Science.gov

Sample records for lng vapor dispersion

  1. CFD Modeling of LNG Spill: Humidity Effect on Vapor Dispersion

    NASA Astrophysics Data System (ADS)

    Giannissi, S. G.; Venetsanos, A. G.; Markatos, N.

    2015-09-01

    The risks entailed by an accidental spill of Liquefied Natural Gas (LNG) should be indentified and evaluated, in order to design measures for prevention and mitigation in LNG terminals. For this purpose, simulations are considered a useful tool to study LNG spills and to understand the mechanisms that influence the vapor dispersion. In the present study, the ADREA-HF CFD code is employed to simulate the TEEX1 experiment. The experiment was carried out at the Brayton Fire Training Field, which is affiliated with the Texas A&M University system and involves LNG release and dispersion over water surface in open- obstructed environment. In the simulation the source was modeled as a two-phase jet enabling the prediction of both the vapor dispersion and the liquid pool spreading. The conservation equations for the mixture are solved along with the mass fraction for natural gas. Due to the low prevailing temperatures during the spill ambient humidity condenses and this might affect the vapor dispersion. This effect was examined in this work by solving an additional conservation equation for the water mass fraction. Two different models were tested: the hydrodynamic equilibrium model which assumes kinetic equilibrium between the phases and the non hydrodynamic equilibrium model, in order to assess the effect of slip velocity on the prediction. The slip velocity is defined as the difference between the liquid phase and the vapor phase and is calculated using the algebraic slip model. Constant droplet diameter of three different sizes and a lognormal distribution of the droplet diameter were applied and the results are discussed and compared with the measurements.

  2. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX.

    TOXLINE Toxicology Bibliographic Information

    Qi R; Ng D; Cormier BR; Mannan MS

    2010-11-15

    Federal safety regulations require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. One tool that is being developed in industry for exclusion zone determination and LNG vapor dispersion modeling is computational fluid dynamics (CFD). This paper uses the ANSYS CFX CFD code to model LNG vapor dispersion in the atmosphere. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the atmospheric conditions, LNG evaporation rate and pool area, turbulence in the source term, ground surface temperature and roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate uncertainties in the simulation results arising from the mesh size and source term turbulence intensity. In addition, a set of medium-scale LNG spill tests were performed at the Brayton Fire Training Field to collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX was able to describe the dense gas behavior of LNG vapor cloud, and its prediction results of downwind gas concentrations close to ground level were in approximate agreement with the test data.

  3. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX.

    PubMed

    Qi, Ruifeng; Ng, Dedy; Cormier, Benjamin R; Mannan, M Sam

    2010-11-15

    Federal safety regulations require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. One tool that is being developed in industry for exclusion zone determination and LNG vapor dispersion modeling is computational fluid dynamics (CFD). This paper uses the ANSYS CFX CFD code to model LNG vapor dispersion in the atmosphere. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the atmospheric conditions, LNG evaporation rate and pool area, turbulence in the source term, ground surface temperature and roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate uncertainties in the simulation results arising from the mesh size and source term turbulence intensity. In addition, a set of medium-scale LNG spill tests were performed at the Brayton Fire Training Field to collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX was able to describe the dense gas behavior of LNG vapor cloud, and its prediction results of downwind gas concentrations close to ground level were in approximate agreement with the test data. PMID:20692092

  4. LNG spill experiments: dispersion, RPT, and vapor burn analysis

    SciTech Connect

    Ermak, D L; Koopman, R P; McRae, T G; Hogan, W J

    1982-05-01

    Lawrence Livermore National Laboratory (LLNL) is conducting safety research under the sponsorship of the US Department of Energy (DOE) to determine the possible consequences of liquefied natural gas (LNG) spills. The LLNL program includes both the collection of data from various size experiments and development of an ensemble of computer models to make predictions for conditions under which tests cannot be performed. In spills of 40 cubic metres (m/sup 3/) of liquefied natural gas onto water done at the Naval Weapons Center (NWC), China Lake, California in 1980 and 1981, data was collected on gas cloud dispersion and combustion and rapid phase transition (RPT) explosions. Analysis of the data from these tests, including comparisons between the predictions of various models and the data, are presented. The results suggest that large-scale spills may be more hazardous than would have been predicted based on earlier small-scale tests.

  5. Coyote series for 40-m/sup 3/ liquefied natural gas (LNG) dispersion, RPT, and vapor burn tests

    SciTech Connect

    Koopman, R.P.

    1982-02-01

    Last year the emphasis of the 40-m/sup 3/ LNG spill experiments was on gas dispersion. This year the investigation was extended into the rapid phase transition (RPT) explosions, and combustion and dispersion measurements were made during vapor cloud fires. A total of 13 RPT spills in 5 tests were conducted from July to November, 1981. A summary of these tests is presented in a table. RPT testing was also done concurrently with the vapor fires. The goal of the RPT tests is to understand the physics behind RPT explosions so that their severity in an accident situation can be predicted. The focus of this year's studies was on vapor burn tests. These experiments involved a series of 5 spills of up to about 40-m/sup 3/ under a restricted range of atmospheric conditions with ignition near the upwind of the cloud. One test involved nearly pure methane. The experiments will provide information on the combustion characteristics of a well-mixed gas cloud in the open atmosphere.

  6. Experimental plan for 40-m/sup 3/ liquefied natural gas (LNG) dispersion, RPT, and vapor burn tests

    SciTech Connect

    Koopman, R.P.

    1981-10-01

    This year the investigation is to be extended into the rapid phase transformation (RPT) explosions observed on several of the dispersion tests last year, combustion and dispersion measurements are to be made during vapor cloud fires, and the 40-m/sup 3/ dispersion experiments are to be completed. A summary of the proposed test series with details on instruments and types of tests is given in this document.

  7. LNG fire and vapor control system technologies

    SciTech Connect

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  8. FEM3A simulations of selected LNG vapor barrier verification field tests

    SciTech Connect

    Chan, S.T.

    1990-10-01

    In order to evaluate and eventually predict the possible mitigating effects of vapor fences on the dispersion of the vapor cloud resulting from an accidental liquefied natural gas (LNG) spill in storage areas, a research program was initiated to evaluate methods for predicting LNG dispersion distances for realistic facility configurations. As part of the program, Lawrence Livermore National Laboratory (LLNL) conducted a series of large-scale field experiments called the LNG Vapor Barrier Verification Field Trials (also referred to as the Falcon Series) at the Liquefied Gaseous Fuels Spill Test Facility (LGFSTF), Nevada. Objectives were (1) to provide a data base on LNG vapor dispersion from spill involving complex field obstacles to assist in validation of wind tunnel and mathematical models, and (2) to assess the effectiveness of vapor fences for mitigating LNG vapor dispersion hazards in the events of an accidental spill. Five spill experiments were conducted on water in order to generate vapor at rates equivalent to the liquid spill rates. In this study, the FEM3A model was applied to simulate four of the Falcon experiments. The objectives of this study were, through numerical modeling and a detailed model-data comparison: (1) to improve our understanding of LNG vapor dispersion involving vapor barriers, (2) to assess FEM3A in modeling such complex vapor dispersion scenarios, and (3) to complement the results of field and wind tunnel tests, such as providing plausible explanations for unexpected results and filling in data gaps due to instrument failure or limited array size. Toward these goals, the relevant field measurements were analyzed and several series of 2-D and 3-D simulations were carried out. 11 refs., 93 figs., 11 tabs.

  9. Coyote series data report LLNL/NWC 1981 LNG spill tests dispersion, vapor burn, and rapid-phase-transition. Volume 1. [7 experiments with liquefied natural gas, 2 with liquid methane, and one with liquid nitrogen

    SciTech Connect

    Goldwire, H.C. Jr.; Rodean, H.C.; Cederwall, R.T.; Kansa, E.J.; Koopman, R.P.; McClure, J.W.; McRae, T.G.; Morris, L.K.; Kamppinen, L.; Kiefer, R.D.

    1983-10-01

    The Coyote series of liquefied natural gas (LNG) spill experiments was performed at the Naval Weapons Center (NWC), China Lake, California, during the summer and fall of 1981. These tests were a joint effort of the Lawrence Livermore National Laboratory (LLNL) and the NWC and were sponsored by the US Department of Energy (DOE) and the Gas Research Institute. There were ten Coyote experiments, five primarily for the study of vapor dispersion and burning vapor clouds, and five for investigating the occurrence of rapid-phase-transition (RPT) explosions. Each of the last four of the five RPT tests consisted of a series of three spills. Seven experiments were with LNG, two were with liquid methane (LCH/sub 4/), and one was with liquid nitrogen (LN/sub 2/). Three arrays of instrumentation were deployed. An array of RPT diagnostic instruments was concentrated at the spill pond and was operated during all of the tests, vapor burn as well as RPT. The wind-field array was operated during the last nine experiments to define the wind direction and speed in the area upwind and downwind of the spill pond. The gas-dispersion array was deployed mostly downwind of the spill pond to measure gas concentration, humidity, temperature, ground heat flux, infrared (IR) radiation, and flame-front passage during three of the vapor dispersion and burn experiments (Coyotes 3, 5, and 6). High-speed color motion pictures were taken during every test, and IR imagery (side and overhead) was obtained during some vapor-burn experiments. Data was obtained by radiometers during Coyotes 3, 6, and 7. This report presents a comprehensive selection of the data obtained. It does not include any data analysis except that required to determine the test conditions and the reliability of the data. Data analysis is to be reported in other publications. 19 references, 76 figures, 13 tables.

  10. Thermoelectric Power Conversion System Combined with LNG Vaporizer

    NASA Astrophysics Data System (ADS)

    Kambe, Mitsuru; Morita, Ryo; Omoto, Kazuyuki; Koji, Yasuhiro; Yoshida, Tatsuo; Noishiki, Koji

    A conceptual design of the thermoelectric power conversion system combined with open rack type LNG (liquefied natural gas) vaporizer to make use of cold heat of LNG is presented. The system performance analysis has been made based on the thermoelectric module performance data obtained at the cryogenic thermoelectric (CTE) test rig which could realize temperature and fluid dynamic condition of the open rack type LNG vaporizer. Conventional bismuth-telluride thermoelectric modules were tested, however, each module is encapsulated in the stainless steel container to achieve water proof. Electricity production cost evaluation of the system is also discussed.

  11. Four band differential radiometer for monitoring LNG vapors

    NASA Technical Reports Server (NTRS)

    Simmonds, J. J.

    1981-01-01

    The development by JPL of a four band differential radiometer (FBDR) which is capable of providing a fast rate of response, accurate measurements of methane, ethane, and propane concentrations on the periphery of a dispersing LNG cloud. The FBDR is a small, low power, lightweight, portable instrument system that uses differential absorption of near infrared radiation by the LNG cloud as a technique for the determination of concentration of the three gases as the LNG cloud passes the instrument position. Instrument design and data analysis approaches are described. The data obtained from the FBDR prototype instrument system deployed in an instrument array during two 40 cubic meter spill tests are discussed.

  12. The theoretical analysis of the Fog removal in the LNG Ambient Vaporizer

    NASA Astrophysics Data System (ADS)

    Lee, T.; Lee, D.; Jeong, H.; Chung, H.

    2015-09-01

    The fog removal process is one of the important process in LNG Ambient Vaporizer. In this study we carried out theoretical study of the fog removal process in LNG Ambient Vaporizer. The LNG Ambient Vaporizer in Incheon area was used in our study. The fog temperature and the required energy produced from air fan to remove fog in LNG Ambient Vaporizer were calculated using average temperature of Incheon area in 2012 by Psychometruc Chart method. As a result we can be remove fog in LNG Ambient Vaporizer using Enthalpy[kW] energy in summer season and Enthalpy[kW] in winter season respectively.

  13. Atmospheric Dispersion about a Heavy Gas Vapor Detention System.

    NASA Astrophysics Data System (ADS)

    Shin, Seong-Hee

    Dispersion of liquefied natural gas (LNG) in the event of an accidental spill is a major concern in LNG storage and transport safety planning, hazard response, and facility siting. Falcon Series large scale LNG spill experiments were planned by Lawrence Livermore National Laboratory (LLNL) for the Department of Transportation (DOT) and the Gas Research Institute (GRI) as part of a joint government/industry study in 1987 to evaluate the effectiveness of vapor fences as a mitigating technique for accidental release of LNG and to assist in validating wind tunnel and numerical methods for vapor dispersion simulation. Post-field-spill wind-tunnel experiments were performed in Environmental Wind Tunnel (EWT) (1988, 1989) to augment the LNG Vapor Fence Program data obtained during the Falcon Test Series. The program included four different model length scales and two different simulant gases. The purpose of this program is to provide a basis for the analysis of the simulation of physical modeling tests using proper physical modeling techniques and to assist in the development and verification of analytical models. Field data and model data were compared and analyzed by surface pattern comparisons and statistical methods. A layer-averaged slab model developed by Meroney et al. (1988) (FENC23) was expanded to evaluate an enhanced entrainment model proposed for dense gas dispersion including the effect of vapor barriers, and the numerical model was simulated for Falcon tests without the fence and with the vapor fence to examine the effectiveness of vapor detention system on heavy gas dispersion. Model data and the field data were compared with the numerical model data, and degree of similarity between data were assessed.

  14. Phenomenology and modeling of liquefied natural gas vapor dispersion

    SciTech Connect

    Morgan, D.L. Jr.; Morris, L.K.; Chan, S.T.; Ermak, D.L.; McRae, T.G.; Cederwall, R.T.; Koopman, R.P.; Goldwire, H.C. Jr.; McClure, J.W.; Hogan, W.J.

    1984-04-01

    The purpose of the Burro series of spill experiments, in 1980, and one of the purposes of the Coyote series, in 1981, was to investigate the atmospheric dispersion of cold, dense LNG vapor resulting from an LNG spill onto water. The atmospheric dispersion of LNG vapor differs from that of passive pollutants. Analysis of the LNG vapor concentration data obtained in these spill experiments shows the effects of three physical phenomena that are particularly important in the dispersion of a dense cryogenic gas: (1) reduction in the turbulent mixing rate with air due to stable density stratification, (2) gravity flow of the cloud, and (3) ground heating of the cloud. These phenomena affect the maximum distance to the lower flammability limit (LFL), an important quantity which indicates the potential extent of an accidental combustion. The LFL distance also depends on the spill parameters and meteorological conditions. Our analysis indicates two additional phenomena, rapid-phase-transition (RPT) explosions and differential boiloff (producing increased ethane-to-methane ratio), that can lead to significant increases in the LFL distance. Both the SLAB and FEM3 computer codes incorporate mathematical models of the physics that governs the dispersion phenomena. SLAB is a one-dimensional, crosswind-averaged, conservation-equation model that calculates cloud height and width, and then uses these values to determine the crosswind distribution of LNG vapor concentration. FEM3 is a fully three-dimensional, conservation-equation model that can include variable terrain. Both models are time-dependent. In spill simulations, both give results that are in agreement with the experimental data for downwind extent and duration of the flammable region and other cloud features. In addition, FEM3 can simulate the complicated three-dimensional structure of a cloud where heavy-gas dispersion and terrain effects predominate. 24 refs., 48 figs., 6 tabs.

  15. High-expansion foam for LNG vapor mitigation. Topical report, September 1987-December 1989

    SciTech Connect

    Atallah, S.; Shah, J.N.; Peterlinz, M.E.

    1990-05-01

    One of the purposes of these high expansion foam systems is to reduce the extent of the hazardous vapor cloud generated during an accidental LNG release. Should the LNG ignite, these systems serve the additional function of controlling the LNG fire and minimizing its radiation to the surroundings. Foam generators have been installed along the tops of dike walls surrounding some LNG storage tanks, and around other fenced containment areas where LNG may be accidentally released, such as LNG pump pits and pipe rack trenches. To date there are no technically justifiable guidelines for the design and installation of these systems. Furthermore, there are no models that may be used describe the vapor source so as to be able to predict the reduction in the hazardous vapor cloud zone when high expansion foam is applied to an LNG spill. Information is essential not only for the optimal design of high expansion foam systems, but also for comparing the cost effectiveness of alternative LNG vapor mitigation measures.

  16. Numerical simulation of the mitigating effects of an LNG vapor fence

    SciTech Connect

    Chan, S.T.

    1990-05-01

    FEM3A, a fully three-dimensional numerical model for simulating the atmospheric dispersion of heavy gases involving complex geometry, has been used to investigate the mitigating effects of a vapor fence for LNG storage areas. In this paper, a brief description of the numerical model used to perform such calculations is given, the problem being simulated is described, and an intercomparison among the results from numerical simulations (with and without the vapor fence) and field data (with vapor fence) is made. The numerical results indicate that, with the present fence configuration, the maximum concentration on the cloud centerline was reduced by a factor of two or more within 250 m behind the fence, and the downwind distance to the 2.5% concentration was reduced from 365 m to 230 m. However, a vapor fence could also cause the vapor cloud to linger considerably longer in the source area, thus increasing the potential for ignition and combustion within the vapor fence and the area nearby over time. 8 refs., 10 figs.

  17. The influence of ice formation on vaporization of LNG on water surfaces.

    PubMed

    Vesovic, V

    2007-02-20

    The spillage of LNG on water surfaces can lead, under certain circumstances, to a decrease in the surface temperature of water and subsequent freezing. A model for heat transfer from water to LNG is proposed and used to calculate the surface temperature of water and examine its influence on the vaporization rate of LNG. For this purpose LNG was modeled based on the properties of pure methane. It was concluded that when LNG spills on a confined, shallow-water surface the surface temperature of water will decrease rapidly leading to ice formation. The formation of an ice layer, that will continue to grow for the duration of the spill, will have a profound effect upon the vaporization rate. The decreasing surface temperature of ice will decrease the temperature differential between LNG and ice that drives the heat transfer and will lead to a change of the boiling regime. The overall effect would be that the vaporization flux would first decrease during the film boiling; followed by an increase during the transition boiling and a steady decrease during the nucleate boiling. PMID:17112657

  18. Closed-cycle gas turbines for power generation and LNG vaporization

    NASA Astrophysics Data System (ADS)

    Weber, D.

    1980-09-01

    Cooling by LNG (liquefied nitrogen gas) in closed-cycle gas turbines results in double the electrical output of water cooled turbines. A circuit scheme of the LNG turbine is presented with the temperatures and pressures of the cycle. The turbine inlet temperature is limited to 720 C. Pressure level control and bypass control are the two basic types of control applied. The power station has an output of 4 x 100 MW, with four heaters arranged in series. The basic design of the heater, turbine, compressor, recuperator, and vaporizer is given. A cost comparison is made between the closed cycle gas turbine and steam turbine power stations with open rack vaporizer, submerged combustion vaporizer, or both. Using an LNG terminal with a closed-cycle gas turbine for the generation of electric power and LNG vaporization would mean a potential world-wide saving of 2,350 MW thermal power or 4.2 x 10(6) kg of LNG/day by 1985.

  19. Description and analysis of Burro series 40-m/sup 3/ LNG spill experiments

    SciTech Connect

    Koopman, R.P.; Cederwall, R.T.; Ermak, D.L.; Goldwire, H.C. Jr.; McClure, J.W.; McRae, T.G.; Morgan, D.L.; Rodean, H.C.; Shinn, J.H.

    1981-08-14

    A series of LNG spill experiments (Burro series) were conducted at the Naval Weapons Center, China Lake, California. This report presents observations and analysis of data obtained from Burros 2 through 9. Topics discussed include the interaction of the wind field and gas cloud, LNG vapor dispersion, ground heat transfer, humidity enhancement, differential boiling of LNG, and rapid phase transitions (RPTs). (DMC)

  20. Experimental plan for 40-m/sup 3/ liquefied natural gas (LNG) dispersion tests

    SciTech Connect

    Koopman, R.P.

    1980-03-19

    An experimental team from the Lawrence Livermore Laboratory (LLL) will soon begin a series of liquefied natural gas (LNG) experiments at the Naval Weapons Center (NWC), China Lake, California. These experiments will involve spilling 40m/sup 3/ of LNG onto a pond and measuring the characteristics of the gas plume as it disperses downwind. A large array of instruments has been developed to make measurements of gas concentration, temperature, humidity, wind velocity, and heat balance and to telemeter the data back to a data recording trailer. Experiments will be performed for various wind speeds and various spill rates over a five-month period.

  1. Cost-benefit analysis of alternative LNG vapor-mitigation measures. Topical report, September 14, 1987-January 15, 1991

    SciTech Connect

    Atallah, S.

    1992-06-25

    A generalized methodology is presented for comparing the costs and safety benefits of alternative hazard mitigation measures for a large LNG vapor release. The procedure involves the quantification of the risk to the public before and after the application of LNG vapor mitigation measures. In the study, risk was defined as the product of the annual accident frequency, estimated from a fault tree analysis, and the severity of the accident. Severity was measured in terms of the number of people who may be exposed to 2.5% or higher concentration. The ratios of the annual costs of the various mitigation measures to their safety benefits (as determined by the differences between the risk before and after mitigation measure implementation), were then used to identify the most cost-effective approaches to vapor cloud mitigation.

  2. Experimental plan for 40-m/sup 3/ liquefied natural gas (LNG) dispersion tests. 1981 tests

    SciTech Connect

    Koopman, R.P.; Lind, C.D.

    1981-04-01

    Details on instruments and types of tests to be performed in the study of liquefied natural gas dispersion at the China Lake Naval Weapons Center are presented. Possible scheduling of the tests to coincide with the closing of the spill facility is discussed. The experiments will be a continuation of those conducted earlier on gas dispersion. The investigation will be expanded into studies on rapid phase transformation explosions. Combustion and dispersion measurements will be made during vapor cloud fires. (DMC)

  3. Falcon series data report: 1987 LNG vapor barrier verification field trials

    SciTech Connect

    Brown, T.C.; Cederwall, R.T.; Chan, S.T.; Ermak, D.L.; Koopman, R.P.; Lamson, K.C.; McClure, J.W.; Morris, L.K.

    1990-06-01

    A series of five Liquefied Natural Gas Spills up to 66 m{sup 3} in volume were performed on water within a vapor barrier structure at Frenchman Flat on the Nevada Test Site as a part of a joint government/industry study. This data report presents a description of the tests, the test apparatus, the instrumentation, the meteorological conditions, and the data from the tests. 16 refs., 27 figs., 8 tabs.

  4. Power generation from LNG

    SciTech Connect

    Kooy, R.J.; Andrepont, J.S.; Gyger, R.F.; Tyree, L. Jr.

    1991-02-26

    This patent describes a method for generating power from LNG and storing energy. It comprises: providing a source of LNG at a temperature of about {minus}250{degrees} F. or lower, increasing the pressure of the LNG to at least about 400 psia, creating a reservoir of carbon dioxide liquid at about the triple point thereof which reservoir contains a substantial amount of solid carbon dioxide, vaporizing the LNG to natural gas by removing heat from CO{sub 2} at about the triple point temperature, heating the high pressure natural gas, expanding the heated natural gas to create rotary power, and employing the carbon dioxide in the reservoir in a useful manner which results in the creation of CO{sub 2} vapor that is subsequently reliquefied.

  5. Coaxial piping system, LNG release-prevention demonstration program. Final report

    SciTech Connect

    Pfenning, T.E.; Tatge, R.J.

    1982-12-01

    An analytical and investigative engineering and experimental test program was conducted to demonstrate the viability of a coaxial piping system concept for LNG spill prevention and vapor-dispersion control. Conventional LNG transfer piping-system candidates were identified for replacement by a coaxial piping system. The coaxial design, in addition to performing the transfer process, provides great promise also for LNG impoundment and vapor-dispersion control without need for additional physical features. Program results from computer idealized thermal stress analysis, Failure Modes and Effects Analysis, Fault Tree Failure Analysis, LNG plant transfer-systems studies and experimental thermal-cycle tests are given. It is concluded that the coaxial system will not experience stresses beyond conventional design limits under the worst credible LNG thermal transient. The coaxial system will range from 1.5 to 2.5 times the cost of comparable conventional hardware, will require from the same to 25% less physical space, will experience a heatgain of from 9% higher to 55% lower per foot of installed pipe, and is potentially 2.5 million times or higher more reliable. It is recommended that additional research and development work be conducted to bring the coaxial concept to full commercial acceptance for the LNG industry.

  6. Method for processing LNG for rankine cycle

    SciTech Connect

    Aoki, I.; Matsumoto, O.

    1983-06-14

    A method is disclosed for processing lng using a mixed heat medium for performing a rankine cycle to gasify the lng. The medium is prepared by batch distillation using only lng. The method comprises the steps of condensing an upflow vapor in a single distillation column employing part of the lng in an lng batch distillation cycle, venting one fraction having low boiling point components mainly containing methane, and accumulating the other fractions containing ethane and components heavier than ethane. The supply of lng to be distilled in the column is halted. A total condensing operation is performed in which the other fractions are sequentially condensed by part of the lng at the condenser to sequentially recover and mix each component with the other fractions. Lng is added as the methane component to the recovered mixture of components to prepare a mixed heat medium consisting of components selected from hydrocarbons having 1-6 carbon atoms, or hydrocarbons having 1-6 carbon atoms and nitrogen. The mixed heat medium is stored. A mixed heat medium vapor generated by heat input to the stored mixed heat medium is condensed by lng and returned to the mixed heat medium; collection and complete gasification of the low boiling point components mainly containing methane and the lng is gasified by condensation to provide an lng vapor gas. Lng is gasified by performing the rankine cycle with the mixed heat medium.

  7. LNG satellites in a distribution system

    SciTech Connect

    Ellis, C.T.

    1980-04-01

    An LNG satellite system using two LNG sources has been developed by Bay State Gas Co. for Massachusetts incorporating small, portable ambient vaporizers and a large peak-shaving facility. The primary facilities at Ludlow, MA, consist of a 1 billion cu ft storage tank, equipment capable of liquefying 7.5 million cu ft/day of gas, vaporization equipment with a capacity of 55 million cu ft/day, and LNG transport trailer loading-unloading facilities. Secondary facilities are located at a similar terminal at Everett, MA. The largest satellite station has an 8 billion cu ft storage tank, equipment capable of vaporizing 35 million cu ft/day, and LNG transport trailer loading-unloading facilities. Mobile units consisting of a trailer-mounted vaporizer and an LNG trailer also are in use. Factors in safe and dependable operation of the satellite LNG system are reviewed, including local transportation restrictions.

  8. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Dispersion Model.” Alternatively, in order to account for additional cloud dilution which may be caused by... if it can be shown that the terrain both upwind and downwind of the vapor cloud has dense vegetation and that the vapor cloud height is more than ten times the height of the obstacles encountered by...

  9. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Dispersion Model.” Alternatively, in order to account for additional cloud dilution which may be caused by... if it can be shown that the terrain both upwind and downwind of the vapor cloud has dense vegetation and that the vapor cloud height is more than ten times the height of the obstacles encountered by...

  10. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Dispersion Model.” Alternatively, in order to account for additional cloud dilution which may be caused by... if it can be shown that the terrain both upwind and downwind of the vapor cloud has dense vegetation and that the vapor cloud height is more than ten times the height of the obstacles encountered by...

  11. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Dispersion Model.” Alternatively, in order to account for additional cloud dilution which may be caused by... if it can be shown that the terrain both upwind and downwind of the vapor cloud has dense vegetation and that the vapor cloud height is more than ten times the height of the obstacles encountered by...

  12. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Dispersion Model.” Alternatively, in order to account for additional cloud dilution which may be caused by... if it can be shown that the terrain both upwind and downwind of the vapor cloud has dense vegetation and that the vapor cloud height is more than ten times the height of the obstacles encountered by...

  13. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect

    Jerry Havens; Iraj A. Salehi

    2005-05-10

    The objective of this report is to develop the FEM3A model for application to general scenarios involving dispersion problems with obstacles and terrain features of realistic complexity, and for very low wind speed, stable weather conditions as required for LNG vapor dispersion application specified in 49 CFR 193. The dispersion model DEGADIS specified in 49 CFR 193 is limited to application for dispersion over smooth, level terrain free of obstacles (such as buildings, tanks, or dikes). There is a need for a dispersion model that allows consideration of the effects of terrain features and obstacles on the dispersion of LNG vapor clouds. Project milestones are: (1) Simulation of Low-Wind-Speed Stable Atmospheric Milestones Conditions; (2) Verification for Dispersion over Rough Surfaces, With And Without Obstacles; and (3) Adapting the FEM3A Model for General Application. Results for this quarter are work continues to underway to address numerical problems during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, we have been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A. The present effort is directed to describing the ground surface temperature decrease as a function of time.

  14. Liquid-phase dispersion during injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, K.

    1994-01-01

    The behavior of water injection plumes in vapor-dominated reservoirs is examined. Stressing the similarity to water infiltration in heterogeneous soils, we suggest that ever-present heterogeneities in individual fractures and fracture networks will cause a lateral broadening of descending injection plumes. The process of lateral spreading of liquid phase is viewed in analogy to transverse dispersion in miscible displacement. To account for the postulated ``phase dispersion`` the conventional two-phase immiscible flow theory is extended by adding a Fickian-type dispersive term. The validity of the proposed phase dispersion model is explored by means of simulations with detailed resolution of small-scale heterogeneity. We also present an illustrative application to injection into a depleted vapor zone. It is concluded that phase dispersion effects will broaden descending injection plumes, with important consequences for pressure support and potential water breakthrough at neighboring production wells.

  15. Liquid-phase dispersion during injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, Karsten

    1994-01-20

    The behavior of water injection plumes in vapor-dominated reservoirs is examined. Stressing the similarity to water infiltration in heterogeneous soils, we suggest that everpresent heterogeneities in individual fractures and fracture networks will cause a lateral broadening of descending injection plumes. The process of lateral spreading of liquid phase is viewed in analogy to transverse dispersion in miscible displacement. To account for the postulated phase dispersion the conventional two-phase immiscible flow theory is extended by adding a Fickian-type dispersive term. The validity of the proposed phase dispersion model is explored by means of simulations with detailed resolution of small-scale heterogeneity. We also present an illustrative application to injection into a depleted vapor zone. It is concluded that phase dispersion effects will broaden descending injection plumes, with important consequences for pressure support and potential water breakthrough at neighboring production wells.

  16. Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter.

    PubMed

    Sun, Qinqing; Zhuang, Wei; Liu, Zhiwen; Chen, Jingbiao

    2011-12-01

    We report an excited-state Faraday anomalous-dispersion optical filter operating on the rubidium 5P(3/2)-5D(5/2) transition (775.9 nm in vacuum) without the use of a pump laser. An electrodeless discharge vapor lamp is employed to replace the Rb vapor cell in a traditional Faraday anomalous-dispersion optical filter system. Atoms can be excited by power rather than a complex frequency-locked pump laser. A proof-of-concept experimental demonstration with a maximum transmission of 1.9% and a filter bandwidth of 650 MHz is presented. PMID:22139259

  17. Cost estimate for a proposed GDF Suez LNG testing program

    SciTech Connect

    Blanchat, Thomas K.; Brady, Patrick Dennis; Jernigan, Dann A.; Luketa, Anay Josephine; Nissen, Mark R.; Lopez, Carlos; Vermillion, Nancy; Hightower, Marion Michael

    2014-02-01

    At the request of GDF Suez, a Rough Order of Magnitude (ROM) cost estimate was prepared for the design, construction, testing, and data analysis for an experimental series of large-scale (Liquefied Natural Gas) LNG spills on land and water that would result in the largest pool fires and vapor dispersion events ever conducted. Due to the expected cost of this large, multi-year program, the authors utilized Sandia's structured cost estimating methodology. This methodology insures that the efforts identified can be performed for the cost proposed at a plus or minus 30 percent confidence. The scale of the LNG spill, fire, and vapor dispersion tests proposed by GDF could produce hazard distances and testing safety issues that need to be fully explored. Based on our evaluations, Sandia can utilize much of our existing fire testing infrastructure for the large fire tests and some small dispersion tests (with some modifications) in Albuquerque, but we propose to develop a new dispersion testing site at our remote test area in Nevada because of the large hazard distances. While this might impact some testing logistics, the safety aspects warrant this approach. In addition, we have included a proposal to study cryogenic liquid spills on water and subsequent vaporization in the presence of waves. Sandia is working with DOE on applications that provide infrastructure pertinent to wave production. We present an approach to conduct repeatable wave/spill interaction testing that could utilize such infrastructure.

  18. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Methane (LNG) as fuel. 154.1854 Section 154.1854 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used...

  19. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methane (LNG) as fuel. 154.1854 Section 154.1854... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel,...

  20. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Methane (LNG) as fuel. 154.1854 Section 154.1854... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel,...

  1. Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report

    SciTech Connect

    Not Available

    1982-05-01

    Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

  2. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect

    Jerry Havens; Iraj A. Salehi

    2005-02-21

    This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2004 to December 31, 2004. On December 9, 2004 a meeting was held in Morgantown to rescope the LNG safety modeling project such that the work would complement the DOE's efforts relative to the development of the intended LNG-Fluent model. It was noted and discussed at the December 9th meeting that the fundamental research being performed on surface to cloud heat transfer and low wind speed issues will be relevant to the development of the DOE LNG/Fluent Model. In general, it was decided that all research to be performed from December 9th through the remainder of the contract is to be focused on the development of the DOE LNG/Fluent model. In addition, all GTI activities for dissemination and transfer of FEM3A will cease and dissemination activities will focus on the new DOE LNG/Fluent model. The proposed new scope of work is presented in section 4 of this report. The work reported in the present document relates to the original scope of work which was in effect during the reporting period. The future work will be re-scoped to meet the requirements of the new scope of work. During the report period work was underway to address numerical problems present during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, the University of Arkansas has been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A.

  3. Effect of filler dispersion on the electromechanical response of epoxy/vapor-grown carbon nanofiber composites

    NASA Astrophysics Data System (ADS)

    Ferreira, A.; Cardoso, P.; Klosterman, D.; Covas, J. A.; van Hattum, F. W. J.; Vaz, F.; Lanceros-Mendez, S.

    2012-07-01

    The piezoresistive response of epoxy/vapor-grown carbon nanofiber composites prepared by four different dispersion methods achieving different dispersion levels has been investigated. The composite response was measured as a function of carbon nanofiber loading for the different dispersion methods. Strain sensing by variation of the electrical resistance was tested through four-point bending experiments, and the dependence of the gauge factor as a function of the deformation and velocity of deformation was calculated as well as the stability of the electrical response. The composites demonstrated an appropriate response for being used as a piezoresistive sensor. Specific findings were that the intrinsic piezoresistive response was only effective around the percolation threshold and that good cluster dispersion was more appropriate for a good piezoresistive response than a uniform dispersion of individual nanofibers. The application limits of these materials for sensor applications are also addressed.

  4. Dispersion studies of the 22 GHz water vapor line shape. II - Instrumental correction.

    NASA Technical Reports Server (NTRS)

    Dillon, T. A.; Liebe, H. J.

    1971-01-01

    Anomalies in the resonance dispersion of the pressure-broadened water vapor line at a frequency of 22.235 GHz are resolved. The pressure-scanning differential-refraction spectrometer gives rise to a signal enhancement as the line center moves within the width of the dispersion discriminator. Resonance absorption prevents the frequency of peak transmitted power from coinciding with the resonance condition of zero phase. The results reported for the 23.6 GHz rotational line of ethylene oxide show a Lorentzian molecular line shape.

  5. First principles Monte Carlo simulations of vapor--liquid equilibria: Density functionals, basis sets, and dispersion corrections

    NASA Astrophysics Data System (ADS)

    Siepmann, J. Ilja; McGrath, Matthew J.; Kuo, I.-F. William; Mundy, Christopher J.

    2012-02-01

    Gibbs ensemble Monte Carlo simulations are used to compute the vapor--liquid equilibria for water, methanol, and methane using Kohn-Sham density functional theory. Results for BLYP and PBE functionals, BLYP with Grimme D2 and D3 dispersion corrections, and various basis sets are compared. Although none of the combinations of functional, dispersive correction, and basis set is found to yield highly accurate predictions for liquid densities, vapor pressures, and heats of vaporization for all three compounds, the results for dispersion corrected BLYP with large basis set are promising.

  6. Curves to determine the relative importance of advection and dispersion for solute and vapor transport

    USGS Publications Warehouse

    Garges, J.A.; Baehr, A.L.

    1998-01-01

    The relative importance of advection and dispersion for both solute and vapor transport can be determined from type curves or concentration, flux, or cumulative flux. The dimensionless form of the type curves provides a means to directly evaluate the importance of mass transport by advection relative to that of mass transport by diffusion and dispersion. Type curves based on an analytical solution to the advection-dispersion equation are plotted in terms of dimensionless time and Peclet number. Flux and cumulative flux type curves provide additional rationale for transport regime determination in addition to the traditional concentration type curves. The extension of type curves to include vapor transport with phase partitioning in the unsaturated zone is a new development. Type curves for negative Peclet numbers also are presented. A negative Peclet number characterizes a problem in which one direction of flow is toward the contamination source, and thereby diffusion and advection can act in opposite directions. Examples are the diffusion of solutes away from the downgradient edge of a pump-and-treat capture zone, the upward diffusion of vapors through the unsaturated zone with recharge, and the diffusion of solutes through a low hydraulic conductivity cutoff wall with an inward advective gradient.

  7. Research on energy efficiency design index for sea-going LNG carriers

    NASA Astrophysics Data System (ADS)

    Lin, Yan; Yu, Yanyun; Guan, Guan

    2014-12-01

    This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters—fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.

  8. Determination of the dispersion constant in a constrained vapor bubble thermosyphon

    NASA Technical Reports Server (NTRS)

    Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1995-01-01

    The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using an image analyzing interferometer which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young Laplace Equation. These isothermal results characterized the interfacial force field in-siru at the start of the heat transfer experiments by quantifying the dispersion constant, which is a function of the liquid-solid system and cleaning procedures. The experimentally obtained values of the disjoining pressure and the dispersion constants were compared to that predicted from the DLP theory and good agreements were obtained. The measurements are critical to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the Constrained Vapor Bubble Thermosyphon, CVBT, is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'estimated'. One of the major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for the force field at the solid-liquid-vapor interfaces.

  9. Pressure drop in fully developed, duct flow of dispersed liquid-vapor mixture at zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The dynamics of steady, fully developed dispersed liquid-vapor flow in a straight duct at 0-g is simulated by flowing water containing n-butyl benzoate droplets. Water and benzoate are immiscible and have identical density at room temperature. The theoretical basis of the simulation is given. Experiments showed that, for a fixed combined flow rate of water and benzoate, the frictional pressure drop is unaffected by large changes in the volume fraction of benzoate drops and their size distribution. Measured power spectra of the static wall pressure fluctuations induced by the turbulent water-benzoate flow also revealed that their dynamics is essentially unaltered by the presence of the droplets. These experimental findings, together with the theoretical analysis, led to the conclusion that the pressure drop in fully developed, dispersed liquid-vapor flow in straight ducts of constant cross section at 0-g is identical to that due to liquid flowing alone at the same total volumetric flow rate of the liquid-vapor mixture and, therefore, can be readily determined.

  10. Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties

    NASA Astrophysics Data System (ADS)

    Colli, A.; Fasoli, A.; Beecher, P.; Servati, P.; Pisana, S.; Fu, Y.; Flewitt, A. J.; Milne, W. I.; Robertson, J.; Ducati, C.; De Franceschi, S.; Hofmann, S.; Ferrari, A. C.

    2007-08-01

    We investigate and compare complementary approaches to SiNW production in terms of yield, morphology control, and electrical properties. Vapor-phase techniques are considered, including chemical vapor deposition (with or without the assistance of a plasma) and thermal evaporation. We report Au-catalyzed nucleation of SiNWs at temperatures as low as 300C using SiH4 as precursor. We get yields up to several milligrams by metal-free condensation of SiO powders. For all processes, we control the final nanostructure morphology. We then report concentrated and stable dispersions of SiNWs in solvents compatible with semiconducting organic polymers. Finally, we investigate the electrical response of intrinsic SiNWs grown by different methods. All our SiNWs exhibit p-type behavior and comparable performance, though in some cases ambipolar devices are observed. Thus, processing and morphology, rather than the growth technique, are key to achieve optimal samples for applications.

  11. Determination of the dispersion constant in a constrained vapor bubble thermosyphon

    NASA Technical Reports Server (NTRS)

    Dasgupta, SUNANDO.; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1993-01-01

    The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using an image analyzing interferometer which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young-Laplace equation. These isothermal results characterized the interfacial force field in-situ at the start of the heat transfer experiments by quantifying the dispersion constant, which is a function of the liquid-solid system and cleaning procedures. The experimentally obtained values of the disjoining pressure and the dispersion constants were compared to that predicted from the DLP theory and good agreements were obtained. The measurements are critical to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the CVBT is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'guesstimated'. One of the major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally. we find that the extended Young-Laplace equation is an excellent model for the force field at the solid-liquid-vapor interfaces.

  12. Heavy Gas Dispersion Incompressible Flow

    Energy Science and Technology Software Center (ESTSC)

    1992-01-27

    FEM3 is a numerical model developed primarily to simulate heavy gas dispersion in the atmosphere, such as the gravitational spread and vapor dispersion that result from an accidental spill of liquefied natural gas (LNG). FEM3 solves both two and three-dimensional problems and, in addition to the generalized anelastic formulation, includes options to use either the Boussinesq approximation or an isothermal assumption, when appropriate. The FEM3 model is composed of three parts: a preprocessor PREFEM3, themore » main code FEM3, and two postprocessors TESSERA and THPLOTX.« less

  13. Water Vapor Sorption and Diffusion in Secondary Dispersion Barrier Coatings: A Critical Comparison with Emulsion Polymers.

    PubMed

    Liu, Yang; Soer, Willem-Jan; Scheerder, Jrgen; Satgurunathan, Guru; Keddie, Joseph L

    2015-06-10

    The conventional method for synthesizing waterborne polymer colloids is emulsion polymerization using surfactants. An emerging method is the use of secondary dispersions (SD) of polymers in water, which avoids the addition of any surfactant. Although there are numerous studies of the water barrier properties (sorption, diffusion, and permeability) of waterborne emulsion (Em) polymer coatings, the properties of SD coatings, in comparison, have not been thoroughly investigated. Here, dynamic water vapor sorption analysis is used to compare the equilibrium sorption isotherms of the two forms of styrene-acrylate copolymers (Em and SD) with the same monomer composition. From an analysis of the kinetics of vapor sorption, the diffusion coefficient of water in the polymer coatings is determined. The combined effects of particle boundaries and surfactant addition were investigated through a comparison of the properties of SD and Em coatings to those of (1) solvent-cast polymer coatings (of the same monomer composition), (2) Em polymers that underwent dialysis to partially remove the water-soluble species, and (3) SD polymers with added surfactants. The results reveal that both the particle boundaries and the surfactants increase vapor sorption. The diffusion coefficients of water are comparable in magnitude in all of the polymer systems but are inversely related to water activity because of molecular clustering. Compared to all of the other waterborne polymer systems, the SD barrier coatings show the lowest equilibrium vapor sorption and permeability coefficients at high relative humidities as well as the lowest water diffusion coefficient at low humidities. These barrier properties make SD coatings an attractive alternative to conventional emulsion polymer coatings. PMID:25985183

  14. Exergy of LNG regasification - possible utilization method. Case study of LNG - ANG coupling

    NASA Astrophysics Data System (ADS)

    Roszak, E. A.; Chorowski, M.

    2014-01-01

    This article gives an overview on new exergy recovery methods for LNG. The concept is based on coupling the LNG regasification unit with the filling process of Adsorbed Natural Gas (ANG) tanks. The latent heat of the LNG vaporization is directly used for precooling the ANG adsorption bed. This reduces the back pressure from filling ANG tanks due to strong adsorption temperature dependency. This improves the economic attractiveness of ANG storage (no need for compressors, longer lifetime cycle of adsorbent). This case study presents the concept of LNG - ANG coupling. Presented results are based on experimental adsorption data. A brief exergy analysis of the process shows an advantage of this method over others. This LNG-ANG method is worth consideration as a cost optimizing solution, especially for periodically working regasification stations.

  15. Chemical vapor deposited tungsten with dispersed carbides for Space Shuttle check valves

    NASA Technical Reports Server (NTRS)

    Williams, G. E.

    1980-01-01

    A chemical vapor deposited tungsten with dispersed carbides was selected as the material for Space Shuttle Orbital Maneuvering and Reaction Control Systems check valve poppets and seats. The selection followed a NASA-sponsored prototype check valve development program utilizing the cutter-seal shell poppet concept. The poppet material is deposited as a coating approximately 0.9 mm thick and fabricated into a shell as a free standing body. The seat material is deposited as a coating 1.1 mm thick on a seat blank, and the cutter seal is machined in the coating. Module tests demonstrated that the material could be ground and lapped to very sharp edges and could cut through typical system contaminants without excessive damage to the sealing surfaces. The material was also determined to be unaffected by exposure to a strongly oxidizing storable propellant.

  16. Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties

    SciTech Connect

    Colli, A.; Fasoli, A.; Beecher, P.; Servati, P.; Pisana, S.; Fu, Y.; Flewitt, A. J.; Milne, W. I.; Robertson, J.; Ducati, C.; De Franceschi, S.; Hofmann, S.; Ferrari, A. C.

    2007-08-01

    We investigate and compare complementary approaches to SiNW production in terms of yield, morphology control, and electrical properties. Vapor-phase techniques are considered, including chemical vapor deposition (with or without the assistance of a plasma) and thermal evaporation. We report Au-catalyzed nucleation of SiNWs at temperatures as low as 300 deg. C using SiH{sub 4} as precursor. We get yields up to several milligrams by metal-free condensation of SiO powders. For all processes, we control the final nanostructure morphology. We then report concentrated and stable dispersions of SiNWs in solvents compatible with semiconducting organic polymers. Finally, we investigate the electrical response of intrinsic SiNWs grown by different methods. All our SiNWs exhibit p-type behavior and comparable performance, though in some cases ambipolar devices are observed. Thus, processing and morphology, rather than the growth technique, are key to achieve optimal samples for applications.

  17. Liquid turbines improve LNG operations

    SciTech Connect

    Johnson, L.L.

    1996-11-18

    Adding a pair of cryogenic hydraulic turbines, often called liquid expanders, into an LNG processing train can increase plant annual revenues by 3--4%. The cooldown of a vapor phase by expansion through a gas turbine is widely used in such cryogenic processes as NGL and LPG recovery in the cold section of the steam cracking and in air or natural-gas liquefaction. Traditionally, this pressure letdown function has been through use of a Joule-Thomson (JT) valve which wastes the energy and reduces process efficiency by leaving it in the system in the form of heat. Any natural-gas liquefaction process can be improved by expanding the LNG and the liquid phase of the mixed refrigerant through a hydraulic turbine. Described here are the technical requirements for such turbines along with the design developed to meet those requirements. Also reviewed is the testing of the first set of large-scale (800 kw) commercial turbines at full flow and pressure using {minus}160 C. LNG as the test fluid. First installation and operation are also described.

  18. Vapor spill pipe monitor

    DOEpatents

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  19. Vapor spill pipe monitor

    NASA Astrophysics Data System (ADS)

    Bianchini, G. M.; McRae, T. G.

    1983-06-01

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote IR gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote IR sensor which measures the gas composition.

  20. Caribbean LNG project marks progress; LNG tanker launched

    SciTech Connect

    1997-10-20

    World LNG trade continues to expand as construction of a major LNG project in the Caribbean hits full stride this fall and another LNG carrier was launched earlier this year. Engineering is nearly complete and construction is nearing midway on Trinidad`s Atlantic LNG. In Japan, NKK Corp. launched another LNG tanker that employs the membrane-storage system. The 50-mile pipeline to move natural gas to the Atlantic LNG facility is also on track for completion by October 1998.

  1. Comparative safety analysis of LNG storage tanks

    SciTech Connect

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  2. LNG systems for natural gas propelled ships

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Duda, P.; Polinski, J.; Skrzypacz, J.

    2015-12-01

    In order to reduce the atmospheric pollution generated by ships, the International Marine Organization has established Emission Controlled Areas. In these areas, nitrogen oxides, sulphur oxides and particulates emission is strongly controlled. From the beginning of 2015, the ECA covers waters 200 nautical miles from the coast of the US and Canada, the US Caribbean Sea area, the Baltic Sea, the North Sea and the English Channel. From the beginning of 2020, strong emission restrictions will also be in force outside the ECA. This requires newly constructed ships to be either equipped with exhaust gas cleaning devices or propelled with emission free fuels. In comparison to low sulphur Marine Diesel and Marine Gas Oil, LNG is a competitive fuel, both from a technical and economical point of view. LNG can be stored in vacuum insulated tanks fulfilling the difficult requirements of marine regulations. LNG must be vaporized and pressurized to the pressure which is compatible with the engine requirements (usually a few bar). The boil-off must be controlled to avoid the occasional gas release to the atmosphere. This paper presents an LNG system designed and commissioned for a Baltic Sea ferry. The specific technical features and exploitation parameters of the system will be presented. The impact of strict marine regulations on the system's thermo-mechanical construction and its performance will be discussed. The review of possible flow-schemes of LNG marine systems will be presented with respect to the system's cost, maintenance, and reliability.

  3. New LNG process scheme

    SciTech Connect

    Foglietta, J.H.

    1999-07-01

    A new LNG cycle has been developed for base load liquefaction facilities. This new design offers a different technical and economical solution comparing in efficiency with the classical technologies. The new LNG scheme could offer attractive business opportunities to oil and gas companies that are trying to find paths to monetize gas sources more effectively; particularly for remote or offshore locations where smaller scale LNG facilities might be applicable. This design offers also an alternative route to classic LNG projects, as well as alternative fuel sources. Conceived to offer simplicity and access to industry standard equipment, This design is a hybrid result of combining a standard refrigeration system and turboexpander technology.

  4. High efficiency Brayton cycles using LNG

    DOEpatents

    Morrow, Charles W. (Albuquerque, NM)

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  5. Heavy Gas Dispersion Incompressible Flow

    Energy Science and Technology Software Center (ESTSC)

    1992-02-03

    FEM3 is a numerical model developed primarily to simulate heavy gas dispersion in the atmosphere, such as the gravitational spread and vapor dispersion that result from an accidental spill of liquefied natural gas (LNG). FEM3 solves both two and three-dimensional problems and, in addition to the generalized anelastic formulation, includes options to use either the Boussinesq approximation or an isothermal assumption, when appropriate. The FEM3 model is composed of three parts: a preprocessor PREFEM3, themore » main code FEM3, and two postprocessors TESSERA and THPLOTX. The DEC VAX11 version contains an auxiliary program, POLYREAD, which reads the polyplot file created by FEM3.« less

  6. A review of large-scale LNG spills : experiment and modeling.

    SciTech Connect

    Luketa-Hanlin, Anay Josephine

    2005-04-01

    The prediction of the possible hazards associated with the storage and transportation of liquefied natural gas (LNG) by ship has motivated a substantial number of experimental and analytical studies. This paper reviews the experimental and analytical work performed to date on large-scale spills of LNG. Specifically, experiments on the dispersion of LNG, as well as experiments of LNG fires from spills on water and land are reviewed. Explosion, pool boiling, and rapid phase transition (RPT) explosion studies are described and discussed, as well as models used to predict dispersion and thermal hazard distances. Although there have been significant advances in understanding the behavior of LNG spills, technical knowledge gaps to improve hazard prediction are identified. Some of these gaps can be addressed with current modeling and testing capabilities. A discussion of the state of knowledge and recommendations to further improve the understanding of the behavior of LNG spills on water is provided.

  7. Safety features on LNG ships

    NASA Astrophysics Data System (ADS)

    Harris, F. S.

    The technology to transport liquefied natural gas (LNG) safely by sea is well established and many variations of cargo containment systems have been tested and developed since the early 1950s. Examples of four current LNG ships incorporating different containment systems are briefly described. Safety features are examined, now considered standard practice on a modern LNG carrier, which have made a major contribution to the outstandingly good record of LNG ship operations. Examples are given of some LNG ship casualty incidents.

  8. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    NASA Technical Reports Server (NTRS)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  9. PRELIMINARY INVESTIGATION OF UNCOMBUSTED AUTO FUEL VAPOR DISPERSION WITHIN A RESIDENTIAL GARAGE MICROENVIRONMENT

    EPA Science Inventory

    Evaporative emissions from vehicles in an attached garage may represent a significant source of indoor pollution and human exposure. ilot field study was undertaken to investigate potential in-house dispersion of evaporative emissions of uncombusted fuels from a vehicle parked in...

  10. Insulating LNG (liquified natural gas) storage tank containment dikes with a lightweight polymer concrete

    SciTech Connect

    Fontana, J.J.

    1987-08-01

    The natural gas industry has always been concerned ith accidental spills of liquified natural gas (LNG) from storage tanks into surrounding containment dikes. The LNG that is leaked to the dike area boils off and the vapors mix with the atmosphere forming a hazardous explsoive mixture within the dike walls. These hazardous mixtures can travel long distances into industrial or residential areas surroungind LNG storage facilities. Studies by the natural gas industry indicate that the hazards associated with accidental spills of LNG from storage tanks can be makedly reduced by insulating the diked areas surrounding these tanks. In this manner, the heat transfer from the dike surface to the LNG is reduced. The insulating composite is used to construct a thermal barrier between the walls and floor of the dike an the spilled LNG. The thermal conductivity, porosity, and compression strength of a concrete, polymer composite insulating material is discussed. 6 refs., 8 figs., 5 tbs.

  11. An LNG release, transport, and fate model system for marine spills.

    PubMed

    Spaulding, Malcolm L; Swanson, J Craig; Jayko, Kathy; Whittier, Nicole

    2007-02-20

    LNGMAP, a fully integrated, geographic information based modular system, has been developed to predict the fate and transport of marine spills of LNG. The model is organized as a discrete set of linked algorithms that represent the processes (time dependent release rate, spreading, transport on the water surface, evaporation from the water surface, transport and dispersion in the atmosphere, and, if ignited, burning and associated radiated heat fields) affecting LNG once it is released into the environment. A particle-based approach is employed in which discrete masses of LNG released from the source are modeled as individual masses of LNG or spillets. The model is designed to predict the gas mass balance as a function of time and to display the spatial and temporal evolution of the gas (and radiated energy field). LNGMAP has been validated by comparisons to predictions of models developed by ABS Consulting and Sandia for time dependent point releases from a draining tank, with and without burning. Simulations were in excellent agreement with those performed by ABS Consulting and consistent with Sandia's steady state results. To illustrate the model predictive capability for realistic emergency scenarios, simulations were performed for a tanker entering Block Island Sound. Three hypothetical cases were studied: the first assumes the vessel continues on course after the spill starts, the second that the vessel stops as soon as practical after the release begins (3 min), and the third that the vessel grounds at the closest site practical. The model shows that the areas of the surface pool and the incident thermal radiation field (with burning) are minimized and dispersed vapor cloud area (without burning) maximized if the vessel continues on course. For this case the surface pool area, with burning, is substantially smaller than for the without burning case because of the higher mass loss rate from the surface pool due to burning. Since the vessel speed substantially exceeds the spill spreading rate, both the thermal radiation fields and surface pool trail the vessel. The relative directions and speeds of the wind and vessel movement govern the orientation of the dispersed plume. If the vessel stops, the areas of the surface pool and incident radiation field (with burning) are maximized and the dispersed cloud area (without burning) minimized. The longer the delay in stopping the vessel, the smaller the peak values are for the pool area and the size of the thermal radiation field. Once the vessel stops, the spill pool is adjacent to the vessel and moving down current. The thermal radiation field is oriented similarly. These results may be particularly useful in contingency planning for underway vessels. PMID:17110025

  12. Polymer-dispersed liquid crystal doped with carbon nanotubes for dimethyl methylphosphonate vapor-sensing application

    NASA Astrophysics Data System (ADS)

    Lai, Yu-Tse; Kuo, Jui-Chang; Yang, Yao-Joe

    2013-05-01

    This paper proposes a sensitive gas sensor composed of polymer-dispersed liquid crystal (PDLC) for dimethyl methylphosphonate (DMMP) detection. The sensing element comprises a PDLC sensing film doped with carbon nanotubes (CNT-PDLC) and a planar interdigital electrode pair. The concentration of DMMP exposed to the CNT-PDLC material is detectable by measuring the change in conductivity of the material. Compared to conventional LC-based sensors, the proposed PDLC device is robust against mechanical shocks, and can fully operate with a simple read-out circuit. The sensor response is linear for gas concentrations from 5 to 250 ppm, and the response time is approximately 125 s.

  13. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel, the... required procedure under paragraph (b) of this section is posted in the main machinery space. (d) The master shall ensure that the oxygen concentration in the annular space of the fuel line under ...

  14. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel, the... required procedure under paragraph (b) of this section is posted in the main machinery space. (d) The master shall ensure that the oxygen concentration in the annular space of the fuel line under ...

  15. Infrared absorption in chemically vapor-deposited ZnSe: wavelength and temperature dispersions

    NASA Astrophysics Data System (ADS)

    Klein, Claude A.

    1990-10-01

    Chemically vapor-deposited ZnSe exhibits outstanding properties in the infrared (IR) and has been established as a prime material candidate for IR transmitting applications. The purpose of this paper is to present and evaluate data on both the surface and the bulk absorption of commercially available ZnSe, over the entire wavelength and temperature range of current interest. This investigation is based on spectral emittance measurements that were carried out by Stierwalt at the Naval Ocean Systems Center and on in-house transmission spectroscopy performed in the context of a fur-window development program. Surface effects can be felt at wavelengths as high as 14 um and usually predominate at wavelengths of less than 8 urn, even for fairly thick specimens. Fractional surface absorptions are temperature independent from about 200 to 400 K, which masks the behavior of the bulk absorption, and can be fitted to a Fourier series, for wavelengths of 3.5 to 13.5 urn. Bulk absorption coefficients (nv) are strongly dependent upon temperature as well as wavelength but can be approximated by means of two bivariate polynomial expressions that yield "recommended" values. At wavelengths X 10 urn, v always decreases with increasing temperature; it is shown that a wavelength independent Debye-Waller factor provides a correct description of the temperature dependence, thus pointing to IR-active localized modes. At wavelengths X 14 urn, V always increases with rising temperature and exhibits a temperature-dependence pattern as predicted for 3- and 4-phonon summation processes. Finally, an analysis of the temperature dependence of j at 10.6 urn demonstrates that the intrinsic lattice-vibrational contribution to bulk absorption at the CO2-laser wavelength should be close to 4x1Ocrn, in accord with the results of earlier lasercalorimetry tests performed on exceptionally pure ZnSe.

  16. Introduction to LNG vehicle safety

    NASA Astrophysics Data System (ADS)

    Bratvold, Delma; Friedman, David; Chernoff, Harry; Farkhondehpay, Dariush; Comay, Claudia

    1994-03-01

    Basic information on the characteristics of liquefied natural gas (LNG) is assembled to provide an overview of safety issues and practices for the use of LNG vehicles. This document is intended for those planning or considering the use of LNG vehicles, including vehicle fleet owners and operators, public transit officials and boards, local fire and safety officials, manufacturers and distributors, and gas industry officials. Safety issues and mitigation measures that should be considered for candidate LNG vehicle projects are addressed.

  17. Coyote series data report. LLNL/NWC 1981 LNG spill tests dispersion, vapor burn, and rapid-phase-transition. Volume 2. Appendices

    SciTech Connect

    Goldwire, H.C. Jr.; Rodean, H.C.; Cederwall, R.T.; Kansa, E.J.; Koopman, R.P.; McClure, J.W.; McRae, T.G.; Morris, L.K.; Kamppiner, L.; Kiefer, R.D.

    1983-10-01

    Volume 2 contains appendices for the following: (1) wind-field data; (2) gas-concentration time histories; (3) gas-concentration contours - vertical planes; (4) gas-concentration contours - horizontal planes; and (5) selected ir images. (ATT)

  18. Feasibility study for the construction of a new LNG receiving terminal, turkey. Volume 2. Appendix. Export trade information. [LNG (liquified natural gas)

    SciTech Connect

    Not Available

    1993-06-01

    The report was prepared by The M. W. Kellogg Co. for BOTAS Petroleum Pipeline Corporation of Ankara, Turkey. The study was undertaken to evaluate the cost and economics of constructing a second liquified natural gas (LNG) terminal in Turkey to meet future requirements for natural gas. Volume 2 contains the following appendices: LNG Storage Tanks; Vaporizers; Compressors; Pumps; Loading Arms; Marine Installations; Shipping; and Seismic Study.

  19. New technology for the investigation of water vapor sorption-induced crystallographic form transformations of chemical compounds: a water vapor sorption gravimetry-dispersive Raman spectroscopy coupling.

    PubMed

    Feth, Martin Philipp; Jurascheck, Jrg; Spitzenberg, Michael; Dillenz, Jrgen; Bertele, Gnter; Stark, Herbert

    2011-03-01

    In this study, a new dynamic water vapor sorption gravimetry (DWVSG)-Raman spectroscopy coupled system is presented and described for the investigation of water (de)sorption-induced solid-phase transition of active pharmaceutical ingredients (APIs). The innovative characteristic of the system is the possibility to measure up to 23 samples gravimetrically and spectroscopically in one sorption/desorption experiment. The used dispersive RXN1 Raman system with a 6-mm laser spot P(h) AT probe head is ideal for this kind of coupled technology, as the energy density at the point of measurement of the sample is low, which grants that gravimetrical data and the state of the sample (phase transformations or even degradation) are not influenced by the laser beam. The capabilities of the system were tested by the investigation of a crystalline, nonstoichiometric hydrate form (form 1) and the corresponding X-ray amorphous form of an API (SAR474832). For the crystalline hydrate form, it was possible to correlate the weight loss at low humidities to a crystallographic phase transition (form 2). Furthermore, it was possible to show that the phase transition is reversible upon water uptake (sorption cycle); however, a further intermediate crystal form (form 3) is involved in the rehydration process. By multivariate curve resolution analysis of the Raman spectra, the form distribution diagrams of the desorption/sorption cycle could be constructed. For the amorphous material, the recrystallization process was monitored by the changes in the Raman spectra. The recrystallization point was detected at high humidities (>90% relative humidity), the crystal phase formed was identified (form 1), and the time needed for the conversion into the crystalline state was determined. The form transformation processes were visualized by contour plots (time/humidity vs. wavenumber vs. Raman intensity). In summary, it was concluded that the presented water sorption gravimetry-Raman spectroscopy coupling is a powerful tool to study solid-state transitions of pharmaceutical compounds or galenic formulations. The information obtained can, for example, be used to optimize drying, conditioning, or rerystallization processes of chemical products or to determine their optimal storage conditions. This is especially interesting for physically and chemically labile hydrate phases. PMID:20740677

  20. LNG risk management

    NASA Astrophysics Data System (ADS)

    Martino, P.

    1980-12-01

    A general methodology is presented for conducting an analysis of the various aspects of the hazards associated with the storage and transportation of liquefied natural gas (LNG) which should be considered during the planning stages of a typical LNG ship terminal. The procedure includes the performance of a hazards and system analysis of the proposed site, a probability analysis of accident scenarios and safety impacts, an analysis of the consequences of credible accidents such as tanker accidents, spills and fires, the assessment of risks and the design and evaluation of risk mitigation measures.

  1. Effect of Mo Dispersion Size and Water Vapor on Oxidation of Two-Phase Directionally Solidified NiAl-9Mo In-Situ Composites

    SciTech Connect

    Brady, Michael P; Bei, Hongbin; Meisner, Roberta Ann; Lance, Michael J; Tortorelli, Peter F

    2014-01-01

    Oxidation of two-phase NiAl-9Mo eutectics with 3 different growth rates/2nd phase Mo dispersion sizes were investigated at 900 C in air and air with 10% water vapor. Good oxidation resistance via alumina formation was observed in dry air, with Mo volatilization loss minimized by fine submicron Mo dispersions. However, extensive Mo volatilization and in-place internal oxidation of prior Mo phase regions was observed in wet air oxidation. Ramifications of this phenomenon for the development of multi-phase high-temperature alloys are discussed

  2. LNG annotated bibliography

    SciTech Connect

    Bomelburg, H.J.; Counts, C.A.; Cowan, C.E.; Davis, W.E.; DeSteese, J.G.; Pelto, P.J.

    1982-09-01

    This document updates the bibliography published in Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: third status report (PNL-4172) and is a complete listing of literature reviewed and reported under the LNG Technical Surveillance Task. The bibliography is organized alphabetically by author.

  3. LNG infrastructure and equipment

    SciTech Connect

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  4. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.

    PubMed

    Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam

    2014-09-15

    With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect. PMID:25194555

  5. LNG pool fire spectral data and calculation of emissive power.

    PubMed

    Raj, Phani K

    2007-04-11

    Spectral description of thermal emission from fires provides a fundamental basis on which the fire thermal radiation hazard assessment models can be developed. Several field experiments were conducted during the 1970s and 1980s to measure the thermal radiation field surrounding LNG fires. Most of these tests involved the measurement of fire thermal radiation to objects outside the fire envelope using either narrow-angle or wide-angle radiometers. Extrapolating the wide-angle radiometer data without understanding the nature of fire emission is prone to errors. Spectral emissions from LNG fires have been recorded in four test series conducted with LNG fires on different substrates and of different diameters. These include the AGA test series of LNG fires on land of diameters 1.8 and 6m, 35 m diameter fire on an insulated concrete dike in the Montoir tests conducted by Gaz de France, a 1976 test with 13 m diameter and the 1980 tests with 10 m diameter LNG fire on water carried out at China Lake, CA. The spectral data from the Montoir test series have not been published in technical journals; only recently has some data from this series have become available. This paper presents the details of the LNG fire spectral data from, primarily, the China Lake test series, their analysis and results. Available data from other test series are also discussed. China Lake data indicate that the thermal radiation emission from 13 m diameter LNG fire is made up of band emissions of about 50% of energy by water vapor (band emission), about 25% by carbon dioxide and the remainder constituting the continuum emission by luminous soot. The emissions from the H2O and CO2 bands are completely absorbed by the intervening atmosphere in less than about 200 m from the fire, even in the relatively dry desert air. The effective soot radiation constitutes only about 23% during the burning period of methane and increases slightly when other higher hydrocarbon species (ethane, propane, etc.) are burning in the LNG fire. The paper discusses the procedure by which the fire spectral data are used to predict the thermal emission from large LNG fires. Unfortunately, no direct measurements of the soot density or smoke characteristics were made in the tests. These parameters have significant effect on the thermal emission from large LNG fires. PMID:16920262

  6. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  7. Use of TX100-dangled epoxy as a reactive noncovalent dispersant of vapor-grown carbon nanofibers in an aqueous solution.

    PubMed

    Dong, Yubing; Wang, Rui; Li, Shan; Yang, Hongbing; Du, Mingliang; Fu, Yaqin

    2013-02-01

    The dispersion of carbon nanotubes (CNTs) into individual particles or small bundles has remained a vexing problem that limits the use of the excellent properties of CNTs in composite applications. Noncovalent functionalization is an attractive option for changing the interfacial properties of nanotubes because it does not destroy the nanotube grapheme structure. In this study, a new reactive copolymer, epoxy-toluene diisocyanate-Triton X-100 (EP-TDI-TX100) was successfully synthesized, which is shown to be highly effective in dispersing vapor-grown carbon nanofibers (VGCNFs) into individual or small bundles, as evidenced by transmission electron microscopy (TEM) and UV-vis absorption spectra. The strong ?-? interaction between VGCNFs and EP-TDI-TX100 was revealed by Raman spectra and the covalent reaction between curing agent was confirmed via Fourier transform infrared spectroscopy. For an effective dispersion, the optimum weight ratio of EP-TDI-TX100 to VGCNFs is 2:1. The maximum VGCNF concentration that can be homogeneously dispersed in an aqueous solution is approximately 0.64 mg/mL. The EP-TDI-TX100 molecules are adsorbed on the VGCNF surface and prevent reaggregation of VGCNFs, so that a colloidal stability of VGCNF dispersion can be maintained for 6 months. PMID:23116860

  8. Liquefied Natural Gas (LNG) dispenser verification device

    NASA Astrophysics Data System (ADS)

    Xiong, Maotao; Yang, Jie-bin; Zhao, Pu-jun; Yu, Bo; Deng, Wan-quan

    2013-01-01

    The composition of working principle and calibration status of LNG (Liquefied Natural Gas) dispenser in China are introduced. According to the defect of weighing method in the calibration of LNG dispenser, LNG dispenser verification device has been researched. The verification device bases on the master meter method to verify LNG dispenser in the field. The experimental results of the device indicate it has steady performance, high accuracy level and flexible construction, and it reaches the international advanced level. Then LNG dispenser verification device will promote the development of LNG dispenser industry in China and to improve the technical level of LNG dispenser manufacture.

  9. LNG Observer: Second Qatargas train goes onstream

    SciTech Connect

    1997-01-01

    The January-February, 1997 issue of the LNG Observer is presented. The following topics are discussed: second Qatargas train goes onstream; financing for the eighth Indonesian liquefaction train; Koreans take stakes in Oman LNG; US imports and exports of LNG in 1996; A 60% increase in proved reserves on the North West Shelf; proposals for Indian LNG terminal CEDIGAZ forecasts world LNG trade by 2010; growth for North African gas production and exports; and new forecast sees strong growth for Asian gas.

  10. Thermodynamic and heat transfer analysis of LNG energy recovery for power production

    NASA Astrophysics Data System (ADS)

    Franco, A.; Casarosa, C.

    2014-11-01

    An important option to transport the gas is to convert it into liquid natural gas (LNG) and convey it using insulated LNG tankers. At receiving terminals, the LNG is offloaded into storage tanks and then pumped at the required pressure and vaporized for final transmission to the pipeline. The LNG production process consumes a considerable amount of energy, while the cold availability, as also known as cold energy, has been stored in LNG. At a receiving terminal, LNG needs to be evaporated into gas at environmental temperature before fed into the gas distribution system. Seawater is commonly used for the regasification process of the LNG. In the present paper, after a general analysis of the perspectives of the various thermodynamic schemes proposed for power production from the regasification, a detailed analysis of enhanced direct expansion system is carried out in order to identify the upper level of the energy that can be recovered. The analysis outlines that power production typical of optimized ORC plant configurations (120 kJ/kg) can be obtained with direct expansion solutions.

  11. Modeling the release, spreading, and burning of LNG, LPG, and gasoline on water.

    PubMed

    Johnson, David W; Cornwell, John B

    2007-02-20

    Current interest in the shipment of liquefied natural gas (LNG) has renewed the debate about the safety of shipping large volumes of flammable fuels. The size of a spreading pool following a release of LNG from an LNG tank ship has been the subject of numerous papers and studies dating back to the mid-1970s. Several papers have presented idealized views of how the LNG would be released and spread across a quiescent water surface. There is a considerable amount of publicly available material describing these idealized releases, but little discussion of how other flammable fuels would behave if released from similar sized ships. The purpose of this paper is to determine whether the models currently available from the United States Federal Energy Regulatory Commission (FERC) can be used to simulate the release, spreading, vaporization, and pool fire impacts for materials other than LNG, and if so, identify which material-specific parameters are required. The review of the basic equations and principles in FERC's LNG release, spreading, and burning models did not reveal a critical fault that would prevent their use in evaluating the consequences of other flammable fluid releases. With the correct physical data, the models can be used with the same level of confidence for materials such as LPG and gasoline as they are for LNG. PMID:17112658

  12. International LNG report/Developments proceed slowly in world LNG industry

    SciTech Connect

    Hale, D.

    1980-03-01

    A discussion of developments in the world LNG industry covers U.S. developments, including the Pipeline Safety Act of 1979, the National Fire Protection Association's 1979 edition of Standard 59A for the production, storage, and handling of LNG, and progress in the permitting of major LNG import projects changes in U.S. rules on LNG pricing; LNG accidents, including the grounding of the LNG carrier Vertical BarEl Paso Paul Kaise.

  13. LNG -- Technology on the edge

    SciTech Connect

    Alexander, C.B.

    1995-10-01

    With immense promise and many supporters, LNG as a vehicular fuel is still, a nascent industry. In about two years, an array of LNG engines should be commercially available, and infrastructure greatly expanded. These developments should reduce the present premium of LNG equipment, greatly improving industry economics. The most propitious sign for LNG-market developed lies in the natural gas industry`s recently refined strategy for natural gas vehicles. The new strategy targets the right competitor--diesel, not gasoline. It also targets the right market for an emerging fuel--high-fuel-usage fleets made up of medium- and heavy-duty vehicles, often driven long distances. But problems persist in critical areas of development. These problems are related to the materials handling of LNG and the refueling of vehicles. The paper discusses the studies on LNG handling procedures, its performance benefits to high-fuel use vehicles, economic incentives for its use, tax disadvantages that are being fought, and LNG competition with ``clean`` diesel fuels.

  14. LNG plants in the US and abroad

    SciTech Connect

    Blazek, C.F.; Biederman, R.T.

    1992-12-31

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT`s LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  15. On the application of computational fluid dynamics codes for liquefied natural gas dispersion.

    SciTech Connect

    Luketa-Hanlin, Anay Josephine; Koopman, Ronald P.; Ermak, Donald

    2006-02-01

    Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.

  16. North American LNG Project Sourcebook

    SciTech Connect

    2007-06-15

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  17. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect

    O`Brien, J.E.; Siahpush, A.

    1998-02-01

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  18. Introduction to LNG vehicle safety. Topical report

    SciTech Connect

    Bratvold, D.; Friedman, D.; Chernoff, H.; Farkhondehpay, D.; Comay, C.

    1994-03-01

    Basic information on the characteristics of liquefied natural gas (LNG) is assembled in this report to provide an overview of safety issues and practices for the use of LNG vehicles. This document is intended for those planning or considering the use of LNG vehicles, including vehicle fleet owners and operators, public transit officials and boards, local fire and safety officials, manufacturers and distributors, and gas industry officials. Safety issues and mitigation measures that should be considered for candidate LNG vehicle projects are addressed.

  19. Dispersion of UO{sub 2}F{sub 2} aerosol and HF vapor in the operating floor during winter ventilation at the Paducah Gaseous Diffusion Plant

    SciTech Connect

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.

    1996-12-30

    The gaseous diffusion process is currently employed at two plants in the US: the Paducah Gaseous Diffusion Plant and the Portsmouth Gaseous Diffusion Plant. As part of a facility-wide safety evaluation, a postulated design basis accident involving large line-rupture induced releases of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant (GDP) is evaluated. When UF{sub 6} is released into the atmosphere, it undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form vaporized hydrogen fluoride (HF) and aerosolized uranyl fluoride (UO{sub 2}F{sub 2}). These reactants disperse in the process building and transport through the building ventilation system. The ventilation system draws outside air into the process building, distributes it evenly throughout the building, and discharges it to the atmosphere at an elevated temperature. Since air is recirculated from the cell floor area to the operating floor, issues concerning in-building worker safety and evacuation need to be addressed. Therefore, the objective of this study is to evaluate the transport of HF vapor and UO{sub 2}F{sub 2} aerosols throughout the operating floor area following B-line break accident in the cell floor area.

  20. Characterization of the Near-Field Transport and Dispersion of Vapors Released from the Headspaces of Hanford Site Underground Storage Tanks

    SciTech Connect

    Droppo, James G.

    2004-07-30

    A parametric air dispersion analysis has been conducted to define the range of tank vapor concentrations from the Hanford Site underground tanks that can potentially occur in the worker breathing zones from active and passive releases from the waste tanks. The potential influences of tank farm specific release characteristics, ambient meteorological conditions, local farm surface roughness, and topographical influences are considered. The parametric approach allows consideration of the full range venting configurations and potential vapor concentration over the range of meteorological conditions at the Hanford Site. The results indicate that occasional short duration exposures of up to several seconds to relatively undiluted headspace air can be expected in the immediate vicinity of the tank vents. Average concentrations which represent diffusion, as well as spatial averaging, fall off rapidly with distance for the passive vents and to a lesser extent for the forced-air stacks. The addition of the influence of the surface roughness elements on the tank farms will result in a faster decrease of concentrations with downwind distance.

  1. 77 FR 73627 - 2012 LNG Export Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... in mind that the NERA Study was performed by an independent non-governmental organization under... Charles Exports, LLC, FE Docket No. 11-59-LNG, 76 FR 34212 (June 13, 2011); Dominion Cove Point LNG, LP, FE Docket No. 11-128-LNG, 76 FR 76698 (December 8, 2011); Carib Energy (USA) LLC, FE Docket No....

  2. 46 CFR 154.703 - Methane (LNG).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methane (LNG). 154.703 Section 154.703 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG)...

  3. LNG to CNG refueling stations

    SciTech Connect

    Branson, J.D.

    1995-12-31

    While the fleet operator is concerned about the environment, he or she is going to make the choice based primarily on economics. Which fuel provides the lowest total operating cost? The calculation of this costing must include the price-per-gallon of the fuel delivered, as well as the tangible and intangible components of fuel delivery, such as downtime for vehicles during the refueling process, idle time for drivers during refueling, emissions costings resulting from compressor oil blow-by, inclusion of non-combustible constituents in the CNG, and energy consumption during the refueling process. Also, the upfront capital requirement of similar delivery capabilities must be compared. The use of LNG as the base resource for the delivered CNG, in conjunction with the utilization of a fully temperature-compressed LNG/CNG refueling system, eliminates many of the perceived shortfalls of CNG. An LNG/CNG refueling center designed to match the capabilities of the compressor-based station will have approximately the same initial capital requirement. However, because it derives its CNG sales product from the {minus}260 F LNG base product, thus availing itself of the natural physical properties of the cryogenic product, all other economic elements of the system favor the LNG/CNG product.

  4. Recommended research on LNG safety

    SciTech Connect

    Carpenter, H.J.; Gilmore, F.R.

    1981-03-01

    The US Department of Energy (DOE) is conducting research on the safety and other environmental aspects of liquefied energy gases including liquefied natural gas (LNG). The effort reported here was conducted as part of the planning for further research into the safety aspects of transporting and storing LNG, with primary emphasis on public safety. Although the modern LNG industry has enjoyed excellent success in providing for safe operations, significant questions remain on the part of many, the expressions of which were intensified with the addition of marine-based LNG import terminals. Public safety with regard to large-scale importation of this fuel has received widespread attention in the US Congress, state legislatures, county and city governments, and from various individuals and public groups, with coverage in all the news media, including books published on the subject. The safety concerns have centered around the consequences to the public of a large spill of the cryogenic liquid from an ocean tanker or a larger storage tank, either of which might hold as much as 125,000 m/sup 3/ of LNG.

  5. LNG vehicle technology, economics, and safety assessment

    NASA Astrophysics Data System (ADS)

    Powars, Charles A.; Moyer, Carl B.; Lowell, Douglas D.

    1994-02-01

    Liquid natural gas (LNG) is an attractive transportation fuel because of its high heating value and energy density (i.e., Btu/lb. and Btu/gal.), clean burning characteristics, relatively low cost ($/Btu), and domestic availability. This research evaluated LNG vehicle and refueling system technology, economics, and safety. Prior and current LNG vehicle projects were studied to identify needed technology improvements. Life-cycle cost analyses considered various LNG vehicle and fuel supply options. Safety records, standards, and analysis methods were reviewed. The LNG market niche is centrally fueled heavy-duty fleet vehicles with high fuel consumption. For these applications, fuel cost savings can amortize equipment capital costs.

  6. LNG plants in the US and abroad. [Liquefied Natural Gas (LNG)

    SciTech Connect

    Blazek, C.F.; Biederman, R.T.

    1992-01-01

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT's LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  7. Grain structure and growth of dispersed phase BN-AlN coatings grown via chemical vapor deposition

    SciTech Connect

    Freeman, G.B.; Lackey, W.J.; Hanigofsky, J.A. . Georgia Technology Research Inst.); Lee, Woo Y. ); More, K.L. )

    1990-01-01

    This paper discusses the variation in microstructures encountered during the separate depositions of boron nitride (BN) and aluminium nitride (AlN) as well as during the codeposition of BN-AlN dispersed phase ceramic coatings. This combination was chosen in order to take advantage of the self lubricating properties of hexagonal BN along with the hard, erosion resistance of AlN. Films were characterized using scanning and transmission electron microscopy (SEM and TEM), x-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD). A range of coating microstructures are possible depending on the conditions of deposition. The best films produced, in terms of hardness, density, and tenacity, were a fine mixture of turbostratic BN and preferentially oriented A1N whiskers aligned with the whisker axis perpendicular to the substrate surface as seen by both electron microscopy and x-ray diffraction. 4 refs., 9 figs., 1 tab.

  8. Mobile LNG (liquified natural gas) gelator. Final report, July 1980-September 1981

    SciTech Connect

    Rudnicki, M.I.; Hoffman, L.C.; Newton, R.A.

    1981-12-01

    Gelled liquified natural gas (GELNG) offers potential safety advantages over LNG in the case of an accidental spill. GELNG has shown reduced spread area, lower vaporization rate, and crack sealing capability relative to the ungelled material. The purpose of this contract was to develop a mobile, continuous gelator which would produce a minimum of one cubic meter per hour of GELNG; previously, GELNG had been produced in small quantities by batch processes. Major achievements under the contract were the design and construction of the mobile gelator, checkout of the system with liquid nitrogen, and testing of the system on LNG. GELNG was not produced in the test series.

  9. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  10. Potential for long-term LNG supplies to the United States

    SciTech Connect

    Lihn, M.L.

    1992-02-01

    Topics discussed here include: (1) terminal capacity; (2) potential sources for US LNG (liquefied natural gas) imports; (3) LNG liquefaction and transportation capacity; (4) historical US LNG imports; (5) LNG supply costs; (6)delivered cost of future LNG imports.

  11. Concentrations of hazardous heavy metals in environmental samples collected in Xiamen, China, as determined by vapor generation non-dispersive atomic fluorescence spectrometry.

    PubMed

    Liang, Jing; Wang, Qiuquan; Huang, Benli

    2004-01-01

    Non-dispersive atomic fluorescence spectrometry (NDAFS) coupled with vapor generation (VG) sample introduction was applied to the determination of the concentrations of hazardous heavy metals, such as arsenic, cadmium, lead and mercury, in seawater, soils and total airborne particulate matter (PM) collected around the Xiamen area in China. Almost 100% sample introduction efficiency was achieved by using thiourea and ascorbic acid for the pre-reduction of As(V) to As(III), K3Fe(CN)6 and tartaric acid for pre-oxidation of Pb(II) to Pb(IV), and masking the interferences arising from the co-existing transition metals to As, Cd, Hg and Pb during their vapor generation process. Moreover, a novel sample pretreatment device was developed to avoid the loss of mercury, lead, cadmium and arsenic during sample pretreatment. With such methods, the detection limit (DL) of arsenic, cadmium, lead and mercury was down to 0.08, 0.03, 0.05, 0.01 ng mL(-1) (3sigma), respectively. The relative standard deviations (RSD, n = 11) for arsenic, cadmium, lead and mercury at 10 ng mL(-1) were 0.9%, 1.6%, 1.3% and 2.0%, respectively. The concentrations of hazardous heavy metals in the environmental samples collected in Xiamen, China are in the range from 0.02 +/- 0.001 ng mL(-1) in seawater to 15.3 +/- 0.2 microg g(-1) in soils. Besides flame/GF-AAS and ICP-AES/MS, VG-NDAFS should be another choice for the determination of hazardous heavy metals in environmental samples. PMID:14753262

  12. Cove Point: A step back into the LNG business

    SciTech Connect

    Katz, M.G.

    1995-12-31

    In 1978, ships began unloading LNG from Algeria at Cove Point`s berthing facilities 1.25 miles offshore. An underwater pipeline transported the LNG to land, where it was stored in the terminal`s four 140-foot-high cryogenic storage tanks. When the LNG was needed, the terminals 10 vaporizers converted it back to gas for send out via an 87-mile-long, 36-inch-diameter pipeline linking the terminal with interstate pipelines of CNG Transmission Corp. and Columbia Gas Transmission Corp. in Loudon County, Va. But Cove Point handled only about 80 shiploads of LNG before shutting down in December 1980, after a dispute about gas prices between US customers and Algeria. The plant sat dormant until the natural gas industry`s deregulation under Order 636. Deregulation resulted in major pipelines abandoning their sales service, and gas distributors and large customers found it was now their obligation to ensure that they had adequate gas supplies during winter peak-demand periods. Enter Cove Point`s peaking capabilities. They had to add the liquefaction unit and recommission other parts of the plant, but the timing was right. Cove Point`s new liquefaction unit is liquefying about 15 million cubic feet (MMcf) of LNG per day of domestic gas. It chills the gas to {minus}260 degrees Fahrenheit to turn it into a liquid for injection and storage in one of the facility`s double-walled insulated tanks. During its initial injection season, which ends Dec. 15, Cove Point is expected to produce enough LNG to almost fill one tank, which can store up to 1.25 billion cubic feet (Bcf). Were the gas not intended for peak-shaving purposes, it would be enough to supply 14,000 homes for a year. As it is, most of the gas will be returned as pipeline gas, during next January and February`s expected cold snaps, to the utilities and users who supplied it. Cove Point`s initial daily sendout capacity is about 400 MMcf.

  13. Simultaneous speciation of inorganic arsenic, selenium and tellurium in environmental water samples by dispersive liquid liquid microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Ying; He, Man; Chen, Beibei; Hu, Bin

    2015-09-01

    A new method based on dispersive liquid liquid microextraction (DLLME) combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was developed for the simultaneous speciation of inorganic arsenic (As), selenium (Se) and tellurium (Te) with sodium diethyldithiocarbamate (DDTC) as both chelating reagent and chemical modifier. As(III), Se(IV) and Te(IV) were transformed into DDTC-chelates at pH 7 and extracted into the fine droplets formed by injecting the binary solution of bromobenzene (extraction solvent) and methanol (dispersive solvent) into the sample solution. After phase separation by centrifugation, As(III), Se(IV) and Te(IV) preconcentrated in the organic phase were determined by ETV-ICP-MS. Total inorganic As, Se and Te were obtained by reducing As(V), Se(VI) and Te(VI) to As(III), Se(IV) and Te(IV) with L-cysteine, which were then subjected to the same DLLME-ETV-ICP-MS process. The concentration of As(V), Se(VI), Te(VI) were calculated by subtracting the concentration of As(III), Se(IV) and Te(IV) from the total inorganic As, Se and Te, respectively. The main factors affecting the microextraction efficiency and the vaporization behavior of target species were investigated in detail. Under the optimal conditions, the limits of detection were 2.5, 8.6 and 0.56 ng L(-1) for As(III), Se(IV) and Te(IV), respectively, with the relative standard deviations (n=7) of 8.5-9.7%. The developed method was applied to the speciation of inorganic As, Se and Te in Certified Reference Materials of GSBZ50004-88, GBW(E)080395 and GBW(E)080548 environmental waters, and the determined values are in good agreement with the certified values. The method was also successfully applied to the simultaneous speciation of inorganic As, Se and Te in different environmental water samples with the recoveries in the range of 86.3-107% for the spiked samples. PMID:26003714

  14. Feasibility of methods and systems for reducng LNG tanker fire hazards

    SciTech Connect

    Not Available

    1980-08-01

    In this program concepts for reducing fire hazards that may result from LNG tanker collisions are identified and their technical feasibility evaluated. Concepts considered include modifications to the shipborne LNG containers so that in the event of a container rupture less of the contents would spill and/or the contents would spill at a reduced rate. Changes in the cargo itself, including making the LNG into a gel, solidifying it, converting it to methanol, and adding flame suppressants are also evaluated. The relative effectiveness and the costs of implementing these methods in terms of increased cost of gas at the receiving terminal, are explained. The vulnerability of an LNG tanker and its crew to the thermal effects of a large pool fire caused by a collision spill is estimated and methods of protecting the crew are considered. It is shown that the protection of ship and crew so that further deterioration of a damaged ship might be ameliorated, would require the design and installation of extraordinary insulation systems and life support assistance for the crew. Methods of salvaging or disposing of cargo from a damaged and disabled ship are evaluated, and it is concluded that if the cargo cannot be transferred to another (empty) LNG tanker because of lack of availability, then the burning of the cargo at a location somewhat distant from the disabled tanker appears to be a promising approach. Finally, the likelihood of the vapors from a spill being ignited due to the frictional impact of the colliding ships was examined. It is found that the heating of metal sufficient to ignite flammable vapors would occur during a collision, but it is questionable whether flammable vapor and air will, in fact, come in contact with the hot metal surfaces.

  15. COGAS propulsion for LNG ships

    NASA Astrophysics Data System (ADS)

    Wiggins, Edwin G.

    2011-06-01

    Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mechanical drive ships are in service, and more are being built. Another attractive alternative is combined gas and steam turbine (COGAS) drive. This approach offers significant advantages over steam and diesel propulsion. This paper presents the case for the COGAS cycle.

  16. LNG Safety Assessment Evaluation Methods

    SciTech Connect

    Muna, Alice Baca; LaFleur, Angela Christine

    2015-05-01

    Sandia National Laboratories evaluated published safety assessment methods across a variety of industries including Liquefied Natural Gas (LNG), hydrogen, land and marine transportation, as well as the US Department of Defense (DOD). All the methods were evaluated for their potential applicability for use in the LNG railroad application. After reviewing the documents included in this report, as well as others not included because of repetition, the Department of Energy (DOE) Hydrogen Safety Plan Checklist is most suitable to be adapted to the LNG railroad application. This report was developed to survey industries related to rail transportation for methodologies and tools that can be used by the FRA to review and evaluate safety assessments submitted by the railroad industry as a part of their implementation plans for liquefied or compressed natural gas storage ( on-board or tender) and engine fueling delivery systems. The main sections of this report provide an overview of various methods found during this survey. In most cases, the reference document is quoted directly. The final section provides discussion and a recommendation for the most appropriate methodology that will allow efficient and consistent evaluations to be made. The DOE Hydrogen Safety Plan Checklist was then revised to adapt it as a methodology for the Federal Railroad Administration’s use in evaluating safety plans submitted by the railroad industry.

  17. Recent progress in modeling the atmospheric dispersion of heavy gases over variable terrain using the three-dimensional conservation equations

    SciTech Connect

    Chan, S. T.; Ermak, D. L.

    1983-08-01

    In this paper, a three-dimensional, conservation equation model for simulating the atmospheric dispersion of heavy gases has been briefly described; the model was successfully applied and assessed via simulating three distinctly different LNG spill experiments. These experiments involve approximately 30 m/sup 3/ LNG spills, with atmospheric conditions ranging from slightly stable to slightly unstable (ambient wind speed from about 2 m/s to 10 m/s). In general, good agreement between model predictions and field measurements was observed in all cases based on comparing, among others, the maximum concentrations as a function of downwind distance, the maximum downwind distances to the LFL, time histories of concentration at specific locations, and concentration contours on certain horizontal and crosswind surfaces. In particular, the overall results obtained in the model calculations with the simulated actual topography were shown to correlate much better with the field data in that many important features of the vapor cloud observed under the light wind conditions of Burro 8 were successfully reproduced. These include the spreading of vapor cloud in all directions (in upwind direction as well), the vortex-induced high concentration regions, the bifurcation of the NG cloud, and the deflection of the NG cloud due to sloping terrain. Through the present numerical simulations, the effects of variable terrain on the dispersion of heavy gases have been clearly demonstrated. Even with the relatively mild terrain at the test site and under a moderately high wind speed of approx. 6 m/s (Burro 9), the resulting vapor cloud dispersion was seen to differ noticeably from that using a flat terrain assumption. The combined effects of large gravity-flow (relative to the mean wind) over variable terrain and under light wind conditions (Burro 8) were shown to be even more profound. In such gravity-flow dominated regimes, proper treatment of the terrain, if present, is obviously necessary.

  18. 33 CFR 127.321 - Release of LNG.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Release of LNG. 127.321 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations 127.321 Release of LNG. (a) The operator of the waterfront facility handling LNG shall ensure that (1) No person releases LNG into the...

  19. 33 CFR 127.321 - Release of LNG.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Release of LNG. 127.321 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations 127.321 Release of LNG. (a) The operator of the waterfront facility handling LNG shall ensure that (1) No person releases LNG into the...

  20. 33 CFR 127.321 - Release of LNG.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Release of LNG. 127.321 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations 127.321 Release of LNG. (a) The operator of the waterfront facility handling LNG shall ensure that (1) No person releases LNG into the...

  1. 33 CFR 127.321 - Release of LNG.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Release of LNG. 127.321 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations 127.321 Release of LNG. (a) The operator of the waterfront facility handling LNG shall ensure that (1) No person releases LNG into the...

  2. 33 CFR 127.321 - Release of LNG.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Release of LNG. 127.321 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations 127.321 Release of LNG. (a) The operator of the waterfront facility handling LNG shall ensure that (1) No person releases LNG into the...

  3. 33 CFR 127.319 - LNG transfer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.319 LNG transfer. During LNG transfer... other assigned duties during the transfer operation; (2) Personnel transferring fuel or oily waste...

  4. 33 CFR 127.319 - LNG transfer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.319 LNG transfer. During LNG transfer... other assigned duties during the transfer operation; (2) Personnel transferring fuel or oily waste...

  5. 33 CFR 127.319 - LNG transfer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.319 LNG transfer. During LNG transfer... other assigned duties during the transfer operation; (2) Personnel transferring fuel or oily waste...

  6. 33 CFR 127.319 - LNG transfer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.319 LNG transfer. During LNG transfer... other assigned duties during the transfer operation; (2) Personnel transferring fuel or oily waste...

  7. 33 CFR 127.319 - LNG transfer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.319 LNG transfer. During LNG transfer... other assigned duties during the transfer operation; (2) Personnel transferring fuel or oily waste...

  8. Strategic evaluation central to LNG project formation

    SciTech Connect

    Nissen, D.; DiNapoli, R.N.; Yost, C.C.

    1995-07-03

    An efficient-scale, grassroots LNG facility of about 6 million metric tons/year capacity requires a prestart-up outlay of $5 billion or more for the supply facilities--production, feedgas pipeline, liquefaction, and shipping. The demand side of the LNG chain requires a similar outlay, counting the import-regasification terminal and a combination of 5 gigawatts or more of electric power generation or the equivalent in city gas and industrial gas-using facilities. There exist no well-developed commodity markets for free-on-board (fob) or delivered LNG. A new LNG supply project is dedicated to its buyers. Indeed, the buyers` revenue commitment is the project`s only bankable asset. For the buyer to make this commitment, the supply venture`s capability and commitment must be credible: to complete the project and to deliver the LNG reliably over the 20+ years required to recover capital committed on both sides. This requirement has technical, economic, and business dimensions. In this article the authors describe a LNG project evaluation system and show its application to typical tasks: project cost of service and participant shares; LNG project competition; alternative project structures; and market competition for LNG-supplied electric power generation.

  9. LNG links remote supplies and markets

    SciTech Connect

    Avidan, A.A.; Gardner, R.E.; Nelson, D.; Borrelli, E.N.; Rethore, T.J.

    1997-06-02

    Liquefied natural gas (LNG) has established a niche for itself by matching remote gas supplies to markets that both lacked indigenous gas reserves and felt threatened in the aftermath of the energy crises of the 1970s and 1980s. It has provided a cost-effective energy source for these markets, while also offering an environmentally friendly fuel long before that was fashionable. The introduction of natural-gas use via LNG in the early years (mostly into France and Japan) has also allowed LNG to play a major role in developing gas infrastructure. Today, natural gas, often supplied as LNG, is particularly well-suited for use in the combined cycle technology used in independent power generation projects (IPPs). Today, LNG players cannot simply focus on monetizing gas resources. Instead, they must adapt their projects to meet the needs of changing markets. The impact of these changes on the LNG industry has been felt throughout the value chain from finding and producing gas, gas treatment, liquefaction, transport as a liquid, receiving terminals and regasification, and finally, to consumption by power producers, industrial users, and households. These factors have influenced the evolution of the LNG industry and have implications for the future of LNG, particularly in the context of worldwide natural gas.

  10. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect

    Chandler, K.; Norton, P.; Clark, N.

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  11. Reserves hike to buoy Bontang LNG

    SciTech Connect

    Not Available

    1992-07-27

    This paper reports that a redetermination of reserves in an Indonesian production sharing contract (PSC) will boost liquefied natural gas sales for an Indonesian joint venture (IJV) of Lasmo plc, Union Texas (South East Asia) Inc., Chinese Petroleum Corp. (CPC), and Japex Rantau Ltd. The Indonesian reserves increase involves the Sanga PSC operated by Virginia Indonesia Co., a 50-50 joint venture of Lasmo and Union Texas. Union Texas holds a 38% interest in the IJV and Lasmo 37.8%, with remaining interests held by CPC and Japex. meantime, in US LNG news: Shell LNG Co. has shelved plans to buy an added interest in the LNG business of Columbia Gas System Inc. Panhandle Eastern Corp. units Trunkline Gas Co., Trunkline LNG Co., and Panhandle Eastern Pipe Line Co. (PEPL) filed settlement agreements with the Federal Energy Regulatory Commission to recover from customers $243 million in costs associated with Panhandle's Trunkline LNG operation at Lake Charles, Louisiana.

  12. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    Liese Dallbauman

    2004-06-30

    During this reporting period, kickoff and planning meetings were held. Subcontracted experimental and modeling tasks were defined. Efforts to address the numerical stability problems that hamper FEM3A's applicability to low wind speed, stable atmospheric conditions were initiated. A detailed review of FEM3A code and its execution, required for development of an accessible user interface, was also begun. A one-day workshop on LNG safety models has been scheduled for September 2004. The goals of this project are to develop a national focal point for LNG safety research and technical dissemination and to develop the FEM3A dispersion model for application to general scenarios involving dispersion problems with obstacle and terrain features of realistic complexity. During this reporting period, the objectives and scope of the project and its constituent tasks were discussed at a project kickoff meeting in Morgantown. Details of the subcontracted experimental and modeling tasks were further defined at a separate meeting at the University of Arkansas. Researchers at the university have begun to modify the turbulence closure model used in FEM3A to insure numerical stability during simulation of low-wind-speed, stable atmospheric conditions. The university's wind tunnel is being prepared for upcoming experimental studies. GTI has begun a detailed review of the FEM3A code and its execution that will provide guidance during development of an accessible user interface. Plans were made for a one day workshop on LNG safety models that will be held at the end of September and will provide an introduction to currently available and pending software tools.

  13. GRI workshop on LNG vehicle technology, economics, and safety issues: Focus-group recommendations summary. Topical report, April 29 and 30, 1992

    SciTech Connect

    Not Available

    1992-07-07

    GRI organized and conducted the Workshop on LNG Vehicle Technology, Economics, and Safety Issues on April 29 and 30, 1992, in Houston, Texas. The workshop included various presentations, a tour of Houston Metro (LNG bus project) facilities, and focus group discussions. The report documents the recommendations generated by the focus group. There were five separate focus groups with an average of ten members each. They met for 2-1/2 hours to discuss LNG vehicle issues and evolve recommendations for GRI R and D. Fifty-three recommendations were generated and prioritized (through voting) by the focus groups. The report consolidates these recommendations. Recommendations relative to the LNG fuel composition issue received the most votes, followed by consolidated recommendations pertaining to gas venting elimination, safety codes, and odorants or leak detectors. Component development recommendations (in order of votes) included the refueling nozzle, fuel level gage, refueling pump and meter, vehicle pump/regulator/vaporizer, and vehicle tank.

  14. Cost reduction ideas for LNG terminals

    SciTech Connect

    Habibullah, A.; Weldin, F.

    1999-07-01

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  15. LNG -- A paradox of propulsion potential

    SciTech Connect

    McKay, D.J.

    1995-12-31

    Liquefied natural gas (LNG) has been demonstrating its viability as a clean-burning alternative fuel for buses and medium- and heavy-duty trucks for the past 30 years. The first known LNG vehicle project began in San Diego in 1965, When San Diego Gas and Electric converted 22 utility trucks and three passenger vehicles to dedicated LNG. A surge in LNG vehicle project activity over the past five years has led to a fairly robust variety of vehicles testing the fuel, from Class 8 tractors, refuse haulers and transit buses to railroad locomotives and ferry boats. Recent technology improvements in engine design, cryogenic tanks, fuel nozzles and other related equipment have made LNG more practical to use than in the 1960s. LNG delivers more than twice the driving range from the same-sized fuel tank as a vehicle powered by compressed natural gas (CNG). Although technical and economic hurdles must be overcome before this fuel can achieve widespread use, various ongoing demonstration projects are showing LNG`s practicality, while serving the vital role of pinpointing those areas of performance that are the prime candidates for improvement.

  16. Study of gelled LNG. Final technical report

    SciTech Connect

    Rudnicki, M I; Cabeal, J A; Hoffman, L C; Newton, R A; Schaplowsky, R K; Vander Wall, E M

    1980-01-01

    Research involved the characterization of gelled LNG (GELNG) with respect to process, flow, and use properties and an examination of the degree of safety enhancement attainable by gelation. The investigation included (1) an experimental examination of gel properties and gel safety characteristics as well as (2) an analytical study involving the economics and preliminary design of an industrial scale gelation system. The safety-related criterion for successful application of gelled LNG is the substantial reduction of the Maximum Distance to the Lower Flammability Limit, MDLFL. This will be achieved by first, gel-inhibition of the hydrodynamic pooling and spreading of the spill, and second, the suppressed thermal transport properties of the GELNG relative to those of LNG. The industrial scale gelation study evaluated a design capable of producing 11,000 gallons (LNG tank truck) of gel in two hours. The increased cost of gelation using this equipment was estimated at $0.23/10/sup 6/ Btu for plants with liquefaction facilities. The technical results of this study are supportive of the conclusion that gelation of LNG will reduce, relative to ungelled LNG, the hazard associated with a given size spill. Parameters of interest to the LNG facility operator (such as pumpability) are not significantly affected by gelation, and the impact on LNG delivery cost appears to be small, about 5%. Thus, the initial assumption that gelation would provide a practical means to enhance safety is supported by the results of this study. Larger scale, comparative spill tests of LNG and GELNG are now required to confirm the safety aspects of use of the gelled material.

  17. Research of design challenges and new technologies for floating LNG

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hyun; Ha, Mun-Keun; Kim, Soo-Young; Shin, Sung-Chul

    2014-06-01

    With the rate of worldwide LNG demand expected to grow faster than that of gas demand, most major oil companies are currently investing their resources to develop floating LNG-FLNG (i.e. LNG FSRU and LNG FPSO). The global Floating LNG (FLNG) market trend will be reviewed based on demand and supply chain relationships. Typical technical issues associated with FLNG design are categorized in terms of global performance evaluation. Although many proven technologies developed through LNG carrier and oil FPSO projects are available for FLNG design, we are still faced with several technical challenges to clear for successful FLNG projects. In this study, some of the challenges encountered during development of the floating LNG facility (i.e. LNG FPSO and FSRU) will be reviewed together with their investigated solution. At the same time, research of new LNG-related technologies such as combined containment system will be presented.

  18. Raley's LNG Truck Site Final Data Report

    SciTech Connect

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  19. LLNL/NWC 1980 LNG spill tests. Burro series data report: the appendices

    SciTech Connect

    Koopman, R.P.; Baker, J.; Cederwall, R.T.; Goldiwre, H.C. Jr.; Hogan, W.J.; Kamppinen, L.M.; Kiefer, R.D.; McClure, J.W.; McRae, T.G.; Morgan, D.L.

    1982-12-01

    During the summer of 1980, the Burro series of liquefied natural gas (LNG) spill experiments were performed at the Naval Weapons Center, China Lake, California. These experiments involved 8 spills of LNG and one of liquid nitrogen, each of approximately 40 m/sup 3/, onto water. A large array of instruments was used to make measurements of gas concentration, temperature humidity, heat flux from the ground, and turbulence within the dispersing gas cloud. A separate instrument array made measurements of the wind field both upwind of the spill and over the area in which the gas was dispersing. Volume II contains appendices for: wind field data and flowlines; horizontal gas concentration contours; and vertical gas concentration contours.

  20. LLNL/NWC 1980 LNG spill tests. Burro series data report

    SciTech Connect

    Koopman, R.P.; Baker, J.; Cederwall, R.T.; Goldwire, H.C. Jr.; Hogan, W.J.; Kamppinen, L.M.; Kiefer, R.D.; McClure, J.W.; McRae, T.G.; Morgan, D.L.

    1982-12-01

    During the summer of 1980, the Burro series of liquefied natural gas (LNG) spill experiments were performed at the Naval Weapons Center (NWC), China Lake, California. These experiments involved eight spills of LNG and one of liquid nitrogen, each of approximately 40 m/sup 3/, onto water. A large array of instruments was used to make measurements of gas concentration, temperature, humidity, heat flux from the ground, and turbulence within the dispersing gas cloud. A separate instrument array made measurements of the wind field both upwind of the spill and over the area in which the gas was dispersing. This report contains the data from these tests with an explanation of how and where the data were taken and the reliability of the instruments used to take it. It does not include analysis of the data, other than that which is necessary to understand the reliability of the data. Data analysis will be covered in a series of other reports.

  1. Damage-detection system for LNG carriers

    NASA Technical Reports Server (NTRS)

    Mastandrea, J. R.; Scherb, M. V.

    1978-01-01

    System utilizes array of acoustical transducers to detect cracks and leaks in liquefied natural gas (LNG) containers onboard ships. In addition to detecting leaks, device indicates location and leak rate.

  2. LNG production for peak shaving operations

    SciTech Connect

    Price, B.C.

    1999-07-01

    LNG production facilities are being developed as an alternative or in addition to underground storage throughout the US to provide gas supply during peak gas demand periods. These facilities typically involved a small liquefaction unit with a large LNG storage tank and gas sendout facilities capable of responding to peak loads during the winter. Black and Veatch is active in the development of LNG peak shaving projects for clients using a patented mixed refrigerant technology for efficient production of LNG at a low installed cost. The mixed refrigerant technology has been applied in a range of project sizes both with gas turbine and electric motor driven compression systems. This paper will cover peak shaving concepts as well as specific designs and projects which have been completed to meet this market need.

  3. Gas treating alternatives for LNG plants

    SciTech Connect

    Clarke, D.S.; Sibal, P.W.

    1998-12-31

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  4. LNG carrier using membrane tank system delivered

    SciTech Connect

    Not Available

    1993-12-06

    The world's first LNG carrier that incorporates the Technigaz Mark 3 membrane tank system was delivered in October to its owner, Asia LNG Transport Sdn. Bhd., a joint venture between Nippon Yusen K.K. and Perbadanan Nasional Shipping Line Berhad of Malaysia. NKK built the 18,800 cu m, fully double-hull carrier Aman Bintulu at its Tsu works. Construction was completed in September with more than 2 months of sea trials and gas tests using [minus]190 C. Liquid nitrogen and final gas trails with LNG. The orthogonally corrugated stainless membrane primary barrier and the triplex (aluminum foil/fiber glass cloth) composite-material secondary barrier prevent LNG from leaking in the event of an accident.

  5. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect

    Not Available

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  6. LNG ventures raise economic, technical, partnership issues

    SciTech Connect

    Acord, H.K.

    1995-07-03

    The author feels that natural gas will remain a competitive energy alternative and the preferred fuel for many residential and industrial customers around the globe. The article attempts to explain where liquefied natural gas will fit into the global picture. The paper discusses the growth in the Asia-Pacific region; the complex interactions in a LNG project involving buyers, sellers, governments, financial institutions, and shipping companies; the cost of development of such projects; and the elements of a LNG venture.

  7. Assessment of the effects of release variables on the consequences of LNG spillage onto water using FERC models.

    PubMed

    Qiao, Yuanhua; West, Harry H; Mannan, M Sam; Johnson, David W; Cornwell, John B

    2006-03-17

    Liquefied natural gas (LNG) release, spread, evaporation, and dispersion processes are illustrated using the Federal Energy Regulatory Commission models in this paper. The spillage consequences are dependent upon the tank conditions, release scenarios, and the environmental conditions. The effects of the contributing variables, including the tank configuration, breach hole size, ullage pressure, wind speed and stability class, and surface roughness, on the consequence of LNG spillage onto water are evaluated using the models. The sensitivities of the consequences to those variables are discussed. PMID:16310951

  8. Holographic investigation of thermal nonequilibrium vapor generation

    NASA Astrophysics Data System (ADS)

    Bates, J. M.

    1984-04-01

    The vapor generation rate and associated thermal hydraulic parameters in a rapidly depressurizing, steady water flow was measured for understanding of the thermal nonequilibrium vapor generation process. This phenomenon is important for prediction and analysis of blowdown and flashing processes which may occur in nuclear reactor safety analysis (Loss of Coolant Accidents), in characterizing the expansion and flow of Liquified Gas (LNG) and develops alternative energy sources such as solar and geothermal. The development of advanced predictive capabilities for design and analysis of these and other similar systems is considered. The holographic recording and image analysis methods may evolve into a reliable and useful tool for two phase flow investigations.

  9. Potential for BLEVE associated with marine LNG vessel fires.

    PubMed

    Pitblado, Robin

    2007-02-20

    Recent LNG marine shipping hazard studies have discounted BLEVE hazards associated with LNG vessels. This exclusion of a potential major hazard event has been queried, particularly since a recent LNG truck BLEVE-like event in Spain. This paper reviews the physical factors associated with the Spanish LNG truck event and accepts that this had features of a classical BLEVE event and that there is no inherent property of LNG excluding BLEVE-like events, although US LNG trucks would be safer due to design features. Marine LNG vessels have differently designed tanks and it is demonstrated that the combination of physical barriers makes direct thermal input to the LNG inner tank more limited than hypothesized by some, but if it occurs these tanks cannot rise to a pressure sufficient to cause a large flash of liquid and consequent BLEVE event of a scale hypothesized in the literature. PMID:17137713

  10. 76 FR 73609 - Cameron LNG, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... operate a boil-off gas (BOG) liquefaction system at its LNG import terminal in Cameron Parish, Louisiana... terminal to liquefy BOG and return such gas in the form of LNG to its storage tanks. Cameron states...

  11. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Mobile and temporary LNG facilities. 193.2019... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service...

  12. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Mobile and temporary LNG facilities. 193.2019... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service...

  13. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Mobile and temporary LNG facilities. 193.2019... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service...

  14. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Mobile and temporary LNG facilities. 193.2019... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service...

  15. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Mobile and temporary LNG facilities. 193.2019... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service...

  16. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2012-10-01 2012-10-01 false Impoundment capacity: LNG storage tanks. 193.2181 Section 193.2181 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE...

  17. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2011-10-01 2011-10-01 false Impoundment capacity: LNG storage tanks. 193.2181 Section 193.2181 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE...

  18. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2014-10-01 2014-10-01 false Impoundment capacity: LNG storage tanks. 193.2181 Section 193.2181 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE...

  19. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2013-10-01 2013-10-01 false Impoundment capacity: LNG storage tanks. 193.2181 Section 193.2181 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE...

  20. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181 Section 193.2181 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE...

  1. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG storage tank must be inspected or tested to verify that each of the following conditions does not...

  2. 75 FR 26744 - Cameron LNG, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Energy Regulatory Commission Cameron LNG, LLC; Notice of Application May 5, 2010. On April 22, 2010, Cameron LNG, LLC filed with the Federal Energy Regulatory Commission (Commission) an application under... this application may be directed to William D. Rapp, Senior Regulatory Counsel at Cameron LNG, LLC,...

  3. 76 FR 2677 - Southern LNG Company, LLC; Notice of Public Scoping Meeting for the Proposed LNG Truck Loading...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... LNG Truck Loading Project January 7, 2011. On February 2, 2011, the Office of Energy Projects staff... Southern LNG Company, LLC's (Southern) LNG Truck Loading Project. We scheduled this meeting to provide... Truck Loading Project and Request for Comments on Environmental Issues, and Notice of Public...

  4. Safety implications of a large LNG tanker spill over water.

    SciTech Connect

    Hightower, Marion Michael; Gritzo, Louis Alan; Luketa-Hanlin, Anay Josephine

    2005-04-01

    The increasing demand for natural gas in the United States could significantly increase the number and frequency of marine LNG (liquefied natural gas) imports. Although many studies have been conducted to assess the consequences and risks of potential LNG spills, the increasing importance of LNG imports suggests that consistent methods and approaches be identified and implemented to help ensure protection of public safety and property from a potential LNG spill. For that reason the U.S. Department of Energy (DOE), Office of Fossil Energy, requested that Sandia National Laboratories (Sandia) develop guidance on a risk-based analysis approach to assess and quantify potential threats to an LNG ship, the potential hazards and consequences of a large spill from an LNG ship, and review prevention and mitigation strategies that could be implemented to reduce both the potential and the risks of an LNG spill over water. Specifically, DOE requested: (1) An in-depth literature search of the experimental and technical studies associated with evaluating the safety and hazards of an LNG spill from an LNG ship; (2) A detailed review of four recent spill modeling studies related to the safety implications of a large-scale LNG spill over water; (3) Evaluation of the potential for breaching an LNG ship cargo tank, both accidentally and intentionally, identification of the potential for such breaches and the potential size of an LNG spill for each breach scenario, and an assessment of the potential range of hazards involved in an LNG spill; (4) Development of guidance on the use of modern, performance-based, risk management approaches to analyze and manage the threats, hazards, and consequences of an LNG spill over water to reduce the overall risks of an LNG spill to levels that are protective of public safety and property.

  5. LNG shipments in 1994 set records

    SciTech Connect

    1996-01-15

    Worldwide LNG shipments by ocean-going vessels in 1994 increased to 1,619 voyages, according to an LNG shipping industry statistical annual. LNG Log 20 published the recently compiled 1994 data in the last quarter of 1995. The publication is from the Society of International Gas Tanker and Terminal Operators Ltd., London. The year`s total was 8.8% more than for 1993 and the most in 35 years of records. The trips were made and the vessels loaded and discharged without report of serious safety or environmental incident, says the publication. Of the voyages completed during the year, 596 were to European receiving terminals (up 2.8% over 1993), and 1,003 went to the Far East (an increase of 10.7%); shipments to the US, however, dropped to 20, from 32 in 1993. This paper shows that the 1,619 voyages represent 3.6 million nautical miles logged by 78 vessels active during the year. These ships pumped ashore record annual volumes of approximately 144.3 million cu m of LNG, 110.1 million cu m (76.3%) of which went to Far Eastern customers. The paper also summarizes containment systems in use in 1994 and since LNG began to be shipped in 1959.

  6. Nippon Kokan technical report No. 42, December 1984: overseas. LNG technology special issue

    SciTech Connect

    Not Available

    1984-01-01

    Contents INCLUDE: fracture toughness of 9% Ni steel and safety of LNG storage tank; fatigue strength and safety assessment of membrane components; comparison of LNG carriers of membrane tank system and spherical tank system; diesel-driven LNG carrier with reliquefaction plant; construction of TGZ MK I system LNG carrier model tank and its cryogenic tests; vacuum insulation test using LNG model tank; estimation of impact pressure and hydrodynamic force due to sloshing in LNG carrier; Higashi-Ohgishima LNG receiving facility for the Tokyo Electric Power Co., Inc.; design of LNG receiving facility; receiving and circulation control system of Higashi-Ohgishima LNG terminal; welding procedure of LNG pipelines; the design method of inground LNG storage tank; the design method of aboveground LNG storage tank; various applications of LNG tank roll-over simulation program ROSP.

  7. Asia-Pacific focus of coming LNG trade boom

    SciTech Connect

    Not Available

    1992-11-16

    This paper reports that the Asia-Pacific region remains the centerpiece of a booming world trade in liquefied natural gas. Biggest growth in LNG demand is expected from some of the region's strongest economies such as Japan, South Korea, and Taiwan, Key LNG exporters such as Brunei, Malaysia, and Indonesia are scrambling to implement projects to meet that expected demand growth. Uncertainties cloud the outlook for Far East LNG trade, Australia, for one, is more cautious in pressing expansion of its LNG export capacity as more competing LNG expansions spring up around the world, notably in the Middle East and Africa.

  8. First LNG from North field overcomes feed, start-up problems

    SciTech Connect

    Redha, A.; Rahman, A.; Al-Thani, N.H.; Ishikura, Masayuki; Kikkawa, Yoshitsugi

    1998-08-24

    Qatar Gas LNG is the first LNG project in the gas-development program of the world`s largest gas reservoir, North field. The LNG plant was completed within the budget and schedule. The paper discusses the LNG plant design, LNG storage and loading, alternative mercaptan removal, layout modification, information and control systems, training, data management systems, start-up, and performance testing.

  9. Raley's LNG Truck Fleet: Final Results

    SciTech Connect

    Chandler, K.; Norton, P.; Clark, N.

    2000-05-03

    Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  10. LNG imports make strong recovery in 1996; exports increase also

    SciTech Connect

    Swain, E.J.

    1998-01-19

    LNG imports to the US jumped in 1996 as Algerian base-load plants resumed operations following major revamps. Exports from Alaska to Japan grew by nearly 4% over 1995. Total LNG imports to the US in 1996 were 40.27 bcf compared to 17.92 bcf in 1995, an increase of 124.8%. Algeria supplied 35.32 bcf; Abu Dhabi, 4.95 bcf. About 82.3% of the imported LNG was received at Distrigas Corp.`s terminal north of Boston. The remaining LNG was received at the Pan National terminal in Lake Charles, LA. LNG imports during 1995 fell to such a low level not because of depressed US demand but because of limited supply. The paper discusses LNG-receiving terminals, base-load producers, LNG pricing, and exports.

  11. Technology advances keeping LNG cost-competitive

    SciTech Connect

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J.; Myers, S.D.

    1997-06-02

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  12. LNG fleet increases in size and capabilities

    SciTech Connect

    Linser, H.J. Jr.; Drudy, M.J.; Endrizzi, F.; Urbanelli, A.A.

    1997-06-02

    The LNG fleet as of early 1997 consisted of 99 vessels with total cargo capacity of 10.7 million cu m, equivalent to approximately 4.5 million tons. One of the newest additions to the fleet, the 137,000-cu m tanker Al Zubarah, is five times the size of the original commercial vessel Methane Princess. Al Zubarah`s first loading of more than 60,000 tons occurred in December 1996 for deliver to Japanese buyers from the newly commissioned Qatargas LNG plant at Ras Laffan. That size cargo contains enough clean-burning energy to heat 60,000 homes in Japan for 1 month. Measuring nearly 1,000 ft long, the tanker is among the largest in the industry fleet and joined 70 other vessels of more than 100,000 cu m. Most LNG tankers built since 1975 have been larger-capacity vessels. The paper discusses LNG shipping requirements, containment systems, vessel design, propulsion, construction, operations and maintenance, and the future for larger vessels.

  13. Validation of a hazardous spill model using N/sub 2/O/sub 4/ and LNG spill data

    SciTech Connect

    Balentine, H.W.; Eltgroth, M.W.

    1985-01-01

    An important aspect of the management of a toxic or hazardous material spill is the estimation of the dispersion of the released substance in the atmosphere using a dispersion model. These models must be validated to enable the spill manager to have confidence in the dispersion predictions produced by the models. The objective of this paper is to report the validation of the CHARM (Complex and Hazardous Air Release Model) model using spill data from two separate heavier-than-air spill experiments. These spills involved major planned and carefully documented releases of nitrogen tetroxide (N/sub 2/O/sub 4/) and liquified natural gas (LNG).

  14. LNG demand, shipping will expand through 2010

    SciTech Connect

    True, W.R.

    1998-02-09

    The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

  15. Technical efforts focus on cutting LNG plant costs

    SciTech Connect

    Aoki, Ichizo; Kikkawa, Yoshitsugi

    1995-07-03

    LNG demand is growing due to the nuclear setback and environmental issues spurred by concern about the greenhouse effect and acid rain, especially in the Far East. However, LNG is expensive compared with other energy sources. Efforts continue to minimize capital and operating costs and to increase LNG plant availability and safety. Technical trends in the LNG industry aim at reducing plant costs in pursuit of a competitive LNG price on an energy value basis against the oil price. This article reviews key areas of technical development. Discussed are train size, liquefaction processes, acid gas removal, heavy end removal, nitrogen rejection, refrigeration compressor and drivers, expander application, cooling media selection, LNG storage and loading system, and plant availability.

  16. U.S. LNG Imports - The Next Wave

    EIA Publications

    2007-01-01

    U.S. LNG imports - The Next Wave, is now available as a special supplement to the January 2007 issue of the Short-Term Energy Outlook (STEO). Although liquefied natural gas (LNG) imports still account for less than 3% of total U.S. natural gas supplies, the global market is growing and the Energy Information Administration (EIA) foresees another wave of U.S. LNG import growth over the next two years. The supplement focuses on recent trends in global and U.S. LNG trade, and presents factors expected to influence LNG imports through 2008. EIA expects year-over-year increases in LNG imports of 34.5% and 38.5% in 2007 and 2008, respectively.

  17. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect

    1980-10-01

    Volume 2 consists of 19 reports describing technical effort performed by Government Contractors in the area of LNG Safety and Environmental Control. Report topics are: simulation of LNG vapor spread and dispersion by finite element methods; modeling of negatively buoyant vapor cloud dispersion; effect of humidity on the energy budget of a liquefied natural gas (LNG) vapor cloud; LNG fire and explosion phenomena research evaluation; modeling of laminar flames in mixtures of vaporized liquefied natural gas (LNG) and air; chemical kinetics in LNG detonations; effects of cellular structure on the behavior of gaseous detonation waves under transient conditions; computer simulation of combustion and fluid dynamics in two and three dimensions; LNG release prevention and control; the feasibility of methods and systems for reducing LNG tanker fire hazards; safety assessment of gelled LNG; and a four band differential radiometer for monitoring LNG vapors.

  18. LPG-recovery processes for baseload LNG plants examined

    SciTech Connect

    Chiu, C.H.

    1997-11-24

    With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

  19. LNG safety, safety regulations and public perception

    SciTech Connect

    Lewis, J.P.; Outtrim, P.A.

    1995-12-31

    Although the subjects of safety, safety regulations and public perception are relatively separate, they should be discussed within the context of their total impact on the owner`s operation. The safety of LNG is a major issue both on an absolute safety basis and perceived safety basis. Public and regulatory perception are the dominant factors in the development of regulations and issue of permits. A safe operation includes protection of the public, plant personnel, investment in facilities and continued operation. In addition, protection of the company from litigation and regulatory restraint are also considerations. The paper discusses general safety considerations, safety regulation considerations, storage and impoundment, transport, odorization, personnel training, recent OSHA and EPA rule making activities, and recent research and progress in LNG safety.

  20. LNG pump anti-slam device

    SciTech Connect

    Tornay, E.G.

    1980-05-27

    In pumping LNG (liquefied natural gas) from one receiver to another, eg., from a vessel's tank to a shore installation, it is conventional to use a submerged pump, a riser pipe connecting the pump to a stop valve and flexible joint connecting the stop valve to a header. If a pocket of gaseous lng is present in the riser pipe, when the pump commences its operation, the advancing column of liquid in the riser pipe slams against the stop valve and may damage it. The invention provides the improvement of a removable or bypassable flow restrictor incorporated between the pump and the riser pipe, permitting to ensure that the riser pipe is completely liquid-filled, before the pump commences to operate.

  1. 75 FR 51989 - Southern LNG Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Energy Regulatory Commission Southern LNG Company, L.L.C.; Notice of Application August 16, 2010. Take notice that on August 4, 2010, Southern LNG Company, L.L.C. (Southern LNG), Post Office Box 2563... Regulatory, Southern LNG Company, L.L.C., 569 Brookwood Village, Suite 501, Birmingham, Alabama 35209 at...

  2. 49 CFR 191.22 - National Registry of Pipeline and LNG operators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false National Registry of Pipeline and LNG operators...-RELATED CONDITION REPORTS 191.22 National Registry of Pipeline and LNG operators. (a) OPID Request. Effective January 1, 2012, each operator of a gas pipeline, gas pipeline facility, LNG plant or LNG...

  3. 49 CFR 191.22 - National Registry of Pipeline and LNG operators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false National Registry of Pipeline and LNG operators...-RELATED CONDITION REPORTS 191.22 National Registry of Pipeline and LNG operators. (a) OPID Request. Effective January 1, 2012, each operator of a gas pipeline, gas pipeline facility, LNG plant or LNG...

  4. 49 CFR 191.22 - National Registry of Pipeline and LNG operators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false National Registry of Pipeline and LNG operators...-RELATED CONDITION REPORTS 191.22 National Registry of Pipeline and LNG operators. (a) OPID Request. Effective January 1, 2012, each operator of a gas pipeline, gas pipeline facility, LNG plant or LNG...

  5. Imported LNG (liquid natural gas) as an alternative fuel

    SciTech Connect

    Kelly, M. )

    1990-11-01

    Imports of liquefied natural gas (LNG) first arrived in the United States in 1972 at the rate of one billion cubic feet (Bcf) per year. By 1979, they had reached 252 Bcf/year. However, as US as demand declined and domestic deliverability grew, inflexible LNG prices led to the complete collapse of trade during the 1980s. In 1987, all four US import terminals were idle and no LNG was imported. The situation bean to change with renegotiation of Distrigas' contract to import LNG from Algeria's Sonatrach. In 1988, the company imported 19 Bcf of gas to its Everett, Massachusetts terminal, with greater volumes in 1989. Panhandle Eastern has also renegotiated its Algerian supply contract and reactivated the company's Trunkline LNG terminal at Lake Charles, Louisiana. It received its first cargo in December 1989. Moves are also being made to bring the other two US import terminals, at Cove Point, Maryland and Elba Island, Georgia, back into service. On the supply side too, there are major new developments. Not only is Algeria seeking to expand its existing exports, but new LNG projects in Nigeria, Norway and Venezuela in particular are aimed at the US market. The purpose of this report is to describe the current status and potential development of LNG imports to the US with a view to identifying those circumstances in which an electric utility might consider LNG as an alternate back-up fuel to distillate or residual oil, in gas-fired generating facilities. 9 figs., 10 tabs.

  6. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193.2623 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance 193.2623 Inspecting LNG storage tanks. Each...

  7. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193.2623 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance 193.2623 Inspecting LNG storage tanks. Each...

  8. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193.2623 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance 193.2623 Inspecting LNG storage tanks. Each...

  9. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193.2623 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance 193.2623 Inspecting LNG storage tanks. Each...

  10. A review of recent work in atmospheric dispersion of large spills

    SciTech Connect

    Koopman, R.P.; Ermak, D.L.; Chan, S.T.

    1988-05-01

    Large-scale spills of hazardous materials often produce gas clouds which are denser-than-air. The dominant physical processes which occur during dense-gas dispersion are very different than those recognized for trace gas releases in the atmosphere. Most important among these processes are stable stratification and gravity flow. Dense-gas flows displace the ambient atmospheric flow and modify ambient turbulent mixing. Thermodynamic and chemical reactions can also contribute. Some materials flash to aerosol and vapor when released and the aerosol can remain airborne, evaporating as it moves downwind, causing the cloud to remain cold and dense for long distances downwind. Dense-gas dispersion models, which include phase change and terrain effects have been developed and are capable of simulating many possible accidental releases. A number of large-scale field tests with hazardous materials such as liquefied natural gas (LNG), ammonia (NH/sub 3/), HF, and N/sub 2/O/sub 4/ have been performed and used to evaluate models. The tests have shown that those gas concentrations up to ten times higher than those predicted by trace gas models can occur due to aerosols and other dense-gas effects. A methodology for model evaluation has been developed which is based on the important physical characteristics of dense-gas releases. 43 refs., 14 figs.,2 tabs.

  11. Union Pacific Railroad`s LNG locomotive test program

    SciTech Connect

    Grimaila, B.

    1995-12-31

    Union Pacific Railroad is testing LNG in six locomotives through 1997 to determine if the liquefied natural gas technology is right for them. Two of the six LNG test locomotives are switch, or yard, locomotives. These 1,350 horsepower locomotives are the industry`s first locomotives totally fueled by natural gas. They`re being tested in the yard in the Los Angeles area. The other four locomotives are long-haul locomotives fueled by two tenders. These units are duel-fueled, operating on a mixture of LNG and diesel and are being tested primarily on the Los Angeles to North Platte, Nebraska corridor. All the information concerning locomotive emissions, locomotive performance, maintenance requirements, the overall LNG system design and the economic feasibility of the project will be analyzed to determine if UPR should expand, or abandon, the LNG technology.

  12. 77 FR 58373 - Trunkline LNG Company, LLC; Trunkline LNG Export, LLC; Trunkline Gas Company, LLC; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Trunkline LNG Company, LLC; Trunkline LNG Export, LLC; Trunkline Gas Company, LLC; Notice of Intent To Prepare an Environmental Impact Statement for the Planned Lake Charles Liquefaction Project, Request for Comments...

  13. Liquefaction through expander for base load LNG

    SciTech Connect

    Nakamura, Moritaka; Kikkawa, Yoshitsugi

    1998-12-31

    New natural gas liquefaction process using turbo expander has been developed to improve process thermal efficiency. The new process consists of precooling section which uses refrigerant with shell and tube heat exchangers or brazed aluminum plate-fin exchangers or spool wound heat exchanger and liquefaction section by iso-entropic expander. As a result of design study, thermal efficiency of the new liquefaction process has been confirmed to be in the highest level compared with other liquefaction processes. Also, since the new liquefaction process is constructed with commonly available equipment in industry, it can be readily adapted to base load LNG plants of any capacity without requiring expensive and specially designed equipment.

  14. Particle- and Gaseous Emissions from an LNG Powered Ship.

    PubMed

    Anderson, Maria; Salo, Kent; Fridell, Erik

    2015-10-20

    Measurements of particle number and mass concentrations and number size distribution of particles from a ship running on liquefied natural gas (LNG) were made on-board a ship with dual-fuel engines installed. Today there is a large interest in LNG as a marine fuel, as a means to comply with sulfur and NOX regulations. Particles were studied in a wide size range together with measurements of other exhaust gases under different engine loads and different mixtures of LNG and marine gas oil. Results from these measurements show that emissions of particles, NOX, and CO2 are considerably lower for LNG compared to present marine fuel oils. Emitted particles were mainly of volatile character and mainly had diameters below 50 nm. Number size distribution for LNG showed a distinct peak at 9-10 nm and a part of a peak at diameter 6 nm and below. Emissions of total hydrocarbons and carbon monoxide are higher for LNG compared to present marine fuel oils, which points to the importance of considering the methane slip from combustion of LNG. PMID:26422536

  15. Project financing knits parts of costly LNG supply chain

    SciTech Connect

    Minyard, R.J.; Strode, M.O.

    1997-06-02

    The supply and distribution infrastructure of an LNG project requires project sponsors and LNG buyers to make large, interdependent capital investments. For a grassroots project, substantial investments may be necessary for each link in the supply chain: field development; liquefaction plant and storage; ports and utilities; ships; receiving terminal and related facilities; and end-user facilities such as power stations or a gas distribution network. The huge sums required for these projects make their finance ability critical to implementation. Lenders have become increasingly comfortable with LNG as a business and now have achieved a better understanding of the risks associated with it. Raising debt financing for many future LNG projects, however, will present new and increasingly difficult challenges. The challenge of financing these projects will be formidable: political instability, economic uncertainty, and local currency volatility will have to be recognized and mitigated. Described here is the evolution of financing LNG projects, including the Rasgas LNG project financing which broke new ground in this area. The challenges that lie ahead for sponsors seeking to finance future projects selling LNG to emerging markets are also discussed. And the views of leading experts from the field of project finance, specifically solicited for this article, address major issues that must be resolved for successful financing of these projects.

  16. Fuel vapor canister

    SciTech Connect

    Moskaitis, R.J.; Ciuffetelli, L.A.

    1991-03-26

    This paper discusses an improved fuel vapor storage canister for use in a vehicle emission system of the type utilizing an enclosure with an interior communicated with a source of fuel vapor. The improved canister comprises: the enclosure having a mixture including particles of activated charcoal and many pieces of foam rubber, the pieces of foam rubber in the mixture being randomly and substantially evenly dispersed whereby substantially all the charcoal particles are spaced relatively closely to at least one foam rubber piece; the mixture being packed into the enclosure under pressure so that the pieces of foam rubber are compressed enough to tightly secure the charcoal particles one against another to prevent a griding action therebetween.

  17. U.S. LNG imports 1996--1997 should recover from low 1995 levels

    SciTech Connect

    Swain, E.J.

    1997-01-27

    Imports of LNG into the US in 1995 were the lowest since 1988, when 17.5 billion cu ft were imported. Total 1995 LNG imported from Algeria was 17.92 bcf compared to 50.78 in 1994, a decrease of 64.7%. About 72% of imported Algerian LNG was received at the Distrigas Corp. terminal north of Boston. The remaining LNG was received at the Trunkline LNG CO. terminal, Lake Charles, La., which was reopened in December 1989. The dramatic decline in LNG imports over the past 2 years (78%) can largely be attributed to Sonatrach`s multiyear renovation project to restore its LNG plants to their original capacities. This major renovation project has resulted in LNG export curtailments to all of its customers. The paper discusses US terminals, base-load producers, LNG pricing, and exports.

  18. LNG vehicle markets and infrastructure. Final report, October 1994-October 1995

    SciTech Connect

    Nimocks, R.

    1995-09-01

    A comprehensive primary research of the LNG-powered vehicle market was conducted, including: the status of the LNG vehicle programs and their critical constraints and development needs; estimation of the U.S. LNG liquefaction and delivery capacity; profiling of LNG vehicle products and services vendors; identification and evaluation of key market drivers for specific transportation sector; description of the critical issues that determine the size of market demand for LNG as a transportation fuel; and forecasting the demand for LNG fuel and equipment.

  19. Lng weathering effects: Theoretical and empirical. Topical report, March-August 1992. [LNG (Liquified Natural Gas)

    SciTech Connect

    Acker, G.H.; Moulton, S.D.

    1992-12-01

    The report details the composition change of LNG as it weathers in a vehicle size tank. The composition methane number and stoichiometric air-fuel ratios each change with composition. The results show that the factor controlling weathering is the tank heat leak rate. Weathering occurs at a constant rate when plotted against tank volume, that is composition change is primarily a function of tank volume and the percentage of initial fill boiled off. Heat leak defines the rate at which weathering occurs.

  20. Norcal Prototype LNG Truck Fleet: Final Data Report

    SciTech Connect

    Chandler, K.; Proc, K.

    2005-02-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

  1. 78 FR 41047 - UGI LNG, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... LNG) filed a request pursuant to section 7(c) of the Natural Gas Act, and Part 157 of the Rules and... an existing liquefaction plant at its Temple liquefied national gas storage facility located...

  2. Numerical Simulation and Optimazation of Small Scale LNG Plant

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Jia, L. X.; Fan, Q. H.; Yin, Q. S.

    2006-04-01

    The LNG20 is a small-scale natural gas liquefier. Its capacity is 20 cube meters LNG per day. This liquefier could be used for the pipeline gas, coalbed gas, oil field gas liquefaction and peakshaving plant for town gas gate station and natural gas power plant. Two processing cycles are applied to LNG20, nitrogen expander cycle and mixed refrigerant cycle. In this report, two feed gases are the target sources; one is the pipeline gas in "West-to-east pipeline gas" in a gate station in Zhejiang province and coalbed gas in Northeast China. The numerical simulation and optimization for the LNG20 were carried out to obtain the design parameters.

  3. Dimethyl ether fuel proposed as an alternative to LNG

    SciTech Connect

    Kikkawa, Yoshitsugi; Aoki, Ichizo

    1998-04-06

    To cope with the emerging energy demand in Asia, alternative fuels to LNG must be considered. Alternative measures, which convert the natural gas to liquid fuel, include the Fischer-Tropsch conversion, methanol synthesis, and dimethyl ether (DME) synthesis. Comparisons are evaluated based on both transportation cost and feed-gas cost. The analysis will show that DME, one alternative to LNG as transportation fuel, will be more economical for longer distances between the natural-gas source and the consumer. LNG requires a costly tanker and receiving terminal. The break-even distance will be around 5,000--7,000 km and vary depending on the transported volume. There will be risk, however, since there has never been a DME plant the size of an LNG-equivalent plant [6 million metric tons/year (mty)].

  4. Topsides equipment, operating flexibility key floating LNG design

    SciTech Connect

    Yost, K.; Lopez, R.; Mok, J.

    1998-03-09

    Use of a large-scale floating liquefied natural gas (LNG) plant is an economical alternative to an onshore plant for producing from an offshore field. Mobil Technology Co., Dallas, has advanced a design for such a plant that is technically feasible, economical, safe, and reliable. Presented were descriptions of the general design basis, hull modeling and testing, topsides and storage layouts, and LNG offloading. But such a design also presents challenges for designing topsides equipment in an offshore environment and for including flexibility and safety. These are covered in this second article. Mobil`s floating LNG plant design calls for a square concrete barge with a moon-pool in the center. It is designed to produce 6 million tons/year of LNG with up to 55,000 b/d of condensate from 1 bcfd of raw feed gas.

  5. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  6. Vapor Detector

    NASA Technical Reports Server (NTRS)

    Waddell, H. M.; Garrard, G. C.; Houston, D. W.

    1982-01-01

    Detector eliminates need for removing covers to take samples. Detector is canister consisting of screw-in base and clear plastic tube that contains two colors of silica gel. Monoethylhydrazine and nitrogen tetroxide vapors are visually monitored with canister containing color-changing gels.

  7. Aussie LNG players target NE Asia in expansion bid

    SciTech Connect

    Not Available

    1994-02-28

    Australia's natural gas players, keen to increase their presence in world liquefied natural gas trade, see Asia as their major LNG market in the decades to come. That's despite the fact that two spot cargoes of Australian Northwest Shelf LNG were shipped to Europe during the last 12 months and more are likely in 1994. Opportunities for growth are foreseen within the confines of the existing Northwest Shelf gas project for the rest of the 1990s. But the main focus for potential new grassroots project developers and expansions of the existing LNG plant in Australia is the expected shortfall in contract volumes of LNG to Japan, South Korea, and Taiwan during 2000--2010. Traditionally the price of crude oil has been used as a basis for calculating LNG prices. This means the economics of any new 21st century supply arrangements are delicately poised because of the current low world oil prices, a trend the market believes is likely to continue. In a bid to lessen the effect of high initial capital outlays and still meet projected demand using LNG from new projects and expansion of the existing plant, Australia's gas producers are working toward greater cooperation with prospective Asian buyers.

  8. The Asia Pacific LNG trade: Status and technology development

    SciTech Connect

    Hovdestad, W.R.

    1995-10-01

    The Asia Pacific Region is experiencing a period of sustained economic expansion. Economic growth has led to an increasing demand for energy that has spurred a rapid expansion of baseload liquefied natural gas (LNG) facilities in this region. This is illustrated by the fact that seven of the ten baseload facilities in existence provide LNG for markets in the Asia Pacific region. With the three exceptions having been initially commissioned in 1972 and earlier, it is fair to observed that most advances in LNG technology have been developed and applied for this market. The paper presents the current status and identified future trends for the Asia Pacific LNG trade. Technology development in terms of application to onstream production, processing and transportation facilities, including LNG tankers, is presented. The potential of future advances to applied technology and operational practices to improve the cost-effectiveness of new and existing facilities is discussed. Current design data and methods as actually used are examined in terms of identifying where fundamental research and basic physical data are insufficient for optimization purposes. These findings are then summarized and presented in terms of the likely evolution of future and existing LNG projects in the Asia Pacific region.

  9. Rollover and Interfacial Studies in Lng Mixtures

    NASA Astrophysics Data System (ADS)

    Agbabi, Tom

    1987-09-01

    Available from UMI in association with The British Library. Requires signed TDF. An experimental investigation into LNG rollover has been performed, using cryogenic liquids to simulate a two-layered LNG system. A vacuum insulated glass vessel was designed and constructed for rollover simulation experiments. Thin metal oxide coatings on the inner jacket of the vessel enabled the simultaneous heating and visualisation of the liquid in the vessel. Mixtures of liquid nitrogen and liquid oxygen were successfully used to form two differing density layers. An oxygen analysing system with an accuracy of 0.01% by volume oxygen, and a fifteen junction copper -constantan thermocouple array were used for primary measurements of mass concentration and temperature. For a number of initial density differences between layers, various liquid layer heating configurations were used to obtain the variations in evaporation flowrate, and detailed temperature and concentration profiles during experiments. Convective flow patterns, in single and two -component liquid mixtures were obtained, using the Schlieren method. Results show that the mixing of layers is primarily due to entrainment of fluid from the intermediate layer separating the two convective layers. The intermediate layer can be described by Double-Diffusive convection theory, and controls the transport of heat and mass between layers. The measured peak flowrate is a function of the initial density difference between layers. The peak to equilibrium flowrate values are much lower than those reported in rollover incidents, due to the enhanced mixing processes occurring in the simulation mixture. A correlation between the evaporative mass flux and bulk fluid superheat fails during transient heating conditions, and cannot predict very high flowrates. Schlieren flow - visualisation studies clearly show various surface patterns for increasing surface evaporation mass fluxes.

  10. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    Iraj A. Salehi; Jerry Havens; Tom Spicer

    2006-09-30

    The initial scope of work for this project included: (1) Improving the FEM3A advanced turbulence closure module, (2) Adaptation of FEM3A for more general applications, and (3) Verification of dispersion over rough surfaces, with and without obstacle using the advanced turbulence closure module. These work elements were to be performed by Chemical Hazards Research Center (CHRC), Department of Chemical Engineering, University of Arkansas as a subcontractor to Gas Technology Institute (GTI). The tasks for GTI included establishment of the scientific support base for standardization of the FEM3A model, project management, technology transfer, and project administration. Later in the course of the project, the scope of work was modified by the National Energy Technology Laboratories (NETL) to remove the emphasis on FEM3A model and instead, develop data in support of NETL's FLUENT modeling. With this change, GTI was also instructed to cease activities relative to FEM3A model. GTI's technical activities through this project included the initial verification of FEM3A model, provision of technical inputs to CHRC researchers regarding the structure of the final product, and participation in technical discussion sessions with CHRC and NETL technical staff. GTI also began the development of a Windows-based front end for the model but the work was stopped due to the change in scope of work. In the meantime, GTI organized a workshop on LNG safety in Houston, Texas. The workshop was very successful and 75 people from various industries participated. All technical objectives were met satisfactorily by Dr. Jerry Havens and Dr. Tom Spicer of CHRC and results are presented in a stand-alone report included as Appendix A to this report.

  11. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    2006-09-30

    The initial scope of work for this project included: 1) Improving the FEM3A advanced turbulence closure module, 2) Adaptation of FEM3A for more general applications, and 3) Verification of dispersion over rough surfaces, with and without obstacle using the advanced turbulence closure module. These work elements were to be performed by Chemical Hazards Research Center (CHRC), Department of Chemical Engineering, University of Arkansas as a subcontractor to Gas Technology Institute (GTI). The tasks for GTI included establishment of the scientific support base for standardization of the FEM3A model, project management, technology transfer, and project administration. Later in the course of the project, the scope of work was modified by the National Energy Technology Laboratories (NETL) to remove the emphasis on FEM3A model and instead, develop data in support of NETLs FLUENT modeling. With this change, GTI was also instructed to cease activities relative to FEM3A model. GTIs technical activities through this project included the initial verification of FEM3A model, provision of technical inputs to CHRC researchers regarding the structure of the final product, and participation in technical discussion sessions with CHRC and NETL technical staff. GTI also began the development of a Windows-based front end for the model but the work was stopped due to the change in scope of work. In the meantime, GTI organized a workshop on LNG safety in Houston, Texas. The workshop was very successful and 75 people from various industries participated. All technical objectives were met satisfactorily by Dr. Jerry Havens and Dr. Tom Spicer of CHRC and results are presented in a stand-alone report included as Appendix A to this report.

  12. Oil dispersants

    SciTech Connect

    Flaherty, L.M.

    1989-01-01

    This book contains papers presented at a symposium of the American Society for Testing and Materials. The topics covered include: The effect of elastomers on the efficiency of oil spill dispersants; planning for dispersant use; field experience with dispersants for oil spills on land; and measurements on natural dispersion.

  13. LNG cascading damage study. Volume I, fracture testing report.

    SciTech Connect

    Petti, Jason P.; Kalan, Robert J.

    2011-12-01

    As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

  14. 75 FR 74029 - Sabine Pass LNG, L.P.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... Energy Regulatory Commission Sabine Pass LNG, L.P.; Notice of Application November 22, 2010. Take notice that on November 12, 2010, Sabine Pass LNG, L.P. (Sabine Pass), 700 Milam Street, Suite 800, Houston... directed to Patricia Outtrim, Sabine Pass LNG, L.P., 700 Milam Street, Suite 800, Houston, Texas 77002,...

  15. 78 FR 35263 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... Relating to Regulation of Imported Natural Gas, 49 FR 6684 (Feb. 22, 1984). Freeport LNG states that the... Liquefied Natural Gas on a Short-Term Basis AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of.... (Freeport LNG), requesting blanket authorization to export liquefied natural gas (LNG) that previously...

  16. 75 FR 60095 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... LNG supplies. \\1\\ 15 U.S.C. 717b. \\2\\ See 49 FR 6684, February 22, 1984. Sempra states that in DOE/FE... LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY..., by Sempra LNG Marketing, LLC (Sempra), requesting blanket authorization to export up to a total...

  17. 76 FR 81925 - Freeport LNG Development, L.P.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Energy Regulatory Commission Freeport LNG Development, L.P.; Notice of Application Take notice that on December 9, 2011, Freeport LNG Development, L.P. (Freeport LNG), filed an application pursuant to Section 3..., Fulbright & Jaworski L.L.P., 666 Fifth Avenue, New York, New York 10103. Telephone (212) 318-3009, fax...

  18. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... spacing of marine transfer area for LNG. (a) LNG impounding spaces must be located so that the heat flux... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...

  19. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... spacing of marine transfer area for LNG. (a) LNG impounding spaces must be located so that the heat flux... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...

  20. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... spacing of marine transfer area for LNG. (a) LNG impounding spaces must be located so that the heat flux... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...

  1. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... spacing of marine transfer area for LNG. (a) LNG impounding spaces must be located so that the heat flux... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...

  2. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... spacing of marine transfer area for LNG. (a) LNG impounding spaces must be located so that the heat flux... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...

  3. 75 FR 53688 - Southern LNG Company, L.L.C.; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern LNG Company, L.L.C.; Notice of Technical Conference August 25, 2010..., Southern LNG Company, L.L.C. (Southern LNG) filed a tariff sheet to revise its tariff with respect to...

  4. 33 CFR 127.703 - Access to the marine transfer area for LNG.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... area for LNG. 127.703 Section 127.703 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Access to the marine transfer area for LNG. The operator shall ensure that (a) Access to the marine transfer area for LNG from the shoreside and the waterside is limited to (1) Personnel who work at...

  5. 33 CFR 127.703 - Access to the marine transfer area for LNG.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... area for LNG. 127.703 Section 127.703 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Access to the marine transfer area for LNG. The operator shall ensure that (a) Access to the marine transfer area for LNG from the shoreside and the waterside is limited to (1) Personnel who work at...

  6. 33 CFR 127.703 - Access to the marine transfer area for LNG.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... area for LNG. 127.703 Section 127.703 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Access to the marine transfer area for LNG. The operator shall ensure that (a) Access to the marine transfer area for LNG from the shoreside and the waterside is limited to (1) Personnel who work at...

  7. 49 CFR 195.64 - National Registry of Pipeline and LNG Operators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false National Registry of Pipeline and LNG Operators... Reporting 195.64 National Registry of Pipeline and LNG Operators. (a) OPID Request. Effective January 1... Pipeline and LNG Operators in accordance with 195.58. (b) OPID validation. An operator who has...

  8. 75 FR 54025 - Revision of LNG and LHG Waterfront Facility General Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... final rule entitled ``Revision of LNG and LHG Waterfront Facility General Requirements'' (75 FR 29420... SECURITY Coast Guard 33 CFR Part 127 RIN 1625-AB13 Revision of LNG and LHG Waterfront Facility General... (WSA) requirements for liquefied natural gas (LNG) and liquefied hazardous gas (LHG) facilities....

  9. 33 CFR 127.703 - Access to the marine transfer area for LNG.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... area for LNG. 127.703 Section 127.703 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Access to the marine transfer area for LNG. The operator shall ensure that (a) Access to the marine transfer area for LNG from the shoreside and the waterside is limited to (1) Personnel who work at...

  10. 33 CFR 127.703 - Access to the marine transfer area for LNG.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... area for LNG. 127.703 Section 127.703 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Access to the marine transfer area for LNG. The operator shall ensure that (a) Access to the marine transfer area for LNG from the shoreside and the waterside is limited to (1) Personnel who work at...

  11. 49 CFR 195.64 - National Registry of Pipeline and LNG Operators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false National Registry of Pipeline and LNG Operators... Reporting 195.64 National Registry of Pipeline and LNG Operators. (a) OPID Request. Effective January 1... Pipeline and LNG Operators in accordance with 195.58. (b) OPID validation. An operator who has...

  12. 75 FR 2126 - Calais Pipeline Company, LLC; Calais LNG Project Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... Energy Regulatory Commission Calais Pipeline Company, LLC; Calais LNG Project Company, LLC; Notice of Application January 6, 2010. Take notice that on December 18, 2009, Calais LNG Project Company, LLC (Calais LNG) and Calais Pipeline Company, LLC (Calais Pipeline) 142 ] Main Street, P.O. Box 133, Calais,...

  13. 49 CFR 195.64 - National Registry of Pipeline and LNG Operators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false National Registry of Pipeline and LNG Operators... Reporting 195.64 National Registry of Pipeline and LNG Operators. (a) OPID Request. Effective January 1... Pipeline and LNG Operators in accordance with 195.58. (b) OPID validation. An operator who has...

  14. 78 FR 20312 - Downeast LNG, Inc., Downeast Pipeline, LLC.; Notice of Availability of the Supplemental Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... Supplemental Draft Environmental Impact Statement for the Proposed Downeast LNG Project The staff of the Federal Energy Regulatory Commission (FERC or Commission) has prepared a Supplemental Draft Environmental Impact Statement (EIS) for the Downeast LNG Project, proposed by Downeast LNG, Inc. and Downeast...

  15. 75 FR 20591 - AES Sparrows Point LNG, LLC and Mid-Atlantic Express, LLC; Notice of Final General Conformity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... General Conformity Determination for Pennsylvania for the Proposed Sparrows Point LNG Terminal and... liquefied natural gas (LNG) import terminal and natural gas pipeline proposed by AES Sparrows Point LNG, LLC... quality impacts from the construction and operation of the following LNG terminal and natural gas...

  16. 75 FR 57766 - Notice of Petition To Amend Authorizations Under Section 3 of the Natural Gas Act; Cameron LNG, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Gas Act; Cameron LNG, LLC September 15, 2010. Take notice that on September 3, 2010, Cameron LNG, LLC... liquefied natural gas (LNG) terminal facility located in Cameron Parish, Louisiana, for the additional purpose of exporting foreign- sourced LNG. This filing is available for review at the Commission in...

  17. Overview study of LNG release prevention and control systems

    SciTech Connect

    Pelto, P.J.; Baker, E.G.; Holter, G.M.; Powers, T.B.

    1982-03-01

    The liquefied natural gas (LNG) industry employs a variety of release prevention and control techniques to reduce the likelihood and the consequences of accidental LNG releases. A study of the effectiveness of these release prevention and control systems is being performed. Reference descriptions for the basic types of LNG facilities were developed. Then an overview study was performed to identify areas that merit subsequent and more detailed analyses. The specific objectives were to characterize the LNG facilities of interest and their release prevention and control systems, identify possible weak links and research needs, and provide an analytical framework for subsequent detailed analyses. The LNG facilities analyzed include a reference export terminal, marine vessel, import terminal, peakshaving facility, truck tanker, and satellite facility. A reference description for these facilities, a preliminary hazards analysis (PHA), and a list of representative release scenarios are included. The reference facility descriptions outline basic process flows, plant layouts, and safety features. The PHA identifies the important release prevention operations. Representative release scenarios provide a format for discussing potential initiating events, effects of the release prevention and control systems, information needs, and potential design changes. These scenarios range from relatively frequent but low consequence releases to unlikely but large releases and are the principal basis for the next stage of analysis.

  18. Insulating polymer concrete for LNG impounding dikes. [Polymer concretes

    SciTech Connect

    Fontana, J.J.; Steinberg, M.

    1986-03-01

    An insulating polymer concrete (IPC) composite has been developed under contract to the Gas Research Institute for possible use as a dike insulation material at Liquid Natural Gas (LNG) storage facilities. In the advent of an LNG spill into the impounding dike area, the boiloff rate of the LNG can be substantially reduced if the surfaces of the dike are insulated. This increased safety at the LNG facility will tend to reduce the hazardous explosive mixture with atmospheric air in the surrounding region. The dike insulation material must have a low thermal conductivity and be unaffected by environmental conditions. The IPC composites developed consist of perlite or glass nodule aggregates bound together as a closed cell structure with a polyester resin. In addition to low thermal conductivity and porosity, these composites have correspondingly high strengths and, therefore, can carry transient loads of workmen and maintenance equipment. Prefabricated IPC panels have been installed experimentally and at least one utility is currently considering a complete installation at its LNG facility. 5 refs., 5 tabs.

  19. The diseconomics of long-haul LNG trading

    SciTech Connect

    Stauffer, T.R.

    1995-12-31

    Long-haul liquefied natural gas (LNG) exports yield little or no economic rent. Trades, such as Borneo to Japan, are economical, but government takes otherwise are minimal. Today, the price of LNG is capped by the technical option of modifying gas turbines to bum liquid fuels. The maximum premium for LNG is less than 50 cents per thousand cubic feet (/Mcf), and buyers are resisting any price above oil parity. Costs of LNG are high and increase with distance. The netback value is zero or even negative for the longer-distance trades. The value of extracted co-products (natural gas liquids) is 50 cents to $1/Mcf. These credits are the principal source of profit, especially for foreign partners because natural gas liquids are taxed at low {open_quotes}industrial{close_quotes} rates. Returns are even less when the gas supply is nonassociated so that the project must {open_quotes}pay{close_quotes} the production costs as well. Some exporting countries profit; but the Organization of the Petroleum Exporting Countries as a whole looses because low-revenue LNG energy displaces at the margin fully taxed oil.

  20. Floating LNG plant will stress reliability and safety

    SciTech Connect

    Kinney, C.D.; Schulz, H.R.; Spring, W.

    1997-07-01

    Mobil has developed a unique floating LNG plant design after extensive studies that set safety as the highest priority. The result is a production, storage and offloading platform designed to produce 6 million tons per year of LNG and up to 55,000 bpd of condensate from 1 Bcfd of feed gas. All production and off-loading equipment is supported by a square donut-shaped concrete hull, which is spread-moored. The hull contains storage tanks for 250,000 m{sup 3} of LNG, 6540,000 bbl of condensate and ballast water. Both LNG and condensate can be directly offloaded to shuttle tankers. Since the plant may be moved to produce from several different gas fields during its life, the plant and barge were designed to be generic. It can be used at any location in the Pacific Rim, with up to 15% CO{sub 2}, 100 ppm H{sub 2}S, 55 bbl/MMcf condensate and 650 ft water depth. It can be modified to handle other water depths, depending upon the environment. In addition, it is much more economical than an onshore grassroots LNG plant, with potential capital savings of 25% or more. The paper describes the machinery, meteorology and oceanography, and safety engineering.

  1. Lng vehicle technology, economics, and safety assessment. Final report, April 1991-June 1993

    SciTech Connect

    Powars, C.A.; Moyer, C.B.; Lowell, D.D.

    1994-02-01

    Liquid natural gas (LNG) is an attractive transportation fuel because of its high heating value and energy density (i.e. Btu/lb and Btu/gal), clean burning characteristics, relatively low cost ($/Btu), and domestic availability. This research evaluated LNG vehicle and refueling system technology, economics, and safety. Prior and current LNG vehicle projects were studied to identify needed technology improvements. Life-cycle cost analyses considered various LNG vehicle and fuel supply options. Safety records, standards, and analysis methods were reviewed. The LNG market niche is centrally fueled heavy-duty fleet vehicles with high fuel consumption. For these applications, fuel cost savings can amortize equipment capital costs.

  2. Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report

    SciTech Connect

    Brown, W.R.; Cook, W. J.; Siwajek, L.A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

  3. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    SciTech Connect

    Breazeale, K.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  4. Developments in the safe design of LNG tanks

    NASA Astrophysics Data System (ADS)

    Fulford, N. J.; Slatter, M. D.

    The objective of this paper is to discuss how the gradual development of design concepts for liquefied natural gas (LNG) storage systems has helped to enhance storage safety and economy. The experience in the UK is compared with practice in other countries with similar LNG storage requirements. Emphasis is placed on the excellent record of safety and reliability exhibited by tanks with a primary metal container designed and constructed to approved standards. The work carried out to promote the development of new materials, fire protection, and monitoring systems for use in LNG storage is also summarized, and specific examples described from British Gas experience. Finally, the trends in storage tank design world-wide and options for future design concepts are discussed, bearing in mind planned legislation and design codes governing hazardous installations.

  5. Potential for long-term LNG supplies to the United States

    SciTech Connect

    Not Available

    1992-02-01

    Liquefied natural gas (LNG) has been a component of the US gas supply mix since 1970. Between 1970 and 1981 LNG terminals were constructed that have the current capability of receiving annual LNG shipments equivalent to about 700 Bcf. Additional terminal capacity was proposed and sites were under consideration in 1985 when reduced demand for natural gas and softening of gas prices resulted in the termination of plans for new capacity and suspension of contracts for imports. In the 1990s, however, shipments of LNG are again being received, and it is expected that imports of LNG by seaborne trade will play a significant role in meeting the growing US requirements for natural gas supply. It is expected that all existing US terminals will be operational by the mid-1990s, and the existing terminal capacity would be fully utilized by the year 2000. The report summarizes the analysis of the LNG terminal capacity aimed at identifying future LNG liquefaction and transportation needs.

  6. Supplying LNG markets using nitrogen rejection units at Exxon Shute Creek Facility

    SciTech Connect

    Hanus, P.M.; Kimble, E.L.

    1995-11-01

    Interest is growing in the United States for using Liquid Natural Gas (LNG) as an alternative transportation fuel for diesel and as a source of heating fuel. For gas producers, LNG offers a premium price opportunity versus conventional natural gas sales. To supply this developing market, two existing Nitrogen Rejection Units (NRU) at the Exxon Shute Creek Facility in Wyoming were modified allowing LNG extraction and truck loading for transport to customers. The modifications involved adding heat exchanger capacity to the NRUs to compensate for the refrigeration loss when LNG is removed. Besides allowing for LNG extraction, the modifications also debottlenecked the NRUs resulting in higher methane recovery and lower compression costs. With the modifications, the NRUs are capable of producing for sale 60,000 gpd (5 MMscfd gas equivalent) of high purity LNG. Total investment has been $5 million with initial sales of LNG occurring in September 1994.

  7. The development of mathematical model for cool down technique in the LNG pipe-line system

    SciTech Connect

    Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

    1999-07-01

    An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

  8. A review of recent field tests and mathematical modelling of atmospheric dispersion of large spills of Denser-than-air gases

    NASA Astrophysics Data System (ADS)

    Koopman, Ronald P.; Ermak, Donald L.; Chan, Stevens T.

    Large-scale spills of hazardous materials often produce gas clouds which are denser than air. The dominant physical processes which occur during dense-gas dispersion are very different from those recognized for trace gas releases in the atmosphere. Most important among these processes are stable stratification and gravity flow. Dense-gas flows displace the ambient atmospheric flow and modify ambient turbulent mixing. Thermodynamic and chemical reactions can also contribute to dense-gas effects. Some materials flash to aerosol and vapor when released and the aerosol can remain airborne, evaporating as it moves downwind, causing the cloud to remain cold and dense for long distances downwind. Dense-gas dispersion models, which include phase change and terrain effects have been developed and are capable of simulating many possible accidental releases. A number of large-scale field tests with hazardous materials such as liquefied natural gas (LNG), ammonia (NH 3), hydrofluoric acid(HF) and nitrogen tetroxide(N 2O 4) have been performed and used to evaluate models. The tests have shown that gas concentrations up to ten times higher than those predicted by trace gas models can occur due to aerosols and other dense-gas effects. A methodology for model evaluation has been developed which is based on the important physical characteristics of dense-gas releases.

  9. Monitoring, safety systems for LNG and LPG operators

    SciTech Connect

    True, W.R.

    1998-11-16

    Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.

  10. Analysis of LNG peakshaving-facility release-prevention systems

    SciTech Connect

    Pelto, P.J.; Baker, E.G.; Powers, T.B.; Schreiber, A.M.; Hobbs, J.M.; Daling, P.M.

    1982-05-01

    The purpose of this study is to provide an analysis of release prevention systems for a reference LNG peakshaving facility. An overview assessment of the reference peakshaving facility, which preceeded this effort, identified 14 release scenarios which are typical of the potential hazards involved in the operation of LNG peakshaving facilities. These scenarios formed the basis for this more detailed study. Failure modes and effects analysis and fault tree analysis were used to estimate the expected frequency of each release scenario for the reference peakshaving facility. In addition, the effectiveness of release prevention, release detection, and release control systems were evaluated.

  11. Comparison of CNG and LNG technologies for transportation applications

    SciTech Connect

    Sinor, J.E. Consultants, Inc., Niwot, CO )

    1992-01-01

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  12. Heavy gas releases: recent dispersion research

    SciTech Connect

    Shinn, J.H.; Ermak, D.L.; Koopman, R.P.

    1981-11-01

    The important liquefied fuels which form heavy gases are liquefied natural gas (LNG) (comprised chiefly of methane, but with small amounts of propane and ethane), and liquefied petroleum gas (LPG), (comprised of propane and butane in various ratios). In addition to other fuels with these properties, there are a variety of industrial gases transported in pressurized vessels, such as hydrocarbons (ethylene, propylene, and methyl chloride), and common inorganic gases (ammonia, chlorine, sulfur dioxide, and hydrogen sulfide). Key research work in Europe and the United States is reviewed and the problems of predicting atmospheric dispersion of heavy gas releases are discussed. Some available dispersion models are mentioned, and some results of initial comparisons between models and with field data are given.

  13. LNG scene; Qatar's export plans intensify; sale of Columbia's U. S. terminal in doubt

    SciTech Connect

    Not Available

    1992-07-20

    This paper reports that Activity continues to percolate in Qatar's massive liquefied natural gas export program. In the latest development, France's Ste. Nationale Elf Aquitaine and Japan's Sumitomo Corp. agreed to promote development of Qatar's LNG export project based on supergiant North Offshore gas field and step up discussions with potential buyers in coming months. Target markets lie in Japan and the Far East. Among other LNG operations, Columbia Gas System Inc. last week the it was told by Shell LNG Co. it is unlikely that presale conditions will be met prior to Shell LNG's scheduled purchase July 29 of 40.8% of the stock in Columbia LNG. Columbia LNG owns and LNG receiving terminal at Cove Point, Md., with a design sendout capacity of 1 bcfd of regasified LNG. That makes it the biggest in type U.S. Columbia the it had not received work on what action Shell LNG will take on the purchase agreement. However, failure to meet the undisclosed conditions will allow Shell LNG to end the agreement.

  14. 76 FR 53425 - Pivotal LNG, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... Federal Energy Regulatory Commission (Commission) an application under section 7(c) of the Natural Gas Act... transportation of natural gas as a by-product of the operation of non-jurisdictional liquefied natural gas (LNG... waiver of all regulatory, accounting, and reporting requirements applicable to natural gas...

  15. Fundamental Study on Coking Characteristics of LNG Rocket Engines

    NASA Astrophysics Data System (ADS)

    Higashino, Kazuyuki; Sugioka, Masatoshi; Kobayashi, Takao; Minato, Ryojiro; Maru, Yusuke; Sasayama, Yousuke; Otsuka, Masaya; Makino, Takashi; Sakaguchi, Hiroyuki

    Liquid Natural Gas (LNG) will be used as propellant of near future space vehicles and rocket engines. Cooling characteristics of engines, especially methane thermal cracking characteristics depend on material candidate for nozzle and chamber cooling passage material temperature. This paper describes these effects on coking and sample analysis method is suggested.

  16. Fire performance of LNG carriers insulated with polystyrene foam.

    PubMed

    Havens, Jerry; Venart, James

    2008-10-30

    Analysis of the response of a liquid-full Moss Sphere LNG tank insulated with polystyrene foam to an engulfing LNG fire indicates that current regulatory requirements for pressure relief capacity sufficient to prevent tank rupture are inadequate. The inadequacy of the current requirements stems primarily from two factors. Firstly, the area of the Moss Sphere protruding above what would be the nominal deck on a conventional carrier, which is protected only by a steel weather cover from exposure to heat from a tank-engulfing fire, is being underestimated. Secondly, aluminum foil-covered polystyrene foam insulation applied to the exterior of the LNG tank is protected above the deck only by the steel weather cover under which the insulation could begin to melt in as little as 1-3 min, and could completely liquefy in as few as 10 min. U.S. and International Regulations require that the insulations on the above-deck portion of tanks have approved fire proofing and stability under fire exposure. Polystyrene foam, as currently installed on LNG carriers, does not appear to meet these criteria. As a result of these findings, but giving no consideration to the significant potential for further damage if the polystyrene should burn, the boil-off rate is predicted to be an order-of-magnitude higher than provided for by current PRV sizing requirements. PMID:18372107

  17. Best available practices for LNG fueling of fleet vehicles

    SciTech Connect

    Midgett, D.E. II; Echterhoff, L.W.; Oppenheimer, A.J.

    1996-12-31

    For many years, natural gas has been promoted as a preferred alternative vehicle fuel. There are a variety of incentives to use natural gas including: improving national security by reducing reliance on foreign oil imports, meeting stringent air emissions guidelines, and utilizing a lower-cost fuel which is in ample domestic supply. Although liquefied natural gas (LNG) was first demonstrated as a vehicle fuel in 1965, compressed natural gas (CNG) has been the fuel with the widest use to date. However, LNG is now gaining popularity as a vehicle fuel because of its higher energy density and transportability. Known LNG projects were polled to determine a list of representative sites. These were studied in depth. Data gathered from the representative sites were summarized to describe current industry practices, and a consensus was formed of best available practices for the industry. A summary of the results of the industry assessment is presented here. Problems and successes of the industry are candidly discussed. The full results of this work and other related studies will be made available to the industry as part of GRI`s ``Best Practices for Natural Gas Transit and Fleet Operations``. The purpose of these documents is to provide the LNG vehicle industry with design and operating information, which, in turn, will improve the safety and benefits of using natural gas vehicles (NGV).

  18. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    Iraj A. Salehi

    2004-09-30

    This quarterly report for DE-FG26-04NT42030 covers a period from July 1, 2004 to September 30, 2004. Activity during this period included preparation of a CD containing the FEM3a FORTRAN code for distribution and organization of an LNG safety workshop. Contract negotiation between GTI and University of Arkansas continued.

  19. Development of mid-scale and floating LNG facilities

    SciTech Connect

    Price, B.C.; Mortko, R.A.

    1998-12-31

    The development of large-scale base load LNG facilities has dominated the process industry for decades. However, in many areas of the world, base load facilities are not feasible due to inadequate reserves. Mid-scale facilities can be economically attractive in certain locations and, in fact, have several advantages which aid in their development. The PRICO II LNG liquefaction process offers a process configuration which fits well with these developments. The process has been used in a range of facility sizes from base load to peak shaving applications. In addition to onshore facilities, floating liquefaction facilities can be developed on barges or tankers to handle mid-scale to large scale LNG production. Concepts for several sizes and configurations of floating facilities have been developed using the PRICO II process integrated into a total production, liquefaction, and load-out system. This paper covers the PRICO process concept, application areas and facility configurations which are currently being developed for mid-scale and floating LNG facilities.

  20. Soot-Free Combustion Of Methane And LNG

    NASA Technical Reports Server (NTRS)

    Bossard, John

    1992-01-01

    Neither methane nor liquefied natural gas (LNG) produces soot when burned in turbine simulator with liquid oxygen under conditions like those in gas-generator section of rocket engine. Experiments conducted to determine if these fuels behave similarly to other hydrocarbon fuels, which give off soot coating turbomachinery and reducing performance.

  1. Better LNG plant training and federal licensing urged

    SciTech Connect

    Not Available

    1980-06-02

    According to the U.S. House of Representatives energy and power subcommittee report on the 10/6/79 Cove Point, Md. accident at the Columbia LNG Corp. terminal, the accident was made worse by a design problem that could exist at many U.S. pipeline pump stations and refineries; better training and federal licensing procedures, with no ''grandfathering'' of current operators, should be instituted for LNG plant operators; and similarly designed plants should be redesigned. The accident involved two loose bolts which permitted a booster pump seal leaks regardless of whether the bolts were loosened by pump vibration or by repeated heating and cooling, the accident would not have occurred if the seal were outside, rather than inside, the junction box. The study recommended that emergency systems be isolated from operating systems; all LNG plant conduit systems be examined and possibly redesigned; industry building codes be reevaluated to ensure suitability for cryogenic conditions; and the U.S. Department of Transportation develop a definitive summary of all pending and operating LNG facilities.

  2. Analysis of LNG import terminal release prevention systems

    SciTech Connect

    Baker, E G

    1982-04-01

    The release prevention systems of liquefied natural gas (LNG) import terminal were analyzed. A series of potential release scenarios were analyzed to determine the frequency of the release events, the probability these releases are not stopped or isolated by emergency shutdown systems, the estimated release quantities, and the critical components of the system. The two plant areas identified as being most significant with respect to safety are the unloading system and the storage system. Rupture of the main transfer line and gross failure of the storage tanks are the two release scenarios of primary safety interest. Reducing the rate of failure by improved design, better maintenance and testing, or adding redundancy of the critical system components for these plant areas and release scenarios will result in improved safety. Several design alternatives which have the potential to significantly reduce the probability of a large release of LNG occurring at an import terminal are identified. These design alternatives would reduce the probability of a large release of LNG by reducing the expected number of failures which could cause a release or by reducing the magnitude of releases that do occur. All of these alternatives are technically feasible and have been used or considered for use in at least one LNG facility. A more rigorous analysis of the absolute risk of LNG import terminal operation is necessary before the benefits of these design alternatives can be determined. In addition, an economic evaluation of these alternatives must be made so the costs and benefits can be compared. It is concludd that for remotely located facilities many of these alternatives are probably not justified; however, for facilities located in highly populated areas, these alternatives deserve serious consideration.

  3. Investigation of propulsion system for large LNG ships

    NASA Astrophysics Data System (ADS)

    Sinha, R. P.; Nik, Wan Mohd Norsani Wan

    2012-09-01

    Requirements to move away from coal for power generation has made LNG as the most sought after fuel source, raising steep demands on its supply and production. Added to this scenario is the gradual depletion of the offshore oil and gas fields which is pushing future explorations and production activities far away into the hostile environment of deep sea. Production of gas in such environment has great technical and commercial impacts on gas business. For instance, laying gas pipes from deep sea to distant receiving terminals will be technically and economically challenging. Alternative to laying gas pipes will require installing re-liquefaction unit on board FPSOs to convert gas into liquid for transportation by sea. But, then because of increased distance between gas source and receiving terminals the current medium size LNG ships will no longer remain economical to operate. Recognizing this business scenario shipowners are making huge investments in the acquisition of large LNG ships. As power need of large LNG ships is very different from the current small ones, a variety of propulsion derivatives such as UST, DFDE, 2-Stroke DRL and Combined cycle GT have been proposed by leading engine manufacturers. Since, propulsion system constitutes major element of the ship's capital and life cycle cost, which of these options is most suited for large LNG ships is currently a major concern of the shipping industry and must be thoroughly assessed. In this paper the authors investigate relative merits of these propulsion options against the benchmark performance criteria of BOG disposal, fuel consumption, gas emissions, plant availability and overall life cycle cost.

  4. 76 FR 53440 - Freeport LNG Development, LP; Freeport LNG Expansion, LP; FLNG Liquefaction LLC; Notice of Intent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... Project Freeport plans to add natural gas liquefaction and exportation capabilities to its existing liquefied natural gas (LNG) import terminal on Quintana Island in Brazoria County, Texas. The Project would... would consist of the following components: Three natural gas liquefaction refrigerant units;...

  5. Biofilm Dispersal

    PubMed Central

    2010-01-01

    Like all sessile organisms, surface-attached communities of bacteria known as biofilms must release and disperse cells into the environment to colonize new sites. For many pathogenic bacteria, biofilm dispersal plays an important role in the transmission of bacteria from environmental reservoirs to human hosts, in horizontal and vertical cross-host transmission, and in the exacerbation and spread of infection within a host. The molecular mechanisms of bacterial biofilm dispersal are only beginning to be elucidated. Biofilm dispersal is a promising area of research that may lead to the development of novel agents that inhibit biofilm formation or promote biofilm cell detachment. Such agents may be useful for the prevention and treatment of biofilms in a variety of industrial and clinical settings. This review describes the current status of research on biofilm dispersal, with an emphasis on studies aimed to characterize dispersal mechanisms, and to identify environmental cues and inter- and intracellular signals that regulate the dispersal process. The clinical implications of biofilm dispersal and the potential therapeutic applications of some of the most recent findings will also be discussed. PMID:20139339

  6. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  7. Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues

    SciTech Connect

    Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

    1997-07-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

  8. Development of a simple 5-15 litre per hour LNG refueling system

    SciTech Connect

    Corless, A.J.; Sarangi, S.; Hall, J.L.; Barclay, J.A.

    1994-12-31

    A variable capacity, small-scale liquefied natural gas (LNG) refueling system has been designed, built, and tested at the Cryofuel Systems` Laboratory, University of Victoria, Canada. The system, designed to continuously liquefy between 5 and 15 litres of NG, utilizes liquid nitrogen (LN{sub 2}) as its cold source and contains most of the components found in a typical commercial refueling system; i.e. purification system, liquefier, LNG storage, automatic control and monitoring system. This paper describes the design of the system as well as the results of a set of LNG production trials. The performance of the system exceeded expected LNG production rates, but at levels of efficiency somewhat less than predicted. Cryofuel Systems expects to use this system to implement an LNG vehicle demonstration program and to gain experience in the integration of LNG refueling systems which exploit advanced liquefaction technology such as magnetic refrigeration.

  9. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    SciTech Connect

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  10. Calibrated vapor generator source

    SciTech Connect

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  11. Calibrated vapor generator source

    DOEpatents

    Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  12. LNG (liquefied natural gas) in the Asia-Pacific region: Twenty years of trade and outlook for the future

    SciTech Connect

    Kiani, B.

    1990-01-01

    This report discusses the following topics: the current status of LNG trade in the Asia-Pacific region; present structure and projected demand in the Asia-Pacific region; prospective and tentative projects; and LNG contracts: stability versus flexibility.

  13. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    SciTech Connect

    ANDERSON, T.J.

    2006-12-20

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  14. Vapor condensation process produces slurry of magnesium particles in liquid hydrocarbons

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Walsh, T. J.; Witzke, W. R.

    1966-01-01

    Vapor condensation apparatus produces a physically stable, homogeneous slurry of finely divided magnesium and liquid hydrocarbons. The magnesium is vaporized and the resultant vapor is cooled rapidly with a liquid hydrocarbon spray, which also serves as the dispersing medium for the condensed magnesium particles.

  15. US North Slope gas and Asian LNG markets

    USGS Publications Warehouse

    Attanasi, E.D.

    1994-01-01

    Prospects for export of liquified natural gas (LNG) from Alaska's North Slope are assessed. Projected market conditions to 2010 show that new LNG capacity beyond announced expansions will be needed to meet regional demand and that supplies will probably come from outside the region. The estimated delivered costs of likely suppliers show that Alaska North Slope gas will not be competitive. The alternative North Slope gas development strategies of transport and sale to the lower 48 states and use on the North Slope for either enhanced oil recovery or conversion to liquids are examined. The alternative options require delaying development until US gas prices increase, exhaustion of certain North Slope oil fields, or advances occur in gas to liquid fuels conversion technology. ?? 1995.

  16. Kalimantan field development hikes gas supply for LNG export

    SciTech Connect

    Suharmoko, G.R. )

    1991-10-14

    This paper reports on the development of Tambora and Tunu gas fields in Kalimantan that have increased available gas supply for the export of liquefied natural gas (LNG) from Indonesia. The demand for LNG is increasing in the energy thirsty Far East market. And Indonesia, the world's largest exporter, is keeping pace by expanding the Bontang liquefaction plant in East Kalimantan. A fifth train, with a capacity of around 2.5 million tons/year, began operating in January 1990. Start-up of a sixth train, of identical capacity, is planned for January 1994. The Bontang plant is operated by PT Badak on behalf of Pertamina, the Indonesian state oil and gas mining company. The feed to the fifth train comes primarily from the first-phase development of Total Indonesie's two gas fields, Tambora and Tunu. The sixth train will be fed by a second-phase development of the Tunu field.

  17. Using LNG as a Fuel in Heavy-Duty Tractors

    SciTech Connect

    Liquid Carbonic, Inc. and Trucking Research Institute

    1999-08-09

    Recognizing the lack of operational data on alternative fuel heavy-truck trucks, NREL contracted with the Trucking Research Institute (TRI) in 1994 to obtain a cooperative agreement with Liquid Carbonic. The purpose of this agreement was to (1) purchase and operate liquid natural gas- (LNG-) powered heavy-duty tractor-trailers with prototype Detroit Diesel Corporation (DDC) Series 60 natural gas (S60G) engines in over-the-road commercial service applications; and (2) collect and provide operational data to DDC to facilitate the on-road prototype development of the engine and to NREL for the Alternative Fuels Data Center. The vehicles operated from August 1994 through April of 1997 and led to a commercially available, emissions-certified S60G in 1998. This report briefly documents the engine development, the operational characteristics of LNG, and the lessons learned during the project.

  18. Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Chen, Q.-S.; Wegrzyn, J.; Prasad, V.

    2004-10-01

    Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

  19. 78 FR 47691 - UGI, Inc.; Notice of Intent to Prepare an Environmental Assessment for the Proposed Temple LNG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ...) that will discuss the environmental impacts of the Temple LNG Liquefaction Upgrade involving construction and operation of facilities by UGI, Inc. (UGI) at its Temple liquefied natural gas (LNG) facility... Proposed Temple LNG Liquefaction Upgrade and Request for Comments on Environmental Issues The staff of...

  20. 76 FR 33746 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Liquefied Natural Gas... liquefied natural gas (LNG) that previously had been imported into the United States from foreign sources on... natural gas to any country that has the capacity to import LNG via ocean-going carrier, and with...

  1. 40 CFR Table W - 5 of Subpart W-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment ENVIRONMENTAL... Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  2. 75 FR 11169 - AES Sparrows Point LNG, LLC; Mid-Atlantic Express, LLC; Notice of Availability of the Revised...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Sparrows Point LNG Terminal and Pipeline Project March 1, 2010. The staff of the Federal Energy Regulatory... operation of a liquefied natural gas (LNG) import terminal and natural gas pipeline proposed by AES Sparrows... LNG terminal and natural gas pipeline facilities: A ship unloading facility, with two berths,...

  3. 75 FR 353 - AES Sparrows Point LNG, LLC and Mid-Atlantic Express, LLC; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Terminal and Pipeline Project December 29, 2009. The staff of the Federal Energy Regulatory Commission... natural gas (LNG) import terminal and natural gas pipeline proposed by AES Sparrows Point LNG, LLC and Mid... operation of the following LNG terminal and natural gas pipeline facilities: A ship unloading facility,...

  4. LNG as a fuel for railroads: Assessment of technology status and economics. Topical report, June-September 1992

    SciTech Connect

    Pera, C.J.; Moyer, C.B.

    1993-01-06

    The objective of the research was to investigate the feasibility of liquefied natural gas (LNG) as a fuel for railroads. The investigation included assessment of the status of relevant technologies (i.e., LNG-fueled locomotive engines, tender cars, refueling equipment), a review of current demonstration projects, and an analytical evaluation of LNG railroad economics.

  5. Design advanced for large-scale, economic, floating LNG plant

    SciTech Connect

    Naklie, M.M.

    1997-06-30

    A floating LNG plant design has been developed which is technically feasible, economical, safe, and reliable. This technology will allow monetization of small marginal fields and improve the economics of large fields. Mobil`s world-scale plant design has a capacity of 6 million tons/year of LNG and up to 55,000 b/d condensate produced from 1 bcfd of feed gas. The plant would be located on a large, secure, concrete barge with a central moonpool. LNG storage is provided for 250,000 cu m and condensate storage for 650,000 bbl. And both products are off-loaded from the barge. Model tests have verified the stability of the barge structure: barge motions are low enough to permit the plant to continue operation in a 100-year storm in the Pacific Rim. Moreover, the barge is spread-moored, eliminating the need for a turret and swivel. Because the design is generic, the plant can process a wide variety of feed gases and operate in different environments, should the plant be relocated. This capability potentially gives the plant investment a much longer project life because its use is not limited to the life of only one producing area.

  6. 40 CFR Table W - 6 of Subpart W of Part 98-Default Methane Emission Factors for LNG Import and Export Equipment

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....19 Pump Seal 4.00 Connector 0.34 Other 1 1.77 Population Emission FactorsLNG Terminals Compressor... Methane Emission Factors for LNG Import and Export Equipment W Table W Protection of Environment...Default Methane Emission Factors for LNG Import and Export Equipment LNG import and export...

  7. D-optimal experimental design coupled with parallel factor analysis 2 decomposition a useful tool in the determination of triazines in oranges by programmed temperature vaporization-gas chromatography-mass spectrometry when using dispersive-solid phase extraction.

    PubMed

    Herrero, A; Ortiz, M C; Sarabia, L A

    2013-05-01

    The determination of triazines in oranges using a GC-MS system coupled to a programmed temperature vaporizer (PTV) inlet in the context of legislation is performed. Both pretreatment (using a Quick Easy Cheap Effective Rugged and Safe (QuEChERS) procedure) and injection steps are optimized using D-optimal experimental designs for reducing the experimental effort. The relative dirty extracts obtained and the elution time shifts make it necessary to use a PARAFAC2 decomposition to solve these two usual problems in the chromatographic determinations. The "second-order advantage" of the PARAFAC2 decomposition allows unequivocal identification according to document SANCO/12495/2011 (taking into account the tolerances for relative retention time and the relative abundance for the diagnostic ions), avoiding false negatives even in the presence of unknown co-eluents. The detection limits (CC?) found, from 0.51 to 1.05?gkg(-1), are far below the maximum residue levels (MRLs) established by the European Union for simazine, atrazine, terbuthylazine, ametryn, simetryn, prometryn and terbutryn in oranges. No MRL violations were found in the commercial oranges analyzed. PMID:23522618

  8. Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results

    SciTech Connect

    Chandler, K.; Norton, P.; Clark, N.

    2000-11-07

    In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

  9. 77 FR 76013 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Previously Imported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... limited liability company with its principal place of business in San Diego, California, is a wholly-owned... Parish, Louisiana. Sempra LNG Marketing is engaged in the business of purchasing and marketing supplies... referenced 49 FR 6684, February 22, 1984. Sempra LNG Marketing states that in its existing authorization...

  10. 77 FR 788 - Southern LNG Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... Energy Regulatory Commission Southern LNG Company, L.L.C.; Notice of Application Take notice that on December 15, 2011, Southern LNG Company, L.L.C. (SLNG), 569 Brookwood Village, Suite 501, Birmingham....C., 569 Brookwood Village, Suite 501, Birmingham, Alabama 35209, by telephone at (205) 325-3813...

  11. 77 FR 66830 - LNG Development Company, LLC and Oregon Pipeline Company; Northwest Pipeline GP; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... Energy Regulatory Commission LNG Development Company, LLC and Oregon Pipeline Company; Northwest Pipeline GP; Notice of Extension of Comment Period for the Oregon LNG Export and Washington Expansion Projects This notice announces the extension of the public scoping process and comment period for the Oregon...

  12. 76 FR 40723 - Dominion Cove Point LNG, LP; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... From the Federal Register Online via the Government Printing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Dominion Cove Point LNG, LP; Notice of Technical Conference On May 27, 2011, pursuant to section 4 of the Natural Gas Act (NGA), Dominion Cove Point LNG, LP (Cove Point) filed...

  13. Fundamental Study on Coking Inhibition for Regenerative Cooled LNG Rocket Engines

    NASA Astrophysics Data System (ADS)

    東野, 和幸; 杉岡, 正敏; 小林, 隆夫; 湊亮, 二郎; 大屋, 俊輔; 笹山, 容資

    Liquefied Natural Gas (LNG) is lower cost, higher density and easier handling than Liquefied hydrogen (LH2), therefore, is expected as the most promising candidate for the next generation rocket propellant. For LNG propellant, a full expander or an expander cycle rocket engine with regenerative cooling system is expected because its molecular weight is middle value between LH2 and Kerosene. Temperature of turbopump driven LNG gas should be higher to improve the specific impulse or combustion pressure for these rocket engine. In this case, coking of LNG in heat exchanger or regenerative cooling system becomes a significant problem. In the present study, two coking inhibition methods, n-C6H14 coating and graphite coating, are presented and their effects are evaluated. Contrary to our expectation, the former method is accelerated the LNG pyrolysis, resulting of coking promotion. On the other hand graphite coating can successfully inhibit coking up to 973K.

  14. The potential for LNG as a railroad fuel in the U.S.

    SciTech Connect

    Fritz, S.G.

    2000-01-01

    Freight railroad operations in the US represent a substantial opportunity for liquefied natural gas (LNG) to displace diesel fuel. With the promise of achieving an overwhelming economic advantage over diesel fuel, this paper presents some discussion to the question, ``Why is the application of LNG for railroad use in the US moving so slowly?'' A brief overview of the freight railroad operations in the US is given, along with a summary of several railroad LNG demonstration projects. US Environmental Protection Agency and California Air Resources Board exhaust emission regulations may cause the railroad industry to move from small-scale LNG demonstration projects to using LNG as a primary freight railroad transportation fuel in selected regions or route-specific applications.

  15. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistryclimate model to be +0.3 W/(m2?K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  16. Vapor phase pyrolysis

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.

  17. Fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Christensen, L. S.; Collins, F. G.; Camp, D. W.

    1980-01-01

    A study of economically viable techniques for dispersing warm fog at commercial airports is presented. Five fog dispersion techniques are examined: evaporation suppression, downwash, mixing, seeding with hygroscopic material, thermal techniques, and charged particle techniques. Thermal techniques, although effective, were found to be too expensive for routine airport operations, and detrimental to the environment. Seeding or helicopter downwash are practical for small-scale or temporary fog clearing, but are probably not useful for airport operations on a routine basis. Considerable disagreement exists on the capability of charged particle techniques, which stems from the fact that different assumptions and parameter values are used in the analytical models. Recommendations resulting from the review of this technique are listed, and include: experimental measurements of the parameters in question; a study to ascertain possible safety hazards, such as increased electrical activity or fuel ignition during refueling operations which could render charged particle techniques impractical; and a study of a single charged particle generator.

  18. Liquefied Noble Gas (LNG) detectors for detection of nuclear materials

    NASA Astrophysics Data System (ADS)

    Nikkel, J. A.; Gozani, T.; Brown, C.; Kwong, J.; McKinsey, D. N.; Shin, Y.; Kane, S.; Gary, C.; Firestone, M.

    2012-03-01

    Liquefied-noble-gas (LNG) detectors offer, in principle, very good energy resolution for both neutrons and gamma rays, fast response time (hence high-count-rate capabilities), excellent discrimination between neutrons and gamma rays, and scalability to large volumes. They do, however, need cryogenics. LNG detectors in sizes of interest for fissionable material detection in cargo are reaching a certain level of maturity because of the ongoing extensive R&}D effort in high-energy physics regarding their use in the search for dark matter and neutrinoless double beta decay. The unique properties of LNG detectors, especially those using Liquid Argon (LAr) and Liquid Xenon (LXe), call for a study to determine their suitability for Non-Intrusive Inspection (NII) for Special Nuclear Materials (SNM) and possibly for other threats in cargo. Rapiscan Systems Laboratory, Yale University Physics Department, and Adelphi Technology are collaborating in the investigation of the suitability of LAr as a scintillation material for large size inspection systems for air and maritime containers and trucks. This program studies their suitability for NII, determines their potential uses, determines what improvements in performance they offer and recommends changes to their design to further enhance their suitability. An existing 3.1 liter LAr detector (microCLEAN) at Yale University, developed for R&}D on the detection of weakly interacting massive particles (WIMPs) was employed for testing. A larger version of this detector (15 liters), more suitable for the detection of higher energy gamma rays and neutrons is being built for experimental evaluation. Results of measurements and simulations of gamma ray and neutron detection in microCLEAN and a larger detector (326 liter CL38) are presented.

  19. Vaporization of droplets in premixing chambers

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Chigier, N. A.

    1980-01-01

    Detailed measurements were made of the structures of turbulent fuel sprays vaporizing in heated airstreams. The measurements show the size dependent vaporization and dispersion of the droplets and the important influence of the large eddies in the turbulence. The measurements form a data base for the development of models of fuel spray vaporization. Two laser techniques were specially developed for the investigation. A laser tomography technique converts line-of-sight light scattering measurements into time averaged 'point' measurements of droplet size distribution and volume concentration. A laser anemometer particle sizing technique was further developed to permit accurate measurements of individual particle sizes and velocities, with backscatter collection of light. The experiments are combined with heat transfer models to analyze the performance of miniature thermocouples in liquid sprays.

  20. Vaporization of droplets in premixing chambers

    NASA Astrophysics Data System (ADS)

    Yule, A. J.; Chigier, N. A.

    1980-09-01

    Detailed measurements were made of the structures of turbulent fuel sprays vaporizing in heated airstreams. The measurements show the size dependent vaporization and dispersion of the droplets and the important influence of the large eddies in the turbulence. The measurements form a data base for the development of models of fuel spray vaporization. Two laser techniques were specially developed for the investigation. A laser tomography technique converts line-of-sight light scattering measurements into time averaged 'point' measurements of droplet size distribution and volume concentration. A laser anemometer particle sizing technique was further developed to permit accurate measurements of individual particle sizes and velocities, with backscatter collection of light. The experiments are combined with heat transfer models to analyze the performance of miniature thermocouples in liquid sprays.

  1. Chrysler to race hybrid electric-LNG car

    SciTech Connect

    1994-03-07

    Chrysler Corp. hopes to race a hybrid electric-liquefied natural gas car in the Le Mans in 1995. Preparing for a racing program will speed technological advances that could take years under a regular development program. The car converts LNG to electricity with a two-turbine alternator that powers an electric traction motor. Power not used immediately is placed in reserve in an ultra-high-speed carbon-fiber flywheel, which also captures kinetic energy at braking. Even with the accelerated race program, Chrysler says it will likely be the next century before hybrid technology will make it into production cars.

  2. LNG projects make progress in Oman and Yemen

    SciTech Connect

    1997-02-24

    Two LNG projects in the Middle East, one in Oman and the other in Yemen, are due on stream at the turn of the century--each the largest single project ever put together in its country. Officials described their projects at a yearend 1996 conference in Paris by Institut Francais du Petrole and Petrostrategies. The Oman project develops gas reserves, does gas processing, and transports the gas 360 km to a liquefaction plant to be built on the coast. The Yemen project involves a liquefaction plant and an export terminal.

  3. White paper: Preliminary assessment of LNG vehicle technology, economics, and safety issues, revision 1

    NASA Astrophysics Data System (ADS)

    Powars, Charles; Lucher, Dan; Moyer, Carl; Browning, Lou

    1992-01-01

    The objective of the study is to evaluate the potential of liquified natural gas (LNG) as a vehicle fuel, to determine market inches, and to identify needed technology improvements. The white paper is being issued when the work is approximately 30 percent complete to preview the study direction, draw preliminary conclusions, and make initial recommendations. Interim findings relative to LNG vehicle technology, economics, and safety are presented. It is important to decide if heavier hydrocarbons should be allowed in LNG vehicle fuel. Development of suitable refueling couplings and vehicle fuel supply pressure systems are recommended. Initial economics analyses considered transit buses and pickup and delivery trucks fueled via onsite liquefiers and imported LNG. Net user costs were more than (but in some cases close to) those for diesel fuel and gasoline. Lowering the cost of small-scale liquefiers would significantly improve the economics of LNG vehicles. New emissions regulations may introduce considerations beyond simple cost comparisons. LNG vehicle safety and available accident data are reviewed. Consistent codes for LNG vehicles and refueling facilities are needed.

  4. The effects of refueling system operating pressure on LNG and CNG economics

    SciTech Connect

    Corless, A.J.; Barclay, J.A.

    1996-12-31

    Natural gas (NG) liquefaction and compression are energy intensive processes which make up a significant portion of the overall delivered price of liquefied NG (LNG) and compressed NG (CNG). Increases in system efficiency and/or process changes which reduce the required amount of work will improve the overall economics of NG as a vehicle fuel. This paper describes a method of reducing the delivered cost of LNG by liquefying the gas above ambient pressures. Higher pressure LNG is desirable because OEM NG engine manufacturers would like NG delivered to the engine intake manifold at elevated pressures to avoid compromising engine performance. Producing LNG at higher pressures reduces the amount of work required for liquefaction but it is only practical when the LNG is liquefied on-site. Using a thermo-economic approach, it is shown that NG fuel costs can be reduced by as much as 10% when producing LNG at higher pressures. A reduction in the delivered cost is also demonstrated for CNG produced on-site from high pressure LNG.

  5. Vapor spill monitoring method

    DOEpatents

    Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  6. Vapor spill monitoring method

    SciTech Connect

    Bianchini, G. M.; McRae, T. G.

    1985-08-20

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  7. Outlook for third Malaysian LNG plant brighter with big gas find

    SciTech Connect

    Not Available

    1993-05-03

    Prospects for a third liquefied natural gas export complex in Malaysia are brighter than ever. A unit of Occidental Petroleum Corp. has drilled its fourth and biggest natural gas strike into a carbonate reef on Block SK-8 off Sarawak, East Malaysia, turning up still more potential reserves for the country's proposed third LNG plant. The find brings to a combined total of 5 tcf of gas in place in the four SK-8 fields for which Oxy has disclosed test results. Well details are given. The LNG project under study would make Malaysia the largest supplier of LNG to the rapidly expanding East Asian market, Oxy said.

  8. Three-dimensional model for simulating atmospheric dispersion of heavy-gases over complex terrain

    SciTech Connect

    Chan, S.T.

    1997-09-01

    To help understand heavy gas releases and simulate the resultant dispersion, we have developed a three-dimensional finite element model called FEM3 and an improved version names FEM3A for solving the time dependent conservation equations based on generalized anelastic approximation. Recent enhancements to the model to include the treatment of dispersion scenarios involving density variations much larger than the liquefied natural gas range and an advanced turbulence submodel based on the buoyancy-extended transport equations. This paper presents the main features of the present model FEM3C and numerical results from the simulations of a field-scale LNG spill experiment.

  9. Petroleum Vapor - Field Technical

    EPA Science Inventory

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  10. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  11. Numerical simulation of water injection into vapor-dominated reservoirs

    NASA Astrophysics Data System (ADS)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  12. Vapor core turbulence in annular two-phase flow

    SciTech Connect

    Trabold, T.A.; Kumar, R.

    1998-06-01

    This paper reports a new technique to measure vapor turbulence in two-phase flows using hot-film anemometry. Continuous vapor turbulence measurements along with local void fraction, droplet frequency, droplet velocity and droplet diameter were measured in a thin, vertical duct. By first eliminating the portion of the output voltage signal resulting from the interaction of dispersed liquid droplets with the HFA sensor, the discrete voltage samples associated with the vapor phase were separately analyzed. The data revealed that, over the range of liquid droplet sizes and concentrations encountered, the presence of the droplet field acts to enhance vapor turbulence. In addition, there is evidence that vapor turbulence is significantly influenced by the wall-bounded liquid film. The present results are qualitatively consistent with the limited data available in the open literature.

  13. Best available practices for lng fueling of fleet vehicles. Topical report, March-November 1995, tasks 85 and 86

    SciTech Connect

    Midgett, D.E.

    1996-02-01

    The report provides essential information on the design and operation of liquefied natural gas (LNG) fueling stations for fleet vehicles. The report serves to evaluate current practices in LNG fleet vehicle fueling station designs, and provide fleet operators with a tool for use in discussions with permitting agencies, engineering firms, fabricators, and contractors who permit, design, or construct LNG fueling stations. Representative sites (i.e., LNG fueling stations) were evaluated for technical feasibility, customer satisfaction, economics, operating and maintenance history, problems encountered/overcome, and regulatory environment. The compiled information in this report reveals that LNG fueling stations have advanced to the point where LNG is a viable alternative to gasoline and/or diesel fuel.

  14. Comparison of LNG, CNG, and diesel transit bus economics. Topical report, July 1992-September 1993

    SciTech Connect

    Powars, C.A.; Moyer, C.B.; Luscher, D.R.; Lowell, D.D.; Pera, C.J.

    1993-10-20

    The purpose of the report is to compare the expected costs of operating a transit bus fleet on liquefied natural gas (LNG), compressed natural gas (CNG), and diesel fuel. The special report is being published prior to the overall project final report in response to the current high level of interest in LNG transit buses. It focuses exclusively on the economics of LNG buses as compared with CNG and diesel buses. The reader is referred to the anticipated final report, or to a previously published 'White Paper' report (Reference 1), for information regarding LNG vehicle and refueling system technology and/or the economics of other LNG vehicles. The LNG/CNG/diesel transit bus economics comparison is based on total life-cycle costs considering all applicable capital and operating costs. The costs considered are those normally borne by the transit property, i.e., the entity facing the bus purchase decision. These costs account for the portion normally paid by the U.S. Department of Transportation (DOT) Federal Transit Administration (FTA). Transit property net costs also recognize the sale of emissions reduction credits generated by using natural gas (NG) engines which are certified to levels below standards (particularly for NOX).

  15. Basic research opportunities to support LNG technology. Topical report, July 1989-December 1990

    SciTech Connect

    Groten, B.

    1991-03-01

    As additional gas reserves come on production during the next decade in areas with limited local markets, worldwide LNG trade is expected to expand. The availability of dedicated LNG tankers may well determine the rate at which this growth occurs. Plans are being made now to bring the four U.S. import terminals up to capacity during this period. As LNG becomes a more significant factor in the domestic natural gas market, consideration should be given to applications other than simply regassifying and comingling it with other supplies entering the pipeline grid. The higher energy density and the low temperature of LNG offer opportunities for expanding the use of natural gas into the industrial and transportation sectors. Greater use of LNG in peak shaving and intermediate storage may also provide benefits in increased reliability and performance of the gas transmission and distribution grid. In order to provide new and more cost-effective technologies to respond to these opportunities, it is recommended that GRI broaden the range of research it is currently performing on LNG.

  16. Results of the evaluation and preliminary validation of a primary LNG mass flow standard

    NASA Astrophysics Data System (ADS)

    van der Beek, Mijndert; Lucas, Peter; Kerkhof, Oswin; Mirzaei, Maria; Blom, Gerard

    2014-10-01

    LNG custody transfer measurements at large terminals have been based on ship tank level gauging for more than 50 years. Flow meter application has mainly been limited to process control in spite of the promise of simplified operations, potentially smaller uncertainties and better control over the measurements for buyers. The reason for this has been the lack of LNG flow calibration standards as well as written standards. In the framework of the EMRP1 Metrology for LNG project, Van Swinden Laboratory (VSL) has developed a primary LNG mass flow standard. This standard is so far the only one in the world except for a liquid nitrogen flow standard at the National Institute of Standards and Technology (NIST). The VSL standard is based on weighing and holds a Calibration and Measurement Capability (CMC) of 0.12% to 0.15%. This paper discusses the measurement principle, results of the uncertainty validation with LNG and the differences between water and LNG calibration results of four Coriolis mass flow meters. Most of the calibrated meters do not comply with their respective accuracy claims. Recommendations for further improvement of the measurement uncertainty will also be discussed.

  17. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (inventor); Weeks, Jack L. (inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  18. Vapor resistant arteries

    NASA Technical Reports Server (NTRS)

    Shaubach, Robert M. (Inventor); Dussinger, Peter M. (Inventor); Buchko, Matthew T. (Inventor)

    1989-01-01

    A vapor block resistant liquid artery structure for heat pipes. A solid tube artery with openings is encased in the sintered material of a heat pipe wick. The openings are limited to that side of the artery which is most remote from the heat source. The liquid in the artery can thus exit the artery through the openings and wet the sintered sheath, but vapor generated at the heat source is unlikely to move around the solid wall of the artery and reverse its direction in order to penetrate the artery through the openings. An alternate embodiment uses finer pore size wick material to resist vapor entry.

  19. AMTEC vapor-vapor series connected cells

    NASA Technical Reports Server (NTRS)

    Underwood, Mark L. (Inventor); Williams, Roger M. (Inventor); Ryan, Margaret A. (Inventor); Nakamura, Barbara J. (Inventor); Oconnor, Dennis E. (Inventor)

    1995-01-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  20. Full load testing of large LNG refrigeration compressors

    SciTech Connect

    Chellini, R.

    1993-05-01

    In addition to being among the largest such plants in the world, the 7.5 million t/year liquefied natural gas (LNG) terminal under construction for Petronas in Bintulu, Malaysia, features exceptionally large, gas turbine-driven refrigerating compressor trains from Nuovo Pignone. The full load test program is designed to ascertain the correct performance not only of the turbocompressor trains, but also of the auxiliary systems and all the control equipment. The test program allowed Nuovo Pignone to verify that the compressor behavior was in compliance with what was predicted at the design stage. Performance curves plotted during the tests are in fact coincident or very similar to the theoretical ones. 4 figs.

  1. Qatar chooses Snam to market LNG in Europe

    SciTech Connect

    Not Available

    1992-06-15

    This paper reports that Qatar has chosen Italy's Snam SpA as its European partner to sell liquefied natural gas to Europe from a $4.8 billion joint venture project involving supergiant North offshore gas field. State owned Qatar General petroleum Corp. (QGPC) and Snam signed an agreement in Doha to create a joint company owned 65% by QGPC and the remainder by Snam. Italy's state electricity monopoly, ENEL, which is seeking Qatari gas a fuel for its power plants, may later acquire part of Snam's interest in the project. The joint venture will transport and market North LNG to Europe. Exports to Europe by Snam via Italy, to begin in 1997, are expected to be 283 bcf/year at first and may climb to 459 bcf/year, depending upon demand.

  2. Analysis of the sloshing flows of a LNG cargo tank

    NASA Astrophysics Data System (ADS)

    Doh, Deog Hee; Jo, Hyo Je; Shin, Byeong Rog; Ryu, Min Cheol; Hwang, Yoon Sik

    2011-10-01

    The sloshing flows in a LNG cargo tank model (1/50 scale) of a ship are measured by an embedded panoramicPIV system. The measurement system consists of a Nd-Yag laser(120mJ, 15Hz), two cameras(1k x 1k) and a host computer. Four experimental cases were tested for the tank model, in which swaying motions are made by a 6 DOF-motion platform. The amplitudes of swaying are 9.76mm and 29.29mm, and the swaying frequencies are 0.633Hz and 0.828Hz. The measurement regions are the vertical plane 50mm away from the front wall of the tank where a pump tower is installed. It was verified that the flow patterns of the sloshing are similar to each other when the swaying amplitudes are similar.

  3. Feasibility study for the construction of a new LNG receiving terminal. Turkey. Volume 1. Export trade information. [LNG (liquified natural gas)

    SciTech Connect

    Not Available

    1993-06-01

    The report was prepared by The M. W. Kellogg Co. for BOTAS Petroleum Pipeline Corporation of Ankara, Turkey. The study was undertaken to evaluate the cost and economics of constructing a second liquified natural gas (LNG) terminal in Turkey to meet future requirements for natural gas. Volume 1 is divided into the following sections: (1) Introduction; (2) Summary and Conclusions; (3) Design Basis; (4) Site Evaluation; (5) LNG Terminal Design; (6) Major Equipment and Instrumentation; (7) Marine Operations; (8) Safety Considerations; (9) Environmental Review; (10) Preliminary Project Execution Strategy; (11) Cost Estimates; (12) Project Master Schedule; (13) Economic Analysis; (14) Financing; (15) Future Work.

  4. Thermodynamic Processes Involving Liquefied Natural Gas at the LNG Receiving Terminals / Procesy termodynamiczne z wykorzystaniem skroplonego gazu ziemnego w terminalach odbiorczych LNG

    NASA Astrophysics Data System (ADS)

    Łaciak, Mariusz

    2013-06-01

    The increase in demand for natural gas in the world, cause that the production of liquefied natural gas (LNG) and in consequences its regasification becoming more common process related to its transportation. Liquefied gas is transported in the tanks at a temperature of about 111K at atmospheric pressure. The process required to convert LNG from a liquid to a gas phase for further pipeline transport, allows the use of exergy of LNG to various applications, including for electricity generation. Exergy analysis is a well known technique for analyzing irreversible losses in a separate process. It allows to specify the distribution, the source and size of the irreversible losses in energy systems, and thus provide guidelines for energy efficiency. Because both the LNG regasification and liquefaction of natural gas are energy intensive, exergy analysis process is essential for designing highly efficient cryogenic installations. Wzrost zapotrzebowania na gaz ziemny na świecie powoduje, że produkcja skroplonego gazu ziemnego (LNG), a w konsekwencji jego regazyfikacja, staje się coraz bardziej powszechnym procesem związanym z jego transportem. Skroplony gaz transportowany jest w zbiornikach w temperaturze około 111K pod ciśnieniem atmosferycznym. Przebieg procesu regazyfikacji niezbędny do zamiany LNG z fazy ciekłej w gazową dla dalszego transportu w sieci, umożliwia wykorzystanie egzergii LNG do różnych zastosowań, między innymi do produkcji energii elektrycznej. Analiza egzergii jest znaną techniką analizowania nieodwracalnych strat w wydzielonym procesie. Pozwala na określenie dystrybucji, źródła i wielkości nieodwracalnych strat w systemach energetycznych, a więc ustalić wytyczne dotyczące efektywnego zużycia energii. Ponieważ zarówno regazyfikacja LNG jak i skraplanie gazu ziemnego są energochłonne, proces analizy egzergii jest niezbędny do projektowania wysoce wydajnych instalacji kriogenicznych.

  5. Gasoline Vapor Recovery

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  6. Vapor Control Layer Recommendations

    SciTech Connect

    2009-09-08

    This information sheet describes the level of vapor control required on the interior side of framed walls with typical fibrous cavity insulation (fibreglass, rockwool, or cellulose, based on DOE climate zone of construction.

  7. Light-Drag Enhancement by a Highly Dispersive Rubidium Vapor

    NASA Astrophysics Data System (ADS)

    Safari, Akbar; De Leon, Israel; Mirhosseini, Mohammad; Magaa-Loaiza, Omar S.; Boyd, Robert W.

    2016-01-01

    The change in the speed of light as it propagates through a moving material has been a subject of study for almost two centuries. This phenomenon, known as the Fresnel light-drag effect, is quite small and usually requires a large interaction path length and/or a large velocity of the moving medium to be observed. Here, we show experimentally that the observed drag effect can be enhanced by over 2 orders of magnitude when the light beam propagates through a moving slow-light medium. Our results are in good agreement with the theoretical prediction, which indicates that, in the limit of large group indices, the strength of the light-drag effect is proportional to the group index of the moving medium.

  8. Light-Drag Enhancement by a Highly Dispersive Rubidium Vapor.

    PubMed

    Safari, Akbar; De Leon, Israel; Mirhosseini, Mohammad; Magaa-Loaiza, Omar S; Boyd, Robert W

    2016-01-01

    The change in the speed of light as it propagates through a moving material has been a subject of study for almost two centuries. This phenomenon, known as the Fresnel light-drag effect, is quite small and usually requires a large interaction path length and/or a large velocity of the moving medium to be observed. Here, we show experimentally that the observed drag effect can be enhanced by over 2 orders of magnitude when the light beam propagates through a moving slow-light medium. Our results are in good agreement with the theoretical prediction, which indicates that, in the limit of large group indices, the strength of the light-drag effect is proportional to the group index of the moving medium. PMID:26799017

  9. Optimization and testing of the Beck Engineering free-piston cryogenic pump for LNG systems on heavy vehicles. Final technical report

    SciTech Connect

    Beck, Douglas S.

    2003-01-10

    Task 7 was completed by reaching Milestone 7: Test free piston cryogenic pump (FPCP) in Integrated LNG System. Task 4: Alternative Pump Design was also completed. The type of performance of the prototype LNG system is consistent with requirements of fuel systems for heavy vehicles; however, the maximum flow capacity of the prototype LNG system is significantly less than the total flow requirement. The flow capacity of the prototype LNG system is determined by a cavitation limit for the FPCP.

  10. 40 CFR Table W - 5 of Subpart W of Part 98-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Methane Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment... Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W of Part 98—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  11. 40 CFR Table W - 5 of Subpart W of Part 98-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Methane Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment... Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W of Part 98—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  12. Process simulation for a new conceptual design of LNG terminal coupling NGL recovery and LNG re-gasification for maximum energy savings

    NASA Astrophysics Data System (ADS)

    Muqeet, Mohammed A.

    With the high demands of shale gas and promising development of LNG terminals, a lot of research has focused towards the process development for effective recovery of C2+ hydrocarbons (NGL). Shale gas requires a large amount of cold energy to cool down and recover the NGL; and the LNG re-gasification process requires a lot of heat energy to evaporate for NGL recovery. Thus, coupling the shale gas NGL recovery process and LNG re-gasification process, for utilizing the cold energy from LNG re-gasification process to assist NGL recovery from shale gas has significant economic benefits on both energy saving and high value product recovery. Wang et al. developed new conceptual design of such coupled process in 2013 and later Wang and Xu developed an optimal design considering uncertainties in 2014. This work deals with process simulation of both these designs and the feasibility of the process is verified. A steady state model is developed based on the plant design proposed by Wang et al. using Aspen plusRTM and then a dynamic model of the process is developed using Aspen dynamicsRTM. An effective control strategy is developed and the flexibility of the dynamic model is examined by giving disturbances in the shale gas feed. A comparison is made between the two proposed design and the prospects of the design for real plant scenario is discussed.

  13. 78 FR 42587 - Deepwater Port License: Amendment of the Neptune LNG LLC Deepwater Port License and Temporary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... Maritime Administration Deepwater Port License: Amendment of the Neptune LNG LLC Deepwater Port License and Temporary Suspension of Operations at the Neptune LNG Deepwater Port AGENCY: Maritime Administration... Deepwater Port Act of 1974, as amended (Act), the Secretary of Transportation may, on petition of...

  14. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines.

    PubMed

    Ulvestad, Marte; Overland, Indra

    2012-06-01

    THIS ARTICLE DEVELOPS A FORMAL MODEL FOR COMPARING THE COST STRUCTURE OF THE TWO MAIN TRANSPORT OPTIONS FOR NATURAL GAS: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG. PMID:24683269

  15. 77 FR 59601 - Dominion Cove Point LNG, LP; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... add natural gas liquefaction and exportation capabilities to its existing Cove Point LNG Terminal... its NEPA responsibilities. Under section 3 of the Natural Gas Act of 1938, as amended (NGA), 15 USC 717b, DOE would authorize the export of natural gas, including liquefied natural gas (LNG),...

  16. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines

    PubMed Central

    Ulvestad, Marte; Overland, Indra

    2012-01-01

    This article develops a formal model for comparing the cost structure of the two main transport options for natural gas: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG. PMID:24683269

  17. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Special Regulations. (1) For the purpose of this section, the general regulations contained in 33 CFR 165... Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK....

  18. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Special Regulations. (1) For the purpose of this section, the general regulations contained in 33 CFR 165... Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK....

  19. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Special Regulations. (1) For the purpose of this section, the general regulations contained in 33 CFR 165... Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK....

  20. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Special Regulations. (1) For the purpose of this section, the general regulations contained in 33 CFR 165... Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK....

  1. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Special Regulations. (1) For the purpose of this section, the general regulations contained in 33 CFR 165... Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK....

  2. 77 FR 66454 - Gulf LNG Liquefaction Company, LLC; Application for Long-Term Authorization To Export Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... additional LNG exports from other projects as well as an aggressive increase in natural gas demand due to the..., which assumes 6.2 Bcf/d of LNG exports in addition to GLLC's requested 1.5 Bcf/d and makes aggressive... aggressive growth in demand for natural gas vehicles. Third, GLLC states that natural gas to be exported...

  3. 78 FR 17189 - Trunkline LNG Export, LLC; Application for Long-Term Authorization to Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... its principal place of business in Houston, Texas. Trunkline LNG Company, LLC (TLNG), an affiliate of... to the Regulation of Imported Natural Gas, 49 FR 6,684 (February 22, 1984) (``Policy Guidelines... increase when LNG is exported, ``the global market limits how high U.S. natural gas prices can rise...

  4. Reverse dispersion fiber with depressed core-index profile for dispersion-managed fiber pairs

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoqiang; Wang, Ruichun

    2005-11-01

    A reverse dispersion fiber (RDF) with depressed core-index profile has been developed successfully by using plasma chemical vapor deposition (PCVD) process. The fabricated RDF has a core-effective-area of 45 ?m2, a dispersion of -19.65 ps/nm/km and a dispersion slope of -0.132 ps/nm2/km while maintaining the low bending induced attenuation and low PMD value. The dispersion-managed pairs, which consisted of RDF and non-zero dispersion shifted fiber with ultra large effective core-area (ULAF), have the ultra low dispersion slope of less than 0.006 ps/nm2/km at the wavelength range of 1530-1625 nm, and the largest dispersion value is lower than 0.2 ps/nm/km. Moreover, the attenuation characteristic also shows a remarkable flatness over the broadband wavelength, the attenuation at 1550 nm is only 0.224 dB/km. The dispersion-managed pairs are suitable for large capacity, high bit-rate long-haul wavelength division multiplexing (WDM) transmission system without using dispersion compensation mode.

  5. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    NASA Astrophysics Data System (ADS)

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  6. Study of power generation systems for CO2 collection: LNG combined cycle

    NASA Astrophysics Data System (ADS)

    Moritsuka, H.; Hamamatsu, T.; Ishikawa, H.

    1989-10-01

    Power generation system for CO2 collection was studied. When a pressure swing adsorption method is used to separate CO2 from exhaust gas of conventional power plant (LNG (liquefied natural gas) combined cycle power plant), three stage process is required and 5.1 percent power of total power generation is consumed. For CO2 closed reheat gas turbine combined cycle power generation system where oxygen is used to combust fuel and to avoid nitrogen mixture in exhaust gas by oxygen blow out, net generation efficiency is 36.8 percent owing to oxygen generation and power plant consumtion. For a LNG reformed CO removal combined cycle power generating system where hydrogen is separared from LNG reformed gas to supply to gas turbine and remained CO is combusted in the reformer to collect CO2, net generation efficiency is 38.5 percent after subtracting power to generate oxygen and power consumed in the power plant. For a LNG reformed MC type fuel cell power generation system where LNG is reformed to supply fuel to the MC type fuel cell and oxygen is supplied to oxygen pole, final net generation efficiency becomes 49.2 percent, indicating very high efficiency.

  7. Flexible LNG supply, storage and price formation in a global natural gas market

    NASA Astrophysics Data System (ADS)

    Hayes, Mark Hanley

    The body of work included in this dissertation explores the interaction of the growing, flexible liquefied natural gas (LNG) trade with the fundamentals of pipeline gas supply, gas storage, and gas consumption. By nature of its uses---largely for residential heating and electric power generation---the consumption of natural gas is highly variable both seasonally and on less predictable daily and weekly timescales. Flexible LNG trade will interconnect previously isolated regional gas markets, each with non-correlated variability in gas demand, differing gas storage costs, and heterogeneous institutional structures. The dissertation employs a series of analytical models to address key issues that will affect the expansion of the LNG trade and the implications for gas prices, investment and energy policy. First, I employ an optimization model to evaluate the fundamentals of seasonal LNG swing between markets with non-correlated gas demand (the U.S. and Europe). The model provides insights about the interaction of LNG trade with gas storage and price formation in interconnected regional markets. I then explore how random (stochastic) variability in gas demand will drive spot cargo movements and covariation in regional gas prices. Finally, I analyze the different institutional structures of the gas markets in the U.S. and Europe and consider how managed gas markets in Europe---without a competitive wholesale gas market---may effectively "export" supply and price volatility to countries with more competitive gas markets, such as the U.S.

  8. Qatargas exporting LNG from Qatar`s new Ras Laffan Port

    SciTech Connect

    1997-02-24

    When the 135,000 cu m LNG carrier Al Zubarah departed Ras Laffan Port in December, Qatar entered a new era of commerce that will both boost the emirate`s economic development and influence energy trade around the world. The event capped more than a decade of planning, design, and construction of Ras Laffan Port--the world`s newest and largest LNG exporting facility. During the 1980s, the focus in Qatar was on exploration and development of North field, which holds the world`s largest reserves of nonassociated natural gas. In the 1990s, efforts concentrated on establishing a direct production and export link between North field, the new multi-billion-dollar Qatar Liquefied Gas Co. (Qatargas) gas liquefaction plant at Ras Laffan, and LNG export facilities at the 8.5 sq km Ras Laffan Port. Markets of the Far East will be first to be served by LNG from Ras Laffan Port. Two 25-year LNG supply contracts have been signed with buyers in Japan and South Korea, and negotiations are under way with potential customers from China, Taiwan, and Thailand. The paper describes the port, its operations, and export projects.

  9. Fuel Vaporization Effects

    NASA Technical Reports Server (NTRS)

    Bosque, M. A.

    1983-01-01

    A study of the effects of fuel-air preparation characteristics on combustor performance and emissions at temperature and pressure ranges representative of actual gas turbine combustors is discussed. The effect of flameholding devices on the vaporization process and NOx formation is discussed. Flameholder blockage and geometry are some of the elements that affect the recirculation zone characteristics and subsequently alter combustion stability, emissions and performance. A water cooled combustor is used as the test rig. Preheated air and Jet A fuel are mixed at the entrance of the apparatus. A vaporization probe is used to determine percentage of vaporization and a gas sample probe to determine concentration of emissions in the exhaust gases. The experimental design is presented and experimental expected results are discussed.

  10. Vapor core propulsion reactors

    NASA Technical Reports Server (NTRS)

    Diaz, Nils J.

    1991-01-01

    Many research issues were addressed. For example, it became obvious that uranium tetrafluoride (UF4) is a most preferred fuel over uranium hexafluoride (UF6). UF4 has a very attractive vaporization point (1 atm at 1800 K). Materials compatible with UF4 were looked at, like tungsten, molybdenum, rhenium, carbon. It was found that in the molten state, UF4 and uranium attacked most everything, but in the vapor state they are not that bad. Compatible materials were identified for both the liquid and vapor states. A series of analyses were established to determine how the cavity should be designed. A series of experiments were performed to determine the properties of the fluid, including enhancement of the electrical conductivity of the system. CFD's and experimental programs are available that deal with most of the major issues.

  11. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  12. Vaporizing particle velocimeter

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1992-01-01

    A velocimeter measures flow characteristics of a flow traveling through a chamber in a given direction. Tracer particles are entrained in the flow and a source of radiant energy produces an output stream directed transversely to the chamber, having a sufficient intensity to vaporize the particles as they pass through the output stream. Each of the vaporized particles explodes to produce a shock wave and a hot core, and a flow visualization system tracks the motion of the hot cores and shock waves to measure the velocity of each tracer particle and the temperature of the flow around the tracer.

  13. Vapor transport mechanisms

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1978-01-01

    The Raman scattering furnace for investigating vapor transport mechanisms was completed and checked out. Preliminary experiments demonstate that a temperature resolution of plus and minus 5 C is possible with this system operating in a backscatter mode. In the experiments presented with the GeI 4 plus excess Ge system at temperatures up to 600 C, only the GeI4 band at 150 cm superscript minus 1 was observed. Further experiments are in progress to determine if GeI2 does become the major vapor species above 440 C.

  14. Fouling from vaporizing kerosine

    SciTech Connect

    Crittenden, B.D. ); Khater, E.M.H. )

    1987-08-01

    Fouling rate data have been obtained by passing kerosine at a low flow rate through a small horizontal tubular furnace. Substantial circumferential variations in surface temperature and fouling rate occurred during vaporization, the highest rates being at the bottom of the tube where surface temperatures were the lowest. Fouling rates generally increased as pressure increased from 1 to 2.5 bar, but were reduced markedly either by decreasing the feedstock oxygen content or by raising the wall superheat. All the observations are consistent with fouling occurring predominantly via autoxidation and cracking-synthesis mechanisms for the liquid and vapor phases, respectively.

  15. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  16. Worker Protection from Chemical Vapors: Hanford Tank Farms

    SciTech Connect

    Anderson, T.J.

    2007-07-01

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank head-spaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns, risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits (OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors. (authors)

  17. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    SciTech Connect

    Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

    2005-05-31

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. Operating costs of a salt cavern terminal are lower than tank based terminals because ''boil off'' is eliminated and maintenance costs of caverns are lower than LNG tanks. Phase II included the development of offshore mooring designs, wave tank tests, high pressure LNG pump field tests, heat exchanger field tests, and development of a model offshore LNG facility and cavern design. Engineers designed a model facility, prepared equipment lists, and confirmed capital and operating costs. In addition, vendors quoted fabrication and installation costs, confirming that an offshore salt cavern based LNG terminal would have lower capital and operating costs than a similarly sized offshore tank based terminal. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or purposeful damage, and much more acceptable to the community. More than thirty industry participants provided cost sharing, technical expertise, and guidance in the conduct and evaluation of the field tests, facility design and operating and cost estimates. Their close participation has accelerated the industry's acceptance of the conclusions of this research. The industry participants also developed and submitted several alternative designs for offshore mooring and for high pressure LNG heat exchangers in addition to those that were field tested in this project. HNG Storage, a developer, owner, and operator of natural gas storage facilities, and a participant in the DOE research has announced they will lead the development of the first offshore salt cavern based LNG import facility. Which will be called the Freedom LNG Terminal. It will be located offshore Louisiana, and is expected to be jointly developed with other members of the research group yet to be named. An offshore port license application is scheduled to be filed by fourth quarter 2005 and the terminal could be operational by 2009. This terminal allows the large volume importation of LNG without disrupting coastal port operations by being offshore, out of sight of land.

  18. BTSC VAPOR INSTRUSION PRIMER "VAPOR INTRUSION CONSIDERATION FOR REDEVELOPMENT"

    EPA Science Inventory

    This primer is designed for brownfields stakeholders concerned about vapor intrusion, including property owners, real estate developers, and contractors performing environmental site investigations. It provides an overview of the vapor intrusion issue and how it can impact the ap...

  19. Puerto Rico`s EcoElectrica LNG/power project marks a project financing first

    SciTech Connect

    Lammers, R.; Taylor, S.

    1998-02-23

    On Dec. 15, 1997, Enron International and Kenetech Energy Services achieved financial close on the $670 million EcoElectrica liquefied natural gas terminal and cogeneration project proposed for Puerto Rico. The project involves construction of a liquefied natural gas terminal, cogeneration plant, and desalination unit on the southern coast of Puerto Rico, in the Penuelas/Guayanilla area. EcoElectrica will include a 500-mw, combined-cycle cogeneration power plant fueled mainly by LNG imported from the 400 MMcfd Atlantic LNG project on the island of Trinidad. Achieving financial close on a project of this size is always a time-consuming matter and one with a number of challenges. These challenges were increased by the unique nature of both the project and its financing--no project financing had ever before been completed that combined an LNG terminal and power plant. The paper discusses the project, financing details and challenges, key investment considerations, and integrated project prospects.

  20. Applications of human factors engineering to LNG release prevention and control

    SciTech Connect

    Shikiar, R.; Rankin, W.L.; Rideout, T.B.

    1982-06-01

    The results of an investigation of human factors engineering and human reliability applications to LNG release prevention and control are reported. The report includes a discussion of possible human error contributions to previous LNG accidents and incidents, and a discussion of generic HF considerations for peakshaving plants. More specific recommendations for improving HF practices at peakshaving plants are offered based on visits to six facilities. The HF aspects of the recently promulgated DOT regulations are reviewed, and recommendations are made concerning how these regulations can be implemented utilizing standard HF practices. Finally, the integration of HF considerations into overall system safety is illustrated by a presentation of human error probabilities applicable to LNG operations and by an expanded fault tree analysis which explicitly recognizes man-machine interfaces.

  1. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  2. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  3. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  4. Geologic setting and gas reserves of the Venezuelan LNG project

    SciTech Connect

    Prieto, R.; Van der Molen, I.; Ramirez de Arellano, R. )

    1993-02-01

    Four gas fields, Mejillones, Patao, Dragon, and Rio Caribe, were discovered by Lagoven, a subsidiary of Petroleos de Venezuela S.A., during an exploratory campaign during 1978-1982, offshore northeastern Venezuela. Thirteen wells drilled in the four fields discovered 13.9 tcf of gas, including 1.2 tcf of gas and condensate in the Rio Caribe field. In February 1991, Lagoven entered into an agreement with Shell, Exxon, and Mitsubishi to assess the viability of producing and exporting gas from the four offshore gas fields in the form of liquified natural gas. This is the Venezuelan LNG Project, otherwise called the Cristobal Colon Project. As part of the agreement the participants established a Project Team in Caracas and undertook the acquisition of 1600 km[sup 2] of 3D seismic data over the four fields to evaluate the geological model of the area. In addition, interpretation of the 3D data has led to a preliminary geological model for the gas bearing sands which envisages deposition in a regional setting varying from bathyal turbidites in the Rio Caribe and Mejillones fields in the west to shelf deposits over the Patao and Dragon fields in the east. In addition to the geological setting this paper will discuss preliminary results of the reserves evaluation for the Rio Caribe, Patao, and Dragon fields.

  5. Zero-Emission Combined Power Cycle Using LNG Cold

    NASA Astrophysics Data System (ADS)

    Velautham, Sanjayan; Ito, Takehiro; Takata, Yasuyuki

    A potential zero emission combined power generation plant fired by liquefied natural gas (LNG) has been investigated. A mixture of carbon dioxide (CO2)-steam is used as the working fluid of a gas turbine cycle, which replaces the normal combustion-in-air products and air, notably as the thermal ballast for the control of flame temperature. Oxygen (O2) is used as the fuel oxidant and is obtained from an air separation unit (ASU). The excess CO2 due to combustion is extracted by a simple flow separator and liquefied ready to be reused and/or sequestered. The plant configuration and thermodynamics of the cycle are discussed first and then the optimised overall efficiency of the plant is calculated with a comparison of 100% and 120% stoichiometric combustion. The overall net efficiency, optimised to pressure and temperature levels complying with the material and cooling techniques currently available, is around 56% (LHV basis), including the energy penalty of the ASU and the CO2 separation.

  6. Occupational Exposure Evaluation of Complex Vapor Mixtures at the Hanford Nuclear Waste Site, Washington Work-site Vapor Characterization

    SciTech Connect

    Anderson, T. J.

    2006-07-01

    Extensive sampling and analysis has been done over the years to characterize the radioactive and chemical properties of hazardous waste stored in 177 underground tanks at the Hanford site in eastern Washington State. The purpose of these analyses was to evaluate safety and environmental concerns related to tank stability. More recently, characterization studies have broadened to evaluate potential health hazards of chemical vapors at the ground surface, where workers perform maintenance and waste transfer activities. Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. The extensive sampling done during this campaign evaluated vapor concentrations of more than 100 different chemical at 70 sites in and around one section of the tank farms. Sampling identified only four vapors (ammonia, nitrous oxide, nitrosodimethylamine, and nitrosomethylethylamine) that were present above occupational exposure limits. These elevated concentrations were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors were measured above 10% of their OELs more than five feet from the source. This suggests that vapor controls can be focused on limited hazard zones around sources. (authors)

  7. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  8. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature

  9. Training Protocols for the Detection of Explosive Vapors in Interior Spaces.

    SciTech Connect

    Phelan, James M.; Webb, Stephen W.

    2007-07-01

    Computational fluid dynamics simulations for dispersal of explosive vapors in interior spaces have been performed including details of typical ventilation systems. The interior spaces investigated include an office area, a single-family house, and a warehouse store. Explosive vapor sources are defined in the various interior spaces, and contours of the vapor concentration in the interior spaces relative to the source concentration are presented for relative concentrations down to 10-5. Training protocols for detection of explosive vapors in interior spaces should include an awareness of the time to equilibrium evident in these simulations as well as the significance of ventilation zones.3

  10. BioVapor Model Evaluation

    EPA Science Inventory

    General background on modeling and specifics of modeling vapor intrusion are given. Three classical model applications are described and related to the problem of petroleum vapor intrusion. These indicate the need for model calibration and uncertainty analysis. Evaluation of Bi...

  11. Design and Development of the Simulation System for Marine LNG Fuel Reliquefaction

    NASA Astrophysics Data System (ADS)

    Li, Boyang; Zhang, Yunqiu; Liu, Yunxin; Li, Diyang

    This paper introduced the background of LNG powered ship reliquefaction plant and its working principle, established the calculation model of simulation system, taking the VLCC ship LNG powered ship as the mother ship, provided the thermodynamic calculation flow chart, developed the software for the operation simulation system and the developed the assessment system and the equipment management system. This software can simulate the operation process and carry out the numerical calculation. It is good for the purpose of training students and has great reference value for research.

  12. Simulation of a Novel Single-column Cryogenic Air Separation Process Using LNG Cold Energy

    NASA Astrophysics Data System (ADS)

    Jieyu, Zheng; Yanzhong, Li; Guangpeng, Li; Biao, Si

    In this paper, a novel single-column air separation process is proposed with the implementation of heat pump technique and introduction of LNG coldenergy. The proposed process is verifiedand optimized through simulation on the Aspen Hysys® platform. Simulation results reveal that thepower consumption per unit mass of liquid productis around 0.218 kWh/kg, and the total exergy efficiency of the systemis 0.575. According to the latest literatures, an energy saving of 39.1% is achieved compared with those using conventional double-column air separation units.The introduction of LNG cold energy is an effective way to increase the system efficiency.

  13. Comparison of CNG and LNG technologies for transportation applications. Final subcontract report, June 1991--December 1991

    SciTech Connect

    Sinor, J.E.

    1992-01-01

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  14. White paper: Preliminary assessment of LNG vehicle technology, economics, and safety issues. Topical Report, April 1991-August 1991

    SciTech Connect

    Powars, C.; Luscher, D.; Moyer, C.; Browning, L.

    1991-11-06

    The objective of the study is to evaluate the potential of LNG as a vehicle fuel, to determine market niches, and to identify needed technology improvements. The white paper is being issued when the work is approximately 30 percent complete to preview the study direction, draw preliminary conclusions, and make initial recommendations. Interim findings relative to LNG vehicle technology, economics, and safety are presented. It is important to decide if heavier hydrocarbons should be allowed in LNG vehicle fuel. Development of suitable refueling couplings and vehicle fuel supply pressure systems are recommended. Initial economics analyses considered transit buses and pickup and delivery trucks fueled via onsite liquefiers and imported LNG. Net user costs were more than (but in some cases close to) those for diesel fuel and gasoline. Lowering the cost of small-scale liquefiers would significantly improve the economics of LNG vehicles. New emissions regulations may introduce considerations beyond simple cost comparisons. LNG vehicle safety and available accident data are reviewed. Consistent codes for LNG vehicles and refueling facilities are needed.

  15. White paper: Preliminary assessment of LNG vehicle technology, economics, and safety issues (Revision 1). Topical report, April-August 1991

    SciTech Connect

    Powars, C.; Lucher, D.; Moyer, C.; Browning, L.

    1992-01-10

    The objective of the study is to evaluate the potential of LNG as a vehicle fuel, to determine market niches, and to identify needed technology improvements. The white paper is being issued when the work is approximately 30 percent complete to preview the study direction, draw preliminary conclusions, and make initial recommendations. Interim findings relative to LNG vehicle technology, economics, and safety are presented. It is important to decide if heavier hydrocarbons should be allowed in LNG vehicle fuel. Development of suitable refueling couplings and vehicle fuel supply pressure systems are recommended. Initial economics analyses considered transit buses and pickup and delivery trucks fueled via onsite liquefiers and imported LNG. Net user costs were more than (but in some cases close to) those for diesel fuel and gasoline. Lowering the cost of small-scale liquefiers would significantly improve the economics of LNG vehicles. New emissions regulations may introduce considerations beyond simple cost comparisons. LNG vehicle safety and available accident data are reviewed. Consistent codes for LNG vehicles and refueling facilities are needed.

  16. Dispersion coalescence: Kinetic stability of creamed dispersions

    SciTech Connect

    Lobo, L.; Ivanov, I.; Wasan, D. )

    1993-02-01

    A model is developed to predict the coalescence behavior in liquid-liquid dispersions. Coalescence times are based on the lifetimes of the single films that are formed between adjoining drops in a creamed or sedimented dispersion. The model is developed for smaller drop sized dispersions (< 100[mu]m) in which the drops are not substantially deformed due to gravitational forces. The model predicts that coalescence occurs between the emulsion drops without the gross separation of the dispersed phase (that is, the dispersion does not separate into distinct oil and water phases). As a result of interdrop coalescence, the mean drop size of the dispersed phase increases along with an increase in the polydispersity of the drop size. The model's predictions are used to develop a quantitative relationship between the lifetime of the single film and the rate of increase of the mean drop size of the dispersion. The model also accounts for the effect of surfactant on dispersion stability via the models of single film drainage in the presence of surfactant.

  17. Stratified vapor generator

    DOEpatents

    Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  18. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature.

  19. Filter vapor trap

    DOEpatents

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  20. Water vaporization on Ceres

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Feldman, Paul D.

    1992-01-01

    A search is presently conducted for OH generated by the photodissociation of atmospheric water vapor in long-exposure IUE spectra of the region around Ceres. A statistically significant detection of OH is noted in an exposure off the northern limb of Ceres after perihelion. The amount of OH is consistent with a polar cap that might be replenished during winter by subsurface percolation, but which dissipates in summer.

  1. Enceladus' water vapor plume.

    PubMed

    Hansen, Candice J; Esposito, L; Stewart, A I F; Colwell, J; Hendrix, A; Pryor, W; Shemansky, D; West, R

    2006-03-10

    The Cassini spacecraft flew close to Saturn's small moon Enceladus three times in 2005. Cassini's UltraViolet Imaging Spectrograph observed stellar occultations on two flybys and confirmed the existence, composition, and regionally confined nature of a water vapor plume in the south polar region of Enceladus. This plume provides an adequate amount of water to resupply losses from Saturn's E ring and to be the dominant source of the neutral OH and atomic oxygen that fill the Saturnian system. PMID:16527971

  2. Vacuum vapor and passive cryogenic vapor extraction technology comparative field test for subsurface soil vapor sampling

    SciTech Connect

    Motes, B.G.; Bird, S.K.; Sense, R.R.

    1994-05-01

    This document investigates two methods of sampling subsurface vapors. The methods discussed are Vacuum/Vapor extraction system and Passive Cryogenic Vapor Extraction system. This report gives an overview of both technologies and outlines the preliminary tests of the two technologies.

  3. The vapor pressures of explosives

    SciTech Connect

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  4. 78 FR 38703 - LNG Development Company (d/b/a Oregon LNG); Oregon Pipeline Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...(a) of the Natural Gas Act (NGA) and Parts 153 and 380 of the Commission's regulations, seeking... rate of up to 9.0 MTPA; (iii) vaporization facilities with a base load natural gas send out capacity of... gas on the pipeline. As modified, the proposed pipeline would be routed through Clatsop, Columbia,...

  5. The control of mercury vapor using biotrickling filters.

    PubMed

    Philip, Ligy; Deshusses, Marc A

    2008-01-01

    The feasibility of using biotrickling filters for the removal of mercury vapor from simulated flue gases was evaluated. The experiments were carried out in laboratory-scale biotrickling filters with various mixed cultures naturally attached on a polyurethane foam packing. Sulfur oxidizing bacteria, toluene degraders and denitrifiers were used and compared for their ability to remove Hg 0 vapor. In particular, the biotrickling filters with sulfur oxidizing bacteria were able to remove 100% of mercury vapor, with an inlet concentration of 300-650 microg m(-3), at a gas contact time as low as six seconds. 87-92% of the removed mercury was fixed in or onto the microbial cells while the remaining left the system with the trickling liquid. The removal of mercury vapors in a biotrickling filter with dead cells was almost equivalent to this in biotrickling filters with live cells, indicating that significant abiotic removal mechanisms existed. Sulfur oxidizing bacteria biotrickling filters were the most effective in controlling mercury vapors, suggesting that sulfur played a key role. Identification of the location of metal deposition and of the form of metal was conducted using TEM, energy dispersive X-ray analysis (EDAX) and mercury elution analyses. The results suggested that mercury removal was through a series of complex mechanisms, probably both biotic and abiotic, including sorption in and onto cellular material and possible biotransformations. Overall, the study demonstrates that biotrickling filters appear to be a promising alternative for mercury vapor removal from flue gases. PMID:17692357

  6. Role of Co-Vapors in Vapor Deposition Polymerization

    NASA Astrophysics Data System (ADS)

    Lee, Ji Eun; Lee, Younghee; Ahn, Ki-Jin; Huh, Jinyoung; Shim, Hyeon Woo; Sampath, Gayathri; Im, Won Bin; Huh, YangIl; Yoon, Hyeonseok

    2015-02-01

    Polypyrrole (PPy)/cellulose (PPCL) composite papers were fabricated by vapor phase polymerization. Importantly, the vapor-phase deposition of PPy onto cellulose was assisted by employing different co-vapors namely methanol, ethanol, benzene, water, toluene and hexane, in addition to pyrrole. The resulting PPCL papers possessed high mechanical flexibility, large surface-to-volume ratio, and good redox properties. Their main properties were highly influenced by the nature of the co-vaporized solvent. The morphology and oxidation level of deposited PPy were tuned by employing co-vapors during the polymerization, which in turn led to change in the electrochemical properties of the PPCL papers. When methanol and ethanol were used as co-vapors, the conductivities of PPCL papers were found to have improved five times, which was likely due to the enhanced orientation of PPy chain by the polar co-vapors with high dipole moment. The specific capacitance of PPCL papers obtained using benzene, toluene, water and hexane co-vapors was higher than those of the others, which is attributed to the enlarged effective surface area of the electrode material. The results indicate that the judicious choice and combination of co-vapors in vapor-deposition polymerization (VDP) offers the possibility of tuning the morphological, electrical, and electrochemical properties of deposited conducting polymers.

  7. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    SciTech Connect

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  8. 78 FR 933 - Cameron LNG, LLC; Cameron Interstate Pipeline, LLC; Notice of Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ..., California 92101, filed in Docket No. CP13-25-000 an application, pursuant to section 3 of the Natural Gas... 1.7 billion cubic feet per day (Bcfd) of domestic natural gas. Cameron Interstate requests... Bcfd of domestic natural gas supply to Cameron LNG's liquefaction facilities. Cameron...

  9. 49 CFR 191.22 - National Registry of Pipeline and LNG operators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false National Registry of Pipeline and LNG operators. 191.22 Section 191.22 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  10. 49 CFR 195.64 - National Registry of Pipeline and LNG Operators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false National Registry of Pipeline and LNG Operators. 195.64 Section 195.64 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  11. Fundamental Study on Sulfur Attack and Coking of LNG Rocket Engines

    NASA Astrophysics Data System (ADS)

    Higashino, Kazuyuki; Sugioka, Masatoshi; Kobayashi, Takao; Sakai, Masahiro; Minato, Ryojiro; Sasayama, Yousuke; Otsuka, Masaya; Okita, Koichi; Aoki, Kenji; Kawashima, Hideto; Azuma, Nobuyuki

    Liquified Natural Gas (LNG) is one of the most promising propellant for near future space transportation rocket engine because of its low cost and fewer handling concerns. However, for LNG propellant, erosion of engine material by sulfur (sulfur attack) and coking by LNG pyrolysis are significant problems in a regenerative cooling passage. In this study, the effects of sulfur attack and coking are experimentally evaluated for material candidates such as Inconel600, SUS316, Hastelloy-X, and some copper alloys. In the sulfur attack tests, EPMA and Raman analysis indicate that metallic sulfide can be observed only on the surface and XRD analysis indicates that sulfur attack are hardly recognized for all of material in the test conditions. In coking tests, it is clear that coking of methane with 5% propane can proceed more than those of pure methane. The thermal decomposition temperature is significantly decreased by catalytic effects of Ni in engine material. The results of coking tests will be included in the design criteria of combustion chamber, nozzle of the LNG rocket engines.

  12. 78 FR 23552 - Dominion Cove Point LNG, LP; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ..., filed in Docket No. CP13-113-000 an application under section 3 of the Natural Gas Act (NGA) seeking authorization to construct, modify, own and operate certain facilities to enable the liquefaction of natural gas..., for the transportation of natural gas for customers of Dominion Cove Point's LNG terminal, all as...

  13. In-situ strain monitoring in liquid containers of LNG transporting carriers

    NASA Astrophysics Data System (ADS)

    Oh, Min-Cheol; Seo, Jun-Kyu; Kim, Kyung-Jo; Lee, Sang-Min; Kim, Myung-Hyun

    2008-08-01

    Liquefied natural gas (LNG) transport carriers are exposed to a risk by the repeated bump in the LNG container during the vessel traveling over the wave in ocean. The liquid inside the container, especially when it was not fully contained, make a strong bump onto the insulation panel of the tank wall. The insulation panel consists of several layers of thick polyurethane foam (PUF) to maintain the LNG below the cryogenic temperature, -162°C. Due to the repeated shock on the PUF, a crack could be developed on the tank wall causing a tremendous disaster for LNG carriers. To prevent the accidental crack on the tank, a continuous monitoring of the strain imposed on the PUF is recommended. In this work, a fiber-optic Bragg grating was imbedded inside the PUF for monitoring the strain parallel to the impact direction. The optical fiber sensor with a small diameter of 125 μm was suitable to be inserted in the PUF through a small hole drilled after the PUF was cured. In-situ monitoring of the strain producing the change of Bragg reflection wavelength, a high speed wavelength interrogation method was employed by using an arrayed waveguide grating. By dropping a heavy mass on the PUF, we measured the strain imposed on the insulation panel.

  14. Thermodynamic analysis of extraction processes for the utilization of LNG cold energy

    NASA Astrophysics Data System (ADS)

    Lee, G. S.; Chang, Y. S.; Kim, M. S.; Ro, S. T.

    Thermodynamic analysis of the extraction processes from a constant pressure LNG (liquefied natural gas) vessel was performed in this study. LNG was assumed to be a binary mixture of 90% methane and 10% ethane by mole fraction (83:17 by mass fraction). The changes in the thermodynamic properties and the amount of utilizable cold energy were predicted during the extraction processes. Both vapour and liquid extraction processes were investigated using a computer model. During vapour extraction, the temperature of the LNG in the vessel increases dramatically, and the extracted vapour composition of methane decreases rapidly near the end of the extraction process. Utilizable cold energy has a maximum at a residual mass ratio of about 0.2. It was found that the temperature gradient due to the vapour composition change had a major effect on the behaviour of the cold energy during the vapour extraction process at a constant pressure. During the liquid extraction process, the changes in the thermodynamic properties and utilizable cold energy are negligible. When the pressure of the vessel increases, the total cold energy which can be utilized from LNG decreases.

  15. 77 FR 10732 - Cameron LNG, LLC; Application for Long-Term Authorization To Export Domestically Produced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... annum (mtpa) of domestically produced liquefied natural gas (LNG) (equivalent to approximately 620 billion cubic feet per year of natural gas) for a 20-year period, commencing on the earlier of the date of... national treatment for trade in natural gas, (2) which has or in the future develops the capacity to...

  16. 76 FR 58488 - Dominion Cove Point LNG, LP; Application for Blanket Authorization to Export Previously Imported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application. SUMMARY: The Office of... to export liquefied natural gas (LNG) that previously had been imported into the United States from foreign sources in an amount up to the equivalent of 150 billion cubic feet (Bcf) of natural gas. The...

  17. 76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Maritime Administration Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License... Deepwater Port License Application. The application describes an offshore natural gas deepwater port... appeared in the Federal Register on April 11, 2000 (65 FR 19477), see PRIVACY ACT. You may view...

  18. 75 FR 70350 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Maritime Administration Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License.... Coast Guard received an application from Liberty Natural Gas LLC for all Federal authorizations required... the transportation, storage, and further handling of oil or natural gas for transportation to...

  19. 77 FR 70886 - Reconsideration of Letters of Recommendation for Waterfront Facilities Handling LNG and LHG

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... Commission FR Federal Register LHG Liquefied hazardous gas LNG Liquefied natural gas LOI Letter of Intent LOR... Property H. Civil Justice Reform I. Protection of Children J. Indian Tribal Governments K. Energy Effects L... the Federal Register (76 FR ] 78188). We received two letters commenting on the proposed rule....

  20. 76 FR 78188 - Reconsideration of Letters of Recommendation for Waterfront Facilities Handling LNG and LHG

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... the Port DHS Department of Homeland Security FR Federal Register LHG Liquefied hazardous gas LNG.... Taking of Private Property H. Civil Justice Reform I. Protection of Children J. Indian Tribal Governments..., 2008, issue of the Federal Register (73 FR 3316). D. Public Meeting We do not now plan to hold a...

  1. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  2. 75 FR 29420 - Revision of LNG and LHG Waterfront Facility General Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... enforce the revised collection requirements until the collection is approved by the Office of Management... the Docket Management Facility (M-30), U.S. Department of Transportation, West Building Ground Floor... Regulatory Commission FR Federal Register LHG Liquefied hazardous gas LNG Liquefied natural gas LOI Letter...

  3. Selection of an acid-gas removal process for an LNG plant

    SciTech Connect

    Stone, J.B.; Jones, G.N.; Denton, R.D.

    1996-12-31

    Acid gas contaminants, such as, CO{sub 2}, H{sub 2}S and mercaptans, must be removed to a very low level from a feed natural gas before it is liquefied. CO{sub 2} is typically removed to a level of about 100 ppm to prevent freezing during LNG processing. Sulfur compounds are removed to levels required by the eventual consumer of the gas. Acid-gas removal processes can be broadly classified as: solvent-based, adsorption, cryogenic or physical separation. The advantages and disadvantages of these processes will be discussed along with design and operating considerations. This paper will also discuss the important considerations affecting the choice of the best acid-gas removal process for LNG plants. Some of these considerations are: the remoteness of the LNG plant from the resource; the cost of the feed gas and the economics of minimizing capital expenditures; the ultimate disposition of the acid gas; potential for energy integration; and the composition, including LPG and conditions of the feed gas. The example of the selection of the acid-gas removal process for an LNG plant.

  4. Lectures on Dispersion Theory

    DOE R&D Accomplishments Database

    Salam, A.

    1956-04-01

    Lectures with mathematical analysis are given on Dispersion Theory and Causality and Dispersion Relations for Pion-nucleon Scattering. The appendix includes the S-matrix in terms of Heisenberg Operators. (F. S.)

  5. FIELD DISPERSANT EFFECTIVENESS TEST

    EPA Science Inventory

    The EPA's OHMSETT facility has developed a rapid field test that includes some of the theoretical aspects and conditions of dispersion at sea. This Field Dispersant Effectiveness Test (FDET) has been used to evaluate the dispersibility of various commonly-transported oils and mak...

  6. Dispersion y dinamica poblacional

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispersal behavior of fruit flies is appetitive. Measures of dispersion involve two different parameter: the maximum distance and the standard distance. Standard distance is a parameter that describes the probalility of dispersion and is mathematically equivalent to the standard deviation around ...

  7. Development of an FBG-based low temperature measurement system for cargo containment of LNG tankers

    NASA Astrophysics Data System (ADS)

    Kim, D. G.; Yoo, W.; Swinehart, P.; Jiang, B.; Haber, T.; Mendez, A.

    2007-09-01

    Given the growing demand for oil and natural gas to meet the world's energy needs, there is nowadays renewed interest in the use of liquefied natural gas (LNG) systems. For LNG to remain in its liquid phase, the gas has to be kept at cryogenic temperatures (< 160°C). And, as part of the LNG supply process, it becomes necessary to transport it using massive carrier tankers with cargo hulls operating at low temperatures and using special insulating double-wall construction. The safe and reliable storage and transportation of LNG products calls for low temperature monitoring of said containers to detect the onset of any potential leaks and possible thermal insulation degradation. Because of the hazardous nature of this cargo, only intrinsically-safe, explosion proof devices can be used. Optical fiber sensors-- such as fiber Bragg gratings-- are ideal for this application given their dielectric nature and multi-point sensing telemetry capability. In this paper, we describe the development of an on-line, multi-point FBG-based low temperature monitoring system based on a network of specially packaged FBG temperature and strain sensors mounted at critical locations within the inner hull, cofferdam and secondary barriers of a LNG carrier tanker. Given the stringent cryogenic operating temperature conditions, pertinent FBG designs, coatings and packaging approaches were formulated along with adequate installation techniques and integration of the interrogating FBG electronics into the tanker's overall SCADA monitoring system. FBG temperature sensors were demonstrated to be stable and sensitive over the 80-480K range. Stability is +/- 0.25K or better with repeated calibrations, and long term stability at 480K is ~0.2mK/hour.

  8. Dispersants displace hot oiling

    SciTech Connect

    Wash, R.

    1984-02-01

    Laboratory experiments and field testing of dispersants in producing wells have resulted in development of 2 inexpensive paraffin dispersant packages with a broad application range, potential for significant savings over hot oiling, and that can be applied effectively by both continuous and batch treating techniques. The 2 dispersants are soluble in the carrier solvent (one soluble in oil, one in water); are able to readily disperse the wax during a hot flask test conducted in a laboratory; and leave the producing interval water wet. Field data on the 2 dispersants are tabulated, demonstrating their efficacy.

  9. Theory of dispersive microlenses

    NASA Technical Reports Server (NTRS)

    Herman, B.; Gal, George

    1993-01-01

    A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.

  10. Biofiltration of gasoline vapors from a soil vapor extraction system

    SciTech Connect

    Devinny, J.S.; Chang, A.N.; Hodge, D.S.; Reynolds, F.E. Jr.

    1995-11-01

    Biofiltration was used to treat gasoline vapors produced by soil vapor extraction (SVE) from an area contaminated by a leaking underground gasoline tank. The biofilter was installed upstream of an activated carbon unit. The biofilter removed 25--50% of the vapors in the early months of the project, when more volatile components dominated. Later, the vapors were mostly less volatile materials, and the biofilter removed 40--75%. This behavior was predicted by bench scale experiments. The biofilter was economically successful, and the project provided data for projecting the economic viability of biofilters in similar applications.

  11. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    NASA Astrophysics Data System (ADS)

    Battino, Rubin; Dolson, David A.; Hall, Michael R.; Letcher, Trevor M.

    2007-05-01

    An inexpensive apparatus is described for the determination of the vapor pressure of a liquid as a function of temperature for the purpose of calculating enthalpy changes of vaporization. The solid-state pressure transducer is linear above 100 torr, is useful in the range -40 to 85 C, and is calibrated using pure water. The experimental enthalpies of vaporization for ten solvents are within ca. 0 to 13% of literature values. Two different versions of the static vapor pressure apparatus are described. Also described are a simple air thermostat and an inexpensive temperature controller (0.1 K) based on an integrated temperature sensor. The measurement time is under three hours.

  12. Hydrazine-Vapor Samplers

    NASA Technical Reports Server (NTRS)

    Young, Rebecca; Mcbrearty, Charles; Curran, Dan; Leavitt, Nilgun

    1994-01-01

    Active sampling unit capable of detecting hydrazine and monomethyl hydrazine vapors at levels as low as 10 ppb in air developed. Includes detachable badge holder and pump which draws air through badge holder at selectable rate of 1 or 2 L/min. Coated strip in each badge designed to align with air passage in badge holder. Two types of badge holders constructed: one has open-face design for general monitoring of air in open spaces, while other has closed-face design with viewing window and intended for sampling through small openings to detect leaks.

  13. Vapor Diffusion Apparatus

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Vapor Diffusion Apparatus (VDA-2) was developed by the University of Alabama in Birmingham for NASA's Marshall Space Flight Center. In the original VDA, a protein solution and a precipitant are extruded by two plungers onto the tip of a small syringe and allowed to evaporate, raising the concentration and prompting protein molecules to crystallize. In the VDA-2 version, a third plunger was added to mix the two solutions before returning the mix to the syringe tip. The principal investigator is Dr. Larry Delucas of the University of Alabama in Birmingham.

  14. Vapor Diffusion Apparatus

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Vapor Diffusion Apparatus (VDA and VDA-2) was developed by the University of Alabama in Birmingham for NASA's Marshall Space Flight Center. In the original VDA, a protein solution and a precipitant are extruded by two plungers onto the tip of a small syringe and allowed to evaporate, raising the concentration and prompting protein molecules to crystallize. In the VDA-2 version, a third plunger was added to mix the two solutions before returning the mix to the syringe tip. The principal investigator is Dr. Larry Delucas of the University of Alabama in Birmingham

  15. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.

    SciTech Connect

    Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

    2004-12-01

    While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

  16. Measurement of fuel spray vaporization by laser techniques

    NASA Astrophysics Data System (ADS)

    Yule, A. J.; Seng, C. A.; Felton, P. G.; Ungut, A.; Chigier, N. A.

    1980-09-01

    Comparison of fuel spray structures in heated and in cold environments was made by using a new laser tomographic technique and laser anemometry. The tomography technique is shown to give accurate and rapid "point" measurements of droplet sizes and concentrations. Experimental results show acceleration of droplets to the local gas velocity, preferential vaporization of the smallest droplets and the dispersion of droplets by the turbulence.

  17. Biofiltration of methanol vapor

    SciTech Connect

    Shareefdeen, Z.; Baltzis, B.C. ); Oh, Youngsook; Bartha, R. )

    1993-03-05

    Biofiltration of solvent and fuel vapors may offer a cost-effective way to comply with increasingly strict air emission standards. An important step in the development of this technology is to derive and validate mathematical models of the biofiltration process for predictive and scaleup calculations. For the study of methanol vapor biofiltration, an 8-membered bacterial consortium was obtained from methanol-exposed soil. The bacteria were immobilized on solid support and packed into a 5-cm diameter, 60-cm-high column provided with appropriate flowmeters and sampling ports. The solid support was prepared by mixing two volumes of peat with three volumes of perlite particles. Two series of experiments were performed. In the first, the inlet methanol concentration was kept constant while the superficial air velocity was varied from run to run. In the second series, the air flow rate (velocity) was kept constant while the inlet methanol concentration was varied. The unit proved effective in removing methanol at rates up to 112.8 g h[sup [minus]1] m[sup [minus]3] packing. A mathematical model has been derived and validated. The model described and predicted experimental results closely. Both experimental data and model predictions suggest that the methanol biofiltration process was limited by oxygen diffusion and methanol degradation kinetics.

  18. Vapor Transport in Dry Soils

    SciTech Connect

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-16

    Water-vapor movement in soils is a complex process, controlled by both diffusion and advection and influenced by pressure and thermal gradients acting across tortuous flow paths. Wide-ranging interest in water-vapor transport includes both theoretical and practical aspects. Just how pressure and thermal gradients enhance water-vapor flow is still not completely understood and subject to ongoing research. Practical aspects include dryland farming (surface mulching), water harvesting (aerial wells), fertilizer placement, and migration of contaminants at waste-sites. The following article describes the processes and practical applications of water-vapor transport, with emphasis on unsaturated (dry) soil systems.

  19. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation.

    PubMed

    Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2007-09-01

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/ LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. PMID:17937317

  20. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  1. Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Seung; Cho, Jin-Rae; Kim, Wha-Soo; Noh, Byeong-Jae; Kim, Myung-Hyun; Lee, Jae-Myung

    2013-03-01

    In the present paper, the sloshing resistance performance of a huge-size LNG carrier's insulation system is evaluated by the fluid-structure interaction (FSI) analysis. To do this, the global-local analysis which is based on the arbitrary Lagrangian-Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG sloshing of a KC-1 type LNG carrier insulation system. During the global analysis, the sloshing flow and hydrodynamic pressure of internal LNG are analyzed by postulating the flexible insulation system as a rigid body. In addition, during the local analysis, the local hydroelastic response of the LNG carrier insulation system is computed by solving the local hydroelastic model where the entire and flexible insulation system is adopted and the numerical analysis results of the global analysis such as initial and boundary conditions are implemented into the local finite element model. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.

  2. Local volume-time averaged equations of motion for dispersed, turbulent, multiphase flows

    SciTech Connect

    Sha, W.T.; Slattery, J.C.

    1980-11-01

    In most flows of liquids and their vapors, the phases are dispersed randomly in both space and time. These dispersed flows can be described only statistically or in terms of averages. Local volume-time averaging is used here to derive a self-consistent set of equations governing momentum and energy transfer in dispersed, turbulent, multiphase flows. The empiricisms required for use with these equations are the subject of current research.

  3. Vapor-Liquid Equilibria for Some Concentrated Aqueous PolymerSolutions

    SciTech Connect

    Striolo, Alberto; Prausnitz, John M.

    1999-07-01

    Vapor-liquid-equilibrium data were obtained for binary aqueous solutions of six water-soluble linear polymers in the range 70-95 C. A classical gravimetric sorption method was used to measure the amount of solvent absorbed as a function of vapor-phase water pressure. Polymers studied were polyvinylpyrrolidone, polyethyleneoxide, polyvinylalcohol, hydroxyethylcellulose, polyethylenimine, polymethylvinylether. The experimental data were reduced with Hino's lattice model that distinguished the interactions due to London dispersion forces and those due to hydrogen bonding.

  4. Is dispersal neutral?

    PubMed

    Lowe, Winsor H; McPeek, Mark A

    2014-08-01

    Dispersal is difficult to quantify and often treated as purely stochastic and extrinsically controlled. Consequently, there remains uncertainty about how individual traits mediate dispersal and its ecological effects. Addressing this uncertainty is crucial for distinguishing neutral versus non-neutral drivers of community assembly. Neutral theory assumes that dispersal is stochastic and equivalent among species. This assumption can be rejected on principle, but common research approaches tacitly support the 'neutral dispersal' assumption. Theory and empirical evidence that dispersal traits are under selection should be broadly integrated in community-level research, stimulating greater scrutiny of this assumption. A tighter empirical connection between the ecological and evolutionary forces that shape dispersal will enable richer understanding of this fundamental process and its role in community assembly. PMID:24962790

  5. Vapor pressure of perfluoroalkylalkanes: the role of the dipole.

    PubMed

    Morgado, Pedro; Das, Gaurav; McCabe, Clare; Filipe, Eduardo J M

    2015-01-29

    The vapor pressure of four liquid perfluoroalkylalkanes (CF3(CF2)n(CH2)mCH3; n = 3, m = 4,5,7; n = 5, m = 5) was measured as a function of temperature between 278 and 328 K. Molar enthalpies of vaporization were calculated from the experimental data, and the results were compared with data from the literature for the corresponding alkanes and perfluoroalkanes. The heterosegmented statistical associating fluid theory was used to interpret the results at the molecular level both with and without the explicit inclusion of the dipolar nature of the molecules. Additionally, ab initio calculations were performed for all perfluoroalkylalkanes studied to determine the dipole moment to be used in the theoretical calculations. We demonstrate that the inclusion of a dipolar term is essential for describing the vapor-liquid equilibria of perfluoroalkylalkanes. It is also shown that vapor-liquid equilibria in these compounds result from a subtle balance between dipolar interactions, which decrease the vapor pressure, and the relatively weak dispersive interactions between the hydrogenated and fluorinated segments. PMID:25526174

  6. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  7. Vapor compression distillation module

    NASA Technical Reports Server (NTRS)

    Nuccio, P. P.

    1975-01-01

    A Vapor Compression Distillation (VCD) module was developed and evaluated as part of a Space Station Prototype (SSP) environmental control and life support system. The VCD module includes the waste tankage, pumps, post-treatment cells, automatic controls and fault detection instrumentation. Development problems were encountered with two components: the liquid pumps, and the waste tank and quantity gauge. Peristaltic pumps were selected instead of gear pumps, and a sub-program of materials and design optimization was undertaken leading to a projected life greater than 10,000 hours of continuous operation. A bladder tank was designed and built to contain the waste liquids and deliver it to the processor. A detrimental pressure pattern imposed upon the bladder by a force-operated quantity gauge was corrected by rearranging the force application, and design goals were achieved. System testing has demonstrated that all performance goals have been fulfilled.

  8. Constrained Vapor Bubble

    NASA Technical Reports Server (NTRS)

    Huang, J.; Karthikeyan, M.; Plawsky, J.; Wayner, P. C., Jr.

    1999-01-01

    The nonisothermal Constrained Vapor Bubble, CVB, is being studied to enhance the understanding of passive systems controlled by interfacial phenomena. The study is multifaceted: 1) it is a basic scientific study in interfacial phenomena, fluid physics and thermodynamics; 2) it is a basic study in thermal transport; and 3) it is a study of a heat exchanger. The research is synergistic in that CVB research requires a microgravity environment and the space program needs thermal control systems like the CVB. Ground based studies are being done as a precursor to flight experiment. The results demonstrate that experimental techniques for the direct measurement of the fundamental operating parameters (temperature, pressure, and interfacial curvature fields) have been developed. Fluid flow and change-of-phase heat transfer are a function of the temperature field and the vapor bubble shape, which can be measured using an Image Analyzing Interferometer. The CVB for a microgravity environment, has various thin film regions that are of both basic and applied interest. Generically, a CVB is formed by underfilling an evacuated enclosure with a liquid. Classification depends on shape and Bond number. The specific CVB discussed herein was formed in a fused silica cell with inside dimensions of 3x3x40 mm and, therefore, can be viewed as a large version of a micro heat pipe. Since the dimensions are relatively large for a passive system, most of the liquid flow occurs under a small capillary pressure difference. Therefore, we can classify the discussed system as a low capillary pressure system. The studies discussed herein were done in a 1-g environment (Bond Number = 3.6) to obtain experience to design a microgravity experiment for a future NASA flight where low capillary pressure systems should prove more useful. The flight experiment is tentatively scheduled for the year 2000. The SCR was passed on September 16, 1997. The RDR is tentatively scheduled for October, 1998.

  9. Student Exposure to Mercury Vapors.

    ERIC Educational Resources Information Center

    Weber, Joyce

    1986-01-01

    Discusses the problem of mercury vapors caused by spills in high school and college laboratories. Describes a study which compared the mercury vapor levels of laboratories in both an older and a newer building. Concludes that the mercurial contamination of chemistry laboratories presents minimal risks to the students. (TW)

  10. Cost-effectiveness analysis of levonorgestrel-releasing intrauterine system (LNG-IUS) 13.5mg in contraception

    PubMed Central

    Trussell, James; Hassan, Fareen; Henry, Nathaniel; Pocoski, Jennifer; Law, Amy; Filonenko, Anna

    2014-01-01

    Background LNG-IUS 13.5mg (total content) is a low-dose levonorgestrel intrauterine system for up to three years of use. This analysis evaluated the cost-effectiveness of LNG-IUS 13.5mg in comparison with short-acting reversible contraceptive (SARC) methods in a cohort of young women in the US from a third-party payers perspective. Study Design A state-transition model consisting of three mutually exclusive health states initial method, unintended pregnancy (UP) and subsequent method was developed. Cost-effectiveness of LNG-IUS 13.5mg was assessed versus SARC methods in a cohort of 1,000 women aged 2029 years. SARC methods comprise oral contraceptives (OC), ring, patch and injections which are the methods commonly used by this cohort. Failure and discontinuation probabilities were based on published literature, contraceptive uptake was determined by the most recent data from the National Survey of Family Growth and costs were taken from standard US databases. One-way sensitivity analysis was conducted around key inputs while scenario analysis assessed a comparison between LNG-IUS 13.5mg and the existing IUS, LNG-IUS 20mcg/24 hours. The key model output was cost per UP avoided. Results Compared to SARC methods, initiating contraception with LNG-IUS 13.5mg resulted in fewer UP (64 UP vs. 276 UP) and lower total costs ($1,283,479 USD vs. $1,862,633 USD, a 31% saving) over the three-year time horizon. Results were most sensitive to the probability of failure on OC, the probability of LNG-IUS 13.5mg discontinuation and the cost of live births. Scenario analysis suggests that further cost savings may be generated with the initiation of LNG-IUS 20mcg/24 hours in place of SARC methods. Conclusions From a third-party payer perspective, LNG-IUS 13.5mg is a more cost-effective contraceptive option than SARC. Therefore, women switching from current SARC use to LNG-IUS 13.5mg are likely to generate cost savings to third-party healthcare payers, driven principally by decreased UP-related expenditures and long-term savings in contraceptive costs. PMID:24576791

  11. SOFIA Water Vapor Monitor Design

    NASA Technical Reports Server (NTRS)

    Cooper, R.; Roellig, T. L.; Yuen, L.; Shiroyama, B.; Meyer, A.; Devincenzi, D. (Technical Monitor)

    2002-01-01

    The SOFIA Water Vapor Monitor (WVM) is a heterodyne radiometer designed to determine the integrated amount of water vapor along the telescope line of sight and directly to the zenith. The basic technique that was chosen for the WVM uses radiometric measurements of the center and wings of the 183.3 GHz rotational line of water to measure the water vapor. The WVM reports its measured water vapor levels to the aircraft Mission Controls and Communication System (MCCS) while the SOFIA observatory is in normal operation at flight altitude. The water vapor measurements are also available to other scientific instruments aboard the observatory. The electrical, mechanical and software design of the WVM are discussed.

  12. A Planar-Fluorescence Imaging Technique for Studying Droplet-Turbulence Interactions in Vaporizing Sprays

    NASA Technical Reports Server (NTRS)

    Santavicca, Dom A.; Coy, E.

    1990-01-01

    Droplet turbulence interactions directly affect the vaporization and dispersion of droplets in liquid sprays and therefore play a major role in fuel oxidizer mixing in liquid fueled combustion systems. Proper characterization of droplet turbulence interactions in vaporizing sprays require measurement of droplet size velocity and size temperature correlations. A planar, fluorescence imaging technique is described which is being developed for simultaneously measuring the size, velocity, and temperature of individual droplets in vaporizing sprays. Preliminary droplet size velocity correlation measurements made with this technique are presented. These measurements are also compared to and show very good agreement with measurements made in the same spray using a phase Doppler particle analyzer.

  13. LNGFIRE: A thermal radiation model for LNG fires. Topical report, June 29, 1990. Documentation

    SciTech Connect

    Atallah, S.; Shah, J.N.

    1990-06-29

    The Federal Code Model for predicting exclusion distances from LNG fires (49 CFR 193.2057) was critically evaluated. The results of LNG fire tests carried out to date were reviewed and an improved model for predicting exclusion distances was developed and verified. This model assumes that the flame takes the shape of a cylinder or a parallellepiped, depending on whether the fuel impoundment area is circular or rectangular in shape. It allows for flame drag and tilt in the presence of wind. Based on experimental data, the maximum surface emissive power and the flame attenuation coefficient were estimated at 190 kw/sq m (60,267 Btu/hr sq ft) and 0.3/m (0.09/ft), respectively.

  14. Survey of fire-protection systems at LNG facilities. Topical report, July-November 1990

    SciTech Connect

    Atallah, S.; Borows, K.A.

    1991-04-05

    The objectives of the study were to collect and analyze data relating to the types, costs, and operational problems of gas leak and fire detection devices and of fire prevention and suppression systems used at LNG facilities operating in the United States. Data from 39 LNG facilities, which accounted for 45% of the total U.S. storage capacity, were collected. The report provides information relating to equipment manufacturers, site applications, operational problems, initial installation costs, annual operational costs, and equipment lifetime. Equipment of interest included fixed gas leak, fire and cryogenic detection systems, water deluge and barrier systems, thermal radiation walls and protective coatings, and fixed high expansion foam, dry chemical, carbon dioxide and halon fire suppression systems. In addition, internal fire fighting capabilities were reviewed.

  15. Thermodynamic analysis of liquefied natural gas (LNG) production cycle in APCI process

    NASA Astrophysics Data System (ADS)

    Nezhad, Shahrooz Abbasi; Shabani, Bezhan; Soleimani, Majid

    2012-12-01

    The appropriate production of liquefied natural gas (LNG) with least consuming energy and maximum efficiency is quite important. In this paper, LNG production cycle by means of APCI Process has been studied. Energy equilibrium equations and exergy equilibrium equations of each equipment in the APCI cycle were established. The equipments are described using rigorous thermodynamics and no significant simplification is assumed. Taken some operating parameters as key parameters, influences of these parameters on coefficient of performance (COP) and exergy efficiency of the cascading cycle were analyzed. The results indicate that COP and exergy efficiency will be improved with the increasing of the inlet pressure of MR (mixed refrigerant) compressors, the decreasing of the NG and MR after precooling process, outlet pressure of turbine, inlet temperature of MR compressor and NG temperature after cooling in main cryogenic heat exchanger (MCHE). The COP and exergy efficiency of the APCI cycle will be above 2% and 40%, respectively, after optimizing the key parameters.

  16. Second Stage Intercooling Using LNG for Turbocharged Heavy Duty Road Vehicles Phase I Final Report

    SciTech Connect

    1999-09-21

    It is well documented in engine performance literature that reduced engine inlet air temperature increases power output and reduces NO, emissions for both diesel and spark ignited (SI) engines. In addition, reduced inlet temperature increases the knock resistance of SI engines. In that most HD natural gas engines are SI derivatives of diesel engines it is appropriate to evaluate the benefits of reduced engine air temperature through LNG fuel. This project investigated the ''real world'' possibilities of a patented process for utilizing the ''cold'' in LNG to chill engine inlet air. The results support the conclusion that doing so is a practical means to increase engine power and reduce engine-out NO{sub x}.

  17. Integrated Cryogenic System for CO2 Separation and Lng Production from Landfill Gas

    NASA Astrophysics Data System (ADS)

    Chang, H. M.; Chung, M. J.; Park, S. B.

    2010-04-01

    An integrated cryogenic system to separate carbon dioxide (CO2) and produce LNG from landfill gas is investigated and designed. The main objective of this design is to eliminate the requirement of a standard CO2 removal process in the liquefaction system such distillation or (temperature or pressure) swing adsorption, and to directly separate carbon dioxide as frost at the liquefying channel of methane. Two identical sets of heat exchangers are installed in parallel and switched alternatively with a time period so that one is in separation-liquefaction mode while the other is in CO2 clean-up mode. A thermal regeneration scheme is presented for the purpose of saving energy and avoiding the stoppage of LNG production followed by the flow switching. The switching period is determined from results of a combined heat and mass transfer analysis on the CO2 freeze-out process.

  18. Mechanical Characteristics of 9% Ni Steel Welded Joint for Lng Storage Tank at Cryogenic

    NASA Astrophysics Data System (ADS)

    Yoon, Yong-Keun; Kim, Jae-Hoon; Shim, Kyu-Taek; Kim, Young-Kyun

    To confirm the safety performance of LNG storage tank, the change in fatigue crack growth rate and fracture toughness within X-grooved weld heat-affected zone (HAZ) of newly developed 9% Ni steel, which was SMAW welded, was investigated. These materials were produced by QT (quenching, tempering) heat treatment. The weld metal specimens were prepared by taking the same weld procedure applied in actual inner shell of LNG storage tank. All tests were performed in the temperature ranging from R.T. and -162C. The fatigue crack growth behavior was carried out using CT specimen. Investigation has been carried out to study the influence of temperature and weld effect on fatigue crack growth behavior. Also, Fracture surfaces after tests were observe by scanning electron microscope (SEM).

  19. Northern Adriatic LNG receiving terminal: Pre-feasibility study. Part 1. Export trade information

    SciTech Connect

    Not Available

    1991-03-19

    The study evaluated 2 potential sites as the location for a Liquefied Natural Gas (LNG) receiving terminal. The study assumed that the LNG will be obtained in Algeria and transported, via liquefied gas carriers, to either Koper or Omisalj, located on the Northern Adriatic coast of Yugoslavia. The proposed terminal will provide natural gas, via pipeline, to Austria, Czechoslovakia, Hungary and Yugoslavia. The goal of the study was to determine specific transportation and processing costs, per cubic meter of gas, at each delivery station in Yugoslavia and at the respective custody transfer points. Consideration has been given to the overall costs for construction, maintenance and operation, as well as marine transport for the gas and capital equipment of the system.

  20. Tested Demonstrations. Gasoline Vapor: An Invisible Pollutant

    ERIC Educational Resources Information Center

    Stephens, Edgar R.

    1977-01-01

    Describes a demonstration concerning the air pollution aspects of gasoline vapor which provides an estimation of the vapor pressure of test fuel, the molecular weight of the vapor, and illustrates a method of controlling the pollution. (SL)

  1. Vapor pressure measured with inflatable plastic bag

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  2. LNGFIRE: A thermal radiation model for LNG fires, Version 4. 5 (for microcomputers). Model-Simulation

    SciTech Connect

    Not Available

    1990-06-01

    Results of Liquified Natural Gas (LNG) fire tests conducted since 1962 were reviewed and an improved model for predicting exclusion distances was developed and verified. The model assumes that the flame takes the shape of a cylinder or a parallelepiped, depending on whether the fuel impoundment area is circular or rectangular in shape. The model allows for flame drag and tilt in the presence of wind.

  3. LNGFIRE: a thermal radiation model for LNG fires (for microcomputers). Model-Simulation

    SciTech Connect

    Not Available

    1990-06-01

    Results of Liquified Natural Gas (LNG) fire tests conducted since 1962 were reviewed and an improved model for predicting exclusion distances was developed and verified. The model assumes that the flame takes the shape of a cylinder or a parallelepiped, depending on whether the fuel impoundment area is circular or rectangular in shape. The model allows for flame drag and tilt in the presence of wind.

  4. Who knew? looks like we're in for an LNG glut

    SciTech Connect

    2009-04-15

    U.S. domestic production of natural gas has grown considerably in the recent past, especially from unconventional domestic resources. Recession has reduced demand. Further, the U.S. may end up on the receiving end of much of the excess global production and transportation capacity because of its massive storage capacity. Charts of U.S. natural gas production and LNG imports are given.

  5. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  6. A Column Dispersion Experiment.

    ERIC Educational Resources Information Center

    Corapcioglu, M. Y.; Koroglu, F.

    1982-01-01

    Crushed glass and a Rhodamine B solution are used in a one-dimensional optically scanned column experiment to study the dispersion phenomenon in porous media. Results indicate that the described model gave satisfactory results and that the dispersion process in this experiment is basically convective. (DC)

  7. Spores Disperse, Too!

    ERIC Educational Resources Information Center

    Schumann, Donna N.

    1981-01-01

    Suggests the use of spores and spore-producing structures to show adaptations facilitating spore dispersal and dispersal to favorable environments. Describes several activities using horsetails, ferns, and mosses. Lists five safety factors related to use of mold spores in the classroom. (DS)

  8. Tetrafluoroethylene polymer dispersions

    SciTech Connect

    Cavanaugh, R.J.

    1985-04-30

    Tetrafluoroethylene polymer coating dispersions when coated on glass fabric improve flex life of the fabric if the dispersions contain a selected silane, siloxane, water repellant, and polyethylene oxide surfactant of the formula C/sub 9/F/sub 17/O(CH/sub 2/CH/sub 2/O)/sub 5/CH/sub 3/.

  9. Visualizing Dispersion Interactions

    ERIC Educational Resources Information Center

    Gottschalk, Elinor; Venkataraman, Bhawani

    2014-01-01

    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop

  10. Dispersal of forest insects

    NASA Technical Reports Server (NTRS)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  11. Vapor Pressure, Vapor Composition and Fractional Vaporization of High Temperature Lavas on Io

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Schaefer, L.; Kargel, J. S.

    2003-01-01

    Observations show that Io's atmosphere is dominated by SO2 and other sulfur and sulfur oxide species, with minor amounts of Na, K, and Cl gases. Theoretical modeling and recent observations show that NaCl, which is produced volcanically, is a constituent of the atmosphere. Recent Galileo, HST and ground-based observations show that some volcanic hot spots on Io have extremely high temperatures, in the range 1400-1900 K. At similar temperatures in laboratory experiments, molten silicates and oxides have significant vapor pressures of Na, K, SiO, Fe, Mg, and other gases. Thus vaporization of these species from high temperature lavas on Io seems likely. We therefore modeled the vaporization of silicate and oxide lavas suggested for Io. Our results for vapor chemistry are reported here. The effects of fractional vaporization on lava chemistry are given in a companion abstract by Kargel et al.

  12. Hydrodynamic optimization of twin-skeg LNG ships by CFD and model testing

    NASA Astrophysics Data System (ADS)

    Kim, Keunjae; Tillig, Fabian; Bathfield, Nicolas; Liljenberg, Hans

    2014-06-01

    SSPA experiences a growing interest in twin skeg ships as one attractive green ship solution. The twin skeg concept is well proven with obvious advantages for the design of ships with full hull forms, restricted draft or highly loaded propellers. SSPA has conducted extensive hull optimizations studies of LNG ships of different size based on an extensive hull data base with over 7,000 models tested, including over 400 twin skeg hull forms. Main hull dimensions and different hull concepts such as twin skeg and single screw were of main interest in the studies. In the present paper, one twin skeg and one single screw 170 K LNG ship were designed for optimally selected main dimension parameters. The twin skeg hull was further optimized and evaluated using SHIPFLOW FRIENDSHIP design package by performing parameter variation in order to modify the shape and positions of the skegs. The finally optimized models were then built and tested in order to confirm the lower power demand of twin skeg designed compaed with the signle screw design. This paper is a full description of one of the design developments of a LNG twin skeg hull, from early dimensional parameter study, through design optimization phase towards the confirmation by model tests.

  13. Process study and exergy analysis of a novel air separation process cooled by LNG cold energy

    NASA Astrophysics Data System (ADS)

    Xu, Wendong; Duan, Jiao; Mao, Wenjun

    2014-02-01

    In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed in this paper, which is based on high-efficiency heat exchanger network and chemical packing separation technology. The operating temperature range of LNG cold energy is widened from 133K-203K to 113K-283K by high-efficiency heat exchanger network and air separation pressure is declined from 0.5MPa to about 0.35MPa due to packing separation technology, thereby greatly improve the energy efficiency. Both the traditional and novel air separation processes are simulated with air handling capacity of 20th-1. Comparing with the traditional process, the LNG consumption is reduced by 44.2%, power consumption decrease is 211.5 kWh per hour, which means the annual benefit will be up to 1.218 million CNY. And the exergy efficiency is also improved by 42.5%.

  14. Passive vapor extraction feasibility study

    SciTech Connect

    Rohay, V.J.

    1994-06-30

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft{sup 3}/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft{sup 3}/min air flow rates, passive vapor extraction is more cost effective below 100 ppm.

  15. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m‑2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  16. Analytical and experimental investigation of the dispersion process during rapid transients for the aluminum-based nuclear fuel plates

    SciTech Connect

    Georgevich, V.; Taleyarkhan, R.P.; Kim, S.H.; Fuketa, T.; Soyama, K.; Ishijima, K.

    1995-06-01

    A thermally induced fuel-plate dispersion model was developed to analyze for dispersive potential and determine the onset of fuel plate dispersion for aluminum-based research and test reactor fuels. The effect of rapid energy deposition in a fuel plate was simulated. Several data types for aluminum-based fuels tested in the Nuclear Safety Research Reactor (NSRR) facility in Japan and in the Transient Reactor Test (TREAT) facility in Idaho, US, were reviewed. Analyses of experiments show that the onset of fuel dispersion is clearly linked to a sharp rise in the predicted strain rate, which further coincides with the onset of aluminum vaporization. Analysis also shows that aluminum oxidation and exothermal chemical reaction between the fuel and aluminum can significantly affect: the energy deposition characteristics and, therefore dispersion onset connected with aluminum vaporization, and the onset of aluminum vaporization.

  17. Thermally induced dispersion mechanisms for aluminum-based plate-type fuels under rapid transient energy deposition

    SciTech Connect

    Georgevich, V.; Taleyarkham, R.P.; Navarro-Valenti, S.; Kim, S.H.

    1995-12-31

    A thermally induced dispersion model was developed to analyze for dispersive potential and determine onset of fuel plate dispersion for Al-based research and test reactor fuels. Effect of rapid energy deposition in a fuel plate was simulated. Several data types for Al-based fuels tested in the Nuclear Safety Research Reactor in Japan and in the Transient Reactor Test in Idaho were reviewed. Analyses of experiments show that onset of fuel dispersion is linked to a sharp rise in predicted strain rate, which futher coincides with onset of Al vaporization. Analysis also shows that Al oxidation and exothermal chemical reaction between the fuel and Al can significantly affect the energy deposition characteristics, and therefore dispersion onset connected with Al vaporization, and affect onset of vaporization.

  18. Supercritical microgravity droplet vaporization

    NASA Technical Reports Server (NTRS)

    Hartfield, J.; Curtis, E.; Farrell, P.

    1990-01-01

    Supercritical droplet vaporization is an important issue in many combustion systems, such as liquid fueled rockets and compression-ignition (diesel) engines. In order to study the details of droplet behavior at these conditions, an experiment was designed to provide a gas phase environment which is above the critical pressure and critical temperature of a single liquid droplet. In general, the droplet begins as a cold droplet in the hot, high pressure environment. In order to eliminate disruptions to the droplet by convective motion in the gas, forced and natural convection gas motion are required to be small. Implementation of this requirement for forced convection is straightforward, while reduction of natural convection is achieved by reduction in the g-level for the experiment. The resulting experiment consists of a rig which can stably position a droplet without restraint in a high-pressure, high temperature gas field in microgravity. The microgravity field is currently achieved by dropping the device in the NASA Lewis 2.2 second drop tower. The performance of the experimental device and results to date are presented.

  19. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.

    1978-01-01

    The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells.

  20. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  1. Vapor Deposited Polymeric-Organic Composite Films

    NASA Astrophysics Data System (ADS)

    Ma, Xinfa

    1995-11-01

    Over the past few years, polymeric films have played an important role in advanced IC technologies and optoelectronics. In depositing these polymeric films with tailorable and desired properties, vapor deposition techniques have potential advantages over spin-on techniques. This thesis explores the vapor deposition of polymeric-organic composite films, and investigates the resulted Nm's composition, structure and electro-optic (EO) effect. The source materials chosen are the newly commercialized polymer, Teflon AF ^circler, and the highly nonlinear organic chromophore, N,N-dimethyl aminonitrostilbene (DANS). We developed a novel two-step deposition process to fabricate smooth and uniform Teflon AF films using a physical vapor deposition technique. These films are found to be chemically equivalent to the spin-on films and source material. The films are always amorphous, but their morphology depends greatly on the deposition conditions. We successfully co-deposited Teflon AF-DANS polymeric -organic composite films with large EO effects, which, to our knowledge, is the first to be reported for a vapor deposited composite EO film. A mathematical procedure to determine the composition of the composite films using x-ray photoelectron spectroscopy (XPS) was developed, and the compositions, structures, and electro-optic effects of the composite films were investigated. We find that Teflon AF-DANS composite films remain amorphous and there is no interaction between Teflon AF and DANS components when the DANS density is below 10%. The films behave as a pure guest-host system with the DANS molecules dispersed in a Teflon AF matrix, the increase of electro-optic effects following a DANS composition increase. At DANS concentrations of 10%, the EO coefficient reaches its maximum value of about 2.4 pm/V, which is close to that predicted by theory. The decrease and disappearance of EO effects in the films with high DANS density are believed to be caused by an anti -pair effect and phase separation since the DANS anti-pairs and DANS crystallites have no contribution to EO effect. The anti-pair effect can begin to manifest at concentration of 10% DANS due to the dipole-dipole interaction among highly polar DANS molecules, and phase separation is found in films containing more than 25% DANS.

  2. Dispersal and metapopulation stability

    PubMed Central

    Haegeman, Bart; Loreau, Michel

    2015-01-01

    Metapopulation dynamics are jointly regulated by local and spatial factors. These factors may affect the dynamics of local populations and of the entire metapopulation differently. Previous studies have shown that dispersal can stabilize local populations; however, as dispersal also tends to increase spatial synchrony, its net effect on metapopulation stability has been controversial. Here we present a simple metapopulation model to study how dispersal, in interaction with other spatial and local processes, affects the temporal variability of metapopulations in a stochastic environment. Our results show that in homogeneous metapopulations, the local stabilizing and spatial synchronizing effects of dispersal cancel each other out, such that dispersal has no effect on metapopulation variability. This result is robust to moderate heterogeneities in local and spatial parameters. When local and spatial dynamics exhibit high heterogeneities, however, dispersal can either stabilize or destabilize metapopulation dynamics through various mechanisms. Our findings have important theoretical and practical implications. We show that dispersal functions as a form of spatial intraspecific mutualism in metapopulation dynamics and that its effect on metapopulation stability is opposite to that of interspecific competition on local community stability. Our results also suggest that conservation corridors should be designed with appreciation of spatial heterogeneities in population dynamics in order to maximize metapopulation stability. PMID:26557427

  3. Dispersion in isotachophoresis

    NASA Astrophysics Data System (ADS)

    Bercovici, Moran; Santiago, Juan G.

    2008-11-01

    Isotachophoresis (ITP) is a widely used separation and preconcentration technique, which has been utilized in numerous applications including drug discovery, toxin detection, and food analysis. In ITP, analytes are segregated and focused between relatively high mobility leading ions and relatively low mobility trailing ions. These electromigration dynamics couple with advective processes associated with non-uniform electroosmotic flow (EOF). The latter generates internal pressure gradients leading to strong dispersive fluxes. This dispersion is nearly ubiquitous and currently limits the sensitivity and resolution of typical ITP assays. Despite this, there has been little work studying these coupled mechanisms. We performed an analytical and experimental study of dispersion dynamics in ITP. To achieve controlled pressure gradients, we suppressed EOF and applied an external pressure head to balance electromigration. Under these conditions, we show that radial electromigration (as opposed to radial diffusion as in Taylor dispersion) balances axial electromigration. To validate the analysis, we monitored the shape of a focusing fluorescent zone as a function of applied electric field. These experiments show that ITP dispersion may result in analyte widths an order of magnitude larger than predicted by the typical non-dispersive theory. Our goal is to develop a simplified dispersion model to capture this phenomenon, and to implement it in a numerical solver for general ITP problems.

  4. Tubing For Sampling Hydrazine Vapor

    NASA Technical Reports Server (NTRS)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  5. Understanding Latent Heat of Vaporization.

    ERIC Educational Resources Information Center

    Linz, Ed

    1995-01-01

    Presents a simple exercise for students to do in the kitchen at home to determine the latent heat of vaporization of water using typical household materials. Designed to stress understanding by sacrificing precision for simplicity. (JRH)

  6. Water vapor diffusion membranes, 2

    NASA Technical Reports Server (NTRS)

    Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.

    1976-01-01

    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.

  7. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  8. Sealed copper vapor laser assembly

    SciTech Connect

    Alger, T.W.; Benett, W.J.

    1982-06-01

    Improvements in a discharge heated copper vapor laser (CVL) assembly may result in greater long term performance and reliability. This new design incorporates a positive gas seal to allow high-pressure sealed or controlled leak rate operation. High-pressure operation at low buffer-gas leak rates results in a decrease in copper loss rate and, because of this, an improved useful lifetime. A description of materials and construction method for this copper vapor laser assembly is provided.

  9. Vapor deposition of hardened niobium

    DOEpatents

    Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  10. Chemical vapor deposition sciences

    SciTech Connect

    1992-12-31

    Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

  11. Modeling process plant plume dispersion and recirculation using computational fluid dynamics

    SciTech Connect

    Berkoe, J.M.

    1999-07-01

    Computational fluid dynamics (CFD) can be used to solve environmental problems caused by heat and contaminant dispersion from process plants. CFD is a CAD-based software tool, which provides profiles of local fluid velocity, fluid temperature and species concentrations. CFD has enabled engineers to identify solutions to problems quickly without resorting to traditional experimental approaches. In this paper, three actual projects are described which demonstrate the utility of CFD to dispersion modeling and the increasing level of sophistication with which it has been applied. In some cases experimental tests or actual field operation provide sources of model validation and verification. In the first case, CFD models of tankhouse ventilation systems, based on three South American projects, were developed to guide the selection of equipment for crossflow ventilation systems to meet workplace air quality requirements. In the course of this study, it was found that significant quantities of recirculation could occur for moderate wind conditions opposite to the fan exhaust. In the second case, CFD models were developed to simulate the fluid dynamics of the buoyant plume released during a copper smelter charging operation and to investigate plume collection system designs. Side skirt and canopy configurations were demonstrated to be key design parameters for plume capture. Although not initially expected, a simplified design configuration was found to achieve maximum plume capture, which was later confirmed in actual operation. In the third case, heat recirculation from LNG Plants was investigated. In a liquefied natural gas (LNG) plant in the Caribbean, it was recognized that wind-induced recirculation of the turbine and condenser exhaust could negatively impact operating margins. Dispersion characteristics for the entire plant were simulated using detailed CFD models to predict the temperature profiles entering the coolers under various wind directions and speeds.

  12. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  13. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  14. Pallid Sturgeon Egg Dispersal

    USGS Multimedia Gallery

    Fertilized pallid sturgeon eggs are gently dispersed over the gravel substrate.  The PVC pipes are used to support a canopy of shade cloth to more closely mimic the muddy depths of the Missouri River. ...

  15. Dispersion strengthened copper

    SciTech Connect

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1988-12-05

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  16. Thermogravity system designed for use in dispersion strengthening studies

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    A thermogravimetry system designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 PPM water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.

  17. Thermogravimetry system designed for use in dispersion strengthening studies.

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    A thermogravimetry system, designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials, is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 p.p.m. water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.

  18. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  19. Fickian dispersion is anomalous

    NASA Astrophysics Data System (ADS)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  20. Fickian dispersion is anomalous

    SciTech Connect

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  1. Fickian dispersion is anomalous

    DOE PAGESBeta

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less

  2. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a...

  3. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a...

  4. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a...

  5. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a...

  6. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a...

  7. Anomalous dispersion in atomic line filters applied for spatial frequency detection

    SciTech Connect

    Landolt, Andrin; Roesgen, Thomas

    2009-11-01

    The anomalous dispersion of an atomic line filter near a resonant transition is exploited for full-field frequency measurements. The influence of the line shape function on the dispersion in atomic vapors near resonance and the possibilities to increase sensitivity are discussed. From the model-calculated absorption of iodine vapor at frequency-doubled Nd:YAG laser wavelengths, the corresponding refractive index is obtained through the Kramers-Kronig relations. Both variables are used to assess the performance of a iodine vapor cell as a dispersive element in an interferometric setup for Doppler frequency shift detection. With good agreement, the predicted sensitivity of the setup is compared to an experimental calibration. Observed discrepancies are attributed to the assumption of a Gaussian line shape in the absorption model. The full-field Doppler frequency measurement capacity of the technique is demonstrated in a rotating disk experiment, and the measurement performance is assessed.

  8. Particle size effect on structure and properties of dispersed Pd-containing dental amalgam.

    PubMed

    Chern Lin, J H; Chen, K I; Ju, C P

    2002-01-01

    Focus of the study is to evaluate the effect of dispersant particle size on the structure and various properties of spherical matrix, irregular dispersant admixed type Pd amalgams. The results indicate that amalgams prepared from smaller dispersant particles have a shorter setting time (faster amalgamation reaction), smaller setting expansion, higher eta' content and lower early stage gamma2 content. Smaller dispersant particles also lead to a slightly higher compressive strength, lower creep value, more cathodic corrosion potential and less early stage mercury vapor release. The particle size effect on corrosion current density and chemical composition of gamma1 phase in aged amalgam is less significant. PMID:11762331

  9. Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide

    USGS Publications Warehouse

    Finkelman, R.B.; Larson, R.R.; Dwornik, E.J.

    1974-01-01

    The first naturally occurring terrestrial example of vapor-liquid-solid (VLS) growth has been observed in condensates from gases released by burning coal in culm banks. Scanning electron microscopy, X-ray diffraction, and energy dispersive analysis indicate that the crystals consist of elongated rods (??? 100 ??m) of germanium sulfide capped by bulbs depleted in germanium. ?? 1974.

  10. Design, fabrication and testing of porous tungsten vaporizers for mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Zavesky, R.; Kroeger, E.; Kami, S.

    1983-01-01

    The dispersions in the characteristics, performance and reliability of vaporizers for early model 30-cm thrusters were investigated. The purpose of the paper is to explore the findings and to discuss the approaches that were taken to reduce the observed dispersion and present the results of a program which validated those approaches. The information that is presented includes porous tungsten materials specifications, a discussion of assembly procedures, and a description of a test program which screens both material and fabrication processes. There are five appendices providing additional detail in the areas of vaporizer contamination, nitrogen flow testing, bubble testing, porosimeter testing, and mercury purity. Four neutralizers, seven cathodes and five main vaporizers were successfully fabricated, tested, and operated on thrusters. Performance data from those devices is presented and indicates extremely repeatable results from using the design and fabrication procedures.

  11. Designing Optimal LNG Station Network for U.S. Heavy-Duty Freight Trucks using Temporally and Spatially Explicit Supply Chain Optimization

    NASA Astrophysics Data System (ADS)

    Lee, Allen

    The recent natural gas boom has opened much discussion about the potential of natural gas and specifically Liquefied Natural Gas (LNG) in the United States transportation sector. The switch from diesel to natural gas vehicles would reduce foreign dependence on oil, spur domestic economic growth, and potentially reduce greenhouse gas emissions. LNG provides the most potential for the medium to heavy-duty vehicle market partially due to unstable oil prices and stagnant natural gas prices. As long as the abundance of unconventional gas in the United States remains cheap, fuel switching to natural gas could provide significant cost savings for long haul freight industry. Amid a growing LNG station network and ever increasing demand for freight movement, LNG heavy-duty truck sales are less than anticipated and the industry as a whole is less economic than expected. In spite of much existing and mature natural gas infrastructure, the supply chain for LNG is different and requires explicit and careful planning. This thesis proposes research to explore the claim that the largest obstacle to widespread LNG market penetration is sub-optimal infrastructure planning. No other study we are aware of has explicitly explored the LNG transportation fuel supply chain for heavy-duty freight trucks. This thesis presents a novel methodology that links a network infrastructure optimization model (represents supply side) with a vehicle stock and economic payback model (represents demand side). The model characterizes both a temporal and spatial optimization model of future LNG transportation fuel supply chains in the United States. The principal research goal is to assess the economic feasibility of the current LNG transportation fuel industry and to determine an optimal pathway to achieve ubiquitous commercialization of LNG vehicles in the heavy-duty transport sector. The results indicate that LNG is not economic as a heavy-duty truck fuel until 2030 under current market conditions unless a significant station capital subsidy, upwards of 50 percent and even then it might not be enough. However, a doubling of LNG truck demand will initialize network commercialization in the modeling base year, 2012 (the same year Clean Energy Corp. launched their national LNG network) in California and then gradually establish in other hotspot regions in Mid-West and Mid-Atlantic throughout the time horizon. The model shows that trucking routes in California are highly commercial due to high traffic volume and regional advantages. The model can be used by industry to inform necessary policies and to plan future infrastructure deployment along trucking routes that are likely to provide the highest returns.

  12. LNGFIRE: A thermal-radiation model for LNG fires. Topical report, October 25, 1988-June 29, 1990. documentation

    SciTech Connect

    Atallah, S.; Shah, J.N.

    1990-06-29

    The Federal Code Model for predicting exclusion distances from Liquified Natural Gas (LNG) fires (49 CFR 193.2057) was critically evaluated. The results of LNG fire tests carried out to date were reviewed, and an improved model for predicting exclusion distances was developed and verified. The model assumes that the flame takes the shape of a cylinder or a parallellepiped, depending on whether the fuel impoundment area is circular or rectangular in shape. It allows for flame drag and tilt in the presence of wind.

  13. Critical points of metal vapors

    NASA Astrophysics Data System (ADS)

    Khomkin, A. L.; Shumikhin, A. S.

    2015-09-01

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor-liquid (insulator-metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for most metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor-liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.

  14. Series-Connected Vapor/Vapor AMTEC Cells

    NASA Technical Reports Server (NTRS)

    Underwood, Mark L.; Williams, Roger M.; Ryan, Margaret A.; Jeffries-Nakamura, Barbara; Oconnor, Dennis

    1993-01-01

    Size and weight reduced; operating lifetime increased. Developmental alkali-metal thermal-to-electric converter (AMTEC) in which cells fed from common supply of high-pressure sodium vapor and connected electrically in series. No liquid sodium makes contact with any part of AMTEC cells. Sodium vapor supplied to solid electrolyte of each cell through porous metal anode on upstream side. Proposed design reduces need for high-temperature feedthroughs in that cells internally connected. Power withdrawn through feedthrough at lower temperature without significant thermal loss.

  15. Nearshore Mixing and Dispersion

    NASA Astrophysics Data System (ADS)

    Svendsen, Ib A.; Putrevu, Uday

    1994-06-01

    Longshore currents have in the past been analysed assuming that the lateral mixing could be attributed to turbulent processes. It is found, however, that the mixing that can be justified by assuming an eddy viscosity ? t = lsurd k where l is the turbulent length scale, k the turbulent kinetic energy, combined with reasonable estimates for l and k is at least an order of magnitude smaller than required to explain the measured cross-shore variations of longshore currents. In this paper, it is shown that the nonlinear interaction terms between crossand longshore currents represent a dispersive mechanism that has an effect similar to the required mixing. The mechanism is a generalization of the one-dimensional dispersion effect in a pipe discovered by Taylor (1954) and the three-dimensional dispersion in ocean currents on the continental shelf found by Fischer (1978). Numerical results are given for the dispersion effect, for the ensuing cross-shore variation of the longshore current and for the vertical profiles of the longshore currents inside as well as outside the surf zone. It is found that the dispersion effect is at least an order of magnitude larger than the turbulent mixing and that the characteristics of the results are in agreement with the sparse experimental data material available.

  16. Rapid response calculation of LNG cargo containment system under sloshing load using wavelet transformation

    NASA Astrophysics Data System (ADS)

    Kim, Yooil

    2013-06-01

    Reliable strength assessment of the Liquefied Natural Gas (LNG) cargo containment system under the sloshing impact load is very difficult task due to the complexity of the physics involved in, both in terms of the hydrodynamics and structural mechanics. Out of all those complexities, the proper selection of the design sloshing load which is applied to the structural model of the LNG cargo containment system, is one of the most challenging one due to its inherent randomness as well as the statistical analysis which is tightly linked to the design sloshing load selection. In this study, the response based strength assessment procedure of LNG cargo containment system has been developed and proposed as an alternative design methodology. Sloshing pressure time history, measured from the model test, is decomposed into wavelet basis function targeting the minimization of the number of the basis function together with the maximization of the numerical efficiency. Then the response of the structure is obtained using the finite element method under each wavelet basis function of different scale. Finally, the response of the structure under entire sloshing impact time history is rapidly calculated by synthesizing the structural response under wavelet basis function. Through this analysis, more realistic response of the system under sloshing impact pressure can be obtained without missing the details of pressure time history such as rising pattern, oscillation due to air entrapment and decay pattern and so on. The strength assessment of the cargo containment system is then performed based on the statistical analysis of the stress peaks selected out of the obtained stress time history.

  17. Chemically assisted release of transition metals in graphite vaporizers for atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2006-05-01

    The processes associated with the vaporization of microgram samples and modifiers in a graphite tube ET AAS were investigated by the example of transition metals. The vapor absorption spectra and vaporization behavior of μg-amounts Cd, Zn, Cu, Ag, Au, Ni, Co, Fe, Mn and Cr were studied using the UV spectrometer with CCD detector, coupled with a continuum radiation source. The pyrocoated, Ta or W lined tubes, with Ar or He as internal gases, and filter furnace were employed in the comparative experiments. It was found that the kinetics of atomic vapor release changed depending on the specific metal-substrate-gas combination; fast vaporization at the beginning was followed by slower 'tailing.' The absorption continuum, overlapped by black body radiation at longer wavelengths, accompanied the fast vaporization mode for all metals, except Cd and Zn. The highest intensity of the continuum was observed in the pyrocoated tube with Ar. For Cu and Ag the molecular bands overlapped the absorption continuum; the continuum and bands were suppressed in the filter furnace. It is concluded that the exothermal interaction of sample vapor with the material of the tube causes the energy evolution in the gas phase. The emitted heat is dispersed near the tube wall in the protective gas and partially transferred back to the surface of the sample, thus facilitating the vaporization. The increased vapor flow causes over-saturation and gas-phase condensation in the absorption volume at some distance from the wall, where the gas temperature is not affected by the reaction. The condensation is accompanied by the release of phase transition energy via black body radiation and atomic emission. The particles of condensate and molecular clusters cause the scattering of light and molecular absorption; slow decomposition of the products of the sample vapor-substrate reaction produces the 'tailing' of atomic absorption signal. The interaction of graphite with metal vapor or oxygen, formed in the decomposition of metal oxide, is the most probable source of chemical energy, which facilitates the vaporization. Intensity of the process depends on chemical properties of the sample and substrate and efficiency of mass and heat transfer by the protective gas. The discussed mechanism of chemically assisted vapor release signifies the energy exchange between all participants of the vaporization process in ET AAS including the matrix, modifier, purge gas and analyte. The finding contributes in the ET AAS theory regarding the mechanisms of vaporization and mass transfer in the presence of matrix and modifiers.

  18. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    Iraj A Salehi; Jerry Havens; Tom Spicer

    2006-05-01

    Work continued to address numerical problems experienced with simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 through 8 in the plan outlined in the first Quarterly report have been completed successfully for the FEM3A model utilizing the Planetary Boundary Layer (PBL) turbulence closure model. Researchers at the University of Arkansas have solved the problems related to stability of the simulations at regulatory conditions of low wind speed and stable atmospheric conditions with FEM3A using the PBL model, and are continuing our program to verify the operation of the model using an updated, verified, version of the k-epsilon turbulence closure model which has been modified to handle dense gas dispersion effects. This quarterly report for DE-FG26-04NT42030 covers a period from January 1, 2006 to March 31, 2006. GTI's activities during the report quarter were limited to administrative work. The work at the University of Arkansas continued in line with the initial scope of work and the identified questions regarding surface to cloud heat transfer as being largely responsible for the instability problems previously encountered. A brief summary of results is discussed in this section and the complete report from University of Arkansas is attached.

  19. Drilling mud dispersants

    SciTech Connect

    Gleason, P. A.; Brase, I. E.

    1985-05-21

    Dispersants useful in aqueous drilling mud formulations employed in the drilling of subterranean wells where high temperature and high pressure environments are encountered are disclosed. The dispersants, when used in amounts of about 0.1 to 25 ppb provide muds containing colloidal material suspended in an aqueous medium with improved high temperature and high pressure stability. The dispersants are water soluble sulfonated vinyl toluene-maleic anhydride copolymers which have a molar ratio of vinyl toluene to maleic anhydride of about 1:1 to less than about 2:1, a molecular weight of 1,000 to 25,000 and at least about 0.7 sulfonic acid groups per vinyl toluene unit.

  20. Fog dispersal technology.

    NASA Technical Reports Server (NTRS)

    Mcgowan, W. A.

    1971-01-01

    The state-of-the-art in fog dispersal technology is briefly discussed. Fog is categorized as supercooled fog, occurring in air temperatures below freezing, and warm fog, occurring at above-freezing temperatures. Operational techniques are available to disperse supercooled fog in the airport area. It is much more difficult to cope with warm fog. Various known concepts to disperse warm fog are evaluated as to their operational merits. The most effective concept for immediate use involves heating the air to cause fog evaporation. Use of helicopter downwash has some application, possibly complementing the promising concept of seeding with sized hygroscopic particles. These latter two concepts appear to have future application, pending further research. The concept using polyelectrolytes is of uncertain value, lacking both a scientific explanation and a substantive evaluation of reported operational successes.