control)--10 individuals received placebo twice with a 10 day interval; group 4 (control)--10 individuals received placebo twice with a 21 day interval. Local (secretory IgA), cellular and humoral immune response were evaluated. Humoral immunity was evaluated by the intensity of increase of geometric mean antibody titers against 2 influenza virus strains A/17/duck/Potsdam/86/92 [17/H5] and A/chicken/Suzdalka/Nov-1 1/2005 (H5N1), and by the level of significant (4 times or more) antibody seroconversions after the vaccination. After the use of Ultragrivac the level of secretory IgA in the nasal cavity of vaccinated volunteers in the groups with revaccination intervals of 10 and 21 days increased significantly. The second immunization with 10 or 21 day intervals significantly increased postvaccinal humoral immune response. Humoral immune response induction after 2 vaccinations with 10 day interval was no less effective than with 21 day interval. Ultragrivac allantoic intranasal live influenza vaccine is areactogenic, harmless for vaccinated individuals, safe for those around, and has immunogenic properties against not only homologous virus A(H5N2), but also against influenza strain A(H5N1).

  1. Phylogenetic analysis of Hungarian goose parvovirus isolates and vaccine strains.

    PubMed

    Tatár-Kis, Tímea; Mató, Tamás; Markos, Béla; Palya, Vilmos

    2004-08-01

    Polymerase chain reaction and sequencing were used to analyse goose parvovirus field isolates and vaccine strains. Two fragments of the genome were amplified. Fragment "A" represents a region of VP3 gene, while fragment "B" represents a region upstream of the VP3 gene, encompassing part of the VP1 gene. In the region of fragment "A" the deduced amino acid sequence of the strains was identical, therefore differentiation among strains could be done only at the nucleotide level, which resulted in the formation of three groups: Hungarian, West-European and Asian strains. In the region of fragment "B", separation of groups could be done by both nucleotide and deduced amino acid sequence level. The nucleotide sequences resulted in the same groups as for fragment "A" but with a different clustering pattern among the Hungarian strains. Within the "Hungarian" group most of the recent field isolates fell into one cluster, very closely related or identical to each other, indicating a very slow evolutionary change. The attenuated strains and field isolates from 1979/80 formed a separate cluster. When vaccine strains and field isolates were compared, two specific amino acid differences were found that can be considered as possible markers for vaccinal strains. Sequence analysis of fragment "B" seems to be a suitable method for differentiation of attenuated vaccine strains from virulent strains. Copyright 2004 Houghton Trust Ltd

  2. Immunogenicity of a low-passage, high-titer modified live canine parvovirus vaccine in pups with maternally derived antibodies.

    PubMed

    Hoare, C M; DeBouck, P; Wiseman, A

    1997-02-01

    The study evaluated the ability of a low-passage, high-titer modified live canine parvovirus (CPV) vaccine to produce seroconversion in pups with maternally derived hemagglutination inhibition (HI) titers ranging from < 8 to < or = 256. The vaccine's low-passage CPV strain was less attenuated and therefore more infective than conventional modified live CPV strains in order to overcome relatively greater levels of maternally derived antibodies, the principal cause of CPV vaccine failures in pups. To assess vaccine performance under field conditions, healthy pups presented at five private veterinary clinics were used as test animals. A single dose of vaccine was given to 59 pups at 12 weeks of age (Group A). To accommodate the protocol of clinics where earlier CPV vaccination was practiced, 87 other pups were vaccinated with two doses, the first at 8-10 weeks of age, and the second at 12 weeks of age (Group B). Geometric mean HI titers were measured for blood samples obtained at the time of vaccination and at 14 weeks of age. Seroconversion was considered to have occurred if pups developed a fourfold or greater increase in HI titer to a level > or = 64. Of the 59 pups in Group A, 100% seroconverted following the single vaccine dose at 12 weeks of age. Of the 87 Group B pups, 82 (94.3%) seroconverted following either of the two vaccine doses. A geometric mean HI titer of 4828 was measured for Group A, and a geometric mean HI titer of 2028 was measured for Group B. An overall seroconversion rate of 96.5% was achieved in pups with maternally derived HI titers < or = 256.

  3. Molecular typing of Brucella melitensis endemic strains and differentiation from the vaccine strain Rev-1.

    PubMed

    Noutsios, Georgios T; Papi, Rigini M; Ekateriniadou, Loukia V; Minas, Anastasios; Kyriakidis, Dimitrios A

    2012-03-01

    In the present study forty-four Greek endemic strains of Br. melitensis and three reference strains were genotyped by Multi locus Variable Number Tandem Repeat (ML-VNTR) analysis based on an eight-base pair tandem repeat sequence that was revealed in eight loci of Br. melitensis genome. The forty-four strains were discriminated from the vaccine strain Rev-1 by Restriction Fragment Length Polymorphism (RFLP) and Denaturant Gradient Gel Electrophoresis (DGGE). The ML-VNTR analysis revealed that endemic, reference and vaccine strains are genetically closely related, while most of the loci tested (1, 2, 4, 5 and 7) are highly polymorphic with Hunter-Gaston Genetic Diversity Index (HGDI) values in the range of 0.939 to 0.775. Analysis of ML-VNTRs loci stability through in vitro passages proved that loci 1 and 5 are non stable. Therefore, vaccine strain can be discriminated from endemic strains by allele's clusters of loci 2, 4, 6 and 7. RFLP and DGGE were also employed to analyse omp2 gene and reveled different patterns among Rev-1 and endemic strains. In RFLP, Rev-1 revealed three fragments (282, 238 and 44 bp), while endemic strains two fragments (238 and 44 bp). As for DGGE, the electrophoretic mobility of Rev-1 is different from the endemic strains due to heterologous binding of DNA chains of omp2a and omp2b gene. Overall, our data show clearly that it is feasible to genotype endemic strains of Br. melitensis and differentiate them from vaccine strain Rev-1 with ML-VNTR, RFLP and DGGE techniques. These tools can be used for conventional investigations in brucellosis outbreaks.

  4. Vaccine supply chains need to be better funded and strengthened, or lives will be at risk.

    PubMed

    Kaufmann, Judith R; Miller, Roger; Cheyne, James

    2011-06-01

    In the next decade, at least twelve additional vaccines that target such diseases as typhoid, malaria, and dengue will become available to lower- and middle-income countries. These vaccines must travel along what are called supply chains, which include all personnel, systems, equipment, and activities involved in ensuring that vaccines are effectively delivered from the point of production to the people who need them. But for various reasons, supply chains are already strained in many developing countries, and the potential inability to distribute new vaccines will place lives at risk. Among the many steps needed to strengthen the global vaccine supply chain, we suggest that the international community pursue improved coordination between organizations that donate and ship vaccines and the host-country officials who receive and distribute the vaccines, as well as better training for supply-chain managers.

  5. The impact of deposition site on vaccination efficiency of a live bacterial poultry vaccine.

    PubMed

    Evans, J D; Leigh, S A; Purswell, J L; Collier, S D; Kim, E J; Boykin, D L; Branton, S L

    2015-08-01

    Vaccines are utilized within the poultry industry to minimize disease-associated losses and spray vaccination is a commonly utilized means for the mass application of poultry vaccines. During this process, vaccine-laden particles are deposited upon target areas (e.g., eyes, nares, and oral cavity) resulting in the direct internalization of the vaccine. However, particles are also deposited on nontarget areas such as the exterior of the subject and its surrounding environment. To better determine the fate of particles deposited upon nontarget areas and the impact of deposition site on the efficiency of vaccine application, a live bacterial poultry vaccine (AviPro(®) MG F) was applied via spray using a spray cabinet with a slotted partition allowing for head-only, body-only, and whole-bird spray application. At 11 wk age, Hy-Line(®) W-36 pullets (n = 280) were allocated equally among 7 treatments including: nonvaccinated controls, pullets spray-vaccinated at the manufacturer's recommended dose (1X) in a site-specific manner (head-only, body-only, and whole-bird), pullets spray-vaccinated at 5X the recommended level (body-only), pullets vaccinated by manual eye-drop application (1X), and pullets eye-drop vaccinated at a level approximating that achieved during the spray vaccination process (1/700X). At 6 to 7 wk postvaccination, vaccination efficiency was assessed via serological-based assays [serum plate agglutination (SPA) and ELISA] and the detection of vaccine-derived in vivo populations. Results indicate an additive contribution of the vaccine deposited on the body to the overall vaccination efficiency of this live bacterial live poultry vaccine. © 2015 Poultry Science Association Inc.

  6. Safety of live vaccines on immunosuppressive or immunomodulatory therapy-a retrospective study in three Swiss Travel Clinics.

    PubMed

    Huber, Fabienne; Ehrensperger, Benoît; Hatz, Christoph; Chappuis, François; Bühler, Silja; Eperon, Gilles

    2018-01-01

    -beta and severe muscle/joint pain on sulfasalazine. Safety of live vaccines given to immunosuppressed patients cannot be concluded. However, it is re-assuring that in the examined patient groups no serious side effects or infections by the attenuated vaccine strain occurred. © International Society of Travel Medicine, 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. Brunenders: a partially attenuated historic poliovirus type I vaccine strain.

    PubMed

    Sanders, Barbara P; Liu, Ying; Brandjes, Alies; van Hoek, Vladimir; de Los Rios Oakes, Isabel; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2015-09-01

    Brunenders, a type I poliovirus (PV) strain, was developed in 1952 by J. F. Enders and colleagues through serial in vitro passaging of the parental Brunhilde strain, and was reported to display partial neuroattenuation in monkeys. This phenotype of attenuation encouraged two vaccine manufacturers to adopt Brunenders as the type I component for their inactivated poliovirus vaccines (IPVs) in the 1950s, although today no licensed IPV vaccine contains Brunenders. Here we confirmed, in a transgenic mouse model, the report of Enders on the reduced neurovirulence of Brunenders. Although dramatically neuroattenuated relative to WT PV strains, Brunenders remains more virulent than the attenuated oral vaccine strain, Sabin 1. Importantly, the neuroattenuation of Brunenders does not affect in vitro growth kinetics and in vitro antigenicity, which were similar to those of Mahoney, the conventional type I IPV vaccine strain. We showed, by full nucleotide sequencing, that Brunhilde and Brunenders differ at 31 nucleotides, eight of which lead to amino acid changes, all located in the capsid. Upon exchanging the Brunenders capsid sequence with that of the Mahoney capsid, WT neurovirulence was regained in vivo, suggesting a role for the capsid mutations in Brunenders attenuation. To date, as polio eradication draws closer, the switch to using attenuated strains for IPV is actively being pursued. Brunenders preceded this novel strategy as a partially attenuated IPV strain, accompanied by decades of successful use in the field. Providing data on the attenuation of Brunenders may be of value in the further construction of attenuated PV strains to support the grand pursuit of the global eradication of poliomyelitis.

  8. Live attenuated pre-erythrocytic malaria vaccines.

    PubMed

    Keitany, Gladys J; Vignali, Marissa; Wang, Ruobing

    2014-01-01

    Although recent control measures have significantly reduced malaria cases and deaths in many endemic areas, an effective vaccine will be essential to eradicate this parasitic disease. Malaria vaccine strategies developed to date focus on different phases of the parasite's complex life cycle in the human host and mosquito vector, and include both subunit-based and whole-parasite vaccines. This review focuses on the 3 live-attenuated malaria vaccination strategies that have been tested in humans to date, and discusses their progress, challenges and the immune correlates of protection that have been identified.

  9. Lights and shades on an historical vaccine canine distemper virus, the Rockborn strain.

    PubMed

    Martella, V; Blixenkrone-Møller, M; Elia, G; Lucente, M S; Cirone, F; Decaro, N; Nielsen, L; Bányai, K; Carmichael, L E; Buonavoglia, C

    2011-02-01

    Both egg- and cell-adapted canine distemper virus (CDV) vaccines are suspected to retain residual virulence, especially if administered to immuno-suppressed animals, very young pups or to highly susceptible animal species. In the early 1980s, post-vaccine encephalitis was reported in dogs from various parts of Britain after administration of a particular batch of combined CDV Rockborn strain/canine adenovirus type-1 vaccine, although incrimination of the Rockborn strain was subsequently retracted. Notwithstanding, this, and other reports, led to the view that the Rockborn strain is less attenuated and less safe than other CDV vaccines, and the Rockborn strain was officially withdrawn from the markets in the mid 1990s. By sequencing the H gene of the strain Rockborn from the 46th laboratory passage, and a commercial vaccine (Candur(®) SH+P, Hoechst Rousell Vet GmbH), the virus was found to differ from the commonly used vaccine strain, Onderstepoort (93.0% nt and 91.7% aa), and to resemble more closely (99.6% nt and 99.3% aa) a CDV strain detected in China from a Lesser Panda (Ailurus fulgens). An additional four CDV strains matching (>99% nt identity) the Rockborn virus were identified in the sequence databases. Also, Rockborn-like strains were identified in two vaccines currently in the market. These findings indicate that Rockborn-like viruses may be recovered from dogs or other carnivores with distemper, suggesting cases of residual virulence of vaccines, or circulation of vaccine-derived Rockborn-like viruses in the field. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Concomitant or sequential administration of live attenuated Japanese encephalitis chimeric virus vaccine and yellow fever 17D vaccine: randomized double-blind phase II evaluation of safety and immunogenicity.

    PubMed

    Nasveld, Peter E; Marjason, Joanne; Bennett, Sonya; Aaskov, John; Elliott, Suzanne; McCarthy, Karen; Kanesa-Thasan, Niranjan; Feroldi, Emmanuel; Reid, Mark

    2010-11-01

    A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever vaccine (YF-17D strain; Stamaril®, Sanofi Pasteur) or administered successively. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE strains was determined using a 50% serum-dilution plaque reduction neutralization test. Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82-100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart.

  11. Comparative analysis of the Rotarix™ vaccine strain and G1P[8] rotaviruses detected before and after vaccine introduction in Belgium.

    PubMed

    Zeller, Mark; Heylen, Elisabeth; Tamim, Sana; McAllen, John K; Kirkness, Ewen F; Akopov, Asmik; De Coster, Sarah; Van Ranst, Marc; Matthijnssens, Jelle

    2017-01-01

    G1P[8] rotaviruses are responsible for the majority of human rotavirus infections worldwide. The effect of universal mass vaccination with rotavirus vaccines on circulating G1P[8] rotaviruses is still poorly understood. Therefore we analyzed the complete genomes of the Rotarix™ vaccine strain, and 70 G1P[8] rotaviruses, detected between 1999 and 2010 in Belgium (36 before and 34 after vaccine introduction) to investigate the impact of rotavirus vaccine introduction on circulating G1P[8] strains. All rotaviruses possessed a complete Wa-like genotype constellation, but frequent intra-genogroup reassortments were observed as well as multiple different cluster constellations circulating in a single season. In addition, identical cluster constellations were found to circulate persistently over multiple seasons. The Rotarix™ vaccine strain possessed a unique cluster constellation that was not present in currently circulating G1P[8] strains. At the nucleotide level, the VP6, VP2 and NSP2 gene segments of Rotarix™ were relatively distantly related to any Belgian G1P[8] strain, but other gene segments of Rotarix™ were found in clusters also containing circulating Belgian strains. At the amino acid level, the genetic distance between Rotarix™ and circulating Belgian strains was considerably lower, except for NSP1. When we compared the Belgian G1P[8] strains collected before and after vaccine introduction a reduction in the proportion of strains that were found in the same cluster as the Rotarix™ vaccine strain was observed for most gene segments. The reduction in the proportion of strains belonging to the same cluster may be the result of the vaccine introduction, although natural fluctuations cannot be ruled out.

  12. Comparative analysis of pentavalent rotavirus vaccine strains and G8 rotaviruses identified during vaccine trial in Africa.

    PubMed

    Heylen, Elisabeth; Zeller, Mark; Ciarlet, Max; Lawrence, Jody; Steele, Duncan; Van Ranst, Marc; Matthijnssens, Jelle

    2015-10-06

    RotaTeqTM is a pentavalent rotavirus vaccine based on a bovine rotavirus genetic backbone in vitro reassorted with human outer capsid genes. During clinical trials of RotaTeqTM in Sub-Saharan Africa, the vaccine efficacy over a 2-year follow-up was lower against the genotypes contained in the vaccine than against the heterotypic G8P[6] and G8P[1] rotavirus strains of which the former is highly prevalent in Africa. Complete genome analyses of 43 complete rotavirus genomes collected during phase III clinical trials of RotaTeqTM in Sub-Saharan Africa, were conducted to gain insight into the high level of cross-protection afforded by RotaTeqTM against these G8 strains. Phylogenetic analysis revealed the presence of a high number of bovine rotavirus gene segments in these human G8 strains. In addition, we performed an in depth analysis on the individual amino acid level which showed that G8 rotaviruses were more similar to the RotaTeqTM vaccine than non-G8 strains. Because RotaTeqTM possesses a bovine genetic backbone, the high vaccine efficacy against G8 strains might be partially explained by the fact that all these strains contain a complete or partial bovine-like backbone. Altogether, this study supports the hypothesis that gene segments other than VP7 and VP4 play a role in vaccine-induced immunity.

  13. Proteomic analysis of Mycoplasma gallisepticum vaccine strain F

    USDA-ARS?s Scientific Manuscript database

    The persistence and displacement abilities of the Mycoplasma gallisepticum vaccine strain F (F-strain) are well documented. Understanding the mechanism(s) of colonization and persistence of F-strain will aid in the current intervention strategies to diagnose and control MG infections in poultry. In ...

  14. Distinct Cross-reactive B-Cell Responses to Live Attenuated and Inactivated Influenza Vaccines

    PubMed Central

    Sasaki, Sanae; Holmes, Tyson H.; Albrecht, Randy A.; García-Sastre, Adolfo; Dekker, Cornelia L.; He, Xiao-Song; Greenberg, Harry B.

    2014-01-01

    Background. The immunological bases for the efficacies of the 2 currently licensed influenza vaccines, live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV), are not fully understood. The goal of this study was to identify specific B-cell responses correlated with the known efficacies of these 2 vaccines. Methods. We compared the B-cell and antibody responses after immunization with 2010/2011 IIV or LAIV in young adults, focusing on peripheral plasmablasts 6–8 days after vaccination. Results. The quantities of vaccine-specific plasmablasts and plasmablast-derived polyclonal antibodies (PPAbs) in IIV recipients were significantly higher than those in LAIV recipients. No significant difference was detected in the avidity of vaccine-specific PPAbs between the 2 vaccine groups. Proportionally, LAIV induced a greater vaccine-specific immunoglobulin A plasmablast response, as well as a greater plasmablast response to the conserved influenza nuclear protein, than IIV. The cross-reactive plasmablast response to heterovariant strains, as indicated by the relative levels of cross-reactive plasmablasts and the cross-reactive PPAb binding reactivity, was also greater in the LAIV group. Conclusions. Distinct quantitative and qualitative patterns of plasmablast responses were induced by LAIV and IIV in young adults; a proportionally greater cross-reactive response was induced by LAIV. PMID:24676204

  15. [Results of clinical trials on reactogenicity, safety, and immunogenicity of influenza allantoic intranasal live vaccine "Ultragrivac" (type A/H5N2)].

    PubMed

    Mazurkova, N A; Ryndiuk, N N; Shishkina, L N; Ternovoĭ, V A; Tumanov, Iu V; Bulychev, L E; Skarnovich, M O; Kabanov, A S; Panchenko, S G; Aleĭnikov, R P; Il'ina, T N; Kuzubov, V I; Mel'nikov, S Ia; Mironov, A N; Korovkin, S A; Sergeev, A N; Drozdov, I G

    2010-01-01

    Results of phase II of a clinical trial of the influenza allantoic intranasal live vaccine "Ultragrivac" (type A/H5N2) are presented. The vaccine was developed based on strain /17/Duck/Potsdam/86/92 H5N2 [17/H5] - reassortant of two viruses, /Leningrad/134/17/57 (H2N2) and /Duck/Potsdam/1402-86 (H5N2), obtained from the Virology Department, St. Petersburg Institute of Experimental Medicine.Two schemes of immunization (with revaccination on days 10 and 21) were used. Evaluation of vaccine immunogenicity included determination of local, cellular and humoral immunity. A significant rise in the level of secretory IgA in the nasal cavity of vaccinated volunteers (with revaccination on days 10 and 21) was documented after application of the vaccine. The postvaccination humoral immune response was estimated from the level of significant (4-fold and more) antibody seroconversions, geometric mean titers of antibodies to two strains of influenza virus /17/Duck/Potsdam/86/92 H5N2 [17/H5] and /Chicken/Suzdalka/Nov-11/2005 (H5N1), and their incremental rate. Results of measurement of antibody titers in hemagglutination-inhibition assay are presented, with two antigens being used to analyse all serum samples from volunteers twice vaccinated with influenza vaccine "Ultragrivac" at 10 and 21 day intervals. Result of phase II of this clinical study show that influenza allantoic intranasal live vaccine "Ultragrivac" is nonreactogenic and safe for both vaccinated and surrounding individuals. Moreover, it is sufficiently immunogenic with respect not only to homologous virus A(H5N2) but also to the A(H5N1) strain.

  16. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses.

    PubMed

    Szpara, Moriah L; Tafuri, Yolanda R; Parsons, Lance; Shamim, S Rafi; Verstrepen, Kevin J; Legendre, Matthieu; Enquist, L W

    2011-10-01

    Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1) and 2, and varicella zoster virus (VZV). These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV), causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs), a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit limited sequence

  17. Rotavirus A genotype G1P[8]: a novel method to distinguish wild-type strains from the Rotarix vaccine strain.

    PubMed

    Rose, Tatiana L; Miagostovich, Marize P; Leite, José Paulo G

    2010-12-01

    Rotaviruses are important enteric pathogens for humans and animals. Group A rotaviruses (RV-A) are the most common agents of severe gastroenteritis in infants and young children and vaccination is the most effective method to reduce RV-A-associated diseases. G1P[8], the most prevalent RV-A genotype worldwide, is included in the RV-A vaccine Rotarix®. The discrimination between wild-type G1P[8] and vaccine G1P[8] strains is an important topic in the study of RV-A epidemiology to manage outbreaks and to define control measures for vaccinated children. In this study, we developed a novel method to segregate the wild-type and vaccine strains using restriction endonucleases. The dsRNA from the Rotarix® vaccine was sequenced and the NSP3 gene was selected as the target gene. The vaccine strain has a restriction pattern that is different than that of wild-type RV-A G1P[8] isolates after digestion with the restriction endonuclease BspHI. This pattern could be used as a marker for the differentiation of wild-type G1P[8] strains from the vaccine strain.

  18. Marker vaccine strategies and candidate CSFV marker vaccines.

    PubMed

    Dong, Xiao-Nan; Chen, Ying-Hua

    2007-01-04

    Classical swine fever (CSF) is an economically important highly contagious disease of swine worldwide. Classical swine fever virus (CSFV) is its etiological agent, and the only natural hosts are domestic pigs and wild boars. Although field CSFV strains vary in the virulence, they all result in serious losses in pig industry. Highly virulent field strains generally cause acute disease and high mortality; moderately virulent field strains raise subacute or chronic infections; postnatal infection by low virulent field strains produces subclinical infection and mortality in the new-born piglets. CSFV can cross the placental barrier, and this transplacental transmission usually results in mortality of fetuses and birth of congenitally infected pigs with a late-onset disease and death. Two main strategies to control CSF epidemic are systematic prophylactic vaccination with live attenuated vaccines (such as C-strain) and non-vaccination stamping-out policy. But neither of them is satisfying enough. Marker vaccine and companion serological diagnostic test is thought to be a promising strategy for future control and eradication of CSF. During the past 15 years, various candidate marker vaccines were constructed and evaluated in the animal experiments, including recombinant chimeric vaccines, recombinant deletion vaccines, DNA vaccines, subunit vaccines and peptide vaccines. Among them, two subunit vaccines entered the large scale marker vaccine trial of EU in 1999. Although they failed to fulfil all the demands of the Scientific Veterinary Committee, they successfully induced solid immunity against CSFV in the vaccinated pigs. It can be expected that new potent marker vaccines might be commercially available and used in systematic prophylactic vaccination campaign or emergency vaccination in the next 15 years. Here, we summarized current strategies and candidate CSFV marker vaccines. These strategies and methods are also helpful for the development of new

  19. Herpes zoster vaccine live: A 10 year review of post-marketing safety experience

    PubMed Central

    Willis, English D.; Woodward, Meredith; Brown, Elizabeth; Popmihajlov, Zoran; Saddier, Patricia; Annunziato, Paula W.; Halsey, Neal A.; Gershon, Anne A.

    2017-01-01

    Background Zoster vaccine is a single dose live, attenuated vaccine (ZVL) indicated for individuals ≥50 years-old for the prevention of herpes zoster (HZ). Safety data from clinical trials and post-licensure studies provided reassurance that ZVL is generally safe and well tolerated. The objective of this review was to provide worldwide post-marketing safety information following 10 years of use and >34 million doses distributed. Methods All post-marketing adverse experience (AE) reports received worldwide between 02-May-2006 and 01-May-2016 from healthcare professionals following vaccination with ZVL and submitted to the MSD AE global safety database, were analyzed. Results A total of 23,556 AE reports, 93% non-serious, were reported. Local injection site reactions (ISRs), with a median time-to-onset of 2 days, were the most frequently reported AEs followed by HZ. The majority of HZ reports were reported within 2 weeks of vaccination and considered, based on time-to-onset, pathogenesis of HZ, and data from clinical trials, to be caused by wild-type varicella-zoster virus (VZV). HZ confirmed by PCR analysis to be VZV Oka/Merck vaccine-strain was identified in an immunocompetent individual 8 months postvaccination and in 4 immunocompromised individuals. Disseminated HZ was reported very rarely (<1%) with 38% occurring in immunocompromised individuals. All reports of disseminated HZ confirmed by PCR as VZV Oka/Merck vaccine-strain were in individuals with immunosuppressive conditions and/or therapy at the time of vaccination. Conclusions The safety profile of ZVL, following 10 years of post-marketing use, was favorable and consistent with that observed in clinical trials and post-licensure studies. PMID:29174682

  20. Are vaccine strain, type or administration protocol risk factors for canine parvovirus vaccine failure?

    PubMed

    Altman, K D; Kelman, M; Ward, M P

    2017-10-01

    Canine parvovirus (CPV) is a highly contagious and worldwide cause of serious and often fatal disease in dogs, despite the widespread availability of vaccines. Which vaccine-related factors are associated with vaccination failure is largely unknown, and there are no reports from Australia. In this study - the first national population-level CPV study of its kind ever conducted - we analysed data on 594 cases of apparent CPV vaccination failure reported from an Australian national surveillance system to determine whether vaccine strain, type or administration protocol are risk factors for vaccination failures. The strain of CPV used in vaccine manufacture was not significantly associated with vaccination failure in clinical practice. The vaccine type (killed versus attenuated vaccine) for puppies diagnosed with CPV was associated with a lower mean age at time of vaccination (P=0.0495). The age at administration of the last CPV vaccination a puppy received prior to presenting with disease was a significant (P=0.0334) risk factor for vaccination failure, irrespective of whether the vaccine was marketed for a 10-week or 12-week or greater vaccination finish protocol. There was also a strong negative correlation between age at last vaccination prior to disease and vaccination failure (P<0.0001): the later a puppy received this last vaccination, the lower the risk of vaccination failure. This supports the hypothesis that the use of final vaccination in puppies at less than 16 weeks of age predisposes to vaccination failure and warrants a final age for vaccination recommendation to be at least 16 weeks for all canine parvovirus vaccines, especially in outbreak situations. The large number of cases identified in this study confirms that CPV vaccination failure is occurring in Australia. Veterinarians should consider CPV as a differential diagnosis in cases with appropriate clinical presentation, regardless of the reported vaccination status of the dog. Copyright © 2017

  1. Production of cell culture (MDCK) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process.

    PubMed

    George, Meena; Farooq, Masiha; Dang, Thi; Cortes, Bernadette; Liu, Jonathan; Maranga, Luis

    2010-08-15

    The majority of influenza vaccines are manufactured using embryonated hens' eggs. The potential occurrence of a pandemic outbreak of avian influenza might reduce or even eliminate the supply of eggs, leaving the human population at risk. Also, the egg-based production technology is intrinsically cumbersome and not easily scalable to provide a rapid worldwide supply of vaccine. In this communication, the production of a cell culture (Madin-Darby canine kidney (MDCK)) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process using a novel Single Use Bioreactor (SUB) is presented. The cell culture and virus infection was maintained in a disposable stirred tank reactor with PID control of pH, DO, agitation, and temperature, similar to traditional glass or stainless steel bioreactors. The application of this technology was tested using MDCK cells grown on microcarriers in proprietary serum free medium and infection with 2006/2007 seasonal LAIV strains at 25-30 L scale. The MDCK cell growth was optimal at the agitation rate of 100 rpm. Optimization of this parameter allowed the cells to grow at a rate similar to that achieved in the conventional 3 L glass stirred tank bioreactors. Influenza vaccine virus strains, A/New Caledonia/20/99 (H1N1 strain), A/Wisconsin/67/05 (H3N2 strain), and B/Malaysia/2506/04 (B strain) were all successfully produced in SUB with peak virus titers > or =8.6 log(10) FFU/mL. This result demonstrated that more than 1 million doses of vaccine can be produced through one single run of a small bioreactor at the scale of 30 L and thus provided an alternative to the current vaccine production platform with fast turn-around and low upfront facility investment, features that are particularly useful for emerging and developing countries and clinical trial material production.

  2. Which influenza vaccine formulation should be used in Kenya? A comparison of influenza isolates from Kenya to vaccine strains, 2007-2013.

    PubMed

    Waiboci, Lilian W; Mott, Joshua A; Kikwai, Gilbert; Arunga, Geoffrey; Xu, Xiyan; Mayieka, Lilian; Emukule, Gideon O; Muthoka, Phillip; Njenga, M Kariuki; Fields, Barry S; Katz, Mark A

    2016-05-17

    Every year the World Health Organization (WHO) recommends which influenza virus strains should be included in a northern hemisphere (NH) and a southern hemisphere (SH) influenza vaccine. To determine the best vaccine formulation for Kenya, we compared influenza viruses collected in Kenya from April 2007 to May 2013 to WHO vaccine strains. We collected nasopharyngeal and oropharyngeal (NP/OP) specimens from patients with respiratory illness, tested them for influenza, isolated influenza viruses from a proportion of positive specimens, tested the isolates for antigenic relatedness to vaccine strains, and determined the percentage match between circulating viruses and SH or NH influenza vaccine composition and schedule. During the six years, 7.336 of the 60,072 (12.2%) NP/OP specimens we collected were positive for influenza: 30,167 specimens were collected during the SH seasons and 3717 (12.3%) were positive for influenza; 2903 (78.1%) influenza A, 902 (24.2%) influenza B, and 88 (2.4%) influenza A and B positive specimens. We collected 30,131 specimens during the NH seasons and 3978 (13.2%) were positive for influenza; 3181 (80.0%) influenza A, 851 (21.4%) influenza B, and 54 (1.4%) influenza A and B positive specimens. Overall, 362/460 (78.7%) isolates from the SH seasons and 316/338 (93.5%) isolates from the NH seasons were matched to the SH and the NH vaccine strains, respectively (p<0.001). Overall, 53.6% and 46.4% SH and NH vaccines, respectively, matched circulating strains in terms of vaccine strains and timing. In six years of surveillance in Kenya, influenza circulated at nearly equal levels during the SH and the NH influenza seasons. Circulating viruses were matched to vaccine strains. The vaccine match decreased when both vaccine strains and timing were taken into consideration. Either vaccine formulation could be suitable for use in Kenya but the optimal timing for influenza vaccination needs to be determined. Copyright © 2016 Elsevier Ltd. All rights

  3. Response of gray foxes to modified live-virus canine distemper vaccines.

    PubMed

    Halbrooks, R D; Swango, L J; Schnurrenberger, P R; Mitchell, F E; Hill, E P

    1981-12-01

    Ten gray foxes seronegative for canine distemper virus were vaccinated with 1 of 3 commercial modified live-virus canine distemper vaccines. Of 5 foxes receiving vaccine A (chicken tissue culture origin), 4 developed significant titers (greater than or equal to 1:100) of neutralizing antibody to canine distemper virus and remained clinically normal after vaccination. Two of 3 foxes vaccinated with vaccine B (canine cell line origin) and both foxes receiving vaccine C (canine cell line origin) died of vaccine-induced distemper. Five unvaccinated control foxes died of distemper after a known occasion for contact transmission of virus from a fox vaccinated with vaccine B. The results suggested that the chicken tissue culture origin modified live-virus canine distemper vaccine is probably safe for normal adult gray foxes, whereas the canine cell origin vaccines are hazardous. The results of this study tended to corroborate anecdotal experiences of veterinarians who have observed that gray foxes frequently die from distemper soon after vaccination with modified live-virus canine distemper vaccines.

  4. A genetically engineered live attenuated vaccine of Coccidioides posadasii protects BALB/c mice against coccidioidomycosis.

    PubMed

    Xue, Jianmin; Chen, Xia; Selby, Dale; Hung, Chiung-Yu; Yu, Jieh-Juen; Cole, Garry T

    2009-08-01

    Coccidioidomycosis (also known as San Joaquin Valley fever) is an occupational disease. Workers exposed to outdoor dust which contains spores of the soil-inhabiting fungus have a significantly increased risk of respiratory infection. In addition, people with compromised T-cell immunity, the elderly, and certain racial groups, particularly African-Americans and Filipinos, who live in regions of endemicity in the southwestern United States have an elevated incidence of symptomatic infection caused by inhalation of spores of Coccidioides posadasii or Coccidioides immitis. Recurring epidemics and escalation of medical costs have helped to motivate production of a vaccine against valley fever. The major focus has been the development of a defined, T-cell-reactive, recombinant protein vaccine. However, none of the products described to date have provided full protection to coccidioidal disease-susceptible BALB/c mice. Here we describe the first genetically engineered, live, attenuated vaccine that protects both BALB/c and C57BL/6 mice against coccidioidomycosis. Two chitinase genes (CTS2 and CTS3) were disrupted to yield the attenuated strain, which was unable to endosporulate and was no longer infectious. Vaccinated survivors mounted an immune response characterized by production of both T-helper-1- and T-helper-2-type cytokines. Histology revealed well-formed granulomas and markedly diminished inflammation. Significantly fewer organisms were observed in the lungs of survivors than in those of nonvaccinated mice. Additional investigations are required to further define the nature of the live, attenuated vaccine-induced immunity against Coccidioides infection.

  5. A novel multiplex poliovirus binding inhibition assay applicable for large serosurveillance and vaccine studies, without the use of live poliovirus.

    PubMed

    Schepp, Rutger M; Berbers, Guy A M; Ferreira, José A; Reimerink, Johan H; van der Klis, Fiona R

    2017-03-01

    Large-scale serosurveillance or vaccine studies for poliovirus using the "gold standard" WHO neutralisation test (NT) are very laborious and time consuming. With the polio eradication at hand and with the removal of live attenuated Sabin strains from the oral poliovirus vaccine (OPV), starting with type 2 (as of April 2016), laboratories will need to conform to much more stringent laboratory biosafety regulations when handling live poliovirus strains. In this study, a poliovirus binding inhibition multiplex immunoassay (polio MIA) using inactivated poliovirus vaccine (IPV-Salk) was developed for simultaneous quantification of serum antibodies directed to all three poliovirus types. Our assay shows a good correlation with the NT and an excellent correlation with the ELISA-based binding inhibition assay (POBI). The assay is highly type-specific and reproducible. Additionally, serum sample throughput increases about fivefold relative to NT and POBI and the amount of serum needed is reduced by more than 90%. In conclusion, the polio MIA can be used as a safe and high throughput application, especially for large-scale surveillance and vaccine studies, reducing laboratory time and serum amounts needed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Post-licensure safety surveillance of zoster vaccine live (Zostavax®) in the United States, Vaccine Adverse Event Reporting System (VAERS), 2006-2015.

    PubMed

    Miller, Elaine R; Lewis, Paige; Shimabukuro, Tom T; Su, John; Moro, Pedro; Woo, Emily Jane; Jankosky, Christopher; Cano, Maria

    2018-03-26

    Herpes zoster (HZ), or shingles, is caused by reactivation of varicella-zoster virus in latently infected individuals. Live-attenuated HZ vaccine (zoster vaccine live, ZVL) is approved in the United States for persons aged ≥50 years and recommended by the CDC for persons ≥60 years. We analyzed U.S. reports of adverse events (AEs) following ZVL submitted to the Vaccine Adverse Event Reporting System (VAERS), a spontaneous reporting system to monitor vaccine safety, for persons vaccinated May 1, 2006, through January 31, 2015. We conducted descriptive analysis, clinical reviews of reports with selected pre-specified conditions, and empirical Bayesian data mining. VAERS received 23,092 reports following ZVL, of which 22,120 (96%) were classified as non-serious. Of reports where age was documented (n = 18,817), 83% were in persons aged ≥60 years. Reporting rates of AEs were 106 and 4.4 per 100,000 ZVL doses distributed for all reports and serious reports, respectively. When ZVL was administered alone among persons aged ≥50 years, injection site erythema (27%), HZ (17%), injection site swelling (17%), and rash (14%) were the most commonly reported symptoms among non-serious reports; HZ (29%), pain (18%), and rash (16%) were the most commonly reported symptoms among serious reports. Six reports included laboratory evidence of vaccine-strain varicella-zoster virus (Oka/Merck strain) infection; AEs included HZ, HZ- or varicella-like illness, and local reaction with vesicles. In our review of reports of death with sufficient information to determine cause (n = 46, median age 75 years), the most common causes were heart disease (n = 28), sepsis (n = 4), and stroke (n = 3). Empirical Bayesian data mining did not detect new or unexpected safety signals. Findings from our safety review of ZVL are consistent with those from pre-licensure clinical trials and other post-licensure assessments. Transient injection-site reactions, HZ, and rashes were most frequently

  7. Impact of Type I Interferon on the Safety and Immunogenicity of an Experimental Live-Attenuated Herpes Simplex Virus 1 Vaccine in Mice

    PubMed Central

    Royer, Derek J.; Carr, Meghan M.; Chucair-Elliott, Ana J.; Halford, William P.

    2017-01-01

    ABSTRACT Viral fitness dictates virulence and capacity to evade host immune defenses. Understanding the biological underpinnings of such features is essential for rational vaccine development. We have previously shown that the live-attenuated herpes simplex virus 1 (HSV-1) mutant lacking the nuclear localization signal (NLS) on the ICP0 gene (0ΔNLS) is sensitive to inhibition by interferon beta (IFN-β) in vitro and functions as a highly efficacious experimental vaccine. Here, we characterize the host immune response and in vivo pathogenesis of HSV-1 0ΔNLS relative to its fully virulent parental strain in C57BL/6 mice. Additionally, we explore the role of type 1 interferon (IFN-α/β) signaling on virulence and immunogenicity of HSV-1 0ΔNLS and uncover a probable sex bias in the induction of IFN-α/β in the cornea during HSV-1 infection. Our data show that HSV-1 0ΔNLS lacks neurovirulence even in highly immunocompromised mice lacking the IFN-α/β receptor. These studies support the translational viability of the HSV-1 0ΔNLS vaccine strain by demonstrating that, while it is comparable to a virulent parental strain in terms of immunogenicity, HSV-1 0ΔNLS does not induce significant tissue pathology. IMPORTANCE HSV-1 is a common human pathogen associated with a variety of clinical presentations ranging in severity from periodic “cold sores” to lethal encephalitis. Despite the consistent failures of HSV subunit vaccines in clinical trials spanning the past 28 years, opposition to live-attenuated HSV vaccines predicated on unfounded safety concerns currently limits their widespread acceptance. Here, we demonstrate that a live-attenuated HSV-1 vaccine has great translational potential. PMID:28122977

  8. Bovine herpesvirus-1: Genetic diversity of field strains from cattle with respiratory disease, genital, fetal disease and systemic neonatal disease and their relationship to vaccine strains.

    PubMed

    Fulton, R W; d'Offay, J M; Dubovi, E J; Eberle, R

    2016-09-02

    Bovine herpesvirus-1 (BoHV-1) causes disease in cattle with varied clinical forms. In the U.S. there are two BoHV1 subtypes, BoHV-1.1 and BoHV-1.2b. Control programs in North America incorporate modified live (MLV) or killed (KV) viral vaccines. However, BoHV-1 strains continue to be isolated from diseased animals or fetuses after vaccination. It is possible to differentiate BoHV-1 wild-type from MLV vaccine strains by determining their single nucleotide polymorphism (SNP) patterns through either whole-genome sequencing or PCR sequencing of genomic regions containing vaccine-defining SNPs. To determine the BoHV-1 subtype in clinical isolates and their relationship to MLV strains, 8 isolates from varied clinical disease at three different laboratories in the U.S. were sequenced and phylogenetically analyzed. Five samples were isolated within the past 5 years from New York and 3 were archived samples recovered 35 years prior from Oklahoma and Louisiana. Based on phylogenetic analysis, four of the cases appeared to be due to an MLV vaccine: 3 cases of aborted fetuses and one neonate with systemic BoHV-1 disease. One aborted fetus was from a herd with no reported history of MLV vaccination in two years. The remaining four isolates did not group with any MLV vaccines: two were associated with bovine respiratory disease, one with vulvovaginitis, and a fourth was determined to be a BoHV-1.2b respiratory isolate. Recovery of BoHV-1.1 that is very closely related to an MLV vaccine virus from a herd not receiving vaccines in an extended period prior to its isolation suggests that MLV viruses may remain latent or circulate within herds for long periods. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The Bulgarian vaccine Crimean-Congo haemorrhagic fever virus strain.

    PubMed

    Papa, Anna; Papadimitriou, Evangelia; Christova, Iva

    2011-03-01

    The Crimean-Congo haemorrhagic fever virus (CCHFV) is a 3-segmented RNA virus, which causes disease with a high fatality rate in humans. An inactivated suckling mouse brain-derived vaccine is used in Bulgaria for protection against CCHF. Strain V42/81 is currently used for the vaccine preparation. As the M-RNA segment plays a major role in the immune response, the full-length M segment sequence of the V42/81 strain was characterized. A great genetic diversity was observed among CCHFV strains. In order to gain an insight into the topology of the strain in the CCHFV phylogenetic trees, the full-length S and partial L segments were additionally sequenced and analyzed.

  10. Immune effects of the vaccine of live attenuated Aeromonas hydrophila screened by rifampicin on common carp (Cyprinus carpio L).

    PubMed

    Jiang, Xinyu; Zhang, Chao; Zhao, Yanjing; Kong, Xianghui; Pei, Chao; Li, Li; Nie, Guoxing; Li, Xuejun

    2016-06-08

    Aeromonas hydrophila, as a strong Gram-negative bacterium, can infect a wide range of freshwater fish, including common carp Cyprinus carpio, and cause the huge economic loss. To create the effective vaccine is the best way to control the outbreak of the disease caused by A. hydrophila. In this study, a live attenuated A. hydrophila strain, XX1LA, was screened from the pathogenic A. hydrophila strain XX1 cultured on medium containing the antibiotic rifampicin, which was used as a live attenuated vaccine candidate. The immune protection of XX1LA against the pathogen A. hydrophila in common carp was evaluated by the relative percent survival (RPS), the specific IgM antibody titers, serum lysozyme activity and the expression profiles of multiple immune-related genes at the different time points following immunization. The results showed that the variable up-regulations of the immune-related genes, such as the pro-inflammatory cytokine IL-1β, the chemokine IL-10 and IgM, were observed in spleen and liver of common carp injected in the vaccines with the formalin-killed A. hydrophila (FKA) and the live attenuated XX1LA. Specific antibody to A. hydrophila was found to gradually increase during 28 days post-vaccination (dpv), and the RPS (83.7%) in fish vaccinated with XX1LA, was significant higher than that (37.2%) in fish vaccinated with FKA (P<0.05) on Day 28 after challenged by pathogen. It was demonstrated that the remarkable immune protection presented in the group vaccinated with XX1LA. During the late stage of 4-week immunization phase, compared with FKA and the control, specific IgM antibody titers significantly increased (P<0.05) in the XX1LA group. The activity of the lysozyme in serum indicated no significant change among three groups. In summary, the live attenuated bacterial vaccine XX1LA, screened in this study, indicates the better protect effect on common carp against A. hydrophila, which can be applied in aquaculture of common carp to prevent from the

  11. Herpes zoster caused by vaccine-strain varicella zoster virus in an immunocompetent recipient of zoster vaccine.

    PubMed

    Tseng, Hung Fu; Schmid, D Scott; Harpaz, Rafael; LaRussa, Philip; Jensen, Nancy J; Rivailler, Pierre; Radford, Kay; Folster, Jennifer; Jacobsen, Steven J

    2014-04-01

    We report the first laboratory-documented case of herpes zoster caused by the attenuated varicella zoster virus (VZV) contained in Zostavax in a 68-year-old immunocompetent adult with strong evidence of prior wild-type VZV infection. The complete genome sequence of the isolate revealed that the strain carried 15 of 42 (36%) recognized varicella vaccine-associated single-nucleotide polymorphisms, including all 5 of the fixed vaccine markers present in nearly all of the strains in the vaccine. The case of herpes zoster was relatively mild and resolved without complications.

  12. Early Potent Protection against Heterologous SIVsmE660 Challenge Following Live Attenuated SIV Vaccination in Mauritian Cynomolgus Macaques

    PubMed Central

    Berry, Neil; Ham, Claire; Mee, Edward T.; Rose, Nicola J.; Mattiuzzo, Giada; Jenkins, Adrian; Page, Mark; Elsley, William; Robinson, Mark; Smith, Deborah; Ferguson, Deborah; Towers, Greg; Almond, Neil; Stebbings, Richard

    2011-01-01

    Background Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation. Methodology/Principal Findings Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5α polymorphism and study outcome was identified. Conclusion/Significance This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system. PMID:21853072

  13. Coated microneedle arrays for transcutaneous delivery of live virus vaccines

    PubMed Central

    Vrdoljak, Anto; McGrath, Marie G.; Carey, John B.; Draper, Simon J.; Hill, Adrian V.S.; O’Mahony, Conor; Crean, Abina M.; Moore, Anne C.

    2016-01-01

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8+ T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. PMID:22245683

  14. Coated microneedle arrays for transcutaneous delivery of live virus vaccines.

    PubMed

    Vrdoljak, Anto; McGrath, Marie G; Carey, John B; Draper, Simon J; Hill, Adrian V S; O'Mahony, Conor; Crean, Abina M; Moore, Anne C

    2012-04-10

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8(+) T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Live attenuated rubella vectors expressing SIV and HIV vaccine antigens replicate and elicit durable immune responses in rhesus macaques

    PubMed Central

    2013-01-01

    Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge. PMID:24041113

  16. Low-fidelity Venezuelan equine encephalitis virus polymerase mutants to improve live-attenuated vaccine safety and efficacy

    PubMed Central

    Kautz, Tiffany F; Guerbois, Mathilde; Khanipov, Kamil; Yun, Ruimei; Warmbrod, Kelsey L; Fofanov, Yuriy; Weaver, Scott C; Forrester, Naomi L

    2018-01-01

    Abstract During RNA virus replication, there is the potential to incorporate mutations that affect virulence or pathogenesis. For live-attenuated vaccines, this has implications for stability, as replication may result in mutations that either restore the wild-type phenotype via reversion or compensate for the attenuating mutations by increasing virulence (pseudoreversion). Recent studies have demonstrated that altering the mutation rate of an RNA virus is an effective attenuation tool. To validate the safety of low-fidelity mutations to increase vaccine attenuation, several mutations in the RNA-dependent RNA-polymerase (RdRp) were tested in the live-attenuated Venezuelan equine encephalitis virus vaccine strain, TC-83. Next generation sequencing after passage in the presence of mutagens revealed a mutant containing three mutations in the RdRp, TC-83 3x, to have decreased replication fidelity, while a second mutant, TC-83 4x displayed no change in fidelity, but shared many phenotypic characteristics with TC-83 3x. Both mutants exhibited increased, albeit inconsistent attenuation in an infant mouse model, as well as increased immunogenicity and complete protection against lethal challenge of an adult murine model compared with the parent TC-83. During serial passaging in a highly permissive model, the mutants increased in virulence but remained less virulent than the parent TC-83. These results suggest that the incorporation of low-fidelity mutations into the RdRp of live-attenuated vaccines for RNA viruses can confer increased immunogenicity whilst showing some evidence of increased attenuation. However, while in theory such constructs may result in more effective vaccines, the instability of the vaccine phenotype decreases the likelihood of this being an effective vaccine strategy. PMID:29593882

  17. Correlation of mutations and recombination with growth kinetics of poliovirus vaccine strains.

    PubMed

    Pliaka, V; Kyriakopoulou, Z; Tsakogiannis, D; Ruether, I G A; Gartzonika, C; Levidiotou-Stefanou, S; Krikelis, A; Markoulatos, P

    2010-12-01

    Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and, in rare cases, may cause vaccine-associated paralytic poliomyelitis (VAPP). The genetic instability of Sabin strains constitutes one of the main causes of VAPP, a disease that is most frequently associated with type 3 and type 2 Sabin strains, and more rarely with type 1 Sabin strains. In the present study, the growth phenotype of eight oral poliovirus vaccine (OPV) isolates (two non-recombinants and six recombinants), as well as of Sabin vaccine strains, was evaluated using two different assays, the reproductive capacity at different temperatures (Rct) test and the one-step growth curve test in Hep-2 cells at two different temperatures (37°C and 40°C). The growth phenotype of isolates was correlated with genomic modifications in order to identify the determinants and mechanisms of reversion towards neurovirulence. All of the recombinant OPV isolates showed a thermoresistant phenotype in the Rct test. Moreover, both recombinant Sabin-3 isolates showed significantly higher viral yield than Sabin 3 vaccine strain at 37°C and 40°C in the one-step growth curve test. All of the OPV isolates displayed mutations at specific sites of the viral genome, which are associated with the attenuated and temperature-sensitive phenotype of Sabin strains. The results showed that both mutations and recombination events could affect the phenotype traits of Sabin derivatives and may lead to the reversion of vaccinal strains to neurovirulent ones. The use of phenotypic markers along with the genomic analysis may shed additional light on the molecular determinants of the reversed neurovirulent phenotype of Sabin derivatives.

  18. Evaluation of Recombinant Attenuated Salmonella Vaccine Strains for Broad Protection against Extraintestinal Pathogenic Escherichia coli.

    PubMed

    Maddux, Jacob T; Stromberg, Zachary R; Curtiss Iii, Roy; Mellata, Melha

    2017-01-01

    Antibiotic-resistant bacterial infections are difficult to treat, producing a burden on healthcare and the economy. Extraintestinal pathogenic Escherichia coli (ExPEC) strains frequently carry antibiotic resistance genes, cause infections outside of the intestine, and are causative agents of hospital-acquired infections. Developing a prevention strategy against this pathogen is challenging due to its antibiotic resistance and antigenic diversity. E. coli common pilus (ECP) is frequently found in ExPEC strains and may serve as a common antigen to induce protection against several ExPEC serotypes. In addition, live recombinant attenuated Salmonella vaccine (RASV) strains have been used to prevent Salmonella infection and can also be modified to deliver foreign antigens. Thus, the objective of this study was to design a RASV to produce ECP on its surface and assess its ability to provide protection against ExPEC infections. To constitutively display ECP in a RASV strain, we genetically engineered a vector (pYA4428) containing aspartate-β-semialdehyde dehydrogenase and E. coli ecp genes and introduced it into RASV χ9558. RASV χ9558 containing an empty vector (pYA3337) was used as a control to assess protection conferred by the RASV strain without ECP. We assessed vaccine efficacy in in vitro bacterial inhibition assays and mouse models of ExPEC-associated human infections. We found that RASV χ9558(pYA4428) synthesized the major pilin (EcpA) and tip pilus adhesin (EcpD) on the bacterial surface. Mice orally vaccinated with RASV χ9558(pYA3337) without ECP or χ9558(pYA4428) with ECP, produced anti- Salmonella LPS and anti- E. coli EcpA and EcpD IgG and IgA antibodies. RASV strains showed protective potential against some E. coli and Salmonella strains as assessed using in vitro assays. In mouse sepsis and urinary tract infection challenge models, both vaccines had significant protection in some internal organs. Overall, this work showed that RASVs can elicit an

  19. Bluetongue serotype 2 and 9 modified live vaccine viruses as causative agents of abortion in livestock: a retrospective analysis in Italy.

    PubMed

    Savini, G; Lorusso, A; Paladini, C; Migliaccio, P; Di Gennaro, A; Di Provvido, A; Scacchia, M; Monaco, F

    2014-02-01

    The recent outbreak caused by Schmallenberg virus, which affected sheep, goats and cattle in Europe, highlighted the importance of having a robust surveillance plan capable of monitoring abortions and malformations in the livestock offspring. In this context, bluetongue viruses (BTVs) represented and represent one of the major threats to the European livestock industry. Aiming to improve the understanding on BTV cross placental transmission and serotype involvement, in this retrospective study foetal spleens and/or brains of 663 ovines, 429 bovines, 155 goats and 17 buffaloes were tested for the presence of BTV by virus isolation. BTV vaccine strains were isolated from 31 foetuses (2.4%; 95% CI: 1.7-3.4%): 24 (3.6%; 95% CI: 2.4-5.3%) from ovine foetal tissues; 6 (1.4%; 95% CI: 0.6-3.0%) from bovine foetal tissues and 1 (0.6%; 95% CI: 0.2-3.5%) from the spleen of a caprine foetus. All foetuses were from animals vaccinated with either BTV-2 or BTV-2, and BTV-9 modified live vaccines (MLVs) produced by Onderstepoort Biological Products (OBP), South Africa. Among the 31 isolated vaccine strains, serotype 9 (n = 28) was more frequently isolated (P < 0.05) than serotype 2 (n = 3). In two cases infectious vaccine strains were found in the foetal tissues 2 months after the vaccine administration. Other pathogens known to be causative agents of abortion in ruminants were not detected nor isolated. This study demonstrates, for the first time, that BTV-2 and BTV-9 vaccine strains are able to cross the placental barrier of sheep, cattle and goats. BTV-2 and BTV-9 vaccine strains are able to infect foetuses and cause abortions or malformations depending on the period of pregnancy at the time of vaccination. © 2012 Blackwell Verlag GmbH.

  20. Foot and mouth disease vaccine strain selection: Current approaches and future perspectives.

    PubMed

    Mahapatra, Mana; Parida, Satya

    2018-06-27

    Lack of cross protection between foot and mouth disease (FMD) virus (FMDV) serotypes as well as incomplete protection between some subtypes of FMDV affect the application of vaccine in the field. Further, the emergence of new variant FMD viruses periodically makes the existing vaccine inefficient. Consequently, periodical vaccine strain selection either by in vivo methods or in vitro methods become an essential requirement to enable utilisation of appropriate and efficient vaccines. Areas covered: Here we describe the cross reactivity of the existing vaccines with the global pool of circulating viruses and the putative selected vaccine strains for targeting protection against the two major circulating serotype O and A FMD viruses for East Africa, the Middle East, South Asia and South East Asia. Expert Commentary: Although in vivo cross protection studies are more appropriate methods for vaccine matching and selection than in vitro neutralisation test or ELISA, in the face of an outbreak both in vivo and in vitro methods of vaccine matching are not easy, and time consuming. The FMDV capsid contains all the immunogenic epitopes, and therefore vaccine strain prediction models using both capsid sequence and serology data will likely replace existing tools in the future.

  1. Live Attenuated B. pertussis as a Single-Dose Nasal Vaccine against Whooping Cough

    PubMed Central

    Mielcarek, Nathalie; Debrie, Anne-Sophie; Raze, Dominique; Bertout, Julie; Rouanet, Carine; Younes, Amena Ben; Creusy, Colette; Engle, Jacquelyn; Goldman, William E; Locht, Camille

    2006-01-01

    Pertussis is still among the principal causes of death worldwide, and its incidence is increasing even in countries with high vaccine coverage. Although all age groups are susceptible, it is most severe in infants too young to be protected by currently available vaccines. To induce strong protective immunity in neonates, we have developed BPZE1, a live attenuated Bordetella pertussis strain to be given as a single-dose nasal vaccine in early life. BPZE1 was developed by the genetic inactivation or removal of three major toxins. In mice, BPZE1 was highly attenuated, yet able to colonize the respiratory tract and to induce strong protective immunity after a single nasal administration. Protection against B. pertussis was comparable to that induced by two injections of acellular vaccine (aPV) in adult mice, but was significantly better than two administrations of aPV in infant mice. Moreover, BPZE1 protected against Bordetella parapertussis infection, whereas aPV did not. BPZE1 is thus an attractive vaccine candidate to protect against whooping cough by nasal, needle-free administration early in life, possibly at birth. PMID:16839199

  2. The risk of aseptic meningitis associated with the Leningrad-Zagreb mumps vaccine strain following mass vaccination with measles-mumps-rubella vaccine, Rio Grande do Sul, Brazil, 1997.

    PubMed

    da Silveira, Claudio Marcos; Kmetzsch, Claudete Iris; Mohrdieck, Renate; Sperb, Alethea Fagundes; Prevots, D Rebecca

    2002-10-01

    Few data are available on the risk of aseptic meningitis following vaccination with the Leningrad-Zagreb (L-Z) strain of mumps vaccine. In 1997 the mumps vaccine was introduced into the state of Rio Grande do Sul in Brazil through mass vaccination with mumps-measles-rubella (MMR), targeting children aged 1-11 years. Five municipalities used exclusively MMR vaccine containing the L-Z strain of mumps. An outbreak of aseptic meningitis was observed shortly after the mass campaign. To estimate the risk of aseptic meningitis associated with this strain, we analysed vaccination and meningitis case surveillance data from the selected municipalities. A case of vaccine-associated aseptic meningitis was defined as one with a pleocytosis of 10-1,500 leukocytes/ml and occurring within 15-35 days after vaccine receipt. We estimated a risk of 2.9 cases per 10,000 doses of L-Z administered, equivalent to 1 case per 3,390 doses administered. The overall risk of aseptic meningitis following the campaign was increased 12.2-fold (95% CI: 6.0-24.7) compared with the same period in 1995-1996. Following the mass campaign, the incidence of mumps declined 93% during 1998-2000. Vaccination with the L-Z strain of mumps vaccine as part of a mass campaign was associated with a significantly increased risk of aseptic meningitis. Decisions about type of mumps vaccine and mumps vaccination strategies must consider vaccine safety issues in addition to other criteria.

  3. Serologic evaluation, efficacy, and safety of a commerical modified-live canine distemper vaccine in domestic ferrets.

    PubMed

    Wimsatt, J; Jay, M T; Innes, K E; Jessen, M; Collins, J K

    2001-05-01

    To determine efficacy and safety of a commercial modified-live canine distemper virus (CDV) vaccine used for prophylaxis in domestic ferrets. Sixteen 16-week-old neutered male ferrets. Equal groups of ferrets were inoculated subcutaneously at 16 and 20 weeks of age with saline (0.9% NaCl) solution or a vaccine derived from the Onderstepoort CDV strain and attenuated in a primate cell line. Live virulent CDV was administered to all ferrets intranasally and orally 3 weeks after the second inoculation. Clinical signs and body weights were monitored regularly during the study. Blood samples for serologic examination were drawn prior to each inoculation, before challenge exposure, and 10, 15, and 21 days after exposure. Blood samples for reverse transcriptase polymerase chain reaction (RT-PCR) were obtained 5 days after the first vaccination, and 5, 10, 15, and 21 days after challenge exposure. After challenge exposure, control ferrets had significantly more clinical signs and weight loss, compared with vaccinates. All vaccinated ferrets survived, whereas all control ferrets died. The RT-PCR assay was successful in detecting CDV in blood and fresh or formalin-fixed tissues from infected ferrets. Findings suggest that the vaccine when given SC to domestic ferrets as directed is safe and protective against challenge exposure with virulent CDV. The RT-PCR assay may simplify detection of CDV in fresh and fixed tissues.

  4. Immunoproteomic analysis of the human antibody response to natural tularemia infection with Type A or Type B strains or LVS vaccination

    PubMed Central

    Fulton, Kelly M.; Zhao, Xigeng; Petit, Mireille D.; Kilmury, Sara L.N; Wolfraim, Lawrence A.; House, Robert V.; Sjostedt, Anders; Twine, Susan M.

    2011-01-01

    Francisella tularensis is pathogenic for many mammalian species including humans, causing a spectrum of diseases called tularemia. The highly virulent Type A strains have associated mortality rates of up to 60% if inhaled. An attenuated live vaccine strain (LVS) is the only vaccine to show efficacy in humans, but suffers several barriers to licensure, including the absence of a correlate of protection. An immunoproteomics approach was used to survey the repertoire of antibodies in sera from individuals who had contracted tularemia during two outbreaks and individuals from two geographical areas who had been vaccinated with NDBR Lot 11 or Lot 17 LVS. These data showed a large overlap in the antibodies generated in response to tularemia infection or LVS vaccination. A total of seven proteins were observed to be reactive with 60 % or more sera from vaccinees and convalescents. A further four proteins were recognised by 30–60 % of the sera screened. These proteins have the potential to serve as markers of vaccination or candidates for subunit vaccines. PMID:21873113

  5. Update of inactivated equine influenza vaccine strain in Japan

    PubMed Central

    GAMOH, Koichiro; NAKAMURA, Shigeyuki

    2017-01-01

    Japan established a vaccine selection system, in which a committee evaluates veterinary influenza vaccines to determine if the vaccine should be updated. In 2013, it was concluded that the present equine influenza vaccine strains did not have to be updated, but clade 2 (Fc2) viruses of the Florida sublineage should be included. We collected three Fc2 viruses as candidates and conducted comparative tests. Results indicated that A/equine/Carlow/2011 (H3N8) is not suitable, because of its unstable antigenic characteristics. A comparison between A/equine/Richmond/1/2007 (H3N8) (Richmond/07) and A/equine/Yokohama/aq13/2010 (H3N8) (Yokohama/10) in eggs showed that they shared equal growth properties. Immunogenicity test in mice showed that Yokohama/10 induced higher HI antibody titers than Richmond/07. Therefore, we concluded that Yokohama/10 was the most suitable strain. PMID:28163276

  6. Thrombocytopenia associated with vaccination of a dog with a modified-live paramyxovirus vaccine.

    PubMed

    McAnulty, J F; Rudd, R G

    1985-06-01

    Thrombocytopenia (10,000/mm3), with hematochezia and melena, appeared in a dog 8 days after it was given modified-live canine distemper, virus vaccine and persisted for approximately 5 days. Clinical investigation discounted other possible causes of thrombocytopenia; the condition was considered to be associated with vaccination. The problem spontaneously resolved. The appearance of thrombocytopenia after modified-live canine distemper virus vaccination is not unknown and may assume a severe form. This condition may be mistaken for idiopathic thrombocytopenia of immune origin, and in other instances, it may contribute significantly to surgical risk if concurrent coagulation disorders are present. Administration of levamisole HCl may alleviate the decrease in platelet count in affected animals.

  7. Assessment of a strain 19 brucellosis vaccination program in elk

    USGS Publications Warehouse

    Maichak, Eric J.; Scurlock, Brandon M.; Cross, Paul C.; Rogerson, Jared D.; Edwards, William H.; Wise, Benjamin; Smith, Scott G.; Kreeger, Terry J.

    2017-01-01

    Zoonotic diseases in wildlife present substantial challenges and risks to host populations, susceptible domestic livestock populations, and affected stakeholders. Brucellosis, a disease caused by the bacterium Brucella abortus, is endemic among elk (Cervus canadensis) attending winter feedgrounds and adjacent areas of western Wyoming, USA. To minimize transmission of brucellosis from elk to elk and elk to livestock, managers initiated a B. abortus strain 19 ballistic vaccination program in 1985. We used brucellosis prevalence (1971–2015) and reproductive outcome (2006–2015) data collected from female elk attending feedgrounds to assess efficacy of the strain 19 program while controlling for potentially confounding factors such as site and age. From our generalized linear models, we found that seroprevalence of brucellosis was 1) not lower following inception of vaccination; 2) not inversely associated with proportion of juveniles vaccinated over time; 3) not inversely associated with additional yearlings and adults vaccinated over time; and 4) associated more with feeding end-date than proportion of juveniles vaccinated. Using vaginal implant transmitters in adult females that were seropositive for brucellosis, we found little effect of vaccination coverage at reducing reproductive failures (i.e., abortion or stillbirth). Because we found limited support for efficacy of the strain 19 program, we support research to develop an oral vaccine and suggest that continuing other spatio-temporal management actions will be most effective to minimize transmission of brucellosis and reduce dependency of elk on supplemental winter feeding.

  8. A stable live bacterial vaccine.

    PubMed

    Kunda, Nitesh K; Wafula, Denis; Tram, Meilinn; Wu, Terry H; Muttil, Pavan

    2016-06-01

    Formulating vaccines into a dry form enhances its thermal stability. This is critical to prevent administering damaged and ineffective vaccines, and to reduce its final cost. A number of vaccines in the market as well as those being evaluated in the clinical setting are in a dry solid state; yet none of these vaccines have achieved long-term stability at high temperatures. We used spray-drying to formulate a recombinant live attenuated Listeria monocytogenes (Lm; expressing Francisella tularensis immune protective antigen pathogenicity island protein IglC) bacterial vaccine into a thermostable dry powder using various sugars and an amino acid. Lm powder vaccine showed minimal loss in viability when stored for more than a year at ambient room temperature (∼23°C) or for 180days at 40°C. High temperature viability was achieved by maintaining an inert atmosphere in the storage container and removing oxygen free radicals that damage bacterial membranes. Further, in vitro antigenicity was confirmed by infecting a dendritic cell line with cultures derived from spray dried Lm and detection of an intracellularly expressed protective antigen. A combination of stabilizing excipients, a cost effective one-step drying process, and appropriate storage conditions could provide a viable option for producing, storing and transporting heat-sensitive vaccines, especially in regions of the world that require them the most. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Protective immunity spectrum induced by immunization with a vaccine from the TBEV strain Sofjin.

    PubMed

    Chernokhaeva, L L; Rogova, Yu V; Vorovitch, M F; Romanova, L Iu; Kozlovskaya, L I; Maikova, G B; Kholodilov, I S; Karganova, G G

    2016-04-29

    Tick-borne encephalitis (TBE) circulates widely in the territory of Eurasia with up to 10,000 cases registered annually. The TBE virus (TBEV) includes three main subtypes: European, Siberian and Far-Eastern, and two new Asiatic variants, phylogenetically distant from the others. The inactivated antigen of European or Far-Eastern strains is used in commercial TBE vaccines. A set of 14 TBEV strains, isolated in 1937-2008, with different passage histories, representing all subtypes and variants, was used in this work. The chosen set covers almost all the TBE area. Sera of mice, immunized with the TBE vaccine Moscow, prepared from the TBEV strain Sofjin, were studied in a plaque neutralization test against the set of TBEV strains. The vaccine induced antibodies at a protective titer against all TBEV strains and Omsk hemorrhagic fever virus (OHFV) with Е protein amino acid distances of 0.008-0.069, but not against Powassan virus. We showed that after a course of two immunizations, factors such as the period between vaccinations (1-4 weeks), the challenging virus dose (30-1000 LD50) and terms of challenge (1-4 weeks after the last immunization) did not significantly affect the assessment of protective efficacy of the vaccine in vivo. The protective effect of the TBE vaccine Moscow against the set of TBEV strains and the OHFV was demonstrated in in vivo experiments. TBE vaccine Moscow did not protect mice against 10 LD50 of the Powassan virus. We showed that this range of Е protein amino acid distances between the vaccine strain and challenging virus do not have a decisive impact on the TBE vaccine protective effect in vitro and in vivo. Moreover, the TBE vaccine Moscow induces an immune response protective against a wide range of TBEV variants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Positive immunomodulatory effects of heterologous DNA vaccine- modified live vaccine, prime-boost immunization, against the highly-pathogenic PRRSV infection.

    PubMed

    Sirisereewan, Chaitawat; Nedumpun, Teerawut; Kesdangsakonwut, Sawang; Woonwong, Yonlayong; Kedkovid, Roongtham; Arunorat, Jirapat; Thanawongnuwech, Roongroje; Suradhat, Sanipa

    2017-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) infection is one of the most important swine pathogens, and causes a major economic impact worldwide. Recently, a new variant type 2 PRRSV, highly pathogenic PRRSV (HP-PRRSV) has emerged and continued to circulate in Southeast Asia region. Currently, commercially available PRRSV vaccines, modified live PRRS vaccines (MLV) are not able to provide complete protection against HP-PRRSV and been reported to induce negative immunomodulatory effects. Interestingly, a novel DNA vaccine was developed and successfully used to improve PRRSV-specific immune responses following MLV vaccination. To investigate the efficacy of a heterologous DNA-MLV prime-boost immunization against the HP-PRRSV infection, an experimental vaccinated-challenged study was conducted. Two-week-old, PRRSV-seronegative, crossbred pigs (5-8 pigs/group) were allocated into 5 groups. At day -14 (D-14), the treatment group (DNA-MLV) was immunized with a DNA vaccine encoding PRRSV-truncated nucleocapsid protein (pORF7t), followed by a commercial modified live type 2 PRRS vaccine (MLV) at D0. The other groups included the group that received PBS at D-14 followed by MLV at D0 (MLV), pORF7t at D-14 (DNA), PBS at D0 (PBS) and the negative control group. At D42, all groups, except the negative control group, were challenged with HP-PRRSV (strain 10PL1). The results demonstrated that pigs that received MLV, regardless of the DNA priming, exhibited less clinical signs and faster viral clearance. Following HP-PRRSV challenge, the DNA-MLV group exhibited improved PRRSV-specific immunity, as observed by increased neutralizing antibody titers and PRRSV-specific IFN-γ production, and reduced IL-10 and PRRSV-specific Treg productions. However, neither the prime-boost immunization nor the MLV was able to induce complete clinical protection against HP-PRRSV infection. In conclusion, improved immunological responses, but not clinical protection, were achieved by

  11. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    PubMed

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-05

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection.

    PubMed

    Lyke, Kirsten E; Ishizuka, Andrew S; Berry, Andrea A; Chakravarty, Sumana; DeZure, Adam; Enama, Mary E; James, Eric R; Billingsley, Peter F; Gunasekera, Anusha; Manoj, Anita; Li, Minglin; Ruben, Adam J; Li, Tao; Eappen, Abraham G; Stafford, Richard E; Kc, Natasha; Murshedkar, Tooba; Mendoza, Floreliz H; Gordon, Ingelise J; Zephir, Kathryn L; Holman, LaSonji A; Plummer, Sarah H; Hendel, Cynthia S; Novik, Laura; Costner, Pamela J M; Saunders, Jamie G; Berkowitz, Nina M; Flynn, Barbara J; Nason, Martha C; Garver, Lindsay S; Laurens, Matthew B; Plowe, Christopher V; Richie, Thomas L; Graham, Barney S; Roederer, Mario; Sim, B Kim Lee; Ledgerwood, Julie E; Hoffman, Stephen L; Seder, Robert A

    2017-03-07

    A live-attenuated malaria vaccine, Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with Plasmodium falciparum (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 10 5 PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35-87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls ( P = 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36-99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.

  13. [Study on the neutralization capacity of different types of human measles virus vaccine and the epidemic strains].

    PubMed

    Feng, Yan; Lu, Yi-yu; Yan, Ju-ying; Jiang, Xiao-hui; Shi, Wen; Xu, Chang-ping; Li, Zhen

    2007-11-01

    To explore the neutralization capacities of different types of human serum to measles virus epidemic strains and vaccine strain. Neutralization antibody (NT) to Shanghai 191 and measles virus isolates in 2005 were tested using acute and convalescent serum samples from diagnosed measles patients, children serum samples collected before and after vaccination and serum samples of migrant residents, from 3 different regions. Additionally, animal immune serum referring to vaccine strain and 3 epidemic strains were prepared and used to undergo crossing neutralization test with corresponding strains mentioned-above. Antigenic ratios were calculated. GMT value of NT of after-immune serum to vaccine strains was 50.82,1.86 times higher than that to MVi/ZJ/05/7 (GMT was 27.35), whereas GMT value of convalescent serum to MVi/ZJ/05/7 (GMT was 386.95) was obviously higher than that to vaccine strain (GMT was 1:151.83),and GMT value of migrant residents' serum in 3 regions to MVi/ZJ/05/7 were 2.22-4.17 times lower than that to vaccine strain. Meanwhile,the antigenic ratios between MVi/ZJ/ 99/1, MVi/ZJ/04/1, MVi/ZJ/05/7 and vaccine strain were found to be 4.28,5.24 and 5.66 respectively. Additionally,low NT titers to vaccine strain were found in patients' acute sera and GMT value was over 1:4. There were obvious differences on neutralization antibody of different types of serum to measles vaccine strain and epidemic strains which indicating the antigenic diversity of epidemic strains had influenced the protective effectiveness of vaccine antibody to epidemic strains. It was of significance to carry on research projects on the antigenic diversity and effectiveness of measles vaccine.

  14. Strain-Specific Protective Effect of the Immunity Induced by Live Malarial Sporozoites under Chloroquine Cover

    PubMed Central

    Wijayalath, Wathsala; Cheesman, Sandra; Tanabe, Kazuyuki; Handunnetti, Shiroma; Carter, Richard; Pathirana, Sisira

    2012-01-01

    The efficacy of a whole-sporozoite malaria vaccine would partly be determined by the strain-specificity of the protective responses against malarial sporozoites and liver-stage parasites. Evidence from previous reports were inconsistent, where some studies have shown that the protective immunity induced by irradiated or live sporozoites in rodents or humans were cross-protective and in others strain-specific. In the present work, we have studied the strain-specificity of live sporozoite-induced immunity using two genetically and immunologically different strains of Plasmodium cynomolgi, Pc746 and PcCeylon, in toque monkeys. Two groups of monkeys were immunized against live sporozoites of either the Pc746 (n = 5), or the PcCeylon (n = 4) strain, by the bites of 2–4 sporozoite-infected Anopheles tessellates mosquitoes per monkey under concurrent treatments with chloroquine and primaquine to abrogate detectable blood infections. Subsequently, a group of non-immunized monkeys (n = 4), and the two groups of immunized monkeys were challenged with a mixture of sporozoites of the two strains by the bites of 2–5 infective mosquitoes from each strain per monkey. In order to determine the strain-specificity of the protective immunity, the proportions of parasites of the two strains in the challenge infections were quantified using an allele quantification assay, Pyrosequencing™, based on a single nucleotide polymorphism (SNP) in the parasites’ circumsporozoite protein gene. The Pyrosequencing™ data showed that a significant reduction of parasites of the immunizing strain in each group of strain-specifically immunized monkeys had occurred, indicating a stronger killing effect on parasites of the immunizing strain. Thus, the protective immunity developed following a single, live sporozoite/chloroquine immunization, acted specifically against the immunizing strain and was, therefore, strain-specific. As our experiment does not allow us to determine the

  15. Oral Fluids as a Live-Animal Sample Source for Evaluating Cross-Reactivity and Cross-Protection following Intranasal Influenza A Virus Vaccination in Pigs

    PubMed Central

    Hughes, Holly R.; Vincent, Amy L.; Brockmeier, Susan L.; Gauger, Phillip C.; Pena, Lindomar; Santos, Jefferson; Braucher, Douglas R.

    2015-01-01

    In North American swine, there are numerous antigenically distinct H1 influenza A virus (IAV) variants currently circulating, making vaccine development difficult due to the inability to formulate a vaccine that provides broad cross-protection. Experimentally, live-attenuated influenza virus (LAIV) vaccines demonstrate increased cross-protection compared to inactivated vaccines. However, there is no standardized assay to predict cross-protection following LAIV vaccination. Hemagglutination-inhibiting (HI) antibody in serum is the gold standard correlate of protection following IAV vaccination. LAIV vaccination does not induce a robust serum HI antibody titer; however, a local mucosal antibody response is elicited. Thus, a live-animal sample source that could be used to evaluate LAIV immunogenicity and cross-protection is needed. Here, we evaluated the use of oral fluids (OF) and nasal wash (NW) collected after IAV inoculation as a live-animal sample source in an enzyme-linked immunosorbent assay (ELISA) to predict cross-protection in comparison to traditional serology. Both live-virus exposure and LAIV vaccination provided heterologous protection, though protection was greatest against more closely phylogenetically related viruses. IAV-specific IgA was detected in NW and OF samples and was cross-reactive to representative IAV from each H1 cluster. Endpoint titers of cross-reactive IgA in OF from pigs exposed to live virus was associated with heterologous protection. While LAIV vaccination provided significant protection, LAIV immunogenicity was reduced compared to live-virus exposure. These data suggest that OF from pigs inoculated with wild-type IAV, with surface genes that match the LAIV seed strain, could be used in an ELISA to assess cross-protection and the antigenic relatedness of circulating and emerging IAV in swine. PMID:26291090

  16. Protective role of adenylate cyclase in the context of a live pertussis vaccine candidate.

    PubMed

    Lim, Annabelle; Ng, Jowin K W; Locht, Camille; Alonso, Sylvie

    2014-01-01

    Despite high vaccination coverage, pertussis remains an important respiratory infectious disease and the least-controlled vaccine-preventable infectious disease in children. Natural infection with Bordetella pertussis is known to induce strong and long-lasting immunity that wanes later than vaccine-mediated immunity. Therefore, a live attenuated B. pertussis vaccine, named BPZE1, has been developed and has recently completed a phase I clinical trial in adult human volunteers. In this study, we investigated the contribution of adenylate cyclase (CyaA) in BPZE1-mediated protection against pertussis. A CyaA-deficient BPZE1 mutant was thus constructed. Absence of CyaA did not compromise the adherence properties of the bacteria onto mammalian cells. However, the CyaA-deficient mutant displayed a slight impairment in the ability to survive within macrophages compared to the parental BPZE1 strain. In vivo, whereas the protective efficacy of the CyaA-deficient mutant was comparable to the parental strain at a vaccine dose of 5 × 10(5) colony forming units (CFU), it was significantly impaired at a vaccine dose of 5 × 10(3) CFU. This impairment correlated with impaired lung colonization ability, and impaired IFN-γ production in the animal immunized with the CyaA-deficient BPZE1 mutant while the pertussis-specific antibody profile and Th17 response were comparable to those observed in BPZE1-immunized mice. Our findings thus support a role of CyaA in BPZE1-mediated protection through induction of cellular mediated immunity. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Herpes zoster vaccine live: A 10 year review of post-marketing safety experience.

    PubMed

    Willis, English D; Woodward, Meredith; Brown, Elizabeth; Popmihajlov, Zoran; Saddier, Patricia; Annunziato, Paula W; Halsey, Neal A; Gershon, Anne A

    2017-12-19

    Zoster vaccine is a single dose live, attenuated vaccine (ZVL) indicated for individuals ≥50 years-old for the prevention of herpes zoster (HZ). Safety data from clinical trials and post-licensure studies provided reassurance that ZVL is generally safe and well tolerated. The objective of this review was to provide worldwide post-marketing safety information following 10 years of use and >34 million doses distributed. All post-marketing adverse experience (AE) reports received worldwide between 02-May-2006 and 01-May-2016 from healthcare professionals following vaccination with ZVL and submitted to the MSD AE global safety database, were analyzed. A total of 23,556 AE reports, 93% non-serious, were reported. Local injection site reactions (ISRs), with a median time-to-onset of 2 days, were the most frequently reported AEs followed by HZ. The majority of HZ reports were reported within 2 weeks of vaccination and considered, based on time-to-onset, pathogenesis of HZ, and data from clinical trials, to be caused by wild-type varicella-zoster virus (VZV). HZ confirmed by PCR analysis to be VZV Oka/Merck vaccine-strain was identified in an immunocompetent individual 8 months postvaccination and in 4 immunocompromised individuals. Disseminated HZ was reported very rarely (<1%) with 38% occurring in immunocompromised individuals. All reports of disseminated HZ confirmed by PCR as VZV Oka/Merck vaccine-strain were in individuals with immunosuppressive conditions and/or therapy at the time of vaccination. The safety profile of ZVL, following 10 years of post-marketing use, was favorable and consistent with that observed in clinical trials and post-licensure studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Infection and transmission of live recombinant Newcastle disease virus vaccines in Rock Pigeons, European House Sparrows, and Japanese Quail

    USDA-ARS?s Scientific Manuscript database

    In China and Mexico, engineered recombinant Newcastle disease virus (rNDV) strains are used as live vaccines for the control of Newcastle disease and as vectors to express the avian influenza virus hemagglutinin (HA) gene to control avian influenza in poultry. In this study, non-target species wer...

  19. A Yersinia pestis lpxM-mutant live vaccine induces enhanced immunity against bubonic plague in mice and guinea pigs.

    PubMed

    Feodorova, V A; Pan'kina, L N; Savostina, E P; Sayapina, L V; Motin, V L; Dentovskaya, S V; Shaikhutdinova, R Z; Ivanov, S A; Lindner, B; Kondakova, A N; Bystrova, O V; Kocharova, N A; Senchenkova, S N; Holst, O; Pier, G B; Knirel, Y A; Anisimov, A P

    2007-11-01

    The lpxM mutant of the live vaccine Yersinia pestis EV NIIEG strain synthesising a less toxic penta-acylated lipopolysaccharide was found to be avirulent in mice and guinea pigs, notably showing no measurable virulence in Balb/c mice which do retain some susceptibility to the parental strain itself. Twenty-one days after a single injection of the lpxM-mutant, 85-100% protection was achieved in outbred mice and guinea pigs, whereas a 43% protection rate was achieved in Balb/c mice given single low doses (10(3) to 2.5 x 10(4) CFU) of this vaccine. A subcutaneous challenge with 2000 median lethal doses (equal to 20,000 CFU) of fully virulent Y. pestis 231 strain, is a 6-10-fold higher dose than that which the EV NIIEG itself can protect against.

  20. Experimental infection of horses with an attenuated Venezuelan equine encephalomyelitis vaccine (strain TC-83).

    PubMed

    Walton, T E; Alvarez, O; Buckwalter, R M; Johnson, K M

    1972-05-01

    Ten horses (Equus caballus) were vaccinated with strain TC-83 Venezuelan equine encephalomyelitis (VEE) virus vaccine. Febrile responses and leukopenia due to a reduction of lymphocytes and neutrophils were observed in all animals. Viremias were demonstrable in eight horses, with a maximum of 10(3.5) median tissue culture infectious dose units per ml of serum in two horses. Clinical illness with depression and anorexia were observed in five horses. Neutralizing (N), hemagglutination-inhibiting, and complement-fixing antibodies to the vaccine virus were demonstrable by 5, 6.5, and 7 days, respectively, after vaccination. Differential titrations of serum to six VEE strains revealed high titers of N antibody to vaccine virus, moderate titers to the epizootic Trinidad donkey no. 1 strain (VEE antigenic subtype I, variant A) from which TC-83 was derived, and low titers to two other epizootic strains (subtype I, variants B and C) in all horses at 1 month after vaccination; some animals responded with low levels of N antibody to the enzootic viruses (subtype I, variants D and E). Fourteen months after vaccination, six animals with detectable N antibody were challenged with MF-8 (subtype I, variant B), an epidemic-epizootic strain isolated in 1969 from a man in Honduras. All horses resisted challenge with the equine pathogenic strain of VEE. Marked increases of N antibody in most horses were demonstrable to some VEE strains when tested 1 month after challenge.

  1. Experimental Infection of Horses with an Attenuated Venezuelan Equine Encephalomyelitis Vaccine (Strain TC-83)

    PubMed Central

    Walton, Thomas E.; Alvarez, Otto; Buckwalter, Ross M.; Johnson, Karl M.

    1972-01-01

    Ten horses (Equus caballus) were vaccinated with strain TC-83 Venezuelan equine encephalomyelitis (VEE) virus vaccine. Febrile responses and leukopenia due to a reduction of lymphocytes and neutrophils were observed in all animals. Viremias were demonstrable in eight horses, with a maximum of 103.5 median tissue culture infectious dose units per ml of serum in two horses. Clinical illness with depression and anorexia were observed in five horses. Neutralizing (N), hemagglutination-inhibiting, and complement-fixing antibodies to the vaccine virus were demonstrable by 5, 6.5, and 7 days, respectively, after vaccination. Differential titrations of serum to six VEE strains revealed high titers of N antibody to vaccine virus, moderate titers to the epizootic Trinidad donkey no. 1 strain (VEE antigenic subtype I, variant A) from which TC-83 was derived, and low titers to two other epizootic strains (subtype I, variants B and C) in all horses at 1 month after vaccination; some animals responded with low levels of N antibody to the enzootic viruses (subtype I, variants D and E). Fourteen months after vaccination, six animals with detectable N antibody were challenged with MF-8 (subtype I, variant B), an epidemic-epizootic strain isolated in 1969 from a man in Honduras. All horses resisted challenge with the equine pathogenic strain of VEE. Marked increases of N antibody in most horses were demonstrable to some VEE strains when tested 1 month after challenge. PMID:4637604

  2. Vaccination with killed whole-cells of Escherichia coli O157:H7 hha mutant emulsified with an adjuvant induced vaccine strain-specific serum antibodies and reduced E. coli O157:H7 fecal shedding in cattle.

    PubMed

    Sharma, Vijay K; Schaut, Robert G; Loving, Crystal L

    2018-06-01

    Escherichia coli O157:H7 (O157) can cause from a mild diarrheal illness to hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are the primary reservoir for O157 and fecal shedding of O157 by these animals is a major risk factor in contamination of cattle hides and carcasses at slaughter. Vaccination is an important strategy to reduce fecal shedding of O157 in cattle. In this study, we evaluated the immunogenicity and efficacy of an inactivated vaccine strain of O157 formulated with an adjuvant. This vaccine strain was deleted of the hha gene enabling high level expression of the locus of enterocyte effacement (LEE) encoded proteins required for O157 colonization in cattle. The inactivated vaccine strain emulsified with the adjuvant or suspended in the phosphate-buffered saline (PBS) was injected in the neck muscles of two groups of weaned calves followed by a booster three weeks later with the corresponding formulation. Animals in groups 3 and 4 were injected similarly with the adjuvant and PBS, respectively. All animals were orally inoculated three weeks post-booster vaccination with a live culture of O157. The animals vaccinated with the adjuvanted vaccine showed higher serum antibody titers to the vaccine strain and shed O157 for a shorter duration and at lower numbers compared to the animals vaccinated with the non-adjuvanted vaccine, adjuvant-only, or PBS. Western blotting of the vaccine strain lysates showed higher immunoreactivity of serum IgG in vaccinated animals to several O157-specific proteins and lipopolysaccharides (LPS). The vaccination induced IgG showed specificity to LEE-encoded proteins and outer membrane LPS as LEE and waaL deletion mutants, unable to produce LEE proteins and synthesize high molecular weight LPS, respectively, yielded significantly lower antibody titers compared to the parent vaccine strain. The positive reactivity of the immune serum was also observed for purified LEE-encoded proteins EspA and EspB. In

  3. Egg quality in laying hens exposed to Mycoplasma gallisepticum F-strain attenuated vaccine.

    PubMed

    Machado, L D S; Santos, F F D; Togashi, C K; Abreu, D L D C; Pimentel, J C; Sesti, L; Pereira, V L D A; Nascimento, E R D

    2017-04-01

    Mycoplasma gallisepticum causes coughing, ocular and nasal discharge, reduction in feed intake, lower and uneven growth, decline in egg production and quality, and increase in mortality. Among the attenuated vaccination strains, MGF can reduce clinical signs and lesions in layer hens, stimulate immune responses of cellular and humoral basis, act as an instrument of competitive exclusion in relation to field strains, and reduce the use of antimicrobials. This study aimed to investigate the effects of attenuated MG F-strain vaccination on egg quality in 3 groups of 30 hens each, being one control and 2 vaccinated. Vaccination was applied by ocular route at 8 and 12 wk of age. Comparisons were made among unvaccinated hens; vaccinated at 8 wk of age; and vaccinated at 8 and 12 wk of age. There were no statistical differences in eggshell thickness and weight among groups. Eggs from twice vaccinated birds yielded a Haugh unit significantly lower than the other groups without affecting egg classification. There was no significant difference in ELISA results between the vaccinated groups. © 2016 Poultry Science Association Inc.

  4. Broadly protective anti-hemagglutinin stalk antibodies induced by live attenuated influenza vaccine expressing chimeric hemagglutinin.

    PubMed

    Isakova-Sivak, Irina; Korenkov, Daniil; Smolonogina, Tatiana; Kotomina, Tatiana; Donina, Svetlana; Matyushenko, Victoria; Mezhenskaya, Daria; Krammer, Florian; Rudenko, Larisa

    2018-05-01

    The development of influenza vaccines that can provide broad protection against all drifted seasonal virus variants, zoonotic infections and emerging pandemic strains, has been a priority for two decades. Here we propose a strategy of inducing broadly-reactive anti-stalk antibody by sequential immunizations with live attenuated influenza vaccines (LAIVs) expressing chimeric HAs (cHAs). These vaccines are designed to contain identical hemagglutinin stalk domains from H1N1 virus but antigenically unrelated globular head domains from avian influenza virus subtypes H5, H8 and H9. Mouse experiments demonstrated enhanced cross-protection of cHA-containing LAIVs compared to the relevant vaccine viruses expressing natural HAs, and this enhanced protection was driven by stalk-HA-reactive IgG antibodies. The establishment of fully functional cross-protective immunity after two doses of cHA LAIV vaccination in naïve animals suggests that a similar effect might be expected after a single cHA LAIV dose in primed individuals, or after two to three doses in naïve children. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Development of inactivated poliovirus vaccine from Sabin strains: A progress report.

    PubMed

    Okayasu, Hiromasa; Sein, Carolyn; Hamidi, Ahd; Bakker, Wilfried A M; Sutter, Roland W

    2016-11-01

    The Global Polio Eradication Initiative (GPEI) has seen significant progress since it began in 1988, largely due to the worldwide use of oral poliovirus vaccine (OPV). In order to achieve polio eradication the global cessation of OPV is necessary because OPV contains live attenuated poliovirus, which in rare circumstances could re-gain wild poliovirus (WPV) characteristics with potential to establish transmission. The GPEI endgame strategy for the period 2013-2018 recommends the globally synchronised sequential cessation of the Sabin strains contained in the OPV, starting with type 2 Sabin. The withdrawal of Sabin type 2 took place in April 2016, with the introduction of at least one dose of inactivated poliovirus vaccine (IPV) as a risk mitigation strategy. The introduction of IPV into 126 countries since 2013 has required a rapid scale-up of IPV production by the two manufacturers supplying the global public sector market. This scale-up has been fraught with challenges, resulting in reductions of 40-50% of initial supply commitments. Consequently, 22 countries will not be supplied until 2018, and another 23 countries will experience serious stock-outs. In the last decade repeated calls-for-action were made to the global community to invigorate their vision and investment in developing "new poliovirus vaccines" including the development of IPV from less-virulent strains, such as Sabin-IPV (S-IPV). The conventional Salk-IPV production is limited to high-income industrialized-country manufacturers due to the containment requirements (i.e., high sanitation, low force-of-poliovirus-infection, and high population immunity). The use of Sabin strains in the production of S-IPV carries a lower biosafety risk, and was determined to be suitable for production in developing countries, expanding the manufacturing base and making IPV more affordable and accessible in the long term. Significant progress in the S-IPV has been made since 2006. S-IPV is now licensed as S-IPV in

  6. Construction of a Streptococcus agalactiae phoB mutant and evaluation of its potential as an attenuated modified live vaccine in golden pompano, Trachinotus ovatus.

    PubMed

    Cai, Xiaohui; Wang, Bei; Peng, Yinhui; Li, Yuan; Lu, Yishan; Huang, Yucong; Jian, Jichang; Wu, Zaohe

    2017-04-01

    Streptococcus agalactiae is a Gram-positive pathogen that can survive inside professional phagocytes and nonphagocytic cells to cause septicemia and meningoencephalitis in freshwater and marine fish. However, vaccines based on extracellular products (ECP) and formalin-killed whole S. agalactiae cells, as well as subunit vaccine are unable to protect fish from infection by variant serotypes S. agalactiae. The search for live attenuated vaccine with highly conserved and virulent-related genes is essential for producing a vaccine to help understand and control streptococcosis In this study, the phoB gene was cloned from pathogenic S. agalactiae TOS01 strain and the mutant strain SAΔphoB was constructed via allelic exchange mutagenesis. The results showed that the deduced amino acid of S. agalactiae TOS01 shares high similarities with other Streptococcus spp. and has high conserved response regulator receiver domain (REC) and DNA-binding effector domain of two-component system response regulators (Trans_reg_C). Cell adherence and invasion assays, challenge experiments and histopathological changes post-vaccination were performed and observed, the results showed that the mutant strain SAΔphoB has a lower adherence and invasion rate and less virulent than the wild type strain in golden pompano, and it doesn't induce clinical symptoms and obvious pathological changes in golden pompano, thereby indicating that the deletion of phoB affects the virulence and infectious capacity of S. agalactiae. Golden pompano vaccinated via intraperitoneal injection SAΔphoB had the relative percent survival value of 93.1% after challenge with TOS01, demonstrating its high potential as an effective attenuated live vaccine candidate. Real-time PCR assays showed that the SAΔphoB was able to enhance the expression of immune-related genes, including MHC-I, MyD88, IL-22 and IL-10 after vaccination, indicating that the SAΔphoB is able to induce humoral and cell-mediated immune response

  7. Evidence of pestivirus RNA in human virus vaccines.

    PubMed Central

    Harasawa, R; Tomiyama, T

    1994-01-01

    We examined live virus vaccines against measles, mumps, and rubella for the presence of pestivirus RNA or of pestiviruses by reverse transcription PCR. Pestivirus RNA was detected in two measles-mumps-rubella combined vaccines and in two monovalent vaccines against mumps and rubella. Nucleotide sequence analysis of the PCR products indicated that a modified live vaccine strain used for immunization of cattle against bovine viral diarrhea is not responsible for the contamination of the vaccines. Images PMID:8077414

  8. Clinical evaluation of a new measles-mumps-rubella combined live virus vaccine in the Dominican Republic*

    PubMed Central

    Ehrenkranz, N. Joel; Ventura, Arnoldo K.; Medler, Edward M.; Jackson, Joseph E.; Kenny, Michael T.

    1975-01-01

    Over 900 children were enrolled in a double-blind placebo-controlled clinical study of measles (Schwarz strain), mumps (Jeryl Lynn strain), and rubella (Cendehill strain) trivalent vaccine. The trivalent vaccine caused about the same degree of reactivity as is generally associated with the Schwarz strain measles vaccine. Paired sera from triplesusceptible vaccinees had seroconversion rates of 99% for measles, 94% for mumps, and 93% for rubella. The results of this study show that this trivalent vaccine is as well tolerated and as effective as its component vaccines. PMID:764997

  9. Enhancing the Thermostability and Immunogenicity of a Respiratory Syncytial Virus (RSV) Live-Attenuated Vaccine by Incorporating Unique RSV Line19F Protein Residues.

    PubMed

    Rostad, Christina A; Stobart, Christopher C; Todd, Sean O; Molina, Samuel A; Lee, Sujin; Blanco, Jorge C G; Moore, Martin L

    2018-03-15

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, and an effective vaccine is not yet available. We previously generated an RSV live-attenuated vaccine (LAV) candidate, DB1, which was attenuated by a low-fusion subgroup B F protein (BAF) and codon-deoptimized nonstructural protein genes. DB1 was immunogenic and protective in cotton rats but lacked thermostability and stability of the prefusion conformation of F compared to strains with the line19F gene. We hypothesized that substitution of unique residues from the thermostable A2-line19F strain could thermostabilize DB1 and boost its immunogenicity. We therefore substituted 4 unique line19F residues into the BAF protein of DB1 by site-directed mutagenesis and rescued the recombinant virus, DB1-QUAD. Compared to DB1, DB1-QUAD had improved thermostability at 4°C and higher levels of prefusion F as measured by enzyme-linked immunosorbent assays (ELISAs). DB1-QUAD was attenuated in normal human bronchial epithelial cells, in BALB/c mice, and in cotton rats but grew to wild-type titers in Vero cells. In mice, DB1-QUAD was highly immunogenic and generated significantly higher neutralizing antibody titers to a panel of RSV A and B strains than did DB1. DB1-QUAD was also efficacious against wild-type RSV challenge in mice and cotton rats. Thus, substitution of unique line19F residues into RSV LAV DB1 enhanced vaccine thermostability, incorporation of prefusion F, and immunogenicity and generated a promising vaccine candidate that merits further investigation. IMPORTANCE We boosted the thermostability and immunogenicity of an RSV live-attenuated vaccine candidate by substituting 4 unique residues from the RSV line19F protein into the F protein of the heterologous vaccine strain DB1. The resultant vaccine candidate, DB1-QUAD, was thermostable, attenuated in vivo , highly immunogenic, and protective against RSV challenge in mice and cotton rats. Copyright © 2018

  10. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges.

    PubMed

    Wang, Danher; Hevey, Michael; Juompan, Laure Y; Trubey, Charles M; Raja, Nicholas U; Deitz, Stephen B; Woraratanadharm, Jan; Luo, Min; Yu, Hong; Swain, Benjamin M; Moore, Kevin M; Dong, John Y

    2006-09-30

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 10(7) pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV.

  11. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Danher; Hevey, Michael; Juompan, Laure Y.

    2006-09-30

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guineamore » pigs. Significantly, guinea pigs vaccinated with at least 5 x 10{sup 7} pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV.« less

  12. Brucella suis strain 2 vaccine is safe and protective against heterologous Brucella spp. infections.

    PubMed

    Zhu, Liangquan; Feng, Yu; Zhang, Ge; Jiang, Hui; Zhang, Zhen; Wang, Nan; Ding, Jiabo; Suo, Xun

    2016-01-12

    Brucellosis is a wide spread zoonotic disease that causes abortion and infertility in mammals and leads to debilitating, febrile illness in humans. Brucella abortus, Brucella melitensis and Brucella suis are the major pathogenic species to humans. Vaccination with live attenuated B. suis strain 2 (S2) vaccine is an essential and critical component in the control of brucellosis in China. The S2 vaccine is very effective in preventing brucellosis in goats, sheep, cattle and swine. However, there are still debates outside of China whether the S2 vaccine is able to provide protection against heterologous virulent Brucella species. We investigated the residual virulence, immunogenicity and protective efficacy of the S2 vaccine in BALB/c mice by determining bacteria persistence in spleen, serum antibody response, cellular immune response and protection against a heterologous virulent challenge. The S2 vaccine was of low virulence as there were no bacteria recovered in spleen four weeks post vaccination. The vaccinated mice developed Brucella-specific IgG in 2-3 weeks, and a burst production of IFN-γ at one week as well as a two-fold increase in TNF-α production. The S2 vaccine protected mice from a virulent challenge by B. melitensis M28, B. abortus 2308 and B. suis S1330, and the S2 vaccinated mice did not develop any clinical signs or tissue damage. Our study demonstrated that the S2 vaccine is of low virulence, stimulates good humoral and cellular immunity and protects animals against infection by heterologous, virulent Brucella species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Association of deficiency in antibody response to vaccine and heterogeneity of Ehrlichia risticii strains with Potomac horse fever vaccine failure in horses.

    PubMed

    Dutta, S K; Vemulapalli, R; Biswas, B

    1998-02-01

    Ehrlichia risticii is the causative agent of Potomac horse fever (PHF), which continues to be an important disease of horses. Commercial inactivated whole-cell vaccines are regularly used for immunization of horses against the disease. However, PHF is occurring in large numbers of horses in spite of vaccination. In a limited study, 43 confirmed cases of PHF occurred between the 1994 and 1996 seasons; of these, 38 (89%) were in horses that had been vaccinated for the respective season, thereby clearly indicating vaccine failure. A field study of horses vaccinated with two PHF vaccines indicated a poor antibody response, as determined by immunofluorescence assay (IFA) titers. In a majority of horses, the final antibody titer ranged between 40 and 1,280, in spite of repeated vaccinations. None of the vaccinated horses developed in vitro neutralizing antibody in their sera. Similarly, one horse experimentally vaccinated three times with one of the vaccines showed a poor antibody response, with final IFA titers between 80 and 160. The horse did not develop in vitro neutralizing antibody or antibody against the 50/85-kDa strain-specific antigen (SSA), which is the protective antigen of the original strain, 25-D, and the variant strain of our laboratory, strain 90-12. Upon challenge infection with the 90-12 strain, the horse showed clinical signs of the disease. The horse developed neutralizing antibody and antibody to the 50/85-kDa SSA following the infection. Studies of the new E. risticii isolates from the field cases indicated that they were heterogeneous among themselves and showed differences from the 25-D and 90-12 strains as determined by IFA reactivity pattern, DNA amplification finger printing profile, and in vitro neutralization activity. Most importantly, the molecular sizes of the SSA of these isolates varied, ranging from 48 to 85 kDa. These studies suggest that the deficiency in the antibody response to the PHF vaccines and the heterogeneity of E. risticii

  14. Association of Deficiency in Antibody Response to Vaccine and Heterogeneity of Ehrlichia risticii Strains with Potomac Horse Fever Vaccine Failure in Horses

    PubMed Central

    Dutta, Sukanta K.; Vemulapalli, Ramesh; Biswas, Biswajit

    1998-01-01

    Ehrlichia risticii is the causative agent of Potomac horse fever (PHF), which continues to be an important disease of horses. Commercial inactivated whole-cell vaccines are regularly used for immunization of horses against the disease. However, PHF is occurring in large numbers of horses in spite of vaccination. In a limited study, 43 confirmed cases of PHF occurred between the 1994 and 1996 seasons; of these, 38 (89%) were in horses that had been vaccinated for the respective season, thereby clearly indicating vaccine failure. A field study of horses vaccinated with two PHF vaccines indicated a poor antibody response, as determined by immunofluorescence assay (IFA) titers. In a majority of horses, the final antibody titer ranged between 40 and 1,280, in spite of repeated vaccinations. None of the vaccinated horses developed in vitro neutralizing antibody in their sera. Similarly, one horse experimentally vaccinated three times with one of the vaccines showed a poor antibody response, with final IFA titers between 80 and 160. The horse did not develop in vitro neutralizing antibody or antibody against the 50/85-kDa strain-specific antigen (SSA), which is the protective antigen of the original strain, 25-D, and the variant strain of our laboratory, strain 90-12. Upon challenge infection with the 90-12 strain, the horse showed clinical signs of the disease. The horse developed neutralizing antibody and antibody to the 50/85-kDa SSA following the infection. Studies of the new E. risticii isolates from the field cases indicated that they were heterogeneous among themselves and showed differences from the 25-D and 90-12 strains as determined by IFA reactivity pattern, DNA amplification finger printing profile, and in vitro neutralization activity. Most importantly, the molecular sizes of the SSA of these isolates varied, ranging from 48 to 85 kDa. These studies suggest that the deficiency in the antibody response to the PHF vaccines and the heterogeneity of E. risticii

  15. Adenovirus 2, Bordetella bronchiseptica, and Parainfluenza Molecular Diagnostic Assay Results in Puppies After vaccination with Modified Live Vaccines.

    PubMed

    Ruch-Gallie, R; Moroff, S; Lappin, M R

    2016-01-01

    Canine adenovirus 2, parainfluenza, and Bordetella bronchiseptica cause respiratory disease in dogs, and each has a modified live intranasal vaccine available. Molecular diagnostic assays to amplify specific nucleic acids are available for each of these agents. If positive molecular diagnostic assay results are common after vaccination, the positive predictive value of the diagnostic assays for disease would be decreased. To determine the impact of administration of commercially available modified live topical adenovirus 2, B. bronchiseptica, and parainfluenza vaccine has on the results of a commercially available PCR panel. Eight puppies from a research breeding facility negative for these pathogens. Blinded prospective pilot study. Puppies were vaccinated with a single dose of modified live topical adenovirus 2, B. bronchiseptica, and parainfluenza and parenteral dose of adenovirus 2, canine distemper virus, and parvovirus. Nasal and pharyngeal swabs were collected on multiple days and submitted for PCR assay. Nucleic acids of all 3 organisms contained in the topical vaccine were detected from both samples multiple times through 28 days after vaccination with higher numbers of positive samples detected between days 3 and 10 after vaccination. Vaccine status should be considered when interpreting respiratory agent PCR results if modified live vaccines have been used. Development of quantitative PCR and wild-type sequencing are necessary to improve positive predictive value of these assays by distinguishing vaccinate from natural infection. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  16. Population dynamics of live-attenuated virus vaccines.

    PubMed

    Wagner, Bradley G; Earn, David J D

    2010-03-01

    Viruses contained in live-attenuated virus vaccines (LAVV) can be transmitted between individuals, resulting in secondary or contact vaccinations. This fact has been exploited successfully in the use of the Oral Polio Vaccine (OPV) to better control wild-type polio viruses. In this work we analyze general LAVV vaccination models for infections that confer lifelong immunity. We consider both standard (continuous) vaccination strategies and pulse vaccination programs (where mass vaccination is carried out at regular intervals). For continuous vaccination, we provide a complete global analysis of a very general compartmental ordinary differential equation LAVV model. We find that the threshold vaccination level required for the eradication of wild-type virus depends on the basic reproduction numbers of both the wild-type and vaccine viruses, but is otherwise independent of the distributions of the durations in each of the sequence of stages of disease progression (e.g., latent, infectious, etc.). Furthermore, even for vaccine viruses with reproduction numbers below one, which would naturally fade from the population upon cessation of vaccination, there can be a significant reduction in the threshold vaccination level. The dependence of the threshold vaccination level on the virus reproduction numbers largely generalizes to the pulse vaccination model. For shorter pulsing periods there is negligible difference in threshold vaccination level as compared to continuous vaccination campaigns. Thus, we conclude that current policy in many countries to employ annual pulsed OPV vaccination does not significantly diminish the benefits of contact vaccination. Copyright 2009 Elsevier Inc. All rights reserved.

  17. Oral Fluids as a Live-Animal Sample Source for Evaluating Cross-Reactivity and Cross-Protection following Intranasal Influenza A Virus Vaccination in Pigs.

    PubMed

    Hughes, Holly R; Vincent, Amy L; Brockmeier, Susan L; Gauger, Phillip C; Pena, Lindomar; Santos, Jefferson; Braucher, Douglas R; Perez, Daniel R; Loving, Crystal L

    2015-10-01

    In North American swine, there are numerous antigenically distinct H1 influenza A virus (IAV) variants currently circulating, making vaccine development difficult due to the inability to formulate a vaccine that provides broad cross-protection. Experimentally, live-attenuated influenza virus (LAIV) vaccines demonstrate increased cross-protection compared to inactivated vaccines. However, there is no standardized assay to predict cross-protection following LAIV vaccination. Hemagglutination-inhibiting (HI) antibody in serum is the gold standard correlate of protection following IAV vaccination. LAIV vaccination does not induce a robust serum HI antibody titer; however, a local mucosal antibody response is elicited. Thus, a live-animal sample source that could be used to evaluate LAIV immunogenicity and cross-protection is needed. Here, we evaluated the use of oral fluids (OF) and nasal wash (NW) collected after IAV inoculation as a live-animal sample source in an enzyme-linked immunosorbent assay (ELISA) to predict cross-protection in comparison to traditional serology. Both live-virus exposure and LAIV vaccination provided heterologous protection, though protection was greatest against more closely phylogenetically related viruses. IAV-specific IgA was detected in NW and OF samples and was cross-reactive to representative IAV from each H1 cluster. Endpoint titers of cross-reactive IgA in OF from pigs exposed to live virus was associated with heterologous protection. While LAIV vaccination provided significant protection, LAIV immunogenicity was reduced compared to live-virus exposure. These data suggest that OF from pigs inoculated with wild-type IAV, with surface genes that match the LAIV seed strain, could be used in an ELISA to assess cross-protection and the antigenic relatedness of circulating and emerging IAV in swine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Molecular characterisation and nucleotide sequence analysis of canine parvovirus strains in vaccines in India.

    PubMed

    Nandi, Sukdeb; Anbazhagan, Rajendra; Kumar, Manoj

    2010-01-01

    Canine parvovirus 2 (CPV-2) is one of the most important viruses that causes haemorrhagic gastroenteritis and myocarditis of dogs worldwide. The picture has been complicated further due to the emergence of new mutants of CPV, namely: CPV-2a, CPV-2b and CPV-2c. In this study, the molecular characterisation of strains present in the CPV vaccines available on the Indian market was performed using polymerase chain reaction and DNA sequencing. The VP1/VP2 genes of two vaccine strains and a field strain (Bhopal) were sequenced and the nucleotide and the deduced amino acid sequences were compared. The results indicated that the isolate belonged to CPV type 2b and the strains in the vaccines belonged to type CPV-2. From the study, it is inferred that the CPV strain used in commercially available vaccine preparation differed from the strains present in CPV infection in dogs in India.

  19. Evaluation of synthetic infection-enhancing lipopeptides as adjuvants for a live-attenuated canine distemper virus vaccine administered intra-nasally to ferrets.

    PubMed

    Nguyen, D Tien; Ludlow, Martin; van Amerongen, Geert; de Vries, Rory D; Yüksel, Selma; Verburgh, R Joyce; Osterhaus, Albert D M E; Duprex, W Paul; de Swart, Rik L

    2012-07-20

    Inactivated paramyxovirus vaccines have been associated with hypersensitivity responses upon challenge infection. For measles and canine distemper virus (CDV) safe and effective live-attenuated virus vaccines are available, but for human respiratory syncytial virus and human metapneumovirus development of such vaccines has proven difficult. We recently identified three synthetic bacterial lipopeptides that enhance paramyxovirus infections in vitro, and hypothesized these could be used as adjuvants to promote immune responses induced by live-attenuated paramyxovirus vaccines. Here, we tested this hypothesis using a CDV vaccination and challenge model in ferrets. Three groups of six animals were intra-nasally vaccinated with recombinant (r) CDV(5804P)L(CCEGFPC) in the presence or absence of the infection-enhancing lipopeptides Pam3CSK4 or PHCSK4. The recombinant CDV vaccine virus had previously been described to be over-attenuated in ferrets. A group of six animals was mock-vaccinated as control. Six weeks after vaccination all animals were challenged with a lethal dose of rCDV strain Snyder-Hill expressing the red fluorescent protein dTomato. Unexpectedly, intra-nasal vaccination of ferrets with rCDV(5804P)L(CCEGFPC) in the absence of lipopeptides resulted in good immune responses and protection against lethal challenge infection. However, in animals vaccinated with lipopeptide-adjuvanted virus significantly higher vaccine virus loads were detected in nasopharyngeal lavages and peripheral blood mononuclear cells. In addition, these animals developed significantly higher CDV neutralizing antibody titers compared to animals vaccinated with non-adjuvanted vaccine. This study demonstrates that the synthetic cationic lipopeptides Pam3CSK4 and PHCSK4 not only enhance paramyxovirus infection in vitro, but also in vivo. Given the observed enhancement of immunogenicity their potential as adjuvants for other live-attenuated paramyxovirus vaccines should be considered

  20. Immunogenicity and protective efficacy of a Salmonella Enteritidis sptP mutant as a live attenuated vaccine candidate.

    PubMed

    Lin, Zhijie; Tang, Peipei; Jiao, Yang; Kang, Xilong; Li, Qiuchun; Xu, Xiulong; Sun, Jun; Pan, Zhiming; Jiao, Xinan

    2017-06-24

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a highly adaptive pathogen in both humans and animals. As a Salmonella Type III secretion system (T3SS) effector, Salmonella protein tyrosine phosphatase (SptP) is critical for virulence in this genus. To investigate the feasibility of using C50336ΔsptP as a live attenuated oral vaccine in mice, we generated the sptP gene deletion mutant C50336ΔsptP in S. Enteritidis strain C50336 by λ-Red mediated recombination and evaluated the protective ability of the S. Enteritidis sptP mutant strain C50336ΔsptP against mice salmonellosis. We found that C50336ΔsptP was a highly immunogenic, effective, and safe vaccine in mice. Compared to wild-type C50336, C50336ΔsptP showed reduced virulence as confirmed by the 50% lethal dose (LD 50 ) in orally infected mice. C50336ΔsptP also showed decreased bacterial colonization both in vivo and in vitro. Immunization with C50336ΔsptP had no significant effect on body weight and did not result in obvious clinical symptoms relative to control animals treated with phosphate-buffered saline (PBS), but induced humoral and cellular immune responses at 12 and 26 days post inoculation. Immunization with 1 × 10 8 colony-forming units (CFU) C50336ΔsptP per mouse provided 100% protection against subsequent challenge with the wild-type C50336 strain, and immunized mice showed mild and temporary clinical symptoms as compared to those of control group. These results demonstrate that C50336ΔsptP can be a live attenuated oral vaccine for salmonellosis.

  1. Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain.

    PubMed

    Raymond, Donald D; Stewart, Shaun M; Lee, Jiwon; Ferdman, Jack; Bajic, Goran; Do, Khoi T; Ernandes, Michael J; Suphaphiphat, Pirada; Settembre, Ethan C; Dormitzer, Philip R; Del Giudice, Giuseppe; Finco, Oretta; Kang, Tae Hyun; Ippolito, Gregory C; Georgiou, George; Kepler, Thomas B; Haynes, Barton F; Moody, M Anthony; Liao, Hua-Xin; Schmidt, Aaron G; Harrison, Stephen C

    2016-12-01

    For broad protection against infection by viruses such as influenza or HIV, vaccines should elicit antibodies that bind conserved viral epitopes, such as the receptor-binding site (RBS). RBS-directed antibodies have been described for both HIV and influenza virus, and the design of immunogens to elicit them is a goal of vaccine research in both fields. Residues in the RBS of influenza virus hemagglutinin (HA) determine a preference for the avian or human receptor, α-2,3-linked sialic acid and α-2,6-linked sialic acid, respectively. Transmission of an avian-origin virus between humans generally requires one or more mutations in the sequences encoding the influenza virus RBS to change the preferred receptor from avian to human, but passage of a human-derived vaccine candidate in chicken eggs can select for reversion to avian receptor preference. For example, the X-181 strain of the 2009 new pandemic H1N1 influenza virus, derived from the A/California/07/2009 isolate and used in essentially all vaccines since 2009, has arginine at position 226, a residue known to confer preference for an α-2,3 linkage in H1 subtype viruses; the wild-type A/California/07/2009 isolate, like most circulating human H1N1 viruses, has glutamine at position 226. We describe, from three different individuals, RBS-directed antibodies that recognize the avian-adapted H1 strain in current influenza vaccines but not the circulating new pandemic 2009 virus; Arg226 in the vaccine-strain RBS accounts for the restriction. The polyclonal sera of the three donors also reflect this preference. Therefore, when vaccines produced from strains that are never passaged in avian cells become widely available, they may prove more capable of eliciting RBS-directed, broadly neutralizing antibodies than those produced from egg-adapted viruses, extending the established benefits of current seasonal influenza immunizations.

  2. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    PubMed Central

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value < 0.05) to Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability

  3. Novel vaccines against influenza viruses

    PubMed Central

    Kang, Sang-Moo; Song, Jae-Min; Compans, Richard W.

    2011-01-01

    Killed and live attenuated influenza virus vaccines are effective in preventing and curbing the spread of influenza epidemics when the strains present in the vaccines are closely matched with the predicted epidemic strains. These vaccines are primarily targeted to induce immunity to the variable major target antigen, hemagglutinin (HA) of influenza virus. However, current vaccines are not effective in preventing the emergence of new pandemic or highly virulent viruses. New approaches are being investigated to develop universal influenza virus vaccines as well as to apply more effective vaccine delivery methods. Conserved vaccine targets including the influenza M2 ion channel protein and HA stalk domains are being developed using recombinant technologies to improve the level of cross protection. In addition, recent studies provide evidence that vaccine supplements can provide avenues to further improve current vaccination. PMID:21968298

  4. Evaluation of reproductive protection against bovine viral diarrhea virus and bovine herpesvirus-1 afforded by annual revaccination with modified-live viral or combination modified-live/killed viral vaccines after primary vaccination with modified-live viral vaccine.

    PubMed

    Walz, Paul H; Givens, M Daniel; Rodning, Soren P; Riddell, Kay P; Brodersen, Bruce W; Scruggs, Daniel; Short, Thomas; Grotelueschen, Dale

    2017-02-15

    The objective of this study was to compare reproductive protection in cattle against bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BoHV-1) provided by annual revaccination with multivalent modified-live viral (MLV) vaccine or multivalent combination viral (CV) vaccine containing temperature-sensitive modified-live BoHV-1 and killed BVDV when MLV vaccines were given pre-breeding to nulliparous heifers. Seventy-five beef heifers were allocated into treatment groups A (n=30; two MLV doses pre-breeding, annual revaccination with MLV vaccine), B (n=30; two MLV doses pre-breeding, annual revaccination with CV vaccine) and C (n=15; saline in lieu of vaccine). Heifers were administered treatments on days 0 (weaning), 183 (pre-breeding), 366 (first gestation), and 738 (second gestation). After first calving, primiparous cows were bred, with pregnancy assessment on day 715. At that time, 24 group A heifers (23 pregnancies), 23 group B heifers (22 pregnancies), and 15 group C heifers (15 pregnancies) were commingled with six persistently infected (PI) cattle for 16days. Ninety-nine days after PI removal, cows were intravenously inoculated with BoHV-1. All fetuses and live offspring were assessed for BVDV and BoHV-1. Abortions occurred in 3/23 group A cows, 1/22 group B cows, and 11/15 group C cows. Fetal infection with BVDV or BoHV-1 occurred in 4/23 group A offspring, 0/22 group B offspring, and 15/15 group C offspring. This research demonstrates efficacy of administering two pre-breeding doses of MLV vaccine with annual revaccination using CV vaccine to prevent fetal loss due to exposure to BVDV and BoHV-1. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Oral immunization of wild boar and domestic pigs with attenuated live vaccine protects against Pseudorabies virus infection.

    PubMed

    Maresch, Christina; Lange, Elke; Teifke, Jens P; Fuchs, Walter; Klupp, Barbara; Müller, Thomas; Mettenleiter, Thomas C; Vahlenkamp, Thomas W

    2012-12-28

    In domestic pigs strict control measures and the use of gene-deleted marker vaccines resulted in the elimination of pseudorabies virus (PrV) infections in many parts of Europe and North America. In free-roaming feral pigs and wild boar populations, however, serological surveys and monitoring in The Americas, Europe and North Africa provided serological and virological evidence that PrV is more widely distributed than previously assumed. Thus, there is a constant risk of spillover of PrV infection from wild pig populations to domestic animals which could require intervention to limit the infection in wild pigs. To investigate whether oral immunization of wild boar by live-attenuated PrV could be an option, wild boar and domestic pigs were orally immunized with 2×10(6) TCID(50) of the attenuated live PrV vaccine strain Bartha supplied either with a syringe or within a blister, and subsequently intranasally challenged with 10(6) TCID(50) of the highly virulent PrV strain NIA-3. Oral immunization with live-attenuated PrV was able to confer protection against clinical signs in wild boar and against transmission of challenge virus to naïve contact animals. Only two vaccinated domestic pigs developed neurological signs after challenge infection. Our results demonstrate that oral immunization against PrV infection in wild boar is possible. In case increasing PrV infection rates in wild boar may enhance the risk for spillover into domestic pig populations, oral immunization of wild boar against PrV in endemic areas might be a feasible control strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Attenuated live cholera vaccine strain CVD 103-HgR elicits significantly higher serum vibriocidal antibody titers in persons of blood group O.

    PubMed Central

    Lagos, R; Avendaño, A; Prado, V; Horwitz, I; Wasserman, S; Losonsky, G; Cryz, S; Kaper, J B; Levine, M M

    1995-01-01

    Persons of blood group O are at increased risk of developing cholera gravis. In a randomized, placebo-controlled, double-blind safety-immunogenicity trial of live oral cholera vaccine CVD 103-HgR in 5- to 9-year-old Chilean children, vibriocidal antibody seroconversion (74% overall) did not differ by blood group. However, the reciprocal geometric mean titer (GMT) in blood group O vaccines (GMT = 486) was higher than that in non-O vaccines (GMT = 179) (P < 0.02). PMID:7822046

  7. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens

    PubMed Central

    Pei, Yanlong; Parreira, Valeria R.; Roland, Kenneth L.; Curtiss, Roy; Prescott, John F.

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors. PMID:24396177

  8. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens.

    PubMed

    Pei, Yanlong; Parreira, Valeria R; Roland, Kenneth L; Curtiss, Roy; Prescott, John F

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors.

  9. Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection.

    PubMed

    Haolla, Filipe A; Claser, Carla; de Alencar, Bruna C G; Tzelepis, Fanny; de Vasconcelos, José Ronnie; de Oliveira, Gabriel; Silvério, Jaline C; Machado, Alexandre V; Lannes-Vieira, Joseli; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; dos Santos, Ricardo Ribeiro; Soares, Milena B P; Rodrigues, Mauricio M

    2009-09-18

    Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains. Due to the importance of the CD8(+) T cells in protective immunity, we initially determined which strains expressed the immunodominant H-2K(k)-restricted epitope TEWETGQI. We tested eight strains, four of which elicited immune responses to this epitope (Y, G, Colombian and Colombia). We selected the Colombian and Colombia strains for our studies. A/Sn mice were immunised with different regimens using both T. cruzi genes (asp-2 and ts) simultaneously and subsequently challenged with blood trypomastigotes. Immune responses before the challenge were confirmed by the presence of specific antibodies and peptide-specific T cells. Genetic vaccination did not confer protective immunity against acute infection with a lethal dose of the Colombian strain. In contrast, we observed a drastic reduction in parasitemia and a significant increase in survival, following challenge with an otherwise lethal dose of the Colombia strain. In many surviving animals with late-stage chronic infection, we observed alterations in the heart's electrical conductivity, compared to naive mice. In summary, we concluded that immunity against T. cruzi antigens, similar to viruses and bacteria, may be strain-specific and have a negative impact on vaccine development.

  10. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies.

    PubMed

    Stanfield, Brent A; Pahar, Bapi; Chouljenko, Vladimir N; Veazey, Ronald; Kousoulas, Konstantin G

    2017-01-23

    We have shown that the live-attenuated HSV-1 VC2 vaccine strain with mutations in glycoprotein K (gK) and the membrane protein UL20 is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. To better understand the immune response generated by vaccination with VC2, we tested its ability to elicit immune responses in rhesus macaques. Vaccinated animals showed no signs of disease and developed increasing HSV-1 and HSV-2 reactive IgG 1 after two booster vaccinations, while IgG subtypes IgG 2 and IgG 3 remained at low to undetectable levels. All vaccinated animals produced high levels of cross protective neutralizing antibodies. Flow cytometry analysis of cells isolated from draining lymph nodes showed that VC2 vaccination stimulated significant increases in plasmablast (CD27 high CD38 high ) and mature memory (CD21 - IgM - ) B cells. T cell analysis on cells isolated from draining lymph node biopsies demonstrated a statistically significant increase in proliferating (Ki67 + ) follicular T helper cells and regulatory CXCR5 + CD8 + cytotoxic T cells. Analysis of plasma isolated two weeks post vaccination showed significant increases in circulating CXCL13 indicating increased germinal center activity. Cells isolated from vaginal biopsy samples collected over the course of the study exhibited vaccination-dependent increases in proliferating (Ki67 + ) CD4 + and CD8 + T cell populations. These results suggest that intramuscular vaccination with the live-attenuated HSV-1 VC2 vaccine strain can stimulate robust IgG 1 antibody responses that persist for >250days post vaccination. In addition, vaccination lead to the maturation of B cells into plasmablast and mature memory B cells, the expansion of follicular T helper cells, and affects in the mucosal immune responses. These data suggest that the HSV VC2 vaccine induces potent immune responses that could help

  11. Herpes Zoster Caused by Vaccine-Strain Varicella Zoster Virus in an Immunocompetent Recipient of Zoster Vaccine

    PubMed Central

    Tseng, Hung Fu; Schmid, D. Scott; Harpaz, Rafael; LaRussa, Philip; Jensen, Nancy J.; Rivailler, Pierre; Radford, Kay; Folster, Jennifer; Jacobsen, Steven J.

    2014-01-01

    We report the first laboratory-documented case of herpes zoster caused by the attenuated varicella zoster virus (VZV) contained in Zostavax in a 68-year-old immunocompetent adult with strong evidence of prior wild-type VZV infection. The complete genome sequence of the isolate revealed that the strain carried 15 of 42 (36%) recognized varicella vaccine–associated single-nucleotide polymorphisms, including all 5 of the fixed vaccine markers present in nearly all of the strains in the vaccine. The case of herpes zoster was relatively mild and resolved without complications. PMID:24470276

  12. Evaluation of the efficacy of a new modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (Fostera PRRS) against heterologous PRRSV challenge.

    PubMed

    Park, Changhoon; Seo, Hwi Won; Han, Kiwon; Kang, Ikjae; Chae, Chanhee

    2014-08-27

    The objective of this study was to evaluate a new modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (Fostera PRRS, Zoetis, Florham, NJ, USA) that was based on a virulent US PRRSV isolate (P129) attenuated using CD163-expressing cell lines. Sixty-four PRRSV-seronegative 3-week-old pigs were randomly divided into the following four groups: vaccinated challenged (group 1), vaccinated unchallenged (group 2), unvaccinated challenged (group 3), and unvaccinated unchallenged (group 4). The pigs in groups 1 and 2 were immunized with a 2.0 mL dose of modified live PRRSV vaccine at 21 days of age, according to the manufacturer's recommendations. At 56 days of age (0 days post-challenge), the pigs in groups 1 and 3 were inoculated intranasally with 3 mL of tissue culture fluid containing 10(5) 50% tissue culture infective dose (TCID50)/mL of PRRSV (SNUVR090851 strain, fourth passage in MARC-145 cells). Vaccinated challenged pigs exhibited significantly lower (P<0.05) respiratory scores, viremia, macroscopic and microscopic lung lesion scores, and PRRSV-antigen with interstitial pneumonia than unvaccinated challenged pigs. The induction of PRRSV-specific IFN-γ-SCs by the new modified live PRRSV vaccine produced a protective immune response, leading to the reduction of PRRSV viremia. Although the new modified live PRRSV vaccine is not effective against heterologous PRRSV challenge, the new modified live PRRSV vaccine was able to reduce the levels of viremia and nasal shedding, and severity of PRRSV-induced lesions after challenging virus under experimental conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Identification of the 1B vaccine strain of Chlamydia abortus in aborted placentas during the investigation of toxaemic and systemic disease in sheep.

    PubMed

    Sargison, N D; Truyers, I G R; Howie, F E; Thomson, J R; Cox, A L; Livingstone, M; Longbottom, D

    2015-09-01

    One hundred and forty Cheviot and 100 Suffolk cross Mule primiparous 1-2-year-old ewes, from a flock of about 700 ewes, were vaccinated with an attenuated live 1B strain Chlamydia abortus vaccine about 4 weeks before ram introduction (September 2011). Between 08 March and 01 April 2012, 50 2-year-old ewes aborted and 29 of these died, despite antimicrobial and anti-inflammatory treatment and supportive care. Seven fetuses and three placentae from five 2-year-old ewes were submitted for pathological investigation. The aborted fetuses showed stages of autolysis ranging from being moderately fresh to putrefaction. Unusual, large multifocal regions of thickened membranes, with a dull red granular surface and moderate amounts of grey-white surface exudate were seen on each of the placentae. Intracellular, magenta-staining, acid fast inclusions were identified in Ziehl Neelsen-stained placental smears. Immunohistochemistry for Chlamydia-specific lipopolysaccharide showed extensive positive labelling of the placental epithelia. Molecular analyses of the aborted placentae demonstrated the presence of the 1B vaccine-type strain of C. abortus and absence of any wild-type field strain. The vaccine strain bacterial load of the placental tissue samples was consistent with there being an association between vaccination and abortion. Initial laboratory investigations resulted in a diagnosis of chlamydial abortion. Further investigations led to the identification of the 1B vaccine strain of C. abortus in material from all three of the submitted aborted placentae. Timely knowledge and understanding of any potential problems caused by vaccination against C. abortus are prerequisites for sustainable control of chlamydial abortion. This report describes the investigation of an atypical abortion storm in sheep, and describes the identification of the 1B vaccine strain of C. abortus in products of abortion. The significance of this novel putative association between the vaccine strain

  14. Vaccine-strain herpes zoster found in the trigeminal nerve area in a healthy child: A case report.

    PubMed

    Iwasaki, Sayaka; Motokura, Kouji; Honda, Yoshitaka; Mikami, Masamitsu; Hata, Daisuke; Hata, Atsuko

    2016-12-01

    A previously healthy 2-year-old girl, vaccinated for varicella at 17 months, was admitted because of left-sided facial herpes zoster caused by vaccine-strain varicella-zoster virus (VZV). She recovered fully with no complication after intravenous treatment using acyclovir. Earlier reports have described that herpes zoster (HZ) rashes caused by vaccine-strain VZV tend to occur on the dermis corresponding to the skin area where the varicella vaccine was received. However, rashes appeared on this girl only in the trigeminal nerve area, which is unrelated to the vaccinated site. Results underscore the importance of distinguishing vaccine-strain VZV from wild-type VZV whenever encountering HZ cases after vaccination, even in immunocompetent children, irrespective of the skin lesion site. Monitoring vaccine-strain HZ incidence rates is expected to elucidate many aspects of varicella vaccine safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Uptake and impact of vaccinating school age children against influenza during a season with circulation of drifted influenza A and B strains, England, 2014/15.

    PubMed

    Pebody, Richard G; Green, Helen K; Andrews, Nick; Boddington, Nicola L; Zhao, Hongxin; Yonova, Ivelina; Ellis, Joanna; Steinberger, Sophia; Donati, Matthew; Elliot, Alex J; Hughes, Helen E; Pathirannehelage, Sameera; Mullett, David; Smith, Gillian E; de Lusignan, Simon; Zambon, Maria

    2015-01-01

    The 2014/15 influenza season was the second season of roll-out of a live attenuated influenza vaccine (LAIV) programme for healthy children in England. During this season, besides offering LAIV to all two to four year olds, several areas piloted vaccination of primary (4-11 years) and secondary (11-13 years) age children. Influenza A(H3N2) circulated, with strains genetically and antigenically distinct from the 2014/15 A(H3N2) vaccine strain, followed by a drifted B strain. We assessed the overall and indirect impact of vaccinating school age children, comparing cumulative disease incidence in targeted and non-targeted age groups in vaccine pilot to non-pilot areas. Uptake levels were 56.8% and 49.8% in primary and secondary school pilot areas respectively. In primary school age pilot areas, cumulative primary care influenza-like consultation, emergency department respiratory attendance, respiratory swab positivity, hospitalisation and excess respiratory mortality were consistently lower in targeted and non-targeted age groups, though less for adults and more severe end-points, compared with non-pilot areas. There was no significant reduction for excess all-cause mortality. Little impact was seen in secondary school age pilot only areas compared with non-pilot areas. Vaccination of healthy primary school age children resulted in population-level impact despite circulation of drifted A and B influenza strains.

  16. Identification of a new genetic marker in Mycoplasma synoviae vaccine strain MS-H and development of a strategy using polymerase chain reaction and high-resolution melting curve analysis for differentiating MS-H from field strains.

    PubMed

    Zhu, Ling; Konsak, Barbara M; Olaogun, Olusola M; Agnew-Crumptona, Rebecca; Kanci, Anna; Marenda, Marc S; Browning, Glenn F; Noormohammadi, Amir H

    2017-10-01

    Mycoplasma synoviae (MS) is an economically important avian pathogen worldwide, causing subclinical respiratory tract infection and infectious synovitis in chickens and turkeys. A temperature-sensitive (ts + ) live attenuated vaccine MS-H, derived from the Australian field strain 86079/7NS, is now widely used in many countries to control the disease induced by MS. Differentiation of MS-H vaccine from field strains is crucial for monitoring vaccination programs in commercial poultry. Comparison of genomic sequences of MS-H and its parent strain revealed an adenine deletion at nucleotide position 468 of the MS-H oppF-1 gene. This mutation was shown to be unique to MS-H in further comparative analyses of oppF-1 genes of MS-H re-isolates and field strains from Australia and other countries. Based on this single nucleotide, a combination of nested PCR and high-resolution melting (HRM) curve analysis was used to evaluate its potential for use in differentiation of MS-H from field strains. The mean genotype confidence percentages of 99.27 and 48.20 for MS-H and field strains, respectively, demonstrated the high discriminative power of the newly developed assay (oppF PCR-HRM). A set of 13 tracheal swab samples collected from MS-H vaccinated specific pathogen free birds and commercial chicken flocks infected with MS were tested using the oppF PCR-HRM test and results were totally consistent with those obtained using vlhA genotyping. The nested-PCR HRM method established in this study proved to be a rapid, simple and cost effective tool for discriminating the MS-H vaccine strain from Australian and international strains in pure cultures and on tracheal swabs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Inactivation of SAM-methyltransferase is the mechanism of attenuation of a historic louse borne typhus vaccine strain.

    PubMed

    Liu, Yan; Wu, Bin; Weinstock, George; Walker, David H; Yu, Xue-Jie

    2014-01-01

    Louse borne typhus (also called epidemic typhus) was one of man's major scourges, and epidemics of the disease can be reignited when social, economic, or political systems are disrupted. The fear of a bioterrorist attack using the etiologic agent of typhus, Rickettsia prowazekii, was a reality. An attenuated typhus vaccine, R. prowazekii Madrid E strain, was observed to revert to virulence as demonstrated by isolation of the virulent revertant Evir strain from animals which were inoculated with Madrid E strain. The mechanism of the mutation in R. prowazekii that affects the virulence of the vaccine was not known. We sequenced the genome of the virulent revertant Evir strain and compared its genome sequence with the genome sequences of its parental strain, Madrid E. We found that only a single nucleotide in the entire genome was different between the vaccine strain Madrid E and its virulent revertant strain Evir. The mutation is a single nucleotide insertion in the methyltransferase gene (also known as PR028) in the vaccine strain that inactivated the gene. We also confirmed that the vaccine strain E did not cause fever in guinea pigs and the virulent revertant strain Evir caused fever in guinea pigs. We concluded that a single nucleotide insertion in the methyltransferase gene of R. prowazekii attenuated the R. prowazekii vaccine strain E. This suggested that an irreversible insertion or deletion mutation in the methyl transferase gene of R. prowazekii is required for Madrid E to be considered a safe vaccine.

  18. Duplex PCR for differentiation of the vaccine strain Brucella suis S2 and B. suis biovar 1 from other strains of Brucella spp.

    PubMed

    Nan, Wenlong; Tan, Pengfei; Wang, Yong; Xu, Zouliang; Mao, Kairong; Peng, Daxin; Chen, Yiping

    2014-09-01

    Immunisation with attenuated Brucella spp. vaccines prevents brucellosis, but may also interfere with diagnosis. In this study, a duplex PCR was developed to distinguish Brucella suis vaccine strain S2 from field strains of B. suis biovar 1 and other Brucella spp. The PCR detected 60 fg genomic DNA of B. suis S2 or biovar 1 field strains and was able to distinguish B. suis S2 and wild-type strains of B. suis biovar 1 among 76 field isolates representing all the common species and biovars, as well as four vaccine strains, of Brucella. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Detection of viable bacteria and fungi except in live vaccine. 113.26 Section 113.26 Animals and Animal Products ANIMAL AND PLANT HEALTH... in live vaccine. Each serial and subserial of biological product except live vaccines shall be tested...

  20. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted in this part, each serial and subserial of live vaccine and each lot of Master Seed Virus and Master...

  1. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted in this part, each serial and subserial of live vaccine and each lot of Master Seed Virus and Master...

  2. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Detection of viable bacteria and fungi except in live vaccine. 113.26 Section 113.26 Animals and Animal Products ANIMAL AND PLANT HEALTH... in live vaccine. Each serial and subserial of biological product except live vaccines shall be tested...

  3. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Detection of viable bacteria and fungi except in live vaccine. 113.26 Section 113.26 Animals and Animal Products ANIMAL AND PLANT HEALTH... in live vaccine. Each serial and subserial of biological product except live vaccines shall be tested...

  4. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted in this part, each serial and subserial of live vaccine and each lot of Master Seed Virus and Master...

  5. Expected Net Benefit of Vaccinating Rangeland Sheep against Bluetongue Virus Using a Modified-Live versus Killed Virus Vaccine

    PubMed Central

    Munsick, Tristram R.; Peck, Dannele E.; Ritten, John P.; Jones, Randall; Jones, Michelle; Miller, Myrna M.

    2017-01-01

    Recurring outbreaks of bluetongue virus in domestic sheep of the US Intermountain West have prompted questions about the economic benefits and costs of vaccinating individual flocks against bluetongue (BT) disease. We estimate the cost of a BT outbreak on a representative rangeland sheep operation in the Big Horn Basin of the state of Wyoming using enterprise budgets and stochastic simulation. The latter accounts for variability in disease severity and lamb price, as well as uncertainty about when an outbreak will occur. We then estimate the cost of purchasing and administering a BT vaccine. Finally, we calculate expected annual net benefit of vaccinating under various outbreak intervals. Expected annual net benefit is calculated for both a killed virus (KV) vaccine and modified-live virus vaccine, using an observed price of $0.32 per dose for modified-live and an estimated price of $1.20 per dose for KV. The modified-live vaccine’s expected annual net benefit has a 100% chance of being positive for an outbreak interval of 5, 10, or 20 years, and a 77% chance of being positive for a 50-year interval. The KV vaccine’s expected annual net benefit has a 97% chance of being positive for a 5-year outbreak interval, and a 42% chance of being positive for a 10-year interval. A KV vaccine is, therefore, unlikely to be economically attractive to producers in areas exposed less frequently to BT disease. A modified-live vaccine, however, requires rigorous authorization before legal use can occur in Wyoming. To date, no company has requested to manufacture a modified-live vaccine for commercial use in Wyoming. The KV vaccine poses less risk to sheep reproduction and less risk of unintentional spread, both of which facilitate approval for commercial production. Yet, our results show an economically consequential tradeoff between a KV vaccine’s relative safety and higher cost. Unless the purchase price is reduced below our assumed $1.20 per dose, producer adoption of a

  6. The evolving history of influenza viruses and influenza vaccines.

    PubMed

    Hannoun, Claude

    2013-09-01

    The isolation of influenza virus 80 years ago in 1933 very quickly led to the development of the first generation of live-attenuated vaccines. The first inactivated influenza vaccine was monovalent (influenza A). In 1942, a bivalent vaccine was produced after the discovery of influenza B. It was later discovered that influenza viruses mutated leading to antigenic changes. Since 1973, the WHO has issued annual recommendations for the composition of the influenza vaccine based on results from surveillance systems that identify currently circulating strains. In 1978, the first trivalent vaccine included two influenza A strains and one influenza B strain. Currently, there are two influenza B lineages circulating; in the latest WHO recommendations, it is suggested that a second B strain could be added to give a quadrivalent vaccine. The history of influenza vaccine and the associated technology shows how the vaccine has evolved to match the evolution of influenza viruses.

  7. Avirulent Marek’s Disease Virus Type 1 Strain 814 Vectored Vaccine Expressing Avian Influenza (AI) Virus H5 Haemagglutinin Induced Better Protection Than Turkey Herpesvirus Vectored AI Vaccine

    PubMed Central

    Cui, Xianlan; Zhao, Yan; Shi, Xingming; Li, Qiaoling; Yan, Shuai; Gao, Ming; Wang, Mei; Liu, Changjun; Wang, Yunfeng

    2013-01-01

    Background Herpesvirus of turkey (HVT) as a vector to express the haemagglutinin (HA) of avian influenza virus (AIV) H5 was developed and its protection against lethal Marek’s disease virus (MDV) and highly pathogenic AIV (HPAIV) challenges was evaluated previously. It is well-known that avirulemt MDV type 1 vaccines are more effective than HVT in prevention of lethal MDV infection. To further increase protective efficacy against HPAIV and lethal MDV, a recombinant MDV type 1 strain 814 was developed to express HA gene of HPAIV H5N1. Methodology/Principal Findings A recombinant MDV-1 strain 814 expressing HA gene of HPAIV H5N1 virus A/goose/Guangdong/3/96 at the US2 site (rMDV-HA) was developed under the control of a human CMV immediate-early promoter. The HA expression in the rMDV-HA was tested by immunofluorescence and Western blot analyses, and in vitro and in vivo growth properties of rMDV-HA were also analyzed. Furthermore, we evaluated and compared the protective immunity of rMDV-HA and previously constructed rHVT-HA against HPAIV and lethal MDV. Vaccination of chickens with rMDV-HA induced 80% protection against HPAIV, which was better than the protection rate by rHVT-HA (66.7%). In the animal study with MDV challenge, chickens immunized with rMDV-HA were completely protected against virulent MDV strain J-1 whereas rHVT-HA only induced 80% protection with the same challenge dose. Conclusions/Significance The rMDV-HA vaccine was more effective than rHVT-HA vaccine for protection against lethal MDV and HPAIV challenges. Therefore, avirulent MDV type 1 vaccine is a better vector than HVT for development of a recombinant live virus vaccine against virulent MDV and HPAIV in poultry. PMID:23301062

  8. Strain diversity plays no major role in the varying efficacy of rotavirus vaccines: an overview.

    PubMed

    Velasquez, Daniel E; Parashar, Umesh D; Jiang, Baoming

    2014-12-01

    While a monovalent Rotarix® [RV1] and a pentavalent RotaTeq® [RV5] have been extensively tested and found generally safe and equally efficacious in clinical trials, the question still lingers about the evolving diversity of circulating rotavirus strains over time and their relationship with protective immunity induced by rotavirus vaccines. We reviewed data from clinical trials and observational studies that assessed the efficacy or field effectiveness of rotavirus vaccines against different rotavirus strains worldwide. RV1 provided broad clinical efficacy and field effectiveness against severe diarrhea due to all major circulating strains, including the homotypic G1P[8] and the fully heterotypic G2P[4] strains. Similarly, RV5 provided broad efficacy and effectiveness against RV5 and non-RV5 strains throughout different locations. Rotavirus vaccination provides broad heterotypic protection; however continuing surveillance is needed to track the change of circulating strains and monitor the effectiveness and safety of vaccines. Published by Elsevier B.V.

  9. Differentiation of Mycoplasma gallisepticum vaccine strains ts-11 and 6/85 from commonly used Mycoplasma gallisepticum challenge strains by PCR.

    PubMed

    Evans, J D; Leigh, S A

    2008-09-01

    Mycoplasma gallisepticum (MG) is an important avian pathogen causing significant economic losses within the poultry industry. In an effort to develop tools to aid in MG research and diagnostics, we have compared sequences of the attenuated MG vaccine strain ts-11 to those of commonly used pathogenic challenge strains in search of a simple means of differentiation. Via gapA sequence alignments and comparisons, we have identified and designed primers facilitating strain differentiation. When applied to conventional polymerase chain reaction (PCR) assay at low annealing temperature, the primer sets allow for the differentiation of MG attenuated vaccine strains ts-11 as well as the attenuated MG vaccine strain 6/85 from the commonly utilized MG challenge strains R(low), R, and S6. Conventional PCR differentiation is based on the visualization of sole products with the attenuated MG strains ts-11 and 6/85 and the lack of the corresponding products from MG strains R(low), R, and S6. When applied to MG strain F, product visualization varies with the applied primer set. The differentiation of MG strains ts-11 and 6/85 from the pathogenic challenge strains was also accomplished via real-time analyses, however, the primer sets were not able to differentiate MG strains ts-11 and 6/85 from selected MG field isolates.

  10. Effectiveness of Meningococcal B Vaccine against Endemic Hypervirulent Neisseria meningitidis W Strain, England

    PubMed Central

    Giuliani, Marzia Monica; Biolchi, Alessia; Pizza, Mariagrazia; Beebeejaun, Kazim; Lucidarme, Jay; Findlow, Jamie; Ramsay, Mary E.; Borrow, Ray

    2016-01-01

    Serum samples from children immunized with a meningococcal serogroup B vaccine demonstrated potent serum bactericidal antibody activity against the hypervirulent Neisseria meningitidis serogroup W strain circulating in England. The recent introduction of this vaccine into the United Kingdom national immunization program should also help protect infants against this endemic strain. PMID:26811872

  11. Universal varicella vaccine immunization in Japan.

    PubMed

    Yoshikawa, Tetsushi; Kawamura, Yoshiki; Ohashi, Masahiro

    2016-04-07

    In 1974, Japanese scientists developed a live attenuated varicella vaccine based on the Oka strain. The efficacy of the vaccine for the prevention of varicella has been primarily demonstrated in studies conducted in the United States following the adoption of universal immunization using the Oka strain varicella vaccine in 1996. Although the vaccine was developed by Japanese scientists, until recently, the vaccine has been administered on a voluntary basis in Japan resulting in a vaccine coverage rate of approximately 40%. Therefore, Japan initiated universal immunization using the Oka strain varicella vaccine in November 2014. Given the transition from voluntary to universal immunization in Japan, it will also be important to monitor the epidemiology of varicella and herpes zoster. The efficacy and safety of co-administration of the varicella vaccine and measles, mumps, and rubella vaccine have been demonstrated in many countries; however, there was no data from Japan. In order to adopt the practice of universal immunization using the Oka strain varicella vaccine in Japan, data demonstrating the efficacy and safety of co-administration of varicella vaccine and measles and rubella (MR) vaccine were required. Additionally, we needed to elucidate the appropriate time interval between the first and second administrations of the vaccine. It is also important to differentiate between wild type and Oka vaccine type strains in herpes zoster patient with past history of varicella vaccine. Thus, there are many factors to consider regarding the adoption of universal immunization in Japan to control varicella zoster virus (VZV) infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Inactivation of SAM-Methyltransferase is the Mechanism of Attenuation of a Historic Louse Borne Typhus Vaccine Strain

    PubMed Central

    Liu, Yan; Wu, Bin; Weinstock, George; Walker, David H.; Yu, Xue-jie

    2014-01-01

    Louse borne typhus (also called epidemic typhus) was one of man's major scourges, and epidemics of the disease can be reignited when social, economic, or political systems are disrupted. The fear of a bioterrorist attack using the etiologic agent of typhus, Rickettsia prowazekii, was a reality. An attenuated typhus vaccine, R. prowazekii Madrid E strain, was observed to revert to virulence as demonstrated by isolation of the virulent revertant Evir strain from animals which were inoculated with Madrid E strain. The mechanism of the mutation in R. prowazekii that affects the virulence of the vaccine was not known. We sequenced the genome of the virulent revertant Evir strain and compared its genome sequence with the genome sequences of its parental strain, Madrid E. We found that only a single nucleotide in the entire genome was different between the vaccine strain Madrid E and its virulent revertant strain Evir. The mutation is a single nucleotide insertion in the methyltransferase gene (also known as PR028) in the vaccine strain that inactivated the gene. We also confirmed that the vaccine strain E did not cause fever in guinea pigs and the virulent revertant strain Evir caused fever in guinea pigs. We concluded that a single nucleotide insertion in the methyltransferase gene of R. prowazekii attenuated the R. prowazekii vaccine strain E. This suggested that an irreversible insertion or deletion mutation in the methyl transferase gene of R. prowazekii is required for Madrid E to be considered a safe vaccine. PMID:25412248

  13. Rapid real-time PCR methods to distinguish Salmonella Enteritidis wildtype field isolates from vaccine strains Salmovac SE/Gallivac SE and AviPro SALMONELLA VAC E.

    PubMed

    Maurischat, Sven; Szabo, Istvan; Baumann, Beatrice; Malorny, Burkhard

    2015-05-01

    Salmonella enterica serovar Enteritidis is a major non-typhoid Salmonella serovar causing human salmonellosis mainly associated with the consumption of poultry and products thereof. To reduce infections in poultry, S. Enteritidis live vaccine strains AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE have been licensed and used in several countries worldwide. To definitively diagnose a S. Enteritidis contamination in vaccinated herds a reliable and fast method for the differentiation between vaccine and wildtype field isolates is required. In this study, we developed and validated real-time PCR (qPCR) assays to distinguish those variants genetically. Suitable target sequences were identified by whole genome sequencing (WGS) using the Illumina MiSeq system. SNP regions in kdpA and nhaA proved to be most useful for differentiation of AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE, respectively, from wildtype strains. For each vaccine strain one TaqMan-qPCR assay and one alternative approach using High Resolution Melting (HRM) analysis was designed. All 30 Salmovac SE and 7 AviPro SALMONELLA VAC E vaccine strain reisolates tested were correctly identified by both approaches (100% inclusivity). Furthermore, all 137 (TaqMan) and 97 (HRM) Salmonella non-vaccine and related Enterobacteriaceae strains tested were excluded (100% exclusivity). The analytical detection limits were determined to be approx. 10(2) genome copies/reaction for the TaqMan and 10(4) genome copies/reaction for the HRM approach. The real-time PCR assays proved to be a reliable and fast alternative to the cultural vaccine strain identification tests helping decision makers in control measurements to take action within a shorter period of time. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  15. Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets

    PubMed Central

    Mills, Kimberly L; Jin, Hong; Duke, Greg; Lu, Bin; Luke, Catherine J; Murphy, Brian; Swayne, David E; Kemble, George; Subbarao, Kanta

    2006-01-01

    Background Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. Methods and Findings Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. Conclusions The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans. PMID:16968127

  16. Yersinia pestis caf1 variants and the limits of plague vaccine protection.

    PubMed

    Quenee, Lauriane E; Cornelius, Claire A; Ciletti, Nancy A; Elli, Derek; Schneewind, Olaf

    2008-05-01

    Yersinia pestis, the highly virulent agent of plague, is a biological weapon. Strategies that prevent plague have been sought for centuries, and immunization with live, attenuated (nonpigmented) strains or subunit vaccines with F1 (Caf1) antigen is considered effective. We show here that immunization with live, attenuated strains generates plague-protective immunity and humoral immune responses against F1 pilus antigen and LcrV. Y. pestis variants lacking caf1 (F1 pili) are not only fully virulent in animal models of bubonic and pneumonic plague but also break through immune responses generated with live, attenuated strains or F1 subunit vaccines. In contrast, immunization with purified LcrV, a protein at the tip of type III needles, generates protective immunity against the wild-type and the fully virulent caf1 mutant strain, in agreement with the notion that LcrV can elicit vaccine protection against both types of virulent plague strains.

  17. Yellow fever vector live-virus vaccines: West Nile virus vaccine development.

    PubMed

    Arroyo, J; Miller, C A; Catalan, J; Monath, T P

    2001-08-01

    By combining molecular-biological techniques with our increased understanding of the effect of gene sequence modification on viral function, yellow fever 17D, a positive-strand RNA virus vaccine, has been manipulated to induce a protective immune response against viruses of the same family (e.g. Japanese encephalitis and dengue viruses). Triggered by the emergence of West Nile virus infections in the New World afflicting humans, horses and birds, the success of this recombinant technology has prompted the rapid development of a live-virus attenuated candidate vaccine against West Nile virus.

  18. Safety of live, attenuated oral vaccines in HIV-infected Zambian adults

    PubMed Central

    Banda, Rose; Yambayamba, Vera; Lalusha, Bwalya Daka; Sinkala, Edford; Kapulu, Melissa Chola; Kelly, Paul

    2012-01-01

    Background Current recommendations are that HIV-infected persons should not be given live vaccines. We set out to assess potential toxicity of three live, attenuated oral vaccines (against rotavirus, typhoid and ETEC) in a phase 1 study. Methods Two commercially available oral vaccines against rotavirus (Rotarix) and typhoid (Vivotif) and one candidate vaccine against Enterotoxigenic Escherichia coli (ACAM2017) were given to HIV seropositive (n = 42) and HIV seronegative (n = 59) adults. Gastrointestinal symptoms were sought actively by weekly interview up to 1 month of vaccination. In rotavirus vaccine recipients, intestinal biopsies were collected by endoscopy and evaluated for expression of IL-8 and pro-inflammatory cytokines. Results No difference was observed between symptoms in HIV infected and HIV uninfected vaccinees, except for diarrhoea reported more than 7 days after the last dose of vaccine. If only diarrhoea episodes within 7 days of vaccination are included, diarrhoea was not more frequent in HIV seropositive than in HIV seronegative vaccinees (OR 6.7, 95% CI 1.2–67; P = 0.09). However, if later episodes of diarrhoea are included, a significant increase in diarrhoea was demonstrated (OR 5.3, 95% CI 0.98–53; P = 0.04). All episodes were mild and transient. IL-8 was slowly up-regulated over the week following vaccination (P = 0.02), but IL-β, IFNγ or TNFα were not. Conclusions No evidence was found of adverse events following administration of these three vaccines, except for late episodes of diarrhoea which may not be attributable to vaccination. Our data do not support the need for a prohibition on oral administration of live, attenuated vaccines to all HIV infected adults, though further work on severely immunocompromised adults and children are required. PMID:22789509

  19. Live vaccines for human metapneumovirus designed by reverse genetics.

    PubMed

    Buchholz, Ursula J; Nagashima, Kunio; Murphy, Brian R; Collins, Peter L

    2006-10-01

    Human metapneumovirus (HMPV) was first described in 2001 and has quickly become recognized as an important cause of respiratory tract disease worldwide, especially in the pediatric population. A vaccine against HMPV is required to prevent severe disease associated with infection in infancy. The primary strategy is to develop a live-attenuated virus for intranasal immunization, which is particularly well suited against a respiratory virus. Reverse genetics provides a means of developing highly characterized 'designer' attenuated vaccine candidates. To date, several promising vaccine candidates have been developed, each using a different mode of attenuation. One candidate involves deletion of the G glycoprotein, providing attenuation that is probably based on reduced efficiency of attachment. A second candidate involves deletion of the M2-2 protein, which participates in regulating RNA synthesis and whose deletion has the advantageous property of upregulating transcription and increasing antigen synthesis. A third candidate involves replacing the P protein gene of HMPV with its counterpart from the related avian metapneumovirus, thereby introducing attenuation owing to its chimeric nature and host range restriction. Another live vaccine strategy involves using an attenuated parainfluenza virus as a vector to express HMPV protective antigens, providing a bivalent pediatric vaccine. Additional modifications to provide improved vaccines will also be discussed.

  20. Protective immunity induced by an intranasal multivalent vaccine comprising 10 Lactococcus lactis strains expressing highly prevalent M-protein antigens derived from Group A Streptococcus.

    PubMed

    Wozniak, Aniela; Scioscia, Natalia; García, Patricia C; Dale, James B; Paillavil, Braulio A; Legarraga, Paulette; Salazar-Echegarai, Francisco J; Bueno, Susan M; Kalergis, Alexis M

    2018-04-28

    Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N-terminal fragment of Streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N- terminal fragment is hypervariable and there are more than 200 different M types. We are developing an intranasal live bacterial vaccine comprised of 10 strains of Lactococcus lactis, each expressing one N-terminal fagment of M protein. Live bacterial-vectored vaccines have lower associated costs because of its less complex manufacturing processes compared to protein subunit vaccines. Moreover, intranasal administration does not require syringe or specilized personnel. The evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All of the 10 strains combined in a 10-valent vaccine (Mx10) induced serum and bronchoalveolar lavages IgG titers that ranged from 3 to 10-fold those of unimmunized mice. Survival of Mx10-immunized mice after intranasal challenge with M28 streptococci is significantly higher than unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of Mx10-immunized mice was not significantly different from unimmunized mice. Mx-10 immunized mice were significantly less colonized with S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge compared to unimmunized mice. Our L. lactis-based vaccine may provide an alternative solution to the development of broadly protective group A streptococcal vaccines. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  1. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples.

    PubMed

    Gautam, Rashi; Mijatovic-Rustempasic, Slavica; Esona, Mathew D; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8-100% sensitivity, 99.7-100% specificity, 85-95% efficiency and a limit of detection of 4-60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81-92% efficiency and limit of detection of 150-600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98

  2. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples

    PubMed Central

    Mijatovic-Rustempasic, Slavica; Esona, Mathew D.; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D.

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8

  3. Phase I evaluation of delta virG Shigella sonnei live, attenuated, oral vaccine strain WRSS1 in healthy adults.

    PubMed

    Kotloff, Karen L; Taylor, David N; Sztein, Marcelo B; Wasserman, Steven S; Losonsky, Genevieve A; Nataro, James P; Venkatesan, Malabi; Hartman, Antoinette; Picking, William D; Katz, David E; Campbell, James D; Levine, Myron M; Hale, Thomas L

    2002-04-01

    We conducted a phase I trial with healthy adults to evaluate WRSS1, a live, oral Delta virG Shigella sonnei vaccine candidate. In a double-blind, randomized, dose-escalating fashion, inpatient volunteers received a single dose of either placebo (n = 7) or vaccine (n = 27) at 3 x 10(3) CFU (group 1), 3 x 10(4) CFU (group 2), 3 x 10(5) CFU (group 3), or 3 x 10(6) CFU (group 4). The vaccine was generally well tolerated, although a low-grade fever or mild diarrhea occurred in six (22%) of the vaccine recipients. WRSS1 was recovered from the stools of 50 to 100% of the vaccinees in each group. The geometric mean peak anti-lipopolysaccharide responses in groups 1 to 4, respectively, were 99, 39, 278, and 233 for immunoglobulin (IgA) antibody-secreting cell counts; 401, 201, 533, and 284 for serum reciprocal IgG titers; and 25, 3, 489, and 1,092 for fecal IgA reciprocal titers. Postvaccination increases in gamma interferon production in response to Shigella antigens occurred in some volunteers. We conclude that WRSS1 vaccine is remarkably immunogenic in doses ranging from 10(3) to 10(6) CFU but elicits clinical reactions that must be assessed in further volunteer trials.

  4. Phase I Evaluation of ΔvirG Shigella sonnei Live, Attenuated, Oral Vaccine Strain WRSS1 in Healthy Adults

    PubMed Central

    Kotloff, Karen L.; Taylor, David N.; Sztein, Marcelo B.; Wasserman, Steven S.; Losonsky, Genevieve A.; Nataro, James P.; Venkatesan, Malabi; Hartman, Antoinette; Picking, William D.; Katz, David E.; Campbell, James D.; Levine, Myron M.; Hale, Thomas L.

    2002-01-01

    We conducted a phase I trial with healthy adults to evaluate WRSS1, a live, oral ΔvirG Shigella sonnei vaccine candidate. In a double-blind, randomized, dose-escalating fashion, inpatient volunteers received a single dose of either placebo (n = 7) or vaccine (n = 27) at 3 × 103 CFU (group 1), 3 × 104 CFU (group 2), 3 × 105 CFU (group 3), or 3 × 106 CFU (group 4). The vaccine was generally well tolerated, although a low-grade fever or mild diarrhea occurred in six (22%) of the vaccine recipients. WRSS1 was recovered from the stools of 50 to 100% of the vaccinees in each group. The geometric mean peak anti-lipopolysaccharide responses in groups 1 to 4, respectively, were 99, 39, 278, and 233 for immunoglobulin (IgA) antibody-secreting cell counts; 401, 201, 533, and 284 for serum reciprocal IgG titers; and 25, 3, 489, and 1,092 for fecal IgA reciprocal titers. Postvaccination increases in gamma interferon production in response to Shigella antigens occurred in some volunteers. We conclude that WRSS1 vaccine is remarkably immunogenic in doses ranging from 103 to 106 CFU but elicits clinical reactions that must be assessed in further volunteer trials. PMID:11895966

  5. Sequence analysis of VP7 and VP4 genes of G1P[8] rotaviruses circulating among diarrhoeic children in Pune, India: a comparison with Rotarix and RotaTeq vaccine strains.

    PubMed

    Kulkarni, Ruta; Arora, Ritu; Arora, Rashmi; Chitambar, Shobha D

    2014-08-11

    The G1P[8] rotaviruses are a common cause of rotavirus diarrhoea among children in India. Two rotavirus vaccines licensed in India, Rotarix and RotaTeq, contain strains with G1 and P[8] genotypes. A comparative analysis of these genotypes in the live rotavirus vaccines with circulating rotavirus strains is essential for assessment of rotavirus diversity. G1P[8] strains detected during rotavirus surveillance among diarrhoeic children hospitalized in Pune in 1992-1993 and 2006-2008, were included in the study. Amplification, sequencing and phylogenetic analysis of the VP7 and VP4 genes were carried out for identification of the G1 and P[8] lineages, respectively. Antigenic epitopes of VP7 and VP4 encoded proteins were compared to determine the differences between the G1P[8] strains from Pune and the vaccine strains. G1-Lineage 1, P[8]-Lineage 3 strains were predominant in Pune during 1992-1993 and 2006-2008. Strains of G1-Lineage 2, P[8]-Lineage 3 and G1-Lineage 1, P[8]-Lineage 4 were detected at low levels during 2006-2008. The G1-Lineage 1, P[8]-Lineage 3 strains showed up to eight amino acid changes, each in the VP7 and VP4 epitopes, with respect to the Rotarix vaccine strain (G1-Lineage 2, P[8]-Lineage 1) and the G1 (Lineage-3) and P[8] (Lineage 2) components of the RotaTeq vaccine. The G1-Lineage 2 strains were closer to both vaccine strains with no or only two amino acid substitutions in the VP7 epitopes. The divergent P[8]-Lineage 4 (OP354-like) strains showed fourteen and fifteen amino acid differences, with Rotarix and RotaTeq vaccine strains, respectively, in the VP4 epitopes. The differences between the G1P[8] strains in Pune and the G1 and P[8] components of the vaccine strains need to be described for appropriate evaluation of vaccine shedding. Continuous monitoring of the G1P[8] subgenotypic lineages would be necessary to study any long term impact of vaccine use on G1P[8] strain evolution. Copyright © 2014. Published by Elsevier Ltd.

  6. Refined Live Attenuated Salmonella enterica Serovar Typhimurium and Enteritidis Vaccines Mediate Homologous and Heterologous Serogroup Protection in Mice

    PubMed Central

    Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F.; Galen, James E.; Levine, Myron M.

    2015-01-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. PMID:26351285

  7. "Living versus dead": The Pasteurian paradigm and imperial vaccine research.

    PubMed

    Chakrabarti, Pratik

    2010-01-01

    The Semple antirabies vaccine was developed by David Semple in India in 1911. Semple introduced a peculiarly British approach within the Pasteurian tradition by using carbolized dead virus. This article studies this unique phase of vaccine research between 1910 and 1935 to show that in the debates and laboratory experiments around the potency and safety of vaccines, categories like "living" and "dead" were often used as ideological and moral denominations. These abstract and ideological debates were crucial in defining the final configuration of the Semple vaccine, the most popular antirabies vaccine used globally, and also in shaping international vaccination policies.

  8. Comparative Proteome Analysis of Brucella melitensis Vaccine Strain Rev 1 and a Virulent Strain, 16M

    PubMed Central

    Eschenbrenner, Michel; Wagner, Mary Ann; Horn, Troy A.; Kraycer, Jo Ann; Mujer, Cesar V.; Hagius, Sue; Elzer, Philip; DelVecchio, Vito G.

    2002-01-01

    The genus Brucella consists of bacterial pathogens that cause brucellosis, a major zoonotic disease characterized by undulant fever and neurological disorders in humans. Among the different Brucella species, Brucella melitensis is considered the most virulent. Despite successful use in animals, the vaccine strains remain infectious for humans. To understand the mechanism of virulence in B. melitensis, the proteome of vaccine strain Rev 1 was analyzed by two-dimensional gel electrophoresis and compared to that of virulent strain 16M. The two strains were grown under identical laboratory conditions. Computer-assisted analysis of the two B. melitensis proteomes revealed proteins expressed in either 16M or Rev 1, as well as up- or down-regulation of proteins specific for each of these strains. These proteins were identified by peptide mass fingerprinting. It was found that certain metabolic pathways may be deregulated in Rev 1. Expression of an immunogenic 31-kDa outer membrane protein, proteins utilized for iron acquisition, and those that play a role in sugar binding, lipid degradation, and amino acid binding was altered in Rev 1. PMID:12193611

  9. Comparative proteome analysis of Brucella melitensis vaccine strain Rev 1 and a virulent strain, 16M.

    PubMed

    Eschenbrenner, Michel; Wagner, Mary Ann; Horn, Troy A; Kraycer, Jo Ann; Mujer, Cesar V; Hagius, Sue; Elzer, Philip; DelVecchio, Vito G

    2002-09-01

    The genus Brucella consists of bacterial pathogens that cause brucellosis, a major zoonotic disease characterized by undulant fever and neurological disorders in humans. Among the different Brucella species, Brucella melitensis is considered the most virulent. Despite successful use in animals, the vaccine strains remain infectious for humans. To understand the mechanism of virulence in B. melitensis, the proteome of vaccine strain Rev 1 was analyzed by two-dimensional gel electrophoresis and compared to that of virulent strain 16M. The two strains were grown under identical laboratory conditions. Computer-assisted analysis of the two B. melitensis proteomes revealed proteins expressed in either 16M or Rev 1, as well as up- or down-regulation of proteins specific for each of these strains. These proteins were identified by peptide mass fingerprinting. It was found that certain metabolic pathways may be deregulated in Rev 1. Expression of an immunogenic 31-kDa outer membrane protein, proteins utilized for iron acquisition, and those that play a role in sugar binding, lipid degradation, and amino acid binding was altered in Rev 1.

  10. [Virus strain specific serum neutralizing antibodies in children and adolescents immunized with a Russian mumps vaccine].

    PubMed

    Otrashevskaia, E V; Krasil'nikov, I V; Ignat'ev, G M

    2010-01-01

    Postvaccination immunity was studied in the children and teenagers without a history of clinical mumps infection, who had been immunized with the Leningrad-3 mumps vaccine. The level of specific lgG in ELISA and that and spectrum of their neutralizing activity against a vaccine strain and three heterologous mumps virus (MV) strains (genotypes A, C, and H) were measured. The investigation included 151 sera from the vaccinees aged 3 to 17 years, possessing the detectable specific IgG titers in ELISA and the detectable neutralizing titers against the vaccine strain. 97.4% of the vaccinees had neutralizing activity against 1-3 heterologous MV strains. A preponderance of neutralizing titers against heterologous MV strains by 1-log2 in some sera (6.5-32.5 depending on age) was most likely to suggest that the vaccinees' had been in contact with these virus strains in the past. In our investigation, a combination of positive IgG titers and neutralizing titers against the vaccine strain 2-log2 or higher provided the protection of the vaccinated children and teenagers against the symptomatic infection. There was a pronounced buster effect of the second immunization and a drop in the neutralizing activity of the sera from the vaccinated children and adolescents over time after the first and second immunization.

  11. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine

    PubMed Central

    Sanders, Barbara P.; de los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G.; Song, Yutong; Cooper, Gillian; Crawt, Laura E.; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H. H. V.; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-01-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4–9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  12. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine.

    PubMed

    Sanders, Barbara P; de Los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G; Song, Yutong; Cooper, Gillian; Crawt, Laura E; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-03-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  13. Influenza (Flu) vaccine (Live, Intranasal): What you need to know

    MedlinePlus

    ... Have gotten any other vaccines in the past 4 weeks. Live vaccines given too close together might not work as well. Have taken influenza antiviral medication in the past 48 hours. Have a very stuffy nose. 4. Risks of ...

  14. [Isolation and identification of Lyssavirus strains from an area of Slovakia where oral antirabies vaccine was administered].

    PubMed

    Ondrejka, R; Durove, A; Svrcek, S; Benísek, Z; Süliová, J

    1997-02-01

    The study was aimed at isolation and subsequent identification of strains of rabies virus by means of monoclonal antibodies from foxes killed in the vaccination zone within the complex preliminary monitoring of oral antirabies vaccination. The results obtained indicate that the vaccines for oral antirabies vaccination used in Slovakia did not contain any vaccination strain pathogenic to the extremely sensitive target species-the fox (Vulpes vulpes).

  15. Comparisons of the humoral and cellular immunity induced by live A16R attenuated spore and AVA-like anthrax vaccine in mice.

    PubMed

    Lv, Jin; Zhang, Ying-Ying; Lu, Xun; Zhang, Hao; Wei, Lin; Gao, Jun; Hu, Bin; Hu, Wen-Wei; Hu, Dun-Zhong; Jia, Na; Feng, Xin

    2017-03-01

    The live attenuated anthrax vaccine and anthrax vaccine adsorbed (AVA) are two main types of anthrax vaccines currently used in human. However, the immunoprotective mechanisms are not fully understood. In this study, we compared humoral and cellular immunity induced by live A16R spore vaccine and A16R strain derived AVA-like vaccine in mice peripheral blood, spleen and bone marrow. Both A16R spores and AVA-like vaccines induced a sustained IgG antibody response with IgG1/IgG2b subtype dominance. However, A16R spores vaccine induced higher titer of IgG2a compared with AVA-like vaccine, indicating a stronger Th1 response to A16R spores. Using antigen-specific ELISpot assay, we observed a significant response of ASCs (antibody secreting cells) and IL4-CSCs (cytokine secreting cells) in mice. Specially, there was a positive correlation between the frequencies of antigen specific ASCs and IL4-CSCs in bone marrow derived cells, either by A16R spore or AVA-like vaccine vaccination. Moreover, we also found A16R spore vaccine, not AVA-like vaccine, could induce sustained frequency of IFN-γ-CSCs in bone marrow derived cells. Collectively, both the vaccines induced a mixed Th1/Th2 response with Th2 dominance in mice and A16R spore vaccine might provide a more comprehensive protection because of humoral and cellular immunity induced in bone marrow. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  16. Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19

    PubMed Central

    Comerci, Diego J.; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.

    1998-01-01

    A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a good antibody response against the T. cruzi antigen. The expression of the repetitive antigen in Brucella neither altered its growth pattern nor generated a toxic or lethal effect during experimental infection. The application of this strategy for the generation of live recombinant vaccines and the tagging of B. abortus S19 vaccine is discussed. This is the first time that a recombinant protein has been expressed in the periplasm of brucellae. PMID:9673273

  17. Efficacy and synergy of live-attenuated and inactivated influenza vaccines in young chickens

    PubMed Central

    Jang, Hyesun; Elaish, Mohamed; KC, Mahesh; Abundo, Michael C.; Ghorbani, Amir; Lee, Chang-Won

    2018-01-01

    Outbreaks of novel highly pathogenic avian influenza viruses have been reported in poultry species in the United States since 2014. These outbreaks have proven the limitations of biosecurity control programs, and new tools are needed to reinforce the current avian influenza control arsenal. Some enzootic countries have implemented inactivated influenza vaccine (IIV) in their control programs, but there are serious concerns that a long-term use of IIV without eradication may result in the selection of novel antigenically divergent strains. A broadly protective vaccine is needed, such as live-attenuated influenza vaccine (LAIV). We showed in our previous studies that pc4-LAIV (a variant that encodes a C-terminally truncated NS1 protein) can provide significant protection against heterologous challenge virus in chickens vaccinated at 2–4 weeks of age through upregulation of innate and adaptive immune responses. The current study was conducted to compare the performances of pc4-LAIV and IIV in young chickens vaccinated at 1 day of age. A single dose of pc4-LAIV was able to induce stronger innate and mucosal IgA responses and protect young immunologically immature chickens better than a single dose of IIV. Most importantly, when 1-day-old chickens were intranasally primed with pc4-LAIV and subcutaneously boosted with IIV three weeks later, they showed a rapid, robust, and highly cross-reactive serum antibody response and a high level of mucosal IgA antibody response. This vaccination regimen warrants further optimization to increase its range of protection. PMID:29624615

  18. Aged mice display an altered pulmonary host response to Francisella tularensis live vaccine strain (LVS) infections

    PubMed Central

    CA, Mares; SS, Ojeda; Q, Li; EG, Morris; JJ, Coalson; JM, Teale

    2012-01-01

    Aging is a complex phenomenon that has been shown to affect many organ systems including the innate and adaptive immune systems. The current study was designed to examine the potential effect of immunosenescence on the pulmonary immune response using a Francisella tularensis live vaccine strain (LVS) inhalation infection model. F. tularensis is a gram-negative intracellular pathogen that can cause a severe pneumonia.In this study both young (8-12 week old) and aged (20-24 month old) mice were infected intranasally with LVS. Lung tissues from young and aged mice were used to assess pathology, recruitment of immune cell types and cytokine expression levels at various times post infection. Bacterial burdens were also assessed. Interestingly, the lungs of aged animals harbored fewer organisms at early time points of infection (day 1, day 3) compared with their younger counterparts. In addition, only aged animals displayed small perivascular aggregates at these early time points that appeared mostly mononuclear in nature. However, the kinetics of infiltrating polymorphonuclear neutrophils (PMNs) and increased cytokine levels measured in the bronchial alveolar lavage fluid (BALF) were delayed in infected aged animals relative to young infected animals with neutrophils appearing at day 5 post infection (PI) in the aged animals as opposed to day 3 PI in the young infected animals. Also evident were alterations in the ratios of mononuclear to PMNs at distinct post infection times. The above evidence indicates that aged mice elicit an altered immune response in the lung to respiratory Francisella tularensis LVS infections compared to their younger counterparts. PMID:19825409

  19. Evaluation of a vaccine passport to improve vaccine coverage in people living with HIV.

    PubMed

    Chadwick, D R; Corbett, K; Mann, S; Teruzzi, B; Horner, S

    2018-01-01

    An increased risk of vaccine-preventable infections (VPIs) is seen in people living with HIV (PLWH), and current vaccine coverage and immunity is variable. Vaccine passports have the potential to improve vaccine coverage. The objective was to assess how successful a vaccine passport was in improving vaccine coverage in PLWH. Baseline immunity to VPIs was established in PLWH attending a single HIV clinic and vaccinations required were determined based on the BHIVA Vaccination Guidelines (2015). The passport was completed and the PLWH informed about additional vaccines they should obtain from primary care. After 6-9 months the passport was reviewed including confirmation if vaccines were given. PLWH satisfaction with the system was evaluated by a survey. Seventy-three PLWH provided sufficient data for analysis. At baseline significant proportions of PLWH were not immune/unvaccinated to the main VPIs, especially human papillomavirus, pneumococcus and measles. After the passport was applied immunity improved significantly (56% overall, p < 0.01) for most VPIs; however, full coverage was not achieved. The system was popular with PLWH. The passport was successful in increasing vaccination coverage although full or near-full coverage was not achieved. A more successful service would probably be achieved by commissioning English HIV clinics to provide all vaccines.

  20. Identification of Brucella melitensis Rev.1 vaccine-strain genetic markers: Towards understanding the molecular mechanism behind virulence attenuation.

    PubMed

    Issa, Mohammad Nouh; Ashhab, Yaqoub

    2016-09-22

    Brucella melitensis Rev.1 is an avirulent strain that is widely used as a live vaccine to control brucellosis in small ruminants. Although an assembled draft version of Rev.1 genome has been available since 2009, this genome has not been investigated to characterize this important vaccine. In the present work, we used the draft genome of Rev.1 to perform a thorough genomic comparison and sequence analysis to identify and characterize the panel of its unique genetic markers. The draft genome of Rev.1 was compared with genome sequences of 36 different Brucella melitensis strains from the Brucella project of the Broad Institute of MIT and Harvard. The comparative analyses revealed 32 genetic alterations (30 SNPs, 1 single-bp insertion and 1 single-bp deletion) that are exclusively present in the Rev.1 genome. In silico analyses showed that 9 out of the 17 non-synonymous mutations are deleterious. Three ABC transporters are among the disrupted genes that can be linked to virulence attenuation. Out of the 32 mutations, 11 Rev.1 specific markers were selected to test their potential to discriminate Rev.1 using a bi-directional allele-specific PCR assay. Six markers were able to distinguish between Rev.1 and a set of control strains. We succeeded in identifying a panel of 32 genome-specific markers of the B. melitensis Rev.1 vaccine strain. Extensive in silico analysis showed that a considerable number of these mutations could severely affect the function of the associated genes. In addition, some of the discovered markers were able to discriminate Rev.1 strain from a group of control strains using practical PCR tests that can be applied in resource-limited settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Innovative in cellulo method as an alternative to in vivo neurovirulence test for the characterization and quality control of human live Yellow Fever virus vaccines: A pilot study.

    PubMed

    da Costa, Anaelle; Prehaud, Christophe; Khou, Cecile; Pardigon, Nathalie; Saulnier, Aure; Nougarede, Nolwenn; Lafon, Monique

    2018-05-01

    Live attenuated vaccines have proved to be mostly valuable in the prevention of infectious diseases in humans, especially in developing countries. The safety and potency of vaccine, and the consistency of vaccine batch-to-batch manufacturing, must be proven before being administrated to humans. For now, the tests used to control vaccine safety largely involve animal testing. For live viral vaccines, regulations require suppliers to demonstrate the absence of neurovirulence in animals, principally in non-human primates and mice. In a search to reduce the use of animals and embracing the 3Rs principles (Replacement, Reduction, Refinement in the use of laboratory animals), we developed a new Blood-Brain Barrier Minibrain (BBB-Minibrain) in cellulo device to evaluate the neuroinvasiveness/neurovirulence of live Yellow Fever virus (YFV) vaccines. A pilot study was performed using the features of two distinct YFV strains, with the ultimate goal of proposing a companion test to characterize YFV neurovirulence. Here, we demonstrate that the BBB-Minibrain model is a promising alternative to consider for future replacement of YFV vaccine in vivo neurovirulence testing (see graphical abstract). Copyright © 2018. Published by Elsevier Ltd.

  2. [An atypical form of Aujezky's disease after vaccination (author's transl].

    PubMed

    Willemse, A; Rondhuis, P R; Goedegebuure, S A; Maas, J H

    1977-03-15

    Four atypical case of Aujezky's disease in dogs are described. Two weeks before the outbreak of the disease, the dogs had been vaccinated with a live tissue culture vaccin, based on the Bartha strain. By culturevirus (cytopathogenic effect) the Bartha vaccin was identified and a vaccination reaction was proved. Vaccination with this must be discouraged.

  3. Updated data on effective and safe immunizations with live-attenuated vaccines for children after living donor liver transplantation.

    PubMed

    Shinjoh, Masayoshi; Hoshino, Ken; Takahashi, Takao; Nakayama, Tetsuo

    2015-01-29

    Although immunizations using live-attenuated vaccines are not recommended for children post-liver transplant due to their theoretical risks, they will inevitably encounter vaccine-preventable viral diseases upon returning to real-life situations. The window of opportunity for vaccination is usually limited prior to transplantation because these children often have unstable disease courses. Also, vaccine immunity does not always persist after transplantation. Beginning in 2002, subcutaneous immunizations with four individual live-attenuated vaccines (measles, rubella, varicella, and mumps) to pediatric patients following living donor liver transplantation (LDLT) were performed for those who fulfilled the clinical criteria, including humoral and cell-mediated immunity. Written informed consent was collected. We included the study on 70 immunizations for 18 cases that we reported in 2008 (Shinjoh et al., 2008). A total of 196 immunizations were administered to 48 pediatric post-LDLT recipients. Of these, 144 were first immunizations and 52 were repeated immunizations following LDLT. The seroconversion rates at the first dose for measles (AIK-C), rubella (TO-336), varicella (Oka), and mumps (Hoshino) were 100% (36/36), 100% (35/35), 70% (23/33), and 75% (24/32), respectively. Antibody levels did not fall over time in patients immunized with rubella vaccine. Three mild cases of breakthrough varicella were observed. Two cases with transient parotid gland swelling were observed after mumps immunization. Two admissions because of fever at 2-3 weeks after the measles vaccine were reported but the patients had no symptoms of measles. Immunizations using selected live-attenuated vaccines were safe and effective for post-LDLT children who were not severely immunosuppressed. However, with the exception of rubella, repeated immunization may be necessary. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Generation of a Listeria vaccine strain by enhanced Caspase-1 activation

    PubMed Central

    Warren, Sarah E.; Duong, Hien; Mao, Dat Phat; Armstrong, Abraham; Rajan, Jayant; Miao, Edward A.; Aderem, Alan

    2012-01-01

    The immunostimulatory properties conferred by vaccine adjuvants require Caspase-1 for processing of IL-1β and IL-18. Caspase-1 is activated in response to a breach of the cytosolic compartment by microbes and the process is initiated by intracellular pattern recognition receptors within inflammasomes. Listeria monocytogenes is detected in the cytosol by the NLRC4, NLRP3 and AIM2 inflammasomes. NLRC4 is activated by flagellin, and L. monocytogenes evades this detector by repressing flagellin expression. We generated an L. monocytogenes strain that was forced to express flagellin in the host cell cytosol. This strain hyperactivated Caspase-1 and was preferentially cleared via NLRC4 detection in an IL-1β/IL-18 independent manner. We also created a strain of L. monocytogenes with forced expression of another NLRC4 agonist, PrgJ from the Type III secretion system of S. typhimurium. Forced expression of flagellin or PrgJ resulted in attenuation, yet both strains conferred protective immunity in mice against lethal challenge with L. monocytogenes. This work is the first demonstration of specific targeting of the Caspase-1 activation pathway to generate a safe and potent L. monocytogenes based vaccine. Moreover, the attenuated strains with embedded flagellin or PrgJ adjuvants, represent attractive vectors for vaccines aimed at eliciting T cell responses. PMID:21538346

  5. Substitutions at residues 300 and 389 of the VP2 capsid protein serve as the minimal determinant of attenuation for canine parvovirus vaccine strain 9985-46.

    PubMed

    Sehata, Go; Sato, Hiroaki; Yamanaka, Morimasa; Takahashi, Takuo; Kainuma, Risa; Igarashi, Tatsuhiko; Oshima, Sho; Noro, Taichi; Oishi, Eiji

    2017-11-01

    Identifying molecular determinants of virulence attenuation in live attenuated canine parvovirus (CPV) vaccines is important for assuring their safety. To this end, we identified mutations in the attenuated CPV 9985-46 vaccine strain that arose during serial passage in Crandell-Rees feline kidney cells by comparison with the wild-type counterpart, as well as minimal determinants of the loss of virulence. Four amino acid substitutions (N93K, G300V, T389N and V562L) in VP2 of strain 9985-46 significantly restricted infection in canine A72 cells. Using an infectious molecular clone system, we constructed isogenic CPVs of the parental virulent 9985 strain carrying single or double mutations. We observed that only a single amino acid substitution in VP2, G300V or T389N, attenuated the virulent parental virus. Combinations of these mutations further attenuated CPV to a level comparable to that of 9985-46. Strains with G300V/T389N substitutions did not induce clinical symptoms in experimentally infected pups, and their ability to infect canine cells was highly restricted. We found that another G300V/V562L double mutation decreased affinity of the virus for canine cells, although its pathogenicity to dogs was maintained. These results indicate that mutation of residue 300, which plays a critical role in host tropism, is not sufficient for viral attenuation in vivo, and that attenuation of 9985-46 strain is defined by at least two mutations in residues 300 and 389 of the VP2 capsid protein. This finding is relevant for quality control of the vaccine and provides insight into the rational design of second-generation live attenuated vaccine candidates.

  6. Drop of egg production in chickens by experimental infection with an avian metapneumovirus strain PLE8T1 derived from swollen head syndrome and the application to evaluate vaccine.

    PubMed

    Sugiyama, Miki; Koimaru, Hiroyuki; Shiba, Masahiro; Ono, Eriko; Nagata, Tadashi; Ito, Toshihiro

    2006-08-01

    Decreases in egg production and increased incidence of abnormal eggs due to malformation of egg shells were observed in specific pathogen free (SPF) 173-day-old laying hens inoculated intravenously with an avian metapneumovirus (aMPV) strain PLE8T1. This strain was derived from an isolate from broiler birds exhibiting swollen head syndrome (SHS). Some SPF birds inoculated with the virus showed, slight diarrhea without any respiratory symptoms. Thus, the PLE8T1 strain was used as a challenge virus to evaluate efficacy of aMPV vaccines. SPF chickens which received a live attenuated aMPV vaccine (NEMOVAC; Merial) at 7 or 77 days old and an inactivated aMPV vaccine (OVO-4; Merial) at 105 days old were protected against poor egg production caused by the challenge with the PLE8T1 strain. Thus, aMPV, the PLE8T1 strain passaged 22 times after isolation, from birds exhibiting SHS, could induce a drop in egg production in laying hens accompanied by malformation of egg shells. It was suggested that this challenge system could be applied to evaluate the efficacy of aMPV vaccine.

  7. Potency control of modified live viral vaccines for veterinary use.

    PubMed

    Terpstra, C; Kroese, A H

    1996-04-01

    This paper reviews various aspects of efficacy, and methods for assaying the potency of modified live viral vaccines. The pros and cons of parametric versus non-parametric methods for analysis of potency assays are discussed and critical levels of protection, as determined by the target(s) of vaccination, are exemplified. Recommendations are presented for designing potency assays on master virus seeds and vaccine batches.

  8. Potency control of modified live viral vaccines for veterinary use.

    PubMed

    Terpstra, C; Kroese, A H

    1996-01-01

    This paper reviews various aspects of efficacy, and methods for assaying the potency of modified live viral vaccines. The pros and cons of parametric versus non-parametric methods for analysis of potency assays are discussed and critical levels of protection, as determined by the target(s) of vaccination, are exemplified. Recommendations are presented for designing potency assays on master virus seeds and vaccine batches.

  9. Seasonal influenza vaccines.

    PubMed

    Fiore, Anthony E; Bridges, Carolyn B; Cox, Nancy J

    2009-01-01

    safety of LAIV among young children suggest an increased risk of wheezing in some young children, and the vaccine is not recommended for children younger than 2 years old, ages 2-4 old with a history of recurrent wheezing or reactive airways disease, or older persons who have any medical condition that confers an increased risk of influenza-related complications.The effectiveness of influenza vaccines is related predominantly to the age and immune competence of the vaccinee and the antigenic relatedness of vaccine strains to circulating strains. Vaccine effectiveness in preventing laboratory-confirmed influenza illness when the vaccine strains are well matched to circulating strains is 70-90% in randomized, placebo-controlled trials conducted among children and young healthy adults, but is lower among elderly or immunocompromised persons. In years with a suboptimal match, vaccine benefit is likely to be lower, although the vaccine can still provide substantial benefit, especially against more severe outcomes. Live, attenuated influenza vaccines have been most extensively studied among children, and have been shown to be more effective than inactivated vaccines in several randomized controlled trials among young children.Influenza vaccination is recommended in the United States for all children six months or older, all adults 50 years or older, all persons with chronic medical conditions, and pregnant women, and contacts of these persons, including healthcare workers. The global disease burden of influenza is substantial, and the World Health Organization has indicated that member states should evaluate the cost-effectiveness of introducing influenza vaccination into national immunization programs. More research is needed to develop more effective seasonal influenza vaccines that provide long-lasting immunity and broad protection against strains that differ antigenically from vaccine viruses.

  10. Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease.

    PubMed

    Richner, Justin M; Jagger, Brett W; Shan, Chao; Fontes, Camila R; Dowd, Kimberly A; Cao, Bin; Himansu, Sunny; Caine, Elizabeth A; Nunes, Bruno T D; Medeiros, Daniele B A; Muruato, Antonio E; Foreman, Bryant M; Luo, Huanle; Wang, Tian; Barrett, Alan D; Weaver, Scott C; Vasconcelos, Pedro F C; Rossi, Shannan L; Ciaramella, Giuseppe; Mysorekar, Indira U; Pierson, Theodore C; Shi, Pei-Yong; Diamond, Michael S

    2017-07-13

    The emergence of Zika virus (ZIKV) and its association with congenital malformations has prompted the rapid development of vaccines. Although efficacy with multiple viral vaccine platforms has been established in animals, no study has addressed protection during pregnancy. We tested in mice two vaccine platforms, a lipid nanoparticle-encapsulated modified mRNA vaccine encoding ZIKV prM and E genes and a live-attenuated ZIKV strain encoding an NS1 protein without glycosylation, for their ability to protect against transmission to the fetus. Vaccinated dams challenged with a heterologous ZIKV strain at embryo day 6 (E6) and evaluated at E13 showed markedly diminished levels of viral RNA in maternal, placental, and fetal tissues, which resulted in protection against placental damage and fetal demise. As modified mRNA and live-attenuated vaccine platforms can restrict in utero transmission of ZIKV in mice, their further development in humans to prevent congenital ZIKV syndrome is warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Development and introduction of inactivated poliovirus vaccines derived from Sabin strains in Japan.

    PubMed

    Shimizu, Hiroyuki

    2016-04-07

    During the endgame of global polio eradication, the universal introduction of inactivated poliovirus vaccines is urgently required to reduce the risk of vaccine-associated paralytic poliomyelitis and polio outbreaks due to wild and vaccine-derived polioviruses. In particular, the development of inactivated poliovirus vaccines (IPVs) derived from the attenuated Sabin strains is considered to be a highly favorable option for the production of novel IPV that reduce the risk of facility-acquired transmission of poliovirus to the communities. In Japan, Sabin-derived IPVs (sIPVs) have been developed and introduced for routine immunization in November 2012. They are the first licensed sIPVs in the world. Consequently, trivalent oral poliovirus vaccine was used for polio control in Japan for more than half a century but has now been removed from the list of vaccines licensed for routine immunization. This paper reviews the development, introduction, characterization, and global status of IPV derived from attenuated Sabin strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Evaluation of 793/B-like and Mass-like vaccine strain kinetics in experimental and field conditions by real-time RT-PCR quantification.

    PubMed

    Tucciarone, C M; Franzo, G; Berto, G; Drigo, M; Ramon, G; Koutoulis, K C; Catelli, E; Cecchinato, M

    2018-01-01

    Infectious bronchitis virus (IBV) is a great economic burden both for productive losses and costs of the control strategies. Many different vaccination protocols are applied in the same region and even in consecutive cycles on the same farm in order to find the perfect balance between costs and benefits. In Northern Italy, the usual second vaccination is more and more often moved up to the chick's first d of life. The second strain administration together with the common Mass priming by spray at the hatchery allows saving money and time and reducing animal stress. The present work compared the different vaccine strains (Mass-like or B48, and 1/96) kinetics both in field conditions and in a 21-day-long experimental trial in broilers, monitoring the viral replication by upper respiratory tract swabbing and vaccine specific real time reverse transcription PCR (RT-PCR) quantification. In both field and experimental conditions, titers for all the vaccines showed an increasing trend in the first 2 wk and then a decrease, though still remaining detectable during the whole monitored period. IBV field strain and avian Metapneumovirus (aMPV) presence also was also investigated by RT-PCR and sequencing, and by multiplex real-time RT-PCR, respectively, revealing a consistency in the pathogen introduction timing at around 30 d, in correspondence with the vaccine titer's main decrease. These findings suggest the need for an accurate knowledge of live vaccine kinetics, whose replication can compete with the other pathogen one, providing additional protection to be added to what is conferred by the adaptive immune response. © 2017 Poultry Science Association Inc.

  13. An avirulent Micropterus salmoides rhabdovirus vaccine candidate protects Chinese perch against rhabdovirus infection.

    PubMed

    Lijuan, Zhang; Ningqiu, Li; Qiang, Lin; Lihui, Liu; Hongru, Liang; Zhibin, Huang; Xiaozhe, Fu

    2018-06-01

    In order to develop live vaccine against Siniperca chuatsi rhabdovirus (SCRV) disease, an avirulent virus strain, designed as Micropterus salmoides rhabdovirus Sanshui (MSRV-SS), was selected from six fish rhabdovirus isolates (SCRV-QY、SCRV-SS、SCRV-GM、CMRV-FS、OMBRV-JM、MSRV-SS) by fish challenge assay. When Chinese perch (Siniperca chuatsi) were intraperitoneally injected live virus strain MSRV-SS, they were completely protected from virulent SCRV-GM challenge with a relative percent survival (RPS) of 100% on 18th day post vaccination. Then, the wild type MSRV-SS was purified by plaque clone assays, and the biological characteristics of the clonal strain designed as MSRV-SS-7 were investigated. The MSRV-SS-7 was avirulent to Chinese perch and its growth characteristic was similar to the MSRV-SS. The immune protection effects of clonal MSRV-SS-7 against virulent SCRV-GM were evaluated by intraperitoneal injection (IP) vaccination and immersion (IM) vaccination, their RPSs were all 100%. Altogether, these results indicate that MSRV-SS-7 is a potential live vaccine candidate against SCRV disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effect of size and temperature at vaccination on immunization and protection conferred by a live attenuated Francisella noatunensis immersion vaccine in red hybrid tilapia.

    PubMed

    Soto, Esteban; Brown, Nicholas; Gardenfors, Zackarias O; Yount, Shaun; Revan, Floyd; Francis, Stewart; Kearney, Michael T; Camus, Alvin

    2014-12-01

    Francisella noatunensis subsp. orientalis (Fno) is a pleomorphic, facultative intracellular, Gram-negative, emerging bacterial pathogen of marine and fresh water fish with worldwide distribution. In this study, the efficacy of an attenuated Fno intracellular growth locus C (iglC) mutant was evaluated for use as a live immersion vaccine, when administered to hybrid tilapia at two different stages of growth (5 g fry and 10 g fingerlings) and at two temperatures (25 °C and 30 °C). To determine vaccine efficacy, mortality, days to first death, and Fno genome equivalents (GE) in the spleens of survivors, as well as serum and mucus antibody levels, were evaluated after 30 d in fish challenged with a wild type virulent strain. Both size and temperature at vaccination played an important role in immunization and protection. Fry vaccinated at 25 °C were not protected when compared to non-vaccinated fry at 25 °C (p = 0.870). In contrast, 5 g fry vaccinated at 30 °C were significantly protected compared to non-vaccinated fry at 30 °C (p = 0.038). Although lower mortalities occurred, 10 g fingerlings vaccinated at 25 °C were not protected, compared to non-vaccinated fingerlings at 25 °C (p = 0.328), while, 10 g fingerlings vaccinated at 30 °C were significantly protected, compared to non-vaccinated fingerlings at 30 °C (p = 0.038). Additionally, overall mortality of 5 g fish was significantly higher than in 10 g fish. Mortality was also significantly higher in fish subjected to a 30 to 25 °C temperature change one week prior to challenge, than in fish maintained at the same temperature during vaccination and challenge. This information demonstrates that both temperature and size at vaccination are important factors when implementing immunization prophylaxis in cultured tilapia.

  15. A Review of OIE Country Status Recovery Using Vaccinate-to-Live Versus Vaccinate-to-Die Foot-and-Mouth Disease Response Policies I: Benefits of Higher Potency Vaccines and Associated NSP DIVA Test Systems in Post-Outbreak Surveillance.

    PubMed

    Barnett, P V; Geale, D W; Clarke, G; Davis, J; Kasari, T R

    2015-08-01

    To rapidly return to trade, countries with OIE status, FMD-free country where vaccination is not practised, have destroyed emergency vaccinated animals, raising ethical concerns with respect to social values, the environment, animal welfare and global food security. This two-part review explores whether science could support eligibility to return to previous OIE status in 3 months irrespective of vaccinate-to-live or vaccinate-to-die policies. Here, we examine the benefits of higher potency (≥ 6 PD50 ), high-purity vaccines formulated from antigen banks for emergency use, their efficacy and performance in differentiating infected from vaccinated animals (DIVA) assays for post-outbreak surveillance. From an intensive programme of research, we conclude that high-quality, higher potency vaccines are proven to reduce FMD virus (FMDV) subclinical circulation and the risk of carriers. Broader coverage than predicted by serology suggests the potential to hold a few 'key' vaccine strains improving logistics and reducing the financial burden of antigen banks. The OIE should adopt formal definitions for emergency vaccination and emergency vaccines. In terms of supportive tools, we consider that the lack of OIE recognition of DIVA tests other than those of PANAFTOSA in cattle is a shortcoming. There is need for research on maternal antibody interference with DIVA tests and on the use of such tests to establish whether greater purification of vaccines improves performance. We consider that alignment of waiting periods for vaccinate-to-live and vaccinate-to-die in OIE Code Article 8.5.9 1 b. and c. is feasible until an acceptable level of statistical certainty for surveillance or target probability of freedom is established to substantiate the absence of FMDV infection or circulation. It is surveillance intensity rather than waiting periods that establishes the risk of residual FMDV. EU Directive 2003/85/EC implicitly recognizes this, permitting derogation of the OIE waiting

  16. Refined live attenuated Salmonella enterica serovar Typhimurium and Enteritidis vaccines mediate homologous and heterologous serogroup protection in mice.

    PubMed

    Tennant, Sharon M; Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F; Galen, James E; Levine, Myron M

    2015-12-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Microbial compositional changes in broiler chicken cecal contents from birds challenged with different Salmonella vaccine candidate strains.

    PubMed

    Park, Si Hong; Kim, Sun Ae; Rubinelli, Peter M; Roto, Stephanie M; Ricke, Steven C

    2017-05-31

    Previously, we constructed and characterized the vaccine efficacy of Salmonella Typhimurium mutant strains in poultry with either inducible mviN expression (P BAD -mviN) or methionine auxotrophy (ΔΔmetRmetD). The aim of the present study was to assess potential impact of these Salmonella vaccine strains on the cecal microbiota using a next generation sequencing (NGS). The cecal microbial community obtained from unvaccinated (group 1) and vaccinated chickens (group 2, vaccinated with P BAD -mviN; group 3, vaccinated with wild type; group 4, vaccinated with ΔΔmetRmetD) were subjected to microbiome sequencing analysis with an Illumina MiSeq platform. The NGS microbiome analysis of chicken ceca revealed considerable changes in microbial composition in the presence of the different vaccine strains and exhibited detectable patterns of distinctive clustering among the respective groups (the R value of unweighted PCoA plot was 0.68). The present study indicates that different S. Typhimurium vaccine strains can differentially influence the microbiota of the ceca in terms of presence but not in the relative abundance of microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Vaccinating high-risk children with the intranasal live-attenuated influenza vaccine: the Quebec experience.

    PubMed

    Quach, Caroline

    2014-12-01

    Given the burden of illness associated with influenza, vaccination is recommended for individuals at high risk of complications. The live-attenuated influenza vaccine (LAIV) is administered by intranasal spray, thus directly stimulating mucosal immunity. In this review, we aimed to provide evidence for its efficacy and safety in different paediatric populations. We also share the Quebec experience of LAIV use through a publicly funded vaccination program for children with chronic, high-risk conditions. from randomized controlled trials in healthy children and in asthmatics have demonstrated superior efficacy of LAIV over the injectable vaccine (IIV). LAIV is well tolerated: its administration is associated with runny nose and nasal congestion, but not with asthma exacerbations and is well tolerated in children with cystic fibrosis, when compared to IIV. The vaccine is well accepted by children and parents and can easily be part of vaccination clinics in paediatric tertiary care centres targeting children with chronic, high-risk conditions, not leading to immunosuppression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Novel formulations enhance the thermal stability of live-attenuated flavivirus vaccines

    PubMed Central

    Wiggan, O’Neil; Silengo, Shawn J.; Kinney, Richard M.; Osorio, Jorge E.; Huang, Claire Y.-H.; Stinchcomb, Dan T.

    2011-01-01

    Thermal stability is important for the manufacture, distribution and administration of vaccines, especially in tropical developing countries, where particularly adverse field conditions exist. Current live-attenuated flavivirus vaccines exhibit relatively poor liquid stability in clinical settings, and clinicians are instructed to discard the yellow fever vaccine 1h after reconstitution. We have identified novel combinations of excipients that greatly enhance the thermal stability of live-attenuated DEN-2 PDK-53-based flavivirus vaccine candidates. Liquid formulations comprising a sugar, albumin and a pluronic polymer minimized the loss of flavivirus infectious titer to less than 0.5log(10)pfu after storage for at least 8h at 37°C, 7 days at room temperature or at least 11 weeks at 4°C. Additionally, these formulations prevented reduction of viral infectivity after two freeze-thaw cycles of virus. Formulated candidate vaccines were readily lyophilized and reconstituted with minimal loss of viral titers. In mice, the formulations were safe and did not hinder the ability of the vaccine virus to generate a potent, protective immune response. These formulations provided significantly greater liquid-phase stability than has been reported previously for other flavivirus vaccine formulations. The enhanced thermal stability provided by the formulations described here will facilitate the effective distribution of flavivirus vaccines worldwide. PMID:21803103

  20. Effectiveness of Pentavalent Rotavirus Vaccine Against a Diverse Range of Circulating Strains in Nicaragua.

    PubMed

    Patel, Manish; Pedreira, Cristina; De Oliveira, Lúcia Helena; Tate, Jacqueline; Leshem, Eyal; Mercado, Juan; Umaña, Jazmina; Balmaceda, Angel; Reyes, Martha; Kerin, Tara; McDonald, Sharla; Gentsch, Jon; Bowen, Michael D; Parashar, Umesh

    2016-05-01

    Because >60 rotavirus strains have been reported worldwide, concerns exist about strain replacement after the introduction of rotavirus vaccines, particularly in developing countries with diverse strains and lower efficacy. We used the case-control design in 4 hospitals in Nicaragua to assess strain-specific vaccine effectiveness (VE) of a pentavalent rotavirus vaccine (RotaTeq) against rotavirus diarrhea. Cases were identified through prospective strain surveillance with reverse transcription-polymerase chain reaction for 3 years among children hospitalized for diarrhea, and controls were children negative for rotavirus. We enrolled 1178 case-patients, 1082 (92%) with G and P typing, and 4927 controls. A different strain predominated each year with increasing age of the vaccine-eligible cohort during the study period: G2P[4] in 2008 (97%; mean age, 11.9 months), G1P[8] in 2009 (55%; mean age, 17.0 months), and G3P[8] in 2010 (78%; mean age, 17.3 months). Overall VE was 45% (95% confidence interval, 25%-59%). Regardless of the strain, VE estimates were 12%-79% lower among children aged ≥12 months relative to those 6-11 months of age. The lower VE for G3P[8] was related to the higher mean age of cases (17.3 months) compared with the G2P[4] strains (11.9 months), with a significant trend (R(2)= 0.819;P< .001) of declining effectiveness with increasing mean age of the cases. Introduction of RotaTeq did not result in sustained emergence of any particular strain in Nicaragua. Variation in strain-specific effectiveness was due to an age-related decline in effectiveness rather than differences in protection against the observed strains. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. Comparative analysis of the immunologic response induced by the Sterne 34F2 live spore Bacillus anthracis vaccine in a ruminant model.

    PubMed

    Ndumnego, Okechukwu C; Köhler, Susanne M; Crafford, Jannie; van Heerden, Henriette; Beyer, Wolfgang

    2016-10-01

    The Sterne 34F2 live spore vaccine (SLSV) developed in 1937 is the most widely used veterinary vaccine against anthrax. However, literature on the immunogenicity of this vaccine in a target ruminant host is scarce. In this study, we evaluated the humoral response to the Bacillus anthracis protective antigen (rPA), a recombinant bacillus collagen-like protein of anthracis (rBclA), formaldehyde inactivated spores (FIS) prepared from strain 34F2 and a vegetative antigen formulation prepared from a capsule and toxin deficient strain (CDC 1014) in Boer goats. The toxin neutralizing ability of induced antibodies was evaluated using an in vitro toxin neutralization assay. The protection afforded by the vaccine was also assessed in vaccinates. Anti-rPA, anti-FIS and lethal toxin neutralizing titres were superior after booster vaccinations, compared to single vaccinations. Qualitative analysis of humoral responses to rPA, rBclA and FIS antigens revealed a preponderance of anti-FIS IgG titres following either single or double vaccinations with the SLSV. Antibodies against FIS and rPA both increased by 350 and 300-fold following revaccinations respectively. There was no response to rBclA following vaccinations with the SLSV. Toxin neutralizing titres increased by 80-fold after single vaccination and 700-fold following a double vaccination. Lethal challenge studies in naïve goats indicated a minimum infective dose of 36 B. anthracis spores. Single and double vaccination with the SLSV protected 4/5 and 3/3 of goats challenged with>800 spores respectively. An early booster vaccination following the first immunization is suggested in order to achieve a robust immunity. Results from this study indicate that this crucial second vaccination can be administered as early as 3 months after the initial vaccination. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A Yersinia pestis YscN ATPase mutant functions as a live attenuated vaccine against bubonic plague in mice.

    PubMed

    Bozue, Joel; Cote, Christopher K; Webster, Wendy; Bassett, Anthony; Tobery, Steven; Little, Stephen; Swietnicki, Wieslaw

    2012-07-01

    Yersinia pestis is the causative agent responsible for bubonic and pneumonic plague. The bacterium uses the pLcr plasmid-encoded type III secretion system to deliver virulence factors into host cells. Delivery requires ATP hydrolysis by the YscN ATPase encoded by the yscN gene also on pLcr. A yscN mutant was constructed in the fully virulent CO92 strain containing a nonpolar, in-frame internal deletion within the gene. We demonstrate that CO92 with a yscN mutation was not able to secrete the LcrV protein (V-Antigen) and attenuated in a subcutaneous model of plague demonstrating that the YscN ATPase was essential for virulence. However, if the yscN mutant was complemented with a functional yscN gene in trans, virulence was restored. To evaluate the mutant as a live vaccine, Swiss-Webster mice were vaccinated twice with the ΔyscN mutant at varying doses and were protected against bubonic plague in a dose-dependent manner. Antibodies to F1 capsule but not to LcrV were detected in sera from the vaccinated mice. These preliminary results suggest a proof-of-concept for an attenuated, genetically engineered, live vaccine effective against bubonic plague. Published 2012. This article is a US Government work and is in the public domain in the USA.

  3. Seasonal influenza vaccine efficacy and its determinants in children and non-elderly adults: a systematic review with meta-analyses of controlled trials.

    PubMed

    DiazGranados, Carlos A; Denis, Martine; Plotkin, Stanley

    2012-12-17

    The true level of influenza vaccine efficacy is controversial and many factors may influence its estimation. To estimate the efficacy of vaccination of children and non-elderly adults for the prevention of influenza and to explore the impact of type of vaccine, age, degree of strain matching, influenza type and case ascertainment methods on vaccine efficacy estimates. Medline and EmBase databases until October 2011. References of relevant articles were also reviewed. Controlled trials evaluating seasonal influenza vaccines and presenting incidence of laboratory-confirmed influenza illness were eligible. Studies exploring efficacy after experimental challenge, presenting duplicate data, employing group randomization, or focusing on special populations were excluded. The vaccine effect on influenza prevention was evaluated by calculating Mantel-Haenszel risk ratios (RR) and using random-effects models. Vaccine efficacies were calculated for each comparison as (1-RR)×100. Thirty studies were included in one or more of a total of 101 analyses, comprising 88.468 study participants. There was evidence of heterogeneity in 49% of the analyses. Summary vaccine efficacy was 65% against any strain, 78% against matched strains and 55% against not-matched strains. Both live-attenuated and inactivated vaccines showed similar levels of protection against not-matched strains (60% and 55%, respectively). Live-attenuated vaccines performed better than inactivated vaccines in children (80% versus 48%), whereas inactivated vaccines performed better than live-attenuated vaccines in adults (59% versus 39%). There was a large difference (20%) in efficacy against influenza A (69%) and influenza B (49%) types for not-matched strains. Summary estimates of vaccine efficacy were highest when ascertainment was based on culture confirmation. Influenza vaccines are efficacious, but efficacy estimates depend on many variables including type of vaccine and age of vaccinees, degree of matching of

  4. Live Attenuated Yellow Fever 17D Vaccine: A Legacy Vaccine Still Controlling Outbreaks In Modern Day.

    PubMed

    Collins, Natalie D; Barrett, Alan D T

    2017-03-01

    Live attenuated 17D vaccine is considered one of the safest and efficacious vaccines developed to date. This review highlights what is known and the gaps in knowledge of vaccine-induced protective immunity. Recently, the World Health Organization modifying its guidance from 10-year booster doses to one dose gives lifelong protection in most populations. Nonetheless, there are some data suggesting immunity, though protective, may wane over time in certain populations and more research is needed to address this question. Despite having an effective vaccine to control yellow fever, vaccine shortages were identified during outbreaks in 2016, eventuating the use of a fractional-dosing campaign in the Democratic Republic of the Congo. Limited studies hinder identification of the underlying mechanism(s) of vaccine longevity; however, concurrent outbreaks during 2016 provide an opportunity to evaluate vaccine immunity following fractional dosing and insights into vaccine longevity in populations where there is limited information.

  5. Complete Genomic Sequences of H3N8 Equine Influenza Virus Strains Used as Vaccine Strains in Japan

    PubMed Central

    Yamanaka, Takashi; Bannai, Hiroshi; Tsujimura, Koji; Kokado, Hiroshi

    2018-01-01

    ABSTRACT We sequenced the eight segments of influenza A virus strains A/equine/Ibaraki/1/2007 and A/equine/Yokohama/aq13/2010, which are strains of the Florida sublineage clades 1 and 2 of the H3N8 subtype equine influenza virus. These strains have been used as vaccine strains in Japan since 2016 in accordance with World Organization for Animal Health (OIE) recommendations. PMID:29567739

  6. Complete Genomic Sequences of H3N8 Equine Influenza Virus Strains Used as Vaccine Strains in Japan.

    PubMed

    Nemoto, Manabu; Yamanaka, Takashi; Bannai, Hiroshi; Tsujimura, Koji; Kokado, Hiroshi

    2018-03-22

    We sequenced the eight segments of influenza A virus strains A/equine/Ibaraki/1/2007 and A/equine/Yokohama/aq13/2010, which are strains of the Florida sublineage clades 1 and 2 of the H3N8 subtype equine influenza virus. These strains have been used as vaccine strains in Japan since 2016 in accordance with World Organization for Animal Health (OIE) recommendations. Copyright © 2018 Nemoto et al.

  7. Variability in biological behaviour, pathogenicity, protectotype and induction of virus neutralizing antibodies by different vaccination programmes to infectious bronchitis virus genotype Q1 strains from Chile.

    PubMed

    de Wit, J J; Dijkman, R; Guerrero, P; Calvo, J; Gonzalez, A; Hidalgo, H

    2017-12-01

    In the period from July 2008 to 2010, a disease episode resulting in serious economic losses in the major production area of the Chilean poultry industry was reported. These losses were associated with respiratory problems, increase of condemnations, drops in egg production and nephritis in breeders, laying hens and broilers due to infections with infectious bronchitis virus (IBV). Twenty-five IBV isolates were genotyped and four strains were selected for further testing by pathotyping and protectotyping. Twenty-four IBV isolates were of the Q1 genotype. The experiments also included comparing the ability of six vaccination programmes to induce virus neutralizing antibodies (VNA) in layers against four selected Chilean strains. Despite the high genetic homology in the S1 gene between the four strains, the heterogeneity in biological behaviour of these different Q1 strains was substantial. These differences were seen in embryonated eggs, in cell culture, in pathogenicity and in level of cross-protection by IBV Massachusetts (Mass) vaccination. This variability underlines the importance of testing more than one strain per serotype or genotype to determine the characteristics of a certain serotype of genotype. The combination of Mass and 793B vaccine provided a high level of protection to the respiratory tract and the kidney for each strain tested in the young birds. The combination of broad live priming using Mass and 793B vaccines and boosting with multiple inactivated IBV antigens induced the highest level of VNA against Q1 strains, which might be indicative for higher levels of protection against Q1 challenge in laying birds.

  8. Studies of parvovirus vaccination in the dog: the performance of live attenuated feline parvovirus vaccines.

    PubMed

    Thompson, H; McCandlish, I A; Cornwell, H J; Macartney, L; Maxwell, N S; Weipers, A F; Wills, I R; Black, J A; Mackenzie, A C

    1988-04-16

    The performance of three live attenuated feline parvovirus vaccines licensed for use in the dog was studied. At the end of the primary vaccination course 67 per cent of dogs had inadequate antibody levels (less than or equal to 32) as measured by a haemagglutination inhibition test. Interference by maternal antibody accounted for some of the failures but the fact that there was no significant difference in performance between dogs vaccinated at 12 weeks or 16 weeks of age indicated that maternal antibody was not the only factor.

  9. Variable Virulence and Efficacy of BCG Vaccine Strains in Mice and Correlation With Genome Polymorphisms

    PubMed Central

    Zhang, Lu; Ru, Huan-wei; Chen, Fu-zeng; Jin, Chun-yan; Sun, Rui-feng; Fan, Xiao-yong; Guo, Ming; Mai, Jun-tao; Xu, Wen-xi; Lin, Qing-xia; Liu, Jun

    2016-01-01

    Bacille Calmette–Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. However, BCG is not an ideal vaccine and has two major limitations: BCG exhibits highly variable effectiveness against the development of TB both in pediatric and adult populations and can cause disseminated BCG disease in immunocompromised individuals. BCG comprises a number of substrains that are genetically distinct. Whether and how these genetic differences affect BCG efficacy remains largely unknown. In this study, we performed comparative analyses of the virulence and efficacy of 13 BCG strains, representing different genetic lineages, in SCID and BALB/c mice. Our results show that BCG strains of the DU2 group IV (BCG-Phipps, BCG-Frappier, BCG-Pasteur, and BCG-Tice) exhibit the highest levels of virulence, and BCG strains of the DU2 group II (BCG-Sweden, BCG-Birkhaug) are among the least virulent group. These distinct levels of virulence may be explained by strain-specific duplications and deletions of genomic DNA. There appears to be a general trend that more virulent BCG strains are also more effective in protection against Mycobacterium tuberculosis challenge. Our findings have important implications for current BCG vaccine programs and for future TB vaccine development. PMID:26643797

  10. Variable Virulence and Efficacy of BCG Vaccine Strains in Mice and Correlation With Genome Polymorphisms.

    PubMed

    Zhang, Lu; Ru, Huan-Wei; Chen, Fu-Zeng; Jin, Chun-Yan; Sun, Rui-Feng; Fan, Xiao-Yong; Guo, Ming; Mai, Jun-Tao; Xu, Wen-Xi; Lin, Qing-Xia; Liu, Jun

    2016-02-01

    Bacille Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. However, BCG is not an ideal vaccine and has two major limitations: BCG exhibits highly variable effectiveness against the development of TB both in pediatric and adult populations and can cause disseminated BCG disease in immunocompromised individuals. BCG comprises a number of substrains that are genetically distinct. Whether and how these genetic differences affect BCG efficacy remains largely unknown. In this study, we performed comparative analyses of the virulence and efficacy of 13 BCG strains, representing different genetic lineages, in SCID and BALB/c mice. Our results show that BCG strains of the DU2 group IV (BCG-Phipps, BCG-Frappier, BCG-Pasteur, and BCG-Tice) exhibit the highest levels of virulence, and BCG strains of the DU2 group II (BCG-Sweden, BCG-Birkhaug) are among the least virulent group. These distinct levels of virulence may be explained by strain-specific duplications and deletions of genomic DNA. There appears to be a general trend that more virulent BCG strains are also more effective in protection against Mycobacterium tuberculosis challenge. Our findings have important implications for current BCG vaccine programs and for future TB vaccine development.

  11. Generalized herd effects and vaccine evaluation: impact of live influenza vaccine on off-target bacterial colonisation.

    PubMed

    Mina, Michael J

    2017-06-01

    Interactions between pathogens and commensal microbes are major contributors to health and disease. Infectious diseases however are most often considered independent, viewed within a one-host one-pathogen paradigm and, by extension, the interventions used to treat and prevent them are measured and evaluated within this same paradigm. Vaccines, especially live vaccines, by stimulating immune responses or directly interacting with other microbes can alter the environment in which they act, with effects that span across pathogen species. Live attenuated infl uenza vaccines for example, while safe, increase upper respiratory tract bacterial carriage density of important human commensal pathogens like Streptococcus pneumoniae and Staphylococcus aureus. Further, by altering the ecological niche and dynamics of phylogenetically distinct microbes within the host, vaccines may unintentionally affect transmission of non-vaccine targeted pathogens. Thus, vaccine effects may span across species and across scales, from the individual to the population level. In keeping with traditional vaccine herd-effects that indirectly protect even unvaccinated individuals by reducing population prevalence of vaccine-targeted pathogens, we call these cross-species cross-scale effects "generalized herd-effects". As opposed to traditional herd-effects, "generalized" relaxes the assumption that the effect occurs at the level of the vaccine-target pathogen and "herd effect" implies, as usual, that the effects indirectly impact the population at large, including unvaccinated bystanders. Unlike traditional herd-effects that decrease population prevalence of the vaccine-target, generalized herd-effects may decrease or increase prevalence and disease by the off-target pathogen. LAIV, for example, by increasing pneumococcal density in the upper respiratory tract of vaccine recipients, especially children, may increase pneumococcal transmission and prevalence, leading to excess pneumococcal invasive

  12. Association of vaccine handling conditions with effectiveness of live attenuated influenza vaccine against H1N1pdm09 viruses in the United States.

    PubMed

    Caspard, Herve; Coelingh, Kathleen L; Mallory, Raburn M; Ambrose, Christopher S

    2016-09-30

    This analysis examined potential causes of the lack of vaccine effectiveness (VE) of live attenuated influenza vaccine (LAIV) against A/H1N1pdm09 viruses in the United States (US) during the 2013-2014 season. Laboratory studies have demonstrated reduced thermal stability of A/California/07/2009, the A/H1N1pdm09 strain utilized in LAIV from 2009 through 2013-2014. Post hoc analyses of a 2013-2014 test-negative case-control (TNCC) effectiveness study investigated associations between vaccine shipping conditions and LAIV lot effectiveness. Investigational sites provided the LAIV lot numbers administered to each LAIV recipient enrolled in the study, and the vaccine distributor used by the site for commercially purchased vaccine. Additionally, a review was conducted of 2009-2014 pediatric observational TNCC effectiveness studies of LAIV, summarizing effectiveness by type/subtype, season, and geographic location. From the 2013 to 2014 TNCC study, the proportion of LAIV recipients who tested positive for H1N1pdm09 was significantly higher among children who received a lot released between August 1 and September 15, 2013, compared with a lot shipped either earlier or later (21% versus 4%; P<0.01). A linear relationship was observed between the proportion of subjects testing positive for H1N1pdm09 and outdoor temperatures during truck unloading at distributors' central locations. The review of LAIV VE studies showed that in the 2010-2011 and 2013-2014 influenza seasons, no significant effectiveness of LAIV against H1N1pdm09 was demonstrated for the trivalent or quadrivalent formulations of LAIV in the US, respectively, in contrast to significant effectiveness against A/H3N2 and B strains during 2010-2014. This study showed that the lack of VE observed with LAIV in the US against H1N1pdm09 viruses was associated with exposure of some LAIV lots to temperatures above recommended storage conditions during US distribution, and is likely explained by the increased susceptibility

  13. Efficacy of single calfhood vaccination of elk with Brucella abortus strain 19

    USGS Publications Warehouse

    Roffe, T.J.; Jones, L.C.; Coffin, K.; Drew, M.L.; Sweeney, Steven J.; Hagius, S.D.; Elzer, P.H.; Davis, D.

    2004-01-01

    Brucellosis has been eradicated from cattle in the states of Wyoming, Montana, and Idaho, USA. However, free-ranging elk (Cervus elaphus) that use feedgrounds in the Greater Yellowstone Area (GYA) and bison (Bison bison) in Yellowstone and Grand Teton national parks still have high seroprevalence to the disease and have caused loss of brucellosis-free status in Wyoming. Management tools to control or eliminate the disease are limited; however, wildlife vaccination is among the methods currently used by wildlife managers in Wyoming. We conducted a controlled challenge study of single calfhood vaccination. Elk calves, caught in January and February of 1999 and 2000 and acclimated to captivity for 3 weeks, were randomly assigned to control or vaccinate groups. The vaccinate groups received Brucetta abortus vaccine strain 19 (S19) by hand-delivered intramuscular injection. Calves were raised to adulthood and bred at either 2.5 or 3.5 years of age for 2000 and 1999 captures, respectively. Eighty-nine (44 controls, 45 vaccinates) pregnant elk entered the challenge portion of the study. We challenged elk at mid-gestation with pathogenic B. abortus strain 2308 by intraconjunctival instillation. Abortion occurred in significantly more (P = 0.002) controls (42; 93%) than vaccinates (32; 71%), and vaccine protected 25% of the vaccinate group. We used Brucella culture of fetus/calf tissues to determine the efficacy of vaccination for preventing infection, and we found that the number of infected fetuses/calves did not differ between controls and vaccinates (P = 0.14). Based on these data, single calfhood vaccination with S19 has low efficacy, will likely have only little to moderate effect on Brucella prevalence in elk, and is unlikely to eradicate the disease in wildlife of the GYA.

  14. Genomic Analysis of Vaccine-Derived Poliovirus Strains in Stool Specimens by Combination of Full-Length PCR and Oligonucleotide Microarray Hybridization

    PubMed Central

    Laassri, Majid; Dragunsky, Eugenia; Enterline, Joan; Eremeeva, Tatiana; Ivanova, Olga; Lottenbach, Kathleen; Belshe, Robert; Chumakov, Konstantin

    2005-01-01

    Sabin strains of poliovirus used in the manufacture of oral poliovirus vaccine (OPV) are prone to genetic variations that occur during growth in cell cultures and the organisms of vaccine recipients. Such derivative viruses often have increased neurovirulence and transmissibility, and in some cases they can reestablish chains of transmission in human populations. Monitoring for vaccine-derived polioviruses is an important part of the worldwide campaign to eradicate poliomyelitis. Analysis of vaccine-derived polioviruses requires, as a first step, their isolation in cell cultures, which takes significant time and may yield viral stocks that are not fully representative of the strains present in the original sample. Here we demonstrate that full-length viral cDNA can be PCR amplified directly from stool samples and immediately subjected to genomic analysis by oligonucleotide microarray hybridization and nucleotide sequencing. Most fecal samples from healthy children who received OPV were found to contain variants of Sabin vaccine viruses. Sequence changes in the 5′ untranslated region were common, as were changes in the VP1-coding region, including changes in a major antigenic site. Analysis of stool samples taken from cases of acute flaccid paralysis revealed the presence of mixtures of recombinant polioviruses, in addition to the emergence of new sequence variants. Avoiding the need for cell culture isolation dramatically shortened the time needed for identification and analysis of vaccine-derived polioviruses and could be useful for preliminary screening of clinical samples. The amplified full-length viral cDNA can be archived and used to recover live virus for further virological studies. PMID:15956413

  15. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines.

    PubMed

    Liljeqvist, S; Ståhl, S

    1999-07-30

    The first scientific attempts to control an infectious disease can be attributed to Edward Jenner, who, in 1796 inoculated an 8-year-old boy with cowpox (vaccinia), giving the boy protection against subsequent challenge with virulent smallpox. Thanks to the successful development of vaccines, many major diseases, such as diphtheria, poliomyelitis and measles, are nowadays kept under control, and in the case of smallpox, the dream of eradication has been fulfilled. Yet, there is a growing need for improvements of existing vaccines in terms of increased efficacy and improved safety, besides the development of completely new vaccines. Better technological possibilities, combined with increased knowledge in related fields, such as immunology and molecular biology, allow for new vaccination strategies. Besides the classical whole-cell vaccines, consisting of killed or attenuated pathogens, new vaccines based on the subunit principle, have been developed, e.g. the Hepatitis B surface protein vaccine and the Haemophilus influenzae type b vaccine. Recombinant techniques are now dominating in the strive for an ideal vaccine, being safe and cheap, heat-stable and easy to administer, preferably single-dose, and capable of inducing broad immune response with life-long memory both in adults and in infants. This review will describe different recombinant approaches used in the development of novel subunit vaccines, including design and production of protein immunogens, the development of live delivery systems and the state-of-the-art for nucleic acids vaccines.

  16. Genetic and antigenic characterisation of serotype A FMD viruses from East Africa to select new vaccine strains

    PubMed Central

    Bari, Fufa D.; Parida, Satya; Tekleghiorghis, Tesfaalem; Dekker, Aldo; Sangula, Abraham; Reeve, Richard; Haydon, Daniel T.; Paton, David J.; Mahapatra, Mana

    2014-01-01

    Vaccine strain selection for emerging foot-and-mouth disease virus (FMDV) outbreaks in enzootic countries can be addressed through antigenic and genetic characterisation of recently circulating viruses. A total of 56 serotype A FMDVs isolated between 1998 and 2012, from Central, East and North African countries were characterised antigenically by virus neutralisation test using antisera to three existing and four candidate vaccine strains and, genetically by characterising the full capsid sequence data. A Bayesian analysis of the capsid sequence data revealed the viruses to be of either African or Asian topotypes with subdivision of the African topotype viruses into four genotypes (Genotypes I, II, IV and VII). The existing vaccine strains were found to be least cross-reactive (good matches observed for only 5.4–46.4% of the sampled viruses). Three bovine antisera, raised against A-EA-2007, A-EA-1981 and A-EA-1984 viruses, exhibited broad cross-neutralisation, towards more than 85% of the circulating viruses. Of the three vaccines, A-EA-2007 was the best showing more than 90% in-vitro cross-protection, as well as being the most recent amongst the vaccine strains used in this study. It therefore appears antigenically suitable as a vaccine strain to be used in the region in FMD control programmes. PMID:25171846

  17. [Anti-influenza vaccination in animals].

    PubMed

    Bublot, M

    2009-01-01

    Until recently, Influenza was considered as a veterinary problem in avian, swine and horse only. New influenza strains able to infect and cause a disease in dogs and cats emerged these last six years. The most widely used influenza veterinary vaccines are the inactivated adjuvanted vaccines which are based on whole or split virus. New technologies have allowed the development of new generation vaccines including modified-live and vector vaccines. Modified-live influenza vaccines are available for horses only but they are in development in other species. Vector vaccines are already in use in chickens (replicative fowlpox vector) and in horses (non-replicative canarypox vector). These vaccines induce a rapid cellular and humoral immunity. Experimental studies have also shown that these vector vaccines are protective in other domestic species. These vector vaccines are compatible with the "DIVA" strategy which consists in differentiating infected from vaccinated animals and which allows disease eradication. The successive use of vector and inactivated vaccines (heterologous "prime-boost") induces a superior protective immunity in domestic poultry and constitutes a promising strategy for the control of H5N1 infection.

  18. Strain Selection for Generation of O-Antigen-Based Glycoconjugate Vaccines against Invasive Nontyphoidal Salmonella Disease

    PubMed Central

    Saul, Allan; MacLennan, Calman A.; Micoli, Francesca; Rondini, Simona

    2015-01-01

    Nontyphoidal Salmonellae, principally S. Typhimurium and S. Enteritidis, are a major cause of invasive bloodstream infections in sub-Saharan Africa with no vaccine currently available. Conjugation of lipopolysaccharide O-antigen to a carrier protein constitutes a promising vaccination strategy. Here we describe a rational process to select the most appropriate isolates of Salmonella as source of O-antigen for developing a bivalent glycoconjugate vaccine. We screened a library of 30 S. Typhimurium and 21 S. Enteritidis in order to identify the most suitable strains for large scale O-antigen production and generation of conjugate vaccines. Initial screening was based on growth characteristics, safety profile of the isolates, O-antigen production, and O-antigen characteristics in terms of molecular size, O-acetylation and glucosylation level and position, as determined by phenol sulfuric assay, NMR, HPLC-SEC and HPAEC-PAD. Three animal isolates for each serovar were identified and used to synthesize candidate glycoconjugate vaccines, using CRM197 as carrier protein. The immunogenicity of these conjugates and the functional activity of the induced antibodies was investigated by ELISA, serum bactericidal assay and flow cytometry. S. Typhimurium O-antigen showed high structural diversity, including O-acetylation of rhamnose in a Malawian invasive strain generating a specific immunodominant epitope. S. Typhimurium conjugates provoked an anti-O-antigen response primarily against the O:5 determinant. O-antigen from S. Enteritidis was structurally more homogeneous than from S. Typhimurium, and no idiosyncratic antibody responses were detected for the S. Enteritidis conjugates. Of the three initially selected isolates, two S. Typhimurium (1418 and 2189) and two S. Enteritidis (502 and 618) strains generated glycoconjugates able to induce high specific antibody levels with high breadth of serovar-specific strain coverage, and were selected for use in vaccine production. The

  19. [Comparative analysis on the complete genome sequence of mumps epidemic strain and mumps vaccine strain S79 isolated in Zhejiang province, China between year 2005 and 2010].

    PubMed

    Zhang, Dong-Yan; Feng, Yan; Zhong, Shu-Ling; Lu, Yi-Yu; Zhuang, Fang-Cheng; Xu, Chang-Ping

    2012-03-01

    To compare the differences in the complete genome sequence between mumps epidemic strain and mumps vaccine strain S79 isolated in Zhejiang province. A total of 4 mumps epidemic strains, which were separated from Zhejiang province during 2005 to 2010, named as ZJ05-1, ZJ06-3, ZJ08-1 and ZJ10-1 were selected in the study. The complete genome sequences were amplified using RT-PCR. The genetic differences between vaccine strain S79 and other genotype strains were compared; while the genetic-distance was calculated and the evolution was analyzed. The biggest difference between the 4 epidemic strains and the vaccine strain S79 was found on the membrane associated protein gene; whose average nucleotide differential number was 42.5 +/- 3.0 and the average variant ratio was 13.6%; while the mean amino acid differential number was 12.8 +/- 1.5 and the average variant ratio was 22.4%. The smallest difference among the 4 epidemic strains and the vaccine strain was found in stromatin genes, whose average nucleotide differential number was 73.8 +/- 2.5 and the average variant ratio was 5.9%; while the mean amino acid differential number was 3.0 +/- 0.8 and the average variant ratio was 0.8%. The dn/ds value of the stromatin genes of the 4 epidemic strains reached the highest, as 0.6526; but without any positive pressure (dn/ds < 1, chi2 = 0.87, P > 0.05). There were mutations happened on the known antigen epitope, as 8th amino acid of membrane associated protein genes and on the 336th and 356th amino acid of hemagglutinin/neuraminidase proteins. Compared with the vaccine strain, the glycosylation sites of ZJ05-1, ZJ06-3, ZJ08-1 and ZJ10-1 increased 1, 1, 2 and 2 respectively. The complete amino acid sequence of all strains showed that there were 17 characteristic sites found on the genotype-F mumps strain. Within the complete genome, the genetic-distance between epidemic strains and vaccine strains in Zhejiang province (0.071) was significantly larger than the genetic

  20. Determinants of monovalent oral polio vaccine mutagenesis in vaccinated elderly people.

    PubMed

    Boot, Hein J; Sonsma, Jan; van Nunen, Femke; Abbink, Frithjofna; Kimman, Tjeerd G; Buisman, Anne-Marie

    2007-06-11

    Live oral poliovirus vaccine (OPV) strains can mutate and recombine during replication in the host. Trivalent OPV has long been used to restrain wild-type poliovirus in developing countries. However, recently WHO advocates using monovalent OPV (mOPV) to finally eradicate poliovirus world-wide. We analysed polioviruses recovered from the faeces of 101 elderly patients (divided into three groups by immune status) challenged with mOPV-1 or mOPV-3. A high number of nucleotide mutations was found in the viral capsid-protein-encoding regions. Some of these mutations caused amino acid changes in or near regions with neutralizing epitopes, especially in mOPV-1-derived strains. The quantities of mutations in recovered poliovirus strains correlated with prevaccination immune status (seronegatives have more mutations) and excretion duration. Duration of excretion appears to be the dominant factor for the accumulation of mutations in mOPV-derived strains in vaccinated elderly people.

  1. The Effect of Vaccination on the Evolution and Population Dynamics of Avian Paramyxovirus-1

    PubMed Central

    Hudson, Peter J.; Poss, Mary

    2010-01-01

    Newcastle Disease Virus (NDV) is a pathogenic strain of avian paramyxovirus (aPMV-1) that is among the most serious of disease threats to the poultry industry worldwide. Viral diversity is high in aPMV-1; eight genotypes are recognized based on phylogenetic reconstruction of gene sequences. Modified live vaccines have been developed to decrease the economic losses caused by this virus. Vaccines derived from avirulent genotype II strains were developed in the 1950s and are in use globally, whereas Australian strains belonging to genotype I were developed as vaccines in the 1970s and are used mainly in Asia. In this study, we evaluated the consequences of attenuated live virus vaccination on the evolution of aPMV-1 genotypes. There was phylogenetic incongruence among trees based on individual genes and complete coding region of 54 full length aPMV-1 genomes, suggesting that recombinant sequences were present in the data set. Subsequently, five recombinant genomes were identified, four of which contained sequences from either genotype I or II. The population history of vaccine-related genotype II strains was distinct from other aPMV-1 genotypes; genotype II emerged in the late 19th century and is evolving more slowly than other genotypes, which emerged in the 1960s. Despite vaccination efforts, genotype II viruses have experienced constant population growth to the present. In contrast, other contemporary genotypes showed population declines in the late 1990s. Additionally, genotype I and II viruses, which are circulating in the presence of homotypic vaccine pressure, have unique selection profiles compared to nonvaccine-related strains. Collectively, these data show that vaccination with live attenuated viruses has changed the evolution of aPMV-1 by maintaining a large effective population size of a vaccine-related genotype, allowing for coinfection and recombination of vaccine and wild type strains, and by applying unique selective pressures on viral glycoproteins

  2. Curative potential of GM-CSF-secreting tumor cell vaccines on established orthotopic liver tumors: mechanisms for the superior antitumor activity of live tumor cell vaccines.

    PubMed

    Tai, Kuo-Feng; Chen, Ding-Shinn; Hwang, Lih-Hwa

    2004-01-01

    In preclinical studies, tumor cells genetically engineered to secrete cytokines, hereafter referred to as tumor cell vaccines, can often generate systemic antitumor immunity. This study investigated the therapeutic effects of live or irradiated tumor cell vaccines that secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) on established orthotopic liver tumors. Experimental results indicated that two doses (3 x 10(7) cells per dose) of irradiated tumor cell vaccines were therapeutically ineffective, whereas one dose (3 x 10(6) cells) of live tumor cell vaccines caused complete tumor regression. In vivo depletion of CD8+ T cells, but not natural killer cells, restored tumor formation in the live vaccine-treated animals. Additionally, the treatment of cells with live vaccine induced markedly higher levels of cytotoxic T lymphocyte activity than the irradiated vaccines in the draining lymph nodes. The higher levels of cytokine and antigen loads could partly explain the superior antitumor activity of live tumor cell vaccines, but other unidentified mechanisms could also play a role in the early T cell activation in the lymph nodes. A protocol using multiple and higher dosages of irradiated tumor cell vaccines also caused significant regression of liver tumors. These results suggest that the GM-CSF-secreting tumor cell vaccines are highly promising for orthotopic liver tumors if higher levels of immune responses are elicited during early tumor development. Copyright 2004 National Science Council, ROC and S. Karger AG, Basel

  3. Gamma-interferon exerts a critical early restriction on replication and dissemination of yellow fever virus vaccine strain 17D-204.

    PubMed

    Lam, L K Metthew; Watson, Alan M; Ryman, Kate D; Klimstra, William B

    2018-01-01

    Live attenuated viruses are historically among the most effective viral vaccines. Development of a safe vaccine requires the virus to be less virulent, a phenotype that is historically arrived by empirical evaluation often leaving the mechanisms of attenuation unknown. The yellow fever virus 17D live attenuated vaccine strain has been developed as a delivery vector for heterologous antigens; however, the mechanisms of attenuation remain elusive. The successful and safe progress of 17D as a vaccine vector and the development of live attenuated vaccines (LAVs) to related flaviviruses requires an understanding of the molecular mechanisms leading to attenuation. Using subcutaneous infection of interferon-deficient mouse models of wild type yellow fever virus (WT YFV) pathogenesis and 17D-mediated immunity, we found that, in the absence of type I IFN (IFN-α/β), type II interferon (IFN-γ) restricted 17D replication, but not that of WT YFV, by 1-2 days post-infection. In this context, IFN-γ responses protected 17D-infected animals from mortality, largely restricted the virus to lymphoid organs, and eliminated viscerotropic disease signs such as steatosis in the liver and inflammatory cell infiltration into the spleen. However, WT YFV caused a disseminated infection, gross liver pathology, and rapid death of the animals. In vitro, IFN-γ treatment of myeloid cells suppressed the replication of 17D significantly more than that of WT YFV, suggesting a direct differential effect on 17D virus replication. Together these data indicate that an important mechanism of 17D attenuation in vivo is increased sensitivity to IFN-γ stimulated responses elicited early after infection.

  4. Influenza Vaccine Effectiveness in the United States during the 2015-2016 Season.

    PubMed

    Jackson, Michael L; Chung, Jessie R; Jackson, Lisa A; Phillips, C Hallie; Benoit, Joyce; Monto, Arnold S; Martin, Emily T; Belongia, Edward A; McLean, Huong Q; Gaglani, Manjusha; Murthy, Kempapura; Zimmerman, Richard; Nowalk, Mary P; Fry, Alicia M; Flannery, Brendan

    2017-08-10

    The A(H1N1)pdm09 virus strain used in the live attenuated influenza vaccine was changed for the 2015-2016 influenza season because of its lack of effectiveness in young children in 2013-2014. The Influenza Vaccine Effectiveness Network evaluated the effect of this change as part of its estimates of influenza vaccine effectiveness in 2015-2016. We enrolled patients 6 months of age or older who presented with acute respiratory illness at ambulatory care clinics in geographically diverse U.S. sites. Using a test-negative design, we estimated vaccine effectiveness as (1-OR)×100, in which OR is the odds ratio for testing positive for influenza virus among vaccinated versus unvaccinated participants. Separate estimates were calculated for the inactivated vaccines and the live attenuated vaccine. Among 6879 eligible participants, 1309 (19%) tested positive for influenza virus, predominantly for A(H1N1)pdm09 (11%) and influenza B (7%). The effectiveness of the influenza vaccine against any influenza illness was 48% (95% confidence interval [CI], 41 to 55; P<0.001). Among children 2 to 17 years of age, the inactivated influenza vaccine was 60% effective (95% CI, 47 to 70; P<0.001), and the live attenuated vaccine was not observed to be effective (vaccine effectiveness, 5%; 95% CI, -47 to 39; P=0.80). Vaccine effectiveness against A(H1N1)pdm09 among children was 63% (95% CI, 45 to 75; P<0.001) for the inactivated vaccine, as compared with -19% (95% CI, -113 to 33; P=0.55) for the live attenuated vaccine. Influenza vaccines reduced the risk of influenza illness in 2015-2016. However, the live attenuated vaccine was found to be ineffective among children in a year with substantial inactivated vaccine effectiveness. Because the 2016-2017 A(H1N1)pdm09 strain used in the live attenuated vaccine was unchanged from 2015-2016, the Advisory Committee on Immunization Practices made an interim recommendation not to use the live attenuated influenza vaccine for the 2016-2017 influenza

  5. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine.

    PubMed

    Laurens, Matthew B; Kouriba, Bourema; Bergmann-Leitner, Elke; Angov, Evelina; Coulibaly, Drissa; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Blackwelder, William C; Wu, Yukun; Cohen, Joe; Ballou, W Ripley; Vekemans, Johan; Lanar, David E; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine; Heppner, D Gray; Doumbo, Ogobara K; Plowe, Christopher V; Thera, Mahamadou A

    2017-01-01

    The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry

  6. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine

    PubMed Central

    Kouriba, Bourema; Bergmann-Leitner, Elke; Angov, Evelina; Coulibaly, Drissa; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Blackwelder, William C.; Wu, Yukun; Cohen, Joe; Ballou, W. Ripley; Vekemans, Johan; Lanar, David E.; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine; Heppner, D. Gray; Doumbo, Ogobara K.; Plowe, Christopher V.; Thera, Mahamadou A.

    2017-01-01

    The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry

  7. Co-administration of live measles and yellow fever vaccines and inactivated pentavalent vaccines is associated with increased mortality compared with measles and yellow fever vaccines only. An observational study from Guinea-Bissau.

    PubMed

    Fisker, Ane Bærent; Ravn, Henrik; Rodrigues, Amabelia; Østergaard, Marie Drivsholm; Bale, Carlito; Benn, Christine Stabell; Aaby, Peter

    2014-01-23

    Studies from low-income countries indicate that co-administration of inactivated diphtheria-tetanus-pertussis (DTP) vaccine and live attenuated measles vaccine (MV) is associated with increased mortality compared with receiving MV only. Pentavalent (DTP-H. Influenza type B-Hepatitis B) vaccine is replacing DTP in many low-income countries and yellow fever vaccine (YF) has been introduced to be given together with MV. Pentavalent and YF vaccines were introduced in Guinea-Bissau in 2008. We investigated whether co-administration of pentavalent vaccine with MV and yellow fever vaccine has similar negative effects. In 2007-2011, we conducted a randomised placebo-controlled trial of vitamin A at routine vaccination contacts among children aged 6-23 months in urban and rural Guinea-Bissau. In the present study, we included 2331 children randomised to placebo who received live vaccines only (MV or MV+YF) or a combination of live and inactivated vaccines (MV+DTP or MV+YF+pentavalent). Mortality was compared in Cox proportional hazards models stratified for urban/rural enrolment adjusted for age and unevenly distributed baseline factors. While DTP was still used 685 children received MV only and 358 MV+DTP; following the change in programme, 940 received MV+YF only and 348 MV+YF+pentavalent. During 6 months of follow-up, the adjusted mortality rate ratio (MRR) for co-administered live and inactivated vaccines compared with live vaccines only was 3.24 (1.20-8.73). For MV+YF+pentavalent compared with MV+YF only, the adjusted MRR was 7.73 (1.79-33.4). In line with previous studies of DTP, the present results indicate that pentavalent vaccine co-administered with MV and YF is associated with increased mortality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Evaluation of Brucella abortus Phosphoglucomutase (pgm) Mutant as a New Live Rough-Phenotype Vaccine

    PubMed Central

    Ugalde, Juan Esteban; Comerci, Diego José; Leguizamón, M. Susana; Ugalde, Rodolfo Augusto

    2003-01-01

    Brucella abortus S19 is the vaccine most frequently used against bovine brucellosis. Although it induces good protection levels, it cannot be administered to pregnant cattle, revaccination is not advised due to interference in the discrimination between infected and vaccinated animals during immune-screening procedures, and the vaccine is virulent for humans. Due to these reasons, there is a continuous search for new bovine vaccine candidates that may confer protection levels comparable to those conferred by S19 but without its disadvantages. A previous study characterized the phenotype associated with the phosphoglucomutase (pgm) gene disruption in Brucella abortus S2308, as well as the possible role for the smooth lipopolysaccharide (LPS) in virulence and intracellular multiplication in HeLa cells (J. E. Ugalde, C. Czibener, M. F. Feldman, and R. A. Ugalde, Infect. Immun. 68:5716-5723, 2000). In this report, we analyze the protection, proliferative response, and cytokine production induced in BALB/c mice by a Δpgm deletion strain. We show that this strain synthesizes O antigen with a size of approximately 45 kDa but is rough. This is due to the fact that the Δpgm strain is unable to assemble the O side chain in the complete LPS. Vaccination with the Δpgm strain induced protection levels comparable to those induced by S19 and generated a proliferative splenocyte response and a cytokine profile typical of a Th1 response. On the other hand, we were unable to detect a specific anti-O-antigen antibody response by using the fluorescence polarization assay. In view of these results, the possibility that the Δpgm mutant could be used as a vaccination strain is discussed. PMID:14573645

  9. Live attenuated vaccines: Historical successes and current challenges.

    PubMed

    Minor, Philip D

    2015-05-01

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  10. Safety and vaccine efficacy of a glycoprotein G deficient strain of infectious laryngotracheitis virus delivered in ovo.

    PubMed

    Legione, Alistair R; Coppo, Mauricio J C; Lee, Sang-Won; Noormohammadi, Amir H; Hartley, Carol A; Browning, Glenn F; Gilkerson, James R; O'Rourke, Denise; Devlin, Joanne M

    2012-11-26

    Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes respiratory disease in chickens and is commonly controlled by vaccination with conventionally attenuated vaccines. Glycoprotein G (gG) is a virulence factor in ILTV and a gG deficient strain of ILTV (ΔgG-ILTV) has shown potential for use as a vaccine. In the poultry industry vaccination via drinking water is common, but technology is now available to allow quicker and more accurate in ovo vaccination of embryos at 18 days of incubation. In this study ΔgG-ILTV was delivered to chicken embryos at three different doses (10(2), 10(3) and 10(4) plaque forming units per egg) using manual in ovo vaccination. At 20 days after hatching, birds were challenged intra-tracheally with wild type ILTV and protection was measured. In ovo vaccination was shown to be safe, as there were no developmental differences between birds from hatching up to 20 days of age, as measured by weight gain. The highest dose of vaccine was the most efficacious, resulting in a weight gain not significantly different from unvaccinated/unchallenged birds seven days after challenge. In contrast, birds vaccinated with the lowest dose showed weight gains not significantly different from unvaccinated/challenged birds. Gross pathology and histopathology of the trachea reflected these observations, with birds vaccinated with the highest dose having less severe lesions. However, qPCR results suggested the vaccine did not prevent the challenge virus replicating in the trachea. This study is the first to assess in ovo delivery of a live attenuated ILTV vaccine and shows that in ovo vaccination with ΔgG-ILTV can be both safe and efficacious. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. [Antigenic determination of human anti-rabies vaccine against viral street strains common in the wild animal population in Poland].

    PubMed

    Seroka, D

    1994-01-01

    The aim of the study was to compare the antigen properties of a vaccine strain with street strains isolated from various animal hosts throughout the country. Investigation was carried out using monoclonal antibodies against NC protein. Also, two tests were carried out: the modified NIH test for potency and the neutralization test using the sera of people vaccinated against rabies (PM vaccine strain). The investigated street strains were used in both tests as the challenge viruses. A suspension of these strains diluted five times made it possible to avoid extreme values of animal survival (0% or 100%) what, consequently, made calculation of the LD50 value easier. A different rabies virus serotype (EBLI virus) in the population of insectivore bats Eptesicus serotinus and antigen variants within the first serotype, having common epitopes with strains of the vaccine virus SAD B19 and the polar rabies virus, were found to be present throughout the country. The concentrated and purified vaccine containing the PM virus did not protect mice against infection with strains of viruses isolated from bats (protection index 10 and lower). For the remaining strains, depending on the animal source of their isolation, the protection index ranged from 10 to 1000 and higher. The properties neutralizing a dose of 5 i.u./ml of serum from the subject inoculated with the vaccine containing the PM strain were similar for all the investigated strains; 0,5 i.u./ml did not neutralize the strain isolated from a racoon dog.

  12. Vaccination against typhoid fever: present status.

    PubMed Central

    Ivanoff, B.; Levine, M. M.; Lambert, P. H.

    1994-01-01

    Typhoid fever remains an underestimated important health problem in many developing countries, causing more than 600,000 deaths annually in the world. Because of the reactogenicity of the parenteral, killed whole-cell vaccine, research has been oriented towards vaccination orally using live organisms and purified antigen. Live vaccine Ty21a, given by the oral route, has been extensively tested in several studies in developing countries. Its liquid formulation was the most effective, providing more than 60% protection after 7 years of follow-up. A Vi polysaccharide vaccine has been elaborated and provided more than 65% protection; after 3 years of follow-up the Vi antibody level was still at a high level. These two vaccines are therefore candidates for use in public health control programmes. Before such use, however, they need further evaluation for safety and protective efficacy when administered to the EPI-targeted age groups. The question of whether typhoid fever vaccines interfere with the response to simultaneously administered measles vaccine must also be studied. New live vaccines, given by the oral route in one dose, have been constructed through genetic engineering. The first results are promising, but they must be improved before use in a large-scale study. These strains could be used as live vector to deliver foreign antigens to the intestinal mucosa. PMID:7867143

  13. Construction, characterization and evaluation of the protective efficacy of the Streptococcus suis double mutant strain ΔSsPep/ΔSsPspC as a live vaccine candidate in mice.

    PubMed

    Hu, Jin; You, Wujin; Wang, Bin; Hu, Xueying; Tan, Chen; Liu, Jinlin; Chen, Huanchun; Bei, Weicheng

    2015-01-01

    Streptococcus suis serotype 2 (S. suis 2) causes sepsis and meningitis in piglets and humans, and results in one of the most serious bacterial diseases affecting the production of commercial pigs around the world. Due to the failure of the current inactivated vaccine to protect against the disease, development of a new attenuated live vaccine against S. suis 2 by deleting essential virulence factors is urgently needed. We have previously reported the construction and characterization of an SsPep single gene deletion mutant strain ΔSsPep based on S. suis 2. Our previous results have shown that SsPep plays a critical role in the pathogenesis of S. suis 2. In this study, a precisely defined double-deletion mutant ΔSsPep/ΔSsPspC of S. suis 2 without antibiotic-resistance markers was constructed based on ΔSsPep, and the levels of virulence of the wild-type (WT) and ΔSsPep/ΔSsPspC were compared in a mouse experimental infection model. We demonstrated that the double mutant ΔSsPep/ΔSsPspC was less virulent than the WT, and could induce a noticeable antibody response. Analysis of IgG subclasses (IgG1 and IgG2a) indicated that both Th1 and Th2 responses were induced by ΔSsPep/ΔSsPspC, although the IgG2a (Th1) response predominated over the IgG1 (Th2) response. Moreover, ΔSsPep/ΔSsPspC could confer 90% protective efficacy against challenge with a lethal dose of fully virulent S. suis 2. Taken together, these data demonstrate that ΔSsPep/ΔSsPspC can be used as an effective live vaccine and provide a novel strategy against infection of S. suis 2. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Bovine herpesvirus 1 modified live virus vaccines for cattle reproduction: Balancing protection with undesired effects.

    PubMed

    Chase, Christopher C L; Fulton, Robert W; O'Toole, Donal; Gillette, Benjamin; Daly, Russell F; Perry, George; Clement, Travis

    2017-07-01

    Bovine herpesvirus 1 (BoHV-1) has long been associated with reproductive failure in cattle following infection of the ovary and/or fetus. Vaccination prior to breeding has been an effective approach to lessen the impact of BoHV-1 on reproduction. Prior studies in the 1980s and 1990s established the susceptibility of the ovary and particularly the corpus luteum (CL) to BoHV-1 infection. A series of studies at breeding time established that: (1) in naïve animals, the CL was the major target of BoHV-1 pathology; (2) CL lesions occurred within 4-9 days after estrus; (3) similar lesions was seen with BoHV-1 MLV vaccines; (4) ovarian lesions varied by the vaccine strain used; (5) progesterone decreased with or without CL lesions; and (6) following reactivation of BoHV-1 latent infection, ovaries could become reinfected in the face of BoHV-1 immunity. Large scale field studies demonstrated that conception was highest in animals previously vaccinated and boostered with inactivated vaccine compared to animals revaccinated with MLV. In the early 2000s, to get a label claim to vaccinate calves nursing pregnant cows, safety study outlines were approved by USDA-APHIS CVB. These studies were designed to determine the effect of revaccination with MLV during pregnancy on previously vaccinated cows and were not rigorous enough to confirm complete fetal safety. As designed these studies showed no difference in reproductive loss between the previously vaccinated animals and the animals revaccinated ∼4, 7 and 9 months later, leading to the label approval for MLV vaccination in pregnant cows. Subsequent investigations by diagnostic laboratories found an increase in BoHV-1 reproductive loss after the approval for use in pregnant animals. A method was developed to differentiate IBR vaccine strains from field strains. Analysis of viruses from 31 cases from 2009-2016 indicated that all 31 isolates matched with vaccine strains. Going forward, it will be necessary to develop vaccine

  15. Field evaluation of a canine parvovirus vaccination program, using feline origin modified live virus vaccine.

    PubMed

    Gordon, J C; Rogers, W A

    1982-06-15

    Antibody titers measured by hemagglutination inhibition testing were determined in previously vaccinated dogs at the time of booster vaccination and 2 weeks later. All vaccines consisted of modified live panleukopenia virus. The booster injection was administered approximately 6 months after the initial parvovirus vaccination series was given. Fecal and serum specimens were collected immediately before and 2 weeks after administration of the booster vaccine for hemagglutination and hemagglutination inhibition testing, respectively. All dogs were privately owned and were from the Columbus, Ohio, area but were from environments with various exposure potentials to canine parvovirus. Results of hemagglutination (HA) testing on feces were negative in all dogs before and after booster vaccination. Therefore, these vaccinations did not interfere with interpretation of HA testing of feces. Results of serum hemagglutination inhibition (HI) testing indicated that 50% of the dogs had serum titers less than 1:80 prior to vaccination and that, of these dogs, 65.2% still had serum titers less than 1:80 2 weeks after the booster vaccination. Only 10.9% of all dogs had a marked increase in serum HI titer after the booster vaccination, indicating that overall serologic response to vaccination was poor. High HI titers (greater than or equal to 1:640) were associated with exposure to other dogs and cats in the neighborhood or to dogs suspected of having had parvovirus infection.

  16. Occurrence of severe gastroenteritis in pups after canine parvovirus vaccine administration: a clinical and laboratory diagnostic dilemma.

    PubMed

    Decaro, Nicola; Desario, Costantina; Elia, Gabriella; Campolo, Marco; Lorusso, Alessio; Mari, Viviana; Martella, Vito; Buonavoglia, Canio

    2007-01-26

    A total of 29 faecal samples collected from dogs with diarrhoea following canine parvovirus (CPV) vaccination were tested by minor groove binder (MGB) probe assays for discrimination between CPV vaccine and field strains and by diagnostic tests for detection of other canine pathogens. Fifteen samples tested positive only for CPV field strains; however, both vaccine and field strains were detected in three samples. Eleven samples were found to contain only the vaccine strain, although eight of them tested positive for other pathogens of dogs. Only three samples were found to contain the vaccine strain without evidence of canine pathogens. The present study confirms that most cases of parvovirus-like disease occurring shortly after vaccination are related to infection with field strains of canine parvovirus type 2 (CPV-2) rather than to reversion to virulence of the modified live virus contained in the vaccine.

  17. Immune responses of bison and efficacy after booster vaccination with Brucella abortus strain RB51

    USDA-ARS?s Scientific Manuscript database

    Thirty-one bison heifers were randomly assigned to saline (control; n=7) or single vaccination (n=24) with 1010 CFU of B. abortus strain RB51 (RB51). Some vaccinated bison were randomly selected for booster vaccination with 10**10 CFU of RB51 at 11 months after initial vaccination (n=16). When comp...

  18. Live-attenuated tetravalent dengue vaccines: The needs and challenges of post-licensure evaluation of vaccine safety and effectiveness.

    PubMed

    Wichmann, Ole; Vannice, Kirsten; Asturias, Edwin J; de Albuquerque Luna, Expedito José; Longini, Ira; Lopez, Anna Lena; Smith, Peter G; Tissera, Hasitha; Yoon, In-Kyu; Hombach, Joachim

    2017-10-09

    Since December 2015, the first dengue vaccine has been licensed in several Asian and Latin American countries for protection against disease from all four dengue virus serotypes. While the vaccine demonstrated an overall good safety and efficacy profile in clinical trials, some key research questions remain which make risk-benefit-assessment for some populations difficult. As for any new vaccine, several questions, such as very rare adverse events following immunization, duration of vaccine-induced protection and effectiveness when used in public health programs, will be addressed by post-licensure studies and by data from national surveillance systems after the vaccine has been introduced. However, the complexity of dengue epidemiology, pathogenesis and population immunity, as well as some characteristics of the currently licensed vaccine, and potentially also future, live-attenuated dengue vaccines, poses a challenge for evaluation through existing monitoring systems, especially in low and middle-income countries. Most notable are the different efficacies of the currently licensed vaccine by dengue serostatus at time of first vaccination and by dengue virus serotype, as well as the increased risk of dengue hospitalization among young vaccinated children observed three years after the start of vaccination in one of the trials. Currently, it is unknown if the last phenomenon is restricted to younger ages or could affect also seronegative individuals aged 9years and older, who are included in the group for whom the vaccine has been licensed. In this paper, we summarize scientific and methodological considerations for public health surveillance and targeted post-licensure studies to address some key research questions related to live-attenuated dengue vaccines. Countries intending to introduce a dengue vaccine should assess their capacities to monitor and evaluate the vaccine's effectiveness and safety and, where appropriate and possible, enhance their surveillance

  19. Progress towards Rapid Detection of Measles Vaccine Strains: a Tool To Inform Public Health Interventions

    PubMed Central

    2016-01-01

    ABSTRACT Rapid differentiation of vaccine from wild-type strains in suspect measles cases is a valuable epidemiological tool that informs the public health response to this highly infectious disease. Few public health laboratories sequence measles virus-positive specimens to determine genotype, and the vaccine-specific real-time reverse transcriptase PCR (rRT-PCR) assay described by F. Roy et al. (J. Clin. Microbiol. 55:735–743, 2017, https://doi.org/10.1128/JCM.01879-16) offers a rapid, easily adoptable method to identify measles vaccine strains in suspect cases. PMID:28003421

  20. Progress towards Rapid Detection of Measles Vaccine Strains: a Tool To Inform Public Health Interventions.

    PubMed

    Hacker, Jill K

    2017-03-01

    Rapid differentiation of vaccine from wild-type strains in suspect measles cases is a valuable epidemiological tool that informs the public health response to this highly infectious disease. Few public health laboratories sequence measles virus-positive specimens to determine genotype, and the vaccine-specific real-time reverse transcriptase PCR (rRT-PCR) assay described by F. Roy et al. (J. Clin. Microbiol. 55:735-743, 2017, https://doi.org/10.1128/JCM.01879-16) offers a rapid, easily adoptable method to identify measles vaccine strains in suspect cases. Copyright © 2017 American Society for Microbiology.

  1. Five-year antibody persistence in children after one dose of inactivated or live attenuated hepatitis A vaccine.

    PubMed

    Zhang, Zhilun; Zhu, Xiangjun; Hu, Yuansheng; Liang, Miao; Sun, Jin; Song, Yufei; Yang, Qi; Ji, Haiquan; Zeng, Gang; Song, Lifei; Chen, Jiangting

    2017-06-03

    In China, both inactivated hepatitis A (HA) vaccine and live attenuated HA vaccine are available. We conducted a trial to evaluate 5-year immune persistence induced by one dose of inactivated or live attenuated HA vaccines in children. Subjects with no HA vaccination history had randomly received one dose of inactivated or live attenuated HA vaccine at 18-60 months of age. Anti-HAV antibody concentrations were measured before vaccination and at the first, second, and fifth year after vaccination. Suspected cases of hepatitis A were monitored during the study period. A total of 332 subjects were enrolled and 182 provided evaluable serum samples at all planned time points. seropositive rate at 5 y was 85.9% in the inactivated HA vaccine group and 90.7% in the live attenuated HA vaccine group. GMCs were 76.3% mIU/ml (95% CI: 61.7 - 94.4) and 66.8mIU/ml (95% CI: 57.8 - 77.3), respectively. No significant difference in antibody persistence between 2 groups was found. No clinical hepatitis A case was reported. A single dose of an inactivated or live attenuated HA vaccine at 18-60 months of age resulted in high HAV seropositive rate and anti-HAV antibody concentrations that lasted for at least 5 y.

  2. Humoral response and protection from experimental challenge following vaccination of raccoon pups with a modified-live canine distemper virus vaccine.

    PubMed

    Paré, J A; Barker, I K; Crawshaw, G J; McEwen, S A; Carman, P S; Johnson, R P

    1999-07-01

    Eight 8-wk-old raccoon pups (Procyon lotor) with maternal canine distemper virus (CDV) neutralizing antibodies (NAb) and 24 8-wk-old seronegative pups were administered a commercial modified-live CDV vaccine (Galaxy, D, Solvay Animal Health, Inc., Kitchener, Ontario, Canada). All 24 seronegative raccoons had detectable serum CDV NAb titers 14 days after the initial dose. Titers rose to maximum levels 4 wk post-vaccination. Mean titers for groups of vaccinated seronegative pups were maintained between 1:256 and 1:2,048 for the remainder of the 3 mo observation period. Geometric means of the serum CDV NAb titer of eight seronegative pups given a single vaccine dose at 8 wk of age did not differ significantly from those of eight pups that were given serial doses at 8, 12, and 16 wk of age, or from those of eight pups vaccinated once at 16 wk of age. Seven unvaccinated 8-wk-old raccoon pups used as controls remained seronegative throughout the trial. Seven out of eight 8-wk-old pups with maternal antibodies, vaccinated at 8, 12, and 16 wk of age, failed to develop a rise in their CDV NAb titers until at least 18 wk of age, 2 wk after the third vaccination. Titers in eight unvaccinated raccoons with maternal antibodies declined steadily to undetectable levels at 20 wk of age. A half-life of 10.55 days was calculated for maternally-derived CDV NAb in raccoon pups. Sixteen vaccinated raccoons were protected from clinical disease following experimental oronasal challenge with a virulent raccoon strain of CDV, 13 to 23 wk after vaccination. Serum CDV NAb titers at the time of challenge ranged from 1:12 to 1:384 and increased during the period of observation. Three of four unvaccinated seronegative raccoons used as controls failed to mount any detectable CDV NAb and were euthanatized after developing clinical signs of canine distemper 26, 29, and 30 days post-challenge (PC). Necropsies confirmed the diagnosis. The fourth control raccoon exhibited transient equivocal clinical

  3. Full Genome Characterisation of Bluetongue Virus Serotype 6 from the Netherlands 2008 and Comparison to Other Field and Vaccine Strains

    PubMed Central

    Maan, Sushila; Maan, Narender S.; van Rijn, Piet A.; van Gennip, René G. P.; Sanders, Anna; Wright, Isabel M.; Batten, Carrie; Hoffmann, Bernd; Eschbaumer, Michael; Oura, Chris A. L.; Potgieter, Abraham C.; Nomikou, Kyriaki; Mertens, Peter P.C.

    2010-01-01

    In mid September 2008, clinical signs of bluetongue (particularly coronitis) were observed in cows on three different farms in eastern Netherlands (Luttenberg, Heeten, and Barchem), two of which had been vaccinated with an inactivated BTV-8 vaccine (during May-June 2008). Bluetongue virus (BTV) infection was also detected on a fourth farm (Oldenzaal) in the same area while testing for export. BTV RNA was subsequently identified by real time RT-PCR targeting genome-segment (Seg-) 10, in blood samples from each farm. The virus was isolated from the Heeten sample (IAH “dsRNA virus reference collection” [dsRNA-VRC] isolate number NET2008/05) and typed as BTV-6 by RT-PCR targeting Seg-2. Sequencing confirmed the virus type, showing an identical Seg-2 sequence to that of the South African BTV-6 live-vaccine-strain. Although most of the other genome segments also showed very high levels of identity to the BTV-6 vaccine (99.7 to 100%), Seg-10 showed greatest identity (98.4%) to the BTV-2 vaccine (RSAvvv2/02), indicating that NET2008/05 had acquired a different Seg-10 by reassortment. Although Seg-7 from NET2008/05 was also most closely related to the BTV-6 vaccine (99.7/100% nt/aa identity), the Seg-7 sequence derived from the blood sample of the same animal (NET2008/06) was identical to that of the Netherlands BTV-8 (NET2006/04 and NET2007/01). This indicates that the blood contained two different Seg-7 sequences, one of which (from the BTV-6 vaccine) was selected during virus isolation in cell-culture. The predominance of the BTV-8 Seg-7 in the blood sample suggests that the virus was in the process of reassorting with the northern field strain of BTV-8. Two genome segments of the virus showed significant differences from the BTV-6 vaccine, indicating that they had been acquired by reassortment event with BTV-8, and another unknown parental-strain. However, the route by which BTV-6 and BTV-8 entered northern Europe was not established. PMID:20428242

  4. [Attenuated rabies virus, ERA strain, in cattle and dogs vaccinated with multiple doses].

    PubMed

    Titoli, F; Pestalozza, S; Irsara, A; Palliola, E; Frescura, T; Civardi, A

    1982-01-01

    Investigation on the vaccination of 18 cattle and 5 dogs against rabies is reported. Each animal received multiple doses of ERA strain vaccine intramuscularly in the gluteal or masseter region. The saliva, the brain and salivary glands of the vaccinated animals were examined to detect the presence of ERA virus using immunofluorescent test and mouse inoculation. The virus was never found in the saliva and organs of treated animals. Circulating antibodies against ERA rabies virus were detected in all vaccinated cattle and dogs.

  5. The FupA/B protein uniquely facilitates transport of ferrous iron and siderophore-associated ferric iron across the outer membrane of Francisella tularensis live vaccine strain

    PubMed Central

    Sen, Bhaswati

    2014-01-01

    Francisella tularensis is a highly infectious Gram-negative pathogen that replicates intracellularly within the mammalian host. One of the factors associated with virulence of F. tularensis is the protein FupA that mediates high-affinity transport of ferrous iron across the outer membrane. Together with its paralogue FslE, a siderophore–ferric iron transporter, FupA supports survival of the pathogen in the host by providing access to the essential nutrient iron. The FupA orthologue in the attenuated live vaccine strain (LVS) is encoded by the hybrid gene fupA/B, the product of an intergenic recombination event that significantly contributes to attenuation of the strain. We used 55Fe transport assays with mutant strains complemented with the different paralogues to show that the FupA/B protein of LVS retains the capacity for high-affinity transport of ferrous iron, albeit less efficiently than FupA of virulent strain Schu S4. 55Fe transport assays using purified siderophore and siderophore-dependent growth assays on iron-limiting agar confirmed previous findings that FupA/B also contributes to siderophore-mediated ferric iron uptake. These assays further demonstrated that the LVS FslE protein is a weaker siderophore–ferric iron transporter than the orthologue from Schu S4, and may be a result of the sequence variation between the two proteins. Our results indicate that iron-uptake mechanisms in LVS differ from those in Schu S4 and that functional differences in the outer membrane iron transporters have distinct effects on growth under iron limitation. PMID:24307666

  6. Induction of Strain-Transcending Immunity against Plasmodium chabaudi adami Malaria with a Multiepitope DNA Vaccine

    PubMed Central

    Scorza, T.; Grubb, K.; Smooker, P.; Rainczuk, A.; Proll, D.; Spithill, T. W.

    2005-01-01

    A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami. PMID:15845504

  7. T-cell factor-4 and MHC upregulation in pigs receiving a live attenuated classical swine fever virus (CSFV) vaccine strain with interferon-gamma adjuvant.

    PubMed

    Fan, Y-H; Lin, Y-L; Hwang, Y-C; Yang, H-C; Chiu, H-C; Chiou, S-H; Jong, M-H; Chow, K-C; Lin, C-C

    2016-10-01

    The effect of co-administration of interferon (IFN)-γ in pigs undergoing vaccination with an attenuated strain (LPC) of classical swine fever virus (CSFV) was investigated. Unvaccinated pigs demonstrated pyrexia and died 7-9 days after challenge with virulent CSFV. Pigs receiving the attenuated vaccine remained healthy after virus challenge, except for mild, transient pyrexia, whereas pigs receiving IFN-γ simultaneously with the vaccine demonstrated normal body temperatures after virus challenge. Examination by nested RT-PCR revealed greater viral load in the spleens of the pigs vaccinated with the attenuated CSFV, compared with those that had additionally received IFN-γ. Expression of major histocompatibility complex (MHC) class I and MHC class II molecules was upregulated in the spleens of the IFN-γ treated vaccinated pigs, demonstrated by immunohistochemistry. Based on Western blot analysis, anti-CSFV IgG2 antibodies were elevated in vaccinated pigs by co-administration of IFN-γ (IFN-γ(Hi): P < 0.01; IFN-γ(Lo): P <0.05). By employing the suppression subtractive hybridization technique, RT-PCR, in situ hybridization, and immunohistochemistry, T-cell factor-4 (Tcf-4) mRNA and protein expression were found to be upregulated in the spleens of vaccinated pigs that had received IFN-γ. This study suggests involvement of Tcf-4 in IFN-γ-mediated immune regulation following CSFV vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Protective immunity of a modified-live cyprinid herpesvirus 3 vaccine in koi (Cyprinus carpio koi) 13 months after vaccination.

    PubMed

    O'Connor, Matthew R; Farver, Thomas B; Malm, Kirsten V; Yun, Susan C; Marty, Gary D; Salonius, Kira; Dishon, Arnon; Weber, E P Scott

    2014-10-01

    To evaluate the long-term protective immunity of a cyprinid herpesvirus 3 (CyHV3) vaccine in naïve koi (Cyprinus carpio koi). 72 koi. Procedures-Vaccinated koi (n = 36) and unvaccinated control koi (36) were challenge exposed to a wild-type CyHV3 strain (KHVp8 F98-50) 13 months after vaccination. The CyHV3 vaccine provided substantial protective immunity against challenge exposure. The proportional mortality rate was less in vaccinated koi (13/36 [36%]) than in unvaccinated koi (36/36 [100%]). For koi that died during the experiment, mean survival time was significantly greater in vaccinated than in unvaccinated fish (17 vs 10 days). The CyHV3 vaccine provided substantial protective immunity against challenge exposure with CyHV3 13 months after vaccination. This provided evidence that koi can be vaccinated annually with the CyHV3 vaccine to significantly reduce mortality and morbidity rates associated with CyHV3 infection.

  9. Antibodies induced by vaccination with purified chick embryo cell culture vaccine (PCECV) cross-neutralize non-classical bat lyssavirus strains.

    PubMed

    Malerczyk, Claudius; Selhorst, Thomas; Tordo, Noël; Moore, Susan; Müller, Thomas

    2009-08-27

    Tissue-culture vaccines like purified chick embryo cell vaccine (PCECV) have been shown to provide protection against classical rabies virus (RABV) via pre-exposure or post-exposure prophylaxis. A cross-neutralization study was conducted using a panel of 100 human sera, to determine, to what extent after vaccination with PCECV protection exists against non-classical bat lyssavirus strains like European bat lyssavirus (EBLV) type 1 and 2 and Australian bat lyssavirus (ABLV). Virus neutralizing antibody (VNA) concentrations against the rabies virus variants CVS-11, ABLV, EBLV-1 and EBLV-2 were determined by using a modified rapid fluorescent focus inhibition test. For ABLV and EBLV-2, the comparison to CVS-11 revealed almost identical results (100% adequate VNA concentrations >or=0.5 IU/mL; correlation coefficient r(2)=0.69 and 0.77, respectively), while for EBLV-1 more scattering was observed (97% adequate VNA concentrations; r(2)=0.50). In conclusion, vaccination with PCECV produces adequate VNA concentrations against classical RABV as well as non-classical lyssavirus strains ABLV, EBLV-1, and EBLV-2.

  10. Novel polyvalent live vaccine against varicella-zoster and mumps virus infections.

    PubMed

    Matsuura, Masaaki; Somboonthum, Pranee; Murakami, Kouki; Ota, Megumi; Shoji, Masaki; Kawabata, Kenji; Mizuguchi, Hiroyuki; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2013-10-01

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is a highly immunogenic and safe live vaccine that has long been used worldwide. Because its genome is large, making it suitable for inserting foreign genes, vOka is considered a candidate vector for novel polyvalent vaccines. Previously, a recombinant vOka, rvOka-HN, that expresses mumps virus (MuV) hemagglutinin-neuraminidase (HN) was generated by the present team. rvOka-HN induces production of neutralizing antibodies against MuV in guinea pigs. MuV also expresses fusion (F) protein, which is important for inducing neutralizing antibodies, in its viral envelope. To induce a more robust immune response against MuV than that obtained with rvOka-HN, here an rvOka expressing both HN and F (rvOka-HN-F) was generated. However, co-expression of HN and F caused the infected cells to form syncytia, which reduced virus titers. To reduce the amount of cell fusion, an rvOka expressing HN and a mutant F, F(S195Y) were generated. Almost no syncytia formed among the rvOka-HN-F(S195Y)-infected cells and the growth of rvOka-HN-F(S195Y) was similar to that of the original vOka clone. Moreover, replacement of serine 195 with tyrosine had no effect on the immunogenicity of F in mice and guinea pigs. Although obvious augmentation of neutralizing antibody production was not observed after adding F protein to vOka-HN, the anti-F antibodies did have neutralizing activity. These data suggest that F protein contributes to induction of immune protection against MuV. Therefore this recombinant virus is a promising candidate vaccine for polyvalent protection against both VZV and MuV. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.

  11. Cost Effectiveness of Influenza Vaccine for U.S. Children: Live Attenuated and Inactivated Influenza Vaccine.

    PubMed

    Shim, Eunha; Brown, Shawn T; DePasse, Jay; Nowalk, Mary Patricia; Raviotta, Jonathan M; Smith, Kenneth J; Zimmerman, Richard K

    2016-09-01

    Prior studies showed that live attenuated influenza vaccine (LAIV) is more effective than inactivated influenza vaccine (IIV) in children aged 2-8 years, supporting the Centers for Disease Control and Prevention (CDC) recommendations in 2014 for preferential LAIV use in this age group. However, 2014-2015 U.S. effectiveness data indicated relatively poor effectiveness of both vaccines, leading CDC in 2015 to no longer prefer LAIV. An age-structured model of influenza transmission and vaccination was developed, which incorporated both direct and indirect protection induced by vaccination. Based on this model, the cost effectiveness of influenza vaccination strategies in children aged 2-8 years in the U.S. was estimated. The base case assumed a mixed vaccination strategy where 33.3% and 66.7% of vaccinated children aged 2-8 years receive LAIV and IIV, respectively. Analyses were performed in 2014-2015. Using published meta-analysis vaccine effectiveness data (83% LAIV and 64% IIV), exclusive LAIV use would be a cost-effective strategy when vaccinating children aged 2-8 years, whereas IIV would not be preferred. However, when 2014-2015 U.S. effectiveness data (0% LAIV and 15% IIV) were used, IIV was likely to be preferred. The cost effectiveness of influenza vaccination in children aged 2-8 years is highly dependent on vaccine effectiveness; the vaccine type with higher effectiveness is preferred. In general, exclusive IIV use is preferred over LAIV use, as long as vaccine effectiveness is higher for IIV than for LAIV. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  12. A effective DNA vaccine against diverse genotype J infectious hematopoietic necrosis virus strains prevalent in China

    USGS Publications Warehouse

    Xu, Liming; Zhao, Jingzhuang; Liu, Miao; Kurath, Gael; Ren, Guangming; LaPatra, Scott E.; Yin, Jiasheng; Liu, Hongbai; Feng, Jian; Lu, Tongyan

    2017-01-01

    Infectious hematopoietic necrosis virus (IHNV) is the most important pathogen threatening the aquaculture of salmonid fish in China. In this study, a DNA vaccine, designated pIHNch-G, was constructed with the glycoprotein (G) gene of a Chinese IHNV isolate SD-12 (also called Sn1203) of genotype J. The minimal dose of vaccine required, the expression of the Mx-1 gene in the muscle (vaccine delivery site) and anterior kidney, and the titers of the neutralizing antibodies produced were used to evaluate the vaccine efficacy. To assess the potential utility of the vaccine in controlling IHNV throughout China, the cross protective efficacy of the vaccine was determined by challenging fish with a broad range of IHNV strains from different geographic locations in China. A single 100 ng dose of the vaccine conferred almost full protection to rainbow trout fry (3 g) against waterborne or intraperitoneal injection challenge with IHNV strain SD-12 as early as 4 days post-vaccination (d.p.v.), and significant protection was still observed at 180 d.p.v. Intragenogroup challenges showed that the DNA vaccine provided similar protection to the fish against all the Chinese IHNV isolates tested, suggesting that the vaccine can be widely used in China. Mx-1 gene expression was significantly upregulated in the muscle tissue (vaccine delivery site) and anterior kidney in the vaccinated rainbow trout at both 4 and 7 d.p.v. Similar levels of neutralizing antibodies were determined with each of the Chinese IHNV strains at 60 and 180 d.p.v. This DNA vaccine should play an important role in the control of IHN in China.

  13. Cost of production of live attenuated dengue vaccines: a case study of the Instituto Butantan, Sao Paulo, Brazil.

    PubMed

    Mahoney, R T; Francis, D P; Frazatti-Gallina, N M; Precioso, A R; Raw, I; Watler, P; Whitehead, P; Whitehead, S S

    2012-07-06

    A vaccine to prevent dengue disease is urgently needed. Fortunately, a few tetravalent candidate vaccines are in the later stages of development and show promise. But, if the cost of these candidates is too high, their beneficial potential will not be realized. The price of a vaccine is one of the most important factors affecting its ultimate application in developing countries. In recent years, new vaccines such as those for human papilloma virus and pneumococcal disease (conjugate vaccine) have been introduced with prices in developed countries exceeding $50 per dose. These prices are above the level affordable by developing countries. In contrast, other vaccines such as those against Japanese encephalitis (SA14-14-2 strain vaccine) and meningitis type A have prices in developing countries below one dollar per dose, and it is expected that their introduction and use will proceed more rapidly. Because dengue disease is caused by four related viruses, vaccines must be able to protect against all four. Although there are several live attenuated dengue vaccine candidates under clinical evaluation, there remains uncertainty about the cost of production of these tetravalent vaccines, and this uncertainty is an impediment to rapid progress in planning for the introduction and distribution of dengue vaccines once they are licensed. We have undertaken a detailed economic analysis, using standard industrial methodologies and applying generally accepted accounting practices, of the cost of production of a live attenuated vaccine, originally developed at the US National Institutes of Health (National Institute of Allergy and Infectious Diseases), to be produced at the Instituto Butantan in Sao Paulo, Brazil. We determined direct costs of materials, direct costs of personnel and labor, indirect costs, and depreciation. These were analyzed assuming a steady-state production of 60 million doses per year. Although this study does not seek to compute the price of the final

  14. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase.

    PubMed

    Zhang, Yu; Wei, Yongwei; Zhang, Xiaodong; Cai, Hui; Niewiesk, Stefan; Li, Jianrong

    2014-10-01

    vaccine strategy for human paramyxoviruses. However, it remains a challenge to identify an attenuated virus strain that has an optimal balance between attenuation and immunogenicity. Using reverse genetics, we generated a panel of recombinant hMPVs that were specifically defective in ribose 2'-O methyltransferase (MTase) but not G-N-7 MTase. These MTase-defective hMPVs were genetically stable and sufficiently attenuated but retained high immunogenicity. This work highlights a critical role of 2'-O MTase in paramyxovirus replication and pathogenesis and a new avenue for the development of safe and efficacious live attenuated vaccines for hMPV and other human paramyxoviruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. [Infectivity Titers of Each Component of the Influenza Virus in the Live Vaccine Purchased from a Parallel Import Distributing System].

    PubMed

    Sato, Ko; Kikuchi, Yuki; Masago, Yoshifumi; Ohmiya, Suguru; Ito, Hiroko; Omura, Tatsuo; Nishimura, Hidekazu

    2015-11-01

    Currently in Japan, the only approved influenza vaccine is the inactivated vaccine which is injected subcutaneously. On the other hand, there is a live vaccine available elsewhere in the world. Flumist, an intranasal influenza live vaccine which contains four strains of infectious viruses, has been used in the United States for more than 10 years; the vaccine has been found effective in clinical trials, while it has some limitations such as those on subjects for the administration, strict storage conditions, relatively short expiration date etc. It is not yet approved in Japan, but available through personal import by some medical institutions, and prescribed based on the decision of the doctor. However, in Japan, there is no checking system whether the vaccine contains appropriate amounts of infectious viruses or not. In the present study, we purchased 2013-14 and 2014-15 years' lots of Flumist from a parallel importer and measured the amount of infectious viruses of each component of them using the focus assay. Consequently, for type A influenza viruses, the titers of both of H1N1pdm09 and H3N2 viruses in the 2013-14's lot were 1/30 of the lower limit of those shown in the package insert and 1/10 in 2014-15's lot, while those of type B viruses, both of B/Massachusetts and B/Brisbane viruses marginally cleared the lower limit. The digital PCR analysis showed that the absolute genome copy numbers of type A viruses were 1/10 of those of type B viruses. The relatively higher titer of B/Massachusetts also gradually decreased over time during its storage at 4°C and finally reached the lower limit at about one week before the expiration date. In case it is approved officially in the future to be used in Japan, some studies will be required to elucidate the minimum viral titers of the components necessary for effective live vaccine. In addition, there should be a system to check the titer during the distribution process in Japan.

  16. Engineering Enhanced Vaccine Cell Lines To Eradicate Vaccine-Preventable Diseases: the Polio End Game

    PubMed Central

    van der Sanden, Sabine M. G.; Wu, Weilin; Dybdahl-Sissoko, Naomi; Weldon, William C.; Brooks, Paula; O'Donnell, Jason; Jones, Les P.; Brown, Cedric; Tompkins, S. Mark; Karpilow, Jon; Tripp, Ralph A.

    2015-01-01

    ABSTRACT Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine. IMPORTANCE Using a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines

  17. Engineering Enhanced Vaccine Cell Lines To Eradicate Vaccine-Preventable Diseases: the Polio End Game.

    PubMed

    van der Sanden, Sabine M G; Wu, Weilin; Dybdahl-Sissoko, Naomi; Weldon, William C; Brooks, Paula; O'Donnell, Jason; Jones, Les P; Brown, Cedric; Tompkins, S Mark; Oberste, M Steven; Karpilow, Jon; Tripp, Ralph A

    2016-02-15

    Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine. Using a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines. This work

  18. ANTIBODY FORMATION IN WORKERS OF ROENTGEN DEPARTMENTS VACCINATED WITH LIVE TULAREMIA VACCINE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marder, B.B.

    1961-01-01

    Workers of roentgenological departments, physicians, roentgen technicians and auxiliary personnel (a totul of 15 persons) were immunized by the pericutaneous method with live tularemia vaccine. For comparison, subject to immunization were 5 medical workers not working in roentgenological departments. In all the persons immunized blood was taken 1, 2, 3 months and one year after the vaccination for studies of the agglutination titers of sera. The lowest antibody titer was seen in roentgen technicians, whereas the highest---in auxiliary personnel and the controls. (auth)

  19. Immunization studies with attenuated strains of Bacillus anthracis.

    PubMed Central

    Ivins, B E; Ezzell, J W; Jemski, J; Hedlund, K W; Ristroph, J D; Leppla, S H

    1986-01-01

    Live, attenuated strains of Bacillus anthracis lacking either the capsule plasmid pXO2, the toxin plasmid pXO1, or both were tested for their efficacy as vaccines against intravenous challenge with anthrax toxin in Fischer 344 rats and against aerosol or intramuscular challenge with virulent anthrax spores in Hartley guinea pigs. Animals immunized with toxigenic, nonencapsulated (pXO1+, pXO2-) strains survived toxin and spore challenge and demonstrated postimmunization antibody titers to the three components of anthrax toxin (protective antigen, lethal factor, and edema factor). Immunization with two nontoxigenic, encapsulated (pXO1-, pXO2+), Pasteur vaccine strains neither provided protection nor elicited titers to any of the toxin components. Therefore, to immunize successfully against anthrax toxin or spore challenge, attenuated, live strains of B. anthracis must produce the toxin components specified by the pXO1 plasmid. PMID:3084383

  20. [Economic evaluation on different two-dose-vaccination-strategies related to Measles, Mumps and Rubella Combined Attenuated Live Vaccine].

    PubMed

    He, H Q; Zhang, B; Yan, R; Li, Q; Fu, J; Tang, X W; Zhou, Y; Deng, X; Xie, S Y

    2016-08-10

    To evaluate the economic effect of Measles, Mumps and Rubella Combined Attenuated Live Vaccine (MMR) under different two-dose vaccination programs. A hypothetical birth cohort of 750 000 infants over their lifetime, was followed up from birth through death in Zhejiang province. The current MMR vaccination strategie would include three different ones: 1) Childlern were vaccinated with Measles-Rubella Combined Attenuated Live Vaccine and MMR, respectively at the age of 8 months and 18 months. 2) Children receive MMR at 8 months and 18 months, 3) Strategy 1 plus an additional vaccination of MMR at 4 years of age. Incremental cost-effectiveness ratio (ICER), incremental cost-benefit ratio (ICBR) and incremental net benefit (INB) were applied to calculate the health economic difference for Strategy 2 and Strategy 3 as compared to Strategy 1. Univariate sensitivity analysis was used to assess the robustness of results with main parameters, including the rate of immunization coverage, effectiveness of the vaccines, incidence and burdens of the related diseases, cost of vaccines and the vaccination program itself. ICER, ICBR and INB for Strategy 2 and Strategy 3 appeared as 2 012.51∶1 RMB Yuan per case and 4 238.72∶1 RMB Yuan per case, 1∶3.14 and 1∶1.58, 21 277 800 RMB Yuan and 9 276 500 RMB Yuan, respectively. Only slight changes (<20%) were found under the univariate sensitivity analysis, with varied values on main parameters. Based on the current national immunization program, infants vaccinated with MMR at 8 months of age, generated more health economic effects than the Strategy 3.

  1. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted... Seed Bacteria shall be tested for extraneous viable bacteria and fungi as prescribed in this section. A...

  2. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted... Seed Bacteria shall be tested for extraneous viable bacteria and fungi as prescribed in this section. A...

  3. Characterization of two recent Japanese field isolates of canine distemper virus and examination of the avirulent strain utility as an attenuated vaccine.

    PubMed

    Takenaka, Akiko; Yoneda, Misako; Seki, Takahiro; Uema, Masashi; Kooriyama, Takanori; Nishi, Toshiya; Fujita, Kentaro; Miura, Ryuichi; Tsukiyama-Kohara, Kyoko; Sato, Hiroki; Kai, Chieko

    2014-12-05

    Recently, several new strains of canine distemper virus (CDV) have been isolated in Japan. To investigate their pathogenesis in dogs, the Yanaka and Bunkyo-K strains were investigated by infecting dogs and determining clinical signs, amount of virus, and antibody responses. The Yanaka strain is avirulent and induced an antibody response. The Bunkyo-K strain induced typical CDV clinical signs in infected dogs and virulence was enhanced by brain passage. Molecular and phylogenetic analyses of H genes demonstrated the Bunkyo-K strains were of a different lineage from Asia-1 group including the Yanaka strain and Asia-2 group that contain recent Japanese isolates, which were recently identified as major prevalent strains worldwide but distinct from old vaccine strains. Based on these data, we tested the ability of the Yanaka strain for vaccination. Inoculation with the Yanaka strain efficiently induced CDV neutralizing antibodies with no clinical signs, and the protection effects against challenge with either old virulent strain or Bunkyo-K strain were equal or greater when compared with vaccination by an original vaccine strain. Thus, the Yanaka strain is a potential vaccine candidate against recent prevalent CDV strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The oral, live attenuated enterotoxigenic Escherichia coli vaccine ACE527 reduces the incidence and severity of diarrhea in a human challenge model of diarrheal disease.

    PubMed

    Darsley, Michael J; Chakraborty, Subhra; DeNearing, Barbara; Sack, David A; Feller, Andrea; Buchwaldt, Charlotte; Bourgeois, A Louis; Walker, Richard; Harro, Clayton D

    2012-12-01

    An oral, live attenuated, three-strain recombinant bacterial vaccine, ACE527, was demonstrated to generate strong immune responses to colonization factor and toxin antigens of enterotoxigenic Escherichia coli (ETEC) in human volunteers. The vaccine was safe and well tolerated at doses of up to 10(11) CFU, administered in each of two doses given 21 days apart. These observations have now been extended in a phase 2b study with a total of 70 subjects. Fifty-six of these subjects were challenged 28 days after the second dose of vaccine with the highly virulent ETEC strain H10407 to obtain preliminary indicators of efficacy against disease and to support further development of the vaccine for both travelers and infants in countries where ETEC is endemic. The vaccine had a significant impact on intestinal colonization by the challenge strain, as measured by quantitative fecal culture 2 days after challenge, demonstrating the induction of a functional immune response to the CFA/I antigen. The incidence and severity of diarrhea were also reduced in vaccinees as measured by a number of secondary and ad hoc endpoints, although the 27% reduction seen in the primary endpoint, moderate to severe diarrhea, was not statistically significant. Together, these observations support the hypothesis that the ACE527 vaccine has a dual mode of action, targeting both colonization factors and the heat-labile enterotoxin (LT), and suggest that it should be further developed for more advanced trials to evaluate its impact on the burden of ETEC disease in field settings.

  5. The immunizing effect and reactogenicity of two live attenuated mumps virus vaccines in Swedish schoolchildren.

    PubMed

    Christenson, B; Heller, L; Böttiger, M

    1983-10-01

    An evaluation of the seroconversion and booster effects after vaccination with two different mumps vaccines, the Urabe Am 9 strain and the Jeryl Lynn strain, was carried out in schoolchildren. Four hundred and fifty-four schoolchildren aged 11 to 12 years with no previous history of mumps or mumps vaccination were enrolled for the study. The antibody responses were measured by serum neutralization (SN) and haemolysis-in-gel (HIG) tests. Of the 454 subjects, 130 were found to be initially seronegative. Two lots of different strengths of each vaccine were used to evaluate the relationships. The Urabe Am 9 vaccine lots had infectivity titres of 100 000 and 19 000 TCID50 per dose and the Jeryl Lynn vaccine titres of 59 000 and 28 000 TCID50 per dose. Only slight differences in seroconversion rates were seen between the lots. The overall seroconversion rate, measured by SN, was 94% for the Urabe Am 9 vaccine and 91% for the Jeryl Lynn vaccine, whereas the geometric mean titre for virus-neutralizing antibody in seroconverting children was 7.4 with the Urabe Am 9 vaccine and 10.7 with the Jeryl Lynn vaccine. In children who were seropositive prior to vaccination, a marked rise in antibody titre was found 8 weeks after vaccine injection indicating a booster effect. The miscellaneous post-vaccination side-effects were mild and inconsequential.

  6. Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: a randomized double-blind placebo-controlled trial.

    PubMed

    Davidson, L E; Fiorino, A-M; Snydman, D R; Hibberd, P L

    2011-04-01

    Live-attenuated influenza vaccine (LAIV) protects against influenza by mucosal activation of the immune system. Studies in animals and adults have demonstrated that probiotics improve the immune response to mucosally delivered vaccines. We hypothesized that Lactobacillus GG (LGG) would function as an immune adjuvant to increase rates of seroconversion after LAIV administration. We conducted a randomized double-blind placebo-controlled pilot study to determine whether LGG improved rates of seroconversion after administration of LAIV. We studied 42 healthy adults during the 2007-2008 influenza season. All subjects received LAIV and then were randomized to LGG or placebo, twice daily for 28 days. Hemagglutinin inhibition titers were assessed at baseline, at day 28 and at day 56 to determine the rates of seroconversion. Subjects were assessed for adverse events throughout the study period. A total of 39 subjects completed the per-protocol analysis. Both LGG and LAIV were well tolerated. Protection rates against the vaccine H1N1 and B strains were suboptimal in subjects receiving LGG and placebo. For the H3N2 strain, 84% receiving LGG vs 55% receiving placebo had a protective titer 28 days after vaccination (odds of having a protective titer was 1.84 95% confidence interval 1.04-3.22, P=0.048). Lactobacillus GG is potential as an important adjuvant to improve influenza vaccine immunogenicity. Future studies of probiotics as immune adjuvants might need to specifically consider examining vaccine-naïve or sero-negative subjects, target mucosal immune responses or focus on groups known to have poor response to influenza vaccines. © 2011 Macmillan Publishers Limited All rights reserved

  7. Japanese encephalitis vaccines: Immunogenicity, protective efficacy, effectiveness, and impact on the burden of disease

    PubMed Central

    Gore, Milind M.

    2017-01-01

    ABSTRACT Japanese encephalitis (JE) is a serious public health concern in most of Asia. The disease is caused by JE virus (JEV), a flavivirus transmitted by Culex mosquitoes. Several vaccines have been developed to control JE in endemic areas as well as to protect travelers and military personnel who visit or are commissioned from non-endemic to endemic areas. The vaccines include inactivated vaccines produced in mouse brain or cell cultures, live attenuated vaccines, and a chimeric vaccine based on the live attenuated yellow fever virus 17D vaccine strain. All the marketed vaccines belong to the JEV genotype III, but have been shown to be efficacious against other genotypes and strains, with varying degrees of cross-neutralization, albeit at levels deemed to be protective. The protective responses have been shown to last three or more years, depending on the type of vaccine and the number of doses. This review presents a brief account of the different JE vaccines, their immunogenicity and protective ability, and the impact of JE vaccines in reducing the burden of disease in endemic countries. PMID:28301270

  8. A live, attenuated pseudorabies virus strain JS-2012 deleted for gE/gI protects against both classical and emerging strains.

    PubMed

    Tong, Wu; Li, Guoxin; Liang, Chao; Liu, Fei; Tian, Qing; Cao, Yanyun; Li, Lin; Zheng, Xuchen; Zheng, Hao; Tong, Guangzhi

    2016-06-01

    Emerging pseudorabies virus (PRV) variant have led to pseudorabies outbreaks in Chinese pig farms. The commercially available PRV vaccine provides poor protection against the PRV variant. In this study, a gE/gI deleted PRV strain JS-2012-△gE/gI was generated from a PRV variant strain using homologous DNA recombination. Compared to the parental strain JS-2012, JS-2012-△gE/gI grew slowly and showed small plaque morphology on Vero cells. The safety and immunological efficacy of JS-2012-△gE/gI was evaluated as a vaccine candidate. JS-2012-△gE/gI was avirulent to suckling piglets, but was able to provide full protection for young piglets against challenge with both the classical virulent PRV and the emerging PRV variant. After sows were vaccinated with the gE/gI-deleted strain, their suckling offspring were resistant to an otherwise lethal challenge with the classical and the variant PRVs. Piglets inoculated with JS-2012-△gE/gI did not develop PRV-specific gE-ELISA antibodies. Thus, JS-2012-△gE/gI appears to be a promising marker vaccine candidate to control PRV variant circulating in pig farms in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Cross-protective efficacy of engineering serotype A foot-and-mouth disease virus vaccine against the two pandemic strains in swine.

    PubMed

    Zheng, Haixue; Lian, Kaiqi; Yang, Fan; Jin, Ye; Zhu, Zixiang; Guo, Jianhong; Cao, Weijun; Liu, Huanan; He, Jijun; Zhang, Keshan; Li, Dan; Liu, Xiangtao

    2015-10-26

    Foot-and-mouth disease (FMD) is a highly contagious vesicular disease that affects domestic and wild cloven-hoofed animals worldwide. Recently, a series of outbreaks of type A FMDV occurred in Southeast Asian countries, China, the Russia Federation, Mongolia, Kazakhstan and South Korea. The FMD virus (A/GDMM/CHA/2013) from China's Guangdong province (2013) is representative of those responsible for the latest epidemic, and has low amino acid identity (93.9%) in VP1 protein with the epidemic strain A/WH/CHA/09 from Wuhan, China in 2009. Both of isolates belong to the Sea-97 genotype of ASIA topotype. Therefore, the application of a new vaccine strain with cross-protective efficacy is of fundamental importance to control the spread of the two described pandemic strains. A chimeric strain rA/P1-FMDV constructed by our lab previously through replacing the P1 gene in the vaccine strain O/CHA/99 with that from the epidemic stain A/WH/CHA/09, has been demonstrated to exhibit good growth characteristics in culture, and the rA/P1-FMDV inactivated vaccine can provide protection against epidemic strain A/WH/CHA/09 in cattle. However, it is still unclear whether the vaccine produces efficient protection against the new pandemic strain (A/GDMM/CHA/2013). Here, vaccine matching and pig 50% protective dose (PD50) tests were performed to assess the vaccine potency. The vaccine matching test showed cross-reactivity of sera from full dose vaccine vaccinated pigs with A/WH/CHA/09 and A/GDMM/CHA/2013 isolates, with average r1 values of 0.94±0.12 and 0.68±0.06 (r1≥0.3), which indicates that the rA/P1-FMDV vaccine is likely to confer good cross-protection against the two isolates. When challenged with two pandemic isolates A/WH/CHA/09 and A/GDMM/CHA/2013 strain, the vaccine achieved 12.51 PD50 and 10.05 PD50 per dose (2.8μg), respectively. The results indicated that the rA/P1-FMDV inactivated vaccine could protect pigs against both A/WH/CHA/09 and A/GDMM/CHA/2013 pandemic isolates

  10. Hemorrhagic and necrotizing hepatitis associated with administration of a modified live canine adenovirus-2 vaccine in a maned wolf (Chrysocyon brachyurus).

    PubMed

    Swenson, Julie; Orr, Kathryn; Bradley, Gregory A

    2012-06-01

    A 15-yr-old, female, maned wolf (Chrysocyon brachyurus) was euthanized after presenting semicomatose with severe, uncontrolled frank hemorrhage from her rectum 6 days following a routine physical examination and vaccination. Histopathology indicated severe hemorrhagic and necrotizing hepatitis with intranuclear basophilic inclusion bodies in the liver that were thought to be consistent with adenoviral infection. Further classification by polymerase chain reaction, immunohistochemical staining, virus isolation, and electron microscopy confirmed the etiologic agent to be canine adenovirus-2. A representative sample of the vaccine that had been used was submitted and sequenced along with the virus isolated from the maned wolf. The sequencing of the etiologic agent that had been isolated from the maned wolf was determined to be the same as the strain of virus used in the production of the modified live vaccine that had been administered 6 days prior to death. From this information, the diagnosis of vaccine-induced adenoviral hepatitis was made. This is the first confirmed case of vaccine-induced canine adenoviral hepatitis in a maned wolf.

  11. Lipopolysaccharide-specific memory B cell responses to an attenuated live cholera vaccine are associated with protection against Vibrio cholerae infection.

    PubMed

    Haney, Douglas J; Lock, Michael D; Gurwith, Marc; Simon, Jakub K; Ishioka, Glenn; Cohen, Mitchell B; Kirkpatrick, Beth D; Lyon, Caroline E; Chen, Wilbur H; Sztein, Marcelo B; Levine, Myron M; Harris, Jason B

    2018-05-11

    The single-dose live attenuated vaccine CVD 103-HgR protects against experimental Vibrio cholerae infection in cholera-naïve adults for at least 6 months after vaccination. While vaccine-induced vibriocidal seroconversion is associated with protection, vibriocidal titers decline rapidly from their peak 1-2 weeks after vaccination. Although vaccine-induced memory B cells (MBCs) might mediate sustained protection in individuals without detectable circulating antibodies, it is unknown whether oral cholera vaccination induces a MBC response. In a study that enrolled North American adults, we measured lipopolysaccharide (LPS)- and cholera toxin (CtxB)-specific MBC responses to PXVX0200 (derived from the CVD 103-HgR strain) and assessed stool volumes following experimental Vibrio cholerae infection. We then evaluated the association between vaccine-induced MBC responses and protection against cholera. There was a significant increase in % CT-specific IgG, % LPS-specific IgG, and % LPS-specific IgA MBCs which persisted 180 days after vaccination as well as a significant association between vaccine-induced increase in % LPS-specific IgA MBCs and lower post-challenge stool volume (r = -0.56, p < 0.001). Oral cholera vaccination induces antigen-specific MBC responses, and the anamnestic LPS-specific responses may contribute to long-term protection and provide correlates of the duration of vaccine-induced protection. NCT01895855. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Transplacental rotavirus IgG interferes with immune response to live oral rotavirus vaccine ORV-116E in Indian infants.

    PubMed

    Appaiahgari, Mohan Babu; Glass, Roger; Singh, Shakti; Taneja, Sunita; Rongsen-Chandola, Temsunaro; Bhandari, Nita; Mishra, Sukhdev; Vrati, Sudhanshu

    2014-02-03

    The lower immune response and efficacy of live oral rotavirus (RV) vaccines tested in developing countries may be due in part to high levels of pre-existing RV antibodies transferred to the infant from mother via the placenta. The candidate RV vaccine strain 116E was isolated from a newborn indicating that it might grow well even in the presence of this transplacental rotavirus antibody. Since the immune response to this vaccine among infants in the Indian subcontinent has been greater than that of the commercially licensed vaccines, we questioned whether this might be due to the ability of RV 116E to grow well in infants despite the presence of maternal RV antibody. To this end, we tested pre-immunization sera from Indian infants enrolled in a phase Ia/IIb trial of candidate RV vaccine ORV-116E for transplacental RV IgG to see whether it affected the immune responses and seroconversion to the vaccine. We found that the high titers of transplacental RV IgG diminished the immune responses of infants to ORV-116E vaccine. However, the vaccine was able to overcome the inhibitory effect of this RV IgG in a dose-dependent manner. This report clearly demonstrates the interference of maternal antibody on RV vaccine immunogenicity in infants in a field study as well as the ability of ORV-116E to overcome this interference when used at a higher dose. Copyright © 2013. Published by Elsevier Ltd.

  13. Comparing live attenuated and inactivated hepatitis A vaccines: an immunogenicity study after one single dose.

    PubMed

    Zheng, Hui; Chen, Yuansheng; Wang, Fuzhen; Gong, Xiaohong; Wu, Zhenhua; Miao, Ning; Zhang, Xiaoshu; Li, Hui; Chen, Chao; Hou, Xiang; Cui, Fuqiang; Wang, Huaqing

    2011-11-08

    While three types of hepatitis A vaccines are available in China, little data are available to compare them in terms of early antibody response. We conducted a trial to compare antibody response at 7, 14 and 28 days. We randomized primary school children in Gansu and Jilin provinces into four groups to receive either (1) Chinese live attenuated hepatitis A vaccine (H2 strain), (2) domestic inactivated hepatitis A vaccine (Healive(®)), (3) imported inactivated hepatitis A vaccine (Havrix(®)) or (4) hepatitis B vaccine (Control group). We compared groups at 7, 14 and 28 days in terms of proportion of sero-conversions (≥10 mUI/ml), and Geometric Mean Concentration (GMC) of antibodies measured with a Microparticle Enzyme Immunoassay (MEIA). We compared rates of self-reported adverse events following immunization (AEFI) in the first three days. 204 children received the H2 vaccine, 208 received Healive(®), 214 received Havrix(®), and 215 received hepatitis B vaccine (no differences across groups in terms of age, sex, weight and height). At seven days, sero-conversion proportions were 25%, 35%, 27% and 2% (p<0.0001) with GMC of 6 mIU/ml, 8 mIU/ml, 6 mIU/ml and 3 mIU/ml, respectively for the four groups. At 28 days, sero-conversion proportions were 98%, 100%, 93% and 3% (p<0.0001) with GMC of 47 mIU/ml, 71 mIU/ml, 67 mIU/ml and 3 mIU/ml, respectively. AEFI were benign and did not differ across groups (p=0.94). While our study was not able to identify differences between Havrix(®), Healive(®) and H2 vaccine in terms of sero-conversion proportion and GMC between seven and 28 days, further studies should evaluate non-inferiority or equivalence of the Chinese vaccines, particularly with respect to the GMC concentration for the H2 vaccine since it could affect long-term protection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys

    PubMed Central

    Douglas, Alexander D.; Baldeviano, G. Christian; Lucas, Carmen M.; Lugo-Roman, Luis A.; Crosnier, Cécile; Bartholdson, S. Josefin; Diouf, Ababacar; Miura, Kazutoyo; Lambert, Lynn E.; Ventocilla, Julio A.; Leiva, Karina P.; Milne, Kathryn H.; Illingworth, Joseph J.; Spencer, Alexandra J.; Hjerrild, Kathryn A.; Alanine, Daniel G.W.; Turner, Alison V.; Moorhead, Jeromy T.; Edgel, Kimberly A.; Wu, Yimin; Long, Carole A.; Wright, Gavin J.; Lescano, Andrés G.; Draper, Simon J.

    2015-01-01

    Summary Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans. PMID:25590760

  15. Vaccine-induced canine distemper in a lesser panda.

    PubMed

    Bush, M; Montali, R J; Brownstein, D; James, A E; Appel, M J

    1976-11-01

    A fatal disease occurred in a lesser panda (Ailurus fulgens) 2 weeks after vaccination with modified live distemper vaccine. The disease clinically resembled canine distemper. Pathologically there was giant cell pneumonia, with canine distemper viral inclusion bodies in pulmonary and digestive tract epithelium. Viral isolates were indicative of an attenuated strain rather than virulent types.

  16. Mycobacterium tuberculosis whole cell lysate enhances proliferation of CD8 positive lymphocytes and nitric oxide secretion in the lungs of live porcine respiratory and reproductive syndrome virus vaccinated pigs.

    PubMed

    Manickam, Cordelia; Dwivedi, Varun; Miller, Jayla; Papenfuss, Tracey; Renukaradhya, Gourapura J

    2013-02-01

    Porcine respiratory and reproductive syndrome (PRRS) is an economically important disease of pigs worldwide. Currently used PRRSV vaccines provide incomplete protection. Recently, we identified Mycobacterium tuberculosis whole cell lysate (Mtb WCL) as a potent mucosal adjuvant to modified live PRRSV vaccine (PRRS-MLV). In this study, pigs were unvaccinated or vaccinated with PRRS-MLV plus Mtb WCL, intranasally, and challenged with either homologous (strain VR2332) or virulent heterologous (strain MN184) PRRSV; subsequently, euthanized at three time points post-challenge to evaluate lung immune responses. Microscopic examination of lung sections revealed reduced disruption of the lung architecture and less of interstitial pneumonia in vaccinated, compared to unvaccinated MN184 challenged pigs. The restimulated lung and peripheral blood mononuclear cells revealed increased proliferation of CD8(+) lymphocytes, and in the lung homogenate increased secretion of nitric oxide was detected in vaccinated MN184 challenged pigs. In summary, the adjuvant effects of Mtb WCL to PRRS-MLV resulted in favorable anti-PRRSV immune microenvironment in the lungs to help better viral clearance.

  17. Yersinia pestis biovar Microtus strain 201, an avirulent strain to humans, provides protection against bubonic plague in rhesus macaques.

    PubMed

    Zhang, Qingwen; Wang, Qiong; Tian, Guang; Qi, Zhizhen; Zhang, Xuecan; Wu, Xiaohong; Qiu, Yefeng; Bi, Yujing; Yang, Xiaoyan; Xin, Youquan; He, Jian; Zhou, Jiyuan; Zeng, Lin; Yang, Ruifu; Wang, Xiaoyi

    2014-01-01

    Yersinia pestis biovar Microtus is considered to be a virulent to larger mammals, including guinea pigs, rabbits and humans. It may be used as live attenuated plague vaccine candidates in terms of its low virulence. However, the Microtus strain's protection against plague has yet to be demonstrated in larger mammals. In this study, we evaluated the protective efficacy of the Microtus strain 201 as a live attenuated plague vaccine candidate. Our results show that this strain is highly attenuated by subcutaneous route, elicits an F1-specific antibody titer similar to the EV and provides a protective efficacy similar to the EV against bubonic plague in Chinese-origin rhesus macaques. The Microtus strain 201 could induce elevated secretion of both Th1-associated cytokines (IFN-γ, IL-2 and TNF-α) and Th2-associated cytokines (IL-4, IL-5, and IL-6), as well as chemokines MCP-1 and IL-8. However, the protected animals developed skin ulcer at challenge site with different severity in most of the immunized and some of the EV-immunized monkeys. Generally, the Microtus strain 201 represented a good plague vaccine candidate based on its ability to generate strong humoral and cell-mediated immune responses as well as its good protection against high dose of subcutaneous virulent Y. pestis challenge.

  18. Real World Evidence for Regulatory Decisions: Concomitant Administration of Zoster Vaccine Live and Pneumococcal Polysaccharide Vaccine.

    PubMed

    Bruxvoort, Katia; Sy, Lina S; Luo, Yi; Tseng, Hung Fu

    2018-04-11

    The US Food and Drug Administration is charged with expanding the use of real world evidence (RWE) for regulatory decisions. As a test case for RWE to support regulatory decisions, we present the scenario of concomitant vaccination with zoster vaccine live (ZVL) and 23-valent pneumococcal polysaccharide vaccine (PPSV23). The prescribing information states that these vaccines should not be given concurrently, based on a small trial using varicella zoster virus antibody levels as a correlate of ZVL efficacy, even though ZVL protects against herpes zoster via cell-mediated immunity. We conducted an observational cohort study involving >30,000 members of Kaiser Permanente Southern California receiving concomitant ZVL and PPSV23 versus PPSV23 prior to ZVL. Occurrence of herpes zoster was assessed through electronic health records from January 1, 2007 to June 30, 2016. The adjusted hazard ratio comparing incidence rates of herpes zoster in the concomitant vaccination cohort and the prior vaccination cohort was 1.04 (95% CI: 0.92, 1.16). This RWE study provides direct evidence for a lack of vaccine interference, relying on herpes zoster occurrence rather than an intermediate marker of immunity. RWE is essential for regulators and policy makers in addressing evidentiary gaps regarding safety, effectiveness, compliance, and vaccine interactions for the new recombinant zoster vaccine.

  19. Novel Catanionic Surfactant Vesicle Vaccines Protect against Francisella tularensis LVS and Confer Significant Partial Protection against F. tularensis Schu S4 Strain

    PubMed Central

    Richard, Katharina; Mann, Barbara J.; Stocker, Lenea; Barry, Eileen M.; Qin, Aiping; Cole, Leah E.; Hurley, Matthew T.; Ernst, Robert K.; Michalek, Suzanne M.; Stein, Daniel C.; DeShong, Philip

    2014-01-01

    Francisella tularensis is a Gram-negative immune-evasive coccobacillus that causes tularemia in humans and animals. A safe and efficacious vaccine that is protective against multiple F. tularensis strains has yet to be developed. In this study, we tested a novel vaccine approach using artificial pathogens, synthetic nanoparticles made from catanionic surfactant vesicles that are functionalized by the incorporation of either F. tularensis type B live vaccine strain (F. tularensis LVS [LVS-V]) or F. tularensis type A Schu S4 strain (F. tularensis Schu S4 [Schu S4-V]) components. The immunization of C57BL/6 mice with “bare” vesicles, which did not express F. tularensis components, partially protected against F. tularensis LVS, presumably through activation of the innate immune response, and yet it failed to protect against the F. tularensis Schu S4 strain. In contrast, immunization with LVS-V fully protected mice against intraperitoneal (i.p.) F. tularensis LVS challenge, while immunization of mice with either LVS-V or Schu S4-V partially protected C57BL/6 mice against an intranasal (i.n.) F. tularensis Schu S4 challenge and significantly increased the mean time to death for nonsurvivors, particularly following the i.n. and heterologous (i.e., i.p./i.n.) routes of immunization. LVS-V immunization, but not immunization with empty vesicles, elicited high levels of IgG against nonlipopolysaccharide (non-LPS) epitopes that were increased after F. tularensis LVS challenge and significantly increased early cytokine production. Antisera from LVS-V-immunized mice conferred passive protection against challenge with F. tularensis LVS. Together, these data indicate that functionalized catanionic surfactant vesicles represent an important and novel tool for the development of a safe and effective F. tularensis subunit vaccine and may be applicable for use with other pathogens. PMID:24351755

  20. Protection Against Dengue Virus by Non-Replicating and Live Attenuated Vaccines Used Together in a Prime Boost Vaccination Strategy

    DTIC Science & Technology

    2010-01-01

    vaccines primed rhesus maca - ques for an immune response to a tetravalent live attenuated virus (TLAV) vaccine. An initial experiment was performed in 16...and 4 and no measurable increase for DENV 1. These two experiments clearly demonstrated that rhesus maca - ques could be successfully immunized and

  1. Smallpox vaccine: problems and prospects.

    PubMed

    Poland, Gregory A; Neff, John M

    2003-11-01

    Smallpox justifiably is feared because of its morbidity and mortality. Wide-spread population-level susceptibility to smallpox exists, and the only effective tool against the virus is a live, attenuated vaccine that is highly reactogenic and controversial. A significant minority of the population has contraindications that prevent preexposure use of this vaccine. Newer, safer, and equally immunogenic vaccines must be developed and licensed. Several live, attenuated vaccines are in clinical trials. Although these vaccines may prove to be less reactogenic, they still may not be administered safely to a significant portion of the population because they contain live, attenuated viruses. Newer vaccines will be needed if routine preexposure vaccination is to be instituted universally. The idea of a subunit or peptide-based vaccine is appealing, because it obviates potential safety concerns. It may be possible to use a more-attenuated, live vaccine strain for a large segment of the population on a preexposure basis and accept the morbidity and mortality that would result from its use on a postexposure basis, if necessary. The need for widespread population-level protection against variola infection is apparent. The use of the new biology tools to predict or define who might experience serious reactions to the smallpox vaccine and why these reactions occur is an area ripe for additional research. The reason why an individual develops postvaccinal encephalitis remains unknown, and the development is unpredictable and untreatable. In the future, if the mechanism behind such adverse events is defined, it may be possible to screen persons who are likely to experience such events. Although the authors remain proponents for use of the vaccine in alignment with the CDC vaccination program and recommendations, the previous concerns indicate that new knowledge must be gained and shared. Further research on attenuated vaccines and nonliving or peptide vaccines with equal efficacy

  2. The status of live viral vaccination in early life.

    PubMed

    Gans, Hayley A

    2013-05-17

    The need for neonatal vaccines is supported by the high disease burden during the first year of life particularly in the first month. Two-thirds of childhood deaths are attributable to infectious diseases of which viruses represent key pathogens. Many infectious diseases have the highest incidence, severity and mortality in the first months of life, and therefore early life vaccination would provide significant protection and life savings. For some childhood viral diseases successful vaccines exist, such as against measles, mumps, rubella, varicella, influenza poliovirus, and rotavirus, but their use in the first year particularly at birth is not yet practiced. Vaccines against other key pathogens continue to elude scientists such as against respiratory syncytial virus. The obstacles for early and neonatal vaccination are complex and include host factors, such as a developing immune system and the interference of passively acquired antibodies, as well vaccine-specific issues, such as optimal route of administration, titer and dosing requirements. Importantly, additional host and infrastructure barriers also present obstacles to neonatal vaccination in the developing world where morbidity and mortality rates are highest. This review will highlight the current live viral vaccines and their use in the first year of life, focusing on efficacy and entertaining the barriers that exist. It is important to understand the successes of current vaccines and use this knowledge to determine strategies that are successful in young infants and for the development of new vaccines for use in early life. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Attenuation and protective efficacy of Rift Valley fever phlebovirus rMP12-GM50 strain.

    PubMed

    Ly, Hoai J; Nishiyama, Shoko; Lokugamage, Nandadeva; Smith, Jennifer K; Zhang, Lihong; Perez, David; Juelich, Terry L; Freiberg, Alexander N; Ikegami, Tetsuro

    2017-12-04

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Arabian Peninsula that affects sheep, cattle, goats, camels, and humans. Effective vaccination of susceptible ruminants is important for the prevention of RVF outbreaks. Live-attenuated RVF vaccines are in general highly immunogenic in ruminants, whereas residual virulence might be a concern for vulnerable populations. It is also important for live-attenuated strains to encode unique genetic markers for the differentiation from wild-type RVFV strains. In this study, we aimed to strengthen the attenuation profile of the MP-12 vaccine strain via the introduction of 584 silent mutations. To minimize the impact on protective efficacy, codon usage and codon pair bias were not de-optimized. The resulting rMP12-GM50 strain showed 100% protective efficacy with a single intramuscular dose, raising a 1:853 mean titer of plaque reduction neutralization test. Moreover, outbred mice infected with one of three pathogenic reassortant ZH501 strains, which encoded rMP12-GM50 L-, M-, or S-segments, showed 90%, 50%, or 30% survival, respectively. These results indicate that attenuation of the rMP12-GM50 strain is significantly attenuated via the L-, M-, and S-segments. Recombinant RVFV vaccine strains encoding similar silent mutations will be also useful for the surveillance of reassortant strains derived from vaccine strains in endemic countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Single-dose Live Oral Cholera Vaccine CVD 103-HgR Protects Against Human Experimental Infection With Vibrio cholerae O1 El Tor.

    PubMed

    Chen, Wilbur H; Cohen, Mitchell B; Kirkpatrick, Beth D; Brady, Rebecca C; Galloway, David; Gurwith, Marc; Hall, Robert H; Kessler, Robert A; Lock, Michael; Haney, Douglas; Lyon, Caroline E; Pasetti, Marcela F; Simon, Jakub K; Szabo, Flora; Tennant, Sharon; Levine, Myron M

    2016-06-01

    No licensed cholera vaccine is presently available in the United States. Cholera vaccines available in other countries require 2 spaced doses. A single-dose cholera vaccine that can rapidly protect short-notice travelers to high-risk areas and help control explosive outbreaks where logistics render 2-dose immunization regimens impractical would be a major advance.PXVX0200, based on live attenuated Vibrio cholerae O1 classical Inaba vaccine strain CVD 103-HgR, elicits seroconversion of vibriocidal antibodies (a correlate of protection) within 10 days of a single oral dose. We investigated the protection conferred by this vaccine in a human cholera challenge model. Consenting healthy adult volunteers, 18-45 years old, were randomly allocated 1:1 to receive 1 oral dose of vaccine (approximately 5 × 10(8) colony-forming units [CFU]) or placebo in double-blind fashion. Volunteers ingested approximately 1 × 10(5) CFU of wild-type V. cholerae O1 El Tor Inaba strain N16961 10 days or 3 months after vaccination and were observed on an inpatient research ward for stool output measurement and management of hydration. The vaccine was well tolerated, with no difference in adverse event frequency among 95 vaccinees vs 102 placebo recipients. The primary endpoint, moderate (≥3.0 L) to severe (≥5.0 L) diarrheal purge, occurred in 39 of 66 (59.1%) placebo controls but only 2 of 35 (5.7%) vaccinees at 10 days (vaccine efficacy, 90.3%; P < .0001) and 4 of 33 (12.1%) vaccinees at 3 months (vaccine efficacy, 79.5%; P < .0001). The significant vaccine efficacy documented 10 days and 3 months after 1 oral dose of PXVX0200 supports further development as a single-dose cholera vaccine. NCT01895855. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. Oral vaccination of brushtail possums with BCG: Investigation into factors that may influence vaccine efficacy and determination of duration of protection.

    PubMed

    Buddle, B M; Aldwell, F E; Keen, D L; Parlane, N A; Hamel, K L; de Lisle, G W

    2006-10-01

    To determine factors that may influence the efficacy of an oral pelleted vaccine containing Mycobacterium bovis bacille Calmette-Guérin (BCG) to induce protection of brushtail possums against tuberculosis. To determine the duration of protective immunity following oral administration of BCG. In Study 1, a group of possums (n=7) was immunised by feeding 10 pellets containing dead Pasteur BCG, followed 15 weeks later with a single pellet of live Pasteur BCG. At that time, four other groups of possums (n=7 per group) were given a single pellet of live Pasteur BCG orally, a single pellet of live Danish BCG orally, 10 pellets of live Pasteur BCG orally, or a subcutaneous injection of live Pasteur BCG. For the oral pelleted vaccines, BCG was formulated into a lipid matrix, and each pellet contained approximately 107 colony forming units (cfu) of BCG, while the vaccine injected subcutaneously contained 106 cfu of BCG. A sixth, non-vaccinated, group (n=7) served as a control. All possums were challenged by the aerosol route with a low dose of virulent M. bovis 7 weeks after vaccination, and killed 7-8 weeks after challenge. Protection against challenge with M. bovis was assessed from pathological and bacteriological findings. In Study 2, lipid-formulated live Danish BCG was administered orally to three groups of possums (10-11 per group), and these possums were challenged with virulent M. bovis 8, 29 or 54 weeks later. The possums were killed 7 weeks after challenge, to assess protection in comparison to a non-vaccinated group. The results from Study 1 showed that vaccine efficacy was not adversely affected by feeding dead BCG prior to live BCG. Feeding 10 vaccine pellets induced a level of protection similar to feeding a single pellet. Protection was similar when feeding possums a single pellet containing the Pasteur or Danish strains of BCG. All vaccinated groups had significantly reduced pathological changes or bacterial counts when compared to the non-vaccinated group

  6. Transmission Dynamics of Rift Valley Fever Virus: Effects of Live and Killed Vaccines on Epizootic Outbreaks and Enzootic Maintenance

    PubMed Central

    Chamchod, Farida; Cosner, Chris; Cantrell, R. Stephen; Beier, John C.; Ruan, Shigui

    2016-01-01

    Rift Valley fever virus (RVFV) is an arthropod-borne viral pathogen that causes significant morbidity and mortality in small ruminants throughout Africa and the Middle East. Due to the sporadic and explosive nature of RVF outbreaks, vaccination has proved challenging to reduce RVFV infection in the ruminant population. Currently, there are two available types of vaccines, live and killed, in endemic areas. In this study, two mathematical models have been developed to explore the impact of live and killed vaccines on the transmission dynamics of RVFV. We demonstrate in general that vaccination helps reduce the severity of RVF outbreaks and that less delay in implementation and more vaccination attempts and effective vaccines can reduce the outbreak magnitude and the endemic number of RVFV. However, an introduction of a number of ruminants vaccinated by live vaccines in RVFV-free areas may cause an outbreak and RVFV may become endemic if there is sustained use of live vaccines. Other factors that are the important determinants of RVF outbreaks include: unsustained vaccination programs, recruitment of susceptible ruminants, and the seasonal abundance of mosquitoes. PMID:26869999

  7. Strangles in horses can be caused by vaccination with Pinnacle I. N.

    PubMed

    Cursons, Ray; Patty, Olivia; Steward, Karen F; Waller, Andrew S

    2015-07-09

    The differentiation of live attenuated vaccine strains from their progenitor and wild-type counterparts is important for ongoing surveillance of product safety and improved guidelines on their use. We utilised a genome sequencing approach to confirm that two cases of strangles in previously healthy horses that had received the Pinnacle I. N. vaccine (Zoetis) were caused by the vaccine strain. Our data shed new light on the safety of this vaccine and suggest that factors beyond the maturity of the animal's immune system influence the development of adverse reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Genome analysis of Mycoplasma synoviae strain MS-H, the most common M. synoviae strain with a worldwide distribution.

    PubMed

    Zhu, Ling; Shahid, Muhammad A; Markham, John; Browning, Glenn F; Noormohammadi, Amir H; Marenda, Marc S

    2018-02-02

    The bacterial pathogen Mycoplasma synoviae can cause subclinical respiratory disease, synovitis, airsacculitis and reproductive tract disease in poultry and is a major cause of economic loss worldwide. The M. synoviae strain MS-H was developed by chemical mutagenesis of an Australian isolate and has been used as a live attenuated vaccine in many countries over the past two decades. As a result it may now be the most prevalent strain of M. synoviae globally. Differentiation of the MS-H vaccine from local field strains is important for epidemiological investigations and is often required for registration of the vaccine. The complete genomic sequence of the MS-H strain was determined using a combination of Illumina and Nanopore methods and compared to WVU-1853, the M. synoviae type strain isolated in the USA 30 years before the parent strain of MS-H, and MS53, a more recent isolate from Brazil. The vaccine strain genome had a slightly larger number of pseudogenes than the two other strains and contained a unique 55 kb chromosomal inversion partially affecting a putative genomic island. Variations in gene content were also noted, including a deoxyribose-phosphate aldolase (deoC) fragment and an ATP-dependent DNA helicase gene found only in MS-H. Some of these sequences may have been acquired horizontally from other avian mycoplasma species. MS-H was somewhat more similar to WVU-1853 than to MS53. The genome sequence of MS-H will enable identification of vaccine-specific genetic markers for use as diagnostic and epidemiological tools to better control M. synoviae.

  9. Autorosette formation of erythrocytes on peripheral blood mononuclear cells in dogs vaccinated with canine distemper live-virus vaccine.

    PubMed

    Chandler, J P; Yang, T J

    1981-08-01

    A time course study of the peripheral blood leukocytes of dogs vaccinated with canine distemper live virus (a paramyxovirus) vaccines showed that autorosette-forming leukocytes appeared from day 3 to day 10 after vaccination. The number of these cells peaked at day 7 when as many as 35% of mononuclear cells formed rosettes with autologous erythrocytes. In contrast, in nonvaccinated dogs, only 0.6 +/- 0.3% (standard error of the mean) of mononuclear cells formed rosettes throughout the 2-week period.

  10. Post-marketing surveillance of live-attenuated Japanese encephalitis vaccine safety in China.

    PubMed

    Wang, Yali; Dong, Duo; Cheng, Gang; Zuo, Shuyan; Liu, Dawei; Du, Xiaoxi

    2014-10-07

    Japanese encephalitis (JE) is the most severe form of viral encephalitis in Asia and no specific treatment is available. Vaccination provides an effective intervention to prevent JE. In this paper, surveillance data for adverse events following immunization (AEFI) related to SA-14-14-2 live-attenuated Japanese encephalitis vaccine (Chengdu Institute of Biological Products) was presented. This information has been routinely generated by the Chinese national surveillance system for the period 2009-2012. There were 6024 AEFI cases (estimated reported rate 96.55 per million doses). Most common symptoms of adverse events were fever, redness, induration and skin rash. There were 70 serious AEFI cases (1.12 per million doses), including 9 cases of meningoencephalitis and 4 cases of death. The post-marketing surveillance data add the evidence that the Chengdu institute live attenutated vaccine has a reasonable safety profile. The relationship between encephalitis and SA-14-14-2 vaccination should be further studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Repeated suppression of lymphocyte blastogenesis following vaccinations of CPV-immune dogs with modified-live CPV vaccines.

    PubMed

    Mastro, J M; Axthelm, M; Mathes, L E; Krakowka, S; Ladiges, W; Olsen, R G

    1986-09-01

    A commercially available modified-live canine parvovirus (CPV) vaccine was evaluated for its immunosuppressive properties in eight random-bred dogs, all with circulatory antibody to CPV. Three of the eight dogs exhibited a significant decrease in lymphocyte blastogenesis after vaccine administration. In these dogs, this decrease in blastogenesis was of short duration and was consistently observed after repeated administrations of the vaccine. Neither gastroenteritis, fever nor leukopenia, signs indicative of virulent canine parvovirus infection, were detected in these animals. In addition, lymphocytes from these dogs lacked Ia antigen expression. This study demonstrated that the immunomodulating effects of ML-CPV is not observed in all animals yet is consistent in affected individuals.

  12. Mycoplasma synoviae infection on Newcastle disease vaccination of chickens

    PubMed Central

    de Cássia Figueira Silva, Rita; do Nascimento, Elmiro Rosendo; de Almeida Pereira, Virgínia Léo; Barreto, Maria Lúcia; do Nascimento, Maria da Graça Fichel

    2008-01-01

    Newcastle disease is characterized by respiratory manifestations in association with nervous and/or digestive symptoms. Its prevention is done by vaccination with live attenuated (lentogenic strains) and/or killed vaccines. The lentogenic strains can lead to strong post-vaccination reaction, principally due to the presence of other pathogenic agents. Among them, Mycoplasma synoviae is worldwide important, mainly in Brazil. The dissemination of this agent in poultry flocks has been achieved due to difficulties in diagnosis and disease reproduction, virulence variations among different M.synoviae strains, and attribution of typical M.synoviae disease manifestation to other disease agents. This experimental study in SPF chicks (Gallus gallus), previously infected by M.synoviae and thereafter vaccinated against Newcastle disease, was done with the objective of evaluating M.synoviae pathogenicity through assessment of post-vaccinal respiratory reactions and serologic responses to Newcastle disease virus vaccine in the absence of environmental factors. A total of 86 three days old chicks were used, being 57 infected by eye and nostril drop, with chicken activated M. synoviae strain WVU 1853. Seven days later, 21 mycoplasma infected birds plus 29 not mycoplasma infected ones were vaccinated against Newcastle disease. As results, the not infected and vaccinated birds yielded, significantly, higher and longer lasting serologic responses to Newcastle disease vaccine virus than those infected and vaccinated. Similarly, the infected and vaccinated birds yielded lower serologic reactions to M.synoviae than those only mycoplasma infected. No post-vaccinal respiratory reaction was observed in the vaccinated birds. PMID:24031234

  13. Neutralizing Antibody Responses to Antigenically Drifted Influenza A(H3N2) Viruses among Children and Adolescents following 2014-2015 Inactivated and Live Attenuated Influenza Vaccination

    PubMed Central

    Martin, Judith M.; Gross, F. Liaini; Jefferson, Stacie; Cole, Kelly Stefano; Archibald, Crystal Ann; Nowalk, Mary Patricia; Susick, Michael; Moehling, Krissy; Spencer, Sarah; Chung, Jessie R.; Flannery, Brendan; Zimmerman, Richard K.

    2016-01-01

    Human influenza A(H3N2) viruses that predominated during the moderately severe 2014-2015 influenza season differed antigenically from the vaccine component, resulting in reduced vaccine effectiveness (VE). To examine antibody responses to 2014-2015 inactivated influenza vaccine (IIV) and live-attenuated influenza vaccine (LAIV) among children and adolescents, we collected sera before and after vaccination from 150 children aged 3 to 17 years enrolled at health care facilities. Hemagglutination inhibition (HI) assays were used to assess the antibody responses to vaccine strains. We evaluated cross-reactive antibody responses against two representative A(H3N2) viruses that had antigenically drifted from the A(H3N2) vaccine component using microneutralization (MN) assays. Postvaccination antibody titers to drifted A(H3N2) viruses were higher following receipt of IIV (MN geometric mean titers [GMTs], 63 to 68; 38 to 45% achieved seroconversion) versus LAIV (MN GMT, 22; only 3 to 5% achieved seroconversion). In 9- to 17-year-olds, the highest MN titers were observed among IIV-vaccinated individuals who had received LAIV in the previous season. Among all IIV recipients aged 3 to 17 years, the strongest predictor of antibody responses to the drifted viruses was the prevaccination titers to the vaccine strain. The results of our study suggest that in an antigenically drifted influenza season, vaccination still induced cross-reactive antibody responses to drifted circulating A(H3N2) viruses, although higher antibody titers may be required for protection. Antibody responses to drifted A(H3N2) viruses following vaccination were influenced by multiple factors, including vaccine type and preexisting immunity from prior exposure. PMID:27558294

  14. [Evaluation on the effect of immunization and safety of live attenuated and inactivated hepatitis A vaccine in China].

    PubMed

    Li, Hui; Zhang, Xiao-shu; An, Jing

    2013-01-01

    To evaluate the safety of both domestic live attenuated and inactivated hepatitis A vaccines, and to provide reference for emergent vaccination after hepatitis A outbreaks. 493 children aged 6 - 9 with negative antibody to HAV (produced by Abbott) were randomly divided into four groups as vaccinated with domestic live attenuated hepatitis A vaccine (Group A), domestic inactivated hepatitis A vaccine (Group B), imported inactivated hepatitis A vaccine (Group C) and hepatitis B vaccine (Group D) respectively. Adverse events following the immunization were observed 30 minutes, 24, 48 and 72 hours after the vaccination, under double-blind method. The main AEFIs were: fever, local pain and scleroma but no other severe AEFIs were observed. The rates of AEFIs were 13.95% in Group A, 15.25% in group B, 16.80% in group C and 25.62% in group D, with no statistical differences between these groups (χ(2) = 6.953, P > 0.05). 2 weeks after the vaccination, the positive conversion rates of domestic live attenuated hepatitis A vaccine and domestic inactivated hepatitis A vaccine were 85.0% and 94.59% respectively. The rate of domestic inactivated hepatitis A vaccine reached 100% at 4 weeks after the vaccination. The antibody levels of HAV-IgG of Group A and B in 2, 4 and 12 weeks of vaccination and of Group C were higher than that of Group D. After 12 weeks of vaccination, the antibody level of group B became higher than it was Group C. There were no differences on safety among domestic live attenuated hepatitis A vaccine, domestic inactivated hepatitis A vaccine or imported inactivated hepatitis A vaccine under routine or emergency vaccination. All the vaccines showed satisfactory effects.

  15. Faecal shedding of canine parvovirus after modified-live vaccination in healthy adult dogs.

    PubMed

    Freisl, M; Speck, S; Truyen, U; Reese, S; Proksch, A-L; Hartmann, K

    2017-01-01

    Since little is known about the persistence and faecal shedding of canine parvovirus (CPV) in dogs after modified-live vaccination, diagnostic tests for CPV can be difficult to interpret in the post-vaccination period. The primary aim of this study was to determine the incidence, duration and extent of CPV vaccine virus shedding in adult dogs and to investigate related factors, including the presence of protective antibodies, increase in anti-CPV antibody titres and development of any gastrointestinal side-effects. A secondary objective was to assess prevalence of CPV field virus shedding in clinically healthy dogs due to subclinical infections. One hundred adult, healthy privately owned dogs were vaccinated with a commercial CPV-2 modified-live vaccine (MLV). Faeces were tested for the presence of CPV DNA on days 0 (prior to vaccination), 3, 7, 14, 21 and 28 by quantitative real-time PCR. Pre- and post-vaccination serum titres were determined by haemagglutination inhibition on days 0, 7 and 28. Transient excretion of CPV DNA was detected in 2.0% of dogs before vaccination. About one quarter of dogs (23.0%) shed CPV DNA during the post-vaccination period, but field and vaccine virus differentiation by VP2 gene sequencing was only successful in few samples. Faecal CPV excretion occurred despite protective serum antibody titres. Post-vaccination CPV shedding was not related to adequate antibody response after vaccination or to the occurrence of gastrointestinal side-effects. Despite individual differences, CPV DNA was detectable for up to 28 days after vaccination, although the faecal CPV DNA load in these clinically healthy dogs was very low. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Oral vaccination with LcrV from Yersinia pestis KIM delivered by live attenuated Salmonella enterica serovar Typhimurium elicits a protective immune response against challenge with Yersinia pseudotuberculosis and Yersinia enterocolitica.

    PubMed

    Branger, Christine G; Torres-Escobar, Ascención; Sun, Wei; Perry, Robert; Fetherston, Jacqueline; Roland, Kenneth L; Curtiss, Roy

    2009-08-27

    The use of live recombinant attenuated Salmonella vaccines (RASV) synthesizing Yersinia proteins is a promising approach for controlling infection by Yersinia species. In this study, we constructed attenuated Salmonella strains which synthesize a truncated form of LcrV, LcrV196 and evaluated the immune response and protective efficacy elicited by these strains in mice against two other major species of Yersinia: Yersinia pseudotuberculosis and Yersinia enterocolitica. Surprisingly, we found that the RASV strain alone was sufficient to afford nearly full protection against challenge with Y. pseudotuberculosis, indicating the likelihood that Salmonella produces immunogenic cross-protective antigens. In contrast, lcrV196 expression was required for protection against challenge with Y. enterocolitica strain 8081, but was not sufficient to achieve significant protection against challenge with Y. enterocolitica strain WA, which expressed a divergent form of lcrV. Nevertheless, we are encouraged by these findings to continue pursuing our long-term goal of developing a single vaccine to protect against all three human pathogenic species of Yersinia.

  17. Paradox of vaccination: is vaccination really effective against avian flu epidemics?

    PubMed

    Iwami, Shingo; Suzuki, Takafumi; Takeuchi, Yasuhiro

    2009-01-01

    Although vaccination can be a useful tool for control of avian influenza epidemics, it might engender emergence of a vaccine-resistant strain. Field and experimental studies show that some avian influenza strains acquire resistance ability against vaccination. We investigated, in the context of the emergence of a vaccine-resistant strain, whether a vaccination program can prevent the spread of infectious disease. We also investigated how losses from immunization by vaccination imposed by the resistant strain affect the spread of the disease. We designed and analyzed a deterministic compartment model illustrating transmission of vaccine-sensitive and vaccine-resistant strains during a vaccination program. We investigated how the loss of protection effectiveness impacts the program. Results show that a vaccination to prevent the spread of disease can instead spread the disease when the resistant strain is less virulent than the sensitive strain. If the loss is high, the program does not prevent the spread of the resistant strain despite a large prevalence rate of the program. The epidemic's final size can be larger than that before the vaccination program. We propose how to use poor vaccines, which have a large loss, to maximize program effects and describe various program risks, which can be estimated using available epidemiological data. We presented clear and simple concepts to elucidate vaccination program guidelines to avoid negative program effects. Using our theory, monitoring the virulence of the resistant strain and investigating the loss caused by the resistant strain better development of vaccination strategies is possible.

  18. Immune responses to modified live virus vaccines developed from classical or highly pathogenic PRRSV following challenge with a highly pathogenic PRRSV strain.

    PubMed

    Wang, Gang; Yu, Ying; Zhang, Chong; Tu, Yabin; Tong, Jie; Liu, Yonggang; Chang, Yafei; Jiang, Chenggang; Wang, Shujie; Zhou, En-Min; Cai, Xuehui

    2016-09-01

    Modified live virus vaccines (MLVs) are used on swine farms to control porcine reproductive and respiratory syndrome virus (PRRSV). MLVs from classical PRRSV (C-PRRSV) provide some protection against emergent highly pathogenic PRRSV (HP-PRRSV). This study characterized the protective efficacy and immune response to MLVs from C-PRRSV (CH-1R) or HP-PRRSV (HuN4-F112) in a challenge using HP-PRRSV (HuN4). The outcomes were clinical signs of disease, pathological changes in the thymus and lungs, viremia, and humoral and cellular immune responses. CH-1R provided some protection against challenge with HuN4, while HuN4-F112 was protective in the HuN4 challenge. Compared to unvaccinated piglets, the vaccinated piglets had milder symptoms and fewer pathological changes in the lung and thymus. Piglets vaccinated with HuN4-F112 had higher antibody titers and lower viral loads than piglets vaccinated with CH-1R post challenge. The differences in outcome between the MLVs suggested that underlying differences in the immune responses might warrant further study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Compatibility of a bivalent modified-live vaccine against Bordetella bronchiseptica and CPiV, and a trivalent modified-live vaccine against CPV, CDV and CAV-2.

    PubMed

    Jacobs, A A C; Bergman, J G H E; Theelen, R P H; Jaspers, R; Helps, J M; Horspool, L J I; Paul, G

    2007-01-13

    Eight puppies (group 1) were vaccinated once with a bivalent modified-live vaccine against infectious tracheobronchitis by the intranasal route and at the same time with an injectable trivalent vaccine against canine parvovirus, canine distemper virus and canine adenovirus; a second group of eight puppies (group 2) was vaccinated only with the intranasal bivalent vaccine, and a further eight puppies (group 3) were vaccinated only with the injectable trivalent vaccine. Three weeks later they were all challenged with wildtype Bordetella bronchiseptica and canine parainfluenza virus by the aerosol route, and their antibody responses to the five vaccine organisms were determined. Oronasal swabs were taken regularly before and after the challenge for the isolation of bacteria and viruses, and the puppies were observed for clinical signs for three weeks after the challenge. There were no significant differences in the puppies' titres against canine parvovirus, canine distemper virus and canine adenovirus type 2 between the groups vaccinated with or without the bivalent intranasal vaccine. After the challenge the mean clinical scores of the two groups vaccinated with the intranasal vaccine were nearly 90 per cent lower (P=0.001) than the mean score of the group vaccinated with only the trivalent injectable vaccine, and the puppies in this group all became culture-positive for B bronchiseptica and canine parainfluenza virus. There were only small differences between the rates of isolation of B bronchiseptica from groups 1, 2 and 3, but significantly lower yields of canine parainfluenza virus were isolated from groups 1 and 2 than from group 3.

  20. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses.

    PubMed

    Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Jouvenet, Nolwenn; Amara, Ali

    2016-02-09

    The live attenuated yellow fever virus (YFV) vaccine 17D stands as a "gold standard" for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. The yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry

  1. A modified live canine parvovirus vaccine. II. Immune response.

    PubMed

    Carmichael, L E; Joubert, J C; Pollock, R V

    1983-01-01

    The safety and efficacy of an attenuated canine parvovirus (A-CPV) vaccine was evaluated in both experimental and in field dogs. After parenteral vaccination, seronegative dogs developed hemagglutination-inhibition (HI) antibody titers as early as postvaccination (PV) day 2. Maximal titers occurred within 1 week. Immunity was associated with the persistence of HI antibody titers (titers greater than 80) that endured at least 2 years. Immune dogs challenged with virulent CPV did not shed virus in their feces. The A-CPV vaccine did not cause illness alone or in combination with living canine distemper (CD) and canine adenovirus type-2 (CAV-2) vaccines, nor did it interfere with the immune response to the other viruses. A high rate (greater than 98%) of immunity was engendered in seronegative pups. In contrast, maternal antibody interfered with the active immune response to the A-CPV. More than 95% of the dogs with HI titers less than 10 responded to the vaccine, but only 50% responded when titers were approximately 20. No animal with a titer greater than 80 at the time of vaccination became actively immunized. Susceptibility to virulent CPV during that period when maternal antibody no longer protects against infection, but still prevents active immunization, is the principal cause of vaccinal failure in breeding kennels where CPV is present. Reduction, but not complete elimination, of CPV disease in large breeding kennels occurred within 1-2 months of instituting an A-CPV vaccination program.

  2. Choice of High-Efficacy Strains for the Annual Influenza Vaccine

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2005-03-01

    We introduce a model of protein evolution to explain limitations in the immune system response to vaccination and disease [1]. The phenomenon of original antigenic sin, wherein vaccination creates memory sequences that can increase susceptibility to future exposures to the same disease, is explained as stemming from localization of the immune system response in antibody sequence space. This localization is a result of the roughness in sequence space of the evolved antibody affinity constant for antigen and is observed for diseases with high year-to-year mutation rates, such as influenza. We show that the order parameter within this theory correlates well with efficacies of the H3N2 influenza A component of the annual vaccine between 1971 and 2004 [2,3]. This new measure of antigenic distance predicts vaccine efficacy significantly more accurately than do current state-of-the-art phylogenetic sequence analyses or ferret antisera inhibition assays. We discuss how this new measure of antigenic distance may be used in the context of annual influenza vaccine design and monitoring of vaccine efficacy. 1) M. W. Deem and H. Y. Lee, Phys. Rev. Lett. 91 (2003) 068101. 2) E. T. Munoz and M. W. Deem,q-bio.BM/0408016. 3) V. Gupta, D. J. Earl, and M. W. Deem, ``Choice of High-Efficacy Strains for the Annual Influenza Vaccine,'' submitted.

  3. Status of arenavirus vaccines and their application

    PubMed Central

    Johnson, Karl M.

    1975-01-01

    A limited but definite need exists for vaccines against Lassa, Junin, and Machupo viruses. Medical and laboratory personnel, as well as defined high-risk population groups, require protection from these highly virulent agents. To date little work has been done on inactivated vaccines for these viruses. A live attenuated Junin vaccine has been tested successfully in more than 600 persons, and a high-passage Machupo virus strain has protected rhesus monkeys against lethal infection produced by a homologous field strain. Work has been initiated on possible heterologous protection induced by infection or antigenic stimulation with arenaviruses not pathogenic for man. Crucial for the eventual development of effective vaccines are the construction of more maximum security laboratories and the further elucidation of the experimental and natural biology of the agents in lower animals and man. PMID:182407

  4. Increased efficacy of inactivated vaccine candidates prepared with Salmonella enterica serovar Typhimurium strains of predominant genotypes in ducks.

    PubMed

    Youn, S Y; Kwon, Y K; Song, C S; Lee, H J; Jeong, O M; Choi, B K; Jung, S C; Kang, M S

    2016-08-01

    Salmonella enterica serovar Typhimurium has been a major causative agent of food-borne human disease, mainly due to consumption of contaminated food animal products. In particular, ducks serve as a reservoir of serovar Typhimurium, and are one of the common sources of human infection. To prevent infection of ducks, and therefore minimize human infection, it is critical to control the persistent epidemic strains in ducks. Here, we analyzed the genetic diversity and virulence of serovar Typhimurium isolates from ducks in Korea to identify the predominant strains that might be used as efficient vaccine candidates for ducks. Among the isolates, 2 representative isolates (ST26 and ST76) of predominant genotypes were selected as vaccine strains on the basis of genotypic analysis by pulsed-field gel electrophoresis and DNA microarrays. Two-week-old ducks were then injected intramuscularly with inactivated vaccine candidates prepared using ST26 or ST76 (10(8) cfu/0.5 mL/duck or 10(9) cfu/0.5 mL/duck), and oral challenge with a highly virulent serovar Typhimurium strain (10(9) cfu/0.5 mL/duck) was carried out 2 wk later. Shedding of the challenge strain was significantly decreased in group 2 after vaccination. The antibody levels by enzyme-linked immunosorbent assay in all vaccinated groups were enhanced significantly (P < 0.05) compared to the unvaccinated control group. Overall, vaccination with ST26 or ST76 reduced bacterial shedding and colonization in internal organs, and induced elevated antibody response. In particular, serovar Typhimurium ST26 (10(8) cfu/0.5 mL/duck) was the most effective vaccine candidate, which can provide efficient protection against serovar Typhimurium in ducks with higher effectiveness compared to a commercial vaccine currently used worldwide. © 2016 Poultry Science Association Inc.

  5. Evaluation of live attenuated S79 mumps vaccine effectiveness in mumps outbreaks: a matched case-control study.

    PubMed

    Fu, Chuan-xi; Nie, Jun; Liang, Jian-hua; Wang, Ming

    2009-02-05

    Mumps virus infection is a potentially serious viral infection of childhood and early adulthood. In China, live attenuated S(79) mumps vaccine has been licensed for pediatric use since 1990. The objective of this study was to determine the effectiveness of live attenuated S(79) mumps vaccine against clinical mumps in outbreaks. Cases were selected from mumps outbreaks in schools in Guangzhou between 2004 and 2005. Each case was matched by gender, age and classroom. Vaccination information was obtained from Children's EPI Administrative Computerized System. Vaccine effectiveness (VE) was calculated for 1 or 2 doses of S(79) vaccine with 95% confidence intervals (CI). One hundred and ninety-four cases and 194 controls were enrolled into the study. VE of the S(79) mumps vaccine for 1 dose versus 0 confer protection 80.4% (95% CI, 60.0%-90.4%) and VEs against mumps in outbreaks for 1 dose of mumps vaccine are similar among those children aged 4-9 years and aged over 10 years old. The live attenuated S(79) mumps vaccine can be effective in preventing clinical mumps outbreaks.

  6. Efficacy evaluation of the C-strain-based vaccines against the subgenotype 2.1d classical swine fever virus emerging in China.

    PubMed

    Luo, Yuzi; Ji, Shengwei; Lei, Jian-Lin; Xiang, Guang-Tao; Liu, Yan; Gao, Yao; Meng, Xing-Yu; Zheng, Guanglai; Zhang, En-Yu; Wang, Yimin; Du, Ming-Liang; Li, Yongfeng; Li, Su; He, Xi-Jun; Sun, Yuan; Qiu, Hua-Ji

    2017-03-01

    Classical swine fever (CSF) is a devastating infectious disease of pigs caused by classical swine fever virus (CSFV). The disease has been controlled following extensive vaccination with the lapinized attenuated vaccine C-strain for decades in China. However, frequent CSF outbreaks occurred recently in a large number of C-strain-vaccinated pig farms in China and a new subgenotype 2.1d of CSFV has been reported to be responsible for the outbreaks. Here we analyzed the molecular variations and antigenic differences among the C-strain-based commercial vaccines of different origins from different manufacturers in China, and reevaluated the vaccines against the emerging subgenotype 2.1d strain of CSFV. The results showed that the C-strain adapted to the continuous ST cell line (C ST ) contain a unique M290K variation on the E2 protein, compared to those of primary BT cells (C BT ) or rabbit origin (C RT ) and the traditional C-strain sequences available in the GenBank database. Serum neutralization test revealed the antigenic differences between C ST and C BT or C RT . Notably, the neutralizing titers of porcine anti-C-strain sera against the CSFV isolate of subgenotype 2.1d were significantly lower than those against C-strain or Shimen strain. The C-strain-vaccinated, subgenotype 2.1d HLJZZ2014 strain-challenged pigs did not show any clinical signs and all survived. However, these pigs displayed mild pathological and histological lesions, and the CSFV viral RNA was detected in the various tissue and blood samples. Taken together, the C-strain-based vaccines of different origins showed molecular variations and antigenic differences, and could provide clinical but not pathological and virological protection against the subgenotype 2.1d CSFV emerging in China. Further investigation is needed to comprehensively assess the efficacy of C-strain of different doses against the subgenotype 2.1d CSFV. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Immunogenicity of a Japanese encephalitis chimeric virus vaccine as a booster dose after primary vaccination with SA14-14-2 vaccine in Thai children.

    PubMed

    Janewongwirot, Pakpoom; Puthanakit, Thanyawee; Anugulruengkitt, Suvaporn; Jantarabenjakul, Watsamon; Phasomsap, Chayapa; Chumket, Sompong; Yoksan, Sutee; Pancharoen, Chitsanu

    2016-10-17

    Japanese Encephalitis chimeric virus vaccine (JE-CV) and SA14-14-2 vaccine are live-attenuated JE vaccines produced from the same virus strain. Data on interchangeability is limited. To evaluate the immunogenicity and safety of JE-CV booster after primary vaccination with SA14-14-2 vaccine. This study was an open-label clinical trial in Thai children who had received a primary SA14-14-2 vaccination at 12-24monthsbefore enrollment (ClinicalTrials.gov NCT02602652). JE-CV was administered. A 50% plaque reduction neutralization test (PRNT 50 ) against three virus strains; JE-CV, SA-14-14-2andwild-type JE virus was measured before and 28-days post vaccination. The laboratory was performed at PRNT 50 titers ⩾10 (1/dil) were considered seroprotective against JE. Geometric mean titer (GMT) of PRNT 50 was calculated. Adverse events were observed for 28days. From March 2014 to June 2015, 50 children (64% male) were enrolled. Mean age and duration after primary vaccination was 26.9 (SD 4.6) and 12.8 (SD 2.7) months, respectively. The proportion of participants who had PRNT 50 pre and post-booster vaccination were 92% and 96% against JE-CV virus, 56% and 98% against SA-14-14-2 strain and 70% and 98% against wild-type JE virus, respectively. Solicited injection site reactions including erythema, pain and swelling occurred in 18%, 10% and 4% of subjects, respectively. Four children (8%) had fever (⩾37.7Celsius). Eight children (16%) had adverse events, which were not related to the vaccine. AJE-CV booster dose is highly immunogenic and safe among children who previously received SA14-14-2 vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The history of vaccination against cytomegalovirus.

    PubMed

    Plotkin, Stanley

    2015-06-01

    Cytomegalovirus vaccine development started in the 1970s with attenuated strains. In the 1980s, one of the strains was shown to be safe and effective in renal transplant patients. Then, attention switched to glycoprotein gB, which was shown to give moderate but transient protection against acquisition of the virus by women. The identification of the pp65 tegument protein as the principal target of cellular immune responses resulted in new approaches, particularly DNA, plasmids to protect hematogenous stem cell recipients. The subsequent discovery of the pentameric protein complex that generates most neutralizing antibodies led to efforts to incorporate that complex into vaccines. At this point, there are many candidate CMV vaccines, including live recombinants, replication-defective virus, DNA plasmids, soluble pentameric proteins, peptides, virus-like particles and vectored envelope proteins.

  9. Minimum estimated incidence in Japan of anaphylaxis to live virus vaccines including gelatin.

    PubMed

    Sakaguchi, M; Nakayama, T; Fujita, H; Toda, M; Inouye, S

    2000-10-15

    We have previously found that most occurrences of anaphylaxis to live virus vaccines are caused by gelatin present in the vaccines as a stabilizer. After we published the evidence for the role of gelatin in anaphylaxis, vaccine manufacturers in Japan began to eliminate gelatin from live virus vaccines. In the present study, we tried to estimate its incidence before the gelatin elimination was started. Physicians and vaccine manufacturers submitted serum samples from children with anaphylaxis to measles, mumps, rubella or varicella vaccine to National Institute of Infectious Diseases (NIID) for 3 years from April 1994 to March 1997. Specific IgE to gelatin was assayed at NIID or two manufacturers by the CAP and ELISA methods. There were 44 children with life-threatening severe anaphylaxis (airway obstruction or anaphylactic shock) during the 3-year period, 41 of whom had anti-gelatin IgE. There were 64 children with mild anaphylaxis (without airway obstruction); 62 had anti-gelatin IgE. There were 100 children with only systemic cutaneous signs; 81 had anti-gelatin IgE. The estimates for the incidence of the severe anaphylaxis in 1994-1996 are: 6.84, 7.31, 4. 36, and 10.3 cases per million doses of gelatin-containing measles, rubella, mumps, and varicella vaccines, respectively.

  10. Inactivated yellow fever 17D vaccine: development and nonclinical safety, immunogenicity and protective activity.

    PubMed

    Monath, Thomas P; Lee, Cynthia K; Julander, Justin G; Brown, Alicja; Beasley, David W; Watts, Douglas M; Hayman, Edward; Guertin, Patrick; Makowiecki, Joseph; Crowell, Joseph; Levesque, Philip; Bowick, Gavin C; Morin, Merribeth; Fowler, Elizabeth; Trent, Dennis W

    2010-05-14

    In the last 10 years new concerns have arisen about safety of the live, attenuated yellow fever (YF) 17D vaccine, in particular viscerotropic adverse events, which have a case-fatality rate of 64%. A non-replicating cell culture-based vaccine would not cause these adverse events, and potentially could be used in persons with precautions or contraindications to use of the live vaccine, including age <9 months and >60 years, egg allergy, immune suppression, and pregnancy. We developed a whole virion vaccine from the 17D strain inactivated with beta-propiolactone, and adsorbed to aluminum hydroxide. The inactivated vaccine was highly immunogenic in mice, hamsters, and cynomolgus macaques. After a single dose in hamsters and macaques, neutralizing antibody titers were similar to those elicited by the live 17D vaccine (YF-VAX, Sanofi Pasteur). After two doses of inactivated vaccine, neutralizing antibody titers in hamsters were significantly higher than after a single dose of YF-VAX [geometric mean titer (GMT) 20,480 vs. 1940, respectively (P<0.001, ANOVA)]. Hamsters given a single dose or two doses of inactivated vaccine or a single dose of YF-VAX were fully protected against hepatitis, viremia, weight loss and death after challenge with YF virus (Jimenez strain). A clinical trial of the inactivated vaccine (XRX-001) has been initiated. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Smallpox and live-virus vaccination in transplant recipients.

    PubMed

    Fishman, Jay A

    2003-07-01

    Recent bioterrorism raises the specter of reemergence of smallpox as a clinical entity. The mortality of variola major infection ('typical smallpox') was approximately 30% in past outbreaks. Programs for smallpox immunization for healthcare workers have been proposed. Atypical forms of smallpox presenting with flat or hemorrhagic skin lesions are most common in individuals with immune deficits with historic mortality approaching 100%. Smallpox vaccination, even after exposure, is highly effective. Smallpox vaccine contains a highly immunogenic live virus, vaccinia. Few data exist for the impact of variola or safety of vaccinia in immunocompromised hosts. Both disseminated infection by vaccinia and person-to-person spread after vaccination are uncommon. When it occurs, secondary vaccinia has usually affected individuals with pre-existing skin conditions (atopic dermatitis or eczema) or with other underlying immune deficits. Historically, disseminated vaccinia infection was uncommon but often fatal even in the absence of the most severe form of disease, "progressive vaccinia". Some responded to vaccinia immune globulin. Smallpox exposure would be likely to cause significant mortality among immunocompromised hosts. In the absence of documented smallpox exposures, immunocompromised hosts should not be vaccinated against smallpox. Planning for bioterrorist events must include consideration of uniquely susceptible hosts.

  12. Immune responses of bison and efficacy after booster vaccination with Brucella abortus strain RB51.

    PubMed

    Olsen, S C; McGill, J L; Sacco, R E; Hennager, S G

    2015-04-01

    Thirty-one bison heifers were randomly assigned to receive saline or a single vaccination with 10(10) CFU of Brucella abortus strain RB51. Some vaccinated bison were randomly selected for booster vaccination with RB51 at 11 months after the initial vaccination. Mean antibody responses to RB51 were greater (P < 0.05) in vaccinated bison after initial and booster vaccination than in nonvaccinated bison. The proliferative responses by peripheral blood mononuclear cells (PBMC) from the vaccinated bison were greater (P < 0.05) than those in the nonvaccinated bison at 16 and 24 weeks after the initial vaccination but not after the booster vaccination. The relative gene expression of gamma interferon (IFN-γ) was increased (P < 0.05) in the RB51-vaccinated bison at 8, 16, and 24 weeks after the initial vaccination and at 8 weeks after the booster vaccination. The vaccinated bison had greater (P < 0.05) in vitro production of IFN-γ at all sampling times, greater interleukin-1β (IL-1β) production in various samplings after the initial and booster vaccinations, and greater IL-6 production at one sampling time after the booster vaccination. Between 170 and 180 days of gestation, the bison were intraconjunctivally challenged with approximately 1 × 10(7) CFU of B. abortus strain 2308. The incidences of abortion and infection were greater (P < 0.05) in the nonvaccinated bison after experimental challenge than in the bison receiving either vaccination treatment. Booster-vaccinated, but not single-vaccinated bison, had a reduced (P < 0.05) incidence of infection in fetal tissues and maternal tissues compared to that in the controls. Compared to the nonvaccinated bison, both vaccination treatments lowered the colonization (measured as the CFU/g of tissue) of Brucella organisms in all tissues, except in retropharyngeal and supramammary lymph nodes. Our study suggests that RB51 booster vaccination is an effective vaccination strategy for enhancing herd immunity against

  13. Immune Responses of Bison and Efficacy after Booster Vaccination with Brucella abortus Strain RB51

    PubMed Central

    McGill, J. L.; Sacco, R. E.; Hennager, S. G.

    2015-01-01

    Thirty-one bison heifers were randomly assigned to receive saline or a single vaccination with 1010 CFU of Brucella abortus strain RB51. Some vaccinated bison were randomly selected for booster vaccination with RB51 at 11 months after the initial vaccination. Mean antibody responses to RB51 were greater (P < 0.05) in vaccinated bison after initial and booster vaccination than in nonvaccinated bison. The proliferative responses by peripheral blood mononuclear cells (PBMC) from the vaccinated bison were greater (P < 0.05) than those in the nonvaccinated bison at 16 and 24 weeks after the initial vaccination but not after the booster vaccination. The relative gene expression of gamma interferon (IFN-γ) was increased (P < 0.05) in the RB51-vaccinated bison at 8, 16, and 24 weeks after the initial vaccination and at 8 weeks after the booster vaccination. The vaccinated bison had greater (P < 0.05) in vitro production of IFN-γ at all sampling times, greater interleukin-1β (IL-1β) production in various samplings after the initial and booster vaccinations, and greater IL-6 production at one sampling time after the booster vaccination. Between 170 and 180 days of gestation, the bison were intraconjunctivally challenged with approximately 1 × 107 CFU of B. abortus strain 2308. The incidences of abortion and infection were greater (P < 0.05) in the nonvaccinated bison after experimental challenge than in the bison receiving either vaccination treatment. Booster-vaccinated, but not single-vaccinated bison, had a reduced (P < 0.05) incidence of infection in fetal tissues and maternal tissues compared to that in the controls. Compared to the nonvaccinated bison, both vaccination treatments lowered the colonization (measured as the CFU/g of tissue) of Brucella organisms in all tissues, except in retropharyngeal and supramammary lymph nodes. Our study suggests that RB51 booster vaccination is an effective vaccination strategy for enhancing herd immunity against brucellosis in

  14. Evaluation of yellow fever virus 17D strain as a new vector for HIV-1 vaccine development.

    PubMed

    Franco, David; Li, Wenjing; Qing, Fang; Stoyanov, Cristina T; Moran, Thomas; Rice, Charles M; Ho, David D

    2010-08-09

    The failure to develop an effective vaccine against HIV-1 infection has led the research community to seek new ways of raising qualitatively different antibody and cellular immune responses. Towards this goal, we investigated the yellow fever 17D vaccine strain (YF17D), one of the most effective vaccines ever made, as a platform for HIV-1 vaccine development. A test antigen, HIV-1 p24 (clade B consensus), was inserted near the 5' end of YF17D, in frame and upstream of the polyprotein (YF-5'/p24), or between the envelope and the first non-structural protein (YF-E/p24/NS1). In vitro characterization of these recombinants indicated that the gene insert was more stable in the context of YF-E/p24/NS1. This was confirmed in immunogenicity studies in mice. CD8(+) IFN-gamma T-cell responses against p24 were elicited by the YF17D recombinants, as were specific CD4(+) T cells expressing IFN-gamma and IL-2. A balanced CD4(+) and CD8(+) T-cell response was notable, as was the polyfunctionality of the responding cells. Finally, the protective efficacy of the YF17D recombinants, particularly YF-E/p24/NS1, in mice challenged with a vaccinia expressing HIV-1 Gag was demonstrated. These results suggest that YF17D warrants serious consideration as a live-attenuated vector for HIV-1 vaccine development. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Development of live attenuated Streptococcus agalactiae vaccine for tilapia via continuous passage in vitro.

    PubMed

    Li, L P; Wang, R; Liang, W W; Huang, T; Huang, Y; Luo, F G; Lei, A Y; Chen, M; Gan, X

    2015-08-01

    Fish Streptococcus agalactiae (S. agalactiae) seriously harms the world's aquaculture industry and causes huge economic losses. This study aimed to develop a potential live attenuated vaccine of S. agalactiae. Pre-screened vaccine candidate strain S. agalactiae HN016 was used as starting material to generate an attenuated strain S. agalactiae YM001 by continuous passage in vitro. The biological characteristics, virulence, and stability of YM001 were detected, and the protective efficacy of YM001 immunization in tilapia was also determined. Our results indicated that the growth, staining, characteristics of pulsed-field gel electrophoresis (PFGE) genotype, and virulence of YM001 were changed significantly as compared to the parental strain HN016. High doses of YM001 by intraperitoneal (IP) injection (1.0 × 10(9) CFU/fish) and oral gavage (1.0 × 10(10) CFU/fish) respectively did not cause any mortality and morbidity in tilapia. The relative percent survivals (RPSs) of fishes immunized with YM001 (1.0 × 10(8) CFU/fish, one time) via injection, immersion, and oral administration were 96.88, 67.22, and 71.81%, respectively, at 15 days, and 93.61, 60.56, and 53.16%, respectively, at 30 days. In all tests with 1-3 times of immunization in tilapia, the dosages at 1 × 10(8) and 1 × 10(9) CFU/fish displayed the similar best results, whereas the immunoprotection of the dosages at 1 × 10(6) and 1 × 10(7) CFU/fish declined significantly (P < 0.01), and 1 × 10(5) CFU/fish hardly displayed any protective effect. In addition, the efficacy of 2-3 times of immunization was significantly higher than that of single immunization (P < 0.01) while no significant difference in the efficacy between twice and thrice of immunization was seen (P > 0.05). The level of protective antibody elicited by oral immunization was significantly higher compared to that of the control group (P < 0.01), and the antibody reached their maximum levels 14-21 days after the immunization but decreased

  16. Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone.

    PubMed

    Li, Xiao-Feng; Dong, Hao-Long; Wang, Hong-Jiang; Huang, Xing-Yao; Qiu, Ye-Feng; Ji, Xue; Ye, Qing; Li, Chunfeng; Liu, Yang; Deng, Yong-Qiang; Jiang, Tao; Cheng, Gong; Zhang, Fu-Chun; Davidson, Andrew D; Song, Ya-Jun; Shi, Pei-Yong; Qin, Cheng-Feng

    2018-02-14

    The global spread of Zika virus (ZIKV) and its unexpected association with congenital defects necessitates the rapid development of a safe and effective vaccine. Here we report the development and characterization of a recombinant chimeric ZIKV vaccine candidate (termed ChinZIKV) that expresses the prM-E proteins of ZIKV using the licensed Japanese encephalitis live-attenuated vaccine SA14-14-2 as the genetic backbone. ChinZIKV retains its replication activity and genetic stability in vitro, while exhibiting an attenuation phenotype in multiple animal models. Remarkably, immunization of mice and rhesus macaques with a single dose of ChinZIKV elicits robust and long-lasting immune responses, and confers complete protection against ZIKV challenge. Significantly, female mice immunized with ChinZIKV are protected against placental and fetal damage upon ZIKV challenge during pregnancy. Overall, our study provides an alternative vaccine platform in response to the ZIKV emergency, and the safety, immunogenicity, and protection profiles of ChinZIKV warrant further clinical development.

  17. Horizontal transmission of the Leningrad-3 live attenuated mumps vaccine virus.

    PubMed

    Atrasheuskaya, A V; Neverov, A A; Rubin, S; Ignatyev, G M

    2006-03-06

    Here we describe symptomatic transmission of the Leningrad-3 mumps vaccine virus from healthy vaccinees to previously vaccinated contacts. Throat swab and serum samples were taken from six symptomatic mumps cases and from 13 family contacts. Assessment of serum IgG and IgM anti-mumps virus antibodies and IgG avidity testing was performed using commercial test kits. Sera neutralizing antibodies were measured by plaque reduction neutralization assay using the L-3 vaccine mumps virus as the target. All six of the symptomatic mumps cases and three contact subjects tested positive for mumps by RT-PCR. The genomic sequences tested (F, SH and HN genes) of all nine of these samples were identical to the L-3 mumps vaccine strain. All 13 contacts were asymptomatic; however clear serological evidence of mumps infection was found in some of them. The likely epidemiological source of the transmitted L-3 mumps virus was children who were recently vaccinated at the schools attended by the six symptomatic mumps patients described here. The L-3 mumps vaccine virus can be shed and transmitted horizontally, even to subjects previously vaccinated with the same virus.

  18. Development of bioluminescence imaging of respiratory syncytial virus (RSV) in virus-infected live mice and its use for evaluation of therapeutics and vaccines.

    PubMed

    Fuentes, Sandra; Arenas, Diego; Moore, Martin M; Golding, Hana; Khurana, Surender

    2017-01-23

    Respiratory Syncytial virus (RSV) is one of the leading causes of pneumonia among infants with no human vaccine or efficient curative treatments. Efforts are underway to develop new RSV vaccines and therapeutics. There is a dire need for animal models for preclinical evaluation and selection of products against RSV. Herein, we developed a whole body bioluminescence imaging to follow replication of RSV A2 virus strain expressing firefly luciferase (RSVA2-line19-FFL) in live BALB/c mice that can be used as an extremely sensitive readout for studying effects of antiviral and vaccines in living mice. Strong bioluminescence signal was detected in the nasal cavity and in the lungs following intranasal infection of mice with RSVA2-line19-FFL. The kinetics of viral replication in lungs quantified by daily live imaging strongly correlated with viral titers measured by ex-vivo plaque assay and by assessing viral RNA by qRT-PCR. Vaccination of mice with a pre-fusion F protein elicited high neutralizing antibody titers conferring strong protective immunity against virus replication in the nasal cavity and lungs. In contrast, post-challenge treatment of mice with the monoclonal antibody Palivizumab two days after infection reduced viral replication in the nasal cavity at day 4, but only modestly reduced virus loads in the lungs by day 5. In contrast to RSV bioluminescence, plaque assay did not detect viral titers in lungs on day 5 in Palivizumab-treated animals. This difference between viral loads measured by the two assays was found to be due to coating of virions with the Palivizumab that blocked infection of target cells in vitro and shows importance of live imaging in evaluation of RSV therapeutics. This recombinant RSV based live imaging animal model is convenient and valuable tool that can be used to study host dissemination of RSV and evaluation of antiviral compounds and vaccines against RSV. Published by Elsevier Ltd.

  19. A viral-vectored RSV vaccine induces long-lived humoral immunity in cotton rats.

    PubMed

    Grieves, Jessica L; Yin, Zhiwei; Garcia-Sastre, Adolfo; Mena, Ignacio; Peeples, Mark E; Risman, Heidi P; Federman, Hannah; Sandoval, Marvin J; Durbin, Russell K; Durbin, Joan E

    2018-05-17

    Human respiratory syncytial virus (RSV) is the leading cause of lower airway disease in infants worldwide and repeatedly infects immunocompetent individuals throughout life. Severe lower airway RSV infection during infancy can be life-threatening, but is also associated with important sequelae including development of asthma and recurrent wheezing in later childhood. The basis for the inadequate, short-lived adaptive immune response to RSV infection is poorly understood, but it is widely recognized that RSV actively antagonizes Type I interferon (IFN) production. In addition to the induction of the anti-viral state, IFN production during viral infection is critical for downstream development of robust, long-lived immunity. Based on the hypothesis that a vaccine that induced robust IFN production would be protective, we previously constructed a Newcastle disease virus-vectored vaccine that expresses the F glycoprotein of RSV (NDV-F) and demonstrated that vaccinated mice had reduced lung viral loads and an enhanced IFN-γ response after RSV challenge. Here we show that vaccination also protected cotton rats from RSV challenge and induced long-lived neutralizing antibody production, even in RSV immune animals. Finally, pulmonary eosinophilia induced by RSV infection of unvaccinated cotton rats was prevented by vaccination. Overall, these data demonstrate enhanced protective immunity to RSV F when this protein is presented in the context of an abortive NDV infection. Copyright © 2018. Published by Elsevier Ltd.

  20. Antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralizes a heterologous wild-type mumps virus associated with a large outbreak.

    PubMed

    Rubin, Steven A; Qi, Li; Audet, Susette A; Sullivan, Bradley; Carbone, Kathryn M; Bellini, William J; Rota, Paul A; Sirota, Lev; Beeler, Judy

    2008-08-15

    Recent mumps outbreaks in older vaccinated populations were caused primarily by genotype G viruses, which are phylogenetically distinct from the genotype A vaccine strains used in the countries affected by the outbreaks. This finding suggests that genotype A vaccine strains could have reduced efficacy against heterologous mumps viruses. The remote history of vaccination also suggests that waning immunity could have contributed to susceptibility. To examine these issues, we obtained consecutive serum samples from children at different intervals after vaccination and assayed the ability of these samples to neutralize the genotype A Jeryl Lynn mumps virus vaccine strain and a genotype G wild-type virus obtained during the mumps outbreak that occurred in the United States in 2006. Although the geometric mean neutralizing antibody titers against the genotype G virus were approximately one-half the titers measured against the vaccine strain, and although titers to both viruses decreased with time after vaccination, antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralized the outbreak-associated virus at all time points tested.

  1. CpG oligodeoxynucleotides are a potent adjuvant for an inactivated polio vaccine produced from Sabin strains of poliovirus.

    PubMed

    Yang, Chunting; Shi, Huiying; Zhou, Jun; Liang, Yanwen; Xu, Honglin

    2009-11-05

    Poliovirus transmission is controlled globally through world-wide use of a live attenuated oral polio vaccine (OPV). However, the imminence of global poliovirus eradication calls for a switch to the inactivated polio vaccine (IPV). Given the limited manufacturing capacity and high cost of IPV, this switch is unlikely in most developing and undeveloped countries. Adjuvantation is an effective strategy for antigen sparing. In this study, we evaluated the adjuvanticity of CpG oligodeoxynucleotides (CpG-ODN) for an experimental IPV produced from Sabin strains of poliovirus. Our results showed that CpG-ODN, alone or in combination with alum, can significantly enhance both the humoral and cellular immune responses to IPV in mice, and, consequently, the antigen dose could be reduced substantially. Therefore, our study suggests that the global use of IPV could be facilitated by using CpG-ODN or other feasible adjuvants.

  2. Possible Impact of Yearly Childhood Vaccination With Trivalent Inactivated Influenza Vaccine (TIV) on the Immune Response to the Pandemic Strain H1N1.

    PubMed

    Amer, Ahdi; Fischer, Howard; Li, Xiaoming; Asmar, Basim

    2016-03-01

    Annual vaccination of children against seasonal influenza with trivalent inactivated influenza vaccine (TIV) has shown to be beneficial. However, this yearly practice may have unintended effect. Studies have shown that infection with wild type influenza A viruses can stimulate protective heterotypic immunity against unrelated or new influenza subtypes. We hypothesized that a consequence of yearly TIV vaccination is lack of induction of heterotypic immunity against the recent H1N1 pandemic. This was a retrospective case-control study. We reviewed the medical records of polymerase chain reaction-confirmed cases of 2009 H1N1 influenza infection in children 6 months to 18 years and a matched control group seen during the pandemic. We identified 353 polymerase chain reaction-confirmed H1N1 cases and 396 matching control subjects. Among the H1N1 group, 202/353 (57%) cases received a total of 477 doses of seasonal TIV compared with 218/396 (55%) in the control group who received a total of 435 doses. Seasonal TIV uptake was significantly higher in the H1N1 group 477/548 (87%) than in the control group, 435/532 (81%) (P = .017). Seasonal TIV uptake was significantly higher in H1N1-infected group. The finding suggests that the practice of yearly vaccination with TIV might have negatively affected the immune response against the novel pandemic H1N1 strain. Given the rarity of pandemic novel influenza viruses, and the high predictability of seasonal influenza occurrence, the practice of yearly influenza vaccination should be continued. However, the use of live attenuated intranasal vaccine, as opposed to TIV, may allow for the desirable development of a vigorous heterotypic immune response against future pandemics. © The Author(s) 2015.

  3. Evaluation of the use of various rat strains for immunogenic potency tests of Sabin-derived inactivated polio vaccines.

    PubMed

    Someya, Yuichi; Ami, Yasushi; Takai-Todaka, Reiko; Fujimoto, Akira; Haga, Kei; Murakami, Kosuke; Fujii, Yoshiki; Shirato, Haruko; Oka, Tomoichiro; Shimoike, Takashi; Katayama, Kazuhiko; Wakita, Takaji

    2018-03-01

    Slc:Wistar rats have been the only strain used in Japan for purpose of evaluating a national reference vaccine for the Sabin-derived inactivated polio vaccine (sIPV) and the immunogenicity of sIPV-containing products. However, following the discovery that the Slc:Wistar strain was genetically related to the Fischer 344 strain, other "real" Wistar strains, such as Crlj:WI, that are available worldwide were tested in terms of their usefulness in evaluating the immunogenicity of the past and current lots of a national reference vaccine. The response of the Crlj:WI rats against the serotype 1 of sIPV was comparable to that of the Slc:Wistar rats, while the Crlj:WI rats exhibited a higher level of response against the serotypes 2 and 3. The immunogenic potency units of a national reference vaccine determined using the Slc:Wistar rats were reproduced on tests using the Crlj:WI rats. These results indicate that a titer of the neutralizing antibody obtained in response to a given dose of sIPV cannot be directly compared between these two rat strains, but that, more importantly, the potency units are almost equivalent for the two rat strains. Copyright © 2018 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  4. Increase in Genetic Diversity of Haemophilus influenzae Serotype b (Hib) Strains after Introduction of Hib Vaccination in The Netherlands

    PubMed Central

    Schouls, Leo M.; van der Ende, Arie; van de Pol, Ingrid; Schot, Corrie; Spanjaard, Lodewijk; Vauterin, Paul; Wilderbeek, Dorus; Witteveen, Sandra

    2005-01-01

    Recently, there has been an increase in The Netherlands in the number of cases of invasive disease caused by Haemophilus influenzae serotype b (Hib). To study a possible change in the Hib population that could explain the rise in incidence, a multiple-locus variable number tandem repeats analysis (MLVA) was developed to genotype H. influenzae isolates. The MLVA enabled the differentiation of H. influenzae serotype b strains with higher discriminatory power than multilocus sequence typing (MLST). MLVA profiles of noncapsulated H. influenzae and H. influenzae serotype f strains were more heterogeneous than serotype b strains and were distinct from Hib, although some overlap occurred. The MLVA was used to genotype a collection of 520 H. influenzae serotype b strains isolated from patients in The Netherlands with invasive disease. The strains were collected from 1983 from 2002, covering a time period of 10 years before and 9 years after the introduction of the Hib vaccine in the Dutch national vaccination program. MLVA revealed a sharp increase in genetic diversity of Hib strains isolated from neonates to 4-year-old patients after 1993, when the Hib vaccine was introduced. Hib strains isolated from patients older than 4 years in age were genetically diverse, and no significant change in diversity was seen after the introduction of the vaccine. These observations suggest that after the introduction of the Hib vaccine young children no longer constitute the reservoir for Hib and that they are infected by adults carrying genetically diverse Hib strains. PMID:15956392

  5. Stable Chromosomal Expression of Shigella flexneri 2a and 3a O-Antigens in the Live Salmonella Oral Vaccine Vector Ty21a

    PubMed Central

    Osorio, Manuel; Takeda, Kazuyo; Stibitz, Scott; Kopecko, Dennis J.

    2017-01-01

    ABSTRACT We have been exploring the use of the live attenuated Salmonella enterica serovar Typhi Ty21a vaccine strain as a versatile oral vaccine vector for the expression and delivery of multiple foreign antigens, including Shigella O-antigens. In this study, we separately cloned genes necessary for the biosynthesis of the Shigella flexneri serotype 2a and 3a O-antigens, which have been shown to provide broad cross-protection to multiple disease-predominant S. flexneri serotypes. The cloned S. flexneri 2a rfb operon, along with bgt and gtrII, contained on the SfII bacteriophage, was sufficient in Ty21a to express the heterologous S. flexneri 2a O-antigen containing the 3,4 antigenic determinants. Further, this rfb operon, along with gtrA, gtrB, and gtrX contained on the Sfx bacteriophage and oac contained on the Sf6 bacteriophage, was sufficient to express S. flexneri 3a O-antigen containing the 6, 7, and 8 antigenic determinants. Ty21a, with these plasmid-carried or chromosomally inserted genes, demonstrated simultaneous and stable expression of homologous S. Typhi O-antigen plus the heterologous S. flexneri O-antigen. Candidate Ty21a vaccine strains expressing heterologous S. flexneri 2a or 3a lipopolysaccharide (LPS) elicited significant serum antibody responses against both homologous S. Typhi and heterologous Shigella LPS and protected mice against virulent S. flexneri 2a or 3a challenges. These new S. flexneri 2a and 3a O-antigen-expressing Ty21a vaccine strains, together with our previously constructed Ty21a strains expressing Shigella sonnei or Shigella dysenteriae 1 O-antigens, have the potential to be used together for simultaneous protection against the predominant causes of shigellosis worldwide as well as against typhoid fever. PMID:29046309

  6. Monitoring of canine parvovirus (CPV) strains detected in vaccinated puppies in Brazil.

    PubMed

    Castro, T X; Costa, E M; Leite, J P; Labarthe, N V; Cubel Garcia, R C N

    2011-04-01

    The objective of this study was to investigate, by partial sequencing of VP2 protein, the variability of CPV detected in 37 fecal samples collected from vaccinated puppies with enteritis. Laboratorial diagnosis of CPV was confirmed by HA/HI and PCR and, for sequencing analyses, two different regions of the VP2 gene were amplified by PCR. From 1995 to 2004, all strains were characterized as CPV-2a. After that, both CPV-2a and CPV-2b were detected. All CPV-2a showed a non-synonymous mutation in the residue 297 (Ser→Ala). A synonymous substitution at the AA 574 was also observed in 15/37 samples. Our findings indicate that the cases of vaccine failure are most likely not associated to the mutations detected in the sequenced regions. However, the monitoring of genotyping mutations that led to new CPV strains is essential to determinate if current vaccines will keep providing protection against all new future variants. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Evaluation of a 20year old porcine reproductive and respiratory syndrome (PRRS) modified live vaccine (Ingelvac(®) PRRS MLV) against two recent type 2 PRRS virus isolates in South Korea.

    PubMed

    Jeong, Jiwoon; Choi, Kyuhyung; Kang, Ikjae; Park, Changhoon; Chae, Chanhee

    2016-08-30

    Type 2 porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) was first isolated in Korea in 1994. The commercial PRRS modified live vaccine (Ingelvac(®) PRRS MLV, Boehringer Ingelheim Vetmedica Inc., St. Joseph, Missouri, USA) based on type 2 PRRSV, was first licensed for use in 3- to 18-week-old pigs in Korea in 1996. The objective of the present study was to evaluate the efficacy of this 20year old commercial PRRS modified live vaccine (MLV) against two recent PRRSV isolates. Two genetically distant type 2 PRRSV strains (SNUVR150004 for lineage 1 and SNUVR150324 for lineage 5), isolated in 2015, were used as challenge virus. Regardless of the challenge virus, vaccination of pigs effectively reduced the level of viremia, the lung lesions, and of the PRRSV antigen within the lung lesions. The induction of virus-specific interferon-γ secreting cells by the PRRS vaccine produced a protective immune response, leading to the reduction of PRRSV viremia. There were no significant differences in efficacy against the two recently isolated viruses by the PRRS MLV based on virological results, immunological responses, and pathological outcomes. This study demonstrates that the PRRS MLV used in this study is still effective against recently isolated heterologous type 2 PRRSV strains even after 20 years of use in over 35 million pigs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications.

    PubMed

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen(-/-) in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  9. Yersinia pestis biovar Microtus strain 201, an avirulent strain to humans, provides protection against bubonic plague in rhesus macaques

    PubMed Central

    Zhang, Qingwen; Wang, Qiong; Tian, Guang; Qi, Zhizhen; Zhang, Xuecan; Wu, Xiaohong; Qiu, Yefeng; Bi, Yujing; Yang, Xiaoyan; Xin, Youquan; He, Jian; Zhou, Jiyuan; Zeng, Lin; Yang, Ruifu; Wang, Xiaoyi

    2014-01-01

    Yersinia pestis biovar Microtus is considered to be a virulent to larger mammals, including guinea pigs, rabbits and humans. It may be used as live attenuated plague vaccine candidates in terms of its low virulence. However, the Microtus strain’s protection against plague has yet to be demonstrated in larger mammals. In this study, we evaluated the protective efficacy of the Microtus strain 201 as a live attenuated plague vaccine candidate. Our results show that this strain is highly attenuated by subcutaneous route, elicits an F1-specific antibody titer similar to the EV and provides a protective efficacy similar to the EV against bubonic plague in Chinese-origin rhesus macaques. The Microtus strain 201 could induce elevated secretion of both Th1-associated cytokines (IFN-γ, IL-2 and TNF-α) and Th2-associated cytokines (IL-4, IL-5, and IL-6), as well as chemokines MCP-1 and IL-8. However, the protected animals developed skin ulcer at challenge site with different severity in most of the immunized and some of the EV-immunized monkeys. Generally, the Microtus strain 201 represented a good plague vaccine candidate based on its ability to generate strong humoral and cell-mediated immune responses as well as its good protection against high dose of subcutaneous virulent Y. pestis challenge. PMID:24225642

  10. Two studies evaluating the safety and immunogenicity of a live, attenuated Shigella flexneri 2a vaccine (SC602) and excretion of vaccine organisms in North American volunteers.

    PubMed

    Katz, David E; Coster, Trinka S; Wolf, Marcia K; Trespalacios, Fernando C; Cohen, Dani; Robins, Guy; Hartman, Antoinette B; Venkatesan, Malabi M; Taylor, David N; Hale, Thomas L

    2004-02-01

    We report the first community-based evaluation of Shigella flexneri 2a strain SC602, a live, oral vaccine strain attenuated by deletion of the icsA (virG) plasmid virulence gene, given at 10(4) CFU. The primary objectives of this trial were to determine the safety and immunogenicity of the vaccine and to determine the duration of colonization. Four of 34 volunteers experienced transient fevers, and three reported diarrhea during the first 3 days of the study. Half of the volunteers mounted a positive serum immunoglobulin A (IgA) response to S. flexneri lipopolysaccharide. All but one of the volunteers excreted the vaccine in their stools for 1 to 33 days, and this excretion was often intermittent. Data from the community-based study were supplemented with an inpatient trial in which three volunteers received 10(3) and nine received 10(4) CFU. All volunteers who received 10(3) CFU excreted SC602 and had an IgA antibody-secreting cell response. Two of these had a serum IgA response. Six of the nine volunteers who received 10(4) CFU excreted SC602. One vaccinee had a transient fever and two met the definition of diarrhea. Six volunteers that received 10(4) CFU had an antibody-secreting cell response, and four had a serum IgA response. SC602 has now been tested at 10(4) CFU in a total of 58 volunteers. The cumulative results of these clinical trials, reported here and previously (Coster et al., Infect. Immun. 67:3437-3443, 1999), have demonstrated that SC602 is a substantially attenuated candidate vaccine that can evoke protection against the most severe symptoms of shigellosis in a stringent human challenge model of disease.

  11. A national reference for inactivated polio vaccine derived from Sabin strains in Japan.

    PubMed

    Shirato, Haruko; Someya, Yuichi; Ochiai, Masaki; Horiuchi, Yoshinobu; Takahashi, Motohide; Takeda, Naokazu; Wakabayashi, Kengo; Ouchi, Yasumitsu; Ota, Yoshihiro; Tano, Yoshio; Abe, Shinobu; Yamazaki, Shudo; Wakita, Takaji

    2014-09-08

    As one aspect of its campaign to eradicate poliomyelitis, the World Health Organization (WHO) has encouraged development of the inactivated polio vaccine (IPV) derived from the Sabin strains (sIPV) as an option for an affordable polio vaccine, especially in low-income countries. The Japan Poliomyelitis Research Institute (JPRI) inactivated three serotypes of the Sabin strains and made sIPV preparations, including serotypes 1, 2 and 3 D-antigens in the ratio of 3:100:100. The National Institute of Infectious Diseases, Japan, assessed the immunogenic stability of these sIPV preparations in a rat potency test, according to an evaluation method recommended by the WHO. The immunogenicity of the three serotypes was maintained for at least 4 years when properly stored under -70°C. Based on these data, the sIPV preparations made by JPRI have been approved as national reference vaccines by the Japanese national control authority and used for the quality control of the tetracomponent sIPV-containing diphtheria-tetanus-acellular pertussis combination vaccines that were licensed for a routine polio immunization in Japan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Molecular characteristics of Polish field strains of Marek's disease herpesvirus isolated from vaccinated chickens

    PubMed Central

    2011-01-01

    Background Twenty-nine Marek's disease virus (MDV) strains were isolated during a 3 year period (2007-2010) from vaccinated and infected chicken flocks in Poland. These strains had caused severe clinical symptoms and lesions. In spite of proper vaccination with mono- or bivalent vaccines against Marek's disease (MD), the chickens developed symptoms of MD with paralysis. Because of this we decided to investigate possible changes and mutations in the field strains that could potentially increase their virulence. We supposed that such mutations may have been caused by recombination with retroviruses of poultry - especially reticuloendotheliosis virus (REV). Methods In order to detect the possible reasons of recent changes in virulence of MDV strains, polymerase chain reaction (PCR) analyses for meq oncogene and for long-terminal repeat (LTR) region of REV were conducted. The obtained PCR products were sequenced and compared with other MDV and REV strains isolated worldwide and accessible in the GeneBank database. Results Sequencing of the meq oncogene showed a 68 basepair insertion and frame shift within 12 of 24 field strains. Interestingly, the analyses also showed 0.78, 0.8, 0.82, 1.6 kb and other random LTR-REV insertions into the MDV genome in 28 of 29 of strains. These genetic inserts were present after passage in chicken embryo kidney cells suggesting LTR integration into a non-functional region of the MDV genome. Conclusion The results indicate the presence of a recombination between MDV and REV under field conditions in Polish chicken farms. The genetic changes within the MDV genome may influence the virus replication and its features in vivo. However, there is no evidence that meq alteration and REV insertions are related to the strains' virulence. PMID:21320336

  13. Free-living pathogens: life-history constraints and strain competition.

    PubMed

    Caraco, Thomas; Wang, Ing-Nang

    2008-02-07

    Many pathogen life histories include a free-living stage, often with anatomical and physiological adaptations promoting persistence outside of host tissues. More durable particles presumably require that the pathogen metabolize more resources per particle. Therefore, we hypothesize functional dependencies, pleiotropic constraints, between the rate at which free-living particles decay outside of host tissues and other pathogen traits, including virulence, the probability of infecting a host upon contact, and pathogen reproduction within host tissues. Assuming that pathogen strains compete for hosts preemptively, we find patterns in trait dependencies predicting whether or not strain competition favors a highly persistent free-living stage.

  14. Free-living pathogens: life-history constraints and strain competition

    PubMed Central

    Caraco, Thomas; Wang, Ing-Nang

    2008-01-01

    Many pathogen life histories include a free-living stage, often with anatomical and physiological adaptations promoting persistence outside of host tissues. More durable particles presumably require that the pathogen metabolize more resources per particle. Therefore, we hypothesize functional dependencies, pleiotropic constraints, between the rate at which free-living particles decay outside of host tissues and other pathogen traits, including virulence, the probability of infecting a host upon contact, and pathogen reproduction within host tissues. Assuming that pathogen strains compete for hosts preemptively, we find patterns in trait dependencies predicting whether or not strain competition favors a highly persistent free-living stage. PMID:18062992

  15. Characterization and efficacy determination of commercially available Central American H5N2 avian influenza vaccines for poultry.

    PubMed

    Eggert, Dawn; Thomas, Colleen; Spackman, Erica; Pritchard, Nikki; Rojo, Francisco; Bublot, Michel; Swayne, David E

    2010-06-23

    A poultry vaccination program was implemented in Central America beginning in January 1995 to control both H5N2 low (LPAI) and high pathogenicity avian influenza. This study was conducted to identify seed strain composition and the efficacy of 10 commercially available H5 vaccines against challenge with H5N2 LPAI viruses isolated from Latin America in 2003. The original 1994 vaccine seed virus in commercial inactivated vaccines did not significantly reduce challenge virus shed titers. However, two seed strains of inactivated vaccines, genetically more closely related to the challenge virus, did significantly reduce titers of challenge virus shed from respiratory tract. In addition, a live recombinant fowlpox virus vaccine containing a more distantly related Eurasian lineage H5 gene insert significantly reduced respiratory shedding as compared to sham vaccinates. These results demonstrate the feasibility of identifying vaccine seed strains in commercial finished products for regulatory verification and the need for periodic challenge testing against current field strains in order to select efficacious vaccine seed strains. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Live attenuated measles virus vaccine induces apoptosis and promotes tumor regression in lung cancer.

    PubMed

    Zhao, Danhua; Chen, Ping; Yang, Huiqiang; Wu, Yonglin; Zeng, Xianwu; Zhao, Yu; Wen, Yanjun; Zhao, Xia; Liu, Xiaolin; Wei, Yuquan; Li, Yuhua

    2013-01-01

    Although the treatment of lung carcinoma has improved, at least 65% of patients with this tumor succumb to progressive disease. Measles virus oncolytic therapy has been reported to be effective in reducing tumor burden in immunocompetent or nude mice; however, its potential to reduce tumor burden in lung carcinoma remains to be determined. Herein, we report the potent antitumor effects of a live attenuated measles vaccine virus Hu-191 strain (MV) against lung carcinoma. Immunocompetent C57BL/6 mice bearing Lewis lung carcinoma (LLC) cells were treated with MV (1x104 to 1x106 CCID50/ml) once every other day for 10 days. Our results showed that treatment with MV effectively suppressed tumor growth and significantly prolonged the survival time of tumor-bearing animals. Histological examination revealed that the antitumor effects of MV therapy may result from increased induction of apoptosis, tumor necrosis and elevated lymphocyte infiltration. Our data suggest that MV, one of the widely used vaccines in China, has the ability to inhibit the growth of mouse lung carcinoma and may prove useful in the further exploration of the application of this approach in the treatment of human advanced lung cancer.

  17. Immune protection of chickens conferred by a vaccine consisting of attenuated strains of Salmonella Enteritidis, Typhimurium and Infantis.

    PubMed

    Varmuzova, Karolina; Faldynova, Marcela; Elsheimer-Matulova, Marta; Sebkova, Alena; Polansky, Ondrej; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan

    2016-10-15

    The colonization of poultry with different Salmonella enterica serovars poses an issue throughout the world. In this study we therefore tested the efficacy of a vaccine consisting of attenuated strains of Salmonella enterica serovars Enteritidis, Typhimurium and Infantis against challenge with the same serovars and with S. Agona, Dublin and Hadar. We tested oral and aerosol administration of the vaccine, with or without co-administration of cecal microbiota from adult hens. The protective effect was determined by bacterial counts of the challenge strains up to week 18 of life and by characterizing the immune response using real-time PCR specific for 16 different genes. We have shown that a vaccine consisting of attenuated S. Enteritidis, S. Typhimurium and S. Infantis protected chickens against challenge with the wild type strains of the same serovars and partially protected chickens also against challenge with isolates belonging to serovars Dublin or Hadar. Aerosol vaccination was more effective at inducing systemic immunity whilst oral vaccination stimulated a local immune response in the gut. Co-administration of cecal microbiota increased the protectiveness in the intestinal tract but slightly decreased the systemic immune response. Adjusting the vaccine composition and changing the administration route therefore affects vaccine efficacy.

  18. New Strains Intended for the Production of Inactivated Polio Vaccine at Low-Containment After Eradication

    PubMed Central

    Knowlson, Sarah; Burlison, John; Giles, Elaine; Fox, Helen; Macadam, Andrew J.; Minor, Philip D.

    2015-01-01

    Poliomyelitis has nearly been eradicated through the efforts of the World Health Organization’s Global Eradication Initiative raising questions on containment of the virus after it has been eliminated in the wild. Most manufacture of inactivated polio vaccines currently requires the growth of large amounts of highly virulent poliovirus, and release from a production facility after eradication could be disastrous; WHO have therefore recommended the use of the attenuated Sabin strains for production as a safer option although it is recognised that they can revert to a transmissible paralytic form. We have exploited the understanding of the molecular virology of the Sabin vaccine strains to design viruses that are extremely genetically stable and hyperattenuated. The viruses are based on the type 3 Sabin vaccine strain and have been genetically modified in domain V of the 5’ non-coding region by changing base pairs to produce a cassette into which capsid regions of other serotypes have been introduced. The viruses give satisfactory yields of antigenically and immunogenically correct viruses in culture, are without measurable neurovirulence and fail to infect non-human primates under conditions where the Sabin strains will do so. PMID:26720150

  19. New Strains Intended for the Production of Inactivated Polio Vaccine at Low-Containment After Eradication.

    PubMed

    Knowlson, Sarah; Burlison, John; Giles, Elaine; Fox, Helen; Macadam, Andrew J; Minor, Philip D

    2015-12-01

    Poliomyelitis has nearly been eradicated through the efforts of the World Health Organization's Global Eradication Initiative raising questions on containment of the virus after it has been eliminated in the wild. Most manufacture of inactivated polio vaccines currently requires the growth of large amounts of highly virulent poliovirus, and release from a production facility after eradication could be disastrous; WHO have therefore recommended the use of the attenuated Sabin strains for production as a safer option although it is recognised that they can revert to a transmissible paralytic form. We have exploited the understanding of the molecular virology of the Sabin vaccine strains to design viruses that are extremely genetically stable and hyperattenuated. The viruses are based on the type 3 Sabin vaccine strain and have been genetically modified in domain V of the 5' non-coding region by changing base pairs to produce a cassette into which capsid regions of other serotypes have been introduced. The viruses give satisfactory yields of antigenically and immunogenically correct viruses in culture, are without measurable neurovirulence and fail to infect non-human primates under conditions where the Sabin strains will do so.

  20. In elderly persons live attenuated influenza A virus vaccines do not offer an advantage over inactivated virus vaccine in inducing serum or secretory antibodies or local immunologic memory.

    PubMed Central

    Powers, D C; Fries, L F; Murphy, B R; Thumar, B; Clements, M L

    1991-01-01

    In a double-blind, randomized trial, 102 healthy elderly subjects were inoculated with one of four preparations: (i) intranasal bivalent live attenuated influenza vaccine containing cold-adapted A/Kawasaki/86 (H1N1) and cold-adapted A/Bethesda/85 (H3N2) viruses; (ii) parenteral trivalent inactivated subvirion vaccine containing A/Taiwan/86 (H1N1), A/Leningrad/86 (H3N2), and B/Ann Arbor/86 antigens; (iii) both vaccines; or (iv) placebo. To determine whether local or systemic immunization augmented mucosal immunologic memory, all volunteers were challenged intranasally 12 weeks later with the inactivated virus vaccine. We used a hemagglutination inhibition assay to measure antibodies in sera and a kinetic enzyme-linked immunosorbent assay to measure immunoglobulin G (IgG) and IgA antibodies in sera and nasal washes, respectively. In comparison with the live virus vaccine, the inactivated virus vaccine elicited higher and more frequent rises of serum antibodies, while nasal wash antibody responses were similar. The vaccine combination induced serum and local antibodies slightly more often than the inactivated vaccine alone did. Coadministration of live influenza A virus vaccine did not alter the serum antibody response to the influenza B virus component of the inactivated vaccine. The anamnestic nasal antibody response elicited by intranasal inactivated virus challenge did not differ in the live, inactivated, or combined vaccine groups from that observed in the placebo group not previously immunized. These results suggest that in elderly persons cold-adapted influenza A virus vaccines offer little advantage over inactivated virus vaccines in terms of inducing serum or secretory antibody or local immunological memory. Studies are needed to determine whether both vaccines in combination are more efficacious than inactivated vaccine alone in people in this age group. PMID:2037667