Science.gov

Sample records for liver function alanine

  1. Liver Function Tests

    MedlinePlus

    ... herbal supplements you are taking. What are normal ranges for liver function tests? Normal ranges for liver function tests can vary by age, ... other factors. Laboratory test results usually provide normal ranges for each liver function test with your results. ...

  2. Liver Function Tests

    MedlinePlus

    ... food, store energy, and remove poisons. Liver function tests are blood tests that check to see how well your liver ... hepatitis and cirrhosis. You may have liver function tests as part of a regular checkup. Or you ...

  3. A novel low molecular weight alanine aminotransferase from fasted rat liver.

    PubMed

    Vedavathi, M; Girish, K S; Kumar, M Karuna

    2006-01-01

    Alanine is the most effective precursor for gluconeogenesis among amino acids, and the initial reaction is catalyzed by alanine aminotransferase (AlaAT). Although the enzyme activity increases during fasting, this effect has not been studied extensively. The present study describes the purification and characterization of an isoform of AlaAT from rat liver under fasting. The molecular mass of the enzyme is 17.7 kD with an isoelectric point of 4.2; glutamine is the N-terminal residue. The enzyme showed narrow substrate specificity for L-alanine with Km values for alanine of 0.51 mM and for 2-oxoglutarate of 0.12 mM. The enzyme is a glycoprotein. Spectroscopic and inhibition studies showed that pyridoxal phosphate (PLP) and free -SH groups are involved in the enzymatic catalysis. PLP activated the enzyme with a Km of 0.057 mM. PMID:16487061

  4. Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase

    PubMed Central

    Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi

    2001-01-01

    Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmol/min/mg, respectively. The enzyme is almost specific to alanine, but l-serine and l-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of l-alanine, respectively. S. pombe uses d-alanine as a sole nitrogen source, but deletion of the alr1+ gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for l-alanine coupled with racemization plays a major role in the catabolism of d-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses l-alanine but not d-alanine as a sole nitrogen source. Moreover, d-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1+ gene enabled S. cerevisiae to grow efficiently on d-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of d-alanine. PMID:11244061

  5. Correlation between liver cell necrosis and circulating alanine aminotransferase after ischaemia/reperfusion injuries in the rat liver.

    PubMed

    Knudsen, Anders R; Andersen, Kasper J; Hamilton-Dutoit, Stephen; Nyengaard, Jens R; Mortensen, Frank V

    2016-04-01

    Circulating liver enzymes such as alanine transaminase are often used as markers of hepatocellular damage. Ischaemia/reperfusion (I/R) injury is an inevitable consequence of prolonged liver ischaemia. The aim of this study was to examine the correlation between liver enzymes and volume of liver cell necrosis after ischaemia/reperfusion injuries, using design-unbiased stereological methods. Forty-seven male Wistar rats were subjected to 1 h of partial liver ischaemia, followed by either 4 or 24 h of reperfusion. Within each group, one-third of animals were subjected to ischaemic preconditioning and one-third to ischaemic postconditioning. At the end of reperfusion, blood and liver samples were collected for analysis. The volume of necrotic liver tissue was subsequently correlated to circulating markers of I/R injury. Correlation between histological findings and circulating markers was performed using Pearson's correlation coefficient. Alanine transferase peaked after 4 h of reperfusion; however, at this time-point, only mild necrosis was observed, with a Pearson's correlation coefficient of 0.663 (P = 0.001). After 24 h of reperfusion, alanine aminotransferase was found to be highly correlated to the degree of hepatocellular necrosis R = 0.836 (P = 0.000). Furthermore, alkaline phosphatase (R = 0.806) and α-2-macroglobulin (R = 0.655) levels were also correlated with the degree of necrosis. We show for the first time that there is a close correlation between the volume of hepatocellular necrosis and alanine aminotransferase levels in a model of I/R injury. This is especially apparent after 24 h of reperfusion. Similarly, increased levels of alkaline phosphatase and α-2-macroglobulin are correlated to the volume of liver necrosis. PMID:27292534

  6. Isolation and characterization of cytosolic alanine aminotransferase isoforms from starved rat liver.

    PubMed

    Vedavathi, M; Girish, K S; Kumar, M Karuna

    2004-12-01

    Alanine is the most effective precursor for gluconeogenesis among amino acids and the initial reaction is catalyzed by alanine aminotransferases (AlaATs). It is a less extensively studied enzyme under starvation and known to that the enzyme activity increases in liver under starvation. The present study describes the purification and characterization of two isoforms of alanine aminotransferases from starved male rat liver under starvation. The molecular mass of isoforms was found to be 17.7 and 112.2 kDa with isoelectric points of 4.2 and 5.3 respectively for AlaAT I and AlaAT II. Both the enzymes showed narrow substrate specificity for L-alanine with different Km for alanine and 2-oxoglutarate. Both the enzymes were glycoprotein in nature. Inhibition, modification and spectroscopic studies showed that both PLP and free-SH groups are directly involved in the enzymatic catalysis. PLP activated both the enzymes with a Km 0.057 mM and 0.2 mM for AlaAT I and II respectively. PMID:15663181

  7. Requirement for alanine in the amino acid control of deprivation-induced protein degradation in liver.

    PubMed Central

    Pösö, A R; Mortimore, G E

    1984-01-01

    Protein degradation in liver is actively controlled by a small group of inhibitory amino acids--leucine, tyrosine (or phenylalanine), glutamine, proline, histidine, tryptophan, and methionine. Other evidence, however, suggests that one or more of the remaining 12 noninhibitory amino acids is also required for suppression of proteolysis at normal concentrations. This question was investigated in livers of fed rats perfused in the single-pass mode. The deletion of alanine at normal (1x), but not at 4x or 10x normal, plasma amino acid concentrations evoked a near-maximal acceleration of protein degradation. No other noninhibitory amino acid was effective. Because alanine alone was not directly inhibitory and its omission was not associated with a decrease in inhibitory amino acid pools, alanine was presumed to act as a coregulator in the expression of inhibitory activity. When tested alone, the inhibitory group was as effective as the complete mixture at 0.5x and 4x levels, but it lost its suppressive ability within a narrow zone of concentration centered slightly above 1x. The addition of 1x (0.48 mM) alanine completely restored the inhibition. Pyruvate and lactate could be effectively substituted, but only at concentrations 10-20 times greater than that of alanine. These, together with earlier findings, indicate the existence of a regulatory complex that recognizes specific amino acids and transmits positive and negative signals to proteolytic sites. The results also suggest that alanine can provide an important regulatory link between energy demands and protein degradation. PMID:6589593

  8. L-alanine in a droplet of water: a density-functional molecular dynamics study.

    PubMed

    Degtyarenko, Ivan M; Jalkanen, Karl J; Gurtovenko, Andrey A; Nieminen, Risto M

    2007-04-26

    We report the results of a Born-Oppenheimer molecular dynamics study on an L-alanine amino acid in neutral aqueous solution. The whole system, the L-alanine zwitterion and 50 water molecules, was treated quantum mechanically. We found that the hydrophobic side chain (R = CH3) defines the trajectory path of the molecule. Initially fully hydrated in an isolated droplet of water, the amino acid moves to the droplet's surface, exposing its hydrophobic methyl group and alpha-hydrogen out of the water. The structure of an L-alanine with the methyl group exposed to the water surface was found to be energetically favorable compared to a fully hydrated molecule. The dynamic behavior of the system suggests that the first hydration shell of the amino acid is localized around carboxylate (CO2-) and ammonium (NH3+) functional groups; it is highly ordered and quite rigid. In contrast, the hydration shell around the side chain is much less structured, suggesting a modest influence of the methyl group on the structure of water. The number of water molecules in the first hydration shell of an alanine molecule is constantly changing; the average number was found to equal 7. The molecular dynamics results show that L-alanine in water does not have a preferred conformation, as all three of the molecule's functional sites (i.e., CH3, NH3+, CO2-) perform rotational movements around the C(alpha)-site bond. PMID:17407339

  9. Hepatic (Liver) Function Panel

    MedlinePlus

    ... AST). This enzyme, which plays a role in processing proteins, is found in the liver, heart, muscles, ... doctor. © 1995- The Nemours Foundation. All rights reserved. Images provided by The Nemours Foundation, iStock, Getty Images, ...

  10. A Mechanistic Assessment of the Discordance between Normal Serum Alanine Aminotransferase Levels and Altered Liver Histology in Chronic Hepatitis B

    PubMed Central

    Gong, Xianqiong; Yang, Jiaen; Tang, Jinmo; Gu, Chong; Huang, Lijian; Zheng, Ying; Liang, Huiqing; Wang, Min; Wu, Chuncheng; Chen, Yue; Zhang, Manying; Yu, Zhijian; Mao, Qianguo

    2015-01-01

    To understand the mechanisms underlying the discordance between normal serum alanine aminotransferase (ALT) levels and significant alterations in liver histology of chronic hepatitis B virus (HBV) infection with persistent normal ALT (PNALT) or minimally elevated ALT. A total of 300 treatment-naive chronic HBV-infected patients with PNALT (ALT ≤ upper limit of normal [ULN, 40 U/ml]) or minimally elevated ALT (1-2×ULN) were retrospectively enrolled. All patients underwent liver biopsy and histological changes were analyzed along with biochemical and HBV markers. Among 300 participants, 177 were HBeAg-positive and 123 HBeAg-negative. Significant histologic abnormalities were found in 42.9% (76/177) and 52.8% (65/123) of HBeAg-positive and HBeAg-negative patients, respectively. Significant fibrosis, which is a marker of prior injury, was more frequently detected than significant necroinflammation (suggesting active liver injury) in both HBeAg-positive and -negative groups, suggesting that liver injury occurred intermittently in our cohort. No significant differences were noticed in the percentage of patients with severe fibrosis between HBeAg-positive and negative phases or between ages 30 and 40 and over 40, suggesting that the fibrosis was possibly carried over from an early phase. Finally, lowering ALT ULN (30 U/L for men, 19 U/L for women) alone was not adequate to increase the sensitivity of ALT detection of liver injury. However, the study was limited to a small sample size of 13 HBeAg-positive patients with ALT in the revised normal range. We detected significant liver pathology in almost 50% of chronic HBV infected patients with PNALT (ALT ≤ 40 U/ml) or minimally elevated ALT. We postulated that small-scale intermittent liver injury was possibly responsible for the discordance between normal serum ALT and significant liver changes in our cohort. PMID:26230094

  11. Effect of β-N-methylamino-L-alanine on oxidative stress of liver and kidney in rat.

    PubMed

    de Munck, Estefanía; Muñoz-Sáez, Emma; Antonio, María Teresa; Pineda, Javier; Herrera, Amparo; Miguel, Begoña G; Arahuetes, Rosa María

    2013-03-01

    β-N-methylamino-(L)-alanine (L)-BMAA) is a neurotoxic amino acid, found in the majority of cyanbacterial genera tested. Evidence for implication of (L)-BMAA in neurodegenerative disorders, like amyotrophic lateral sclerosis (ALS), relies on bioaccumulation and biomagnification from symbiotic cyanobacteria. The involvement of (L)-BMAA in oxidative stress was demonstrated in several studies in the central nervous system. In the present study, we investigated the effect of (L)-BMAA on the oxidative stress responses of liver and kidney in rats treated by intraperitoneal administration with this amino acid. Oxidative stress was demonstrated by the quantification of lipid peroxidation, the measurement of both catalase and glutathione peroxidase activities, as well as the quantification of glutathione (GSH) levels and the total antioxidant capacity. It was observed that (L)-BMAA caused a significant increase in the degree of lipid peroxidation and catalase activity in both organs. A significant increase in glutathione peroxidase activity was obtained only in liver, whereas glutathione levels were also increased in both organs. The total antioxidant capacity decreased in liver and increased in kidney. These results suggest that the oxidative stress was higher in liver than in kidney, and might be crucial for (L)-BMAA toxicological action. PMID:23328118

  12. Correlation analysis between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis

    PubMed Central

    TANG, NING; ZHANG, YAPING; LIU, ZEYU; FU, TAO; LIANG, QINGHONG; AI, XUEMEI

    2016-01-01

    The aim of the present study was to investigate the correlation between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis. A total of 30 infants with cholestasis and 20 healthy infants were included in the study. Biochemical assays based on the initial rate method and colorimetric assays were conducted to determine the levels of liver function markers in the serum [such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), γ-glutamyl transferase (γ-GT), cholinesterase (CHE) and total bile acids (TBA)] and four serum biomarkers of liver fibrosis were measured using radioimmunoassays [hyaluronic acid (HA), procollagen type III (PCIII), laminin (LN) and collagen type IV (cIV)]. The serum levels of ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01); the serum levels of CHE in the infants with cholestasis were significantly lower compared to the healthy infants (P<0.01). The serum levels of HA, PCIII, and cIV in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01). Correlation analyses between liver function and the four biomarkers of liver fibrosis showed that HA was positively correlated with AST and γ-GT (P<0.05) and negatively correlated with ALT, CHE and TBA (P<0.05). cIV was positively correlated with γ-GT (P<0.05) and negatively correlated with CHE (P<0.05). In conclusion, statistically significant differences were identified for the liver function markers (ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA) and the biomarkers HA, PCIII and cIV of liver fibrosis between infants with cholestasis and healthy infants. Thus, the serum levels of HA, cIV, γ-GT and CHE are sensitive markers for cholestatic liver fibrosis in infants. PMID:27347413

  13. Functionalization of single-walled carbon nanotubes with uracil, guanine, thymine and L-alanine

    NASA Astrophysics Data System (ADS)

    Silambarasan, D.; Iyakutti, K.; Vasu, V.

    2014-06-01

    Experimental investigation of functionalization of oxidized single-walled carbon nanotubes (OSWCNTs) with three nucleic acid bases such as uracil, guanine, thymine and one amino acid, L-alanine is carried out. Initially, the SWCNTs are oxidized by acid treatment. Further, the oxidized SWCNTs are effectively functionalized with aforementioned biological compounds by ultrasonication. The diameter of OSWCNTs has increased after the adsorption of biological compounds. The cumulative Π-Π stacking, hydrogen bond and polar interaction are the key factors to realize the adsorption. The amount of adsorption of each biological compound is estimated. The adsorption of guanine is more among all the four biological compounds.

  14. Evaluation of abnormal liver function tests.

    PubMed

    Agrawal, Swastik; Dhiman, Radha K; Limdi, Jimmy K

    2016-04-01

    Incidentally detected abnormality in liver function tests is a common situation encountered by physicians across all disciplines. Many of these patients do not have primary liver disease as most of the commonly performed markers are not specific for the liver and are affected by myriad factors unrelated to liver disease. Also, many of these tests like liver enzyme levels do not measure the function of the liver, but are markers of liver injury, which is broadly of two types: hepatocellular and cholestatic. A combination of a careful history and clinical examination along with interpretation of pattern of liver test abnormalities can often identify type and aetiology of liver disease, allowing for a targeted investigation approach. Severity of liver injury is best assessed by composite scores like the Model for End Stage Liver Disease rather than any single parameter. In this review, we discuss the interpretation of the routinely performed liver tests along with the indications and utility of quantitative tests. PMID:26842972

  15. [Liver cirrhosis: pulmonary function].

    PubMed

    Marichal, I; Dublet, P; Medrano, G; Hinestrosa, H; Tálamo, C; Korchoff, W; Alvarado, R; Quirós, E

    1991-01-01

    We performed a functional respiratory examination which consisted of arterial gasometry, spirometry, diffusion capacity to CO2, alveolo-arterial gradient of O2 and pulmonary volumes to 8 patients with cirrhosis diagnosed by clinical history, laboratory exams, abdominal ultrasound and histology. Our results showed a slight obstructive pattern of peripheric airways (FMM: 88.87 +/- 8.7%) in the spirometry, no difference in arterial gases at upright and recumbent position was observed, with low values of apO2 (75.51 +/- 1.16 upright and 75.87 +/- 2.16 mmHg recumbent) without statistic significance. The gradient G(Aa) O2 increased to (30.89 +/- 1.06 mmHg). Besides there was a diffusion abnormality with a DLCO2/VA of (71.87 +/- 6.05%). Breathing 100% O2, did not change the gradient which allows us to postulate the existence of an abnormality of gaseous interchange due to shunts. We found no relationship between albumin levels and DLCO2/VO neither with pO2 in upright position; there was a relationship at recumbent position between the hepatic disorder and the arterial desaturation. We concluded that there is no significant hypoxia even with position changes, there is increase of G (Aa) O2 by shunt type disorders and that this is probably related with albumin levels. PMID:1843958

  16. β-alanine supplementation improves tactical performance but not cognitive function in combat soldiers

    PubMed Central

    2014-01-01

    Background There are no known studies that have examined β-alanine supplementation in military personnel. Considering the physiological and potential neurological effects that have been reported during sustained military operations, it appears that β-alanine supplementation may have a potential benefit in maintaining physical and cognitive performance during high-intensity military activity under stressful conditions. The purpose of this study was to examine the effect of 28 days of β-alanine ingestion in military personnel while fatigued on physical and cognitive performance. Methods Twenty soldiers (20.1 ± 0.9 years) from an elite combat unit were randomly assigned to either a β-alanine (BA) or placebo (PL) group. Soldiers were involved in advanced military training, including combat skill development, navigational training, self-defense/hand-to-hand combat and conditioning. All participants performed a 4-km run, 5-countermovement jumps using a linear position transducer, 120-m sprint, a 10-shot shooting protocol with assault rifle, including overcoming a misfire, and a 2-min serial subtraction test to assess cognitive function before (Pre) and after (Post) 28 days of supplementation. Results The training routine resulted in significant increases in 4-km run time for both groups, but no between group differences were seen (p = 0.597). Peak jump power at Post was greater for BA than PL (p = 0.034), while mean jump power for BA at Post was 10.2% greater (p = 0.139) than PL. BA had a significantly greater (p = 0.012) number of shots on target at Post (8.2 ± 1.0) than PL (6.5 ± 2.1), and their target engagement speed at Post was also significantly faster (p = 0.039). No difference in serial subtraction performance was seen between the groups (p = 0.844). Conclusion Results of this study indicate that 4-weeks of β-alanine ingestion in young, healthy soldiers did not impact cognitive performance, but did enhance power

  17. Abnormality on Liver Function Test

    PubMed Central

    2013-01-01

    Children with abnormal liver function can often be seen in outpatient clinics or inpatients wards. Most of them have respiratory disease, or gastroenteritis by virus infection, accompanying fever. Occasionally, hepatitis by the viruses causing systemic infection may occur, and screening tests are required. In patients with jaundice, the tests for differential diagnosis and appropriate treatment are important. In the case of a child with hepatitis B virus infection vertically from a hepatitis B surface antigen positive mother, the importance of the recognition of immune clearance can't be overstressed, for the decision of time to begin treatment. Early diagnosis changes the fate of a child with Wilson disease. So, screening test for the disease should not be omitted. Non-alcoholic fatty liver disease, which is mainly discovered in obese children, is a new strong candidate triggering abnormal liver function. Muscular dystrophy is a representative disease mimicking liver dysfunction. Although muscular dystrophy is a progressive disorder, and early diagnosis can't change the fate of patients, it will be better to avoid parent's blame for delayed diagnosis. PMID:24511518

  18. Alanine scan of core positions in ubiquitin reveals links between dynamics, stability, and function.

    PubMed

    Lee, Shirley Y; Pullen, Lester; Virgil, Daniel J; Castañeda, Carlos A; Abeykoon, Dulith; Bolon, Daniel N A; Fushman, David

    2014-04-01

    Mutations at solvent-inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. Both the two null mutants (I30A and L43A) were less stable to temperature-induced unfolding in vitro than wild type (WT) but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to WT. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high-molecular-weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high-molecular-weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings, we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation. PMID:24361330

  19. Oxygen radical-mediated oxidation reactions of an alanine peptide motif - density functional theory and transition state theory study

    PubMed Central

    2012-01-01

    Background Oxygen-base (O-base) oxidation in protein backbone is important in the protein backbone fragmentation due to the attack from reactive oxygen species (ROS). In this study, an alanine peptide was used model system to investigate this O-base oxidation by employing density functional theory (DFT) calculations combining with continuum solvent model. Detailed reaction steps were analyzed along with their reaction rate constants. Results Most of the O-base oxidation reactions for this alanine peptide are exothermic except for the bond-breakage of the Cα-N bond to form hydroperoxy alanine radical. Among the reactions investigated in this study, the activated energy of OH α-H abstraction is the lowest one, while the generation of alkylperoxy peptide radical must overcome the highest energy barrier. The aqueous situation facilitates the oxidation reactions to generate hydroxyl alanine peptide derivatives except for the fragmentations of alkoxyl alanine peptide radical. The Cα-Cβ bond of the alkoxyl alanine peptide radical is more labile than the peptide bond. Conclusion the rate-determining step of oxidation in protein backbone is the generation of hydroperoxy peptide radical via the reaction of alkylperoxy peptide radical with HO2. The stabilities of alkylperoxy peptide radical and complex of alkylperoxy peptide radical with HO2 are crucial in this O-base oxidation reaction. PMID:22524792

  20. Liver Function Tests Following Irreversible Electroporation of Liver Tumors: Experience in 174 Procedures.

    PubMed

    Froud, Tatiana; Venkat, Shree R; Barbery, Katuzka J; Gunjan, Arora; Narayanan, Govindarajan

    2015-09-01

    Irreversible electroporation (IRE) is a relatively new ablation modality that uses electric currents to cause cell death. It is commonly used to treat primary and secondary liver tumors in patients with normal liver function and preexisting cirrhosis. Retrospective analysis of 205 procedures sought to evaluate changes in liver function after IRE. Liver function tests (LFTs) results before and after IRE were evaluated from 174 procedures in 124 patients. Aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase (ALKP), and total bilirubin levels were analyzed. The study was Health Insurance Portability and Accountability Act compliant and institutional review board approved. Informed consent was waived. Changes in LFT results after IRE were compared with baseline and were followed up over time to see if they resolved. Changes were compared with volume of ablation. The greatest perturbations were in transaminase levels. The levels increased sharply within 24 hours after IRE in 129 (74.1%) procedures to extreme levels (more than 20 times the upper limit of normal in one-third of cases). Resolution occurred in 95% and was demonstrated to have occurred by a mean of approximately 10 weeks, many documented as early as 7 days after procedure. ALKP levels elevated in 10% procedures, was slower to increase, and was less likely to resolve. Total bilirubin level demonstrated 2 different patterns of elevation--early and late--and similar to ALKP, it was more likely to remain elevated. There was no increased risk in patients with cirrhosis or cholangiocarcinoma. There was no correlation of levels with volume of ablation. IRE results in significant abnormalities in LFT results, but in most of the cases, these are self-limiting, do not preclude treatment, and are similar to the changes seen after radiofrequency and cryoablation in the liver. PMID:26365543

  1. Effects of Beta-Alanine Supplementation on Brain Homocarnosine/Carnosine Signal and Cognitive Function: An Exploratory Study

    PubMed Central

    Hobson, Ruth M; Artioli, Guilherme G.; Otaduy, Maria C.; Roschel, Hamilton; Robertson, Jacques; Martin, Daniel; S. Painelli, Vitor; Harris, Roger C.; Gualano, Bruno

    2015-01-01

    Objectives Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P<0.05), although there was no effect (P>0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists. PMID:25875297

  2. Evaluation of liver function and electroacupuncture efficacy of animals with alcoholic liver injury by the novel imaging methods

    PubMed Central

    Zhang, Dong; Song, Xiao-jing; Li, Shun-yue; Wang, Shu-you; Chen, Bing-jun; Bai, Xiao-Dong; Tang, Li-mei

    2016-01-01

    Imaging methods to evaluate hepatic microcirculation (HM) and liver function (LF) by directly monitoring overall liver tissue remain lacking. This study establish imaging methods for LF that combines Laser speckle perfusion imaging (LSPI) and in vivo optical imaging (IVOI) technologies to investigate changes of hepatic microcirculation and reserve function in the animals gavaged with 50% ethanol (15 ml/kg·bw) for a model of acute alcoholic liver injury (ALI), and for evaluation of electroacupuncture (EA) effect. The liver blood perfusion and indocyanine green (ICG) distribution were observe by LSPI and IVOI separately. After EA, the livers were collected to measure the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), thromboxane A (TXA2), prostacyclin (PGI2) and endothelin (ET). The acquisitions of newly established LSPI of liver and ICG in vivo fluorescence imaging (ICG-IVFI), combining the results of other indexes showed: hepatic microcirculation perfusion (HMP) significantly reduced, ICG metabolism reduced, and ALT/AST increased in animal model with acute ALI. EA can reverse these changes. The use of LSPI of liver and ICG-IVFI, which was novel imaging methods for LF established in this study, could display the LF characteristics of ALI and the EA efficacy. PMID:27443832

  3. Evaluation of liver function and electroacupuncture efficacy of animals with alcoholic liver injury by the novel imaging methods.

    PubMed

    Zhang, Dong; Song, Xiao-Jing; Li, Shun-Yue; Wang, Shu-You; Chen, Bing-Jun; Bai, Xiao-Dong; Tang, Li-Mei

    2016-01-01

    Imaging methods to evaluate hepatic microcirculation (HM) and liver function (LF) by directly monitoring overall liver tissue remain lacking. This study establish imaging methods for LF that combines Laser speckle perfusion imaging (LSPI) and in vivo optical imaging (IVOI) technologies to investigate changes of hepatic microcirculation and reserve function in the animals gavaged with 50% ethanol (15 ml/kg·bw) for a model of acute alcoholic liver injury (ALI), and for evaluation of electroacupuncture (EA) effect. The liver blood perfusion and indocyanine green (ICG) distribution were observe by LSPI and IVOI separately. After EA, the livers were collected to measure the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), thromboxane A (TXA2), prostacyclin (PGI2) and endothelin (ET). The acquisitions of newly established LSPI of liver and ICG in vivo fluorescence imaging (ICG-IVFI), combining the results of other indexes showed: hepatic microcirculation perfusion (HMP) significantly reduced, ICG metabolism reduced, and ALT/AST increased in animal model with acute ALI. EA can reverse these changes. The use of LSPI of liver and ICG-IVFI, which was novel imaging methods for LF established in this study, could display the LF characteristics of ALI and the EA efficacy. PMID:27443832

  4. Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke.

    PubMed

    Seppälä, Ilkka; Kleber, Marcus E; Bevan, Steve; Lyytikäinen, Leo-Pekka; Oksala, Niku; Hernesniemi, Jussi A; Mäkelä, Kari-Matti; Rothwell, Peter M; Sudlow, Cathie; Dichgans, Martin; Mononen, Nina; Vlachopoulou, Efthymia; Sinisalo, Juha; Delgado, Graciela E; Laaksonen, Reijo; Koskinen, Tuomas; Scharnagl, Hubert; Kähönen, Mika; Markus, Hugh S; März, Winfried; Lehtimäki, Terho

    2016-01-01

    Asymmetric and symmetric dimethylarginines (ADMA and SDMA) impair nitric oxide bioavailability and have been implicated in the pathogenesis of atrial fibrillation (AF). Alanine-glyoxylate aminotransferase 2 (AGXT2) is the only enzyme capable of metabolizing both of the dimethylarginines. We hypothesized that two functional AGXT2 missense variants (rs37369, V140I; rs16899974, V498L) are associated with AF and its cardioembolic complications. Association analyses were conducted using 1,834 individulas with AF and 7,159 unaffected individuals from two coronary angiography cohorts and a cohort comprising patients undergoing clinical exercise testing. In coronary angiography patients without structural heart disease, the minor A allele of rs16899974 was associated with any AF (OR = 2.07, 95% CI 1.59-2.68), and with paroxysmal AF (OR = 1.98, 95% CI 1.44-2.74) and chronic AF (OR = 2.03, 95% CI 1.35-3.06) separately. We could not replicate the association with AF in the other two cohorts. However, the A allele of rs16899974 was nominally associated with ischemic stroke risk in the meta-analysis of WTCCC2 ischemic stroke cohorts (3,548 cases, 5,972 controls) and with earlier onset of first-ever ischemic stroke (360 cases) in the cohort of clinical exercise test patients. In conclusion, AGXT2 variations may be involved in the pathogenesis of AF and its age-related thromboembolic complications. PMID:26984639

  5. Moments and distribution functions for polypeptide chains. Poly-L-alanine.

    PubMed

    Conrad, J C; Flory, P J

    1976-01-01

    Statistical mechanical averages of vectors and tensors characterizing the configurations of polypeptides have been calculated for poly-L-alanines (PLA) of xu = 2-400 peptide units. These quantities are expressed in the reference frame of the first peptide unit, the X axis being situated along the virtual bond, the Y axis in the plane of the peptide unit. The persistence vector a identical to (r) converges rapidly with chain length to its limit a infinity which lies virtually in the XZ plane. Configurational averages of Cartesian tensors up to the sixth rank formed from the displacement vector p = r-a have been computed. For xu greater than 50 the even moments of fourth and sixth rank formed from the reduced vector p for the real chain are well repreented by the freely jointed chain with 21.7 virtual bonds equivalent to one of the model. The moments of p display assymmetry for xu less than 50. Density distribution functions Wa(p), evaluated from the three-dimensional Hermite series truncated at the term in the polynomial involving the tensors of p of sixth rank, display no obvious symmetry for xu less than 50. Approximate spherical symmetry of the distribution of p about a is observed only for xu greater than or equal to 100. PMID:1249990

  6. Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling.

    PubMed

    McCommis, Kyle S; Chen, Zhouji; Fu, Xiaorong; McDonald, William G; Colca, Jerry R; Kletzien, Rolf F; Burgess, Shawn C; Finck, Brian N

    2015-10-01

    Pyruvate transport across the inner mitochondrial membrane is believed to be a prerequisite for gluconeogenesis in hepatocytes, which is important for the maintenance of normoglycemia during prolonged food deprivation but also contributes to hyperglycemia in diabetes. To determine the requirement for mitochondrial pyruvate import in gluconeogenesis, mice with liver-specific deletion of mitochondrial pyruvate carrier 2 (LS-Mpc2(-/-)) were generated. Loss of MPC2 impaired, but did not completely abolish, hepatocyte conversion of labeled pyruvate to TCA cycle intermediates and glucose. Unbiased metabolomic analyses of livers from fasted LS-Mpc2(-/-) mice suggested that alterations in amino acid metabolism, including pyruvate-alanine cycling, might compensate for the loss of MPC2. Indeed, inhibition of pyruvate-alanine transamination further reduced mitochondrial pyruvate metabolism and glucose production by LS-Mpc2(-/-) hepatocytes. These data demonstrate an important role for MPC2 in controlling hepatic gluconeogenesis and illuminate a compensatory mechanism for circumventing a block in mitochondrial pyruvate import. PMID:26344101

  7. [Nuclear medicine for evaluation of liver functions].

    PubMed

    Yamamoto, K

    1994-05-01

    The clinical usefulness of colloid liver scintigraphy to detect space occupying lesions in the liver has been reduced by X-ray CT and ultrasonography. However, scintigraphic examinations have potentials for characteristic diagnosis of liver tumors, such as 99mTc RBC SPECT for hepatic hemangioma, 99mTc PMT for positive imaging of hepatocellular carcinoma and its extrahepatic metastasis, and radioimmunoscintigraphy for metastatic tumors. Moreover, prediction of the prognosis and monitoring therapeutic effect to liver cancer can be made by the use of nuclear medicine techniques. Recently, 99mTc galactosyl serum albumin (GSA), a newly developed radiotracer to evaluate hepatocyte function, has become commercially available. Quantitative parameters of liver functions can be obtained by analysis of time-activity curve in blood and liver after 99mTc-GSA administration. In several cases, 99mTc-GSA study showed intrahepatic unevenness of function, which could not be depicted by other imaging examinations. Positron emission tomography (PET) with 18F-fluoro-2-deoxy glucose (FDG) is useful to detect malignant tumors in the liver. Since PET can provide absolutely quantitative data in better resolution, it is expected that regional true metabolic functions in the liver may be able to be quantitatively evaluated with PET in near future. PMID:8028225

  8. Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry.

    PubMed

    Calcina, Carmen S Guzmán; de Almeida, Adelaide; Rocha, José R Oliveira; Abrego, Felipe Chen; Baffa, Oswaldo

    2005-03-21

    Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181-8, Nath et al 1995 Med. Phys. 22 209-34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695-702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434-48, Ballester et al 1997 Med. Phys. 24 1221-8, Ballester et al 2001 Phys. Med. Biol. 46 N79-90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032-40). PMID:15798311

  9. Loss of brain function - liver disease

    MedlinePlus

    ... may be made by the body, such as ammonia. Or they may be substances that you take ... MRI EEG Liver function tests Prothrombin time Serum ammonia level Sodium level in the blood Potassium level ...

  10. Glutamine synthetase and alanine transaminase expression are decreased in livers of aged vs. young beef cows and GS can be upregulated by 17β-estradiol implants.

    PubMed

    Miles, E D; McBride, B W; Jia, Y; Liao, S F; Boling, J A; Bridges, P J; Matthews, J C

    2015-09-01

    Aged beef cows (≥ 8 yr of age) produce calves with lower birth and weaning weights. In mammals, aging is associated with reduced hepatic expression of glutamine synthetase (GS) and alanine transaminase (ALT), thus impaired hepatic Gln-Glu cycle function. To determine if the relative protein content of GS, ALT, aspartate transaminase (AST), glutamate transporters (EAAC1, GLT-1), and their regulating protein (GTRAP3-18) differed in biopsied liver tissue of (a) aged vs. young (3 to 4 yr old) nonlactating, nongestating Angus cows (Exp. 1 and 2) and (b) aged mixed-breed cows with and without COMPUDOSE (17β-estradiol) ear implants (Exp. 3), Western blot analyses were performed. In Exp. 1, 12 young (3.62 ± 0.01 yr) and 13 aged (10.08 ± 0.42 yr) cows grazed the same mixed forage for 42 d (August-October). In Exp. 2, 12 young (3.36 ± 0.01 yr) and 12 aged (10.38 ± 0.47 yr) cows were individually fed (1.03% of BW) a corn-silage-based diet to maintain BW for 20 d. For both Exp. 1 and 2, the effect of cow age was assessed by ANOVA using the MIXED procedure of SAS. Cow BW did not change ( ≥ 0.17). Hepatic ALT (78% and 61%) and GS (52% and 71%) protein content (Exp. 1 and 2, respectively) was decreased ( ≤ 0.01), whereas GTRAP3-18 (an inhibitor of EAAC1 activity) increased ( ≤ 0.01; 170% and 136%) and AST, GLT-1, and EAAC1 contents did not differ ( ≥ 0.17) in aged vs. young cows. In Exp. 2, free concentrations (nmol/g) of Glu, Ala, Gln, Arg, and Orn in liver homogenates were determined. Aged cows tended to have less ( = 0.10) free Gln (15.0%) than young cows, whereas other AA concentrations did not differ ( 0.26). In Exp. 3, 14 aged (> 10 yr) cows were randomly allotted ( = 7) to sham or COMPUDOSE (25.7 mg of 17β-estradiol) implant treatment (TRT), and had ad libitum access to alfalfa hay for 28 d. Blood and liver biopsies were collected 14 and 28 d after implant treatment. Treatment, time after implant (DAY), and TRT × DAY effects were assessed by ANOVA using

  11. Multiphoton microscopy in defining liver function

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Crawford, Darrell; Burczynski, Frank J.; Liu, Xin; Liau, Ian; Roberts, Michael S.

    2014-09-01

    Multiphoton microscopy is the preferred method when in vivo deep-tissue imaging is required. This review presents the application of multiphoton microscopy in defining liver function. In particular, multiphoton microscopy is useful in imaging intracellular events, such as mitochondrial depolarization and cellular metabolism in terms of NAD(P)H changes with fluorescence lifetime imaging microscopy. The morphology of hepatocytes can be visualized without exogenously administered fluorescent dyes by utilizing their autofluorescence and second harmonic generation signal of collagen, which is useful in diagnosing liver disease. More specific imaging, such as studying drug transport in normal and diseased livers are achievable, but require exogenously administered fluorescent dyes. If these techniques can be translated into clinical use to assess liver function, it would greatly improve early diagnosis of organ viability, fibrosis, and cancer.

  12. Metabolism of 7-ethyoxycoumarin by Isolated Perfused Rainbow Trout Livers

    EPA Science Inventory

    Isolated trout livers were perfused using methods designed to preserve tissue viability and function. Liver performance was evaluated by measuring O2 consumption, vascular resistance, K+ leakage, glucose flux, lactate flux, alanine aminotransferase leakage, and metabolic clearanc...

  13. Monitoring of Total and Regional Liver Function after SIRT

    PubMed Central

    Bennink, Roelof J.; Cieslak, Kasia P.; van Delden, Otto M.; van Lienden, Krijn P.; Klümpen, Heinz-Josef; Jansen, Peter L.; van Gulik, Thomas M.

    2014-01-01

    Selective internal radiation therapy (SIRT) is a promising treatment modality for advanced hepatocellular carcinoma or metastatic liver cancer. SIRT is usually well tolerated. However, in most patients, SIRT will result in a (temporary) decreased liver function. Occasionally patients develop radioembolization-induced liver disease (REILD). In case of a high tumor burden of the liver, it could be beneficial to perform SIRT in two sessions enabling the primary untreated liver segments to guarantee liver function until function in the treated segments has recovered or functional hypertrophy has occurred. Clinically used liver function tests provide evidence of only one of the many liver functions, though all of them lack the possibility of assessment of segmental (regional) liver function. Hepatobiliary scintigraphy (HBS) has been validated as a tool to assess total and regional liver function in liver surgery. It is also used to assess segmental liver function before and after portal vein embolization. HBS is considered as a valuable quantitative liver function test enabling assessment of segmental liver function recovery after regional intervention and determination of future remnant liver function. We present two cases in which HBS was used to monitor total and regional liver function in a patient after repeated whole liver SIRT complicated with REILD and a patient treated unilaterally without complications. PMID:24982851

  14. Immunological functions of liver sinusoidal endothelial cells.

    PubMed

    Knolle, Percy A; Wohlleber, Dirk

    2016-05-01

    Liver sinusoidal endothelial cells (LSECs) line the liver sinusoids and separate passenger leukocytes in the sinusoidal lumen from hepatocytes. LSECs further act as a platform for adhesion of various liver-resident immune cell populations such as Kupffer cells, innate lymphoid cells or liver dendritic cells. In addition to having an extraordinary scavenger function, LSECs possess potent immune functions, serving as sentinel cells to detect microbial infection through pattern recognition receptor activation and as antigen (cross)-presenting cells. LSECs cross-prime naive CD8 T cells, causing their rapid differentiation into memory T cells that relocate to secondary lymphoid tissues and provide protection when they re-encounter the antigen during microbial infection. Cross-presentation of viral antigens by LSECs derived from infected hepatocytes triggers local activation of effector CD8 T cells and thereby assures hepatic immune surveillance. The immune function of LSECs complements conventional immune-activating mechanisms to accommodate optimal immune surveillance against infectious microorganisms while preserving the integrity of the liver as a metabolic organ. PMID:27041636

  15. Non-Invasive Assessment of Liver Function

    PubMed Central

    Helmke, Steve; Colmenero, Jordi; Everson, Gregory T.

    2015-01-01

    Purpose of review It is our opinion that there is an unmet need in Hepatology for a minimally- or noninvasive test of liver function and physiology. Quantitative liver function tests (QLFTs) define the severity and prognosis of liver disease by measuring the clearance of substrates whose uptake or metabolism is dependent upon liver perfusion or hepatocyte function. Substrates with high affinity hepatic transporters exhibit high “first-pass” hepatic extraction and their clearance measures hepatic perfusion. In contrast, substrates metabolized by the liver have low first-pass extraction and their clearance measures specific drug metabolizing pathways. Recent Findings We highlight one QLFT, the dual cholate test, and introduce the concept of a disease severity index (DSI) linked to clinical outcome that quantifies the simultaneous processes of hepatocyte uptake, clearance from the systemic circulation, clearance from the portal circulation, and portal-systemic shunting. Summary It is our opinion that dual cholate is a relevant test for defining disease severity, monitoring the natural course of disease progression, and quantifying the response to therapy. PMID:25714706

  16. Protein association of the neurotoxin and non-protein amino acid BMAA (β-N-methylamino-L-alanine) in the liver and brain following neonatal administration in rats.

    PubMed

    Karlsson, Oskar; Jiang, Liying; Andersson, Marie; Ilag, Leopold L; Brittebo, Eva B

    2014-04-01

    The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is not an amino acid that is normally found in proteins. Our previous autoradiographic study of (3)H-labeled BMAA in adult mice unexpectedly revealed a tissue distribution similar to that of protein amino acids. The aim of this study was to characterize the distribution of free and protein-bound BMAA in neonatal rat tissues following a short exposure using autoradiographic imaging and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The autoradiographic imaging of (14)C-L-BMAA demonstrated a distinct uptake of radioactivity that was retained following acid extraction in tissues with a high rate of cell turnover and/or protein synthesis. The UHPLC-MS/MS analysis conclusively demonstrated a dose-dependent increase of protein-associated BMAA in neonatal rat tissues. The level of protein-associated BMAA in the liver was more than 10 times higher than that in brain regions not fully protected by the blood-brain barrier which may be due to the higher rate of protein synthesis in the liver. In conclusion, this study demonstrated that BMAA was associated with rat proteins suggesting that BMAA may be misincorporated into proteins. However, protein-associated BMAA seemed to be cleared over time, as none of the samples from adult rats had any detectable free or protein-associated BMAA. PMID:24472610

  17. Plasma glutathione S-transferase and F protein are more sensitive than alanine aminotransferase as markers of paracetamol (acetaminophen)-induced liver damage.

    PubMed

    Beckett, G J; Foster, G R; Hussey, A J; Oliveira, D B; Donovan, J W; Prescott, L F; Proudfoot, A T

    1989-11-01

    Concentrations of glutathione S-transferase (GST; glutathione transferase; EC 2.5.1.18) B1 subunits, F protein, and the activity of alanine aminotransferase (ALT; EC 2.6.1.2) were measured in sequential plasma samples taken from nine patients with self-administered paracetamol (acetaminophen) poisoning. GST exceeded the reference interval in all patients at the time of admission, and F protein was increased in seven. In contrast, abnormal activities of ALT in plasma were found in only one of the nine on admission, a patient admitted 12 h after poisoning. Subsequent to admission nine, eight, and five patients, respectively, had abnormal concentrations of GST, F protein, and ALT. When expressed as multiples of the upper reference limit, the highest values for GST measured in each patient always far exceeded the greatest abnormalities in ALT; this was true for F protein in only five patients. Patients in whom the concentration of GST exceeded 10 micrograms/L on admission subsequently went on to develop moderate or severe liver damage, despite treatment with N-acetylcysteine. F protein and ALT measurements on admission were not as efficient as GST at predicting the clinical outcome of the patients. We conclude that GST and F protein offer clear advantages over ALT for detecting minor degrees of acute liver dysfunction, particularly when only centrilobular damage may be involved. PMID:2582614

  18. Domain Motions and Functionally-Key Residues of L-Alanine Dehydrogenase Revealed by an Elastic Network Model.

    PubMed

    Li, Xing-Yuan; Zhang, Jing-Chao; Zhu, Yan-Ying; Su, Ji-Guo

    2015-01-01

    Mycobacterium tuberculosis L-alanine dehydrogenase (L-MtAlaDH) plays an important role in catalyzing L-alanine to ammonia and pyruvate, which has been considered to be a potential target for tuberculosis treatment. In the present work, the functional domain motions encoded in the structure of L-MtAlaDH were investigated by using the Gaussian network model (GNM) and the anisotropy network model (ANM). The slowest modes for the open-apo and closed-holo structures of the enzyme show that the domain motions have a common hinge axis centered in residues Met133 and Met301. Accompanying the conformational transition, both the 1,4-dihydronicotinamide adenine dinucleotide (NAD)-binding domain (NBD) and the substrate-binding domain (SBD) move in a highly coupled way. The first three slowest modes of ANM exhibit the open-closed, rotation and twist motions of L-MtAlaDH, respectively. The calculation of the fast modes reveals the residues responsible for the stability of the protein, and some of them are involved in the interaction with the ligand. Then, the functionally-important residues relevant to the binding of the ligand were identified by using a thermodynamic method. Our computational results are consistent with the experimental data, which will help us to understand the physical mechanism for the function of L-MtAlaDH. PMID:26690143

  19. The inhomogeneous distribution of liver function: possible impact on the prediction of post-operative remnant liver function

    PubMed Central

    Nilsson, Henrik; Karlgren, Silja; Blomqvist, Lennart; Jonas, Eduard

    2015-01-01

    Background Previous studies have shown that liver function is inhomogeneously distributed in diseased livers, and this uneven distribution cannot be compensated for if a global liver function test is used for the prediction of post-operative remnant liver function. Dynamic Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) can assess segmental liver function, thus offering the possibility to overcome this problem. Methods In 10 patients with liver cirrhosis and 10 normal volunteers, the contribution of individual liver segments to total liver function and volume was calculated using dynamic Gd-EOB-DTPA-enhanced MRI. Remnant liver function predictions using a segmental method and global assessment were compared for a simulated left hemihepatectomy. For the prediction based on segmental functional MRI assessment, the estimated function of the remnant liver segments was added. Results Global liver function assessment overestimated the remnant liver function in 9 out of 10 patients by as much as 9.3% [median −3.5% (−9.3–3.5%)]. In the normal volunteers there was a slight underestimation of remnant function in 9 out of 10 cases [median 1.07% (−0.7–2.5%)]. Discussion The present study underlines the necessity of a segmental liver function test able to compensate for the non-homogeneous nature of liver function, if the prediction of post-operative remnant liver function is to be improved. PMID:25297934

  20. Effects on the hemostatic system and liver function in relation to Implanon and Norplant. A prospective randomized clinical trial.

    PubMed

    Egberg, N; van Beek, A; Gunnervik, C; Hulkko, S; Hirvonen, E; Larsson-Cohn, U; Bennink, H C

    1998-08-01

    In this prospective randomized clinical trial, two long-term contraceptive implants were studied with respect to hemostasis and liver function in 86 healthy young women. The two implants used were Implanon, containing the progestagen etonogestrel (the biologically active metabolite of desogestrel) and Norplant, the implant containing the progestagen levonorgestrel. The results of the trial showed that both implants had similar small effects on the hemostatic system that are not suggestive of a tendency towards thrombosis. The effect on liver function was characterized by increases in total bilirubin and gamma-glutamyl transferase and decreases in alanine aminotransferase and aspartate aminotransferase. PMID:9773263

  1. A comparative analysis of liver transcriptome suggests divergent liver function among human, mouse and rat.

    PubMed

    Yu, Yao; Ping, Jie; Chen, Hui; Jiao, Longxian; Zheng, Siyuan; Han, Ze-Guang; Hao, Pei; Huang, Jian

    2010-11-01

    The human liver plays a vital role in meeting the body's metabolic needs and maintaining homeostasis. To address the molecular mechanisms of liver function, we integrated multiple gene expression datasets from microarray, MPSS, SAGE and EST platforms to generate a transcriptome atlas of the normal human liver. Our results show that 17396 genes are expressed in the human liver. 238 genes were identified as liver enrichment genes, involved in the functions of immune response and metabolic processes, from the MPSS and EST datasets. A comparative analysis of liver transcriptomes was performed in humans, mice and rats with microarray datasets shows that the expression profile of homologous genes remains significantly different between mouse/rat and human, suggesting a functional variance and regulation bias of genes expressed in the livers. The integrated liver transcriptome data should provide a valuable resource for the in-depth understanding of human liver biology and liver disease. PMID:20800674

  2. Optimization of an Isolated Perfused Rainbow Trout Liver Model: Clearance Studies with 7-Ethoxycoumarin

    EPA Science Inventory

    Isolated trout livers were perfused using methods designed to preserve tissue viability and function. Liver performance was evaluated by measuring O2 consumption (VO2), vascular resistance, K+ leakage, glucose flux, lactate flux, alanine aminotransferase (ALT) leakage, and meta...

  3. Circadian Clock Control of Liver Metabolic Functions.

    PubMed

    Reinke, Hans; Asher, Gad

    2016-03-01

    The circadian clock is an endogenous biological timekeeping system that synchronizes physiology and behavior to day/night cycles. A wide variety of processes throughout the entire gastrointestinal tract and notably the liver appear to be under circadian control. These include various metabolic functions such as nutrient uptake, processing, and detoxification, which align organ function to cycle with nutrient supply and demand. Remarkably, genetic or environmental disruption of the circadian clock can cause metabolic diseases or exacerbate pathological states. In addition, modern lifestyles force more and more people worldwide into asynchrony between the external time and their circadian clock, resulting in a constant state of social jetlag. Recent evidence indicates that interactions between altered energy metabolism and disruptions in the circadian clock create a downward spiral that can lead to diabetes and other metabolic diseases. In this review, we provide an overview of rhythmic processes in the liver and highlight the functions of circadian clock genes under physiological and pathological conditions; we focus on their roles in regulation of hepatic glucose as well as lipid and bile acid metabolism and detoxification and their potential effects on the development of fatty liver and nonalcoholic steatohepatitis. PMID:26657326

  4. The ALDH2 genotype, alcohol intake, and liver-function biomarkers among Japanese male workers.

    PubMed

    Takeshita, T; Yang, X; Morimoto, K

    2000-06-01

    A highly prevalent, atypical genotype in low Km aldehyde dehydrogenase (ALDH2) may influence alcohol-induced liver injury because of higher production of acetaldehyde in the liver. In the present study, we examined relationships between the ALDH2 genotype, alcohol intake, and liver-function biomarkers among Japanese male workers. Study subjects were 385 male workers in a metal plant in Japan, who were free from hepatic viruses and did not have higher aminotransferase activities (<100). The subjects completed a questionnaire on alcohol drinking habits and other lifestyles. The ALDH2 genotype was determined by the PCR method followed by restriction-enzyme digestion. In the moderately and heavily drinking groups, those with ALDH2*1/*2 exhibited significantly lower levels than those with ALDH2*1/*1 for all three parameters of liver function, whereas no such differences were observed in the least-drinking group. Multiple linear-regression analysis, adjusting for age, obesity, and smoking habits, revealed that aspartate aminotransferase activity was positively associated with alcohol intake only in those with ALDH2*1/*1. On the other hand, alanine transferase activity was negatively associated with alcohol intake only in those with ALDH2*1/*2. The present study indicates that effects of alcohol intake on liver-function biomarkers are likely to be modified by the ALDH2 genotype in adult males. PMID:10942105

  5. Loss of brain function - liver disease

    MedlinePlus

    ... of chronic liver damage. Common causes of chronic liver disease in the United States are: Chronic hepatitis B ... hepatitis Bile duct disorders Some medicines Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) Once you have ...

  6. Astaxanthin as a Potential Protector of Liver Function: A Review

    PubMed Central

    Chen, Jui-Tung; Kotani, Kazuhiko

    2016-01-01

    Protecting against liver damage, such as non-alcoholic fatty liver disease, is currently considered to be important for the prevention of adverse conditions, such as cardiovascular and cancerous diseases. Liver damage often occurs in relation to oxidative stress with metabolic disorders, including cellular lipid accumulation. Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′dione), a xanthophyll carotenoid, is a candidate for liver protection. Here, we briefly review astaxanthin as a potential protector against liver damage. In particular, studies have reported antioxidative effects of astaxanthin in liver tissues. Astaxanthin treatment is also reported to improve hyperlipidemia, which indirectly induces the antioxidative effects of astaxanthin on liver pathologies. Furthermore, astaxanthin may alleviate liver damage independent of its antioxidative effects. Of note, there are still insufficient human data to observe the effect of astaxanthin treatment on liver function in clinical conditions. More studies investigating the relevance of astaxanthin on liver protection are necessary.

  7. Ste20-related proline/alanine-rich kinase (SPAK) regulated transcriptionally by hyperosmolarity is involved in intestinal barrier function.

    PubMed

    Yan, Yutao; Dalmasso, Guillaume; Nguyen, Hang Thi Thu; Obertone, Tracy S; Sitaraman, Shanthi V; Merlin, Didier

    2009-01-01

    The Ste20-related protein proline/alanine-rich kinase (SPAK) plays important roles in cellular functions such as cell differentiation and regulation of chloride transport, but its roles in pathogenesis of intestinal inflammation remain largely unknown. Here we report significantly increased SPAK expression levels in hyperosmotic environments, such as mucosal biopsy samples from patients with Crohn's disease, as well as colon tissues of C57BL/6 mice and Caco2-BBE cells treated with hyperosmotic medium. NF-kappaB and Sp1-binding sites in the SPAK TATA-less promoter are essential for SPAK mRNA transcription. Hyperosmolarity increases the ability of NF-kappaB and Sp1 to bind to their binding sites. Knock-down of either NF-kappaB or Sp1 by siRNA reduces the hyperosmolarity-induced SPAK expression levels. Furthermore, expression of NF-kappaB, but not Sp1, was upregulated by hyperosmolarity in vivo and in vitro. Nuclear run-on assays showed that hyperosmolarity increases SPAK expression levels at the transcriptional level, without affecting SPAK mRNA stability. Knockdown of SPAK expression by siRNA or overexpression of SPAK in cells and transgenic mice shows that SPAK is involved in intestinal permeability in vitro and in vivo. Together, our data suggest that SPAK, the transcription of which is regulated by hyperosmolarity, plays an important role in epithelial barrier function. PMID:19343169

  8. An Archaeal Glutamate Decarboxylase Homolog Functions as an Aspartate Decarboxylase and Is Involved in β-Alanine and Coenzyme A Biosynthesis

    PubMed Central

    Tomita, Hiroya; Yokooji, Yuusuke; Ishibashi, Takuya; Imanaka, Tadayuki

    2014-01-01

    β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5′-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4′-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms. PMID:24415726

  9. A peptide that inhibits function of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) reduces lung cancer metastasis

    PubMed Central

    Chen, C-H; Thai, P; Yoneda, K; Adler, KB; Yang, P-C; Wu, R

    2015-01-01

    Myristoylated Alanine-Rich C Kinase Substrate (MARCKS), a substrate of protein kinase C, is a key regulatory molecule controlling mucus granule secretion by airway epithelial cells as well as directed migration of leukocytes, stem cells and fibroblasts. Phosphorylation of MARKCS may be involved in these responses. However, the functionality of MARCKS and its related phosphorylation in lung cancer malignancy have not been characterized. This study demonstrated elevated levels of MARCKS and phospho-MARCKS in highly invasive lung cancer cell lines and lung cancer specimens from non-small-cell lung cancer patients. siRNA knockdown of MARCKS expression in these highly invasive lung cancer cell lines reduced cell migration and suppressed PI3K (phosphatidylinositol 3′-kinase)/Akt phosphorylation and Slug level. Interestingly, treatment with a peptide identical to the MARCKS N-terminus sequence (the MANS peptide) impaired cell migration in vitro and also the metastatic potential of invasive lung cancer cells in vivo. Mechanistically, MANS peptide treatment resulted in a coordination of increase of E-cadherin expression, suppression of MARCKS phosphorylation and AKT/Slug signalling pathway but not the expression of total MARCKS. These results indicate a crucial role for MARCKS, specifically its phosphorylated form, in potentiating lung cancer cell migration/metastasis and suggest a potential use of MARCKS-related peptides in the treatment of lung cancer metastasis. PMID:23955080

  10. Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa-MAP2.

    PubMed

    Migliolo, Ludovico; Felício, Mário R; Cardoso, Marlon H; Silva, Osmar N; Xavier, Mary-Ann E; Nolasco, Diego O; de Oliveira, Adeliana Silva; Roca-Subira, Ignasi; Vila Estape, Jordi; Teixeira, Leandro D; Freitas, Sonia M; Otero-Gonzalez, Anselmo J; Gonçalves, Sónia; Santos, Nuno C; Franco, Octavio L

    2016-07-01

    Recently, several peptides have been studied regarding the defence process against pathogenic microorganisms, which are able to act against different targets, with the purpose of developing novel bioactive compounds. The present work focuses on the structural and functional evaluation of the palindromic antimicrobial peptide Pa-MAP2, designed based on the peptide Pa-MAP from Pleuronectes americanus. For a better structural understanding, molecular modelling analyses were carried out, together with molecular dynamics and circular dichroism, in different media. Antibacterial activity against Gram-negative and positive bacteria was evaluated, as well as cytotoxicity against human erythrocytes, RAW 264.7, Vero and L6 cells. In silico docking experiments, lipid vesicle studies, and atomic force microscopy (AFM) imaging were carried out to explore the activity of the peptide. In vivo studies on infected mice were also done. The palindromic primary sequence favoured an α-helix structure that was pH dependent, only present on alkaline environment, with dynamic N- and C-terminals that are stabilized in anionic media. Pa-MAP2 only showed activity against Gram-negative bacteria, with a MIC of 3.2 μM, and without any cytotoxic effect. In silico, lipid vesicles and AFM studies confirm the preference for anionic lipids (POPG, POPS, DPPE, DPPG and LPS), with the positively charged lysine residues being essential for the initial electrostatic interaction. In vivo studies showed that Pa-MAP2 increases to 100% the survival rate of mice infected with Escherichia coli. Data here reported indicated that palindromic Pa-MAP2 could be an alternative candidate for use in therapeutics against Gram-negative bacterial infections. PMID:27063608

  11. Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke

    PubMed Central

    Seppälä, Ilkka; Kleber, Marcus E.; Bevan, Steve; Lyytikäinen, Leo-Pekka; Oksala, Niku; Hernesniemi, Jussi A.; Mäkelä, Kari-Matti; Rothwell, Peter M.; Sudlow, Cathie; Dichgans, Martin; Mononen, Nina; Vlachopoulou, Efthymia; Sinisalo, Juha; Delgado, Graciela E.; Laaksonen, Reijo; Koskinen, Tuomas; Scharnagl, Hubert; Kähönen, Mika; Markus, Hugh S.; März, Winfried; Lehtimäki, Terho

    2016-01-01

    Asymmetric and symmetric dimethylarginines (ADMA and SDMA) impair nitric oxide bioavailability and have been implicated in the pathogenesis of atrial fibrillation (AF). Alanine–glyoxylate aminotransferase 2 (AGXT2) is the only enzyme capable of metabolizing both of the dimethylarginines. We hypothesized that two functional AGXT2 missense variants (rs37369, V140I; rs16899974, V498L) are associated with AF and its cardioembolic complications. Association analyses were conducted using 1,834 individulas with AF and 7,159 unaffected individuals from two coronary angiography cohorts and a cohort comprising patients undergoing clinical exercise testing. In coronary angiography patients without structural heart disease, the minor A allele of rs16899974 was associated with any AF (OR = 2.07, 95% CI 1.59-2.68), and with paroxysmal AF (OR = 1.98, 95% CI 1.44–2.74) and chronic AF (OR = 2.03, 95% CI 1.35–3.06) separately. We could not replicate the association with AF in the other two cohorts. However, the A allele of rs16899974 was nominally associated with ischemic stroke risk in the meta-analysis of WTCCC2 ischemic stroke cohorts (3,548 cases, 5,972 controls) and with earlier onset of first-ever ischemic stroke (360 cases) in the cohort of clinical exercise test patients. In conclusion, AGXT2 variations may be involved in the pathogenesis of AF and its age-related thromboembolic complications. PMID:26984639

  12. Influence of black cohosh (Cimicifuga racemosa) use by postmenopausal women on total hepatic perfusion and liver functions.

    PubMed

    Nasr, Ahmed; Nafeh, Hanan

    2009-11-01

    In this prospective longitudinal clinical trial, 87 postmenopausal women receiving for 12 consecutive months a daily dose of 40 mg of a dry extract preparation of Cimicifuga racemosa (Klimadynon) for relief of vasomotor symptoms were followed up by evaluation of total hepatic blood flow, assessed by color Doppler ultrasound, as well as prothrombin time and concentration, serum albumin, bilirubin, gamma-glutamyltransferase, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase. Because no significant changes in total hepatic blood flow or any of the liver functions tested were reported, we concluded that use of C. racemosa for 1 year by healthy postmenopausal women without evidence of liver disease does not seem to influence the liver. PMID:19539907

  13. [Function of zinc in liver disease].

    PubMed

    Katayama, Kazuhiro

    2016-07-01

    Zinc deficiency is highly prevalent in cirrhotic patients, and contributes to several clinical symptoms such as hepatic encephalopathy and liver fibrosis. Ammonia is detoxified in liver to urea through urea cycle, and is also detoxified in extrahepatic tissue to glutamine through glutamine synthetase. The reduced ability of ammonia detoxification in liver cirrhosis is ascribed to zinc deficiency, because a member of urea cycle, ornithine transcarbamylase is a zinc enzyme. In this condition, glutamine synthesis is enhanced, which enables the body, at least temporarily, to suppress the increase of ammonia. However, the glutamine is metabolized predominantly in enterocyte to ammomia and glutamate, indicating that a vicious cycle in glutamine synthesis and glutamine breakdown occurs in liver cirrhosis. Attention should be given to the clinical significance of zinc in liver diseases. PMID:27455801

  14. Liver Function Test Abnormalities in Patients with Inflammatory Bowel Diseases: A Hospital-based Survey

    PubMed Central

    Cappello, Maria; Randazzo, Claudia; Bravatà, Ivana; Licata, Anna; Peralta, Sergio; Craxì, Antonio; Almasio, Piero Luigi

    2014-01-01

    BACKGROUND AND AIMS Inflammatory bowel diseases (IBD) are frequently associated with altered liver function tests (LFTs). The causal relationship between abnormal LFTs and IBD is unclear. The aim of our study was to evaluate the prevalence and etiology of LFTs abnormalities and their association with clinical variables in a cohort of IBD patients followed up in a single center. MATERIALS AND METHODS A retrospective review was undertaken of all consecutive IBD in- and outpatients routinely followed up at a single referral center. Clinical and demographic parameters were recorded. Subjects were excluded if they had a previous diagnosis of chronic liver disease. LFT abnormality was defined as an increase in aspartate aminotransferase, (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT), or total bilirubin. RESULTS A cohort of 335 patients (179 males, mean age 46.0 ± 15.6 years) was analyzed. Abnormal LFTs were detected in 70 patients (20.9%). In most cases, the alterations were mild and spontaneously returned to normal values in about 60% of patients. Patients with abnormal LFTs were less frequently on treatment with aminosalicylates (22.8 vs. 36.6%, P = 0.04). The most frequent cause for transient abnormal LFTs was drug-induced cholestasis (34.1%), whereas fatty liver was the most frequent cause of persistent liver damage (65.4%). A cholestatic pattern was found in 60.0% of patients and was mainly related to older age, longer duration of disease, and hypertension. CONCLUSIONS The prevalence of LFT abnormalities is relatively high in IBD patients, but the development of severe liver injury is exceptional. Moreover, most alterations of LFTs are mild and spontaneously return to normal values. Drug-induced hepatotoxicity and fatty liver are the most relevant causes of abnormal LFTs in patients with IBD. PMID:24966712

  15. Gd-EOB-DTPA-enhanced MRI for the assessment of liver function and volume in liver cirrhosis

    PubMed Central

    Blomqvist, L; Douglas, L; Nordell, A; Janczewska, I; Näslund, E; Jonas, E

    2013-01-01

    Objective: The aims of this study were to use dynamic hepatocyte-specific contrast-enhanced MRI to evaluate liver volume and function in liver cirrhosis, correlate the results with standard scoring models and explore the inhomogeneous distribution of liver function in cirrhotic livers. Methods: 10 patients with liver cirrhosis and 20 healthy volunteers, serving as controls, were included. Hepatic extraction fraction (HEF), input relative blood flow and mean transit time were calculated on a voxel-by-voxel basis using deconvolutional analysis. Segmental and total liver volumes as well as segmental and total hepatic extraction capacity, expressed in HEFml, were calculated. An incongruence score (IS) was constructed to reflect the uneven distribution of liver function. The Mann–Whitney U-test was used for group comparison of the quantitative liver function parameters, liver volumes and ISs. Correlations between liver function parameters and clinical scores were assessed using Spearman rank correlation. Results: Patients had larger parenchymal liver volume, lower hepatocyte function and more inhomogeneous distribution of function compared with healthy controls. Conclusion: The study demonstrates the non-homogeneous nature of liver cirrhosis and underlines the necessity of a liver function test able to compensate for the heterogeneous distribution of liver function in patients with diseased liver parenchyma. Advances in knowledge: The study describes a new way to quantitatively assess the hepatic uptake of gadoxetate or gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid in the liver as a whole as well as on a segmental level. PMID:23403453

  16. Mesenchymal Stem Cell-Derived Hepatocytes for Functional Liver Replacement

    PubMed Central

    Christ, Bruno; Stock, Peggy

    2012-01-01

    Mesenchymal stem cells represent an alternate cell source to substitute for primary hepatocytes in hepatocyte transplantation because of their multiple differentiation potential and nearly unlimited availability. They may differentiate into hepatocyte-like cells in vitro and maintain specific hepatocyte functions also after transplantation into the regenerating livers of mice or rats both under injury and non-injury conditions. Depending on the underlying liver disease their mode of action is either to replace the diseased liver tissue or to support liver regeneration through their anti-inflammatory and anti-apoptotic as well as their pro-proliferative action. PMID:22737154

  17. Optimizing global liver function in radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Wu, Victor W.; Epelman, Marina A.; Wang, Hesheng; Romeijn, H. Edwin; Feng, Mary; Cao, Yue; Ten Haken, Randall K.; Matuszak, Martha M.

    2016-09-01

    Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to high variability in potential liver toxicity with similar doses. This work investigates three treatment planning optimization models that minimize risk of toxicity: two consider both voxel-based pre-treatment liver function and local-function-based radiosensitivity with dose; one considers only dose. Each model optimizes different objective functions (varying in complexity of capturing the influence of dose on liver function) subject to the same dose constraints and are tested on 2D synthesized and 3D clinical cases. The normal-liver-based objective functions are the linearized equivalent uniform dose (\\ell \\text{EUD} ) (conventional ‘\\ell \\text{EUD} model’), the so-called perfusion-weighted \\ell \\text{EUD} (\\text{fEUD} ) (proposed ‘fEUD model’), and post-treatment global liver function (GLF) (proposed ‘GLF model’), predicted by a new liver-perfusion-based dose-response model. The resulting \\ell \\text{EUD} , fEUD, and GLF plans delivering the same target \\ell \\text{EUD} are compared with respect to their post-treatment function and various dose-based metrics. Voxel-based portal venous liver perfusion, used as a measure of local function, is computed using DCE-MRI. In cases used in our experiments, the GLF plan preserves up to 4.6 % ≤ft(7.5 % \\right) more liver function than the fEUD (\\ell \\text{EUD} ) plan does in 2D cases, and up to 4.5 % ≤ft(5.6 % \\right) in 3D cases. The GLF and fEUD plans worsen in \\ell \\text{EUD} of functional liver on average by 1.0 Gy and 0.5 Gy in 2D and 3D cases, respectively. Liver perfusion information can be used during treatment planning to minimize the risk of toxicity by improving expected GLF; the degree of benefit varies with perfusion pattern. Although fEUD model optimization is computationally inexpensive and

  18. Optimizing global liver function in radiation therapy treatment planning.

    PubMed

    Wu, Victor W; Epelman, Marina A; Wang, Hesheng; Edwin Romeijn, H; Feng, Mary; Cao, Yue; Ten Haken, Randall K; Matuszak, Martha M

    2016-09-01

    Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to high variability in potential liver toxicity with similar doses. This work investigates three treatment planning optimization models that minimize risk of toxicity: two consider both voxel-based pre-treatment liver function and local-function-based radiosensitivity with dose; one considers only dose. Each model optimizes different objective functions (varying in complexity of capturing the influence of dose on liver function) subject to the same dose constraints and are tested on 2D synthesized and 3D clinical cases. The normal-liver-based objective functions are the linearized equivalent uniform dose ([Formula: see text]) (conventional '[Formula: see text] model'), the so-called perfusion-weighted [Formula: see text] ([Formula: see text]) (proposed 'fEUD model'), and post-treatment global liver function (GLF) (proposed 'GLF model'), predicted by a new liver-perfusion-based dose-response model. The resulting [Formula: see text], fEUD, and GLF plans delivering the same target [Formula: see text] are compared with respect to their post-treatment function and various dose-based metrics. Voxel-based portal venous liver perfusion, used as a measure of local function, is computed using DCE-MRI. In cases used in our experiments, the GLF plan preserves up to [Formula: see text] more liver function than the fEUD ([Formula: see text]) plan does in 2D cases, and up to [Formula: see text] in 3D cases. The GLF and fEUD plans worsen in [Formula: see text] of functional liver on average by 1.0 Gy and 0.5 Gy in 2D and 3D cases, respectively. Liver perfusion information can be used during treatment planning to minimize the risk of toxicity by improving expected GLF; the degree of benefit varies with perfusion pattern. Although fEUD model optimization is computationally inexpensive and often

  19. Function of GATA Factors in the Adult Mouse Liver

    PubMed Central

    Zheng, Rena; Rebolledo-Jaramillo, Boris; Zong, Yiwei; Wang, Liqing; Russo, Pierre; Hancock, Wayne; Stanger, Ben Z.; Hardison, Ross C.; Blobel, Gerd A.

    2013-01-01

    GATA transcription factors and their Friend of Gata (FOG) cofactors control the development of diverse tissues. GATA4 and GATA6 are essential for the expansion of the embryonic liver bud, but their expression patterns and functions in the adult liver are unclear. We characterized the expression of GATA and FOG factors in whole mouse liver and purified hepatocytes. GATA4, GATA6, and FOG1 are the most prominently expressed family members in whole liver and hepatocytes. GATA4 chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) identified 4409 occupied sites, associated with genes enriched in ontologies related to liver function, including lipid and glucose metabolism. However, hepatocyte-specific excision of Gata4 had little impact on gross liver architecture and function, even under conditions of regenerative stress, and, despite the large number of GATA4 occupied genes, resulted in relatively few changes in gene expression. To address possible redundancy between GATA4 and GATA6, both factors were conditionally excised. Surprisingly, combined Gata4,6 loss did not exacerbate the phenotype resulting from Gata4 loss alone. This points to the presence of an unusually robust transcriptional network in adult hepatocytes that ensures the maintenance of liver function. PMID:24367609

  20. Optimal cut-off value of alanine aminotransferase level to precisely estimate the presence of fatty liver in patients with poorly controlled type 2 diabetes.

    PubMed

    Tanabe, Akihito; Tatsumi, Fuminori; Okauchi, Seizo; Yabe, Hiroki; Tsuda, Tomohiro; Okutani, Kazuma; Yamashita, Kazuki; Nakashima, Koji; Kaku, Kohei; Kaneto, Hideaki

    2016-07-01

    Optimal cut-off value of ALT level to precisely estimate the presence of fatty liver was as low as 28.0 U/L. We should consider the possibility of fatty liver even when ALT level is within normal range in subjects with poorly controlled type 2 diabetes. PMID:27373695

  1. Effect of in utero exposure of Toddy (coconut palm wine) on liver function and lipid metabolism in rat fetuses.

    PubMed

    Lal, J J; Sreeranjit Kumar, C V; Suresh, M V; Indira, M; Vijayammal, P L

    1998-01-01

    The objective of this study was to determine the effects of a country liquor Toddy (Coconut palm wine) and an equivalent quantity of ethanol on liver function and lipid metabolism in utero. Female albino rats with an average weight of 125 +/- 5 g were exposed to Toddy from coconut palm (24.5 ml/kg body weight/day) and ethanol (0.52 ml/kg body weight/day) for 15 days before conception and during pregnancy. On day 13 and day 19 of gestation, altered liver function and hyperlipidemia were seen in the fetuses of both the treated groups. Altered liver function was evidenced by the increased activity of alcohol dehydrogenase, aldehyde dehydrogenase, glutamic oxaloacetic transaminase (aspartate amino transferase (GOT)), glutamic pyruvic transaminase (alanine amino transferase (GPT)). Hyperlipidemia was caused by increased biosynthesis since the incorporation of 14C acetate into lipids and activities of HMG CoA reductase and lipogenic enzymes were elevated. Toddy treated fetuses were more severely affected than those exposed to an equivalent quantity of ethanol. Toddy seemed to potentiate the toxicity induced by alcohol suggesting the role of non alcoholic components. Hepatic functions of the day 13 fetuses were effected to a lesser degree than those in the day 19 hepatic liver. PMID:9950082

  2. Impact of combined treatment with rosuvastatin and antidepressants on liver and kidney function in rats

    PubMed Central

    HERBET, MARIOLA; GAWROŃSKA-GRZYWACZ, MONIKA; IZDEBSKA, MAGDALENA; PIĄTKOWSKA-CHMIEL, IWONA; JAGIEŁŁO-WÓJTOWICZ, EWA

    2016-01-01

    Depression is among the most prevalent and life-threatening forms of mental illness, and is also a risk factor for cardiovascular disorders, diabetes and metabolic syndrome. Elderly patients commonly receive statins for the prevention of cardiovascular diseases, and antidepressant drugs for the treatment of depression. It should be noted that long-term polypharmacotherapy may lead to potential drug interactions and disorders of the organs. The aim of the present study was to determine whether, and to what extent, combined treatment with rosuvastatin and antidepressants (amitriptyline or fluoxetine) influences the biochemical markers of liver and kidney function in a rat model. For this purpose, the activity levels of aspartate aminotransferase, alanine aminotransferase (ALT), γ-glutamyltransferase (GGT) and the concentrations of total protein, urea, creatinine and β2-microglobulin were determined. The results of the study indicated that combined treatment with rosuvastatin and the antidepressants amitriptyline and fluoxetine for 14 days altered the activity levels of ALT and GGT, and the concentrations of urea and creatinine in the serum compared with groups of rats receiving rosuvastatin or either antidepressant alone. These observed changes in biochemical parameters may suggest the possibility of impaired liver and kidney function during the continuous combined exposure to the drugs. However, further clinical and animal studies are required in order to further elucidate this process. PMID:27073465

  3. Hepatic encephalopathy: effects of liver failure on brain function.

    PubMed

    Felipo, Vicente

    2013-12-01

    Liver failure affects brain function, leading to neurological and psychiatric alterations; such alterations are referred to as hepatic encephalopathy (HE). Early diagnosis of minimal HE reveals an unexpectedly high incidence of mild cognitive impairment and psychomotor slowing in patients with liver cirrhosis - conditions that have serious health, social and economic consequences. The mechanisms responsible for the neurological alterations in HE are beginning to emerge. New therapeutic strategies acting on specific targets in the brain (phosphodiesterase 5, type A GABA receptors, cyclooxygenase and mitogen-activated protein kinase p38) have been shown to restore cognitive and motor function in animal models of chronic HE, and NMDA receptor antagonists have been shown to increase survival in acute liver failure. This article reviews the latest studies aimed at understanding how liver failure affects brain function and potential ways to ameliorate these effects. PMID:24149188

  4. Liver morphology and function in visceral leishmaniasis (Kala-azar).

    PubMed Central

    el Hag, I A; Hashim, F A; el Toum, I A; Homeida, M; el Kalifa, M; el Hassan, A M

    1994-01-01

    AIM--To study the morphology and function of the liver in visceral leishmaniasis (Kala-azar). METHODS--Percutaneous liver biopsy specimens from 18 patients with confirmed visceral leishmaniasis were examined under light and electron microscopy before and after treatment with pentovalent antimony. The tissue was also examined for hepatitis B surface and core antigens using immunoperoxidase staining. Liver function was investigated in nine patients before and after treatment. RESULTS--Specimens before treatment showed Kupffer cells and macrophages colonised by leishmania parasites in 40% of cases. A chronic mononuclear cell infiltrate had affected the portal tracts and lobules. Ballooning degeneration of the hepatocytes, fibrosis of the terminal hepatic venules, and pericellular fibrosis were common findings. The fibrosis was related to Ito cells transforming to fibroblast-like cells. None of the patients had hepatitis B infection. All patients had biochemical evidence of liver dysfunction before treatment. Liver function improved after treatment. CONCLUSION--Visceral leishmaniasis causes morphological and functional disturbance in the liver. Focal fibrosis rather than cirrhosis occurs. The exact aetiology of hepatic damage is unclear but may have an immunological basis. Images PMID:8063939

  5. Functions of autophagy in normal and diseased liver

    PubMed Central

    Czaja, Mark J.; Ding, Wen-Xing; Donohue, Terrence M.; Friedman, Scott L.; Kim, Jae-Sung; Komatsu, Masaaki; Lemasters, John J.; Lemoine, Antoinette; Lin, Jiandie D.; Ou, Jing-hsiung James; Perlmutter, David H.; Randall, Glenn; Ray, Ratna B.; Tsung, Allan; Yin, Xiao-Ming

    2013-01-01

    Autophagy has emerged as a critical lysosomal pathway that maintains cell function and survival through the degradation of cellular components such as organelles and proteins. Investigations specifically employing the liver or hepatocytes as experimental models have contributed significantly to our current knowledge of autophagic regulation and function. The diverse cellular functions of autophagy, along with unique features of the liver and its principal cell type the hepatocyte, suggest that the liver is highly dependent on autophagy for both normal function and to prevent the development of disease states. However, instances have also been identified in which autophagy promotes pathological changes such as the development of hepatic fibrosis. Considerable evidence has accumulated that alterations in autophagy are an underlying mechanism of a number of common hepatic diseases including toxin-, drug- and ischemia/reperfusion-induced liver injury, fatty liver, viral hepatitis and hepatocellular carcinoma. This review summarizes recent advances in understanding the roles that autophagy plays in normal hepatic physiology and pathophysiology with the intent of furthering the development of autophagy-based therapies for human liver diseases. PMID:23774882

  6. Metabolic liver function after stereotactic body radiation therapy for hepatocellular carcinoma.

    PubMed

    Dreher, Constantin; Høyer, Katrine I; Fode, Mette Marie; Habermehl, Daniel; Combs, Stephanie E; Høyer, Morten

    2016-07-01

    Purpose The time course of changes of the liver function after stereotactic body radiotherapy (SBRT) was analyzed in patients treated for non-resectable hepatocellular carcinoma (HCC). Patients and methods Twenty-six patients with non-resectable HCC treated with SBRT were included in this study. Clinical, biochemical and treatment-related parameters were retrospectively collected. S-albumin, s-bilirubin, s-alkaline phosphatase (AP) and s-alanine transaminase (ALAT) at 0, 3, 6, and 12 months after radiotherapy were analyzed. Results Seventeen and nine patients were Child-Pugh class A and B, respectively. The liver was exposed to relatively high radiation doses with mean doses of 1.9-26 Gy. None of the patients developed classic radiotherapy-induced liver disease (RILD), but two patients developed non-classic RILD. Two patients developed grade 3 ascites and no grade 4-5 toxicities were observed. Six patients declined in Child-Pugh class. The s-albumin decreased significantly from a pretreatment median of 37.4-34.36 g/l at three months after SBRT and stabilized thereafter. S-bilirubin, s-AP and s-ALAT did not change significantly over the study period. Conclusion Despite the fact that patients received high radiation dose to the liver, there was only moderate morbidity related to the treatment. The s-albumin decreases over three months after SBRT reflecting minor to moderate hepatic toxicity. S-albumin should be observed in the follow-up of HCC patients treated with SBRT. PMID:26878669

  7. Icaritin ameliorates carbon tetrachloride-induced acute liver injury mainly because of the antioxidative function through estrogen-like effects.

    PubMed

    Liu, Peng; Jin, Xiang; Lv, Hao; Li, Jing; Xu, Wen; Qian, Hai-hua; Yin, Zhengfeng

    2014-12-01

    To investigate the effects of icaritin, an active ingredient extracted from Epimedium Sagittatum (Sieb. et Zucc.), on CCl4-induced liver injury and its possible mechanisms. Hepatocytes isolated from Sprague-Dawley male rats were treated with 3 mmol/L CCl4 for 24 h to induce acute liver cell injury, then icaritin (0.1, 1, 10, 100 μmol/L, respectively) was administrated to the cells, and estrogen receptor antagonist ICI182,780 (1 μmol/L) was co-treated with 10 μmol/L icaritin. Biochemical parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), and superoxide dismutase (SOD)) and cell apoptosis were detected to evaluate the injury degree. Protein expressions of Bax, Bcl-2, liver fatty acid-binding protein (L-FABP), and peroxisome proliferator-activated receptor-α (PPAR-α) as well as reactive oxygen species (ROS) generation were determined by western blot. Icaritin alleviated CCl4-induced liver cell injury in a concentration-dependent manner and 10 μmol/L was the optimal concentration. Icaritin (10 μmol/L) significantly reduced activities of ALT, AST in cell culture medium and MDA level of the impaired liver cells, but increased the intercellular SOD activity. The apoptotic rate of the impaired liver cells was also decreased by icaritin (10 μmol/L) treatment. Icaritin might exert antioxidative and anti-apoptotic functions via estrogen-like effect, as the ratio of Bcl-2/Bax was significantly increased, while protein expressions of L-FABP and PPAR-α were markedly increased, and this function was blocked by the estrogen receptor antagonist ICI182,780 efficiently. Icaritin may be a promising drug candidate for acute liver injury benefiting from the antioxidative and anti-apoptotic functions via estrogen-like effect. PMID:25148823

  8. Protective effect of salvianolic acid B on NASH rat liver through restoring intestinal mucosal barrier function

    PubMed Central

    Wang, Ying-Chun; Jin, Qing-Mei; Kong, Wei-Zong; Chen, Juan

    2015-01-01

    Aim: To investigate the effect of Salvianolic acid B (Sal B) on the disease progress of NASH and change of intestinal barrier function. Methods: Sixty Sprague-Dawley (SD) rats were randomly divided into control group, model group and treated group, with the former given normal diet and the latter 2 groups rats fed high-fat diet. In treated group, rats were infused through the stomach with 1 mg/ml Sal B every day at a dose of 20 mL/kg body weight. All animals were killed at the 24th week and plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), endotoxin (ET) and diamine oxdase (DAO) were analyzed using the blood samples. The histopathology of liver was observed by H&E staining. The expression changes of tight junction protein occludin and ZO-1 were analyzed by immunocytochemistry. Ultrastructural morphology of small intestinal tissues was investigated by transmission electron microscopy. Results: Plasma levels of ALT, AST, TG, TC, ET and DAO were significantly higher in model group than those in both control group and group treated with Sal B. In model group, vacuolated swelling of the cytoplasm with aggregates of chronic inflammatory cells was observed in the liver tissue but not in Sal B-treated group. NAFLD Activity Score in the treated group was significantly lower than that in model group. Immunohistochemical staining showed that Sal B administration recovered the expression of occludin and ZO-1, which was downregulated in the model group. Transmission electron microscopy analysis demonstrated that cell surface microvilli and major intercellular junctional complex including tight junction, gap junction and adherens junction were restored in Sal B-treated group. Conclusion: Sal B exerted protective function against high-fat diet-induced liver damage by restoring healthy barrier function of intestine in NASH rat model. PMID:26191218

  9. Characteristics and outcomes of chronic liver disease patients with acute deteriorated liver function by severity of underlying liver disease

    PubMed Central

    Hong, Yun Soo; Sinn, Dong Hyun; Gwak, Geum-Youn; Cho, Juhee; Kang, Danbee; Paik, Yong-Han; Choi, Moon Seok; Lee, Joon Hyeok; Koh, Kwang Cheol; Paik, Seung Woon

    2016-01-01

    AIM: To analyze characteristics and outcome of patients with acute-on-chronic liver failure (ACLF) according to the severity of underlying liver disease. METHODS: One hundred and sixty-seven adult patients with chronic liver disease and acute deteriorated liver function, defined by jaundice and coagulopathy, were analyzed. Predisposition, type of injury, response, organ failure, and survival were analyzed and compared between patients with non-cirrhosis (type A), cirrhosis (type B) and cirrhosis with previous decompensation (type C). RESULTS: The predisposition was mostly hepatitis B in type A, while it was alcoholic liver disease in types B and C. Injury was mostly hepatic in type A, but was non-hepatic in type C. Liver failure, defined by CLIF-SOFA, was more frequent in types A and B, and circulatory failure was more frequent in type C. The 30-d overall survival rate (85.3%, 81.1% and 83.7% for types A, B and C, respectively, P = 0.31) and the 30-d transplant-free survival rate (55.9%, 65.5% and 62.5% for types A, B and C, respectively P = 0.33) were not different by ACLF subtype, but 1-year overall survival rate were different (85.3%, 71.7% and 58.7% for types A, B and C, respectively, P = 0.02). CONCLUSION: There were clear differences in predisposition, type of injury, accompanying organ failure and long-term mortality according to spectrum of chronic liver disease, implying classifying subtype according to the severity of underlying liver disease is useful for defining, clarifying and comparing ACLF. PMID:27076763

  10. Sarcopenia, obesity and sarcopenic obesity: effects on liver function and volume in patients scheduled for major liver resection

    PubMed Central

    Lodewick, Toine M; Roeth, Anjali AJ; Olde Damink, Steven WM; Alizai, Patrick H; van Dam, Ronald M; Gassler, Nikolaus; Schneider, Mark; Dello, Simon AWG; Schmeding, Maximilian; Dejong, Cornelis HC; Neumann, Ulf P

    2015-01-01

    Background Sarcopenia, obesity and sarcopenic obesity have been linked to impaired outcome after liver surgery. Preoperative liver function of sarcopenic, obese and sarcopenic-obese patients might be reduced, possibly leading to more post-operative morbidity. The aim of this study was to explore whether liver function and volume were influenced by body composition in patients undergoing liver resection. Methods In 2011 and 2012, all consecutive patients undergoing the methacetin breath liver function test were included. Liver volumetry and muscle mass analysis were performed using preoperative CT scans and Osirix® software. Muscle mass and body-fat% were calculated. Predefined cut-off values for sarcopenia and the top two body-fat% quintiles were used to identify sarcopenia and obesity, respectively. Histologic assessment of the resected liver gave insight in background liver disease. Results A total number of 80 patients were included. Liver function and volume were comparable in sarcopenic(-obese) and non-sarcopenic(-obese) patients. Obese patients showed significantly reduced liver function [295 (95–508) vs. 358 (96–684) µg/kg/h, P = 0.018] and a trend towards larger liver size [1694 (1116–2685) vs. 1533 (869–2852) mL, P = 0.079] compared with non-obese patients. Weight (r = −0.40), body surface area (r = −0.32), estimated body-fat% (r = −0.43) and body mass index (r = −0.47) showed a weak but significant negative (all P < 0.05) correlation with liver function. Moreover, body-fat% was identified as an independent factor negatively affecting the liver function. Conclusion Sarcopenia and sarcopenic obesity did not seem to influence liver size and function negatively. However, obese patients had larger, although less functional, livers, indicating dissociation of liver function and volume in these patients. PMID:26136191

  11. Environmental modulation of microcystin and β-N-methylamino-L-alanine as a function of nitrogen availability.

    PubMed

    Scott, L L; Downing, S; Phelan, R R; Downing, T G

    2014-09-01

    The most significant modulators of the cyanotoxins microcystin and β-N-methylamino-L-alanine in laboratory cyanobacterial cultures are the concentration of growth-medium combined nitrogen and nitrogen uptake rate. The lack of field studies that support these observations led us to investigate the cellular content of these cyanotoxins in cyanobacterial bloom material isolated from a freshwater impoundment and to compare these to the combined nitrogen availability. We established that these toxins typically occur in an inverse relationship in nature and that their presence is mainly dependent on the environmental combined nitrogen concentration, with cellular microcystin present at exogenous combined nitrogen concentrations of 29 μM and higher and cellular BMAA correlating negatively with exogenous nitrogen at concentrations below 40 μM. Furthermore, opposing nutrient and light gradients that form in dense cyanobacterial blooms may result in both microcystin and BMAA being present at a single sampling site. PMID:24878376

  12. Musculoskeletal Health, Kidney and Liver Function in Retired Jockeys.

    PubMed

    Cullen, S; Donohoe, A; McGoldrick, A; McCaffrey, N; Davenport, C; Byrne, B; Donaghy, C; Tormey, W; Smith, D; Warrington, G

    2015-11-01

    The long-term implications of making-weight daily on musculoskeletal health and functioning of the kidney and liver remain unknown. This study aimed to investigate musculoskeletal health and kidney and liver function in a group of retired jockeys. 28 retired male jockeys (age 50-70 years) provided fasting blood samples for markers of bone metabolism and kidney and liver function. A dual-energy x-ray absorptiometry (DXA) scan was performed for the assessment of bone mineral density (BMD). Established reference ranges were used for interpretation of results. Comparisons were made between retired jockeys based on the professional racing licence held: Flat, National Hunt or Dual. Mean whole-body osteopenia was reported, with no differences between groups. Bone markers, micronutrients, electrolytes and associated hormones, and markers for kidney and liver function were within clinical normative ranges. No differences existed between groups. Results indicate the retired jockeys in this study do not demonstrate compromised bone health or kidney and liver function. However, the retired jockeys may not have undergone chronic weight cycling in the extreme manner evident in present-day jockeys, indicating the next generation of jockeys may face more of a problem. Jockeys should be tracked longitudinally throughout their racing career and beyond. PMID:26212243

  13. Systems proteomics of liver mitochondria function.

    PubMed

    Williams, Evan G; Wu, Yibo; Jha, Pooja; Dubuis, Sébastien; Blattmann, Peter; Argmann, Carmen A; Houten, Sander M; Amariuta, Tiffany; Wolski, Witold; Zamboni, Nicola; Aebersold, Ruedi; Auwerx, Johan

    2016-06-10

    Recent improvements in quantitative proteomics approaches, including Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS), permit reproducible large-scale protein measurements across diverse cohorts. Together with genomics, transcriptomics, and other technologies, transomic data sets can be generated that permit detailed analyses across broad molecular interaction networks. Here, we examine mitochondrial links to liver metabolism through the genome, transcriptome, proteome, and metabolome of 386 individuals in the BXD mouse reference population. Several links were validated between genetic variants toward transcripts, proteins, metabolites, and phenotypes. Among these, sequence variants in Cox7a2l alter its protein's activity, which in turn leads to downstream differences in mitochondrial supercomplex formation. This data set demonstrates that the proteome can now be quantified comprehensively, serving as a key complement to transcriptomics, genomics, and metabolomics--a combination moving us forward in complex trait analysis. PMID:27284200

  14. Shear wave elastography results correlate with liver fibrosis histology and liver function reserve

    PubMed Central

    Feng, Yan-Hong; Hu, Xiang-Dong; Zhai, Lin; Liu, Ji-Bin; Qiu, Lan-Yan; Zu, Yuan; Liang, Si; Gui, Yu; Qian, Lin-Xue

    2016-01-01

    AIM: To evaluate the correlation of shear wave elastography (SWE) results with liver fibrosis histology and quantitative function reserve. METHODS: Weekly subcutaneous injection of 60% carbon tetrachloride (1.5 mL/kg) was given to 12 canines for 24 wk to induce experimental liver fibrosis, with olive oil given to 2 control canines. At 24 wk, liver condition was evaluated using clinical biochemistry assays, SWE imaging, lidocaine metabolite monoethylglycine-xylidide (MEGX) test, and histologic fibrosis grading. Clinical biochemistry assays were performed at the institutional central laboratory for routine liver function evaluation. Liver stiffness was measured in triplicate from three different intercostal spaces and expressed as mean liver stiffness modulus (LSM). Plasma concentrations of lidocaine and its metabolite MEGX were determined using high-performance liquid chromatography repeated in duplicate. Liver biopsy samples were fixed in 10% formaldehyde, and liver fibrosis was graded using the modified histological activity index Knodell score (F0-F4). Correlations among histologic grading, LSM, and MEGX measures were analyzed with the Pearson linear correlation coefficient. RESULTS: At 24 wk liver fibrosis histologic grading was as follows: F0, n = 2 (control); F1, n = 0; F2, n = 3; F3, n = 7; and F4, n = 2. SWE LSM was positively correlated with histologic grading (r = 0.835, P < 0.001). Specifically, the F4 group had a significantly higher elastic modulus than the F3, F2, and F0 groups (P = 0.002, P = 0.003, and P = 0.006, respectively), and the F3 group also had a significantly higher modulus than the control F0 group (P = 0.039). LSM was negatively associated with plasma MEGX concentrations at 30 min (r = -0.642; P = 0.013) and 60 min (r = -0.651; P = 0.012), time to ½ of the maximum concentration (r = -0.538; P = 0.047), and the area under the curve (r = -0.636; P = 0.014). Multiple comparisons showed identical differences in these three measures

  15. Functional and histopathologic changes in the liver during sepsis.

    PubMed

    Caruana, J A; Montes, M; Camara, D S; Ummer, A; Potmesil, S H; Gage, A A

    1982-05-01

    Although liver failure from sepsis is a frequent occurrence in serious ill, hospitalized patients, little information is available on the histologic changes of the liver. We examined the histopathology of the liver of 19 patients who died of clinical sepsis and attempted to relate certain features of the illness or treatment to the observed histopathologic changes. The most striking finding was midzonal and peripheral necrosis of a moderate to marked degree in 11 of 19 patients. Other important changes were acute inflammation and cholestasis. The severity of hepatocellular necrosis did not appear to be influenced by the premortem circulating pathogen, by the nutritional support administered or by the arterial blood pressure. It is suggested that hepatocellular necrosis is characteristic of sepsis and may be caused by loss of specific factors which normally maintain liver function and structure. PMID:6803371

  16. A novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo

    PubMed Central

    Reebye, V.; Sætrom, P.; Mintz, P.J.; Huang, K.W.; Swiderski, P.; Peng, L.; Liu, C.; Liu, X.X.; Jensen, S.; Zacharoulis, D.; Kostomitsopoulos, N.; Kasahara, N.; Nicholls, J.P.; Jiao, L.R.; Pai, M.; Mizandari, M.; Chikovani, T.; Emara, M.M.; Haoudi, A.; Tomalia, D.A.; Rossi, J.J.; Habib, N.A.; Spalding, D.R.

    2015-01-01

    Hepatocellular carcinoma (HCC) occurs predominantly in patients with liver cirrhosis. Here, we show an innovative RNA-based targeted approach to enhance endogenous albumin production whilst reducing liver tumour burden. We designed short-activating RNAs (saRNA) to enhance expression of C/EBPα (CCAAT/enhancer-binding protein-α), a transcriptional regulator and activator of albumin gene expression. Increased levels of both C/EBPα and albumin mRNA in addition to a 3-fold increase in albumin secretion and 50% decrease in cell proliferation was observed in C/EBPα-saRNA transfected HepG2 cells. Intravenous injection of C/EBPα-saRNA in a cirrhotic rat model with multifocal liver tumours increased circulating serum albumin by over 30% showing evidence of improved liver function. Tumour burden decreased by 80% (p = 0.003) with a 40% reduction in a marker of pre-neoplastic transformation. Since C/EBPα has known anti-proliferative activities via retinoblastoma, p21 and cyclins; we used mRNA expression liver cancer specific microarray in C/EBPα-saRNA transfected HepG2 cells to confirm down-regulation of genes strongly enriched for negative regulation of apoptosis, angiogenesis and metastasis. Up-regulated genes were enriched for tumour suppressors and positive regulators of cell differentiation. A quantitative PCR and Western-blot analysis of C/EBPα-saRNA transfected cells suggested that in addition to the known anti-proliferative targets of C/EBPα, we also observed suppression of IL6R, c-Myc and reduced STAT3 phosphorylation. Conclusion We demonstrate for the first time that a novel injectable saRNA-oligonucleotide that enhances C/EBPα expression successfully reduces tumour burden and simultaneously improves liver function in a clinically relevant liver cirrhosis/HCC model. PMID:23929703

  17. Liver function tests and urinary albumin in house painters with previous heavy exposure to organic solvents.

    PubMed

    Lundberg, I; Nise, G; Hedenborg, G; Högberg, M; Vesterberg, O

    1994-05-01

    The serum activities or concentrations of aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), alkaline phosphatase (ALP), albumin, gamma-glutamyl transpeptidase (GGT), bilirubin (BIL), cholic acid (CHOL), chenodeoxycholic acid (CHENO), and transferrin with isoelectric point 5.7, and the urinary excretion of albumin were determined among male current or former house painters (n = 135) and house carpenters (n = 71) who had worked in their trades for at least 10 years before 1970. Workers who showed a value above the 90th percentile among the carpenters in at least one of the tests ASAT, ALAT, GGT, BIL, CHOL, or CHENO were regarded as showing "possible signs of liver dysfunction". Each participant's lifetime solvent exposure was evaluated by interview. The painters were divided into categories with low, intermediate, and heavy cumulative exposure during life (LTSE) or during the most exposed year (MEYSE). All participants stated none or slight recent exposure. The prevalence of possible signs of liver dysfunction increased with solvent exposure category according to LTSE as well as MEYSE with a numerically higher risk estimate in the heavy exposure category for MEYSE than for LTSE. ALP activity increased with exposure category according to both exposure estimates. This increase seemed to be due to an interaction between exposure to solvents and current or previous long term intake of medicines potentially toxic to the liver. None of these results was affected by whether or not the subjects had been exposed to solvents during the year before the investigation. The exposure to solvents was not significantly related to any other outcome variable. It is concluded that long term heavy exposure to solvents may elicit changes in conventional liver function tests indicative of a mild chronic effect on the liver. The findings also suggest that heavy solvent exposure during short time periods is a more likely cause of the findings than lifetime cumulative

  18. Assessment of liver function in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI

    PubMed Central

    Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jonas, Eduard

    2010-01-01

    Objectives Gd-EOB-DTPA (gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid) is a gadolinium-based hepatocyte-specific contrast agent for magnetic resonance imaging (MRI). The aim of this study was to determine whether the hepatic uptake and excretion of Gd-EOB-DTPA differ between patients with primary biliary cirrhosis (PBC) and healthy controls, and whether differences could be quantified. Methods Gd-EOB-DTPA-enhanced liver MRI was performed in 20 healthy volunteers and 12 patients with PBC. The uptake of Gd-EOB-DTPA was assessed using traditional semi-quantitative parameters (Cmax, Tmax and T1/2), as well as model-free parameters derived after deconvolutional analysis (hepatic extraction fraction [HEF], input-relative blood flow [irBF] and mean transit time [MTT]). In each individual, all parameters were calculated for each liver segment and the median of the segmental values was used to define a global liver median (GLM). Results Although the PBC patients had relatively mild disease according to their Model for End-stage Liver Disease (MELD), Child–Pugh and Mayo risk scores, they had significantly lower HEF and shorter MTT values compared with the healthy controls. These differences significantly increased with increasing MELD and Child–Pugh scores. Conclusions Dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) has a potential role as an imaging-based liver function test. The high spatial resolution of MRI enables hepatic function to be assessed on segmental and sub-segmental levels. PMID:20887325

  19. Functional characterization of a member of alanine or glycine: cation symporter family in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Kageyama, Hakuto; Tanaka, Yoshito; Incharoensakdi, Aran; Takabe, Teruhiro

    2015-01-01

    Membrane proteins of amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play important roles in the regulation of cellular processes. The alanine or glycine: cation symporter (AGCS) family belongs to APC superfamily and is found in prokaryotes, but its substrate specificity remains to be clarified. In this study, we found that a halotolerant cyanobacterium, Aphanothece halophytica has two putative ApagcS genes. The deduced amino acid sequence of one of genes, ApagcS1, exhibited high homology to Pseudomonas AgcS. The ApagcS1 gene was expressed in Escherichia coli JW4166 which is deficient in glycine uptake. Kinetics studies in JW4166 revealed that ApAgcS1 is a sodium-dependent glycine transporter. Competition experiments showed the significant inhibition by glutamine, asparagine, and glycine. The level of mRNA for ApagcS1 was induced by NaCl and nitrogen-deficient stresses. Uptake of glutamine by ApAgcS1 was also observed. Based on these data, the physiological role of ApAgcS1 was discussed. PMID:25421789

  20. Glycation of Liver Cystatin: Implication on its Structure and Function.

    PubMed

    Mustafa, Mir Faisal; Bano, Bilqees

    2016-09-01

    The increased level of reducing sugars and their derivatives in a diabetic condition has been the main cause of protein related complications. The changes in native state of proteins upon glycation induce loss in the function and structure of proteins. This further leads to cell damage and accumulation of immune system inducing AGE formation. Here in the present study cystatin was purified from liver (BLC) through affinity chromatography and was incubated with glucose, fructose and ribose. Changes were observed in the intensity of Trp absorption at 280 nm as well as AGE's specific fluorescence at 435 nm upon excitation at 370 nm to monitor the formation of BLC-sugar adducts. Protein intrinsic fluorescence showed marked conformational changes when BLC was incubated with D-ribose, glucose and fructose. Glycation with D-ribose induces BLC to misfold rapidly into an intermediate state retaining a low percentage of α-helical content compared to fructose and glucose as revealed by far-UV CD data. Furthermore, a caseinolytic assay of papain in presence of glycated liver cystatin showed decreased activity in the protein induced by these reducing sugars. Ribose had more effect on the structure as well as the function of liver cystatin followed by fructose and least for glucose. Absorption spectroscopy shows change in BLC and formation of AGE's. These results shows that liver cystatin-cathepsin imbalance is compromised in diabetic state which may lead to improper balance of proteinases leading to cirrhosis or liver damage. PMID:27351669

  1. Cement Dust Exposure and Perturbations in Some Elements and Lung and Liver Functions of Cement Factory Workers

    PubMed Central

    Richard, Egbe Edmund; Augusta Chinyere, Nsonwu-Anyanwu; Jeremaiah, Offor Sunday; Opara, Usoro Chinyere Adanna; Henrieta, Etukudo Maise; Ifunanya, Egbe Deborah

    2016-01-01

    Background. Cement dust inhalation is associated with deleterious health effects. The impact of cement dust exposure on the peak expiratory flow rate (PEFR), liver function, and some serum elements in workers and residents near cement factory were assessed. Methods. Two hundred and ten subjects (50 workers, 60 residents, and 100 controls) aged 18–60 years were studied. PEFR, liver function {aspartate and alanine transaminases (AST and ALT) and total and conjugated bilirubin (TB and CB)}, and serum elements {lead (Pb), copper (Cu), manganese (Mn), iron (Fe), cadmium (Cd), selenium (Se), chromium (Cr), zinc (Zn), and arsenic (As)} were determined using peak flow meter, colorimetry, and atomic absorption spectrometry, respectively. Data were analysed using ANOVA and correlation at p = 0.05. Results. The ALT, TB, CB, Pb, As, Cd, Cr, Se, Mn, and Cu were significantly higher and PEFR, Fe, and Zn lower in workers and residents compared to controls (p < 0.05). Higher levels of ALT, AST, and Fe and lower levels of Pb, Cd, Cr, Se, Mn, and Cu were seen in cement workers compared to residents (p < 0.05). Negative correlation was observed between duration of exposure and PEFR (r = −0.416, p = 0.016) in cement workers. Conclusions. Cement dust inhalation may be associated with alterations in serum elements levels and lung and liver functions while long term exposure lowers peak expiratory flow rate. PMID:26981118

  2. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168.

    PubMed

    Cooper, Gareth R; Moir, Anne

    2011-05-01

    The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore. PMID:21378181

  3. Bioreactor Technologies to Support Liver Function In Vitro

    PubMed Central

    Ebrahimkhani, Mohammad R; Neiman, Jaclyn A Shepard; Raredon, Micah Sam B; Hughes, David J; Griffith, Linda G

    2014-01-01

    Liver is a central nexus integrating metabolic and immunologic homeostasis in the human body, and the direct or indirect target of most molecular therapeutics. A wide spectrum of therapeutic and technological needs drive efforts to capture liver physiology and pathophysiology in vitro, ranging from prediction of metabolism and toxicity of small molecule drugs, to understanding off-target effects of proteins, nucleic acid therapies, and targeted therapeutics, to serving as disease models for drug development. Here we provide perspective on the evolving landscape of bioreactor-based models to meet old and new challenges in drug discovery and development, emphasizing design challenges in maintaining long-term liver-specific function and how emerging technologies in biomaterials and microdevices are providing new experimental models. PMID:24607703

  4. Functional Blood Progenitor Markers in Developing Human Liver Progenitors.

    PubMed

    Goldman, Orit; Cohen, Idan; Gouon-Evans, Valerie

    2016-08-01

    In the early fetal liver, hematopoietic progenitors expand and mature together with hepatoblasts, the liver progenitors of hepatocytes and cholangiocytes. Previous analyses of human fetal livers indicated that both progenitors support each other's lineage maturation and curiously share some cell surface markers including CD34 and CD133. Using the human embryonic stem cell (hESC) system, we demonstrate that virtually all hESC-derived hepatoblast-like cells (Hep cells) transition through a progenitor stage expressing CD34 and CD133 as well as GATA2, an additional hematopoietic marker that has not previously been associated with human hepatoblast development. Dynamic expression patterns for CD34, CD133, and GATA2 in hepatoblasts were validated in human fetal livers collected from the first and second trimesters of gestation. Knockdown experiments demonstrate that each gene also functions to regulate hepatic fate mostly in a cell-autonomous fashion, revealing unprecedented roles of fetal hematopoietic progenitor markers in human liver progenitors. PMID:27509132

  5. Quantitative liver function in patients with rheumatoid arthritis treated with low-dose methotrexate: a longitudinal study.

    PubMed

    Beyeler, C; Reichen, J; Thomann, S R; Lauterburg, B H; Gerber, N J

    1997-03-01

    The objectives were to determine quantitative liver function prospectively in patients with rheumatoid arthritis (RA) treated with low-dose methotrexate (MTX), to search for risk factors for a loss of quantitative liver function and to assess the relationship between quantitative liver function and histological staging. A total of 117 patients with RA (ACR criteria, 85 women, mean age 59 yr) had measurements of galactose elimination capacity (GEC), aminopyrine breath test (ABT) and liver enzymes [aspartate amino transferase (AST), alanine amino transferase (ALT), alkaline phosphatase (AP), 7-glutamyl transferase (GGT), bile acids, bilirubin, albumin] before treatment with weekly i.m. MTX injections and every year thereafter. In 16 patients, liver biopsies were performed. Before the introduction of MTX, mean GEC was 6.6 mg/min/kg [5th to 95th percentile (5-95 PC) 5.1-8.5; reference range 6.0-9.1] and mean ABT was 0.80% kg/mmol (5-95 PC 0.42-1.30: reference range 0.6-1.0). During treatment with MTX [mean weekly dose 11.8 mg (5-95 PC 5.4-20.2), mean observation period 3.8 yr (5-95 PC 0.4-6.9)], significant declines of GEC (-0.12 mg/min/kg per year. t = 3.30, P < 0.002) and ABT (-0.06% kg/mmol per year, t = 4.81, P < 0.001) were observed. Negative correlations were found between the annual change in GEC and GEC at baseline (Rs = -0.40, P < 0.0001), and the annual change in ABT and ABT at baseline (Rs = -0.43, P < 0.0001). No correlations were found between the annual change in GEC or ABT and weekly MTX dose, age or percentage of increased liver enzymes, and no effect of a history of alcohol consumption > 30 g/week became evident. Two patients with Roenigk grade III had impaired quantitative liver function, while 14 patients with Roenigk grades I and II exhibited a high variability of GEC and ABT from normal to abnormal values. The continuous declines in GEC and ABT observed deserve attention in patients with prolonged treatment. Patients with a low GEC or ABT at

  6. Splenectomy Improves Hemostatic and Liver Functions in Hepatosplenic Schistosomiasis Mansoni

    PubMed Central

    Leite, Luiz Arthur Calheiros; Pimenta Filho, Adenor Almeida; Ferreira, Rita de Cássia dos Santos; da Fonseca, Caíque Silveira Martins; dos Santos, Bianka Santana; Montenegro, Silvia Maria Lucena; Lopes, Edmundo Pessoa de Almeida; Domingues, Ana Lúcia Coutinho; Owen, James Stuart; Lima, Vera Lucia de Menezes

    2015-01-01

    Background Schistosomiasis mansoni is a chronic liver disease, in which some patients (5–10%) progress to the most severe form, hepatosplenic schistosomiasis. This form is associated with portal hypertension and splenomegaly, and often episodes of gastrointestinal bleeding, even with liver function preserved. Splenectomy is a validated procedure to reduce portal hypertension following digestive bleeding. Here, we evaluate beneficial effects of splenectomy on blood coagulation factors and liver function tests in hepatosplenic schistosomiasis mansoni compared to non-operated patients. Methodology/Principal Findings Forty-five patients who had undergone splenectomy surgery were assessed by laboratory analyses and ultrasound examination and compared to a non-operated group (n = 55). Blood samples were obtained for liver function tests, platelet count and prothrombin time. Coagulation factors (II, VII, VIII, IX and X), protein C and antithrombin IIa, plasminogen activator inhibitor-1 were measured by routine photometric, chromogenic or enzyme-linked immunosorbent assays, while hyperfibrinolysis was defined by plasminogen activator inhibitor-1 levels. Both groups had similar age, gender and pattern of periportal fibrosis. Splenectomized patients showed significant reductions in portal vein diameter, alkaline phosphatase and bilirubin levels compared to non-operated patients, while for coagulation factors there were significant improvement in prothrombin, partial thromboplastin times and higher levels of factor VII, VIII, IX, X, protein C and plasminogen activator inhibitor-1. Conclusion/Significance This study shows that the decrease of flow pressure in portal circulation after splenectomy restores the capacity of hepatocyte synthesis, especially on the factor VII and protein C levels, and these findings suggest that portal hypertension in patients with hepatosplenic schistosomiasis influences liver functioning and the blood coagulation status. PMID:26267788

  7. Bilirubin binding with liver cystatin induced structural and functional changes.

    PubMed

    Mustafa, Mir Faisal; Bano, Bilqees

    2014-05-01

    Cysteine proteinases and their inhibitors play a significant role in the proteolytic environment of the cells. Inhibitors of cysteine proteinases regulate the activity of these enzymes helping in checking the degdration activity of cathepsins. The bilirubin secreated by liver cells can bind to cystatin present in the liver resulting in its functional inactivation, which may further lead to the increase in cathepsins level causing liver cirrhosis. In case of some pathophysiological conditions excess bilirubin gets accumulated e.g. in presence of Fasciola hepatica (liver fluke) in mammals and humans, leading to liver cirrhosis and possibly jaundice or normal blockade of bile duct causing increased level of bilirubin in blood. Protease-cystatin imbalance causes disease progression. In the present study, Bilirubin (BR) and liver cystatin interaction was studied to explore the cystatin inactivation and structural alteration. The binding interaction was studied by UV-absorption, FT-IR and fluorescence spectroscopy. The quenching of protein fluorescence confirmed the binding of BR with buffalo liver cystatin (BLC). Stern-Volmer analysis of BR-BLC system indicates the presence of static component in the quenching mechanism and the number of binding sites to be close to 1. The fluorescence data proved that the fluorescence quenching of liver cystatin by BR was the result of BR-cystatin complex formation. FTIR analysis of BR-Cystatin complex revealed change in the secondary structure due to perturbation in the microenvironment further confirmed by the decreased caseinolytic activity of BLC against papain. Fluorescence measurements also revealed quenching of fluorescence and shift in peak at different time intervals and at varying pH values. Photo-illumination of BR-cystatin complex causes change in the surrounding environment of liver cystatin as indicated by red-shift. The binding constant for BR-BLC complex was found to be 9.279 × 10(4) M(-1). The cystatin binding with

  8. Structural and functional hepatocyte polarity and liver disease

    PubMed Central

    Gissen, Paul; Arias, Irwin M.

    2015-01-01

    Summary Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases. PMID:26116792

  9. Effect of L-tryptophan injection in rats on some enzymes of amino acid metabolism in liver. I. In vitro studies of the effect of L-tryptophan and its metabolites on the extramitochondrial L-alanine: 2-ketoglutaric aminotransferase.

    PubMed

    Katsos, A; Philippidis, H; Palaiologos, G

    1981-02-01

    Fed and fasted rats were injected with L-tryptophan (12.5 mg/100 g body weight) and the specific activities of L-glutamic: NAD oxidoreductase (deaminating) (EC 1.4.1.2) (GDH), L-aspartic-2-ketoglutaric aminotransferase (EC 2.6.1.1) (GOT) and L-alanine-2-ketoglutaric aminotransferase (EC 2.6.1.2) (GPT) from hepatic mitochondria and cytosol were compared. L-tryptophan results in a decrease of mitochondrial GDH activity by 22% and of cytosolic GPT and GOT by 42% and 38% respectively in the liver of fasted rats. Xanthurenate is a potent inhibitor of purified extramitochondrial GPT, whereas anthranilate and quinolinate are less potent inhibitors. L-tryptophan, 5-OH-tryptophan and indole exert a slight inhibition. Kynurenine, 5-OH-tryptamine, tryptamine, picolinic acid, nicotinic acid and indoloacetic acid do not show any inhibition of GPT. It is suggested that L-tryptophan injection inhibits extramitochondrial GPT by its transformation to xanthurenate and anthranilate. PMID:7227974

  10. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial.

    PubMed

    Hallsworth, Kate; Thoma, Christian; Hollingsworth, Kieren G; Cassidy, Sophie; Anstee, Quentin M; Day, Christopher P; Trenell, Michael I

    2015-12-01

    Although lifestyle changes encompassing weight loss and exercise remain the cornerstone of non-alcoholic fatty liver disease (NAFLD) management, the effect of different types of exercise on NAFLD is unknown. This study defines the effect of modified high-intensity interval training (HIIT) on liver fat, cardiac function and metabolic control in adults with NAFLD. Twenty-three patients with NAFLD [age 54±10 years, body mass index (BMI) 31±4 kg/m(2), intra-hepatic lipid >5%) were assigned to either 12 weeks HIIT or standard care (controls). HIIT involved thrice weekly cycle ergometry for 30-40 min. MRI and spectroscopy were used to assess liver fat, abdominal fat and cardiac structure/function/energetics. Glucose control was assessed by oral glucose tolerance test and body composition by air displacement plethysmography. Relative to control, HIIT decreased liver fat (11±5% to 8±2% compared with 10±4% to 10±4% P=0.019), whole-body fat mass (35±7 kg to 33±8 kg compared with 31±9 kg to 32±9 kg, P=0.013), alanine (52±29 units/l to 42±20 units/l compared with 47±22 units/l to 51±24 units/l, P=0.016) and aspartate aminotransferase (AST; 36±18 units/l to 33±15 units/l compared with 31±8 units/l to 35±8 units/l, P=0.017) and increased early diastolic filling rate (244±84 ml/s to 302±107 ml/s compared with 255±82 ml/s to 251±82 ml/s, P=0.018). There were no between groups differences in glucose control. Modified HIIT reduces liver fat and improves body composition alongside benefits to cardiac function in patients with NAFLD and should be considered as part of the broader treatment regimen by clinical care teams. ISRCTN trial ID: ISRCTN78698481. PMID:26265792

  11. Redox Control of Liver Function in Health and Disease

    PubMed Central

    Marí, Montserrat; Colell, Anna; Morales, Albert; von Montfort, Claudia; Garcia-Ruiz, Carmen

    2010-01-01

    Abstract Reactive oxygen species (ROS), a heterogeneous population of biologically active intermediates, are generated as by-products of the aerobic metabolism and exhibit a dual role in biology. When produced in controlled conditions and in limited quantities, ROS may function as signaling intermediates, contributing to critical cellular functions such as proliferation, differentiation, and cell survival. However, ROS overgeneration and, particularly, the formation of specific reactive species, inflicts cell death and tissue damage by targeting vital cellular components such as DNA, lipids, and proteins, thus arising as key players in disease pathogenesis. Given the predominant role of hepatocytes in biotransformation and metabolism of xenobiotics, ROS production constitutes an important burden in liver physiology and pathophysiology and hence in the progression of liver diseases. Despite the recognized role of ROS in disease pathogenesis, the efficacy of antioxidants as therapeutics has been limited. A better understanding of the mechanisms, nature, and location of ROS generation, as well as the optimization of cellular defense strategies, may pave the way for a brighter future for antioxidants and ROS scavengers in the therapy of liver diseases. Antioxid. Redox Signal. 12, 1295—1331. PMID:19803748

  12. Circulating lipocalin 2 is neither related to liver steatosis in patients with non-alcoholic fatty liver disease nor to residual liver function in cirrhosis.

    PubMed

    Meier, Elisabeth M; Pohl, Rebekka; Rein-Fischboeck, Lisa; Schacherer, Doris; Eisinger, Kristina; Wiest, Reiner; Krautbauer, Sabrina; Buechler, Christa

    2016-09-01

    Lipocalin 2 (LCN2) is induced in the injured liver and associated with inflammation. Aim of the present study was to evaluate whether serum LCN2 is a non-invasive marker to assess hepatic steatosis in patients with non-alcoholic fatty liver disease (NAFLD) or residual liver function in patients with liver cirrhosis. Therefore, LCN2 was measured by ELISA in serum of 32 randomly selected patients without fatty liver (controls), 24 patients with ultrasound diagnosed NAFLD and 42 patients with liver cirrhosis mainly due to alcohol. Systemic LCN2 was comparable in patients with liver steatosis, those with liver cirrhosis and controls. LCN2 negatively correlated with bilirubin in both cohorts. In cirrhosis, LCN2 was not associated with more advanced liver injury defined by the CHILD-PUGH score and model for end-stage liver disease score. Resistin but not C-reactive protein or chemerin positively correlated with LCN2. LCN2 levels were not increased in patients with ascites or patients with esophageal varices. Consequently, reduction of portal pressure by transjugular intrahepatic portosystemic shunt did not affect LCN2 levels. Hepatic venous blood (HVS), portal venous blood and systemic venous blood levels of LCN2 were similar. HVS LCN2 was unchanged in patients with end-stage liver cirrhosis compared to those with well-compensated disease arguing against increased hepatic release. Current data exclude that serum LCN2 is of any value as steatosis marker in patients with NAFLD and indicator of liver function in patients with alcoholic liver cirrhosis. PMID:27288631

  13. Structural, vibrational spectroscopic studies and quantum chemical calculations of n-(2,4-dinitrophenyl)-L-alanine methyl ester by density functional theory

    NASA Astrophysics Data System (ADS)

    Govindarasu, K.; Kavitha, E.

    2015-05-01

    In this paper, the vibrational wavenumbers of N-(2,4-dinitrophenyl)-L-alanine methyl ester (abbreviated as Dnp-ala-ome) were obtained from ab initio studies based on the density functional theory approach with B3LYP and M06-2X/6-31G(d,p) level of theories. The optimized geometry and structural features of the most potential nonlinear optical crystal Dnp-ala-ome and the vibrational spectral investigations have been thoroughly described with the FT-Raman and FT-IR spectra supported by the DFT computations. FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-50 cm-1) in the solid phase and the UV-Vis spectra that dissolved in ethanol were recorded in the range of 200-800 nm. The Natural population analysis and natural bond orbital (NBO) analysis have also been carried out to analyze the effects of intramolecular charge transfer, intramolecular and hyperconjugative interactions on the geometries. The effects of frontier orbitals, HOMO and LUMO, transition of electron density transfer have also been discussed. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of Dnp-ala-ome were calculated. In addition, molecular electrostatic potential (MEP) was investigated using theoretical calculations. The chemical reactivity and thermodynamic properties (heat capacity, entropy and enthalpy) of at different temperature are calculated.

  14. Amide I bands of terminally blocked alanine in solutions investigated by infrared spectroscopy and density functional theory calculation: hydrogen-bonding interactions and solvent effects.

    PubMed

    Lee, Maeng-Eun; Lee, So Yeong; Joo, Sang-Woo; Cho, Kwang-Hwi

    2009-05-14

    Structural aspects of terminally blocked alanine trans-N-acetyl-L-alanyl-trans-N'-methylamide (Ac-Ala-NHMe) in several different solvents were compared by attenuated total reflection infrared (ATR-IR) spectroscopy and density functional theory (DFT) calculations. The amide I bands between 1600 and 1700 cm(-1) appeared to change depending on media, indicating dissimilar hydrogen-bonding interactions among the peptides and solvent molecules. The minimum energy geometry in the isolated gas phase and aqueous environments were calculated at the B3LYP/6-311++G** theoretical level. In the solid state, Ac-Ala-NHMe is assumed to have an extended beta-stranded structure (C5), whereas it is assumed to have a cyclic structure (C7eq or alphaL) in a nonpolar tetrahydrofuran (THF) solvent. The optimized backbone dihedral angles (Phi, Psi) of Ac-Ala-NHMe plus four explicit water molecules were estimated to be -94 degrees and +133 degrees, respectively, indicating the polyproline II structure (PII). The energy differences between the most stable conformers were predicted to be larger for Ac-Ala-NHMe, which implies that more conformational ensemble structures should coexist for the gas phase than for the aqueous medium with explicit water molecules. PMID:19374358

  15. Serum Perfluorooctanoate (PFOA) and Perfluorooctane Sulfonate (PFOS) Concentrations and Liver Function Biomarkers in a Population with Elevated PFOA Exposure

    PubMed Central

    Gallo, Valentina; Leonardi, Giovanni; Genser, Bernd; Lopez-Espinosa, Maria-Jose; Frisbee, Stephanie J.; Karlsson, Lee; Ducatman, Alan M.

    2012-01-01

    Background: Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) persist in the environment and are found in relatively high concentrations in animal livers. Studies in humans have reported inconsistent associations between PFOA and liver enzymes. Objectives: We examined the cross-sectional association between serum PFOA and PFOS concentrations with markers of liver function in adults. Methods: The C8 Health Project collected data on 69,030 persons; of these, a total of 47,092 adults were included in the present analysis. Linear regression models were fitted for natural log (ln)-transformed values of alanine transaminase (ALT), γ-glutamyltransferase (GGT), and direct bilirubin on PFOA, PFOS, and potential confounders. Logistic regression models were fitted comparing deciles of PFOA or PFOS in relation to high biomarker levels. A multilevel analysis comparing the evidence for association of PFOA with liver function at the individual level within water districts to that at the population level between water districts was also performed. Results: ln-PFOA and ln-PFOS were associated with ln-ALT in linear regression models [PFOA: coefficient, 0.022; 95% confidence interval (CI): 0.018, 0.025; PFOS: coefficient, 0.020; 95% CI: 0.014, 0.026] and with raised ALT in logistic regression models [with a steady increase in the odds ratio (OR) estimates across deciles of PFOA and PFOS; PFOA: OR = 1.10; 95% CI: 1.07, 1.13; PFOS: OR = 1.13; 95% CI: 1.07, 1.18]. There was less consistent evidence of an association of PFOA and GGT or bilirubin. The relationship with bilirubin appears to rise at low levels of PFOA and to fall again at higher levels. Conclusions: These results show a positive association between PFOA and PFOS concentrations and serum ALT level, a marker of hepatocellular damage. PMID:22289616

  16. Warmer ambient temperatures depress liver function in a mammalian herbivore

    PubMed Central

    Kurnath, Patrice; Dearing, M. Denise

    2013-01-01

    Diet selection in mammalian herbivores is thought to be mainly influenced by intrinsic factors such as nutrients and plant secondary compounds, yet extrinsic factors like ambient temperature may also play a role. In particular, warmer ambient temperatures could enhance the toxicity of plant defence compounds through decreased liver metabolism of herbivores. Temperature-dependent toxicity has been documented in pharmacology and agriculture science but not in wild mammalian herbivores. Here, we investigated how ambient temperature affects liver metabolism in the desert woodrat, Neotoma lepida. Woodrats (n = 21) were acclimated for 30 days to two ambient temperatures (cool = 21°C, warm = 29°C). In a second experiment, the temperature exposure was reduced to 3.5 h. After temperature treatments, animals were given a hypnotic agent and clearance time of the agent was estimated from the duration of the hypnotic state. The average clearance time of the agent in the long acclimation experiment was 45% longer for animals acclimated to 29°C compared with 21°C. Similarly, after the short exposure experiment, woodrats at 29°C had clearance times 26% longer compared with 21°C. Our results are consistent with the hypothesis that liver function is reduced at warmer environmental temperatures and may provide a physiological mechanism through which climate change affects herbivorous mammals. PMID:24046878

  17. Parasitaemia and Its Relation to Hematological Parameters and Liver Function among Patients Malaria in Abs, Hajjah, Northwest Yemen

    PubMed Central

    Al-Salahy, Mohamed; Shnawa, Bushra; Abed, Gamal; Mandour, Ahmed

    2016-01-01

    Plasmodium falciparum malaria is the most common infection in Yemen. The present study aims to investigate changes in hematological and hepatic function indices of P. falciparum infected individuals. This study included 67 suspected falciparum malarial patients attended in clinics and rural Abs Hospital (Tehama, Hajjah), Yemen, from October 2013 to April 2014. The diagnosis of malaria was confirmed by thick and thin film with Giemsa staining of malaria parasite. Hematological parameters and serum levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and bilirubin (total and direct) as test indicators of liver function were studied. Patients with parasitaemia tended to have significantly lower hemoglobin, hematocrit, white blood cell count, lymphocytes, and platelets, compared with healthy normal subjects. Neutrophils levels were significantly higher in cases of falciparum malaria in comparison to healthy normal subjects. Serums AST, ALT, ALP, and bilirubin (total and direct) in falciparum malaria patients were significantly higher (p < 0.0001) than those of falciparum malaria of free individuals. Hematological and liver dysfunctions measured parameters were seen associated with moderate and severe parasitaemia infection. This study concludes that hematological and hepatic dysfunction parameters could be indicator of malaria in endemic regions. PMID:27051422

  18. Parasitaemia and Its Relation to Hematological Parameters and Liver Function among Patients Malaria in Abs, Hajjah, Northwest Yemen.

    PubMed

    Al-Salahy, Mohamed; Shnawa, Bushra; Abed, Gamal; Mandour, Ahmed; Al-Ezzi, Ali

    2016-01-01

    Plasmodium falciparum malaria is the most common infection in Yemen. The present study aims to investigate changes in hematological and hepatic function indices of P. falciparum infected individuals. This study included 67 suspected falciparum malarial patients attended in clinics and rural Abs Hospital (Tehama, Hajjah), Yemen, from October 2013 to April 2014. The diagnosis of malaria was confirmed by thick and thin film with Giemsa staining of malaria parasite. Hematological parameters and serum levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and bilirubin (total and direct) as test indicators of liver function were studied. Patients with parasitaemia tended to have significantly lower hemoglobin, hematocrit, white blood cell count, lymphocytes, and platelets, compared with healthy normal subjects. Neutrophils levels were significantly higher in cases of falciparum malaria in comparison to healthy normal subjects. Serums AST, ALT, ALP, and bilirubin (total and direct) in falciparum malaria patients were significantly higher (p < 0.0001) than those of falciparum malaria of free individuals. Hematological and liver dysfunctions measured parameters were seen associated with moderate and severe parasitaemia infection. This study concludes that hematological and hepatic dysfunction parameters could be indicator of malaria in endemic regions. PMID:27051422

  19. Effects of melatonin on liver function and lipid peroxidation in a rat model of hepatic ischemia/reperfusion injury

    PubMed Central

    DENG, WEN-SHENG; XU, QING; LIU, YE; JIANG, CHUN-HUI; ZHOU, HONG; GU, LEI

    2016-01-01

    The present study aimed to investigate the effects of melatonin (MT) on liver function and lipid peroxidation following hepatic ischemia-reperfusion injury (IRI). A total of 66 male Sprague-Dawley rats were randomly assigned into three groups: Normal control (N) group, ischemia-reperfusion (IR) group and the MT-treated group. A hepatic IRI model was developed by blocking the first porta hepatis, and subsequently restoring hepatic blood inflow after 35 min. Following reperfusion, changes in the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) were detected by a chemical method at various time points. In the MT group, the MDA levels were significantly reduced (P<0.05) at all time points, as compared with the IR group. Furthermore, SOD activity was significantly increased (P<0.05) in the MT group, as compared with the IR group at all time points; and the levels of GSH in the MT group were significantly higher (P<0.05) than those of the IR group at 2, 4, and 8 h post-reperfusion. The levels of ALT, AST and LDH were significantly reduced in the MT group at each time point, as compared with that of the IR group (P<0.05). In conclusion, MT exhibits potent antioxidant properties that may create favorable conditions for the recovery of liver function following IRI. PMID:27168834

  20. Improved survival of porcine acute liver failure by a bioartificial liver device implanted with induced human functional hepatocytes.

    PubMed

    Shi, Xiao-Lei; Gao, Yimeng; Yan, Yupeng; Ma, Hucheng; Sun, Lulu; Huang, Pengyu; Ni, Xuan; Zhang, Ludi; Zhao, Xin; Ren, Haozhen; Hu, Dan; Zhou, Yan; Tian, Feng; Ji, Yuan; Cheng, Xin; Pan, Guoyu; Ding, Yi-Tao; Hui, Lijian

    2016-02-01

    Acute liver failure (ALF) is a life-threatening illness. The extracorporeal cell-based bioartificial liver (BAL) system could bridge liver transplantation and facilitate liver regeneration for ALF patients by providing metabolic detoxification and synthetic functions. Previous BAL systems, based on hepatoma cells and non-human hepatocytes, achieved limited clinical advances, largely due to poor hepatic functions, cumbersome preparation or safety concerns of these cells. We previously generated human functional hepatocytes by lineage conversion (hiHeps). Here, by improving functional maturity of hiHeps and producing hiHeps at clinical scales (3 billion cells), we developed a hiHep-based BAL system (hiHep-BAL). In a porcine ALF model, hiHep-BAL treatment restored liver functions, corrected blood levels of ammonia and bilirubin, and prolonged survival. Importantly, human albumin and α-1-antitrypsin were detectable in hiHep-BAL-treated ALF pigs. Moreover, hiHep-BAL treatment led to attenuated liver damage, resolved inflammation and enhanced liver regeneration. Our findings indicate a promising clinical application of the hiHep-BAL system. PMID:26768767

  1. Improved survival of porcine acute liver failure by a bioartificial liver device implanted with induced human functional hepatocytes

    PubMed Central

    Shi, Xiao-Lei; Gao, Yimeng; Yan, Yupeng; Ma, Hucheng; Sun, Lulu; Huang, Pengyu; Ni, Xuan; Zhang, Ludi; Zhao, Xin; Ren, Haozhen; Hu, Dan; Zhou, Yan; Tian, Feng; Ji, Yuan; Cheng, Xin; Pan, Guoyu; Ding, Yi-Tao; Hui, Lijian

    2016-01-01

    Acute liver failure (ALF) is a life-threatening illness. The extracorporeal cell-based bioartificial liver (BAL) system could bridge liver transplantation and facilitate liver regeneration for ALF patients by providing metabolic detoxification and synthetic functions. Previous BAL systems, based on hepatoma cells and non-human hepatocytes, achieved limited clinical advances, largely due to poor hepatic functions, cumbersome preparation or safety concerns of these cells. We previously generated human functional hepatocytes by lineage conversion (hiHeps). Here, by improving functional maturity of hiHeps and producing hiHeps at clinical scales (3 billion cells), we developed a hiHep-based BAL system (hiHep-BAL). In a porcine ALF model, hiHep-BAL treatment restored liver functions, corrected blood levels of ammonia and bilirubin, and prolonged survival. Importantly, human albumin and α-1-antitrypsin were detectable in hiHep-BAL-treated ALF pigs. Moreover, hiHep-BAL treatment led to attenuated liver damage, resolved inflammation and enhanced liver regeneration. Our findings indicate a promising clinical application of the hiHep-BAL system. PMID:26768767

  2. Liver reserve function assessment by acoustic radiation force impulse imaging

    PubMed Central

    Sun, Xiao-Lan; Liang, Li-Wei; Cao, Hui; Men, Qiong; Hou, Ke-Zhu; Chen, Zhen; Zhao, Ya-E

    2015-01-01

    AIM: To evaluate the utility of liver reserve function by acoustic radiation force impulse (ARFI) imaging in patients with liver tumors. METHODS: Seventy-six patients with liver tumors were enrolled in this study. Serum biochemical indexes, such as aminotransferase (ALT), aspartate aminotransferase (AST), serum albumin (ALB), total bilirubin (T-Bil), and other indicators were observed. Liver stiffness (LS) was measured by ARFI imaging, measurements were repeated 10 times, and the average value of the results was taken as the final LS value. Indocyanine green (ICG) retention was performed, and ICG-K and ICG-R15 were recorded. Child-Pugh (CP) scores were carried out based on patient’s preoperative biochemical tests and physical condition. Correlations among CP scores, ICG-R15, ICG-K and LS values were observed and analyzed using either the Pearson correlation coefficient or the Spearman rank correlation coefficient. Kruskal-Wallis test was used to compare LS values of CP scores, and the receiver-operator characteristic (ROC) curve was used to analyze liver reserve function assessment accuracy. RESULTS: LS in the ICG-R15 10%-20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.19 ± 0.27 vs 1.59 ± 0.32, P < 0.01). LS in the ICG-R15 > 20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.92 ± 0.29 vs 1.59 ± 0.32, P < 0.01). The LS value in patients with CP class A was lower than in patients with CP class B (1.57 ± 0.34 vs 1.86 ± 0.27, P < 0.05), while the LS value in patients with CP class B was lower than in patients with CP class C (1.86 ± 0.27 vs 2.47 ± 0.33, P < 0.01). LS was positively correlated with ICG-R15 (r = 0.617, P < 0.01) and CP score (r = 0.772, P < 0.01). Meanwhile, LS was negatively correlated with ICG-K (r = -0.673, P < 0.01). AST, ALT and T-Bil were positively correlated with LS, while ALB was negatively

  3. Controlled therapy by imaging of functional structures of intact liver

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zhuang, Feng Y.; Ruan, G.; Kakihana, Yasuyuki; Krug, A.; Kessler, Manfred D.

    2000-04-01

    Ligustrazine, a Chinese herb medicine has been used to treat the diseases of cardiovascular and cerebral vascular diseases in China by Chinese traditional physicians or many years. Recently, results showed that ligustrazine is a powerful hepatic vasodilator. It can greatly change the blood supply of the tissues. Due to micro-optical tissue sensor developed recently it became possible to image functional structures of tissue on the level of intact blood capillaries. In our experiment we used the Oxyscan in order to study the effect of Ligustrazine on the oxygen supply of rat liver.

  4. Function of Autophagy in Nonalcoholic Fatty Liver Disease.

    PubMed

    Czaja, Mark J

    2016-05-01

    Autophagy is a lysosomal degradative pathway that functions to promote cell survival by supplying energy in times of stress or by removing damaged organelles and proteins after injury. The involvement of autophagy in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) was first suggested by the finding that this pathway mediates the breakdown of intracellular lipids in hepatocytes and therefore may regulate the development of hepatic steatosis. Subsequent studies have demonstrated additional critical functions for autophagy in hepatocytes and other hepatic cell types such as macrophages and stellate cells that regulate insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. These findings suggest a number of possible mechanistic roles for autophagy in the development of NAFLD and progression to NASH and its complications. The functions of autophagy in the liver, together with findings of decreased hepatic autophagy in association with conditions that predispose to NAFLD such as obesity and aging, suggest that autophagy may be a novel therapeutic target in this disease. PMID:26725058

  5. Pheochromocytoma with Markedly Abnormal Liver Function Tests and Severe Leukocytosis

    PubMed Central

    Eun, Chai Ryoung; Ahn, Jae Hee; Seo, Ji A

    2014-01-01

    Pheochromocytoma is a rare neuroendocrine tumor arising from the medulla of the adrenal glands, which causes an overproduction of catecholamines. The common symptoms are headache, palpitations, and sweating; however, various other clinical manifestations might also be present. Accurate diagnosis of pheochromocytoma is important because surgical treatment is usually successful, and associated clinical problems are reversible if treated early. A 49-year-old man with a history of uncontrolled hypertension and diabetes mellitus presented with chest pain, fever, and sweating. His liver function tests and white blood cell counts were markedly increased and his echocardiography results suggested stress-induced cardiomyopathy. His abdominal computed tomography showed a 5×5-cm-sized tumor in the left adrenal gland, and laboratory tests confirmed catecholamine overproduction. After surgical resection of the left adrenal gland, his liver function tests and white blood cell counts normalized, and echocardiography showed normal cardiac function. Moreover, his previous antihypertensive regimen was deescalated, and his previously uncontrolled blood glucose levels normalized without medication. PMID:24741459

  6. Delayed Liver Function Impairment Secondary to Interferon β-1a Use in Multiple Sclerosis

    PubMed Central

    Liao, Ming-Feng; Yen, Su-Chen; Chun-Yen, Lin; Rong-Kuo, Lyu

    2013-01-01

    Interferon β-1a is a widely used immunomodulation treatment for multiple sclerosis. Liver function impairment is a common side effect and usually develops in the first 6 months after interferon use. Here, we describe 2 multiple sclerosis patients who developed delayed liver function impairment 5 years after receiving interferon β-1a treatment. Their liver function recovered after discontinuing interferon use, and further detailed hepatological evaluations excluded other etiologies of liver function impairment. Our case reports illustrate that liver function impairment induced by interferon β-1a can be delayed for 5 years after starting treatment and, probably, this is an idiosyncratic reaction. Regular liver function monitoring in multiple sclerosis patients who receive interferon β is necessary even after the first 6 months of treatment, especially in those patients with concomitant use of other liver-toxic medications. PMID:23904853

  7. Biochemical studies on the effect of different water resources in Hail region on liver and kidney functions of rats.

    PubMed

    Talkhan, Ola F A; Abd Elwahab, Safaa A E; Shalapy, Ebtessam M

    2016-08-01

    Low concentration of a heavy metal is toxic and can be classified as one of the pollution sources. Industrial and human waste can pollute water with heavy metals and soils breaking down under the effect of acidic rain, which release heavy metals into river, streams, lakes, and ground water. Bioaccumulation of heavy metals in vital organs of the human body damages these organs, including the liver and kidney, which are the main organs for metabolism, detoxification, and excretion. The present study aims to investigate into concentrations of such heavy metals (Fe, Cu, Zn, and Pb) in both ground and tap water samples collected from different areas in Hail region, KSA. Then, this study moves forward to examine the effects of such concentrations on the biochemistry of serum in rats. In this regard, the results demonstrate the presence of significant differences (p < 0.05) in the liver function parameters, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total proteins, albumin, and globulin between all the studied groups that were exposed to heavy-metals-polluted water, when compared with the control group. In addition, there were significant differences (p < 0.05) in the kidney function parameters, uric acid, urea, and creatinine, when compared with the control group. Thence, and as this study indicates, heavy-metals-polluted water can cause disturbance in the liver and kidney function parameters, which highlights health risks of the water polluted with heavy metals. In this sense, the concerned authorities should regularly carry out survey and should monitor underground water, and people have to be aware of such risks. PMID:27461423

  8. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease.

    PubMed

    Bell, Catherine C; Hendriks, Delilah F G; Moro, Sabrina M L; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C A; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L; Jenkins, Rosalind E; Nordling, Åsa; Mkrtchian, Souren; Park, B Kevin; Kitteringham, Neil R; Goldring, Christopher E P; Lauschke, Volker M; Ingelman-Sundberg, Magnus

    2016-01-01

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI. PMID:27143246

  9. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease

    PubMed Central

    Bell, Catherine C.; Hendriks, Delilah F. G.; Moro, Sabrina M. L.; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C. A.; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L.; Jenkins, Rosalind E.; Nordling, Åsa; Mkrtchian, Souren; Park, B. Kevin; Kitteringham, Neil R.; Goldring, Christopher E. P.; Lauschke, Volker M.; Ingelman-Sundberg, Magnus

    2016-01-01

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI. PMID:27143246

  10. Dietary HMB and β-alanine co-supplementation does not improve in situ muscle function in sedentary, aged male rats.

    PubMed

    Russ, David W; Acksel, Cara; Boyd, Iva M; Maynard, John; McCorkle, Katherine W; Edens, Neile K; Garvey, Sean M

    2015-12-01

    This study evaluated the effects of dietary β-hydroxy-β-methylbutyrate (HMB) combined with β-alanine (β-Ala) in sedentary, aged male rats. It has been suggested that dietary HMB or β-Ala supplementation may mitigate age-related declines in muscle strength and fatigue resistance. A total of 20 aged Sprague-Dawley rats were studied. At age 20 months, 10 rats were administered a control, purified diet and 10 rats were administered a purified diet supplemented with both HMB and β-Ala (HMB+β-Ala) for 8 weeks (approximately equivalent to 3 and 2.4 g per day human dose). We measured medial gastrocnemius (MG) size, force, fatigability, and myosin composition. We also evaluated an array of protein markers related to muscle mitochondria, protein synthesis and breakdown, and autophagy. HMB+β-Ala had no significant effects on body weight, MG mass, force or fatigability, myosin composition, or muscle quality. Compared with control rats, those fed HMB+β-Ala exhibited a reduced (41%, P = 0.039) expression of muscle RING-finger protein 1 (MURF1), a common marker of protein degradation. Muscle from rats fed HMB+β-Ala also exhibited a 45% reduction (P = 0.023) in p70s6K phosphorylation following fatiguing stimulation. These data suggest that HMB+β-Ala at the dose studied may reduce muscle protein breakdown by reducing MURF1 expression, but has minimal effects on muscle function in this model of uncomplicated aging. They do not, however, rule out potential benefits of HMB+β-Ala co-supplementation at other doses or durations of supplementation in combination with exercise or in situations where extreme muscle protein breakdown and loss of mass occur (e.g., bedrest, cachexia, failure-to-thrive). PMID:26579948

  11. [Problems and prospects of creation of extracorporal systems for support of functional livers status].

    PubMed

    Ryabinin, V E

    2015-01-01

    The review considers features of efferent therapy employing extracorporeal systems, the devices known as "artificial liver" and "bioartificial liver" in the treatment of liver insufficiency. Analysis of literature data shows the need for further development of these biomedical studies and the search for optimal solutions in the selection of the source of hepatocytes, the development of bioreactors and biomaterials forming the basis of devices like "bioartificial liver". Taking into consideration certain advantages and disadvantages typical for various methods of extracorporeal support of the functional state of the liver one can evaluate prior experience in the treatment of liver diseases and approaches to the development of new, more effective medical technologies. PMID:26539863

  12. Serum Basal Paraoxonase 1 Activity as an Additional Liver Function Test for the Evaluation of Patients with Chronic Hepatitis

    PubMed Central

    Halappa, Chandrakanth K; Pyati, Sudharani A; Nagaraj; Wali, Vinod

    2015-01-01

    Background The diagnostic accuracy of currently available standard panel of liver function tests is not satisfactory for the reliable diagnosis of chronic liver disorders. Earlier studies have reported that serum basal paraoxonase 1 (PON1) activity measurement may add a significant contribution to the liver function tests. Aim To assess whether the measurement of serum basal paraoxonase 1 (PON1) activity would be useful as an index of liver function status in chronic hepatitis patients. Materials and Methods The study included 50 chronic hepatitis patients and 50 apparently healthy controls based on inclusion & exclusion criteria. In all the subjects, standard liver function tests were analysed by using standard methods. Basal PON1 activity was estimated using spectrophotometric method by the hydrolysis of p-nitrophenylacetate. Student t-test, Pearson’s correlation coefficient, diagnostic validity tests and ROC curve analysis were the methods used for the statistical analysis of the data. Results The serum basal PON1 activity was significantly decreased in chronic hepatitis cases when compared to controls (p< 0.001). Also basal PON1 activity was positively correlated with serum total protein and albumin, and negatively correlated with serum total bilirubin, alanine amino transferase (ALT), and alkaline phosphatase (ALP) (p< 0.001) in chronic hepatitis cases but not in healthy controls. Diagnostic validity tests showed, basal PON1 activity was a better discriminator of chronic hepatitis than total protein, albumin and ALP with sensitivity of 68%, specificity of 100%, positive predictive value of 100% and negative predictive value of 75%. ROC curve analysis demonstrated highest diagnostic accuracy for ALT (AUC = 0.999) followed by PON1 (AUC = 0.990), total bilirubin (AUC = 0.977), ALP (AUC = 0.904), total protein (AUC = 0.790) and albumin (AUC = 0.595). Conclusion Diagnostic accuracy of serum PON1 activity is better than total bilirubin, total protein, albumin and

  13. The relationship between serology of hepatitis E virus with liver and kidney function in kidney transplant patients

    PubMed Central

    Zeraati, Abbas Ali; Nazemian, Fatemeh; Takalloo, Ladan; Sahebkar, Amirhossein; Heidari, Elahe; Yaghoubi, Mohammad Ali

    2016-01-01

    Although hepatitis E virus (HEV) is well known to cause acute hepatitis, there are reports showing that HEV may also be responsible for progression of acute to chronic hepatitis and liver cirrhosis in patients receiving organ transplantation. In this study, we aimed to evaluate the prevalence of HEV in patients with kidney transplantation. In this study, 110 patients with kidney transplantation were recruited, and anti-HEV IgG, creatinine, alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and estimated glomerular filtration rate (eGFR) in the first, third and sixth months after renal transplantation were measured. The mean serum anti-HEV IgG titers in the study participants was 1.36 (range 0.23 to 6.3). Twenty-three patients were found to be seropositive for HEV Ab defined as anti-HEV IgG titer > 1.1. The difference in liver and renal function tests (creatinine, eGFR, AST, ALT and ALP) at different intervals was not significant between patients with HEV Ab titers higher and lower than 1.1 (p > 0.05). However, an inverse correlation was observed between HEV Ab and eGFR values in the first (p = 0.047, r = -0.21), third (p = 0.04, r = -0.20) and sixth (p = 0.04, r = -0.22) months after renal transplantation in patients with HEV Ab < 1.1 but not in the subgroup with HEV Ab > 1.1. Also, a significant correlation between age and HEV Ab levels was found in the entire study population (p = 0.001, r = 0.33). Our findings showed a high prevalence of seropositivity for anti-HEV IgG in patients receiving renal transplants. However, liver and renal functions were not found to be significantly different seropositive and seronegative patients by up to 6 months post-transplantation. PMID:27366144

  14. The relationship between serology of hepatitis E virus with liver and kidney function in kidney transplant patients.

    PubMed

    Zeraati, Abbas Ali; Nazemian, Fatemeh; Takalloo, Ladan; Sahebkar, Amirhossein; Heidari, Elahe; Yaghoubi, Mohammad Ali

    2016-01-01

    Although hepatitis E virus (HEV) is well known to cause acute hepatitis, there are reports showing that HEV may also be responsible for progression of acute to chronic hepatitis and liver cirrhosis in patients receiving organ transplantation. In this study, we aimed to evaluate the prevalence of HEV in patients with kidney transplantation. In this study, 110 patients with kidney transplantation were recruited, and anti-HEV IgG, creatinine, alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and estimated glomerular filtration rate (eGFR) in the first, third and sixth months after renal transplantation were measured. The mean serum anti-HEV IgG titers in the study participants was 1.36 (range 0.23 to 6.3). Twenty-three patients were found to be seropositive for HEV Ab defined as anti-HEV IgG titer > 1.1. The difference in liver and renal function tests (creatinine, eGFR, AST, ALT and ALP) at different intervals was not significant between patients with HEV Ab titers higher and lower than 1.1 (p > 0.05). However, an inverse correlation was observed between HEV Ab and eGFR values in the first (p = 0.047, r = -0.21), third (p = 0.04, r = -0.20) and sixth (p = 0.04, r = -0.22) months after renal transplantation in patients with HEV Ab < 1.1 but not in the subgroup with HEV Ab > 1.1. Also, a significant correlation between age and HEV Ab levels was found in the entire study population (p = 0.001, r = 0.33). Our findings showed a high prevalence of seropositivity for anti-HEV IgG in patients receiving renal transplants. However, liver and renal functions were not found to be significantly different seropositive and seronegative patients by up to 6 months post-transplantation. PMID:27366144

  15. A Polysaccharide from Ganoderma atrum Improves Liver Function in Type 2 Diabetic Rats via Antioxidant Action and Short-Chain Fatty Acids Excretion.

    PubMed

    Zhu, Ke-Xue; Nie, Shao-Ping; Tan, Le-He; Li, Chuan; Gong, De-Ming; Xie, Ming-Yong

    2016-03-01

    The present study was to evaluate the beneficial effect of polysaccharide isolated from Ganoderma atrum (PSG-1) on liver function in type 2 diabetic rats. Results showed that PSG-1 decreased the activities of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), while increasing hepatic glycogen levels. PSG-1 also exerted strong antioxidant activities, together with upregulated mRNA expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), glucose transporter-4 (GLUT4), phosphoinositide 3-kinase (PI3K), and phosphorylated-Akt (p-Akt) in the liver of diabetic rats. Moreover, the concentrations of short-chain fatty acids (SCFA) were significantly higher in the liver, serum, and faeces of diabetic rats after treating with PSG-1 for 4 weeks. These results suggest that the improvement of PSG-1 on liver function in type 2 diabetic rats may be due to its antioxidant effects, SCFA excretion in the colon from PSG-1, and regulation of hepatic glucose uptake by inducing GLUT4 translocation through PI3K/Akt signaling pathways. PMID:26898215

  16. Evolution of alanine:glyoxylate aminotransferase 1 peroxisomal and mitochondrial targeting. A survey of its subcellular distribution in the livers of various representatives of the classes Mammalia, Aves and Amphibia.

    PubMed

    Danpure, C J; Fryer, P; Jennings, P R; Allsop, J; Griffiths, S; Cunningham, A

    1994-08-01

    As part of a wider study on the molecular evolution of alanine:glyoxylate aminotransferase 1 (AGT1) intracellular compartmentalization, we have determined the subcellular distribution of immunoreactive AGT1, using postembedding protein A-gold immunoelectron microscopy, in the livers of various members of the classes Mammalia, Aves, and Amphibia. As far as organellar distribution is concerned, three categories could be distinguished. In members of the first category (type I), all, or nearly all, of the immunoreactive AGT1 was concentrated within the peroxisomes. In the second category (type II), AGT1 was found more evenly distributed in both peroxisomes and mitochondria. In the third category (type III), AGT1 was localized mainly within the mitochondria with much lower, but widely variable, amounts in the peroxisomes. Type I animals include the human, two great apes (gorilla, orangutan), two Old World monkeys (anubis baboon, Japanese macaque), a New World monkey (white-faced Saki monkey), a lago, morph (European rabbit), a bat (Seba's short-tailed fruit bat), two caviomorph rodents (guinea pig, orange-rumped agouti), and two Australian marsupials (koala, Bennett's wallaby). Type II animals include two New World monkeys (common marmoset, cotton-top tamarin), three prosimians (brown lemur, fat-tailed dwarf lemur, pygmy slow loris), five rodents (a hybrid crested porcupine, Colombian ground squirrel, laboratory rat, laboratory mouse, golden hamster), an American marsupial (grey short-tailed opossum), and a bird (raven). Type III animals include the large tree shrew, three insectivores (common Eurasian mole, European hedgehog, house shrew), four carnivores (domestic cat, ocelot, domestic dog, polecat ferret), and an amphibian (common frog). In addition to these categories, some animals (e.g. guinea pig, common frog) possessed significant amounts of cytosolic AGT1. Whereas the subcellular distribution of AGT1 in some orders (e.g. Insectivora and Carnivora) did not appear

  17. Structure and function of sinusoidal lining cells in the liver.

    PubMed

    Wisse, E; Braet, F; Luo, D; De Zanger, R; Jans, D; Crabbé, E; Vermoesen, A

    1996-01-01

    The hepatic sinusoid harbors 4 different cells: endothelial cells (100, 101), Kupffer cells (96, 102, 103), fat-storing cells (34, 51, 93), and pit cells (14, 107, 108). Each cell type has its own specific morphology and functions, and no transitional stages exist between the cells. These cells have the potential to proliferate locally, either in normal or in special conditions, that is, experiments or disease. Sinusoidal cells from a functional unit together with the parenchymal cells. Isolation protocols exist for all sinusoidal cells. Endothelial cells filter the fluids, exchanged between the sinusoid and the space of Disse through fenestrae (100), which measure 175 nm in diameter and are grouped in sieve plates. Fenestrae occupy 6-8% of the surface (106). No intact basal lamina is present under these cells (100). Various factors change the number and diameter of fenestrae [pressure, alcohol, serotonin, and nicotin; for a review, see Fraser et al (32)]. These changes mainly affect the passage of lipoproteins, which contain cholesterol and vitamin A among other components. Fat-storing cells are pericytes, located in the space of Disse, with long, contractile processes, which probably influence liver (sinusoidal) blood flow. Fat-storing cells possess characteristic fat droplets, which contain a large part of the body's depot of vitamin A (91, 93). These cells play a major role in the synthesis of extracellular matrix (ECM) (34, 39-41). Strongly reduced levels of vitamin A occur in alcoholic livers developing fibrosis (56). Vitamin A deficiency transforms fat-storing cells into myofibroblast-like cells with enhanced ECM production (38). Kupffer cells accumulate in periportal areas. They specifically endocytose endotoxin (70), which activates these macrophages. Lipopolysaccharide, together with interferon gamma, belongs to the most potent activators of Kupffer cells (28). As a result of activation, these cells secrete oxygen radicals, tumor necrosis factor

  18. A single amino acid change (substitution of the conserved Glu-590 with alanine) in the C-terminal domain of rat liver carnitine palmitoyltransferase I increases its malonyl-CoA sensitivity close to that observed with the muscle isoform of the enzyme.

    PubMed

    Napal, Laura; Dai, Jia; Treber, Michelle; Haro, Diego; Marrero, Pedro F; Woldegiorgis, Gebre

    2003-09-01

    Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long-chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the highly conserved C-terminal glutamate residue, Glu-590, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, lysine, glutamine, and aspartate. Substitution of Glu-590 with aspartate, a negatively charged amino acid with only one methyl group less than the glutamate residue in the wild-type enzyme, resulted in complete loss in the activity of the liver isoform of CPTI (L-CPTI). A change of Glu-590 to alanine, glutamine, and lysine caused a significant 9- to 16-fold increase in malonyl-CoA sensitivity but only a partial decrease in catalytic activity. Substitution of Glu-590 with neutral uncharged residues (alanine and glutamine) and/or a basic positively charged residue (lysine) significantly increased L-CPTI malonyl-CoA sensitivity to the level observed with the muscle isoform of the enzyme, suggesting the importance of neutral and/or positive charges in the switch of the kinetic properties of L-CPTI to the muscle isoform of CPTI. Since a conservative substitution of Glu-590 to aspartate but not glutamine resulted in complete loss in activity, we suggest that the longer side chain of glutamate is essential for catalysis and malonyl-CoA sensitivity. This is the first demonstration whereby a single residue mutation in the C-terminal region of the liver isoform of CPTI resulted in a change of its kinetic properties close to that observed with the muscle isoform of the enzyme and provides the rationale for the high malonyl-CoA sensitivity of muscle CPTI compared with the liver isoform of the enzyme. PMID:12826662

  19. Alanine transaminase (ALT) blood test

    MedlinePlus

    ... RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods . 22nd ed. Philadelphia, PA: Elsevier Saunders; 2011:chap 21. Pratt DS. Liver chemistry and function tests. In: Feldman M, Friedman LS, Brandt LJ, ... 10th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap ...

  20. Mitochondrial respiratory function and antioxidant capacity in normal and cirrhotic livers following partial hepatectomy.

    PubMed

    Yang, S; Tan, T M C; Wee, A; Leow, C K

    2004-01-01

    For many liver malignancies, major hepatectomy is the usual therapy. Although a normal liver has a tremendous capacity for regeneration, liver hepatectomy in humans is usually carried out on a diseased liver and, in such cases, liver regeneration takes place in a cirrhotic remnant. Mitochondrial function in cirrhotic livers shows a variety of changes compared to control livers. This study investigated how mitochondrial respiratory function and antioxidant capacity change following partial hepatectomy of cirrhotic livers, because liver regeneration requires greater energy demands and control of oxidative stress. Cirrhosis was induced in male Wistar-Furth rats by administration of thioacetamide. NADH-cytochrome c reductase activity, mitochondrial glutathione peroxidase activity and mitochondrial GSH levels were all significantly lowered in cirrhotic livers and in the cirrhotic remnants up to 72 h after 70% hepatectomy when compared to the corresponding controls. Lower respiratory control ratios with succinate as substrate were also observed from 6 to 48 h post-hepatectomy. At 24 h post-hepatectomy, higher levels of lipid peroxidation were observed. We conclude that, compared to the controls, cirrhotic livers have diminished oxidative phosphorylation capabilities due to changes in NADH and FADH(2)-linked respiration as well as impaired antioxidant defenses following partial hepatectomy. Both of these factors, if critical, could then impede liver regeneration. PMID:14745500

  1. Effects of exercise and ethanol on liver mitochondrial function

    SciTech Connect

    Ardies, C.M.; Morris, G.S.; Erickson, C.K.; Farrar, R.P.

    1987-03-16

    Rates of ADP stimulated respiration for various substrates were determined in mitochondria isolated from the livers of female Sprague-Dawley rats following 8 weeks of treatment with daily swimming, ethanol consumption, or both. All rats were fed an American Institute of Nutrition (AIN) type liquid diet with the ethanol treated rats receiving 35% of the calories as ethanol. Chronic exposure to ethanol depressed both state 3 respiration with glutamate as a substrate and cytochrome oxidase activity. Respiratory control ratios and P:O ratios, however, were unaffected by the ethanol exposure. Exercise alone had no effect on hepatic mitochondrial function. There were also no significant alterations in oxidative function of hepatic mitochondria from rats which were endurance-trained by swimming while receiving the ethanol diet. This lack of alteration in mitochondrial function was in spite of the fact that these rats consumed an identical amount of ethanol as those which incurred mitochondrial dysfunction. These results indicate that regular exercise has the potential to attenuate the ethanol induced decline in hepatic mitochondria. 32 references, 2 figures, 1 table.

  2. LIVER FUNCTION AFTER IRRADIATION BASED UPON CT PORTAL VEIN PERFUSION IMAGING

    PubMed Central

    Cao, Yue; Pan, Charlie; Balter, James M.; Platt, Joel F.; Francis, Isaac R.; Knol, James A.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.

    2009-01-01

    Purpose The role of radiation in the treatment of intrahepatic cancer is limited by the development of radiation-induced liver disease (RILD), which occurs weeks after the course of radiation is completed. We hypothesized that, as the pathophysiology of RILD is veno-occlusive disease, we could assess individual and regional liver sensitivity to radiation by measuring liver perfusion during a course of treatment using dynamic contrast enhanced CT (DCE-CT) scanning. Materials and Methods Patients with intrahepatic cancer undergoing conformal radiotherapy underwent DCE-CT (to measure perfusion distribution) and an indocyanine extraction study (to measure liver function) prior to, during, and one month after treatment. We wished to determine if the residual functioning liver (i.e. those regions showing portal vein perfusion) could be used to predict overall liver function after irradiation. Results Radiation doses from 45 to 84 Gy resulted in undectable regional portal vein perfusion one month after treatment. The volume of each liver with undectable portal vein perfusion ranged from 0% to 39% and depended both on the patient’s sensitivity and dose distribution. There was a significant correlation between indocyanine green clearance and the mean of the estimated portal vein perfusion in the functional liver parenchyma (P < .001). Conclusion This study reveals substantial individual variability in the sensitivity of the liver to irradiation. In addition, these findings suggest that hepatic perfusion imaging may be a marker for liver function, and has the potential to be a tool for individualizing therapy. PMID:17855011

  3. Normothermic machine perfusion reduces bile duct injury and improves biliary epithelial function in rat donor livers.

    PubMed

    Op den Dries, Sanna; Karimian, Negin; Westerkamp, Andrie C; Sutton, Michael E; Kuipers, Michiel; Wiersema-Buist, Janneke; Ottens, Petra J; Kuipers, Jeroen; Giepmans, Ben N; Leuvenink, Henri G D; Lisman, Ton; Porte, Robert J

    2016-07-01

    Bile duct injury may occur during liver procurement and transplantation, especially in livers from donation after circulatory death (DCD) donors. Normothermic machine perfusion (NMP) has been shown to reduce hepatic injury compared to static cold storage (SCS). However, it is unknown whether NMP provides better preservation of bile ducts. The aim of this study was to determine the impact of NMP on bile duct preservation in both DCD and non-DCD livers. DCD and non-DCD livers obtained from Lewis rats were preserved for 3 hours using either SCS or NMP, followed by 2 hours ex vivo reperfusion. Biomarkers of bile duct injury (gamma-glutamyltransferase and lactate dehydrogenase in bile) were lower in NMP-preserved livers compared to SCS-preserved livers. Biliary bicarbonate concentration, reflecting biliary epithelial function, was 2-fold higher in NMP-preserved livers (P < 0.01). In parallel with this, the pH of the bile was significantly higher in NMP-preserved livers (7.63 ± 0.02 and 7.74 ± 0.05 for non-DCD and DCD livers, respectively) compared with SCS-preserved livers (7.46 ± 0.02 and 7.49 ± 0.04 for non-DCD and DCD livers, respectively). Scanning and transmission electron microscopy of donor extrahepatic bile ducts demonstrated significantly decreased injury of the biliary epithelium of NMP-preserved donor livers (including the loss of lateral interdigitations and mitochondrial injury). Differences between NMP and SCS were most prominent in DCD livers. Compared to conventional SCS, NMP provides superior preservation of bile duct epithelial cell function and morphology, especially in DCD donor livers. By reducing biliary injury, NMP could have an important impact on the utilization of DCD livers and outcome after transplantation. Liver Transplantation 22 994-1005 2016 AASLD. PMID:26946466

  4. Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo

    PubMed Central

    Principi, Elisa; Girardello, Rossana; Bruno, Antonino; Manni, Isabella; Gini, Elisabetta; Pagani, Arianna; Grimaldi, Annalisa; Ivaldi, Federico; Congiu, Terenzio; De Stefano, Daniela; Piaggio, Giulia; de Eguileor, Magda; Noonan, Douglas M; Albini, Adriana

    2016-01-01

    The increasing use of carbon nanotubes (CNTs) in several industrial applications raises concerns on their potential toxicity due to factors such as tissue penetrance, small dimensions, and biopersistence. Using an in vivo model for CNT environmental exposure, mimicking CNT exposition at the workplace, we previously found that CNTs rapidly enter and disseminate in the organism, initially accumulating in the lungs and brain and later reaching the liver and kidneys via the bloodstream in CD1 mice. Here, we monitored and traced the accumulation of single-walled CNTs (SWCNTs), administered systemically in mice, in different organs and the subsequent biological responses. Using the novel in vivo model, MITO-Luc bioluminescence reporter mice, we found that SWCNTs induce systemic cell proliferation, indicating a dynamic response of cells of both bone marrow and the immune system. We then examined metabolic (water/food consumption and dejections), functional (serum enzymes), and morphological (organs and tissues) alterations in CD1 mice treated with SWCNTs, using metabolic cages, performing serum analyses, and applying histological, immunohistochemical, and ultrastructural (transmission electron microscopy) methods. We observed a transient accumulation of SWCNTs in the lungs, spleen, and kidneys of CD1 mice exposed to SWCNTs. A dose- and time-dependent accumulation was found in the liver, associated with increases in levels of aspartate aminotransferase, alanine aminotransferase and bilirubinemia, which are metabolic markers associated with liver damage. Our data suggest that hepatic accumulation of SWCNTs associated with liver damage results in an M1 macrophage-driven inflammation. PMID:27621623

  5. Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease.

    PubMed

    Chuang, Jen-Chieh; Lopez, Adam M; Posey, Kenneth S; Turley, Stephen D

    2014-01-17

    Lysosomal acid lipase (LAL) plays a critical role in the intracellular handling of lipids by hydrolyzing cholesteryl esters (CE) and triacylglycerols (TAG) contained in newly internalized lipoproteins. In humans, mutations in the LAL gene result in cholesteryl ester storage disease (CESD), or in Wolman disease (WD) when the mutations cause complete loss of LAL activity. A rat model for WD and a mouse model for CESD have been described. In these studies we used LAL-deficient mice to investigate how modulating the amount of intestinally-derived cholesterol reaching the liver might impact its mass, cholesterol content, and function in this model. The main experiment tested if ezetimibe, a potent cholesterol absorption inhibitor, had any effect on CE accumulation in mice lacking LAL. In male Lal(-/-) mice given ezetimibe in their diet (20 mg/day/kg bw) for 4 weeks starting at 21 days of age, both liver mass and hepatic cholesterol concentration (mg/g) were reduced to the extent that whole-liver cholesterol content (mg/organ) in the treated mice (74.3±3.4) was only 56% of that in those not given ezetimibe (133.5±6.7). There was also a marked improvement in plasma alanine aminotransferase (ALT) activity. Thus, minimizing cholesterol absorption has a favorable impact on the liver in CESD. PMID:24370824

  6. Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo.

    PubMed

    Principi, Elisa; Girardello, Rossana; Bruno, Antonino; Manni, Isabella; Gini, Elisabetta; Pagani, Arianna; Grimaldi, Annalisa; Ivaldi, Federico; Congiu, Terenzio; De Stefano, Daniela; Piaggio, Giulia; de Eguileor, Magda; Noonan, Douglas M; Albini, Adriana

    2016-01-01

    The increasing use of carbon nanotubes (CNTs) in several industrial applications raises concerns on their potential toxicity due to factors such as tissue penetrance, small dimensions, and biopersistence. Using an in vivo model for CNT environmental exposure, mimicking CNT exposition at the workplace, we previously found that CNTs rapidly enter and disseminate in the organism, initially accumulating in the lungs and brain and later reaching the liver and kidneys via the bloodstream in CD1 mice. Here, we monitored and traced the accumulation of single-walled CNTs (SWCNTs), administered systemically in mice, in different organs and the subsequent biological responses. Using the novel in vivo model, MITO-Luc bioluminescence reporter mice, we found that SWCNTs induce systemic cell proliferation, indicating a dynamic response of cells of both bone marrow and the immune system. We then examined metabolic (water/food consumption and dejections), functional (serum enzymes), and morphological (organs and tissues) alterations in CD1 mice treated with SWCNTs, using metabolic cages, performing serum analyses, and applying histological, immunohistochemical, and ultrastructural (transmission electron microscopy) methods. We observed a transient accumulation of SWCNTs in the lungs, spleen, and kidneys of CD1 mice exposed to SWCNTs. A dose- and time-dependent accumulation was found in the liver, associated with increases in levels of aspartate aminotransferase, alanine aminotransferase and bilirubinemia, which are metabolic markers associated with liver damage. Our data suggest that hepatic accumulation of SWCNTs associated with liver damage results in an M1 macrophage-driven inflammation. PMID:27621623

  7. Development of a normothermic extracorporeal liver perfusion system toward improving viability and function of human extended criteria donor livers.

    PubMed

    Banan, Babak; Watson, Rao; Xu, Min; Lin, Yiing; Chapman, William

    2016-07-01

    Donor organ shortages have led to an increased interest in finding new approaches to recover organs from extended criteria donors (ECD). Normothermic extracorporeal liver perfusion (NELP) has been proposed as a superior preservation method to reduce ischemia/reperfusion injury (IRI), precondition suboptimal grafts, and treat ECD livers so that they can be successfully used for transplantation. The aim of this study was to investigate the beneficial effects of a modified NELP circuit on discarded human livers. Seven human livers that were rejected for transplantation were placed on a modified NELP circuit for 8 hours. Perfusate samples and needle core biopsies were obtained at hourly intervals. A defatting solution that contained exendin-4 (50 nM) and L-carnitine (10 mM) was added to the perfusate for 2 steatotic livers. NELP provided normal temperature, electrolytes, and pH and glucose levels in the perfusate along with physiological vascular flows and pressures. Functional, biochemical, and microscopic evaluation revealed no additional injuries to the grafts during NELP with an improved oxygen extraction ratio (>0.5) and stabilized markers of hepatic injury. All livers synthesized adequate amounts of bile and coagulation factors. We also demonstrated a mild reduction (10%) of macroglobular steatosis with the use of the defatting solution. Histology demonstrated normal parenchymal architecture and a minimal to complete lack of IRI at the end of NELP. In conclusion, a modified NELP circuit preserved hepatocyte architecture, recovered synthetic functions, and hepatobiliary parameters of ECD livers without additional injuries to the grafts. This approach has the potential to increase the donor pool for clinical transplantation. Liver Transplantation 22 979-993 2016 AASLD. PMID:27027254

  8. Characterization of Liver-Specific Functions of Human Fetal Hepatocytes in Culture.

    PubMed

    Chinnici, Cinzia Maria; Timoneri, Francesca; Amico, Giandomenico; Pietrosi, Giada; Vizzini, Giovanni; Spada, Marco; Pagano, Duilio; Gridelli, Bruno; Conaldi, Pier Giulio

    2015-01-01

    This study was designed to assess liver-specific functions of human fetal liver cells proposed as a potential source for hepatocyte transplantation. Fetal liver cells were isolated from livers of different gestational ages (16-22 weeks), and the functions of cell preparations were evaluated by establishing primary cultures. We observed that 20- to 22-week-gestation fetal liver cell cultures contained a predominance of cells with hepatocytic traits that did not divide in vitro but were functionally competent. Fetal hepatocytes performed liver-specific functions at levels comparable to those of their adult counterpart. Moreover, exposure to dexamethasone in combination with oncostatin M promptly induced further maturation of the cells through the acquisition of additional functions (i.e., ability to store glycogen and uptake of indocyanine green). In some cases, particularly in cultures obtained from fetuses of earlier gestational ages (16-18 weeks gestation), cells with mature hepatocytic traits proved to be sporadic, and the primary cultures were mainly populated by clusters of proliferating cells. Consequently, the values of liver-specific functions detected in these cultures were low. We observed that a low cell density culture system rapidly prompted loss of the mature hepatocytic phenotype with downregulations of all the liver-specific functions. We found that human fetal liver cells can be cryopreserved without significant loss of viability and function and evaluated up to 1 year in storage in liquid nitrogen. They might, therefore, be suitable for cell banking and allow for the transplantation of large numbers of cells, thus improving clinical outcomes. Overall, our results indicate that fetal hepatocytes could be used as a cell source for hepatocyte transplantation. Fetal liver cells have been used so far to treat end-stage liver disease. Additional studies are needed to include these cells in cell-based therapies aimed to treat liver failure and inborn

  9. Liver.

    PubMed

    Kim, W R; Lake, J R; Smith, J M; Skeans, M A; Schladt, D P; Edwards, E B; Harper, A M; Wainright, J L; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    The median waiting time for patients with MELD ≥ 35 decreased from 18 days in 2012 to 9 days in 2014, after implementation of the Share 35 policy in June 2013. Similarly, mortality among candidates listed with MELD ≥ 35 decreased from 366 per 100 waitlist years in 2012 to 315 in 2014. The number of new active candidates added to the pediatric liver transplant waiting list in 2014 was 655, down from a peak of 826 in 2005. The number of prevalent candidates (on the list on December 31 of the given year) continued to decline, 401 active and 173 inactive. The number of deceased donor pediatric liver transplants peaked at 542 in 2008 and was 478 in 2014. The number of living donor liver pediatric transplants was 52 in 2014; most were from donors closely related to the recipients. Graft survival continued to improve among pediatric recipients of deceased donor and living donor livers. PMID:26755264

  10. TH-A-9A-04: Incorporating Liver Functionality in Radiation Therapy Treatment Planning

    SciTech Connect

    Wu, V; Epelman, M; Feng, M; Cao, Y; Wang, H; Romeijn, E; Matuszak, M

    2014-06-15

    Purpose: Liver SBRT patients have both variable pretreatment liver function (e.g., due to degree of cirrhosis and/or prior treatments) and sensitivity to radiation, leading to high variability in potential liver toxicity with similar doses. This work aims to explicitly incorporate liver perfusion into treatment planning to redistribute dose to preserve well-functioning areas without compromising target coverage. Methods: Voxel-based liver perfusion, a measure of functionality, was computed from dynamic contrast-enhanced MRI. Two optimization models with different cost functions subject to the same dose constraints (e.g., minimum target EUD and maximum critical structure EUDs) were compared. The cost functions minimized were EUD (standard model) and functionality-weighted EUD (functional model) to the liver. The resulting treatment plans delivering the same target EUD were compared with respect to their DVHs, their dose wash difference, the average dose delivered to voxels of a particular perfusion level, and change in number of high-/low-functioning voxels receiving a particular dose. Two-dimensional synthetic and three-dimensional clinical examples were studied. Results: The DVHs of all structures of plans from each model were comparable. In contrast, in plans obtained with the functional model, the average dose delivered to high-/low-functioning voxels was lower/higher than in plans obtained with its standard counterpart. The number of high-/low-functioning voxels receiving high/low dose was lower in the plans that considered perfusion in the cost function than in the plans that did not. Redistribution of dose can be observed in the dose wash differences. Conclusion: Liver perfusion can be used during treatment planning potentially to minimize the risk of toxicity during liver SBRT, resulting in better global liver function. The functional model redistributes dose in the standard model from higher to lower functioning voxels, while achieving the same target EUD

  11. Application of the Liver Maximum Function Capacity Test in Acute Liver Failure: A Helpful Tool for Decision-Making in Liver Transplantation?

    PubMed Central

    Vondran, Florian Wolfgang Rudolf; Schumacher, Carsten; Johanning, Kai; Hartleben, Björn; Knitsch, Wolfgang; Wiesner, Olaf; Jaeckel, Elmar; Manns, Michael Peter; Klempnauer, Juergen; Bektas, Hueseyin; Lehner, Frank

    2016-01-01

    Background. Despite aggressive intensive medical management acute liver failure (ALF) may require high-urgency liver transplantation (LTx). Available prognostic scores do not apply for all patients; reliable tools to identify individuals in need of LTx are highly required. The liver maximum function capacity test (LiMAx) might represent an appropriate option. Referring to a case of ALF after Amanita phalloides-intoxication the potential of the LiMAx-test in this setting is discussed. Presentation of Case. LiMAx was performed in a 27-year-old patient prior to and after high-urgency LTx. In accordance with clinical appearance of hepatic encephalopathy, coagulopathy, and acute kidney failure, the LiMAx-test constituted a fulminant course of ALF with hardly any detectable metabolic activity. Following LTx with a marginal donor organ (95% hepatosteatosis), uptake of liver function was demonstrated by postoperative increase of the LiMAx-value. The patient was discharged from hospital on postoperative day 26. Discussion. ALF often is associated with a critical state of the patient that requires almost immediate decision-making regarding further therapy. Application of a noninvasive liver function test might help to determine the prognosis of ALF and support decision-making for or against LTx as well as acceptance of a critical donor organ in case of a critically ill patient. PMID:27274881

  12. Synthesis and application of lactosylated, 99mTc chelating albumin for measurement of liver function.

    PubMed

    Chaumet-Riffaud, Philippe; Martinez-Duncker, Ivan; Marty, Anne-Laure; Richard, Cyrille; Prigent, Alain; Moati, Frederic; Sarda-Mantel, Laure; Scherman, Daniel; Bessodes, Michel; Mignet, Nathalie

    2010-04-21

    Neogalactosylated and neolactosylated albumins are currently used as radiopharmaceutical agents for imaging the liver asialoglycoprotein receptors, which allows the quantification of hepatic liver function in various diseases and also in healthy liver transplant donors. We developed an original process for synthesizing a chelating neolactosylated human albumin using maleimidopropyl-lactose and maleimidopropyl-diethylene triamine pentaacetic acid (DTPA) derivatives. The lactosylated protein (LACTAL) conjugate showed excellent liver uptake compared to nonlactosylated protein and a very high signal-to-noise ratio, based on functional assessment of biodistribution in mice using (99m)Tc-scintigraphy. PMID:20201600

  13. α-Lipoic acid attenuates LPS-induced liver injury by improving mitochondrial function in association with GR mitochondrial DNA occupancy.

    PubMed

    Liu, Zhiqing; Guo, Jun; Sun, Hailin; Huang, Yanping; Zhao, Ruqian; Yang, Xiaojing

    2015-09-01

    α-Lipoic acid (LA) has been demonstrated to be a key regulator of energy metabolism. However, whether LA can protect the liver from inflammation, as well as the underlying mechanism involved, are still largely unclear. In the present study, mice treated with lipopolysaccharide (LPS) and injected with LA were used as a model. Liver injury, energy metabolism and mitochondrial regulation were investigated to assess the protective effect of LA on the liver and explore the possible mechanisms involved. Our results showed that LA attenuated liver injury, as evidenced by the decreased plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels after LA treatment compared with the LPS-treated group. The hepatic ATP and NADH levels, expression levels of most mitochondrial DNA (mtDNA)-encoded genes as well as mitochondrial complex I, IV and V activities were all significantly increased in the LA-treated group compared with the LPS-treated group. Levels of Sirt3 protein, which is essential for the regulation of mitochondrial metabolism, were also increased in the LA-treated group. Regarding the regulation of mtDNA-encoded genes expression, we observed no obvious change in the methylation status of the mtDNA D-loop region. However, compared to the LPS-treated group, LA treatment increased glucocorticoid receptor (GR) protein expression in the liver, as well as the level of GR occupancy on the mtDNA D-loop region. Our study demonstrates that LA exerts a liver-protective effect in an inflammation state by improving mitochondrial function. Furthermore, to the best of our knowledge, we demonstrate for the first time that GR may be involved in this effect via an enhanced binding to the mtDNA transcriptional control region, thereby regulating the expression of mtDNA-encoded genes. PMID:26133658

  14. Effects of simulated heliox diving at high altitudes on blood cells, liver functions and renal functions.

    PubMed

    Hu, Hui-Jun; Fan, Dan-Feng; Lv, Yan; Zhang, Yu; Yang, Chen; Zhao, Ling; Zhao, Ru-Gang; Pan, Xiao-Wen

    2013-01-01

    The aim of the present study was to examine the effects of simulated heliox diving at high altitudes on divers' blood cells, liver functions and renal functions. In this experiment, four divers lived for nine consecutive days in a dual-function high-low pressure chamber, which simulated air pressure at an altitude of 3,000 meters and at a 30-meter depth; an altitude of 4,000 meters and 30-meter depth; and at an altitude of 5,200 meters and 30 meters and 50 meters in depth. Total time underwater was 60 minutes. The subjects breathed heliox (with oxygen at 40% and helium at 60%) during the simulated 30-meter dive from zero altitude to 30 meters and while remaining underwater; they breathed air while ascending from 30 meters to 18. They breathed heliox (with oxygen at 26.7% and helium at 73.3%) in the simulated dive from zero altitude to 50 meters underwater, in remaining underwater and in ascending from 50 meters to 29; air while ascending from 29 meters to 18. Pure oxygen was breathed while ascending from 18 meters to the surface; then air. Results indicated: (1) the correlating indices of routine blood, liver and renal functions, and urine routine were all within normal reference ranges; and (2) the indices tested at other periods of time were not significantly different (p > 0.05) from the results at zero-meter level and 3,000-meter level. The study suggests that the heliox diving processes at different high altitudes simulated in this experiment have no significant impact upon divers' blood routine, liver functions and renal functions. PMID:23957203

  15. Functional Human Liver Preservation and Recovery by Means of Subnormothermic Machine Perfusion

    PubMed Central

    Weeder, Pepijn D.; Sridharan, Gautham V.; Uygun, Basak E.; Karimian, Negin G.; Porte, Robert J.; Markmann, James F.; Yeh, Heidi; Uygun, Korkut

    2015-01-01

    There is currently a severe shortage of liver grafts available for transplantation. Novel organ preservation techniques are needed to expand the pool of donor livers. Machine perfusion of donor liver grafts is an alternative to traditional cold storage of livers and holds much promise as a modality to expand the donor organ pool. We have recently described the potential benefit of subnormothermic machine perfusion of human livers. Machine perfused livers showed improving function and restoration of tissue ATP levels. Additionally, machine perfusion of liver grafts at subnormothermic temperatures allows for objective assessment of the functionality and suitability of a liver for transplantation. In these ways a great many livers that were previously discarded due to their suboptimal quality can be rescued via the restorative effects of machine perfusion and utilized for transplantation. Here we describe this technique of subnormothermic machine perfusion in detail. Human liver grafts allocated for research are perfused via the hepatic artery and portal vein with an acellular oxygenated perfusate at 21 °C. PMID:25938299

  16. [Effect of hepatophyt on the choleretic function of the liver damaged by tetracycline].

    PubMed

    Nikolaev, S M; Sambueva, Z G; Chekhirova, G V; Tsyrenzhalov, A V

    2003-01-01

    In experimental injury of the liver in Wistar-line white rats induced by tetracycline the course therapeutic and prophylatic administration of the dry extract "Hepatophyt" in a dose of 0.1 g/kg inhibits the negative effect of tetracycline and promotes stimulation of choleretic and antitoxic functions of the liver. The dry extract was derived from the herbal mix of the same name, used in the practice of Tibetan medicine against liver diseases. PMID:13677134

  17. Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury

    PubMed Central

    Wang, Shaogui; Ni, Hong-Min; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Nawabi, Atta; Komatsu, Masaaki; Huang, Heqing; Ding, Wen-Xing

    2016-01-01

    Chronic alcohol exposure increased hepatic receptor-interacting protein kinase (RIP) 3 expression and necroptosis in the liver but its mechanisms are unclear. In the present study, we demonstrated that chronic alcohol feeding plus binge (Gao-binge) increased RIP3 but not RIP1 protein levels in mouse livers. RIP3 knockout mice had decreased serum alanine amino transferase activity and hepatic steatosis but had no effect on hepatic neutrophil infiltration compared with wild type mice after Gao-binge alcohol treatment. The hepatic mRNA levels of RIP3 did not change between Gao-binge and control mice, suggesting that alcohol-induced hepatic RIP3 proteins are regulated at the posttranslational level. We found that Gao-binge treatment decreased the levels of proteasome subunit alpha type-2 (PSMA2) and proteasome 26S subunit, ATPase 1 (PSMC1) and impaired hepatic proteasome function. Pharmacological or genetic inhibition of proteasome resulted in the accumulation of RIP3 in mouse livers. More importantly, human alcoholics had decreased expression of PSMA2 and PSMC1 but increased protein levels of RIP3 compared with healthy human livers. Moreover, pharmacological inhibition of RIP1 decreased Gao-binge-induced hepatic inflammation, neutrophil infiltration and NF-κB subunit (p65) nuclear translocation but failed to protect against steatosis and liver injury induced by Gao-binge alcohol. In conclusion, results from this study suggest that impaired hepatic proteasome function by alcohol exposure may contribute to hepatic accumulation of RIP3 resulting in necroptosis and steatosis while RIP1 kinase activity is important for alcohol-induced inflammation. PMID:26769846

  18. Functional Nanoparticles Activate a Decellularized Liver Scaffold for Blood Detoxification.

    PubMed

    Xu, Fen; Kang, Tianyi; Deng, Jie; Liu, Junli; Chen, Xiaolei; Wang, Yuan; Ouyang, Liang; Du, Ting; Tang, Hong; Xu, Xiaoping; Chen, Shaochen; Du, Yanan; Shi, Yujun; Qian, Zhiyong; Wei, Yuquan; Deng, Hongxin; Gou, Maling

    2016-04-01

    Extracorporeal devices have great promise for cleansing the body of virulence factors that are caused by venomous injuries, bacterial infections, and biological weaponry. The clinically used extracorporeal devices, such as artificial liver-support systems that are mainly based on dialysis or electrostatic interaction, are limited to remove a target toxin. Here, a liver-mimetic device is shown that consists of decellularized liver scaffold (DLS) populated with polydiacetylene (PDA) nanoparticles. DLS has the gross shape and 3D architecture of a liver, and the PDA nanoparticles selectively capture and neutralize the pore-forming toxins (PFTs). This device can efficiently and target-orientedly remove PFTs in human blood ex vivo without changing blood components or activating complement factors, showing potential application in antidotal therapy. This work provides a proof-of-principle for blood detoxification by a nanoparticle-activated DLS, and can lead to the development of future medical devices for antidotal therapy. PMID:26914158

  19. Indocyanine green kinetics to assess liver function: Ready for a clinical dynamic assessment in major liver surgery?

    PubMed Central

    De Gasperi, Andrea; Mazza, Ernestina; Prosperi, Manlio

    2016-01-01

    Indocyanine green (ICG) kinetics (PDR/R15) used to quantitatively assess hepatic function in the perioperative period of major resective surgery and liver transplantation have been the object of an extensive, updated and critical review. New, non invasive bedside monitors (pulse dye densitometry technology) make this opportunity widely available in clinical practice. After having reviewed basic concepts of hepatic clearance, we analysed the most common indications ICG kinetic parameters have nowadays in clinical practice, focusing in particular on the diagnostic and prognostic role of PDR and R15 in the perioperative period of major liver surgery and liver transplantation. As recently pointed out, even if of extreme interest, ICG clearance parameters have still some limitations, to be considered when using these tests. PMID:26981173

  20. Dilated common bile duct and deranged liver function tests associated with ketamine use in two HIV-positive MSM.

    PubMed

    Zhou, Judith; Shaw, Simon G; Gilleece, Yvonne

    2013-08-01

    We report here the first two cases of hepatobiliary pathology in HIV-positive men following recreational use of ketamine: >1 g/day over a 12-month period while on ritonavir-based antiretroviral therapy. Presentation in each case was acute with nausea, vomiting and epigastric pain. Alanine aminotransferase was raised at 3.2× and 10.1 × upper limit of normal and alkaline phosphatase was raised at 1.7× and 2.5 × ULN for cases 1 and 2, respectively. Magnetic resonance cholangiopancreatography showed dilatation of the common bile duct; case 1, 18 mm and case 2, 14 mm with no ductal obstruction on endoscopic retrograde cholangiopancreatography. The symptoms resolved, common bile duct dilatation and liver function improved on discontinuation of ketamine use. Time to development of symptoms is shorter than reported in HIV-negative cases (12 months vs. 4 years) which may be explained by an interaction between ketamine and ritonavir. PMID:23970577

  1. Functional Immune Anatomy of the Liver-As an Allograft.

    PubMed

    Demetris, A J; Bellamy, C O C; Gandhi, C R; Prost, S; Nakanuma, Y; Stolz, D B

    2016-06-01

    The liver is an immunoregulatory organ in which a tolerogenic microenvironment mitigates the relative "strength" of local immune responses. Paradoxically, necro-inflammatory diseases create the need for most liver transplants. Treatment of hepatitis B virus, hepatitis C virus, and acute T cell-mediated rejection have redirected focus on long-term allograft structural integrity. Understanding of insults should enable decades of morbidity-free survival after liver replacement because of these tolerogenic properties. Studies of long-term survivors show low-grade chronic inflammatory, fibrotic, and microvascular lesions, likely related to some combination of environment insults (i.e. abnormal physiology), donor-specific antibodies, and T cell-mediated immunity. The resultant conundrum is familiar in transplantation: adequate immunosuppression produces chronic toxicities, while lightened immunosuppression leads to sensitization, immunological injury, and structural deterioration. The "balance" is more favorable for liver than other solid organ allografts. This occurs because of unique hepatic immune physiology and provides unintended benefits for allografts by modulating various afferent and efferent limbs of allogenic immune responses. This review is intended to provide a better understanding of liver immune microanatomy and physiology and thereby (a) the potential structural consequences of low-level, including allo-antibody-mediated injury; and (b) how liver allografts modulate immune reactions. Special attention is given to the microvasculature and hepatic mononuclear phagocytic system. PMID:26848550

  2. Structural and Functional Importance of Transmembrane Domain 3 (TM3) in the Aspartate:Alanine Antiporter AspT: Topology and Function of the Residues of TM3 and Oligomerization of AspT▿

    PubMed Central

    Nanatani, Kei; Maloney, Peter C.; Abe, Keietsu

    2009-01-01

    AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrate translocation pathway that includes the binding site for the substrates. To elucidate the role of TM3 in the transport process, we carried out cysteine-scanning mutagenesis. The substitutions of tyrosine 75 and serine 84 had the strongest inhibitory effects on transport (initial rates of l-aspartate transport were below 15% of the rate for cysteine-less AspT). Considerable but less-marked effects were observed upon the replacement of methionine 70, phenylalanine 71, glycine 74, arginine 76, serine 83, and methionine 85 (initial rates between 15% and 30% of the rate for cysteine-less AspT). Introduced cysteine residues at the cytoplasmic half of TM3 could be labeled with Oregon green maleimide (OGM), whereas cysteines close to the periplasmic half (residues 64 to 75) were not labeled. These results suggest that TM3 has a hydrophobic core on the periplasmic half and that hydrophilic residues on the cytoplasmic half of TM3 participate in the formation of an aqueous cavity in membranes. Furthermore, the presence of l-aspartate protected the cysteine introduced at glycine 62 against a reaction with OGM. In contrast, l-aspartate stimulated the reactivity of the cysteine introduced at proline 79 with OGM. These results demonstrate that TM3 undergoes l-aspartate-induced conformational alterations. In addition, nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and a glutaraldehyde cross-linking assay suggest that functional AspT forms homo-oligomers as a

  3. Structural and functional importance of transmembrane domain 3 (TM3) in the aspartate:alanine antiporter AspT: topology and function of the residues of TM3 and oligomerization of AspT.

    PubMed

    Nanatani, Kei; Maloney, Peter C; Abe, Keietsu

    2009-04-01

    AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrate translocation pathway that includes the binding site for the substrates. To elucidate the role of TM3 in the transport process, we carried out cysteine-scanning mutagenesis. The substitutions of tyrosine 75 and serine 84 had the strongest inhibitory effects on transport (initial rates of l-aspartate transport were below 15% of the rate for cysteine-less AspT). Considerable but less-marked effects were observed upon the replacement of methionine 70, phenylalanine 71, glycine 74, arginine 76, serine 83, and methionine 85 (initial rates between 15% and 30% of the rate for cysteine-less AspT). Introduced cysteine residues at the cytoplasmic half of TM3 could be labeled with Oregon green maleimide (OGM), whereas cysteines close to the periplasmic half (residues 64 to 75) were not labeled. These results suggest that TM3 has a hydrophobic core on the periplasmic half and that hydrophilic residues on the cytoplasmic half of TM3 participate in the formation of an aqueous cavity in membranes. Furthermore, the presence of l-aspartate protected the cysteine introduced at glycine 62 against a reaction with OGM. In contrast, l-aspartate stimulated the reactivity of the cysteine introduced at proline 79 with OGM. These results demonstrate that TM3 undergoes l-aspartate-induced conformational alterations. In addition, nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and a glutaraldehyde cross-linking assay suggest that functional AspT forms homo-oligomers as a

  4. Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding

    2014-03-01

    To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.

  5. Hepatic function in hypothermically stored porcine livers: comparison of hypothermic machine perfusion vs cold storage.

    PubMed

    Jain, S; Lee, C Y; Baicu, S; Duncan, H; Xu, H; Jones, J W; Clemens, M G; Brassil, J; Taylor, M J; Brockbank, K G M

    2005-01-01

    Hypothermic machine perfusion (HMP) has a potential to relieve the current donor liver crisis by providing an improved and extended preservation method. This study examined the effect of HMP on hepatocellular functions, using a prototype liver transporter capable of preserving livers for 24 hours. Livers obtained from adult farm pigs (28 to 32 kg body weight) were divided into three groups: fresh control, HMP, and simple cold storage (n = 4 each). A 4-hour normothermic reperfusion of livers was conducted to assess hepato-metabolic and cellular functions. The hepatic transport function, as indicated by canalicular excretion of indocyanine green, was improved in the HMP group than in the SCS group. The overall tissue viability, as indicated by oxygen consumption levels, was notably improved in HMP and control livers as compared to the SCS group. Higher bile production in both the preserved groups as compared to the fresh control livers could be a result of biliary edema and leakage of plasma into the canaliculus. The hepato-cellular injury, measured by ALT, release was significantly greater in the SCS group as compared to the HMP and control groups. These findings suggest that HMP could be a better method to preserve hepatic function and overall tissue viability as compared to SCS. Improved hepatic functions are indirect indicators of superior microcirculation and sinusoidal endothelial cell functions. Further studies in progress will evaluate these functions to confirm the significance of these observations. PMID:15808637

  6. Impact of e-cigarette refill liquid with or without nicotine on liver function in adult rats.

    PubMed

    El Golli, Narges; Jrad-Lamine, Aicha; Neffati, Hajira; Rahali, Dalila; Dallagi, Yosra; Dkhili, Houssem; Ba, Nathalie; El May, Michele V; El Fazaa, Saloua

    2016-07-01

    This study was conducted to evaluate the effects of e-cigarette refill liquid administration alone or with nicotine on the antioxidant defense status, functional and histopathological changes in adult rat liver tissue. For this purpose, 32 rats were treated for 28 days as follows: control group was injected intra-peritoneally with physiological saline; e-cigarette 0% treated group received an intra-peritoneal injection of e-liquid without nicotine diluted in physiological saline, e-cigarette-treated group received an intra-peritoneal injection of e-liquid containing 0.5 mg of nicotine/kg of body weight/day diluted in physiological saline and nicotine-treated group received an intra-peritoneal injection of 0.5 mg of nicotine/kg of body weight/day diluted in physiological saline. In e-liquid without nicotine-exposed group, activities of the liver biomarkers aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase increase. Interestingly, oxidative stress indicators showed decreased total protein content, associated with a reduction in the antioxidant enzymes activities superoxide dismutase, catalase and glutathione-S-transferase, and an elevation in malondialdehyde content, highlighting the promotion of lipid peroxidation and oxidative stress. Histological studies identified inflammatory cells infiltration and cell death. Thus, e-liquid seems to promote oxidative tissue injuries, which in turn lead to the observed histopathological finding. In comparison, nicotine alone induced less oxidative stress and less histopathological disorders, whereas e-liquid with nicotine gave rise to more histopathological injuries. Thereby, e-liquid, per se, is able to induce hepatotoxicity and supplementation with nicotine worsens this state. PMID:27484987

  7. Developing a Causal Model from Liver Function Test Data

    NASA Astrophysics Data System (ADS)

    Inada, Masanori; Terano, Takao

    As Active Mining is a new concept among data mining and/or knowledge discovery in databases communities, in order to validate the effectiveness, it is important to carry out empirical studies using practical data. Based on the concept of Active User Reaction, this paper develops a causal model from liver function test data in a medical domain. To develop the model, we have set a problem to predict the values of ICG (indocyanine green) test from given observation data and experts' background knowledge. We therefore employ a framework of meta-learning and structural equation modeling. In this paper meta-learning means learning about mined results from multiple data-mining techniques. Structural equation modeling enables us to describe flexible models from background knowledge. The construction of the causal model contains two phases: meta-learning and the model building. The meta-learning phase utilizes both the linear regression and the neural network as data mining techniques, then examines the predictability on the given data set. Mining models are n-folded learned from the training data set. Each of the prediction accuracy of the mining models is compared using with the testing data. On the model building phase, we use structural equation modeling to develop a causal model based on results of meta-learning and background knowledge. We again compare the accuracy of the causal model with each of the mining models. Consequently we have developed the causal model, which is comprehensible and have good predictive performance, via the meta-learning phase. Through the empirical study, we have got the conclusion that the framework of meta-learning is effective in data mining in a difficult medical domain.

  8. Effects of acute exercise on liver function and blood redox status in heavy drinkers

    PubMed Central

    GEORGAKOULI, KALLIOPI; MANTHOU, EIRINI; FATOUROS, IOANNIS G.; DELI, CHARIKLIA K.; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.; KOURETAS, DEMETRIOS; KOUTEDAKIS, YIANNIS; THEODORAKIS, YANNIS; JAMURTAS, ATHANASIOS Z.

    2015-01-01

    Excessive alcohol consumption can induce oxidative stress, resulting in the development of several diseases. Exercise has been reported to prevent and/or improve a number of health issues through several mechanisms, including an improvement in redox status. It has also been previously suggested that exercise can help individuals with alcohol use disorders reduce their alcohol intake; however, research in this field is limited. The aim of the present study was to investigage the effects of acute exercise of moderate intensity on the liver function and blood redox status in heavy drinkers. For this purpose, a total of 17 heavy drinkers [age, 31.6±3.2 years; body mass index (BMI), 27.4±0.8 kg/m2; experimental group (EG)] and 17 controls [age, 33.5±1.3 years; BMI, 26.1±1.4 kg/m2; control group (CG), who did not exceed moderate alcohol consumption], underwent one trial of acute exercise of moderate intensity (50–60% of the heart rate reserve) for 30 min on a cycle ergometer, following an overnight fast, and abstaining from smoking and alcohol consumption. Blood samples were obtained before and immediately after exercise for later determination of the indices of liver function and blood redox status. The subjects in the EG had significantly higher (p<0.05) baseline γ-glutamyl transferase (γ-GT) levels compared to the subjects in the CG. Exercise thus resulted in significantly higher γ-GT levels (p<0.005) only in the EG. No significant differences in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) baseline levels were observed between the 2 groups. Following exercise, the AST levels increased significantly (p<0.001) in both groups, whereas the ALT levels increased significantly (p<0.01) only in the EG. The baseline glutathione (GSH) levels were significantly lower (p<0.05) and remained low following exercise in the EG. In addition, we observed a trend for higher (p=0.07) baseline levels of thiobarbituric acid-reactive substances (TBARS), which

  9. Ontogeny, distribution and potential roles of 5-hydroxymethylcytosine in human liver function

    PubMed Central

    2013-01-01

    Background Interindividual differences in liver functions such as protein synthesis, lipid and carbohydrate metabolism and drug metabolism are influenced by epigenetic factors. The role of the epigenetic machinery in such processes has, however, been barely investigated. 5-hydroxymethylcytosine (5hmC) is a recently re-discovered epigenetic DNA modification that plays an important role in the control of gene expression. Results In this study, we investigate 5hmC occurrence and genomic distribution in 8 fetal and 7 adult human liver samples in relation to ontogeny and function. LC-MS analysis shows that in the adult liver samples 5hmC comprises up to 1% of the total cytosine content, whereas in all fetal livers it is below 0.125%. Immunohistostaining of liver sections with a polyclonal anti-5hmC antibody shows that 5hmC is detected in most of the hepatocytes. Genome-wide mapping of the distribution of 5hmC in human liver samples by next-generation sequencing shows significant differences between fetal and adult livers. In adult livers, 5hmC occupancy is overrepresented in genes involved in active catabolic and metabolic processes, whereas 5hmC elements which are found in genes exclusively in fetal livers and disappear in the adult state, are more specific to pathways for differentiation and development. Conclusions Our findings suggest that 5-hydroxymethylcytosine plays an important role in the development and function of the human liver and might be an important determinant for development of liver diseases as well as of the interindividual differences in drug metabolism and toxicity. PMID:23958281

  10. Evaluation of liver function using gadoxetate disodium (Gd-EOB-DTPA) enhanced MR imaging

    NASA Astrophysics Data System (ADS)

    Yamada, Akira; Hara, Takeshi; Li, Feng; Doi, Kunio

    2010-03-01

    Indocyanine green (ICG) is widely used for its clearance test in the evaluation of liver function. Gadoxetate disodium (Gd-EOB-DTPA) is a targeted MR contrast agent partially taken up by hepatocytes. The objective of this study was to evaluate the feasibility of an estimation of the liver function corresponding to plasma disappearance rate of indocyanine green (ICG-PDR) by use of the signal intensity of the liver alone in Gd-EOB-DTPA enhanced MR imaging (EOB-MRI). We evaluated fourteen patients who had EOB-MRI and ICG clearance test within 1 month. 2D-GRE T1 weighted images were obtained at pre contrast, 3 min (equilibrium phase) and 20 min (hepatobiliary phase) after the intravenous administration of Gd-EOB-DTPA, and the mean signal intensity of the liver was measured. The correlation between ICG-PDR and many parameters derived from the signal intensity of the liver in EOB-MRI was evaluated. The correlation coefficient between ICG-PDR and many parameters derived from the signal intensity of the liver in EOBMRI was low and not significant. The estimation of the liver function corresponding to ICG-PDR by use of the signal intensity of the liver alone in EOB-MRI would not be reliable.

  11. [Respiratory functional impairment in patients with liver cirrhosis].

    PubMed

    Siemieniako, Andrzej; Łapiński, Tadeusz Wojciech; Flisiak, Robert

    2010-04-01

    Liver pathologies have negative influence on numerous organs including pulmonary system. Liver failure, which often results from cirrhosis, may lead to the hepatopulmonary syndrome and portopulmonary hypertension. The hepatopulmonary syndrome is characterized by increased alveolar-capillary oxygen gradient, presence of intrapulmonary leak and diminished retention of the carbon dioxide from arterial blood. Two types of the hepatopulmonary syndrome are distinguished: the type 1 connected with pre-capillary and capillaries extension, what shortens the time of the blood flow by the pulmonary vessels. The type 2 hepatopulmonary syndrome results from the formation of arteriovenous anastomoses and anatomical "shunt" connections. Most patients with hepatopulmonary syndrome demonstrate both types. Patients with liver failure may develop portopulmonary hypertension, independently from hepatopulmonary syndrome. If not treated, hypertension might lead to the death of 50 to 90% patients in the 5-year follow up. The patients with the serious damage of the liver have hiperdynamic circulation with the increased heart capacity and lowered systemic vascular resistance. The hepatopulmonary syndrome is characterized by the growth of the pulmonary artery pressure and the presence of portal hypertension. The mechanism how the portal hypertension leads to the pulmonary hypertension is not clear. PMID:20491346

  12. How to interpret liver function tests in heart failure patients?

    PubMed

    Çağlı, Kumral; Başar, Fatma Nurcan; Tok, Derya; Turak, Osman; Başar, Ömer

    2015-05-01

    Cardiac hepatopathy has generally been used to describe any liver damage caused by cardiac disorders in the absence of other possible causes of liver damage. Although there is no consensus on the terminology used, cardiac hepatopathy can be examined as congestive hepatopathy (CH) and acute cardiogenic liver injury (ACLI). CH is caused by passive venous congestion of the liver that generally occurs in the setting of chronic cardiac conditions such as chronic HF, constrictive pericarditis, tricuspid regurgitation, or right-sided heart failure (HF) of any cause, and ACLI is most commonly associated with acute cardiocirculatory failure resulting from acute myocardial infarction, acute decompensated HF, or myocarditis. Histologically, CH is characterized by sinusoidal dilation, replacement of hepatocytes with red blood cells extravasating from the sinusoids, and necrosis/apoptosis of zone 3 of the Rappaport acinus, and it could progress to cirrhosis in advanced cases. In ACLI, however, massive necrosis of zone 3 is the main histological finding. Primary laboratory findings of CH are elevated serum cholestasis markers including bilirubin, alkaline phosphatase, and γ-glutamyl-transpeptidase levels, whereas those of ACLI are a striking elevation in transaminase and lactate dehydrogenase levels. Both CH and ACLI have a prognostic value for identifying cardiovascular events and mortality and have some special implications in the management of patients undergoing ventricular assist device implantation or cardiac transplantation. There is no specific treatment for CH or ACLI other than treatment of the underlying cardiac disorder. PMID:26006191

  13. Cognitive and Adaptive Functioning after Liver Transplantation for Maple Syrup Urine Disease: A Case Series

    PubMed Central

    Shellmer, D. A.; Dabbs, A. DeVito; Dew, M. A.; Noll, R. B.; Feldman, H.; Strauss, K.; Morton, D. H.; Vockley, G.; Mazariegos, G. V.

    2011-01-01

    MSUD is a complex metabolic disorder that has been associated with central nervous system damage, developmental delays, and neurocognitive deficits. Although liver transplantation provides a metabolic cure for MSUD, changes in cognitive and adaptive functioning following transplantation have not been investigated. In this report we present data from 14 patients who completed cognitive and adaptive functioning testing pre- and one year and/or three years post-liver transplantation. Findings show either no significant change or improvement in IQ scores pre- to post-liver transplantation. Greater variability was observed in adaptive functioning scores, but the majority of patients evidenced either no significant change or improvement in adaptive scores. In general, findings may indicate that liver transplantation curtails additional central nervous system damage and neurocognitive decline providing an opportunity for stabilization or improvement in functioning. PMID:20946191

  14. Structure/function studies of human immunodeficiency virus type 1 reverse transcriptase. Alanine scanning mutagenesis of an alpha-helix in the thumb subdomain.

    PubMed

    Beard, W A; Stahl, S J; Kim, H R; Bebenek, K; Kumar, A; Strub, M P; Becerra, S P; Kunkel, T A; Wilson, S H

    1994-11-11

    Human immunodeficiency virus type 1 reverse transcriptase has subunits of 66 and 51 kDa (p66 and p51, respectively). Structural studies indicate that each subunit consists of common subdomains. The polymerase domain of p66 forms a nucleic acid binding cleft, and, by analogy with a right hand, the subdomains are referred to as fingers, palm, and thumb (Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A., and Steitz, T. A. (1992) Science 256, 1783-1790). Residues 257-266 correspond to a highly conserved region of primary structure among retroviral pol genes. Crystallographic evidence indicates that these residues are in the thumb subdomain and form part of an alpha-helix (alpha H), which interacts with DNA (Jacobo-Molina, A., Ding, J., Nanni, R. G., Clark, A. D., Jr., Lu, X., Tantillo, C., Williams, R. L., Kamer, G., Ferris, A. L., Clark, P., Hizi, A., Hughes, S. H., and Arnold, E. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 6320-6324). To define the role of this region during catalytic cycling, we performed systematic site-directed mutagenesis from position 253 through position 271 by changing each residue, one by one, to alanine. Each mutant protein was expressed and purified, and their substrate-specific activities were surveyed. The results are consistent with alpha H (residues 255-268) of p66 interacting with the template and/or primer strand. The core of alpha H appears to play an important role in template-primer binding (residues Gln-258, Gly-262, and Trp-266), and in protein-protein interactions (residues Val-261 and Leu-264). The periodicity of the effects observed suggest that a segment of one face of alpha H interacts with the template-primer. The lower fidelity observed with alanine mutants of Gly-262 and Trp-266 correlated with an over 200-fold increase in the dissociation rate constant for template-primer relative to wild type enzyme and suggests that enzyme-DNA interactions in the template-primer stem are important fidelity determinants. PMID

  15. Earthworms accumulate alanine in response to drought.

    PubMed

    Holmstrup, Martin; Slotsbo, Stine; Henriksen, Per G; Bayley, Mark

    2016-09-01

    Earthworms have ecologically significant functions in tropical and temperate ecosystems and it is therefore important to understand how these animals survive during drought. In order to explore the physiological responses to dry conditions, we simulated a natural drought incident in a laboratory trial exposing worms in slowly drying soil for about one month, and then analyzed the whole-body contents of free amino acids (FAAs). We investigated three species forming estivation chambers when soils dry out (Aporrectodea tuberculata, Aporrectodea icterica and Aporrectodea longa) and one species that does not estivate during drought (Lumbricus rubellus). Worms subjected to drought conditions (< -2MPa) substantially increased the concentration of FAAs and in particular alanine that was significantly upregulated in all tested species. Alanine was the most important FAA reaching 250-650μmolg(-1) dry weight in dehydrated Aporrectodea species and 300μmolg(-1) dry weight in L. rubellus. Proline was only weakly upregulated in some species as were a few other FAAs. Species forming estivation chambers (Aporrectodea spp.) did not show a better ability to conserve body water than the non-estivating species (L. rubellus) at the same drought level. These results suggest that the accumulation of alanine is an important adaptive trait in drought tolerance of earthworms in general. PMID:27107492

  16. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    SciTech Connect

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  17. Functional Implications of Biochemical and Molecular Characteristics of Donation After Circulatory Death Livers

    PubMed Central

    Masuzaki, Ryota; Yu, Hui; Kingsley, Philip; Marnett, Lawrence; Zhao, Zhongming; Karp, Seth J.

    2015-01-01

    Background In aggregate, livers donated after circulatory death (DCD) provide lower rates of graft and patient survival compared to brain dead donors (DBD). A method to identify DCD livers likely to perform well would lead to better decision-making regarding which livers to use and which to discard and is an important unmet clinical need. We hypothesized that the ischemic time between extubation and cold perfusion in the donor leads to immediate and unique biochemical and molecular changes that could be used to predict subsequent function. Methods Biopsies from normal perfused liver, immediately after cold perfusion during DCD or DBD liver procurement, and during subsequent cold storage were analyzed and compared. Biochemical analysis included adenosine triphosphate (ATP), adenosine diphosphate, adenosine monophosphate, hypoxanthine, xanthine, inosine, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. Levels of these metabolites were compared to peak posttransplant aspartate aminotransferase as a marker of ischemic injury. Molecular analysis was performed by transcriptional profiling using high throughput sequencing. Results Immediately after cold perfusion in the donor, biochemical analysis revealed lower levels of ATP and adenosine diphosphate in DCD versus DBD liver samples (P < 0.01 in both cases). The ATP levels showed high negative correlation with peak aspartate aminotransferase levels in recipients (P = 0.029). Four hundred seventy genes showed differential expression in DCD but not DBD samples immediately after cold perfusion compared with normal liver samples. Upregulated genes function in inflammation and immunity, whereas downregulated genes function in translation. During cold storage, samples were transcriptionally inactive with no consistent changes in messenger RNA expression. Conclusion The ATP content of liver samples taken immediately postperfusion correlates with ischemic injury. Transcriptional profiling identifies biological

  18. True versus mild hyperthermia during isolated hepatic perfusion: effects on melphalan pharmacokinetics and liver function.

    PubMed

    Pilati, Pierluigi; Mocellin, Simone; Rossi, Carlo R; Ori, Carlo; Innocente, Federico; Scalerta, Romano; Ceccherini, Mauro; Da Pian, Pier Paolo; Nitti, Donato; Lise, Mario

    2004-08-01

    Hyperthermic antiblastic isolated hepatic perfusion (IHP) with melphalan has been recently proposed as an alternative therapeutic option for patients with unresectable liver tumors. Although melphalan-heat antiblastic synergism is at a maximum at temperatures higher than 41 degrees C, IHP has so far been performed in humans at lower temperatures. In this experimental work, we compared IHP under mild versus true hyperthermic conditions in terms of drug pharmacokinetics and liver function. Ten pigs were submitted to IHP with melphalan 1.5 mg/kg at a mean temperature of 40 degrees C (group A, n = 5) or 42 degrees C (group B, n = 5). After a 60-minute perfusion, a 15-minute washout was performed. Perfusate-to-plasma leakage was monitored using scintigraphy. Throughout perfusion, samples from the systemic blood, perfusate, and liver parenchyma were obtained to measure melphalan concentrations. Liver function was assessed using standard blood tests and the indocyanine green-based test. No deaths related to the IHP procedure were recorded. All animals had transient liver function impairment, with all liver function test results returning to normal within the observation period. At histologic examination, liver damage was similar under both hyperthermic conditions. Melphalan levels in the perfusate were not significantly different in the two study groups (the mean perfusate/plasma area under the curve from 0 to 60 minutes ratios were 463 and 501, respectively). These results correlated well with those obtained using the scintigraphic method. Liver drug concentrations remained unchanged after true hyperthermia IHP. Under true hyperthermic conditions, neither an increase in liver parenchyma toxicity nor changes in melphalan pharmacokinetics were observed. These findings support the use of true hyperthermia in the clinical setting to exploit fully the antitumor synergism between melphalan and heat. PMID:15457357

  19. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    SciTech Connect

    Cao Yue; Wang Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  20. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    PubMed Central

    Cao, Yue; Wang, Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  1. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    PubMed

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-01

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy. PMID:27224003

  2. Screening for genetic haemochromatosis in blood samples with raised alanine aminotransferase

    PubMed Central

    Bhavnani, M; Lloyd, D; Bhattacharyya, A; Marples, J; Elton, P; Worwood, M

    2000-01-01

    BACKGROUND—In the UK approximately 1 in 140 people are homozygous for the C282Y mutation of the HFE gene and are at risk from iron overload caused by genetic haemochromatosis (GH). Early detection can prevent organ damage secondary to iron deposition and increase life expectancy.
AIM—To screen for GH in all blood samples sent to the laboratory for routine liver function tests in which raised serum alanine aminotransferase (ALT) activity was detected.
METHODS—ALT was measured in sera sent to the laboratory for routine liver function tests. In those samples found to have raised activity, transferrin saturation and ferritin were measured followed by genetic testing when transferrin saturation was increased.
RESULTS—Of the 35 069 serum samples assayed for routine liver function tests, 1490 (4.2%) had raised ALT levels (>50 u/l). Transferrin saturation and serum ferritin concentrations were measured in these patient samples, and in 56 transferrin saturation was >60%. Further blood samples were requested from these patients for genetic testing: 33 samples were obtained. There were nine patients homozygous for the C282Y mutation of the HFE gene and three compound heterozygotes (heterozygous for both C282Y and H63D mutations).
CONCLUSIONS—The association of raised ALT activity and transferrin saturation of >60% could provide a simple, cost effective method for detecting individuals with clinical haemochromatosis. Although many patients with GH may have been missed, this study suggests that the clinical penetrance of the disorder may be much lower than is generally supposed and that genetic screening will identify many people who may never develop clinical haemochromatosis.


Keywords: haemochromatosis; alanine aminotransferase PMID:10764716

  3. The Evaluation of Liver Function and Surgical Influence by ICGR15 after Chemotherapy for Colorectal Liver Metastases

    PubMed Central

    Hiwatashi, Kiyokazu; Ueno, Shinichi; Sakoda, Masahiko; Iino, Satoshi; Minami, Koji; Mori, Shinichiro; Kita, Yoshiaki; Baba, Kenji; Kurahara, Hiroshi; Mataki, Yuko; Maemura, Kosei; Shinchi, Hiroyuki; Natsugoe, Shoji

    2016-01-01

    Background; Approximately 60% of patients with colorectal cancer develop liver metastasis at some point after diagnosis. The aim of this study is to investigate whether the evaluation of ICGR15 preoperatively is a useful clinical indicator of hepatic injury following chemotherapy and to investigate the influence of multiple chemotherapies on liver function. Results; Mean ICGR15 values were higher in patients ≥65 years (P = 0.047) and in patients with ≥3 cycles (P = 0.022) and ≥6 cycles (P = 0.001) of systemic chemotherapy. ICGR15 values tended to be higher in patients with postoperative complications (P = 0.085). Patients receiving systemic chemotherapy for ≥6 cycles had higher levels of AST (P = 0.003), ALT (P = 0.015), and alkaline phosphatase (ALP) (P = 0.041). Patients receiving systemic chemotherapy for ≥3 cycles had higher levels of AST (P = 0.015) and ALP (P = 0.015). Conclusions; Because the pathological diagnosis is usually established only after operation, preoperative evaluation such as the identification of sinusoidal injury is difficult. Based on this study, higher ICGR15 values may provide an indication of surgical complications and be a predictor of liver dysfunction following frequent cycles of chemotherapy. Hepatectomy should be performed with the utmost care in such patients, and the number of cycles of preoperative chemotherapy should probably be as low as possible. PMID:27053958

  4. Self-assembling functionalized nanopeptides for immediate hemostasis and accelerative liver tissue regeneration

    NASA Astrophysics Data System (ADS)

    Cheng, Tzu-Yun; Wu, Hsi-Chin; Huang, Ming-Yuan; Chang, Wen-Han; Lee, Chao-Hsiung; Wang, Tzu-Wei

    2013-03-01

    Traumatic injury or surgery may trigger extensive bleeding. However, conventional hemostatic methods have limited efficacy and may cause surrounding tissue damage. In this study, we use self-assembling peptides (SAPs) and specifically extend fragments of functional motifs derived from fibronectin and laminin to evaluate the capability of these functionalized SAPs in the effect of hemostasis and liver tissue regeneration. From the results, these peptides can self-assemble into nanofibrous network structure and gelate into hydrogel with pH adjustment. In animal studies, the efficacy of hemostasis is achieved immediately within seconds in a rat liver model. The histological analyses by hematoxylin-eosin stain and immunohistochemistry reveal that SAPs with these functionalized motifs significantly enhance liver tissue regeneration. In brief, these SAPs may have potential as pharmacological tools to extensively advance clinical therapeutic applications in hemostasis and tissue regeneration in the field of regenerative medicine.Traumatic injury or surgery may trigger extensive bleeding. However, conventional hemostatic methods have limited efficacy and may cause surrounding tissue damage. In this study, we use self-assembling peptides (SAPs) and specifically extend fragments of functional motifs derived from fibronectin and laminin to evaluate the capability of these functionalized SAPs in the effect of hemostasis and liver tissue regeneration. From the results, these peptides can self-assemble into nanofibrous network structure and gelate into hydrogel with pH adjustment. In animal studies, the efficacy of hemostasis is achieved immediately within seconds in a rat liver model. The histological analyses by hematoxylin-eosin stain and immunohistochemistry reveal that SAPs with these functionalized motifs significantly enhance liver tissue regeneration. In brief, these SAPs may have potential as pharmacological tools to extensively advance clinical therapeutic applications

  5. What Is Liver Cancer?

    MedlinePlus

    ... Topic Key statistics about liver cancer What is liver cancer? Cancer starts when cells in the body ... structure and function of the liver. About the liver The liver is the largest internal organ. It ...

  6. Modulating influence of cytochrome P-450 MspI polymorphism on serum liver function profiles in coke oven workers

    PubMed Central

    Wu, M. T.; Ho, C. K.; Huang, S. L.; Yeh, Y. F.; Liu, C. L.; Mao, I. F.; Christiani, D. C.

    1999-01-01

    OBJECTIVES: It was reported previously that topside oven workers with heavy exposure to coke oven emissions had increased serum activities of hepatic aminotransferase in one coke oven plant. This study was conducted to investigate the modifying effect of CYP1A1 MspI polymorphism on liver function profiles in coke oven workers. METHODS: 88 coke oven workers from a large steel company in Taiwan were studied in 1995-6. Exposure was categorised by work area: topside oven workers and sideoven workers. Liver function profiles including serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), r-glutamyl transpeptidase (GGT), alkaline phosphatase (ALP), and total bilirubin (BIL) were examined in the morning after personal exposure measurements. The MspI polymorphism was determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). RESULTS: Five of 23 (22%) topside oven workers and seven of 65 (11%) sideoven workers had the CYP1A1 MspI homozygous variant genotype. With sideoven workers with the combined wild type and heterozygous variant as the reference group in multiple regression models, it was found that topside oven workers with the combined traits had mean AST and ALT activities that were 21% and 46% higher (95% confidence interval (95% CI) 4% to 42% and 12% to 91%, respectively) than the reference group after adjusting for appropriate confounders. Also, topside oven workers with the homozygous variant trait had mean AST, ALT, and GGT activities that were 59%, 68%, and 157% higher (95% CI 21% to 109%, 6% to 168%, and 39% to 374%, respectively) than the reference group. The prevalence of an abnormal hepatocellular pattern (AST > 37 IU/l or ALT > 39 IU/l) was more common in the topside oven workers with the homozygous variant than in the sideoven workers with the other combined genotypes (adjusted odds ratio 9.9, 95% CI 1.2 to 82.3) after adjusting for appropriate confounders. CONCLUSIONS: The CYP1A1 MspI polymorphism

  7. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  8. Risk factors for deterioration of long-term liver function after radiofrequency ablation therapy

    PubMed Central

    Honda, Koichi; Seike, Masataka; Oribe, Junya; Endo, Mizuki; Arakawa, Mie; Syo, Hiroki; Iwao, Masao; Tokoro, Masanori; Nishimura, Junko; Mori, Tetsu; Yamashita, Tsutomu; Fukuchi, Satoshi; Muro, Toyokichi; Murakami, Kazunari

    2016-01-01

    AIM: To identify factors that influence long-term liver function following radiofrequency ablation (RFA) in patients with viral hepatitis-related hepatocellular carcinoma. METHODS: A total of 123 patients with hepatitis B virus- or hepatitis C virus-related hepatocellular car-cinoma (HCC) (n = 12 and n = 111, respectively) were enrolled. Cumulative rates of worsening Child-Pugh (CP) scores (defined as a 2-point increase) were examined. RESULTS: CP score worsening was confirmed in 22 patients over a mean follow-up period of 43.8 ± 26.3 mo. Multivariate analysis identified CP class, platelet count, and aspartate aminotransferase levels as signi-ficant predictors of a worsening CP score (P = 0.000, P = 0.011 and P = 0.024, respectively). In contrast, repeated RFA was not identified as a risk factor for liver function deterioration. CONCLUSION: Long-term liver function following RFA was dependent on liver functional reserve, the degree of fibrosis present, and the activity of the hepatitis condition for this cohort. Therefore, in order to maintain liver function for an extended period following RFA, suppression of viral hepatitis activity is important even after the treatment of HCC. PMID:27168872

  9. [Liver and artificial liver].

    PubMed

    Chamuleau, R A

    1998-06-01

    Despite good results of orthotopic liver transplantation in patients with fulminant hepatic failure the need still exists for an effective and safe artificial liver, able to temporarily take over the complex liver function so as to bridge the gap with transplantation or regeneration. Attempts to develop non-biological artificial livers have failed, mostly when controlled clinical trials were performed. In the last decade several different types of bioartificial livers have been devised, in which the biocomponent consists of freshly isolated porcine hepatocytes or a human hepatoblastoma cell line. The majority use semipermeable hollow fibers known from artificial kidney devices. The liver cells may lie either inside or outside the lumen of these fibers. In vitro analysis of liver function and animal experimental work showing that the bioartificial liver increases survival justify clinical application. Bioartificial livers are connected to patients extracorporeally by means of plasmapheresis circuit for periods of about 6 hours. In different trials about 40 patients with severe liver failure have been treated. No important adverse effects have not been reported in these phase I trials. Results of controlled studies are urgently needed. As long as no satisfactory immortalised human liver cell line with good function is available, porcine hepatocytes will remain the first choice, provided transmission of porcine pathogens to man is prevented. PMID:9752034

  10. Novel strategy to decrease reperfusion injuries and improve function of cold-preserved livers using normothermic ex vivo liver perfusion machine.

    PubMed

    Banan, Babak; Xiao, Zhenyu; Watson, Rao; Xu, Min; Jia, Jianluo; Upadhya, Gundumi A; Mohanakumar, Thalachallour; Lin, Yiing; Chapman, William

    2016-03-01

    Normothermic extracorporeal liver perfusion (NELP) can decrease ischemia/reperfusion injury to the greatest degree when cold ischemia time is minimized. Warm perfusion of cold-stored livers results in hepatocellular damage, sinusoidal endothelial cell (SEC) dysfunction, and Kupffer cell activation. However, the logistics of organ procurement mandates a period of cold preservation before NELP. The aim of this study was to determine the beneficial effects of gradual rewarming of cold-stored livers by placement on NELP. Three female porcine livers were used for each group. In the immediate NELP group, procured livers were immediately placed on NELP for 8 hours. In the cold NELP group, livers were cold-stored for 4 hours followed by NELP for 4 hours. In rewarming groups, livers were cold-stored for 4 hours, then gradually rewarmed in different durations to 38°C and kept on NELP for an additional 4 hours. For comparison purposes, the last 4 hours of NELP runs were considered to be the evaluation phase. Immediate NELP livers had significantly lower concentrations of liver transaminases, hyaluronic acid, and β-galactosidase and had higher bile production compared to the other groups. Rewarming livers had significantly lower concentrations of hyaluronic acid and β-galactosidase compared to the cold NELP livers. In addition, there was a significant decline in international normalized ratio values, improved bile production, reduced biliary epithelial cell damage, and improved cholangiocyte function. Thus, if a NELP machine is not available at the procurement site and livers will need to undergo a period of cold preservation, a gradual rewarming protocol before NELP may greatly reduce damages that are associated with reperfusion. In conclusion, gradual rewarming of cold-preserved livers upon NELP can minimize the hepatocellular damage, Kupffer cell activation, and SEC dysfunction. PMID:26439190

  11. Prediction of liver disease in patients whose liver function tests have been checked in primary care: model development and validation using population-based observational cohorts

    PubMed Central

    McLernon, David J; Donnan, Peter T; Sullivan, Frank M; Roderick, Paul; Rosenberg, William M; Ryder, Steve D; Dillon, John F

    2014-01-01

    Objective To derive and validate a clinical prediction model to estimate the risk of liver disease diagnosis following liver function tests (LFTs) and to convert the model to a simplified scoring tool for use in primary care. Design Population-based observational cohort study of patients in Tayside Scotland identified as having their LFTs performed in primary care and followed for 2 years. Biochemistry data were linked to secondary care, prescriptions and mortality data to ascertain baseline characteristics of the derivation cohort. A separate validation cohort was obtained from 19 general practices across the rest of Scotland to externally validate the final model. Setting Primary care, Tayside, Scotland. Participants Derivation cohort: LFT results from 310 511 patients. After exclusions (including: patients under 16 years, patients having initial LFTs measured in secondary care, bilirubin >35 μmol/L, liver complications within 6 weeks and history of a liver condition), the derivation cohort contained 95 977 patients with no clinically apparent liver condition. Validation cohort: after exclusions, this cohort contained 11 653 patients. Primary and secondary outcome measures Diagnosis of a liver condition within 2 years. Results From the derivation cohort (n=95 977), 481 (0.5%) were diagnosed with a liver disease. The model showed good discrimination (C-statistic=0.78). Given the low prevalence of liver disease, the negative predictive values were high. Positive predictive values were low but rose to 20–30% for high-risk patients. Conclusions This study successfully developed and validated a clinical prediction model and subsequent scoring tool, the Algorithm for Liver Function Investigations (ALFI), which can predict liver disease risk in patients with no clinically obvious liver disease who had their initial LFTs taken in primary care. ALFI can help general practitioners focus referral on a small subset of patients with higher predicted risk

  12. First-principles studies of pure and fluorine substituted alanines

    NASA Astrophysics Data System (ADS)

    Ahmad, Sardar; Vaizie, Hamide; Rahnamaye Aliabad, H. A.; Ahmad, Rashid; Khan, Imad; Ali, Zahid; Jalali-Asadabadi, S.; Ahmad, Iftikhar; Khan, Amir Abdullah

    2016-05-01

    This paper communicates the structural, electronic and optical properties of L-alanine, monofluoro and difluoro substituted alanines using density functional calculations. These compounds exist in orthorhombic crystal structure and the calculated structural parameters such as lattice constants, bond angles and bond lengths are in agreement with the experimental results. L-alanine is an indirect band gap insulator, while its fluorine substituted compounds (monofluoroalanine and difluoroalanine) are direct band gap insulators. The substitution causes reduction in the band gap and hence these optically tailored direct wide band gap materials have enhanced optical properties in the ultraviolet (UV) region of electromagnetic spectrum. Therefore, optical properties like dielectric function, refractive index, reflectivity and energy loss function are also investigated. These compounds have almost isotropic nature in the lower frequency range while at higher energies, they have a significant anisotropic nature.

  13. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5118 Alanine. (a) Product. Alanine...

  14. Functional renal failure (FRF) in cirrhosis of the liver and liver carcinoma

    PubMed Central

    Vesin, P.; Traverso, H.

    1975-01-01

    The term ‘functional renal failure’ has been used to describe the renal failure developing in advanced cirrhosis in which tubular function and structure remain intact. It may develop spontaneously, in which case prognosis is poor, but may be secondary to gastro-intestinal haemorrhage or excessive use of diuretics, in which case correction of the precipitating factor leads to improvement in renal function. It is suggested that the renal failure is due to a reduction in effective circulating plasma volume. PMID:1234327

  15. Methamphetamine causes acute hyperthermia-dependent liver damage

    PubMed Central

    Halpin, Laura E; Gunning, William T; Yamamoto, Bryan K

    2013-01-01

    Methamphetamine-induced neurotoxicity has been correlated with damage to the liver but this damage has not been extensively characterized. Moreover, the mechanism by which the drug contributes to liver damage is unknown. This study characterizes the hepatocellular toxicity of methamphetamine and examines if hyperthermia contributes to this liver damage. Livers from methamphetamine-treated rats were examined using electron microscopy and hematoxylin and eosin staining. Methamphetamine increased glycogen stores, mitochondrial aggregation, microvesicular lipid, and hydropic change. These changes were diffuse throughout the hepatic lobule, as evidenced by a lack of hematoxylin and eosin staining. To confirm if these changes were indicative of damage, serum aspartate and alanine aminotransferase were measured. The functional significance of methamphetamine-induced liver damage was also examined by measuring plasma ammonia. To examine the contribution of hyperthermia to this damage, methamphetamine-treated rats were cooled during and after drug treatment by cooling their external environment. Serum aspartate and alanine aminotransferase, as well as plasma ammonia were increased concurrently with these morphologic changes and were prevented when methamphetamine-induced hyperthermia was blocked. These findings support that methamphetamine produces changes in hepatocellular morphology and damage persisting for at least 24 h after drug exposure. At this same time point, methamphetamine treatment significantly increases plasma ammonia concentrations, consistent with impaired ammonia metabolism and functional liver damage. Methamphetamine-induced hyperthermia contributes significantly to the persistent liver damage and increases in peripheral ammonia produced by the drug. PMID:25505562

  16. Methamphetamine causes acute hyperthermia-dependent liver damage.

    PubMed

    Halpin, Laura E; Gunning, William T; Yamamoto, Bryan K

    2013-10-01

    Methamphetamine-induced neurotoxicity has been correlated with damage to the liver but this damage has not been extensively characterized. Moreover, the mechanism by which the drug contributes to liver damage is unknown. This study characterizes the hepatocellular toxicity of methamphetamine and examines if hyperthermia contributes to this liver damage. Livers from methamphetamine-treated rats were examined using electron microscopy and hematoxylin and eosin staining. Methamphetamine increased glycogen stores, mitochondrial aggregation, microvesicular lipid, and hydropic change. These changes were diffuse throughout the hepatic lobule, as evidenced by a lack of hematoxylin and eosin staining. To confirm if these changes were indicative of damage, serum aspartate and alanine aminotransferase were measured. The functional significance of methamphetamine-induced liver damage was also examined by measuring plasma ammonia. To examine the contribution of hyperthermia to this damage, methamphetamine-treated rats were cooled during and after drug treatment by cooling their external environment. Serum aspartate and alanine aminotransferase, as well as plasma ammonia were increased concurrently with these morphologic changes and were prevented when methamphetamine-induced hyperthermia was blocked. These findings support that methamphetamine produces changes in hepatocellular morphology and damage persisting for at least 24 h after drug exposure. At this same time point, methamphetamine treatment significantly increases plasma ammonia concentrations, consistent with impaired ammonia metabolism and functional liver damage. Methamphetamine-induced hyperthermia contributes significantly to the persistent liver damage and increases in peripheral ammonia produced by the drug. PMID:25505562

  17. Assessment of Liver Function Using 99mTc-Mebrofenin Hepatobiliary Scintigraphy in ALPPS (Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy)

    PubMed Central

    Cieslak, Kasia P.; Olthof, Pim B.; van Lienden, Krijn P.; Besselink, Marc G.; Busch, Olivier R.C.; van Gulik, Thomas M.; Bennink, Roelof J.

    2015-01-01

    ALPPS (associating liver partition and portal vein ligation for staged hepatectomy) is a new surgical technique for patients in whom conventional treatment is not feasible due to insufficient future remnant liver (FRL). During the first stage of ALPPS, accelerated hypertrophy of the FRL is induced by ligation of the portal vein and in situ split of the liver. In the second stage, the deportalized liver is removed when the FRL volume has reached ≥25% of total liver volume. However, FRL volume does not necessarily reflect FRL function. 99mTc-mebrofenin hepatobiliary scintigraphy (HBS) with SPECT-CT is a quantitative test enabling regional assessment of parenchymal uptake function using a validated cut-off value for the prediction of postoperative liver failure (2.7%/min/m2). This paper describes the changes in FRL function and FRL volume in a 79-year-old patient diagnosed with metachronous colonic liver metastases who underwent ALPPS. We have observed a substantial difference between the increase in FRL volume and FRL function suggesting that HBS with SPECT-CT enables monitoring of the FRL function and could be a useful tool in the timing of resection in the second stage of the ALPPS procedure. PMID:26675783

  18. Pathological and ultrastructural observations and liver function analysis of Eimeria stiedai-infected rabbits.

    PubMed

    Jing, Jin; Liu, Chun; Zhu, Shun-Xing; Jiang, Ying-Mei; Wu, Liu-Cheng; Song, Hong-Yan; Shao, Yi-Xiang

    2016-06-15

    To study the pathogenicity of Eimeria stiedai, sporulated oocysts were given orally to coccidian-free two-month-old New Zealand rabbits(1000±20g). After 30days, blood samples from the rabbit hearts were collected for routine blood tests, liver functions and four characteristics of blood coagulation. Additionally, specimens of the liver, bile duct and duodenum were collected to observe the changes in pathology and ultrastructure. E. stiedai severely restricted the growth and development of rabbits. Blood tests showed that glutamine transferase (GGT) and serum cholinesterase (ChE) were significantly different from the non-infected controls. Other extremely significant differences were observed in the biochemical indices of routine blood tests, liver function and four blood coagulation characteristics, indicating that the liver functions were significantly affected. Staining showed that, compared with the negative control group, the liver, bile duct and duodenum contained significant numbers of lesions, and organs and cell structures suffered severe damage in ultrastructure, which greatly affecting bodily functions. E. stiedai-infected rabbits model was successfully established, which might provide a theoretical basis for research on the pathogenesis of rabbit coccidia, and the diagnosis and prevention of coccidiosis in rabbits. PMID:27198796

  19. Acute liver impairment after sodium valproate overdose

    PubMed Central

    Waring, William Stephen; Nixon, Andrew C

    2009-01-01

    Liver impairment is a recognised adverse effect of long-term sodium valproate treatment, but there are few reports concerning its occurrence after acute overdose. This report describes a 36-year-old woman who deliberately ingested 32 g of sodium valproate (Epilim). Serum valproate concentration was 4370 μmol/l (630 mg/l) at 4.3 h post-ingestion (therapeutic reference range: 300–600 μmol/l), and the elimination half-life was 14.1 h. Liver biochemistry tests were initially normal but gradually became impaired, and highest alanine aminotransferase (761 U/l) occurred 2.3 days after ingestion. Supportive measures alone were sufficient to allow recovery of liver function. This case indicates that sodium valproate overdose may cause acute hepatocellular injury, even in the absence of pre-existing liver disease. PMID:21686945

  20. Development of a decision support tool to facilitate primary care management of patients with abnormal liver function tests without clinically apparent liver disease [HTA03/38/02]. Abnormal Liver Function Investigations Evaluation (ALFIE)

    PubMed Central

    Donnan, Peter T; McLernon, David; Steinke, Douglas; Ryder, Stephen; Roderick, Paul; Sullivan, Frank M; Rosenberg, William; Dillon, John F

    2007-01-01

    Background Liver function tests (LFTs) are routinely performed in primary care, and are often the gateway to further invasive and/or expensive investigations. Little is known of the consequences in people with an initial abnormal liver function (ALF) test in primary care and with no obvious liver disease. Further investigations may be dangerous for the patient and expensive for Health Services. The aims of this study are to determine the natural history of abnormalities in LFTs before overt liver disease presents in the population and identify those who require minimal further investigations with the potential for reduction in NHS costs. Methods/Design A population-based retrospective cohort study will follow up all those who have had an incident liver function test (LFT) in primary care to subsequent liver disease or mortality over a period of 15 years (approx. 2.3 million tests in 99,000 people). The study is set in Primary Care in the region of Tayside, Scotland (pop approx. 429,000) between 1989 and 2003. The target population consists of patients with no recorded clinical signs or symptoms of liver disease and registered with a GP. The health technologies being assessed are LFTs, viral and auto-antibody tests, ultrasound, CT, MRI and liver biopsy. The study will utilise the Epidemiology of Liver Disease In Tayside (ELDIT) database to determine the outcomes of liver disease. These are based on hospital admission data (Scottish Morbidity Record 1), dispensed medication records, death certificates, and examination of medical records from Tayside hospitals. A sample of patients (n = 150) with recent initial ALF tests or invitation to biopsy will complete questionnaires to obtain quality of life data and anxiety measures. Cost-effectiveness and cost utility Markov model analyses will be performed from health service and patient perspectives using standard NHS costs. The findings will also be used to develop a computerised clinical decision support tool. Discussion

  1. Role of Gut Barrier Function in the Pathogenesis of Nonalcoholic Fatty Liver Disease

    PubMed Central

    Dai, Xin; Wang, Bangmao

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver disease, and its incidence is increasing year by year. Many efforts have been made to investigate the pathogenesis of this disease. Since 1998 when Marshall proposed the conception of “gut-liver axis,” more and more researchers have paid close attention to the role of gut barrier function in the pathogenesis of NAFLD. The four aspects of gut barrier function, including physical, chemical, biological, and immunological barriers, are interrelated closely and related to NAFLD. In this paper, we present a summary of research findings on the relationship between gut barrier dysfunction and the development of NAFLD, aiming at illustrating the role of gut barrier function in the pathogenesis of this disease. PMID:25945084

  2. Deranged liver function tests in pregnancy: the importance of postnatal follow-up

    PubMed Central

    Stone, Sophia; Girling, Joanna C

    2009-01-01

    We report an asymptomatic 40-year-old woman with persistently deranged liver function tests found incidentally in the first trimester of her second pregnancy. No cause was apparent clinically, serologically or with imaging studies until a new finding of hepatomegaly led to a repeat ultrasound scan six weeks following delivery. A mass in the region of the common hepatic duct was confirmed to be a cholangiocarcinoma, with vascular invasion precluding curative surgical resection. This case highlights the need for close vigilance of patients with unexplained and persistently abnormal liver function tests, antenatally and postdelivery.

  3. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome

    PubMed Central

    Vootla, Vamshidhar R.; Daniel, Myrta

    2015-01-01

    Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptoms and show abnormal liver function test results. We report the case of a 52-year-old woman with anorexia nervosa who developed refeeding syndrome and simultaneous elevations of liver function test results, which normalized upon the resolution of the refeeding syndrome. PMID:26351414

  4. The functional role of some tomato products on lipid profile and liver function in adult rats.

    PubMed

    Ibrahim, Hoda Salama; Ahmed, Lamiaa Ali; El-din, Maha Mohamed Essam

    2008-09-01

    This study was carried out to investigate the functional role of lycopene obtained from powder prepared from fresh tomato, tomato paste, and ketchup that contained equal amounts of lycopene based on levels of intake on body weight gain (BWG), feed intake, feed efficiency ratio (FER), lipid profiles, atherogenic index, and liver enzymes of hyperlipidemic rats. Forty-eight male albino rats were divided into two main groups: the first group (n = 6 rats) was kept on the basal diet as a normal control, while the second group (n = 42 rats) was fed a hyperlipidemic diet for 5 weeks to induce hyperlipidemia. The latter group was divided into seven subgroups: the first subgroup was the positive control group, while the others were supplemented with one of the tomato products at one of two levels (10 or 20 mg of lycopene/kg of diet). BWG, feed intake, and FER were calculated, and blood samples were collected to determine total lipids, total cholesterol, triglycerides, lipoprotein fractions, atherogenic index, and liver function in sera. Relative organ weights were also calculated. Results revealed that administration of various tomato products produced a significant reduction in feed intake except for the hyperlipidemic group that supplemented with the lower lycopene level from tomato paste. In addition, BWG and FER were not influenced by addition of tomato products at any level of intake. Hyperlipidemic rats supplemented with tomato powder, tomato paste, or ketchup showed significant improvement in almost all the parameters studied compared to the positive control group. Results showed that the higher lycopene level from tomato paste produced significant improvement in all lipid parameters, followed by 10 mg of lycopene/kg from tomato paste, which caused significant elevation in high-density lipoprotein cholesterol comparable to that of the negative control group. The lowest atherogenic index was achieved by addition of the lower lycopene level from tomato paste followed by

  5. The multiple functional roles of mesenchymal stem cells in participating in treating liver diseases

    PubMed Central

    Liu, Wei-hui; Song, Fu-qiang; Ren, Li-na; Guo, Wen-qiong; Wang, Tao; Feng, Ya-xing; Tang, Li-jun; Li, Kun

    2015-01-01

    Mesenchymal stem cells (MSCs) are a group of stem cells derived from the mesodermal mesenchyme. MSCs can be obtained from a variety of tissues, including bone marrow, umbilical cord tissue, umbilical cord blood, peripheral blood and adipose tissue. Under certain conditions, MSCs can differentiate into many cell types both in vitro and in vivo, including hepatocytes. To date, four main strategies have been developed to induce the transdifferentiation of MSCs into hepatocytes: addition of chemical compounds and cytokines, genetic modification, adjustment of the micro-environment and alteration of the physical parameters used for culturing MSCs. Although the phenomenon of transdifferentiation of MSCs into hepatocytes has been described, the detailed mechanism is far from clear. Generally, the mechanism is a cascade reaction whereby stimulating factors activate cellular signalling pathways, which in turn promote the production of transcription factors, leading to hepatic gene expression. Because MSCs can give rise to hepatocytes, they are promising to be used as a new treatment for liver dysfunction or as a bridge to liver transplantation. Numerous studies have confirmed the therapeutic effects of MSCs on hepatic fibrosis, cirrhosis and other liver diseases, which may be related to the differentiation of MSCs into functional hepatocytes. In addition to transdifferentiation into hepatocytes, when MSCs are used to treat liver disease, they may also inhibit hepatocellular apoptosis and secrete various bioactive molecules to promote liver regeneration. In this review, the capacity and molecular mechanism of MSC transdifferentiation, and the therapeutic effects of MSCs on liver diseases are thoroughly discussed. PMID:25534251

  6. Inhibition of key digestive enzymes related to diabetes and hyperlipidemia and protection of liver-kidney functions by trigonelline in diabetic rats.

    PubMed

    Hamden, Khaled; Mnafgui, Kais; Amri, Zahra; Aloulou, Ahmed; Elfeki, Abdelfattah

    2013-03-01

    Diabetes is a serious health problem and a source of risk for numerous severe complications such as obesity and hypertension. Treatment of diabetes and its related diseases can be achieved by inhibiting key digestive enzymes related to starch and lipid digestion. The findings revealed that the administration of trigonelline to surviving diabetic rats helped to protect the pancreas β-cells from death and damage. Additionally, the supplement of trigonelline to surviving diabetic rats significantly decreased intestinal α-amylase and maltase by 36 and 52%, respectively, which led to a significant decrease in the blood glucose rate by 46%. Moreover, the administration of trigonelline to surviving diabetic rats potentially inhibited key enzymes of lipid metabolism and absorption such as lipase activity in the small intestine by 56%, which led to a notable decrease in serum triglyceride (TG) and total cholesterol (TC) rates and an increase in the HDL cholesterol level. This treatment also improved glucose, maltase, starch, and lipid oral tolerance. Trigonelline was also observed to protect the liver-kidney functions efficiently, which was evidenced by the significant decrease in the serum aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transpeptidase (GGT), and lactate dehydrogenase (LDH) activities and creatinine, albumin, and urea rates. The histological analysis of the pancreas, liver, and kidney tissues further established the positive effect of trigonelline. Overall, the findings presented in this study demonstrate that the administration of trigonelline to diabetic rats can make it a potentially strong candidate for industrial application as a pharmacological agent for the treatment of hyperglycemia, hyperlipidemia, and liver-kidney dysfunctions. PMID:23641341

  7. Patterns and predictors of sexual function after liver donation: The Adult-to-Adult Living Donor Liver Transplantation Cohort study.

    PubMed

    DiMartini, Andrea F; Dew, Mary Amanda; Butt, Zeeshan; Simpson, Mary Ann; Ladner, Daniela P; Smith, Abigail R; Hill-Callahan, Peg; Gillespie, Brenda W

    2015-05-01

    Although sexual functioning is an important facet of a living donor's quality of life, it has not received an extensive evaluation in this population. Using data from the Adult-to-Adult Living Donor Liver Transplantation Cohort Study, we examined donor sexual functioning across the donation process from the predonation evaluation to 3 months and 1 year after donation. Donors (n = 208) and a comparison group of nondonors (n = 155) completed self-reported surveys with specific questions on sexual desire, satisfaction, orgasm, and (for men) erectile function. Across the 3 time points, donor sexual functioning was lower at the evaluation phase and 3 months after donation versus 1 year after donation. In the early recovery period, abdominal pain was associated with difficulty reaching orgasm [odds ratio (OR), 3.98; 95% confidence interval (CI), 1.30-12.16], concerns over appearance were associated with lower sexual desire (OR, 4.14; 95% CI, 1.02-16.79), and not feeling back to normal was associated with dissatisfaction with sexual life (OR, 3.58; 95% CI, 1.43-8.99). Efforts to educate donors before the surgery and prepare them for the early recovery phase may improve recovery and reduce distress regarding sexual functioning. PMID:25779554

  8. Characterization of liver-specific structure and function during hepatocyte spheroid self-assembly: Implications for a bioartificial liver device

    NASA Astrophysics Data System (ADS)

    Friend, Julie Renee

    A hollow fiber bioreactor containing collagen-entrapped hepatocytes has been developed as a bioartificial liver device. For clinical application, further scale-up of the device is desirable. This may be achieved through the use of hepatocyte spheroids, which are compacted aggregates that exhibit prolonged viability, higher liver-specific function and a more tissue-like ultrastructure compared to hepatocytes cultured as monolayers. In order to gain a better understanding of structural changes in spheroids over the course of their self-assembly, confocal microscopy was used to optically section spheroids and monitor changes in situ. Channels within spheroids hypothesized to be bile canaliculi were first evaluated by monitoring the diffusion of a fluorescent tracer, FITC-dextran, into spheroids. Three-dimensional reconstruction of spheroids showed that a continuous network of channels was forming within spheroids. Functionality of these channels as bile canaliculi was demonstrated by monitoring secretion of a fluorescently tagged bile acid, FITC-glycocholate, by hepatocytes in spheroids. Secretion of FITC-glycocholate could be seen in both rat and porcine hepatocyte spheroids. To elucidate changes in metabolism occurring during spheroid self-assembly, metabolic flux analysis was applied to hepatocyte spinner cultures. Glucose, lactate, amino acid, albumin and urea concentration in culture medium were measured and used to estimate intracellular fluxes within hepatocytes. Metabolism before and after spheroid formation was compared. Overall, little difference was seen in metabolism before and after spheroid self-assembly. As the BAL approaches clinical trials, methods of bioreactor storage for shipping and inventory purposed need to be developed. Storage conditions were tested in various hepatocyte culture systems. A protocol for storing reactors for 24 hours without significant loss in function was developed. Further optimization will be necessary for storage for longer

  9. Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice.

    PubMed

    Gujral, Jaspreet S; Liu, Jie; Farhood, Anwar; Hinson, Jack A; Jaeschke, Hartmut

    2004-03-01

    Cholestasis-induced liver injury during bile duct obstruction causes an acute inflammatory response. To further characterize the mechanisms underlying the neutrophil-induced cell damage in the bile duct ligation (BDL) model, we performed experiments using wild-type (WT) and ICAM-1-deficient mice. After BDL for 3 days, increased ICAM-1 expression was observed along sinusoids, along portal veins, and on hepatocytes in livers of WT animals. Neutrophils accumulated in sinusoids [358 +/- 44 neutrophils/20 high-power fields (HPF)] and >50% extravasated into the parenchymal tissue. Plasma alanine transaminase (ALT) levels increased by 23-fold, and severe liver cell necrosis (47 +/- 11% of total cells) was observed. Chlorotyrosine-protein adducts (a marker for neutrophil-derived hypochlorous acid) and 4-hydroxynonenal adducts (a lipid peroxidation product) were detected in these livers. Neutrophils also accumulated in the portal venules and extravasated into the portal tracts. However, no evidence for chlorotyrosine or 4-hydroxynonenal protein adducts was detected in portal tracts. ICAM-1-deficient mice showed 67% reduction in plasma ALT levels and 83% reduction in necrosis after BDL compared with WT animals. The total number of neutrophils in the liver was reduced (126 +/- 25/20 HPF), and 85% of these leukocytes remained in sinusoids. Moreover, these livers showed minimal staining for chlorotyrosine and 4-hydroxynonenal adducts, indicating a substantially reduced oxidant stress and a diminished cytokine response. Thus neutrophils relevant for the aggravation of acute cholestatic liver injury in BDL mice accumulate in hepatic sinusoids, extravasate into the tissue dependent on ICAM-1, and cause cell damage involving reactive oxygen formation. PMID:14563671

  10. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression

    PubMed Central

    Nantasanti, Sathidpak; Toussaint, Mathilda J. M.; Youssef, Sameh A.; Tooten, Peter C. J.; de Bruin, Alain

    2016-01-01

    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). DDC is metabolized mainly by cytochrome P450 (Cyp)3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC. PMID:26967735

  11. Expression and function of the atypical cadherin FAT1 in chronic liver disease

    SciTech Connect

    Valletta, Daniela; Czech, Barbara; Thasler, Wolfgang E.; Mueller, Martina; Bosserhoff, Anja-Katrin; Hellerbrand, Claus

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer The expression of the atypical cadherin FAT1 is increased in chronic liver disease. Black-Right-Pointing-Pointer FAT1 expression goes up during the activation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Activated HSCs are the cellular source of enhanced FAT1 expression in diseased livers. Black-Right-Pointing-Pointer FAT1 enhanced NFkB activity and resistance to apoptosis in activated HSCs. Black-Right-Pointing-Pointer FAT1 is a new therapeutic target for prevention and treatment of hepatic fibrosis. -- Abstract: Hepatic fibrosis can be considered as wound healing process in response to hepatocellular injury. Activation of hepatic stellate cells (HSCs) is a key event of hepatic fibrosis since activated HSCs are the cellular source of enhanced extracellular matrix deposition, and reversion of liver fibrosis is accompanied by clearance of activated HSCs by apoptosis. The atypical cadherin FAT1 has been shown to regulate diverse biological functions as cell proliferation and planar cell polarity, and also to affect wound healing. Here, we found increased FAT1 expression in different murine models of chronic liver injury and in cirrhotic livers of patients with different liver disease. Also in hepatic tissue of patients with non-alcoholic steatohepatitis FAT1 expression was significantly enhanced and correlated with collagen alpha I(1) expression. Immunohistochemistry revealed no significant differences in staining intensity between hepatocytes in normal and cirrhotic liver tissue but myofibroblast like cells in fibrotic septa of cirrhotic livers showed a prominent immunosignal. Furthermore, FAT1 mRNA and protein expression markedly increased during in vitro activation of primary human and murine HSCs. Together, these data indicated activated HSCs as cellular source of enhanced FAT1 expression in diseased livers. To gain insight into the functional role of FAT1 in activated HSCs we suppressed FAT1 in these

  12. CT/99mTc-GSA SPECT fusion images demonstrate functional differences between the liver lobes

    PubMed Central

    Sumiyoshi, Tatsuaki; Shima, Yasuo; Tokorodani, Ryoutarou; Okabayashi, Takehiro; Kozuki, Akihito; Hata, Yasuhiro; Noda, Yoshihiro; Murata, Yoriko; Nakamura, Toshio; Uka, Kiminori

    2013-01-01

    AIM: To evaluate the functional differences between the 2 liver lobes in non-cirrhotic patients by using computed tomography/99mTc-galactosyl human serum albumin (CT/99mTc-GSA) single-photon emission computed tomography (SPECT) fusion images. METHODS: Between December 2008 and March 2012, 264 non-cirrhotic patients underwent preoperative liver function assessment using CT/99mTc-GSA SPECT fusion images. Of these, 30 patients, in whom the influence of a tumor on the liver parenchyma was estimated to be negligible, were selected. Specifically, the selected patients were required to meet either of the following criteria: (1) the presence of an extrahepatic tumor; or (2) presence of a single small intrahepatic tumor. These 30 patients were retrospectively analyzed to calculate the percentage volume (%Volume) and the percentage function (%Function) of each lobe. The ratio between the %Function and %Volume (function-to-volume ratio) of each lobe was also calculated, and the ratios were compared between the 2 lobes. Furthermore, the correlations between the function-to-volume ratio and each of 2 liver parameters [lobe volume and diameter ratio of the left portal vein to the right portal vein (LPV-to-RPV diameter ratio)] were investigated. RESULTS: The median values of %Volume and %Function were 62.6% and 67.1% in the right lobe, with %Function being significantly higher than %Volume (P < 0.01). The median values of %Volume and %Function were 31.0% and 28.7% in the left lobe, with %Function being significantly lower than %Volume (P < 0.01). The function-to-volume ratios of the right lobe (1.04-1.14) were significantly higher than those of the left lobe (0.74-0.99) (P < 0.01). The function-to-volume ratio showed no significant correlation between the lobe volume in either lobe. In contrast, the function-to-volume ratio showed significant correlations with the LPV-to-RPV diameter ratio in both lobes (right lobe: negative correlation, rs = -0.37, P = 0.048; left lobe: positive

  13. Prep1 Controls Insulin Glucoregulatory Function in Liver by Transcriptional Targeting of SHP1 Tyrosine Phosphatase

    PubMed Central

    Oriente, Francesco; Iovino, Salvatore; Cabaro, Serena; Cassese, Angela; Longobardi, Elena; Miele, Claudia; Ungaro, Paola; Formisano, Pietro; Blasi, Francesco; Beguinot, Francesco

    2011-01-01

    OBJECTIVE We investigated the function of the Prep1 gene in insulin-dependent glucose homeostasis in liver. RESEARCH DESIGN AND METHODS Prep1 action on insulin glucoregulatory function has been analyzed in liver of Prep1-hypomorphic mice (Prep1i/i), which express 2–3% of Prep1 mRNA. RESULTS Based on euglycemic hyperinsulinemic clamp studies and measurement of glycogen content, livers from Prep1i/i mice feature increased sensitivity to insulin. Tyrosine phosphorylation of both insulin receptor (IR) and insulin receptor substrate (IRS)1/2 was significantly enhanced in Prep1i/i livers accompanied by a specific downregulation of the SYP and SHP1 tyrosine phosphatases. Prep1 overexpression in HepG2 liver cells upregulated SYP and SHP1 and inhibited insulin-induced IR and IRS1/2 phosphorylation and was accompanied by reduced glycogen content. Consistently, overexpression of the Prep1 partner Pbx1, but not of p160MBP, mimicked Prep1 effects on tyrosine phosphorylations, glycogen content, and on SYP and SHP1 expression. In Prep1 overexpressing cells, antisense silencing of SHP1, but not that of SYP, rescued insulin-dependent IR phosphorylation and glycogen accumulation. Both Prep1 and Pbx1 bind SHP1 promoter at a site located between nucleotides −2,113 and −1,778. This fragment features enhancer activity and induces luciferase function by 7-, 6-, and 30-fold, respectively, in response to Prep1, Pbx1, or both. CONCLUSIONS SHP1, a known silencer of insulin signal, is a transcriptional target of Prep1. In liver, transcriptional activation of SHP1 gene by Prep1 attenuates insulin signal transduction and reduces glucose storage. PMID:20864515

  14. All-Trans-Retinoic Acid Enhances Mitochondrial Function in Models of Human Liver.

    PubMed

    Tripathy, Sasmita; Chapman, John D; Han, Chang Y; Hogarth, Cathryn A; Arnold, Samuel L M; Onken, Jennifer; Kent, Travis; Goodlett, David R; Isoherranen, Nina

    2016-05-01

    All-trans-retinoic acid (atRA) is the active metabolite of vitamin A. The liver is the main storage organ of vitamin A, but activation of the retinoic acid receptors (RARs) in mouse liver and in human liver cell lines has also been shown. AlthoughatRA treatment improves mitochondrial function in skeletal muscle in rodents, its role in modulating mitochondrial function in the liver is controversial, and little data are available regarding the human liver. The aim of this study was to determine whetheratRA regulates hepatic mitochondrial activity.atRA treatment increased the mRNA and protein expression of multiple components of mitochondrialβ-oxidation, tricarboxylic acid (TCA) cycle, and respiratory chain. Additionally,atRA increased mitochondrial biogenesis in human hepatocytes and in HepG2 cells with and without lipid loading based on peroxisome proliferator activated receptor gamma coactivator 1αand 1βand nuclear respiratory factor 1 mRNA and mitochondrial DNA quantification.atRA also increasedβ-oxidation and ATP production in HepG2 cells and in human hepatocytes. Knockdown studies of RARα, RARβ, and PPARδrevealed that the enhancement of mitochondrial biogenesis andβ-oxidation byatRA requires peroxisome proliferator activated receptor delta. In vivo in mice,atRA treatment increased mitochondrial biogenesis markers after an overnight fast. Inhibition ofatRA metabolism by talarozole, a cytochrome P450 (CYP) 26 specific inhibitor, increased the effects ofatRA on mitochondrial biogenesis markers in HepG2 cells and in vivo in mice. These studies show thatatRA regulates mitochondrial function and lipid metabolism and that increasingatRA concentrations in human liver via CYP26 inhibition may increase mitochondrial biogenesis and fatty acidβ-oxidation and provide therapeutic benefit in diseases associated with mitochondrial dysfunction. PMID:26921399

  15. Liver condition of Holstein cows affects mitochondrial function and fertilization ability of oocytes

    PubMed Central

    TANAKA, Hiroshi; TAKEO, Shun; ABE, Takahito; KIN, Airi; SHIRASUNA, Koumei; KUWAYAMA, Takehito; IWATA, Hisataka

    2016-01-01

    The aim of the present study was to examine the fertilization ability and mitochondrial function of oocytes derived from cows with or without liver damage. Oocytes were collected from the ovaries of cows with damaged livers (DL) and those of cows with healthy livers (HL), subjected to in vitro maturation, and fertilized in vitro. A significantly high abnormal fertilization rate was observed for oocytes from DL cows compared to oocytes from HL cows. The time to dissolve the zona pellucida by protease before fertilization was similar between the two liver conditions, whereas after fertilization treatment this time was shorter for DL cows than for HL cows. The percentage of oocytes with equivalent cortical granule distributions underneath the membrane was greater for in vitro matured oocytes from HL cows, whereas an immature distribution pattern was observed for oocytes from DL cows. In addition, a greater percentage of oocytes derived from HL cows released cortical granules following fertilization compared with oocytes from DL cows. Mitochondrial function determined by ATP content and membrane potential were similar at the germinal vesicle stage, but post-in vitro maturation, the oocytes derived from HL cows showed higher values than DL cows. The mitochondrial DNA copy number in oocytes was similar between the two liver conditions for both the germinal vesicle and post-in vitro maturation oocytes. In conclusion, liver damage induces low fertilization, likely because of incomplete cortical granule distribution and release, and the maturation of oocytes from DL cows contain low-functioning mitochondria compared to their HL counterparts. PMID:26832309

  16. Liver condition of Holstein cows affects mitochondrial function and fertilization ability of oocytes.

    PubMed

    Tanaka, Hiroshi; Takeo, Shun; Abe, Takahito; Kin, Airi; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2016-06-17

    The aim of the present study was to examine the fertilization ability and mitochondrial function of oocytes derived from cows with or without liver damage. Oocytes were collected from the ovaries of cows with damaged livers (DL) and those of cows with healthy livers (HL), subjected to in vitro maturation, and fertilized in vitro. A significantly high abnormal fertilization rate was observed for oocytes from DL cows compared to oocytes from HL cows. The time to dissolve the zona pellucida by protease before fertilization was similar between the two liver conditions, whereas after fertilization treatment this time was shorter for DL cows than for HL cows. The percentage of oocytes with equivalent cortical granule distributions underneath the membrane was greater for in vitro matured oocytes from HL cows, whereas an immature distribution pattern was observed for oocytes from DL cows. In addition, a greater percentage of oocytes derived from HL cows released cortical granules following fertilization compared with oocytes from DL cows. Mitochondrial function determined by ATP content and membrane potential were similar at the germinal vesicle stage, but post-in vitro maturation, the oocytes derived from HL cows showed higher values than DL cows. The mitochondrial DNA copy number in oocytes was similar between the two liver conditions for both the germinal vesicle and post-in vitro maturation oocytes. In conclusion, liver damage induces low fertilization, likely because of incomplete cortical granule distribution and release, and the maturation of oocytes from DL cows contain low-functioning mitochondria compared to their HL counterparts. PMID:26832309

  17. Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Yazdani, Farshad; Fattahi, Bahare; Azizi, Najmodin

    2016-05-01

    The aim of this research was the preparation of functionalized magnetite nanoparticles to use as a liver targeting contrast agent in magnetic resonance imaging (MRI). For this purpose, Fe3O4 nanoparticles were synthesized via the co-precipitation method. The synthesized nanoparticles were coated with silica via the Stober method and finally the coated nanoparticles were functionalized with mebrofenin. Formation of crystalline magnetite particles was confirmed by X-ray diffraction (XRD) analysis. The Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray analyzer (EDX) of the final product showed that silica had been effectively bonded onto the surface of the magnetite nanoparticles and the coated nanoparticles functionalized with mebrofenin. The magnetic resonance imaging of the functional nanoparticles showed that the Fe3O4-SiO2-mebrofenin composite is an effective MRI contrast agent for liver targeting.

  18. Association of Alanine Aminotransferase and Periodontitis: A Cross-Sectional Analysis—NHANES 2009–2012

    PubMed Central

    Wiener, R. Constance; Sambamoorthi, Usha; Jurevic, Richard J.

    2016-01-01

    Objective. Alanine Aminotransferase is an enzyme associated with not only liver diseases, liver conditions, and metabolic syndrome, but also inflammation. Periodontitis is associated with increased cytokines and other markers of inflammation. The purpose of this study is to determine if an independent association between Alanine Aminotransferase and periodontitis exists. Methods. Data from the 2009-2010 and 2011-2012 National Health and Nutrition Surveys (NHANES) were combined. Data concerning periodontitis and Alanine Aminotransferase were extracted and analyzed with Rao Scott Chi-square and logistic regressions. Serum Alanine Aminotransferase was dichotomized at 40 units/liter, and periodontitis was dichotomized to the presence or absence of periodontitis. Results. In bivariate Chi-square analyses, periodontitis and Alanine Aminotransferase were associated (p = 0.0360) and remained significant in unadjusted logistic regression (OR = 1.30 [95% CI: 1.02, 1.65]). However, when other known risk factors of periodontitis were included in the analyses, the relationship attenuated and failed to reach significance (adjusted OR = 1.17 [95% CI: 0.85, 1.60]). Conclusion. Our study adds to the literature a positive but attenuated association of serum Alanine Aminotransferase with periodontitis which failed to reach significance when other known, strong risk factors of periodontitis were included in the analysis. PMID:26981311

  19. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology

    PubMed Central

    2014-01-01

    The liver is a central immunological organ. Liver resident macrophages, Kupffer cells (KC), but also sinusoidal endothelial cells, dendritic cells (DC) and other immune cells are involved in balancing immunity and tolerance against pathogens, commensals or food antigens. Hepatic stellate cells (HSCs) have been primarily characterized as the main effector cells in liver fibrosis, due to their capacity to transdifferentiate into collagen-producing myofibroblasts (MFB). More recent studies elucidated the fundamental role of HSC in liver immunology. HSC are not only the major storage site for dietary vitamin A (Vit A) (retinol, retinoic acid), which is essential for proper function of the immune system. This pericyte further represents a versatile source of many soluble immunological active factors including cytokines [e.g., interleukin 17 (IL-17)] and chemokines [C-C motif chemokine (ligand) 2 (CCL2)], may act as an antigen presenting cell (APC), and has autophagy activity. Additionally, it responds to many immunological triggers via toll-like receptors (TLR) (e.g., TLR4, TLR9) and transduces signals through pathways and mediators traditionally found in immune cells, including the Hedgehog (Hh) pathway or inflammasome activation. Overall, HSC promote rather immune-suppressive responses in homeostasis, like induction of regulatory T cells (Treg), T cell apoptosis (via B7-H1, PDL-1) or inhibition of cytotoxic CD8 T cells. In conditions of liver injury, HSC are important sensors of altered tissue integrity and initiators of innate immune cell activation. Vice versa, several immune cell subtypes interact directly or via soluble mediators with HSC. Such interactions include the mutual activation of HSC (towards MFB) and macrophages or pro-apoptotic signals from natural killer (NK), natural killer T (NKT) and gamma-delta T cells (γδ T-cells) on activated HSC. Current directions of research investigate the immune-modulating functions of HSC in the environment of liver

  20. Functional Roles of Protein Nitration in Acute and Chronic Liver Diseases

    PubMed Central

    Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2014-01-01

    Nitric oxide, when combined with superoxide, produces peroxynitrite, which is known to be an important mediator for a number of diseases including various liver diseases. Peroxynitrite can modify tyrosine residue(s) of many proteins resulting in protein nitration, which may alter structure and function of each target protein. Various proteomics and immunological methods including mass spectrometry combined with both high pressure liquid chromatography and 2D PAGE have been employed to identify and characterize nitrated proteins from pathological tissue samples to determine their roles. However, these methods contain a few technical problems such as low efficiencies with the detection of a limited number of nitrated proteins and labor intensiveness. Therefore, a systematic approach to efficiently identify nitrated proteins and characterize their functional roles is likely to shed new insights into understanding of the mechanisms of hepatic disease pathophysiology and subsequent development of new therapeutics. The aims of this review are to briefly describe the mechanisms of hepatic diseases. In addition, we specifically describe a systematic approach to efficiently identify nitrated proteins to study their causal roles or functional consequences in promoting acute and chronic liver diseases including alcoholic and nonalcoholic fatty liver diseases. We finally discuss translational research applications by analyzing nitrated proteins in evaluating the efficacies of potentially beneficial agents to prevent or treat various diseases in the liver and other tissues. PMID:24876909

  1. Inhibitors of alanine racemase enzyme: a review.

    PubMed

    Azam, Mohammed Afzal; Jayaram, Unni

    2016-08-01

    Alanine racemase is a fold type III PLP-dependent amino acid racemase enzyme catalysing the conversion of l-alanine to d-alanine utilised by bacterial cell wall for peptidoglycan synthesis. As there are no known homologs in humans, it is considered as an excellent antibacterial drug target. The standard inhibitors of this enzyme include O-carbamyl-d-serine, d-cycloserine, chlorovinyl glycine, alaphosphin, etc. d-Cycloserine is indicated for pulmonary and extra pulmonary tuberculosis but therapeutic use of drug is limited due to its severe toxic effects. Toxic effects due to off-target affinities of cycloserine and other substrate analogs have prompted new research efforts to identify alanine racemase inhibitors that are not substrate analogs. In this review, an updated status of known inhibitors of alanine racemase enzyme has been provided which will serve as a rich source of structural information and will be helpful in generating selective and potent inhibitor of alanine racemase. PMID:26024289

  2. The Complex Myeloid Network of the Liver with Diverse Functional Capacity at Steady State and in Inflammation

    PubMed Central

    Eckert, Christoph; Klein, Niklas; Kornek, Miroslaw; Lukacs-Kornek, Veronika

    2015-01-01

    In recent years, it has been an explosion of information regarding the role of various myeloid cells in liver pathology. Macrophages and dendritic cell (DC) play crucial roles in multiple chronic liver diseases such as fibrosis and non-alcoholic fatty liver disease (NAFLD). The complexity of myeloid cell populations and the missing exclusive marker combination make the interpretation of the data often extremely difficult. The current review aims to summarize the multiple roles of macrophages and DCs in chronic liver diseases, especially pointing out how these cells influence liver immune and parenchymal cells thereby altering liver function and pathology. Moreover, the review outlines the currently known marker combinations for the identification of these cell populations for the study of their role in liver immunology. PMID:25941527

  3. Complete resection of unresectable liver metastases from colorectal cancer without deterioration of liver function after cetuximab and irinotecan: two case reports.

    PubMed

    Karasaki, Takahiro; Sano, Keiji; Takamoto, Taketumi; Kinoshita, Hiroto; Tateishi, Ryosuke; Takemura, Tamiko; Makuuchi, Masatoshi

    2010-01-01

    Complete resection for colorectal metastases is the only treatment that can provide long-term survival and may lead to cure. Recent reports have shown that liver resection following systemic chemotherapy in patients with initially unresectable metastases from colorectal cancer may also result in a good long-term survival, and rescue surgery after chemotherapy has become a strategy of choice. A 29-year-old male and a 35-year-old female with unresectable liver metastases from colorectal cancer underwent complete resection after administration of third-line combination therapy of cetuximab and irinotecan. Although systemic chemotherapy may decrease liver function, which may make liver resection unfeasible, in the two cases reported, liver function did not deteriorate after cetuximab plus irinotecan. The indocyanine green retention rate at 15 minutes, which is useful in deciding the safe limit of hepatectomy, was optimal after the administration of cetuximab plus irinotecan in both patients. Cetuximab plus irinotecan may be beneficial as neoadjuvant chemotherapy for metastatic colorectal cancer, not only because of its oncological efficacy but also for preservation of liver function. PMID:21443115

  4. Vibrational dynamics of crystalline L-alanine

    SciTech Connect

    Bordallo, H.N.; Eckert, J.; Barthes, M.

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  5. Complete and rapid response to FOLFIRI plus bevacizumab in a patient presenting with impaired liver function and poor performance status from colon cancer liver metastases.

    PubMed

    Belda-Iniesta, Cristóbal; Sáenz, Enrique Casado; de Castro-Carpeño, Javier; Hernández, Elena; Barón, Manuel González

    2009-04-01

    Impaired liver function is a final complication of hepatic metastases from colon cancer. This disease status is of critical importance at first clinical presentation because of the tight therapeutic window for chemotherapy. A rapid response to treatment is required as other means of supportive care for hepatic function are limited. New targeted therapies including monoclonal antibodies directed against several proteins with key roles in colon cancer biology are now available, allowing new treatment options for this group of patients. Here, we present a patient with highly impaired liver function secondary to hepatic metastases from colon cancer that showed clinical and radiological improvement after systemic treatment including bevacizumab. PMID:19352108

  6. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives

    PubMed Central

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-01-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [3H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [3H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [3H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. PMID:26073055

  7. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    PubMed

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. PMID:26073055

  8. HepatoProteomics: Applying Proteomic Technologies to the Study of Liver Function and Disease

    SciTech Connect

    Diamond, Deborah L.; Proll, Sean; Jacobs, Jon M.; Chan, Eric Y.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2006-08-01

    The wealth of human genome sequence information now available, coupled with technological advances in robotics, nanotechnology, mass spectrometry, and information systems, has given rise to a method of scientific inquiry known as functional genomics. By using these technologies to survey gene expression and protein production on a near global scale, the goal of functional genomics is to assign biological function to genes with currently unknown roles in physiology. This approach carries particular appeal in disease research, where it can uncover the function of previously unknown genes and molecular pathways that are directly involved in disease progression. With this knowledge may come improved diagnostic techniques, prognostic capabilities, and novel therapeutic approaches. In this regard, the continuing evolution of proteomic technologies has resulted in an increasingly greater impact of proteome studies in many areas of research and hepatology is no exception. Our laboratory has been extremely active in this area, applying both genomic and proteomic technologies to the analysis of virus-host interactions in several systems, including the study of hepatitis C virus (HCV) infection and HCV-associated liver disease. Since proteomic technologies are foreign to many hepatologists (and to almost everyone else), this article will provide an overview of proteomic methods and technologies and describe how they're being used to study liver function and disease. We use our studies of HCV infection and HCV-associated liver disease to present an operational framework for performing high throughput proteome analysis and extracting biologically meaningful information.

  9. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    PubMed

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-01

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. PMID:26119066

  10. Functional interaction of transmembrane helices 3 and 6 in rhodopsin. Replacement of phenylalanine 261 by alanine causes reversion of phenotype of a glycine 121 replacement mutant.

    PubMed

    Han, M; Lin, S W; Minkova, M; Smith, S O; Sakmar, T P

    1996-12-13

    Replacement of a highly conserved glycine residue on transmembrane (TM) helix 3 of bovine rhodopsin (Gly121) by amino acid residues with larger side chains causes a progressive blue-shift in the lambdamax value of the pigment, a decrease in thermal stability, and an increase in reactivity with hydroxylamine. In addition, mutation of Gly121 causes a relative reversal in the selectivity of opsin for 11-cis-retinal over all-trans-retinal. It was suggested that Gly121 plays an important role in defining the 11-cis-retinal binding pocket of rhodopsin (Han, M., Lin, S. W., Smith, S. O., and Sakmar, T. P. (1996) J. Biol. Chem. 271, 32330-32336). Here, we combined the mutant opsin G121L with second site replacements of four different amino acid residues on TM helix 6: Met257, Val258, Phe261, or Trp265. We show that the loss of function phenotypes of the G121L mutant described above can be partially reverted specifically by the mutation of Phe261, a residue highly conserved in all G protein-coupled receptors. For example, the double-replacement mutant G121L/F261A has spectral, chromophore-binding, and transducin-activating properties intermediate between those of G121L and rhodopsin. This rescue of the G121L defects did not occur with the other second site mutations tested. We conclude that specific portions of TM helices 3 and 6, which include Gly121 and Phe261, respectively, define the chromophore-binding pocket in rhodopsin. Finally, the results are placed in the context of a molecular graphics model of the TM domain of rhodopsin, which includes the retinal-binding pocket. PMID:8943296

  11. Evaluation of Liver Function After Proton Beam Therapy for Hepatocellular Carcinoma

    SciTech Connect

    Mizumoto, Masashi; Okumura, Toshiyuki; Hashimoto, Takayuki; Fukuda, Kuniaki; Oshiro, Yoshiko; Fukumitsu, Nobuyoshi; Abei, Masato; Kawaguchi, Atsushi; Hayashi, Yasutaka; Ohkawa, Ayako; Hashii, Haruko; Kanemoto, Ayae; Moritake, Takashi; Tohno, Eriko; Tsuboi, Koji; Sakae, Takeji; Sakurai, Hideyuki

    2012-03-01

    Purpose: Our previous results for treatment of hepatocellular carcinoma with proton beam therapy (PBT) revealed excellent local control. In this study, we focused on the impact of PBT on normal liver function. Methods and Materials: The subjects were 259 patients treated with PBT at University of Tsukuba between January 2001 and December 2007. We evaluated the Child-Pugh score pretreatment, on the final day of PBT, and 6, 12, and 24 months after treatment with PBT. Patients who had disease progression or who died with tumor progression at each evaluation point were excluded from the analysis to rule out an effect of tumor progression. An increase in the Child-Pugh score of 1 or more was defined as an adverse event. Results: Of the 259 patients, 241 had no disease progression on the final day of PBT, and 91 had no progression within 12 months after PBT. In univariate analysis, the percentage volumes of normal liver receiving at least 0, 10, 20, and 30 GyE in PBT (V0, 10, 20, and 30) were significantly associated with an increase of Child-Pugh score at 12 months after PBT. Of the 91 patients evaluated at 12 months, 66 had no increase of Child-Pugh score, 15 had a 1-point increase, and 10 had an increase of {>=}2 points. For the Youden index, the optimal cut-offs for V0, V10, V20, and V30 were 30%, 20%, 26%, and 18%, respectively. Conclusion: Our findings indicate that liver function after PBT is significantly related to the percentage volume of normal liver that is not irradiated. This suggests that further study of the relationship between liver function and PBT is required.

  12. Inducible l-Alanine Exporter Encoded by the Novel Gene ygaW (alaE) in Escherichia coli ▿

    PubMed Central

    Hori, Hatsuhiro; Yoneyama, Hiroshi; Tobe, Ryuta; Ando, Tasuke; Isogai, Emiko; Katsumata, Ryoichi

    2011-01-01

    We previously isolated a mutant hypersensitive to l-alanyl-l-alanine from a non-l-alanine-metabolizing Escherichia coli strain and found that it lacked an inducible l-alanine export system. Consequently, this mutant showed a significant accumulation of intracellular l-alanine and a reduction in the l-alanine export rate compared to the parent strain. When the mutant was used as a host to clone a gene(s) that complements the dipeptide-hypersensitive phenotype, two uncharacterized genes, ygaW and ytfF, and two characterized genes, yddG and yeaS, were identified. Overexpression of each gene in the mutant resulted in a decrease in the intracellular l-alanine level and enhancement of the l-alanine export rate in the presence of the dipeptide, suggesting that their products function as exporters of l-alanine. Since ygaW exhibited the most striking impact on both the intra- and the extracellular l-alanine levels among the four genes identified, we disrupted the ygaW gene in the non-l-alanine-metabolizing strain. The resulting isogenic mutant showed the same intra- and extracellular l-alanine levels as observed in the dipeptide-hypersensitive mutant obtained by chemical mutagenesis. When each gene was overexpressed in the wild-type strain, which does not intrinsically excrete alanine, only the ygaW gene conferred on the cells the ability to excrete alanine. In addition, expression of the ygaW gene was induced in the presence of the dipeptide. On the basis of these results, we concluded that YgaW is likely to be the physiologically most relevant exporter for l-alanine in E. coli and proposed that the gene be redesignated alaE for alanine export. PMID:21531828

  13. Magnesium isoglycyrrhizinate inhibits inflammatory response through STAT3 pathway to protect remnant liver function

    PubMed Central

    Tang, Guang-Hua; Yang, Hua-Yu; Zhang, Jin-Chun; Ren, Jin-Jun; Sang, Xin-Ting; Lu, Xin; Zhong, Shou-Xian; Mao, Yi-Lei

    2015-01-01

    AIM: To investigate the protective effect of magnesium isoglycyrrhizinate (MgIG) on excessive hepatectomy animal model and its possible mechanism. METHODS: We used the standard 90% hepatectomy model in Sprague-Dawley rats developed using the modified Emond’s method, in which the left, middle, right upper, and right lower lobes of the liver were removed. Rats with 90% liver resection were divided into three groups, and were injected intraperitoneally with 3 mL saline (control group), 30 mg/kg (low-dose group) and 60 mg/kg (high-dose group) of MgIG, respectively. Animals were sacrificed at various time points and blood was drawn from the vena cava. Biochemical tests were performed with an automatic biochemical analyzer for the following items: serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyl endopeptidase, total bilirubin (TBil), direct bilirubin (DBil), total protein, albumin, blood glucose (Glu), hyper-sensitivity C-reactive protein, prothrombin time (PT), and thrombin time (TT). Postoperative survival time was observed hourly until death. Hepatocyte regeneration was analyzed by immunohistochemistry. Serum inflammatory cytokines (IL-1, IL-6, IL-10, and iNOS) was analyzed by ELISA. STAT3 protein and mRNA were analyzed by Western blot and quantitative reverse-transcription PCR, respectively. RESULTS: The high-dose group demonstrated a significantly prolonged survival time, compared with both the control and the low-dose groups (22.0 ± 4.7 h vs 8.9 ± 2.0 vs 10.3 ± 3.3 h, P = 0.018). There were significant differences among the groups in ALT, Glu and PT levels starting from 6 h after surgery. The ALT levels were significantly lower in the MgIG treated groups than in the control group. Both Glu and PT levels were significantly higher in the MgIG treated groups than in the control group. At 12 h, ALT, AST, TBil, DBil and TT levels showed significant differences between the MgIG treated groups and the control group. No significant

  14. Tests for Liver Cancer

    MedlinePlus

    ... cancer Next Topic Liver cancer stages Tests for liver cancer If you have some of the signs ... cancer has come back (recurred). Other blood tests Liver function tests (LFTs): Because liver cancer often develops ...

  15. Liver transplant - series (image)

    MedlinePlus

    The liver is in the right upper abdomen. The liver serves many functions, including the detoxification of substances delivered ... A liver transplant may be recommended for: liver damage due to alcoholism (Alcoholic cirrhosis) primary biliary cirrhosis long-term ( ...

  16. Estimating Functional Liver Reserve Following Hepatic Irradiation: Adaptive Normal Tissue Response Models

    PubMed Central

    Stenmark, Matthew H.; Cao, Yue; Wang, Hesheng; Jackson, Andrew; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2014-01-01

    Purpose To estimate the limit of functional liver reserve for safe application of hepatic irradiation using changes in indocyanine green, an established assay of liver function. Materials and Methods From 2005–2011, 60 patients undergoing hepatic irradiation were enrolled in a prospective study assessing the plasma retention fraction of indocyanine green at 15-min (ICG-R15) prior to, during (at 60% of planned dose), and after radiotherapy (RT). The limit of functional liver reserve was estimated from the damage fraction of functional liver (DFL) post-RT [1−(ICG-R15pre-RT/ICG-R15post-RT)] where no toxicity was observed using a beta distribution function. Results Of 48 evaluable patients, 3 (6%) developed RILD, all within 2.5 months of completing RT. The mean ICG-R15 for non-RILD patients pre-RT, during-RT and 1-month post-RT was 20.3%(SE 2.6), 22.0%(3.0), and 27.5%(2.8), and for RILD patients was 6.3%(4.3), 10.8%(2.7), and 47.6%(8.8). RILD was observed at post-RT damage fractions of ≥78%. Both DFL assessed by during-RT ICG and MLD predicted for DFL post-RT (p<0.0001). Limiting the post-RT DFL to 50%, predicted a 99% probability of a true complication rate <15%. Conclusion The DFL as assessed by changes in ICG during treatment serves as an early indicator of a patient’s tolerance to hepatic irradiation. PMID:24813090

  17. Cognitive functions in patients with liver cirrhosis: A tendency to commit more memory errors

    PubMed Central

    Ciećko-Michalska, Irena; Wójcik, Jan; Senderecka, Magdalena; Wyczesany, Mirosław; Binder, Marek; Szewczyk, Jakub; Dziedzic, Tomasz; Słowik, Agnieszka; Mach, Tomasz

    2013-01-01

    Background Minimal hepatic encephalopathy (MHE) is the mildest form of hepatic encephalopathy (HE). For diagnostic purposes, 2 alternative batteries of psychometric screening tests are recommended. They differ from each other in terms of the cognitive domains assessed. The research was designed to provide a profile of cognitive functioning in patients with liver cirrhosis, using an assessment that covers a wider range of cognitive functions than the usual screening battery. Material/Methods We examined 138 persons, including 88 with liver cirrhosis and 50 healthy volunteers. The Mini Mental State Examination (MMSE) was used for screening and excluding advanced cognitive impairment. Then, to assess cognitive functions in more detail, the following tests were used: Auditory Verbal Learning Test (AVLT), Letter and Semantic Fluency Tests (LF and SF), Trail Making Test (TMT A&B), Digit Symbol Test (DST), Block Design Test (BDT), and Mental Rotation Test (MRT). The MRT task has not been used in MHE diagnosis so far. Finally, 57 patients and 48 controls took part in the entire study. Results Patients with liver cirrhosis commit significantly more errors of intrusions in the AVLT during the delayed free recall trial. Results significantly deviating from the norm in at least 2 tests were found only in 7 cirrhosis patients. Conclusions The results do not provide any specific profile of cognitive disturbances in MHE, but suggest that cirrhosis patients have a tendency to commit more memory errors, probably due to subtle impairments of executive function. PMID:23598598

  18. Detection of serum AFB1-lysine adduct in Malaysia and its association with liver and kidney functions.

    PubMed

    Mohd Redzwan, S; Rosita, Jamaluddin; Mohd Sokhini, A M; Nurul 'Aqilah, A R; Wang, Jia-Sheng; Kang, Min-Su; Zuraini, Ahmad

    2014-01-01

    Aflatoxin is ubiquitously found in many foodstuffs and produced by Aspergillus species of fungi. Of many aflatoxin metabolites, AFB1 is classified by the International Agency for Research on Cancer (IARC) as group one carcinogen and linked to the development of hepatocellular carcinoma (HCC). The study on molecular biomarker of aflatoxin provides a better assessment on the extent of human exposure to aflatoxin. In Malaysia, the occurrences of aflatoxin-contaminated foods have been documented, but there is a lack of data on human exposure to aflatoxin. Hence, this study investigated the occurrence of AFB1-lysine adduct in serum samples and its association with liver and kidney functions. 5ml fasting blood samples were collected from seventy-one subjects (n=71) for the measurement of AFB1-lysine adduct, albumin, total bilirubin, AST (aspartate aminotransferase), ALT (alanine transaminase), ALP (alkaline phosphatase), GGT (gamma-glutamyl transpeptidase), creatinine and BUN (blood urea nitrogen). The AFB1-lysine adduct was detected in all serum samples (100% detection rate) with a mean of 6.85±3.20pg/mg albumin (range: 1.13-18.85pg/mg albumin). Male subjects (mean: 8.03±3.41pg/mg albumin) had significantly higher adduct levels than female subjects (mean: 5.64±2.46pg/mg albumin) (p<0.01). It was noteworthy that subjects with adduct levels greater than average (>6.85pg/mg albumin) had significantly elevated level of total bilirubin (p<0.01), GGT (p<0.05) and creatinine (p<0.01). Nevertheless, only the level of total bilirubin, (r=0.347, p-value=0.003) and creatinine (r=0.318, p-value=0.007) showed significant and positive correlation with the level of AFB1-lysine adduct. This study provides a valuable insight on human exposure to aflatoxin in Malaysia. Given that aflatoxin can pose serious problem to the health, intervention strategies should be implemented to limit/reduce human exposure to aflatoxin. Besides, a study with a big sample size should be warranted in

  19. Restoration of Liver Function and Portosystemic Pressure Gradient after TIPSS and Late TIPSS Occlusion

    SciTech Connect

    Maedler, U.; Hansmann, J.; Duex, M.; Noeldge, G.; Sauer, P.; Richter, G.M.

    2002-03-15

    TIPSS (transjugular intrahepatic portosystemic shunt) may be indicated to control bleeding from esophageal and gastric varicose veins, to reduce ascites, and to treat patients with Budd-Chiari syndrome and veno-occlusive disease. Numerous measures to improve the safety and methodology of the procedure have helped to increase the technical and clinical success. Follow-up of TIPSS patients has revealed shunt stenosis to occur more often in patients with preserved liver function (Child A, Child B). In addition, the extent of liver cirrhosis is the main factor that determines prognosis in the long term. Little is known about the effects of TIPSS with respect to portosystemic hemodynamics. This report deals with a cirrhotic patient who stopped drinking 7 months prior to admission. He received TIPSS to control ascites and recurrent esophageal bleeding. Two years later remarkable hypertrophy of the left liver lobe and shunt occlusion was observed. The portosystemic pressure gradient dropped from 24 mmHg before TIPSS to 11 mmHg and remained stable after shunt occlusion. The Child's B cirrhosis prior to TIPSS turned into Child's A cirrhosis and remained stable during the follow-up period of 32 months. This indicates that liver function of TIPSS patients may recover due to hypertrophy of the remaining non-cirrhotic liver tissue. In addition the hepatic hemodynamics may return to normal. In conclusion, TIPSS cannot cure cirrhosis but its progress may be halted if the cause can be removed. This may result in a normal portosystemic gradient, leading consequently to shunt occlusion.

  20. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis.

    PubMed

    Karsdal, Morten A; Manon-Jensen, Tina; Genovese, Federica; Kristensen, Jacob H; Nielsen, Mette J; Sand, Jannie Marie B; Hansen, Niels-Ulrik B; Bay-Jensen, Anne-Christine; Bager, Cecilie L; Krag, Aleksander; Blanchard, Andy; Krarup, Henrik; Leeming, Diana J; Schuppan, Detlef

    2015-05-15

    Emerging evidence suggests that altered components and posttranslational modifications of proteins in the extracellular matrix (ECM) may both initiate and drive disease progression. The ECM is a complex grid consisting of multiple proteins, most of which play a vital role in containing the essential information needed for maintenance of a sophisticated structure anchoring the cells and sustaining normal function of tissues. Therefore, the matrix itself may be considered as a paracrine/endocrine entity, with more complex functions than previously appreciated. The aims of this review are to 1) explore key structural and functional components of the ECM as exemplified by monogenetic disorders leading to severe pathologies, 2) discuss selected pathological posttranslational modifications of ECM proteins resulting in altered functional (signaling) properties from the original structural proteins, and 3) discuss how these findings support the novel concept that an increasing number of components of the ECM harbor signaling functions that can modulate fibrotic liver disease. The ECM entails functions in addition to anchoring cells and modulating their migratory behavior. Key ECM components and their posttranslational modifications often harbor multiple domains with different signaling potential, in particular when modified during inflammation or wound healing. This signaling by the ECM should be considered a paracrine/endocrine function, as it affects cell phenotype, function, fate, and finally tissue homeostasis. These properties should be exploited to establish novel biochemical markers and antifibrotic treatment strategies for liver fibrosis as well as other fibrotic diseases. PMID:25767261

  1. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis

    PubMed Central

    Manon-Jensen, Tina; Genovese, Federica; Kristensen, Jacob H.; Nielsen, Mette J.; Sand, Jannie Marie B.; Hansen, Niels-Ulrik B.; Bay-Jensen, Anne-Christine; Bager, Cecilie L.; Krag, Aleksander; Blanchard, Andy; Krarup, Henrik; Leeming, Diana J.; Schuppan, Detlef

    2015-01-01

    Emerging evidence suggests that altered components and posttranslational modifications of proteins in the extracellular matrix (ECM) may both initiate and drive disease progression. The ECM is a complex grid consisting of multiple proteins, most of which play a vital role in containing the essential information needed for maintenance of a sophisticated structure anchoring the cells and sustaining normal function of tissues. Therefore, the matrix itself may be considered as a paracrine/endocrine entity, with more complex functions than previously appreciated. The aims of this review are to 1) explore key structural and functional components of the ECM as exemplified by monogenetic disorders leading to severe pathologies, 2) discuss selected pathological posttranslational modifications of ECM proteins resulting in altered functional (signaling) properties from the original structural proteins, and 3) discuss how these findings support the novel concept that an increasing number of components of the ECM harbor signaling functions that can modulate fibrotic liver disease. The ECM entails functions in addition to anchoring cells and modulating their migratory behavior. Key ECM components and their posttranslational modifications often harbor multiple domains with different signaling potential, in particular when modified during inflammation or wound healing. This signaling by the ECM should be considered a paracrine/endocrine function, as it affects cell phenotype, function, fate, and finally tissue homeostasis. These properties should be exploited to establish novel biochemical markers and antifibrotic treatment strategies for liver fibrosis as well as other fibrotic diseases. PMID:25767261

  2. Vicarious liver visualization in solitary functioning kidney with technetium-99m ethylenedicysteine renal scintigraphy

    PubMed Central

    Jain, Tarun Kumar; Phulsunga, Rohit Kumar; Gupta, Nitin; Sood, Ashwani; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2015-01-01

    We present a case of 3-year-old boy who was incidentally diagnosed to have single left kidney on ultrasonography. Dynamic technetium-99m ethylenedicysteine renal scintigraphy was acquired for assessing the existing kidney function showed the tracer localization in bilateral renal fossae during the entire study. The single-photon emission computerized tomography/computerized tomography study revealed activity in the right renal fossa to be in the enlarged right lobe of the liver, which was mimicking as impaired functioning right kidney in planar images. The hybrid imaging helped in accurate delineation of tracer uptake by confirming it to be the false appearance of the right kidney in planar imaging. This case report also highlights the possible mechanism of renal tracer uptake in the liver parenchyma. PMID:26170576

  3. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice

    PubMed Central

    Itagaki, Hiroko; Shimizu, Kazuhiko; Morikawa, Shunichi; Ogawa, Kenji; Ezaki, Taichi

    2013-01-01

    Background: Non-alcoholic fatty liver disease (NAFLD), including non-alcoholic steatohepatitis (NASH), appears to be increasingly common worldwide. Its histopathology and the effects of nutrition on liver function have not been fully determined. Aim: To elucidate the cellular mechanisms of NAFLD induced by a methionine-choline-deficient (MCD) diet in mice. Particular focus was placed on the role of phagocytic cells. Methods: Male C57BL/6 mice were fed an MCD diet for 30 weeks. A recovery model was also established wherein a normal control diet was provided for 2 weeks after a period of 8, 16, or 30 weeks. Results: Mice fed the MCD diet for ≥2 weeks exhibited severe steatohepatitis with elevated serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Steatohepatitis was accompanied by the infiltration of CD68-positive macrophages (Kupffer cells). The severity of steatohepatitis increased in the first 16 weeks but was seen to lessen by week 30. Fibrosis began to develop at 10 weeks and continued thereafter. Steatohepatitis and elevated serum hepatic enzyme concentrations returned to normal levels after switching the diet back to the control within the first 16 weeks, but fibrosis and CD68-positive macrophages remained. Conclusions: The histopathological changes and irreversible fibrosis seen in this model were caused by prolonged feeding of an MCD diet. These results were accompanied by changes in the activity of CD68-positive cells with temporary elevation of CCL-2, MMP-13, and MMP-9 levels, all of which may trigger early steatohepatitis and late fibrosis through phagocytosis-associated MMP induction. PMID:24294355

  4. Acetyl-L-carnitine and lipoic acid improve mitochondrial abnormalities and serum levels of liver enzymes in a mouse model of nonalcoholic fatty liver disease.

    PubMed

    Kathirvel, Elango; Morgan, Kengathevy; French, Samuel W; Morgan, Timothy R

    2013-11-01

    Mitochondrial abnormalities are suggested to be associated with the development of nonalcoholic fatty liver. Liver mitochondrial content and function have been shown to improve in oral feeding of acetyl-L-carnitine (ALC) to rodents. Carnitine is involved in the transport of acyl-coenzyme A across the mitochondrial membrane to be used in mitochondrial β-oxidation. We hypothesized that oral administration ALC with the antioxidant lipoic acid (ALC + LA) would benefit nonalcoholic fatty liver. To test our hypothesis, we fed Balb/C mice a standard diet (SF) or SF with ALC + LA or high-fat diet (HF) or HF with ALC + LA for 6 months. Acetyl-L-carnitine and LA were dissolved at 0.2:0.1% (wt/vol) in drinking water, and mice were allowed free access to food and water. Along with physical parameters, insulin resistance (blood glucose, insulin, glucose tolerance), liver function (alanine transaminase [ALT], aspartate transaminase [AST]), liver histology (hematoxylin and eosin), oxidative stress (malondialdehyde), and mitochondrial abnormalities (carbamoyl phosphate synthase 1 and electron microscopy) were done. Compared with SF, HF had higher body, liver, liver-to-body weight ratio, white adipose tissue, ALT, AST, liver fat, oxidative stress, and insulin resistance. Coadministration of ALC + LA to HF animals significantly improved the mitochondrial marker carbamoyl phosphate synthase 1 and the size of the mitochondria in liver. Alanine transaminase and AST levels were decreased. In a nonalcoholic fatty liver mice model, ALC + LA combination improved liver mitochondrial content, size, serum ALT, and AST without significant changes in oxidative stress, insulin resistance, and liver fat accumulation. PMID:24176233

  5. Dose-response relationship between arsenic exposure and the serum enzymes for liver function tests in the individuals exposed to arsenic: a cross sectional study in Bangladesh

    PubMed Central

    2011-01-01

    Background Chronic arsenic exposure has been shown to cause liver damage. However, serum hepatic enzyme activity as recognized on liver function tests (LFTs) showing a dose-response relationship with arsenic exposure has not yet been clearly documented. The aim of our study was to investigate the dose-response relationship between arsenic exposure and major serum enzyme marker activity associated with LFTs in the population living in arsenic-endemic areas in Bangladesh. Methods A total of 200 residents living in arsenic-endemic areas in Bangladesh were selected as study subjects. Arsenic concentrations in the drinking water, hair and nails were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The study subjects were stratified into quartile groups as follows, based on concentrations of arsenic in the drinking water, as well as in subjects' hair and nails: lowest, low, medium and high. The serum hepatic enzyme activities of alkaline phosphatase (ALP), aspartate transaminase (AST) and alanine transaminase (ALT) were then assayed. Results Arsenic concentrations in the subjects' hair and nails were positively correlated with arsenic levels in the drinking water. As regards the exposure-response relationship with arsenic in the drinking water, the respective activities of ALP, AST and ALT were found to be significantly increased in the high-exposure groups compared to the lowest-exposure groups before and after adjustments were made for different covariates. With internal exposure markers (arsenic in hair and nails), the ALP, AST and ALT activity profiles assumed a similar shape of dose-response relationship, with very few differences seen in the higher groups compared to the lowest group, most likely due to the temporalities of exposure metrics. Conclusions The present study demonstrated that arsenic concentrations in the drinking water were strongly correlated with arsenic concentrations in the subjects' hair and nails. Further, this study revealed a

  6. A Randomized Controlled Trial of the Effects of an Almond-enriched, Hypocaloric Diet on Liver Function Tests in Overweight/Obese Women

    PubMed Central

    Abazarfard, Zohreh; Eslamian, Ghazaleh; Salehi, Mousa; Keshavarzi, Sareh

    2016-01-01

    Background: Gradual weight reduction has been shown to be associated with improvements in liver enzymes. However, some evidence demonstrated that liver enzymes may transiently increase immediately after a diet-induced weight loss. Objectives: This study was designed to assess the effects of a hypocaloric, almond-enriched diet (AED) compared with a hypocaloric nut-free diet (NFD) on liver function tests in the context of a three-month weight reduction program in overweight/obese women. Patients and Methods: This randomized controlled clinical trial was registered at Iranian Registry of Clinical Trials with ID number of IRCT2013062313751N1. Overweight and obese Iranian women [n = 108; age = 42.7 y, body mass index = 29.6 kg/m2] were randomly assigned to consume an AED or NFD. The carefully planned hypocaloric diets were identical for both groups except for the AED group who consumed 50 grams of almonds daily for three months. Anthropometric measurements and laboratory measurements including alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamyltransferase (GGT) were assessed before and immediately after the intervention. Results: Of 108 participants, 50 women in AED group and 50 women in NFD group completed the protocol of the study (response rate: 92.6 %). The AED led to a median weight loss of 3.79 kg (interquartile range: 4.4 kg). Significant decreases within AED and NFD were observed in ALT (-16.6 ± 16.3 and -11.7 ± 16.8, P < 0.001, respectively). Similar significant decreases were observed in AST (-13.6 ± 15.7 and -7.7 ± 16.1; P < 0.001, respectively). The decrease in GGT was also significant in both groups (-11.4 ± 21.6 and -6.2 ± 19.8; P < 0.001 respectively). ALT, AST and GGT decreased significantly in the AED group compared to the NFD group (P < 0.001). Conclusions: AED improved liver enzymes in obese women. However, mild, transient increases in ALT and AST values can be observed immediately after

  7. Long Term Liver Engraftment of Functional Hepatocytes Obtained from Germline Cell-Derived Pluripotent Stem Cells

    PubMed Central

    Fagoonee, Sharmila; Famulari, Elvira Smeralda; Silengo, Lorenzo; Tolosano, Emanuela; Altruda, Fiorella

    2015-01-01

    One of the major hurdles in liver gene and cell therapy is availability of ex vivo-expanded hepatocytes. Pluripotent stem cells are an attractive alternative. Here, we show that hepatocyte precursors can be isolated from male germline cell-derived pluripotent stem cells (GPSCs) using the hepatoblast marker, Liv2, and induced to differentiate into hepatocytes in vitro. These cells expressed hepatic-specific genes and were functional as demonstrated by their ability to secrete albumin and produce urea. When transplanted in the liver parenchyma of partially hepatectomised mice, Liv2-sorted cells showed regional and heterogeneous engraftment in the injected lobe. Moreover, approximately 50% of Y chromosome-positive, GPSC-derived cells were found in the female livers, in the region of engraftment, even one month after cell injection. This is the first study showing that Liv2-sorted GPSCs-derived hepatocytes can undergo long lasting engraftment in the mouse liver. Thus, GPSCs might offer promise for regenerative medicine. PMID:26323094

  8. [Structuro-functional changes in dog liver and regional lymph node lysosomes in toxic hepatitis].

    PubMed

    Borodin, Iu I; Korolenko, T A; Malygin, A E; Pupyshev, A B; Sharaĭkina, E O

    1978-10-01

    Structural and functional changes in the dog liver and regional lymph nodes lysosomes were studied during toxic hepatitis induced by CCl4 administration (single and repeated). Total activity of lysosomal enzymes (acid RNA-ase and beta-galactosidase) was higher in the regional lymph nodes than in the liver, reflecting the barrier, protective function of the organ. During acute toxic hepatitis the specific activities of acid RNA-ase and cathepsin D displayed a sharp rise. No normalization of the indices under study occurred during the observation period (from 8 to 30 days). At the same time there was a rise of the regional lymph node weight and an elevation of the relative macrophage and neutrophil content in the sinuses. The increased activity of the lysosome enzymes in the regional lymph nodes in injury of the liver was connected with greater functional load on the lymph nodes effecting hydrolysis of biopolymeres which penetrated into the regional lymphatic node with the lymph. PMID:708870

  9. Outcomes following liver trauma in equestrian accidents

    PubMed Central

    2014-01-01

    Background Equestrian sports are common outdoor activities that may carry a risk of liver injury. Due to the relative infrequency of equestrian accidents the injury patterns and outcomes associated with liver trauma in these patients have not been well characterized. Methods We examined our experience of the management of equestrian liver trauma in our regional hepatopancreaticobiliary unit at a tertiary referral center. The medical records of patients who sustained liver trauma secondary to equestrian activities were analysed for parameters such as demographic data, liver function tests, patterns of injury, radiological findings, the need for intervention and outcomes. Results 20 patients sustained liver trauma after falling from or being kicked by a horse. The majority of patients were haemodynamically stable on admission. Alanine transaminase (ALT) levels were elevated in all patients and right-sided rib fractures were a frequently associated finding. CT demonstrated laceration of the liver in 12 patients, contusion in 3 and subcapsular haematoma in 2. The right lobe of the liver was most commonly affected. Only two patients required laparotomy and liver resection; the remaining 18 were successfully managed conservatively. Conclusions The risk of liver injury following a horse kick or falling off a horse should not be overlooked. Early CT imaging is advised in these patients, particularly in the presence of high ALT levels and concomitant chest injuries such as rib fractures. Despite significant liver trauma, conservative management in the form of close observation, ideally in a high-dependency setting, is often sufficient. Laparotomy is only rarely warranted and associated with a significantly higher risk of post-operative bile leaks. PMID:25177363

  10. Comparative Functional Alanine Positional Scanning of the α-Melanocyte Stimulating Hormone and NDP-Melanocyte Stimulating Hormone Demonstrates Differential Structure-Activity Relationships at the Mouse Melanocortin Receptors.

    PubMed

    Todorovic, Aleksandar; Ericson, Mark D; Palusak, Ryan D; Sorensen, Nicholas B; Wood, Michael S; Xiang, Zhimin; Haskell-Luevano, Carrie

    2016-07-20

    The melanocortin system has been implicated in the regulation of various physiological functions including melanogenesis, steroidogenesis, energy homeostasis, and feeding behavior. Five melanocortin receptors have been identified to date and belong to the family of G protein-coupled receptors (GPCR). Post-translational modification of the proopiomelanocortin (POMC) prohormone leads to the biosynthesis of the endogenous melanocortin agonists, including α-melanocyte stimulating hormone (α-MSH), β-MSH, γ-MSH, and adrenocorticotropic hormone (ACTH). All the melanocortin agonists derived from the POMC prohormone contain a His-Phe-Arg-Trp tetrapeptide sequence that has been implicated in eliciting the pharmacological responses at the melanocortin receptors. Herein, an alanine (Ala) positional scan is reported for the endogenous α-MSH ligand and the synthetic, more potent, NDP-MSH peptide (Ac-Ser(1)-Tyr(2)-Ser(3)-Nle(4)-Glu(5)-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH2) at the cloned mouse melanocortin receptors to test the assumption that the structure-activity relationships of one ligand would apply to the other. Several residues outside of the postulated pharmacophore altered potency at the melanocortin receptors, most notably the 1560-, 37-, and 15-fold potency loss when the Glu(5) position of α-MSH was substituted with Ala at the mMC1R, mMC3R, and mMC4R, respectively. Importantly, the altered potencies due to Ala substitutions in α-MSH did not necessarily correlate with equivalent Ala substitutions in NDP-MSH, indicating that structural modifications and corresponding biological activities in one of these melanocortin ligands may not be predictive for the other agonist. PMID:27135265

  11. How similar is the electronic structures of β-lactam and alanine?

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhojyoti; Ahmed, Marawan; Wang, Feng

    2016-02-01

    The C1s spectra of β-lactam i.e. 2-azetidinone (C3H5NO), a drug and L-alanine (C3H7NO2), an amino acid, exhibit striking similarities, which may be responsible for the competition between 2-azetidinone and the alanyl-alanine moiety in biochemistry. The present study is to reveal the degree of similarities and differences between their electronic structures of the two model molecular pairs. It is found that the similarities in C1s and inner valence binding energy spectra are due to their bonding connections but other properties such as ring structure (in 2-azetidinone) and chiral carbon (alanine) can be very different. Further, the inner valence region of ionization potential greater than 18 eV for 2-azetidinone and alanine is also significantly similar. Finally the strained lactam ring exhibits more chemical reactivity measured at all non-hydrogen atoms by Fukui functions with respect to alanine.

  12. Generation and functional significance of CXC chemokines for neutrophil-induced liver injury during endotoxemia.

    PubMed

    Dorman, Robert B; Gujral, Jaspreet S; Bajt, Mary Lynn; Farhood, Anwar; Jaeschke, Hartmut

    2005-05-01

    The hypothesis that the neutrophil chemoattractant CXC chemokines KC and macrophage inflammatory protein-2 (MIP-2) are involved in neutrophil transmigration and liver injury was tested in C3Heb/FeJ mice treated with galactosamine (Gal, 700 mg/kg), endotoxin (ET, 100 microg/kg), or Gal + ET (Gal/ET). Hepatic KC and MIP-2 mRNA levels and plasma CXC chemokine concentrations were dramatically increased 1.5 h after Gal/ET or ET alone and gradually declined up to 7 h. Murine recombinant cytokines (TNF-alpha, IL-1 alpha, and IL-1 beta), but not Gal/ET, induced CXC chemokine formation in the ET-resistant C3H/HeJ strain. To assess the functional importance of KC and MIP-2, C3Heb/FeJ mice were treated with Gal/ET and control IgG or a combination of anti-KC and anti-MIP-2 antibodies. Anti-CXC chemokine antibodies did not attenuate hepatocellular apoptosis, sinusoidal neutrophil sequestration and extravasation, or liver injury at 7 h. Furthermore, there was no difference in liver injury between BALB/cJ wild-type and CXC receptor-2 gene knockout (CXCR2-/-) mice treated with Gal/ET. The higher neutrophil count in livers of CXCR2-/- than in wild-type mice after Gal/ET was caused by the elevated number of neutrophils located in sinusoids of untreated CXCR2-/- animals. The pancaspase inhibitor Z-Val-Ala-Asp-fluoromethylketone eliminated Gal/ET-induced apoptosis and neutrophil extravasation and injury but not CXC chemokine formation. Thus Gal/ET induced massive, cytokine-dependent CXC chemokine formation in the liver. However, neutrophil extravasation and injury occurred in response to apoptotic cell injury at 6-7 h and was independent of CXC chemokine formation. PMID:15576625

  13. Spectrophotometric readout for an alanine dosimeter for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Ebraheem, S.; Beshir, W. B.; Eid, S.; Sobhy, R.; Kovács, A.

    2003-06-01

    The alanine-electron spin resonance (EPR) readout system is well known as a reference and transfer dosimetry system for the evaluation of high doses in radiation processing. The high cost of an EPR/alanine dosimetry system is a serious handicap for large-scale routine application in irradiation facilities. In this study, the use of a complex produced by dissolving irradiated L-alanine in 1,4-phenyl diammonium dichloride solution was investigated for dosimetry purposes. This complex—having a purple colour—has an increasing absorbance with increasing dose in the range of 1-20 kGy. The applicability of spectrophotometric evaluation was studied by measuring the absorbance intensity of this complex at 360 and 505 nm, respectively. Fluorimetric evaluation was also investigated by measuring the emission of the complex at 435 nm as a function of dose. The present method is easy for routine application. The effect of the dye concentration as well as the suitable amount of irradiated alanine has been studied. With respect to routine application, the stability of the product complex after its formation was also investigated.

  14. The Correlation Between Serum Adipokines and Liver Cell Damage in Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Jamali, Raika; Hatami, Neda; Kosari, Farid

    2016-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic hepatitis, which can lead to cirrhosis and hepatocellular carcinoma. Objectives The aim of the study was to evaluate the correlation between serum adipocytokines and the histologic findings of the liver in patients with non-alcoholic fatty liver disease (NAFLD). Patients and Methods This case-control study was performed on those with persistent elevated liver enzymes and with evidence of fatty liver in ultrasonography. After exclusion of patients with other etiologies causing abnormal liver function tests, the resulting patients underwent liver biopsies. NAFLD was diagnosed based on liver histology according to the Brunt scoring system. Results Waist circumferences and levels of blood glucose (after fasting), insulin, triglycerides, alanine aminotransferases (ALT), and aspartate aminotransferases (AST) were higher in patients with NAFLD than in those in the control group. ALT, AST, and gamma glutamine transferase (GGT) levels were lower in patients with liver steatosis of a grade of less than 33% than those with higher degrees of steatosis. Serum low-density lipoprotein (LDL), cholesterol, and hepcidin levels were significantly higher in those with lobular inflammation of grade 0 - 1 than in those with inflammation of grade 2 - 3 (Brunt score). Meanwhile, AST was significantly lower in those with lobular inflammation of grade 1 than in those with grade 2-3. Hepcidin and resistin levels were significantly higher in patients with moderate to severe fibrosis than in those with mild fibrosis. Conclusions It seems that surrogate liver function tests and adipocytokine levels were correlated with the histologic findings of the liver. PMID:27313636

  15. Function of the liver and bile ducts in humans exposed to lead.

    PubMed

    Kasperczyk, A; Dziwisz, M; Ostałowska, A; Swietochowska, E; Birkner, E

    2013-08-01

    Lead is very common in the environment, and it is therefore important to characterize its possible adverse health effects. The aim of this study was to evaluate the impact of lead exposure on selected functions of the liver and bile ducts in people who are chronically exposed to the metal because of their occupations. To provide this information, the activity of specific enzymes and the bilirubin concentration were determined in blood serum, and morphological parameters of the liver and bile ducts were evaluated using the ultrasonic imaging method. Healthy male employees of a lead-zinc processing facility (n = 145) who were occupationally exposed to lead were divided into two subgroups as a function of the lead concentrations in blood (PbB): low lead exposure (PbB = 20-35 μg/dl; n = 57) and high lead exposure (PbB = 35-60 μg/dl; n = 88). Human exposure to lead compounds was found to cause liver enlargement and to activate inflammatory reactions with the characteristics of moderate cholestasis within the bile ducts, while no characteristics of necrotic damage of hepatic cells were noted. It seems that lipid peroxidation can be one of the toxic mechanisms of lead which induce moderate cholestasis. The effects depend on the extent of the lead exposure and were greater in subjects with higher exposure levels, particularly subjects with PbB values greater than 35 μg/dl. PMID:23529799

  16. Assessment of liver function in dogs using the 13C-galactose breath test.

    PubMed

    Silva, S; Wyse, C A; Goodfellow, M R; Yam, P S; Preston, T; Papasouliotis, K; Hall, E J

    2010-08-01

    The aim of this study was to evaluate the application of the 13C-galactose breath test (13C-GBT) in assessing canine liver function by applying it to a group of healthy dogs, and to a group with clinicopathological evidence of liver dysfunction. Breath samples were collected 30 min before ingestion of 13C-galactose, and then at regular intervals thereafter for 6 h. The proportion of 13CO2/12CO2 in the breath samples was measured by isotope-ratio mass spectrometry. There was no significant difference in recovery of 13CO2 in the diseased group, compared to the healthy controls, but there was considerable inter-subject variation in both groups, possibly due to differences in the rate of gastric emptying, which could preclude detection of alterations in hepatic metabolism of galactose. The results of this study do not support the application of the 13C-GBT for assessment of canine liver function. PMID:19546016

  17. In vitro gene regulatory networks predict in vivo function of liver

    PubMed Central

    2010-01-01

    Background Evolution of toxicity testing is predicated upon using in vitro cell based systems to rapidly screen and predict how a chemical might cause toxicity to an organ in vivo. However, the degree to which we can extend in vitro results to in vivo activity and possible mechanisms of action remains to be fully addressed. Results Here we use the nitroaromatic 2,4,6-trinitrotoluene (TNT) as a model chemical to compare and determine how we might extrapolate from in vitro data to in vivo effects. We found 341 transcripts differentially expressed in common among in vitro and in vivo assays in response to TNT. The major functional term corresponding to these transcripts was cell cycle. Similarly modulated common pathways were identified between in vitro and in vivo. Furthermore, we uncovered the conserved common transcriptional gene regulatory networks between in vitro and in vivo cellular liver systems that responded to TNT exposure, which mainly contain 2 subnetwork modules: PTTG1 and PIR centered networks. Interestingly, all 7 genes in the PTTG1 module were involved in cell cycle and downregulated by TNT both in vitro and in vivo. Conclusions The results of our investigation of TNT effects on gene expression in liver suggest that gene regulatory networks obtained from an in vitro system can predict in vivo function and mechanisms. Inhibiting PTTG1 and its targeted cell cyle related genes could be key machanism for TNT induced liver toxicity. PMID:21073692

  18. Lipid Profiling and Transcriptomic Analysis Reveals a Functional Interplay between Estradiol and Growth Hormone in Liver

    PubMed Central

    Fernández-Pérez, Leandro; Santana-Farré, Ruymán; de Mirecki-Garrido, Mercedes; García, Irma; Guerra, Borja; Mateo-Díaz, Carlos; Iglesias-Gato, Diego; Díaz-Chico, Juan Carlos; Flores-Morales, Amilcar; Díaz, Mario

    2014-01-01

    17β-estradiol (E2) may interfere with endocrine, metabolic, and gender-differentiated functions in liver in both females and males. Indirect mechanisms play a crucial role because of the E2 influence on the pituitary GH secretion and the GHR-JAK2-STAT5 signaling pathway in the target tissues. E2, through its interaction with the estrogen receptor, exerts direct effects on liver. Hypothyroidism also affects endocrine and metabolic functions of the liver, rendering a metabolic phenotype with features that mimic deficiencies in E2 or GH. In this work, we combined the lipid and transcriptomic analysis to obtain comprehensive information on the molecular mechanisms of E2 effects, alone and in combination with GH, to regulate liver functions in males. We used the adult hypothyroid-orchidectomized rat model to minimize the influence of internal hormones on E2 treatment and to explore its role in male-differentiated functions. E2 influenced genes involved in metabolism of lipids and endo-xenobiotics, and the GH-regulated endocrine, metabolic, immune, and male-specific responses. E2 induced a female-pattern of gene expression and inhibited GH-regulated STAT5b targeted genes. E2 did not prevent the inhibitory effects of GH on urea and amino acid metabolism-related genes. The combination of E2 and GH decreased transcriptional immune responses. E2 decreased the hepatic content of saturated fatty acids and induced a transcriptional program that seems to be mediated by the activation of PPARα. In contrast, GH inhibited fatty acid oxidation. Both E2 and GH replacements reduced hepatic CHO levels and increased the formation of cholesterol esters and triacylglycerols. Notably, the hepatic lipid profiles were endowed with singular fingerprints that may be used to segregate the effects of different hormonal replacements. In summary, we provide in vivo evidence that E2 has a significant impact on lipid content and transcriptome in male liver and that E2 exerts a marked influence on

  19. Liver disease alters high-density lipoprotein composition, metabolism and function.

    PubMed

    Trieb, Markus; Horvath, Angela; Birner-Gruenberger, Ruth; Spindelboeck, Walter; Stadlbauer, Vanessa; Taschler, Ulrike; Curcic, Sanja; Stauber, Rudolf E; Holzer, Michael; Pasterk, Lisa; Heinemann, Akos; Marsche, Gunther

    2016-07-01

    High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk. PMID:27106140

  20. [Biochemical parameters of blood and morpho-functional state of the liver of experimental animals by the actions of lead sulfide nanoparticles in different time study].

    PubMed

    Omel'chuk, S T; Aleksiĭchuk, V D; Sokurenko, L M

    2014-01-01

    Biochemical studies revealed that alanine aminotransferase levels changing first during short action (30 injections) of lead sulfide nanoparticles of size 10 and 30 nm, and the ionic form of a 400 nm lead while the growth of both enzymes (aspartate aminotransferase and alanine aminotransferase) activity during long-term exposure (60 injections) is the same intensity. It it confirmed by the value of de Ritis coefficient, which is statistically the same as control. Morphological studies also confirm these data--degenerative changes of hepatocytes, reactive changes of the stroma and vascular responses were detected. It is shown that the severity of metabolic and morphological damages in the liver increased with prolonging the duration of lead nanoparticles intake. PMID:25286610

  1. Effect of delayed CNI-based immunosuppression with Advagraf® on liver function after MELD-based liver transplantation [IMUTECT

    PubMed Central

    2014-01-01

    Background MELD-based allocation for liver transplantation follows the “sickest-patient-first” strategy. The latter patients present with both, decreased immune competence and poor kidney function which is further impaired by immunosuppressants. Methods/Design In this prospective observational study, 50 patients with de novo low-dose standard Advagraf®-based immunosuppression consisting of Advagraf®, Mycophenolat-mofetil and Corticosteroids after liver transplantation will be evaluated. Advagraf® trough levels of 7-10 μg/l will be reached at the end of the first postoperative week. Immunostatus, infectious complications, graft and kidney function are compared between patients with a pretransplant calculated MELD-score of ≤20 and >20. Each group comprises of 25 consecutive patients. Prior to liver transplantation and on the postoperative days 1, 3 and 7, the patients’ graft function (LiMAx test) will be evaluated. On the postoperative days 3, 5 and 7 the patients’ immune status will be evaluated by the measurement of their monocytic HLA-DR status. Infectious complications (CMV-reactivation, wound infection, urinary tract infection, and pneumonia), graft- and kidney function will be analysed on day 0, within the first week, and 1, 3, 6, 9 and 12 months after liver transplantation. Discussion This study was designed to assess the effect of a standard low-dose Calcineurin inhibitor-based immunosuppression regime with Advagraf® on the rate of infectious complications, graft and renal function after liver transplantation. Trial registration The trial is registered at “Clinical Trials” (http://www.clinicaltrials.gov), NCT01781195. PMID:25178675

  2. Individualized Immunosuppressive Protocol of Liver Transplant Recipient Should be Made Based on Splenic Function Status

    PubMed Central

    Song, Ji-Yong; Du, Guo-Sheng; Xiao, Li; Chen, Wen; Suo, Long-Long; Gao, Yu; Feng, Li-Kui; Shi, Bing-Yi

    2016-01-01

    Background: Lymphocyte subsets play important roles in rejection in liver transplant recipients, and the effect of splenic function on these roles remains unknown. The aim of this study was to explore the feasibility to adjust immunosuppressive agents based on splenic function status through detecting the lymphocyte subsets in liver transplant recipients. Methods: The lymphocyte subsets of 49 liver transplant recipients were assessed in the 309th Hospital of Chinese People's Liberation Army between June 2014 and August 2015. The patients were divided into splenectomy group (n = 9), normal splenic function group (n = 24), and hypersplenism group (n = 16). The percentages and counts of CD4+ T, CD8+ T, natural killer (NK) cell, B-cell, regulatory B-cell (Breg), and regulatory T-cell (Treg) were detected by flow cytometer. In addition, the immunosuppressive agents, histories of rejection and infection, and postoperative time of the patients were compared among the three groups. Results: There was no significant difference of clinical characteristics among the three groups. The percentage of CD19+CD24+CD38+ Breg was significantly higher in hypersplenism group than normal splenic function group and splenectomy group (3.29 ± 0.97% vs. 2.12 ± 1.08% and 1.90 ± 0.99%, P = 0.001). The same result was found in CD4+CD25+FoxP3+ Treg percentage (0.97 ± 0.39% vs. 0.54 ± 0.31% and 0.56 ± 0.28%, P = 0.001). The counts of CD8+ T-cell, CD4+ T-cell, and NK cell were significantly lower in hypersplenism group than normal splenic function group (254.25 ± 149.08 vs. 476.96 ± 225.52, P = 0.002; 301.69 ± 154.39 vs. 532.50 ± 194.42, P = 0.000; and 88.56 ± 63.15 vs. 188.33 ± 134.51, P = 0.048). Moreover, the counts of CD4+ T-cell and NK cell were significantly lower in hypersplenism group than splenectomy group (301.69 ± 154.39 vs. 491.89 ± 132.31, P = 0.033; and 88.56 ± 63.15 vs. 226.00 ± 168.85, P = 0.032). Conclusion: Splenic function status might affect the immunity of

  3. Beta-alanine supplementation in high-intensity exercise.

    PubMed

    Harris, Roger C; Sale, Craig

    2012-01-01

    Glycolysis involves the oxidation of two neutral hydroxyl groups on each glycosyl (or glucosyl) unit metabolised, yielding two carboxylic acid groups. During low-intensity exercise these, along with the remainder of the carbon skeleton, are further oxidised to CO(2) and water. But during high-intensity exercise a major portion (and where blood flow is impaired, then most) is accumulated as lactate anions and H(+). The accumulation of H(+) has deleterious effects on muscle function, ultimately impairing force production and contributing to fatigue. Regulation of intracellular pH is achieved over time by export of H(+) out of the muscle, although physicochemical buffers in the muscle provide the first line of defence against H(+) accumulation. In order to be effective during high-intensity exercise, buffers need to be present in high concentrations in muscle and have pK(a)s within the intracellular exercise pH transit range. Carnosine (β-alanyl-L-histidine) is ideal for this role given that it occurs in millimolar concentrations within the skeletal muscle and has a pK(a) of 6.83. Carnosine is a cytoplasmic dipeptide formed by bonding histidine and β-alanine in a reaction catalysed by carnosine synthase, although it is the availability of β-alanine, obtained in small amounts from hepatic synthesis and potentially in greater amounts from the diet that is limiting to synthesis. Increasing muscle carnosine through increased dietary intake of β-alanine will increase the intracellular buffering capacity, which in turn might be expected to increase high-intensity exercise capacity and performance where this is pH limited. In this study we review the role of muscle carnosine as an H(+) buffer, the regulation of muscle carnosine by β-alanine, and the available evidence relating to the effects of β-alanine supplementation on muscle carnosine synthesis and the subsequent effects of this on high-intensity exercise capacity and performance. PMID:23075550

  4. Risk factors for damaged liver function after chemotherapy in hepatitis B virus carriers with non-Hodgkin lymphoma.

    PubMed

    Li, X; Fan, X W; Liu, W; Guo, L; Li, Y; Hu, X; Liang, X; Ma, X P; Yang, S E

    2015-01-01

    The goal of this study was to investigate damaged liver function after chemotherapy in hepatitis B virus (HBV) carriers with non-Hodgkin lymphoma (NHL) and to evaluate risk factors associated with a high risk of damaged liver function. Clinical histories of 134 HBV carriers with NHL who were treated with chemotherapy were obtained and analyzed for the occurrence of damaged liver function and other related high-risk factors. Analysis showed that 76 patients (56.7%) had damaged liver function after chemotherapy: 6 patients (7.9%) had I degree, 17 patients (22.4%) had II degree, 20 patients (26.3%) had III degree, and 33 patients (43.4%) had IV degree damage. After treatment, 18 patients (23.7%) continued to receive chemotherapy according to their original schedule, 39 patients (51.3%) delayed chemotherapy, 16 patients (21.1%) stopped chemotherapy, and 3 patients (3.9%) died. Analysis of a binary multivariate logistic regression model showed that administration of steroids was a high-risk factor for damaged liver function after chemotherapy in NHL patients. The incidence of damaged liver function after chemotherapy is high among HBV carriers with NHL; therefore, administration of steroid chemotherapy is a high-risk factor. PMID:25867413

  5. Three-Dimensional Quantitative Evaluation of the Segmental Functional Reserve in the Cirrhotic Liver Using Multi-Modality Imaging

    PubMed Central

    Xiang, Canhong; Chen, Yingmao; Shao, Mingzhe; Li, Can; Huang, Xin; Gong, Lei; Li, Ang; Duan, Weidong; Zhang, Aiqun; Dong, Jiahong

    2016-01-01

    Abstract To quantitatively evaluate the regional functional reserve in the cirrhotic liver and to seek related index that reflects diminished segmental liver function. A 3D system for quantitative evaluation of the liver was used to fuse technetium-99m galactosyl human serum albumin single-photon emission computed tomography and computed tomography images from 20 patients with cirrhotic liver and hepatocellular carcinoma. A set of parameters reflecting liver function including morphological liver volume, functional liver volume, functional liver density (FLD), and the drug absorption rate constant for hepatic cells (GSA-K) was calculated. Differences in FLD and GSA-K in intrahepatic segments were compared in patients with a tumor embolus (Group Y) and those without such an embolus (Group N) in the right portal vein. Differences in FLD and GSA-K in tumor-bearing (T+ group) and tumor-free (T− group) segments in patients with no tumor embolus (Group N) were also compared. Eleven living donor liver transplantation donor served as the control group. The FLD of the liver as a whole was significantly lower in patients with cirrhosis than in the control group (0.53 ± 0.13 vs 0.68 ± 0.10, P = 0.010). The FLD in segments of the right hemiliver was significantly lower than that in segments of the left hemiliver in Group Y (0.31 ± 0.21 vs 0.58 ± 0.12, P = 0.002) but not in Group N (0.60 ± 0.19 vs 0.55 ± 0.13, P = 0.294). FLD was 0.45 ± 0.17 in the T+ group and 0.60 ± 0.08 in the T− group (P = 0.008). Differences in GSA-K in intrahepatic segments were not significant. In the control group, differences in FLD and GSA-K in intrahepatic segments were not significant. The segmental liver functional reserve can be quantitatively calculated. FLD, but not GSA-K, is an index that reflects diminished regional liver function caused by portal flow obstruction or tumor compression. PMID:26945357

  6. Three-Dimensional Quantitative Evaluation of the Segmental Functional Reserve in the Cirrhotic Liver Using Multi-Modality Imaging.

    PubMed

    Xiang, Canhong; Chen, Yingmao; Shao, Mingzhe; Li, Can; Huang, Xin; Gong, Lei; Li, Ang; Duan, Weidong; Zhang, Aiqun; Dong, Jiahong

    2016-03-01

    To quantitatively evaluate the regional functional reserve in the cirrhotic liver and to seek related index that reflects diminished segmental liver function. A 3D system for quantitative evaluation of the liver was used to fuse technetium-99m galactosyl human serum albumin single-photon emission computed tomography and computed tomography images from 20 patients with cirrhotic liver and hepatocellular carcinoma. A set of parameters reflecting liver function including morphological liver volume, functional liver volume, functional liver density (FLD), and the drug absorption rate constant for hepatic cells (GSA-K) was calculated. Differences in FLD and GSA-K in intrahepatic segments were compared in patients with a tumor embolus (Group Y) and those without such an embolus (Group N) in the right portal vein. Differences in FLD and GSA-K in tumor-bearing (T+ group) and tumor-free (T- group) segments in patients with no tumor embolus (Group N) were also compared. Eleven living donor liver transplantation donor served as the control group. The FLD of the liver as a whole was significantly lower in patients with cirrhosis than in the control group (0.53 ± 0.13 vs 0.68 ± 0.10, P = 0.010). The FLD in segments of the right hemiliver was significantly lower than that in segments of the left hemiliver in Group Y (0.31 ± 0.21 vs 0.58 ± 0.12, P = 0.002) but not in Group N (0.60 ± 0.19 vs 0.55 ± 0.13, P = 0.294). FLD was 0.45 ± 0.17 in the T+ group and 0.60 ± 0.08 in the T- group (P = 0.008). Differences in GSA-K in intrahepatic segments were not significant. In the control group, differences in FLD and GSA-K in intrahepatic segments were not significant. The segmental liver functional reserve can be quantitatively calculated. FLD, but not GSA-K, is an index that reflects diminished regional liver function caused by portal flow obstruction or tumor compression. PMID:26945357

  7. Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation

    PubMed Central

    Safinia, Niloufar; Vaikunthanathan, Trishan; Fraser, Henrieta; Thirkell, Sarah; Lowe, Katie; Blackmore, Laura; Whitehouse, Gavin; Martinez-Llordella, Marc; Jassem, Wayel; Sanchez-Fueyo, Alberto; Lechler, Robert I.; Lombardi, Giovanna

    2016-01-01

    Strategies to prevent organ transplant rejection whilst minimizing long-term immunosuppression are currently under intense investigation with regulatory T cells (Tregs) nearing clinical application. The clinical trial, ThRIL, recently commenced at King's College London, proposes to use Treg cell therapy to induce tolerance in liver transplant recipients, the success of which has the potential to revolutionize the management of these patients and enable a future of drug-free transplants. This is the first report of the manufacture of clinical grade Tregs from prospective liver transplant recipients via a CliniMACS-based GMP isolation technique and expanded using anti-CD3/CD28 beads, IL-2 and rapamycin. We report the enrichment of a pure, stable population of Tregs (>95% CD4+CD25+FOXP3+), reaching adequate numbers for their clinical application. Our protocol proved successful in, influencing the expansion of superior functional Tregs, as compared to freshly isolated cells, whilst also preventing their conversion to Th17 cells under pro-inflammatory conditions. We conclude with the manufacture of the final Treg product in the clinical research facility (CRF), a prerequisite for the clinical application of these cells. The data presented in this manuscript together with the much-anticipated clinical results from ThRIL, will undoubtedly inform the improved management of the liver transplant recipient. PMID:26788992

  8. Liver functions in silica-exposed workers in Egypt: possible role of matrix remodeling and immunological factors

    PubMed Central

    Zawilla, Nermin; Taha, Fatma; Ibrahim, Yasser

    2014-01-01

    Background: Brick manufacturing constitutes an important industrial sector in Egypt with considerable exposure to silica. Objectives: We aimed for evaluating hepatic functions in silica-exposed workers in the clay brick industry, and the possible role of matrix remodeling and immunological factors. Methods: A case–control study, 87 workers as exposed and 45 as control subjects. Questionnaire, clinical examination, and laboratory investigations: liver functions, matrix metalloproteinase-9, immunoglobulins G and E, and anti-liver kidney microsomal antibody. Results: In the exposed workers, mean levels of liver functions, matrix metalloproteinase-9 (MMP-9), and IgG and IgE were significantly higher. In the silicotic subgroup the mean level of GGT was almost twice the level in the non-silicotic subjects. Logistic regression showed that abnormal GGT and ALT were associated with production workers. Conclusion: Workers in the clay brick industry showed evidence of liver disease that could be related to matrix remodeling. PMID:24999850

  9. Dynamic carbon 13 breath tests for the study of liver function and gastric emptying.

    PubMed

    Bonfrate, Leonilde; Grattagliano, Ignazio; Palasciano, Giuseppe; Portincasa, Piero

    2015-02-01

    In gastroenterological practice, breath tests (BTs) are diagnostic tools used for indirect, non-invasive assessment of several pathophysiological metabolic processes, by monitoring the appearance in breath of a metabolite of a specific substrate. Labelled substrates originally employed radioactive carbon 14 ((14)C) and, more recently, the stable carbon 13 isotope ((13)C) has been introduced to label specific substrates. The ingested (13)C-substrate is metabolized, and exhaled (13)CO2 is measured by mass spectrometry or infrared spectroscopy. Some (13)C-BTs evaluate specific (microsomal, cytosolic, and mitochondrial) hepatic metabolic pathways and can be employed in liver diseases (i.e. simple liver steatosis, non-alcoholic steato-hepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug and alcohol effects). Another field of clinical application for (13)C-BTs is the assessment of gastric emptying kinetics in response to liquids ((13)C-acetate) or solids ((13)C-octanoic acid in egg yolk or in a pre-packed muffin or the (13)C-Spirulina platensis given with a meal or a biscuit). Studies have shown that (13)C-BTs, used for gastric emptying studies, yield results that are comparable to scintigraphy and can be useful in detecting either delayed- (gastroparesis) or accelerated gastric emptying or changes of gastric kinetics due to pharmacological effects. Thus, (13)C-BTs represent an indirect, cost-effective and easy method of evaluating dynamic liver function and gastric kinetics in health and disease, and several other potential applications are being studied. PMID:25339354

  10. Dynamic carbon 13 breath tests for the study of liver function and gastric emptying

    PubMed Central

    Bonfrate, Leonilde; Grattagliano, Ignazio; Palasciano, Giuseppe; Portincasa, Piero

    2015-01-01

    In gastroenterological practice, breath tests (BTs) are diagnostic tools used for indirect, non-invasive assessment of several pathophysiological metabolic processes, by monitoring the appearance in breath of a metabolite of a specific substrate. Labelled substrates originally employed radioactive carbon 14 (14C) and, more recently, the stable carbon 13 isotope (13C) has been introduced to label specific substrates. The ingested 13C-substrate is metabolized, and exhaled 13CO2 is measured by mass spectrometry or infrared spectroscopy. Some 13C-BTs evaluate specific (microsomal, cytosolic, and mitochondrial) hepatic metabolic pathways and can be employed in liver diseases (i.e. simple liver steatosis, non-alcoholic steato-hepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug and alcohol effects). Another field of clinical application for 13C-BTs is the assessment of gastric emptying kinetics in response to liquids (13C-acetate) or solids (13C-octanoic acid in egg yolk or in a pre-packed muffin or the 13C-Spirulina platensis given with a meal or a biscuit). Studies have shown that 13C-BTs, used for gastric emptying studies, yield results that are comparable to scintigraphy and can be useful in detecting either delayed- (gastroparesis) or accelerated gastric emptying or changes of gastric kinetics due to pharmacological effects. Thus, 13C-BTs represent an indirect, cost-effective and easy method of evaluating dynamic liver function and gastric kinetics in health and disease, and several other potential applications are being studied. PMID:25339354