Science.gov

Sample records for lng vapor dispersion

  1. A dispersion safety factor for LNG vapor clouds.

    PubMed

    Vílchez, Juan A; Villafañe, Diana; Casal, Joaquim

    2013-02-15

    The growing importance of liquefied natural gas (LNG) to global energy demand has increased interest in the possible hazards associated with its storage and transportation. Concerning the event of an LNG spill, a study was performed on the relationship between the distance at which the lower flammability limit (LFL) concentration occurs and that corresponding to the visible contour of LNG vapor clouds. A parameter called the dispersion safety factor (DSF) has been defined as the ratio between these two lengths, and two expressions are proposed to estimate it. During an emergency, the DSF can be a helpful parameter to indicate the danger of cloud ignition and flash fire. PMID:23305750

  2. CFD Modeling of LNG Spill: Humidity Effect on Vapor Dispersion

    NASA Astrophysics Data System (ADS)

    Giannissi, S. G.; Venetsanos, A. G.; Markatos, N.

    2015-09-01

    The risks entailed by an accidental spill of Liquefied Natural Gas (LNG) should be indentified and evaluated, in order to design measures for prevention and mitigation in LNG terminals. For this purpose, simulations are considered a useful tool to study LNG spills and to understand the mechanisms that influence the vapor dispersion. In the present study, the ADREA-HF CFD code is employed to simulate the TEEX1 experiment. The experiment was carried out at the Brayton Fire Training Field, which is affiliated with the Texas A&M University system and involves LNG release and dispersion over water surface in open- obstructed environment. In the simulation the source was modeled as a two-phase jet enabling the prediction of both the vapor dispersion and the liquid pool spreading. The conservation equations for the mixture are solved along with the mass fraction for natural gas. Due to the low prevailing temperatures during the spill ambient humidity condenses and this might affect the vapor dispersion. This effect was examined in this work by solving an additional conservation equation for the water mass fraction. Two different models were tested: the hydrodynamic equilibrium model which assumes kinetic equilibrium between the phases and the non hydrodynamic equilibrium model, in order to assess the effect of slip velocity on the prediction. The slip velocity is defined as the difference between the liquid phase and the vapor phase and is calculated using the algebraic slip model. Constant droplet diameter of three different sizes and a lognormal distribution of the droplet diameter were applied and the results are discussed and compared with the measurements.

  3. LNG fire and vapor control system technologies

    SciTech Connect

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  4. FEM3A simulations of selected LNG vapor barrier verification field tests

    SciTech Connect

    Chan, S.T.

    1990-10-01

    In order to evaluate and eventually predict the possible mitigating effects of vapor fences on the dispersion of the vapor cloud resulting from an accidental liquefied natural gas (LNG) spill in storage areas, a research program was initiated to evaluate methods for predicting LNG dispersion distances for realistic facility configurations. As part of the program, Lawrence Livermore National Laboratory (LLNL) conducted a series of large-scale field experiments called the LNG Vapor Barrier Verification Field Trials (also referred to as the Falcon Series) at the Liquefied Gaseous Fuels Spill Test Facility (LGFSTF), Nevada. Objectives were (1) to provide a data base on LNG vapor dispersion from spill involving complex field obstacles to assist in validation of wind tunnel and mathematical models, and (2) to assess the effectiveness of vapor fences for mitigating LNG vapor dispersion hazards in the events of an accidental spill. Five spill experiments were conducted on water in order to generate vapor at rates equivalent to the liquid spill rates. In this study, the FEM3A model was applied to simulate four of the Falcon experiments. The objectives of this study were, through numerical modeling and a detailed model-data comparison: (1) to improve our understanding of LNG vapor dispersion involving vapor barriers, (2) to assess FEM3A in modeling such complex vapor dispersion scenarios, and (3) to complement the results of field and wind tunnel tests, such as providing plausible explanations for unexpected results and filling in data gaps due to instrument failure or limited array size. Toward these goals, the relevant field measurements were analyzed and several series of 2-D and 3-D simulations were carried out. 11 refs., 93 figs., 11 tabs.

  5. Coyote series data report LLNL/NWC 1981 LNG spill tests dispersion, vapor burn, and rapid-phase-transition. Volume 1. [7 experiments with liquefied natural gas, 2 with liquid methane, and one with liquid nitrogen

    SciTech Connect

    Goldwire, H.C. Jr.; Rodean, H.C.; Cederwall, R.T.; Kansa, E.J.; Koopman, R.P.; McClure, J.W.; McRae, T.G.; Morris, L.K.; Kamppinen, L.; Kiefer, R.D.

    1983-10-01

    The Coyote series of liquefied natural gas (LNG) spill experiments was performed at the Naval Weapons Center (NWC), China Lake, California, during the summer and fall of 1981. These tests were a joint effort of the Lawrence Livermore National Laboratory (LLNL) and the NWC and were sponsored by the US Department of Energy (DOE) and the Gas Research Institute. There were ten Coyote experiments, five primarily for the study of vapor dispersion and burning vapor clouds, and five for investigating the occurrence of rapid-phase-transition (RPT) explosions. Each of the last four of the five RPT tests consisted of a series of three spills. Seven experiments were with LNG, two were with liquid methane (LCH/sub 4/), and one was with liquid nitrogen (LN/sub 2/). Three arrays of instrumentation were deployed. An array of RPT diagnostic instruments was concentrated at the spill pond and was operated during all of the tests, vapor burn as well as RPT. The wind-field array was operated during the last nine experiments to define the wind direction and speed in the area upwind and downwind of the spill pond. The gas-dispersion array was deployed mostly downwind of the spill pond to measure gas concentration, humidity, temperature, ground heat flux, infrared (IR) radiation, and flame-front passage during three of the vapor dispersion and burn experiments (Coyotes 3, 5, and 6). High-speed color motion pictures were taken during every test, and IR imagery (side and overhead) was obtained during some vapor-burn experiments. Data was obtained by radiometers during Coyotes 3, 6, and 7. This report presents a comprehensive selection of the data obtained. It does not include any data analysis except that required to determine the test conditions and the reliability of the data. Data analysis is to be reported in other publications. 19 references, 76 figures, 13 tables.

  6. Thermoelectric Power Conversion System Combined with LNG Vaporizer

    NASA Astrophysics Data System (ADS)

    Kambe, Mitsuru; Morita, Ryo; Omoto, Kazuyuki; Koji, Yasuhiro; Yoshida, Tatsuo; Noishiki, Koji

    A conceptual design of the thermoelectric power conversion system combined with open rack type LNG (liquefied natural gas) vaporizer to make use of cold heat of LNG is presented. The system performance analysis has been made based on the thermoelectric module performance data obtained at the cryogenic thermoelectric (CTE) test rig which could realize temperature and fluid dynamic condition of the open rack type LNG vaporizer. Conventional bismuth-telluride thermoelectric modules were tested, however, each module is encapsulated in the stainless steel container to achieve water proof. Electricity production cost evaluation of the system is also discussed.

  7. Four band differential radiometer for monitoring LNG vapors

    NASA Astrophysics Data System (ADS)

    Simmonds, J. J.

    1981-06-01

    The development by JPL of a four band differential radiometer (FBDR) which is capable of providing a fast rate of response, accurate measurements of methane, ethane, and propane concentrations on the periphery of a dispersing LNG cloud. The FBDR is a small, low power, lightweight, portable instrument system that uses differential absorption of near infrared radiation by the LNG cloud as a technique for the determination of concentration of the three gases as the LNG cloud passes the instrument position. Instrument design and data analysis approaches are described. The data obtained from the FBDR prototype instrument system deployed in an instrument array during two 40 cubic meter spill tests are discussed.

  8. Four band differential radiometer for monitoring LNG vapors

    NASA Technical Reports Server (NTRS)

    Simmonds, J. J.

    1981-01-01

    The development by JPL of a four band differential radiometer (FBDR) which is capable of providing a fast rate of response, accurate measurements of methane, ethane, and propane concentrations on the periphery of a dispersing LNG cloud. The FBDR is a small, low power, lightweight, portable instrument system that uses differential absorption of near infrared radiation by the LNG cloud as a technique for the determination of concentration of the three gases as the LNG cloud passes the instrument position. Instrument design and data analysis approaches are described. The data obtained from the FBDR prototype instrument system deployed in an instrument array during two 40 cubic meter spill tests are discussed.

  9. The theoretical analysis of the Fog removal in the LNG Ambient Vaporizer

    NASA Astrophysics Data System (ADS)

    Lee, T.; Lee, D.; Jeong, H.; Chung, H.

    2015-09-01

    The fog removal process is one of the important process in LNG Ambient Vaporizer. In this study we carried out theoretical study of the fog removal process in LNG Ambient Vaporizer. The LNG Ambient Vaporizer in Incheon area was used in our study. The fog temperature and the required energy produced from air fan to remove fog in LNG Ambient Vaporizer were calculated using average temperature of Incheon area in 2012 by Psychometruc Chart method. As a result we can be remove fog in LNG Ambient Vaporizer using Enthalpy[kW] energy in summer season and Enthalpy[kW] in winter season respectively.

  10. Atmospheric Dispersion about a Heavy Gas Vapor Detention System.

    NASA Astrophysics Data System (ADS)

    Shin, Seong-Hee

    Dispersion of liquefied natural gas (LNG) in the event of an accidental spill is a major concern in LNG storage and transport safety planning, hazard response, and facility siting. Falcon Series large scale LNG spill experiments were planned by Lawrence Livermore National Laboratory (LLNL) for the Department of Transportation (DOT) and the Gas Research Institute (GRI) as part of a joint government/industry study in 1987 to evaluate the effectiveness of vapor fences as a mitigating technique for accidental release of LNG and to assist in validating wind tunnel and numerical methods for vapor dispersion simulation. Post-field-spill wind-tunnel experiments were performed in Environmental Wind Tunnel (EWT) (1988, 1989) to augment the LNG Vapor Fence Program data obtained during the Falcon Test Series. The program included four different model length scales and two different simulant gases. The purpose of this program is to provide a basis for the analysis of the simulation of physical modeling tests using proper physical modeling techniques and to assist in the development and verification of analytical models. Field data and model data were compared and analyzed by surface pattern comparisons and statistical methods. A layer-averaged slab model developed by Meroney et al. (1988) (FENC23) was expanded to evaluate an enhanced entrainment model proposed for dense gas dispersion including the effect of vapor barriers, and the numerical model was simulated for Falcon tests without the fence and with the vapor fence to examine the effectiveness of vapor detention system on heavy gas dispersion. Model data and the field data were compared with the numerical model data, and degree of similarity between data were assessed.

  11. Vapor burn analysis for the Coyote series LNG spill experiments

    SciTech Connect

    Rodean, H.C.; Hogan, W.J.; Urtiew, P.A.; Goldwire, H.C. Jr.; McRae, T.G.; Morgan, D.L. Jr.

    1984-04-01

    A major purpose of the Coyote series of field experiments at China Lake, California, in 1981 was to study the burning of vapor clouds from spills of liquefied natural gas (LNG) on water. Extensive arrays of instrumentation were deployed to obtain micrometeorological, gas concentration, and fire-related data. The instrumentation included in situ sensors of various types, high-speed motion picture cameras, and infrared (IR) imagers. Five of the total of ten Coyote spill experiments investigated vapor burns. The first vapor-burn experiment, Coyote 2, was done with a small spill of LNG to assess instrument capability and survivability in vapor cloud fires. The emphasis in this report is on the other four vapor-burn experiments: Coyotes 3, 5, 6, and 7. The data are analyzed to determine fire spread, flame propagation, and heat flux - quantities that are related to the determination of the damage zone for vapor burns. The results of the analyses are given here. 20 references, 57 figures, 7 tables.

  12. Numerical simulation of the mitigating effects of an LNG vapor fence

    SciTech Connect

    Chan, S.T.

    1990-05-01

    FEM3A, a fully three-dimensional numerical model for simulating the atmospheric dispersion of heavy gases involving complex geometry, has been used to investigate the mitigating effects of a vapor fence for LNG storage areas. In this paper, a brief description of the numerical model used to perform such calculations is given, the problem being simulated is described, and an intercomparison among the results from numerical simulations (with and without the vapor fence) and field data (with vapor fence) is made. The numerical results indicate that, with the present fence configuration, the maximum concentration on the cloud centerline was reduced by a factor of two or more within 250 m behind the fence, and the downwind distance to the 2.5% concentration was reduced from 365 m to 230 m. However, a vapor fence could also cause the vapor cloud to linger considerably longer in the source area, thus increasing the potential for ignition and combustion within the vapor fence and the area nearby over time. 8 refs., 10 figs.

  13. Cost-benefit analysis of alternative LNG vapor-mitigation measures. Topical report, September 14, 1987-January 15, 1991

    SciTech Connect

    Atallah, S.

    1992-06-25

    A generalized methodology is presented for comparing the costs and safety benefits of alternative hazard mitigation measures for a large LNG vapor release. The procedure involves the quantification of the risk to the public before and after the application of LNG vapor mitigation measures. In the study, risk was defined as the product of the annual accident frequency, estimated from a fault tree analysis, and the severity of the accident. Severity was measured in terms of the number of people who may be exposed to 2.5% or higher concentration. The ratios of the annual costs of the various mitigation measures to their safety benefits (as determined by the differences between the risk before and after mitigation measure implementation), were then used to identify the most cost-effective approaches to vapor cloud mitigation.

  14. Falcon series data report: 1987 LNG vapor barrier verification field trials

    SciTech Connect

    Brown, T.C.; Cederwall, R.T.; Chan, S.T.; Ermak, D.L.; Koopman, R.P.; Lamson, K.C.; McClure, J.W.; Morris, L.K.

    1990-06-01

    A series of five Liquefied Natural Gas Spills up to 66 m{sup 3} in volume were performed on water within a vapor barrier structure at Frenchman Flat on the Nevada Test Site as a part of a joint government/industry study. This data report presents a description of the tests, the test apparatus, the instrumentation, the meteorological conditions, and the data from the tests. 16 refs., 27 figs., 8 tabs.

  15. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect

    Jerry Havens; Iraj A. Salehi

    2005-05-10

    The objective of this report is to develop the FEM3A model for application to general scenarios involving dispersion problems with obstacles and terrain features of realistic complexity, and for very low wind speed, stable weather conditions as required for LNG vapor dispersion application specified in 49 CFR 193. The dispersion model DEGADIS specified in 49 CFR 193 is limited to application for dispersion over smooth, level terrain free of obstacles (such as buildings, tanks, or dikes). There is a need for a dispersion model that allows consideration of the effects of terrain features and obstacles on the dispersion of LNG vapor clouds. Project milestones are: (1) Simulation of Low-Wind-Speed Stable Atmospheric Milestones Conditions; (2) Verification for Dispersion over Rough Surfaces, With And Without Obstacles; and (3) Adapting the FEM3A Model for General Application. Results for this quarter are work continues to underway to address numerical problems during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, we have been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A. The present effort is directed to describing the ground surface temperature decrease as a function of time.

  16. Lessons learned from LNG safety research.

    PubMed

    Koopman, Ronald P; Ermak, Donald L

    2007-02-20

    During the period from 1977 to 1989, the Lawrence Livermore National Laboratory (LLNL) conducted a liquefied gaseous fuels spill effects program under the sponsorship of the US Department of Energy, Department of Transportation, Gas Research Institute and others. The goal of this program was to develop and validate tools that could be used to predict the effects of a large liquefied gas spill through the execution of large scale field experiments and the development of computer models to make predictions for conditions under which tests could not be performed. Over the course of the program, three series of LNG spill experiments were performed to study cloud formation, dispersion, combustion and rapid phase transition (RPT) explosions. The purpose of this paper is to provide an overview of this program, the lessons learned from 12 years of research as well as some recommendations for the future. The general conclusion from this program is that cold, dense gas related phenomena can dominate the dispersion of a large volume, high release rate spill of LNG especially under low ambient wind speed and stable atmospheric conditions, and therefore, it is necessary to include a detailed and validated description of these phenomena in computer models to adequately predict the consequences of a release. Specific conclusions include: * LNG vapor clouds are lower and wider than trace gas clouds and tend to follow the downhill slope of terrain due to dampened vertical turbulence and gravity flow within the cloud. Under low wind speed, stable atmospheric conditions, a bifurcated, two lobed structure develops. * Navier-Stokes models provide the most complete description of LNG dispersion, while more highly parameterized Lagrangian models were found to be well suited to emergency response applications. * The measured heat flux from LNG vapor cloud burns exceeded levels necessary for third degree burns and were large enough to ignite most flammable materials. * RPTs are of two

  17. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Dispersion Model.” Alternatively, in order to account for additional cloud dilution which may be caused by... if it can be shown that the terrain both upwind and downwind of the vapor cloud has dense vegetation and that the vapor cloud height is more than ten times the height of the obstacles encountered by...

  18. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Dispersion Model.” Alternatively, in order to account for additional cloud dilution which may be caused by... if it can be shown that the terrain both upwind and downwind of the vapor cloud has dense vegetation and that the vapor cloud height is more than ten times the height of the obstacles encountered by...

  19. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Dispersion Model.” Alternatively, in order to account for additional cloud dilution which may be caused by... if it can be shown that the terrain both upwind and downwind of the vapor cloud has dense vegetation and that the vapor cloud height is more than ten times the height of the obstacles encountered by...

  20. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Methane (LNG) as fuel. 154.1854 Section 154.1854... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel,...

  1. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Methane (LNG) as fuel. 154.1854 Section 154.1854... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel,...

  2. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Methane (LNG) as fuel. 154.1854 Section 154.1854... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel,...

  3. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methane (LNG) as fuel. 154.1854 Section 154.1854... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel,...

  4. 46 CFR 154.1854 - Methane (LNG) as fuel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Methane (LNG) as fuel. 154.1854 Section 154.1854... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1854 Methane (LNG) as fuel. (a) If methane (LNG) vapors are used as fuel in the main propulsion system of a vessel,...

  5. Cost estimate for a proposed GDF Suez LNG testing program

    SciTech Connect

    Blanchat, Thomas K.; Brady, Patrick Dennis; Jernigan, Dann A.; Luketa, Anay Josephine; Nissen, Mark R.; Lopez, Carlos; Vermillion, Nancy; Hightower, Marion Michael

    2014-02-01

    At the request of GDF Suez, a Rough Order of Magnitude (ROM) cost estimate was prepared for the design, construction, testing, and data analysis for an experimental series of large-scale (Liquefied Natural Gas) LNG spills on land and water that would result in the largest pool fires and vapor dispersion events ever conducted. Due to the expected cost of this large, multi-year program, the authors utilized Sandia's structured cost estimating methodology. This methodology insures that the efforts identified can be performed for the cost proposed at a plus or minus 30 percent confidence. The scale of the LNG spill, fire, and vapor dispersion tests proposed by GDF could produce hazard distances and testing safety issues that need to be fully explored. Based on our evaluations, Sandia can utilize much of our existing fire testing infrastructure for the large fire tests and some small dispersion tests (with some modifications) in Albuquerque, but we propose to develop a new dispersion testing site at our remote test area in Nevada because of the large hazard distances. While this might impact some testing logistics, the safety aspects warrant this approach. In addition, we have included a proposal to study cryogenic liquid spills on water and subsequent vaporization in the presence of waves. Sandia is working with DOE on applications that provide infrastructure pertinent to wave production. We present an approach to conduct repeatable wave/spill interaction testing that could utilize such infrastructure.

  6. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect

    Jerry Havens; Iraj A. Salehi

    2005-02-21

    This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2004 to December 31, 2004. On December 9, 2004 a meeting was held in Morgantown to rescope the LNG safety modeling project such that the work would complement the DOE's efforts relative to the development of the intended LNG-Fluent model. It was noted and discussed at the December 9th meeting that the fundamental research being performed on surface to cloud heat transfer and low wind speed issues will be relevant to the development of the DOE LNG/Fluent Model. In general, it was decided that all research to be performed from December 9th through the remainder of the contract is to be focused on the development of the DOE LNG/Fluent model. In addition, all GTI activities for dissemination and transfer of FEM3A will cease and dissemination activities will focus on the new DOE LNG/Fluent model. The proposed new scope of work is presented in section 4 of this report. The work reported in the present document relates to the original scope of work which was in effect during the reporting period. The future work will be re-scoped to meet the requirements of the new scope of work. During the report period work was underway to address numerical problems present during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, the University of Arkansas has been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A.

  7. Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter.

    PubMed

    Sun, Qinqing; Zhuang, Wei; Liu, Zhiwen; Chen, Jingbiao

    2011-12-01

    We report an excited-state Faraday anomalous-dispersion optical filter operating on the rubidium 5P(3/2)-5D(5/2) transition (775.9 nm in vacuum) without the use of a pump laser. An electrodeless discharge vapor lamp is employed to replace the Rb vapor cell in a traditional Faraday anomalous-dispersion optical filter system. Atoms can be excited by power rather than a complex frequency-locked pump laser. A proof-of-concept experimental demonstration with a maximum transmission of 1.9% and a filter bandwidth of 650 MHz is presented. PMID:22139259

  8. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Flammable vapor-gas dispersion protection. 193.2059 Section 193.2059 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES:...

  9. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Flammable vapor-gas dispersion protection. 193.2059 Section 193.2059 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES:...

  10. Research on energy efficiency design index for sea-going LNG carriers

    NASA Astrophysics Data System (ADS)

    Lin, Yan; Yu, Yanyun; Guan, Guan

    2014-12-01

    This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters—fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.

  11. Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report

    SciTech Connect

    Not Available

    1982-05-01

    Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

  12. Dispersion of flammable vapor clouds resulting from large spills of liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1981-01-01

    The purpose of this paper is to report the preliminary findings of hydrogen vapor cloud dispersion experiments conducted by NASA. The experiments were performed to obtain basic information regarding the physical phenomena governing the dispersion of flammable clouds formed as the result of spills of large quantities of liquid hydrogen. The experiments consisted of ground spills of up to 5.7 cubic meters (1500 gal) of liquid hydrogen, with spill durations of approximately 35 seconds. Instrumented towers, located downwind of the spill site, gather data on the temperature, hydrogen concentration, and turbulence levels as the hydrogen vapor cloud drifted downwind. Visual phenomena were recorded by motion picture and still cameras. Preliminary results of the experiments indicate that, for rapid spills, thermal and momentum induced turbulences cause the cloud to disperse to safe concentration levels and become positively buoyant long before mixing due to normal atmospheric turbulence becomes a major factor.

  13. Vapor Liquid Equilibria of Hydrofluorocarbons Using Dispersion-Corrected and Nonlocal Density Functionals.

    PubMed

    Goel, Himanshu; Butler, Charles L; Windom, Zachary W; Rai, Neeraj

    2016-07-12

    Recent developments in dispersion corrected and nonlocal density functionals are aimed at accurately capturing dispersion interactions, a key shortcoming of local and semilocal approximations of density functional theory. These functionals have shown significant promise for dimers and small clusters of molecules as well as crystalline materials. However, their efficacy for predicting vapor liquid equilibria is largely unexplored. In this work, we examine the accuracy of dispersion-corrected and nonlocal van der Waals functionals by computing the vapor liquid coexistence curves (VLCCs) of hydrofluoromethanes. Our results indicate that the PBE-D3 functional performs significantly better in predicting saturated liquid densities than the rVV10 functional. With the PBE-D3 functional, we also find that as the number of fluorine atoms increase in the molecule, the accuracy of saturated liquid density prediction improves as well. All the functionals significantly underpredict the saturated vapor densities, which also result in an underprediction of saturated vapor pressure of all compounds. Despite the differences in the bulk liquid densities, the local microstructures of the liquid CFH3 and CF2H2 are relatively insensitive to the density functional employed. For CF3H, however, rVV10 predicts slightly more structured liquid than the PBE-D3 functional. PMID:27295451

  14. Dispersion studies of the 22 GHz water vapor line shape. II - Instrumental correction.

    NASA Technical Reports Server (NTRS)

    Dillon, T. A.; Liebe, H. J.

    1971-01-01

    Anomalies in the resonance dispersion of the pressure-broadened water vapor line at a frequency of 22.235 GHz are resolved. The pressure-scanning differential-refraction spectrometer gives rise to a signal enhancement as the line center moves within the width of the dispersion discriminator. Resonance absorption prevents the frequency of peak transmitted power from coinciding with the resonance condition of zero phase. The results reported for the 23.6 GHz rotational line of ethylene oxide show a Lorentzian molecular line shape.

  15. Endosulfan transport: II. Modeling airborne dispersal and deposition by spray and vapor.

    PubMed

    Raupach, M R; Briggs, P R; Ahmad, N; Edge, V E

    2001-01-01

    Endosulfan (C9H6O3Cl6S; 6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) and other agricultural chemicals can be transported from farms to rivers by several airborne pathways including spray drift and vapor transport. This paper describes a modeling framework for quantifying both of these airborne pathways, consisting of components describing the source, dispersion, and deposition phases of each pathway. Throughout, the framework uses economical descriptions consistent with the need to capture the major physical processes. The dispersion of spray and vapor is described by similarity and mass-conservation principles approximated by Gaussian solutions. Deposition of particles to vegetation is described by a single-layer model incorporating contributions from settling, impaction, and Brownian diffusion. Vapor deposition to water surfaces is described by a simple kinetic formulation dependent on an exchange velocity. All model components are tested against available field and laboratory data. The models, and the measurements used for comparisons, both demonstrate that spray drift and vapor transport are significant pathways. The broader context, described in another paper, is an integrative assessment of all transport pathways (both airborne and waterborne) contributing to endosulfan transport from farms to rivers. PMID:11401262

  16. Curves to determine the relative importance of advection and dispersion for solute and vapor transport

    USGS Publications Warehouse

    Garges, J.A.; Baehr, A.L.

    1998-01-01

    The relative importance of advection and dispersion for both solute and vapor transport can be determined from type curves or concentration, flux, or cumulative flux. The dimensionless form of the type curves provides a means to directly evaluate the importance of mass transport by advection relative to that of mass transport by diffusion and dispersion. Type curves based on an analytical solution to the advection-dispersion equation are plotted in terms of dimensionless time and Peclet number. Flux and cumulative flux type curves provide additional rationale for transport regime determination in addition to the traditional concentration type curves. The extension of type curves to include vapor transport with phase partitioning in the unsaturated zone is a new development. Type curves for negative Peclet numbers also are presented. A negative Peclet number characterizes a problem in which one direction of flow is toward the contamination source, and thereby diffusion and advection can act in opposite directions. Examples are the diffusion of solutes away from the downgradient edge of a pump-and-treat capture zone, the upward diffusion of vapors through the unsaturated zone with recharge, and the diffusion of solutes through a low hydraulic conductivity cutoff wall with an inward advective gradient.

  17. Determination of the dispersion constant in a constrained vapor bubble thermosyphon

    NASA Technical Reports Server (NTRS)

    Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1995-01-01

    The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using an image analyzing interferometer which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young Laplace Equation. These isothermal results characterized the interfacial force field in-siru at the start of the heat transfer experiments by quantifying the dispersion constant, which is a function of the liquid-solid system and cleaning procedures. The experimentally obtained values of the disjoining pressure and the dispersion constants were compared to that predicted from the DLP theory and good agreements were obtained. The measurements are critical to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the Constrained Vapor Bubble Thermosyphon, CVBT, is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'estimated'. One of the major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for the force field at the solid-liquid-vapor interfaces.

  18. Exergy of LNG regasification - possible utilization method. Case study of LNG - ANG coupling

    NASA Astrophysics Data System (ADS)

    Roszak, E. A.; Chorowski, M.

    2014-01-01

    This article gives an overview on new exergy recovery methods for LNG. The concept is based on coupling the LNG regasification unit with the filling process of Adsorbed Natural Gas (ANG) tanks. The latent heat of the LNG vaporization is directly used for precooling the ANG adsorption bed. This reduces the back pressure from filling ANG tanks due to strong adsorption temperature dependency. This improves the economic attractiveness of ANG storage (no need for compressors, longer lifetime cycle of adsorbent). This case study presents the concept of LNG - ANG coupling. Presented results are based on experimental adsorption data. A brief exergy analysis of the process shows an advantage of this method over others. This LNG-ANG method is worth consideration as a cost optimizing solution, especially for periodically working regasification stations.

  19. Pressure drop in fully developed, duct flow of dispersed liquid-vapor mixture at zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The dynamics of steady, fully developed dispersed liquid-vapor flow in a straight duct at 0-g is simulated by flowing water containing n-butyl benzoate droplets. Water and benzoate are immiscible and have identical density at room temperature. The theoretical basis of the simulation is given. Experiments showed that, for a fixed combined flow rate of water and benzoate, the frictional pressure drop is unaffected by large changes in the volume fraction of benzoate drops and their size distribution. Measured power spectra of the static wall pressure fluctuations induced by the turbulent water-benzoate flow also revealed that their dynamics is essentially unaltered by the presence of the droplets. These experimental findings, together with the theoretical analysis, led to the conclusion that the pressure drop in fully developed, dispersed liquid-vapor flow in straight ducts of constant cross section at 0-g is identical to that due to liquid flowing alone at the same total volumetric flow rate of the liquid-vapor mixture and, therefore, can be readily determined.

  20. Heavy Gas Dispersion Incompressible Flow

    Energy Science and Technology Software Center (ESTSC)

    1992-01-27

    FEM3 is a numerical model developed primarily to simulate heavy gas dispersion in the atmosphere, such as the gravitational spread and vapor dispersion that result from an accidental spill of liquefied natural gas (LNG). FEM3 solves both two and three-dimensional problems and, in addition to the generalized anelastic formulation, includes options to use either the Boussinesq approximation or an isothermal assumption, when appropriate. The FEM3 model is composed of three parts: a preprocessor PREFEM3, themore » main code FEM3, and two postprocessors TESSERA and THPLOTX.« less

  1. Determination of the dispersion constant in a constrained vapor bubble thermosyphon

    NASA Technical Reports Server (NTRS)

    Dasgupta, SUNANDO.; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1993-01-01

    The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using an image analyzing interferometer which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young-Laplace equation. These isothermal results characterized the interfacial force field in-situ at the start of the heat transfer experiments by quantifying the dispersion constant, which is a function of the liquid-solid system and cleaning procedures. The experimentally obtained values of the disjoining pressure and the dispersion constants were compared to that predicted from the DLP theory and good agreements were obtained. The measurements are critical to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the CVBT is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'guesstimated'. One of the major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally. we find that the extended Young-Laplace equation is an excellent model for the force field at the solid-liquid-vapor interfaces.

  2. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-07-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  3. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-01-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  4. Highly Dispersed Gold Nanoparticles Supported on SBA-15 for Vapor Phase Aerobic Oxidation of Benzyl Alcohol.

    PubMed

    Kumar, Ashish; Sreedhar, Bojja; Chary, Komandur V R

    2015-02-01

    Gold nanoparticles supported on SBA-15 are prepared by homogenous deposition-precipitation method (HDP) using urea as the precipitating agent. The structural features of the synthesized catalysts were characterized by various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption (BET), pore size distribution (PSD), CO chemisorption and X-ray photoelectron spectroscopy (XPS). The catalytic activity and stability of the Au/SBA-15 catalysts are investigated during the vapor phase aerobic oxidation of benzyl alcohol. The BJH pore size distribution results of SBA-15 support and Au/SBA-15 catalysts reveals that the formation of mesoporous structure in all the samples. TEM results suggest that Au nanoparticles are highly dispersed over SBA-15 and long range order of hexagonal mesopores of SBA-15 is well retained even after the deposition of Au metallic nanoparticles. XPS study reveals the formation of Au (0) after chemical reduction by NaBH4. The particle size measured from CO-chemisorption and TEM analysis are well correlated with the TOF values of the reaction. Au/SBA-1 5 catalysts are found to show higher activity compare to Au/TiO2 and Au/MgO catalysts during the vapor phase oxidation of benzyl alcohol. The catalytic functionality are well substantiated with particle size measured from TEM. The crystallite size of Au in both fresh and spent catalysts were measured from X-ray diffraction. PMID:26353720

  5. Comparative safety analysis of LNG storage tanks

    SciTech Connect

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  6. Two-way shift of wavelength in holographic sensing of organic vapor in nanozeolites dispersed acrylamide photopolymer.

    PubMed

    Mao, Dongyao; Geng, Yaohui; Liu, Hongpeng; Zhou, Ke; Xian, Lihong; Yu, Dan

    2016-08-10

    Holographic sensing of alcohol organic vapor is characterized in detail at transmission and reflection geometries in Y nanozeolites dispersed acrylamide photopolymer. The two-way shift of the diffraction spectrum and its temporal evolution with various vapor concentrations are measured. Obvious blueshifts of diffraction spectrum peaks are observed and analyzed in two recording geometries. The competition mechanism between decreasing the average refractive index and swelling the grating fringe space is proposed for exploring the wavelength shift mechanism. In the reflection grating, as organic vapor increases, the redshift after the blueshift of the wavelength peaks are observed clearly. We further demonstrate the significance of this competition mechanism. In the low concentration region, at transmission <700  ppm and reflection <400  ppm in nanozeolites dispersed polymer, the blueshift of the wavelength is a significant factor in identifying an organic vapor with a low refractive index. These experimental results provide a probability for improving the applicability of a holographic sensor. This work can accelerate the development of the holographic sensing strategy and provide a novel identification method for organic vapor. PMID:27534461

  7. LNG systems for natural gas propelled ships

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Duda, P.; Polinski, J.; Skrzypacz, J.

    2015-12-01

    In order to reduce the atmospheric pollution generated by ships, the International Marine Organization has established Emission Controlled Areas. In these areas, nitrogen oxides, sulphur oxides and particulates emission is strongly controlled. From the beginning of 2015, the ECA covers waters 200 nautical miles from the coast of the US and Canada, the US Caribbean Sea area, the Baltic Sea, the North Sea and the English Channel. From the beginning of 2020, strong emission restrictions will also be in force outside the ECA. This requires newly constructed ships to be either equipped with exhaust gas cleaning devices or propelled with emission free fuels. In comparison to low sulphur Marine Diesel and Marine Gas Oil, LNG is a competitive fuel, both from a technical and economical point of view. LNG can be stored in vacuum insulated tanks fulfilling the difficult requirements of marine regulations. LNG must be vaporized and pressurized to the pressure which is compatible with the engine requirements (usually a few bar). The boil-off must be controlled to avoid the occasional gas release to the atmosphere. This paper presents an LNG system designed and commissioned for a Baltic Sea ferry. The specific technical features and exploitation parameters of the system will be presented. The impact of strict marine regulations on the system's thermo-mechanical construction and its performance will be discussed. The review of possible flow-schemes of LNG marine systems will be presented with respect to the system's cost, maintenance, and reliability.

  8. Vapor spill pipe monitor

    NASA Astrophysics Data System (ADS)

    Bianchini, G. M.; McRae, T. G.

    1983-06-01

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote IR gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote IR sensor which measures the gas composition.

  9. Vapor spill pipe monitor

    DOEpatents

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  10. High efficiency Brayton cycles using LNG

    DOEpatents

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  11. Insulating LNG (liquified natural gas) storage tank containment dikes with a lightweight polymer concrete

    SciTech Connect

    Fontana, J.J.

    1987-08-01

    The natural gas industry has always been concerned ith accidental spills of liquified natural gas (LNG) from storage tanks into surrounding containment dikes. The LNG that is leaked to the dike area boils off and the vapors mix with the atmosphere forming a hazardous explsoive mixture within the dike walls. These hazardous mixtures can travel long distances into industrial or residential areas surroungind LNG storage facilities. Studies by the natural gas industry indicate that the hazards associated with accidental spills of LNG from storage tanks can be makedly reduced by insulating the diked areas surrounding these tanks. In this manner, the heat transfer from the dike surface to the LNG is reduced. The insulating composite is used to construct a thermal barrier between the walls and floor of the dike an the spilled LNG. The thermal conductivity, porosity, and compression strength of a concrete, polymer composite insulating material is discussed. 6 refs., 8 figs., 5 tbs.

  12. Temporal compression of cw diode-laser output into short pulses with cesium-vapor group-velocity dispersion.

    PubMed

    Choi, K; Menders, J; Ross, D; Korevaar, E

    1993-11-15

    Using a technique similar to chirped pulse compression, we have compressed the 50-mW cw output of a diode laser into pulses of greater than 500-mW peak power and less than 400-ps duration. By applying a small current modulation to the diode, we induced a small wavelength modulation in the vicinity of the 6s(1/2)-to-6p(3/2) cesium resonance transition at 852 nm. Group-velocity dispersion on propagation through a cesium vapor cell then led to pulse compression. We developed a simple model to make predictions of output pulse shapes by using different modulation waveforms. PMID:19829441

  13. Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell

    NASA Astrophysics Data System (ADS)

    Fan, H. Q.; Kumar, S.; Kübler, H.; Shaffer, J. P.

    2016-05-01

    We introduce a method to measure radio frequency (RF) electric fields (E-fields) using atoms contained in a prism-shaped vapor cell. The method utilizes the concept of electromagnetically induced transparency with Rydberg atoms. The RF E-field induces changes in the index of refraction of the vapor resulting in deflection of the probe laser beam as it passes through the prism-shaped vapor cell. We measured a minimum RF E-field of 8.25 μ {{Vcm}}-1 with a sensitivity of ∼ 46.5 μ {{Vcm}}-1 {{Hz}}-1/2. The experimental results agree with a numerical model that includes dephasing effects. We discuss possible improvements to obtain higher sensitivity for RF E-field measurements.

  14. Heavy Gas Dispersion Incompressible Flow

    Energy Science and Technology Software Center (ESTSC)

    1992-02-03

    FEM3 is a numerical model developed primarily to simulate heavy gas dispersion in the atmosphere, such as the gravitational spread and vapor dispersion that result from an accidental spill of liquefied natural gas (LNG). FEM3 solves both two and three-dimensional problems and, in addition to the generalized anelastic formulation, includes options to use either the Boussinesq approximation or an isothermal assumption, when appropriate. The FEM3 model is composed of three parts: a preprocessor PREFEM3, themore » main code FEM3, and two postprocessors TESSERA and THPLOTX. The DEC VAX11 version contains an auxiliary program, POLYREAD, which reads the polyplot file created by FEM3.« less

  15. An LNG release, transport, and fate model system for marine spills.

    PubMed

    Spaulding, Malcolm L; Swanson, J Craig; Jayko, Kathy; Whittier, Nicole

    2007-02-20

    LNGMAP, a fully integrated, geographic information based modular system, has been developed to predict the fate and transport of marine spills of LNG. The model is organized as a discrete set of linked algorithms that represent the processes (time dependent release rate, spreading, transport on the water surface, evaporation from the water surface, transport and dispersion in the atmosphere, and, if ignited, burning and associated radiated heat fields) affecting LNG once it is released into the environment. A particle-based approach is employed in which discrete masses of LNG released from the source are modeled as individual masses of LNG or spillets. The model is designed to predict the gas mass balance as a function of time and to display the spatial and temporal evolution of the gas (and radiated energy field). LNGMAP has been validated by comparisons to predictions of models developed by ABS Consulting and Sandia for time dependent point releases from a draining tank, with and without burning. Simulations were in excellent agreement with those performed by ABS Consulting and consistent with Sandia's steady state results. To illustrate the model predictive capability for realistic emergency scenarios, simulations were performed for a tanker entering Block Island Sound. Three hypothetical cases were studied: the first assumes the vessel continues on course after the spill starts, the second that the vessel stops as soon as practical after the release begins (3 min), and the third that the vessel grounds at the closest site practical. The model shows that the areas of the surface pool and the incident thermal radiation field (with burning) are minimized and dispersed vapor cloud area (without burning) maximized if the vessel continues on course. For this case the surface pool area, with burning, is substantially smaller than for the without burning case because of the higher mass loss rate from the surface pool due to burning. Since the vessel speed substantially

  16. 75 FR 53371 - Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... model that accounts for additional cloud dilution which may be caused by the complex flow patterns... not to influence the flow field of the vapor cloud) and/or through a sensitivity analysis of the... data that produced the maximum arc wise concentration relative to the cloud centerline. The...

  17. Introduction to LNG vehicle safety

    NASA Astrophysics Data System (ADS)

    Bratvold, Delma; Friedman, David; Chernoff, Harry; Farkhondehpay, Dariush; Comay, Claudia

    1994-03-01

    Basic information on the characteristics of liquefied natural gas (LNG) is assembled to provide an overview of safety issues and practices for the use of LNG vehicles. This document is intended for those planning or considering the use of LNG vehicles, including vehicle fleet owners and operators, public transit officials and boards, local fire and safety officials, manufacturers and distributors, and gas industry officials. Safety issues and mitigation measures that should be considered for candidate LNG vehicle projects are addressed.

  18. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    NASA Technical Reports Server (NTRS)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  19. Homogeneous Dispersion of Carbon Nanotubes on Surface-Modified Bulk Titanium Substrates by Thermal Chemical Vapor Deposition.

    PubMed

    Kim, Hogyu; Kwak, Seoung Yeol; Park, Ju Hyuk; Suk, Myung Jin; Oh, Sung Tag; Kim, Young Do

    2016-01-01

    Catalytic syntheses of CNTs on the pristine Ti mesh, the pristine Ti plate and the etched Ti plate have been conducted using thermal chemical vapor deposition (CVD) with Fe catalysts. Surface of the pristine Ti plate was etched in a sulfuric acid (H₂SO₄) solution to facilitate the uniform dispersion of Fe catalysts. The surface of Ti substrates, the distribution and the composition of catalysts, and the structure and dispersion of the CNTs were examined using Scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), electron probe micro-analysis (EPMA) and Micro-Raman spectroscopy. Fe catalysts were dispersed uniformly on the surface of the etched Ti plate indicating that Surface modification by etching was effective. CNTs on the pristine Ti mesh and the etched Ti plate are more densely populated and have smaller diameters than CNTs on the pristine Ti plate. These results can be attributed to smaller Fe catalysts more homogeneously distributed on the pristine Ti mesh and the etched Ti plate. The calculated I(G)/I(D) ratios of 1.02 and 0.97 for CNTs on the pristine Ti mesh and the etched Ti plate, respectively, indicate a high degree of structural disorders on CNTs. PMID:27398544

  20. PRELIMINARY INVESTIGATION OF UNCOMBUSTED AUTO FUEL VAPOR DISPERSION WITHIN A RESIDENTIAL GARAGE MICROENVIRONMENT

    EPA Science Inventory

    Evaporative emissions from vehicles in an attached garage may represent a significant source of indoor pollution and human exposure. ilot field study was undertaken to investigate potential in-house dispersion of evaporative emissions of uncombusted fuels from a vehicle parked in...

  1. 77 FR 73627 - 2012 LNG Export Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... Charles Exports, LLC, FE Docket No. 11-59-LNG, 76 FR 34212 (June 13, 2011); Dominion Cove Point LNG, LP, FE Docket No. 11-128-LNG, 76 FR 76698 (December 8, 2011); Carib Energy (USA) LLC, FE Docket No. 11-141-LNG, 76 FR 80913 (December 12, 2011); Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC,...

  2. LNG risk management

    NASA Astrophysics Data System (ADS)

    Martino, P.

    1980-12-01

    A general methodology is presented for conducting an analysis of the various aspects of the hazards associated with the storage and transportation of liquefied natural gas (LNG) which should be considered during the planning stages of a typical LNG ship terminal. The procedure includes the performance of a hazards and system analysis of the proposed site, a probability analysis of accident scenarios and safety impacts, an analysis of the consequences of credible accidents such as tanker accidents, spills and fires, the assessment of risks and the design and evaluation of risk mitigation measures.

  3. Dispersibility of vapor phase oxygen and nitrogen functionalized multi-walled carbon nanotubes in various organic solvents

    NASA Astrophysics Data System (ADS)

    Khazaee, Maryam; Xia, Wei; Lackner, Gerhard; Mendes, Rafael G.; Rümmeli, Mark; Muhler, Martin; Lupascu, Doru C.

    2016-05-01

    The synthesis and characterization of gas phase oxygen- and nitrogen-functionalized multi-walled carbon nanotubes (OMWCNTs and NMWCNTs) and the dispersibility of these tubes in organic solvents were investigated. Recently, carbon nanotubes have shown supreme capacity to effectively enhance the efficiency of organic solar cells (OSCs). A critical challenge is to individualize tubes from their bundles in order to provide homogenous nano-domains in the active layer of OSCs. OMWCNTs and NMWCNTs were synthesized via HNO3 vapor and NH3 treatments, respectively. Surface functional groups and the structure of the tubes were analyzed by temperature-programmed desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, and Raman spectroscopy which confirmed the formation of functional groups on the tube surface and the enhancement of surface defects. Elemental analysis demonstrated that the oxygen and nitrogen content increased with increasing treatment time of the multi-walled carbon nanotube (MWCNT) in HNO3 vapor. According to ultra-violet visible spectroscopy, modification of the MWCNT increased the extinction coefficients of the tubes owing to enhanced compatibility of the functionalized tubes with organic matrices.

  4. Dispersibility of vapor phase oxygen and nitrogen functionalized multi-walled carbon nanotubes in various organic solvents

    PubMed Central

    Khazaee, Maryam; Xia, Wei; Lackner, Gerhard; Mendes, Rafael G.; Rümmeli, Mark; Muhler, Martin; Lupascu, Doru C.

    2016-01-01

    The synthesis and characterization of gas phase oxygen- and nitrogen-functionalized multi-walled carbon nanotubes (OMWCNTs and NMWCNTs) and the dispersibility of these tubes in organic solvents were investigated. Recently, carbon nanotubes have shown supreme capacity to effectively enhance the efficiency of organic solar cells (OSCs). A critical challenge is to individualize tubes from their bundles in order to provide homogenous nano-domains in the active layer of OSCs. OMWCNTs and NMWCNTs were synthesized via HNO3 vapor and NH3 treatments, respectively. Surface functional groups and the structure of the tubes were analyzed by temperature-programmed desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, and Raman spectroscopy which confirmed the formation of functional groups on the tube surface and the enhancement of surface defects. Elemental analysis demonstrated that the oxygen and nitrogen content increased with increasing treatment time of the multi-walled carbon nanotube (MWCNT) in HNO3 vapor. According to ultra-violet visible spectroscopy, modification of the MWCNT increased the extinction coefficients of the tubes owing to enhanced compatibility of the functionalized tubes with organic matrices. PMID:27188622

  5. Dispersibility of vapor phase oxygen and nitrogen functionalized multi-walled carbon nanotubes in various organic solvents.

    PubMed

    Khazaee, Maryam; Xia, Wei; Lackner, Gerhard; Mendes, Rafael G; Rümmeli, Mark; Muhler, Martin; Lupascu, Doru C

    2016-01-01

    The synthesis and characterization of gas phase oxygen- and nitrogen-functionalized multi-walled carbon nanotubes (OMWCNTs and NMWCNTs) and the dispersibility of these tubes in organic solvents were investigated. Recently, carbon nanotubes have shown supreme capacity to effectively enhance the efficiency of organic solar cells (OSCs). A critical challenge is to individualize tubes from their bundles in order to provide homogenous nano-domains in the active layer of OSCs. OMWCNTs and NMWCNTs were synthesized via HNO3 vapor and NH3 treatments, respectively. Surface functional groups and the structure of the tubes were analyzed by temperature-programmed desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, and Raman spectroscopy which confirmed the formation of functional groups on the tube surface and the enhancement of surface defects. Elemental analysis demonstrated that the oxygen and nitrogen content increased with increasing treatment time of the multi-walled carbon nanotube (MWCNT) in HNO3 vapor. According to ultra-violet visible spectroscopy, modification of the MWCNT increased the extinction coefficients of the tubes owing to enhanced compatibility of the functionalized tubes with organic matrices. PMID:27188622

  6. LNG annotated bibliography

    SciTech Connect

    Bomelburg, H.J.; Counts, C.A.; Cowan, C.E.; Davis, W.E.; DeSteese, J.G.; Pelto, P.J.

    1982-09-01

    This document updates the bibliography published in Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: third status report (PNL-4172) and is a complete listing of literature reviewed and reported under the LNG Technical Surveillance Task. The bibliography is organized alphabetically by author.

  7. Steady-state and dynamic simulation study on boil-off gas minimization and recovery strategies at LNG exporting terminals

    NASA Astrophysics Data System (ADS)

    Kurle, Yogesh

    Liquefied natural gas (LNG) is becoming one of the prominent clean energy sources with its abundance, high calorific value, low emission, and price. Vapors generated from LNG due to heat leak are called boil-off gas (BOG). As world-wide LNG productions are increasing fast, BOG generation and handling problems are becoming more critical. Also, due to stringent environmental regulations, flaring of BOG is not a viable option. In this study, typical Propane-and-Mixed-Refrigerant (C3-MR) process, storage facilities, and loading facilities are modeled and simulated to study BOG generation at LNG exporting terminals, including LNG processing, storage, and berth loading areas. Factors causing BOG are presented, and quantities of BOG generated due to each factor at each location are calculated under different LNG temperatures. Various strategies to minimize, recover, and reuse BOG are also studied for their feasibility and energy requirements. Rate of BOG generation during LNG loading---Jetty BOG (JBOG)---changes significantly with loading time. In this study, LNG vessel loading is simulated using dynamic process simulation software to obtain JBOG generation profile and to study JBOG recovery strategies. Also, fuel requirements for LNG plant to run steam-turbine driven compressors and gas-turbine driven compressors are calculated. Handling of JBOG generated from multiple loadings is also considered. The study would help proper handling of BOG problems in terms of minimizing flaring at LNG exporting terminals, and thus reducing waste, saving energy, and protecting surrounding environments.

  8. LNG pool fire spectral data and calculation of emissive power.

    PubMed

    Raj, Phani K

    2007-04-11

    Spectral description of thermal emission from fires provides a fundamental basis on which the fire thermal radiation hazard assessment models can be developed. Several field experiments were conducted during the 1970s and 1980s to measure the thermal radiation field surrounding LNG fires. Most of these tests involved the measurement of fire thermal radiation to objects outside the fire envelope using either narrow-angle or wide-angle radiometers. Extrapolating the wide-angle radiometer data without understanding the nature of fire emission is prone to errors. Spectral emissions from LNG fires have been recorded in four test series conducted with LNG fires on different substrates and of different diameters. These include the AGA test series of LNG fires on land of diameters 1.8 and 6m, 35 m diameter fire on an insulated concrete dike in the Montoir tests conducted by Gaz de France, a 1976 test with 13 m diameter and the 1980 tests with 10 m diameter LNG fire on water carried out at China Lake, CA. The spectral data from the Montoir test series have not been published in technical journals; only recently has some data from this series have become available. This paper presents the details of the LNG fire spectral data from, primarily, the China Lake test series, their analysis and results. Available data from other test series are also discussed. China Lake data indicate that the thermal radiation emission from 13 m diameter LNG fire is made up of band emissions of about 50% of energy by water vapor (band emission), about 25% by carbon dioxide and the remainder constituting the continuum emission by luminous soot. The emissions from the H2O and CO2 bands are completely absorbed by the intervening atmosphere in less than about 200 m from the fire, even in the relatively dry desert air. The effective soot radiation constitutes only about 23% during the burning period of methane and increases slightly when other higher hydrocarbon species (ethane, propane, etc.) are

  9. Dispersal

    USGS Publications Warehouse

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  10. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  11. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.

    PubMed

    Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam

    2014-09-15

    With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect. PMID:25194555

  12. Liquefied Natural Gas (LNG) dispenser verification device

    NASA Astrophysics Data System (ADS)

    Xiong, Maotao; Yang, Jie-bin; Zhao, Pu-jun; Yu, Bo; Deng, Wan-quan

    2013-01-01

    The composition of working principle and calibration status of LNG (Liquefied Natural Gas) dispenser in China are introduced. According to the defect of weighing method in the calibration of LNG dispenser, LNG dispenser verification device has been researched. The verification device bases on the master meter method to verify LNG dispenser in the field. The experimental results of the device indicate it has steady performance, high accuracy level and flexible construction, and it reaches the international advanced level. Then LNG dispenser verification device will promote the development of LNG dispenser industry in China and to improve the technical level of LNG dispenser manufacture.

  13. LNG Observer: Second Qatargas train goes onstream

    SciTech Connect

    1997-01-01

    The January-February, 1997 issue of the LNG Observer is presented. The following topics are discussed: second Qatargas train goes onstream; financing for the eighth Indonesian liquefaction train; Koreans take stakes in Oman LNG; US imports and exports of LNG in 1996; A 60% increase in proved reserves on the North West Shelf; proposals for Indian LNG terminal CEDIGAZ forecasts world LNG trade by 2010; growth for North African gas production and exports; and new forecast sees strong growth for Asian gas.

  14. Effect of Mo Dispersion Size and Water Vapor on Oxidation of Two-Phase Directionally Solidified NiAl-9Mo In-Situ Composites

    SciTech Connect

    Brady, Michael P; Bei, Hongbin; Meisner, Roberta Ann; Lance, Michael J; Tortorelli, Peter F

    2014-01-01

    Oxidation of two-phase NiAl-9Mo eutectics with 3 different growth rates/2nd phase Mo dispersion sizes were investigated at 900 C in air and air with 10% water vapor. Good oxidation resistance via alumina formation was observed in dry air, with Mo volatilization loss minimized by fine submicron Mo dispersions. However, extensive Mo volatilization and in-place internal oxidation of prior Mo phase regions was observed in wet air oxidation. Ramifications of this phenomenon for the development of multi-phase high-temperature alloys are discussed

  15. Thermodynamic and heat transfer analysis of LNG energy recovery for power production

    NASA Astrophysics Data System (ADS)

    Franco, A.; Casarosa, C.

    2014-11-01

    An important option to transport the gas is to convert it into liquid natural gas (LNG) and convey it using insulated LNG tankers. At receiving terminals, the LNG is offloaded into storage tanks and then pumped at the required pressure and vaporized for final transmission to the pipeline. The LNG production process consumes a considerable amount of energy, while the cold availability, as also known as cold energy, has been stored in LNG. At a receiving terminal, LNG needs to be evaporated into gas at environmental temperature before fed into the gas distribution system. Seawater is commonly used for the regasification process of the LNG. In the present paper, after a general analysis of the perspectives of the various thermodynamic schemes proposed for power production from the regasification, a detailed analysis of enhanced direct expansion system is carried out in order to identify the upper level of the energy that can be recovered. The analysis outlines that power production typical of optimized ORC plant configurations (120 kJ/kg) can be obtained with direct expansion solutions.

  16. North American LNG Project Sourcebook

    SciTech Connect

    2007-06-15

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  17. Use of TX100-dangled epoxy as a reactive noncovalent dispersant of vapor-grown carbon nanofibers in an aqueous solution.

    PubMed

    Dong, Yubing; Wang, Rui; Li, Shan; Yang, Hongbing; Du, Mingliang; Fu, Yaqin

    2013-02-01

    The dispersion of carbon nanotubes (CNTs) into individual particles or small bundles has remained a vexing problem that limits the use of the excellent properties of CNTs in composite applications. Noncovalent functionalization is an attractive option for changing the interfacial properties of nanotubes because it does not destroy the nanotube grapheme structure. In this study, a new reactive copolymer, epoxy-toluene diisocyanate-Triton X-100 (EP-TDI-TX100) was successfully synthesized, which is shown to be highly effective in dispersing vapor-grown carbon nanofibers (VGCNFs) into individual or small bundles, as evidenced by transmission electron microscopy (TEM) and UV-vis absorption spectra. The strong π-π interaction between VGCNFs and EP-TDI-TX100 was revealed by Raman spectra and the covalent reaction between curing agent was confirmed via Fourier transform infrared spectroscopy. For an effective dispersion, the optimum weight ratio of EP-TDI-TX100 to VGCNFs is 2:1. The maximum VGCNF concentration that can be homogeneously dispersed in an aqueous solution is approximately 0.64 mg/mL. The EP-TDI-TX100 molecules are adsorbed on the VGCNF surface and prevent reaggregation of VGCNFs, so that a colloidal stability of VGCNF dispersion can be maintained for 6 months. PMID:23116860

  18. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect

    O`Brien, J.E.; Siahpush, A.

    1998-02-01

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  19. Recommended research on LNG safety

    SciTech Connect

    Carpenter, H.J.; Gilmore, F.R.

    1981-03-01

    The US Department of Energy (DOE) is conducting research on the safety and other environmental aspects of liquefied energy gases including liquefied natural gas (LNG). The effort reported here was conducted as part of the planning for further research into the safety aspects of transporting and storing LNG, with primary emphasis on public safety. Although the modern LNG industry has enjoyed excellent success in providing for safe operations, significant questions remain on the part of many, the expressions of which were intensified with the addition of marine-based LNG import terminals. Public safety with regard to large-scale importation of this fuel has received widespread attention in the US Congress, state legislatures, county and city governments, and from various individuals and public groups, with coverage in all the news media, including books published on the subject. The safety concerns have centered around the consequences to the public of a large spill of the cryogenic liquid from an ocean tanker or a larger storage tank, either of which might hold as much as 125,000 m/sup 3/ of LNG.

  20. LNG to CNG refueling stations

    SciTech Connect

    Branson, J.D.

    1995-12-31

    While the fleet operator is concerned about the environment, he or she is going to make the choice based primarily on economics. Which fuel provides the lowest total operating cost? The calculation of this costing must include the price-per-gallon of the fuel delivered, as well as the tangible and intangible components of fuel delivery, such as downtime for vehicles during the refueling process, idle time for drivers during refueling, emissions costings resulting from compressor oil blow-by, inclusion of non-combustible constituents in the CNG, and energy consumption during the refueling process. Also, the upfront capital requirement of similar delivery capabilities must be compared. The use of LNG as the base resource for the delivered CNG, in conjunction with the utilization of a fully temperature-compressed LNG/CNG refueling system, eliminates many of the perceived shortfalls of CNG. An LNG/CNG refueling center designed to match the capabilities of the compressor-based station will have approximately the same initial capital requirement. However, because it derives its CNG sales product from the {minus}260 F LNG base product, thus availing itself of the natural physical properties of the cryogenic product, all other economic elements of the system favor the LNG/CNG product.

  1. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    NASA Astrophysics Data System (ADS)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  2. LNG vehicle technology, economics, and safety assessment

    NASA Astrophysics Data System (ADS)

    Powars, Charles A.; Moyer, Carl B.; Lowell, Douglas D.

    1994-02-01

    Liquid natural gas (LNG) is an attractive transportation fuel because of its high heating value and energy density (i.e., Btu/lb. and Btu/gal.), clean burning characteristics, relatively low cost ($/Btu), and domestic availability. This research evaluated LNG vehicle and refueling system technology, economics, and safety. Prior and current LNG vehicle projects were studied to identify needed technology improvements. Life-cycle cost analyses considered various LNG vehicle and fuel supply options. Safety records, standards, and analysis methods were reviewed. The LNG market niche is centrally fueled heavy-duty fleet vehicles with high fuel consumption. For these applications, fuel cost savings can amortize equipment capital costs.

  3. On the application of computational fluid dynamics codes for liquefied natural gas dispersion.

    SciTech Connect

    Luketa-Hanlin, Anay Josephine; Koopman, Ronald P.; Ermak, Donald

    2006-02-01

    Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.

  4. Re-Examining the Properties of the Aqueous Vapor-Liquid Interface Using Dispersion Corrected Density Functional Theory

    SciTech Connect

    Baer, Marcel D.; Mundy, Christopher J.; McGrath, Matthew J.; Kuo, I-F W.; Siepmann, Joern I.; Tobias, Douglas J.

    2011-09-28

    First-principles molecular dynamics simulations, in which the forces are computed from electronic structure calculations, have great potential to provide unique insight into structure, dynamics, electronic properties, and chemistry at aqueous interfaces that is not available from empirical force fields. The majority of current first-principles simulations are driven by forces derived from density functional theory with generalized gradient approximations to the exchange-correlation energy, which do not capture dispersion interactions. We have carried out first-principles molecular dynamics simulations of air-water interfaces employing a particular generalized gradient approximation to the exchange-correlation functional (BLYP), with and without empirical dispersion corrections. We assess the utility of the dispersion corrections by comparison of a variety of structural, dynamic, and thermodynamic properties of bulk and interfacial water with experimental data, as well as other first-principles and force field-based simulations. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  5. Characterization of the Near-Field Transport and Dispersion of Vapors Released from the Headspaces of Hanford Site Underground Storage Tanks

    SciTech Connect

    Droppo, James G.

    2004-07-30

    A parametric air dispersion analysis has been conducted to define the range of tank vapor concentrations from the Hanford Site underground tanks that can potentially occur in the worker breathing zones from active and passive releases from the waste tanks. The potential influences of tank farm specific release characteristics, ambient meteorological conditions, local farm surface roughness, and topographical influences are considered. The parametric approach allows consideration of the full range venting configurations and potential vapor concentration over the range of meteorological conditions at the Hanford Site. The results indicate that occasional short duration exposures of up to several seconds to relatively undiluted headspace air can be expected in the immediate vicinity of the tank vents. Average concentrations which represent diffusion, as well as spatial averaging, fall off rapidly with distance for the passive vents and to a lesser extent for the forced-air stacks. The addition of the influence of the surface roughness elements on the tank farms will result in a faster decrease of concentrations with downwind distance.

  6. Dispersion of UO{sub 2}F{sub 2} aerosol and HF vapor in the operating floor during winter ventilation at the Paducah Gaseous Diffusion Plant

    SciTech Connect

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.

    1996-12-30

    The gaseous diffusion process is currently employed at two plants in the US: the Paducah Gaseous Diffusion Plant and the Portsmouth Gaseous Diffusion Plant. As part of a facility-wide safety evaluation, a postulated design basis accident involving large line-rupture induced releases of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant (GDP) is evaluated. When UF{sub 6} is released into the atmosphere, it undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form vaporized hydrogen fluoride (HF) and aerosolized uranyl fluoride (UO{sub 2}F{sub 2}). These reactants disperse in the process building and transport through the building ventilation system. The ventilation system draws outside air into the process building, distributes it evenly throughout the building, and discharges it to the atmosphere at an elevated temperature. Since air is recirculated from the cell floor area to the operating floor, issues concerning in-building worker safety and evacuation need to be addressed. Therefore, the objective of this study is to evaluate the transport of HF vapor and UO{sub 2}F{sub 2} aerosols throughout the operating floor area following B-line break accident in the cell floor area.

  7. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  8. Feasibility of methods and systems for reducng LNG tanker fire hazards

    SciTech Connect

    Not Available

    1980-08-01

    In this program concepts for reducing fire hazards that may result from LNG tanker collisions are identified and their technical feasibility evaluated. Concepts considered include modifications to the shipborne LNG containers so that in the event of a container rupture less of the contents would spill and/or the contents would spill at a reduced rate. Changes in the cargo itself, including making the LNG into a gel, solidifying it, converting it to methanol, and adding flame suppressants are also evaluated. The relative effectiveness and the costs of implementing these methods in terms of increased cost of gas at the receiving terminal, are explained. The vulnerability of an LNG tanker and its crew to the thermal effects of a large pool fire caused by a collision spill is estimated and methods of protecting the crew are considered. It is shown that the protection of ship and crew so that further deterioration of a damaged ship might be ameliorated, would require the design and installation of extraordinary insulation systems and life support assistance for the crew. Methods of salvaging or disposing of cargo from a damaged and disabled ship are evaluated, and it is concluded that if the cargo cannot be transferred to another (empty) LNG tanker because of lack of availability, then the burning of the cargo at a location somewhat distant from the disabled tanker appears to be a promising approach. Finally, the likelihood of the vapors from a spill being ignited due to the frictional impact of the colliding ships was examined. It is found that the heating of metal sufficient to ignite flammable vapors would occur during a collision, but it is questionable whether flammable vapor and air will, in fact, come in contact with the hot metal surfaces.

  9. LNG Safety Assessment Evaluation Methods

    SciTech Connect

    Muna, Alice Baca; LaFleur, Angela Christine

    2015-05-01

    Sandia National Laboratories evaluated published safety assessment methods across a variety of industries including Liquefied Natural Gas (LNG), hydrogen, land and marine transportation, as well as the US Department of Defense (DOD). All the methods were evaluated for their potential applicability for use in the LNG railroad application. After reviewing the documents included in this report, as well as others not included because of repetition, the Department of Energy (DOE) Hydrogen Safety Plan Checklist is most suitable to be adapted to the LNG railroad application. This report was developed to survey industries related to rail transportation for methodologies and tools that can be used by the FRA to review and evaluate safety assessments submitted by the railroad industry as a part of their implementation plans for liquefied or compressed natural gas storage ( on-board or tender) and engine fueling delivery systems. The main sections of this report provide an overview of various methods found during this survey. In most cases, the reference document is quoted directly. The final section provides discussion and a recommendation for the most appropriate methodology that will allow efficient and consistent evaluations to be made. The DOE Hydrogen Safety Plan Checklist was then revised to adapt it as a methodology for the Federal Railroad Administration’s use in evaluating safety plans submitted by the railroad industry.

  10. 40 CFR Table W - 6 of Subpart W-Default Methane Emission Factors for LNG Import and Export Equipment

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-6 Table W-6 of Subpart W—Default Methane... Connector 0.34 Other 1 1.77 Population Emission Factors—LNG Terminals Compressor, Gas Service Vapor...

  11. 33 CFR 127.321 - Release of LNG.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Release of LNG. 127.321 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.321 Release of LNG. (a) The operator of the waterfront facility handling LNG shall ensure that— (1) No person releases LNG into the...

  12. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Impoundment capacity: LNG storage tanks. 193.2181... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum...

  13. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum...

  14. 33 CFR 127.321 - Release of LNG.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Release of LNG. 127.321 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.321 Release of LNG. (a) The operator of the waterfront facility handling LNG shall ensure that— (1) No person releases LNG into the...

  15. Strategic evaluation central to LNG project formation

    SciTech Connect

    Nissen, D.; DiNapoli, R.N.; Yost, C.C.

    1995-07-03

    An efficient-scale, grassroots LNG facility of about 6 million metric tons/year capacity requires a prestart-up outlay of $5 billion or more for the supply facilities--production, feedgas pipeline, liquefaction, and shipping. The demand side of the LNG chain requires a similar outlay, counting the import-regasification terminal and a combination of 5 gigawatts or more of electric power generation or the equivalent in city gas and industrial gas-using facilities. There exist no well-developed commodity markets for free-on-board (fob) or delivered LNG. A new LNG supply project is dedicated to its buyers. Indeed, the buyers` revenue commitment is the project`s only bankable asset. For the buyer to make this commitment, the supply venture`s capability and commitment must be credible: to complete the project and to deliver the LNG reliably over the 20+ years required to recover capital committed on both sides. This requirement has technical, economic, and business dimensions. In this article the authors describe a LNG project evaluation system and show its application to typical tasks: project cost of service and participant shares; LNG project competition; alternative project structures; and market competition for LNG-supplied electric power generation.

  16. 76 FR 2677 - Southern LNG Company, LLC; Notice of Public Scoping Meeting for the Proposed LNG Truck Loading...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Energy Regulatory Commission Southern LNG Company, LLC; Notice of Public Scoping Meeting for the Proposed LNG Truck Loading Project January 7, 2011. On February 2, 2011, the Office of Energy Projects staff... Southern LNG Company, LLC's (Southern) LNG Truck Loading Project. We scheduled this meeting to...

  17. How Gaz de France optimizes LNG regasification

    SciTech Connect

    Colonna, J.L.; Lecomte, B.; Caudron, S.

    1986-05-05

    A regasification optimization program was implemented at Montoir-de-Bretagne in 1984, and rapidly accepted by the operators. It has been an important tool for decision-making in the optimizing operation of this liquefied natural gas (LNG) storage and regasification terminal. The models used are regularly and easily updated on the basis of equipment behavior: aging or fouling. The Montoir-de-Bretagne LNG terminal is in the port area of Nates-Saint Nazaire on the Atlantic coast. It was commissioned in 1982 by Gaz de France. This terminal is used for receiving, storing, and regasifying the Algerian LNG received under a contract between Gaz de France and Sonatrach, as well as the LNG imported by Belgium and temporarily routed through France. It is designed to receive 25,000 to 200,000 cu m LNG carriers and has three 120,000 cm m LNG storage tanks. The daily sendout ranges between 6.7 million cu m and 36 million cu m. Monitor terminal supplies mainly Brittany and the Paris area. Two identifical berths allow the simultaneous reception of two LNG carriers. LNG is carried to the storage tanks in 32-in. lines at a rate of 12,000 cu m/hr. Each storage tank is equipped with three submerged 450 cu m/hr pumps with which the LNG is sent from the tanks to the secondary pumps at 8 bar. The nine high-pressure (HP) secondary pumps, with a capacity of either 450 cu m/hr or 180 cu m/hr, raise the LNG pressure to a level at least equal to pipeline pressure prior to revaporization.

  18. Simultaneous speciation of inorganic arsenic, selenium and tellurium in environmental water samples by dispersive liquid liquid microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Ying; He, Man; Chen, Beibei; Hu, Bin

    2015-09-01

    A new method based on dispersive liquid liquid microextraction (DLLME) combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was developed for the simultaneous speciation of inorganic arsenic (As), selenium (Se) and tellurium (Te) with sodium diethyldithiocarbamate (DDTC) as both chelating reagent and chemical modifier. As(III), Se(IV) and Te(IV) were transformed into DDTC-chelates at pH 7 and extracted into the fine droplets formed by injecting the binary solution of bromobenzene (extraction solvent) and methanol (dispersive solvent) into the sample solution. After phase separation by centrifugation, As(III), Se(IV) and Te(IV) preconcentrated in the organic phase were determined by ETV-ICP-MS. Total inorganic As, Se and Te were obtained by reducing As(V), Se(VI) and Te(VI) to As(III), Se(IV) and Te(IV) with L-cysteine, which were then subjected to the same DLLME-ETV-ICP-MS process. The concentration of As(V), Se(VI), Te(VI) were calculated by subtracting the concentration of As(III), Se(IV) and Te(IV) from the total inorganic As, Se and Te, respectively. The main factors affecting the microextraction efficiency and the vaporization behavior of target species were investigated in detail. Under the optimal conditions, the limits of detection were 2.5, 8.6 and 0.56 ng L(-1) for As(III), Se(IV) and Te(IV), respectively, with the relative standard deviations (n=7) of 8.5-9.7%. The developed method was applied to the speciation of inorganic As, Se and Te in Certified Reference Materials of GSBZ50004-88, GBW(E)080395 and GBW(E)080548 environmental waters, and the determined values are in good agreement with the certified values. The method was also successfully applied to the simultaneous speciation of inorganic As, Se and Te in different environmental water samples with the recoveries in the range of 86.3-107% for the spiked samples. PMID:26003714

  19. LNG -- A paradox of propulsion potential

    SciTech Connect

    McKay, D.J.

    1995-12-31

    Liquefied natural gas (LNG) has been demonstrating its viability as a clean-burning alternative fuel for buses and medium- and heavy-duty trucks for the past 30 years. The first known LNG vehicle project began in San Diego in 1965, When San Diego Gas and Electric converted 22 utility trucks and three passenger vehicles to dedicated LNG. A surge in LNG vehicle project activity over the past five years has led to a fairly robust variety of vehicles testing the fuel, from Class 8 tractors, refuse haulers and transit buses to railroad locomotives and ferry boats. Recent technology improvements in engine design, cryogenic tanks, fuel nozzles and other related equipment have made LNG more practical to use than in the 1960s. LNG delivers more than twice the driving range from the same-sized fuel tank as a vehicle powered by compressed natural gas (CNG). Although technical and economic hurdles must be overcome before this fuel can achieve widespread use, various ongoing demonstration projects are showing LNG`s practicality, while serving the vital role of pinpointing those areas of performance that are the prime candidates for improvement.

  20. Raley's LNG Truck Site Final Data Report

    SciTech Connect

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  1. Research of design challenges and new technologies for floating LNG

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hyun; Ha, Mun-Keun; Kim, Soo-Young; Shin, Sung-Chul

    2014-06-01

    With the rate of worldwide LNG demand expected to grow faster than that of gas demand, most major oil companies are currently investing their resources to develop floating LNG-FLNG (i.e. LNG FSRU and LNG FPSO). The global Floating LNG (FLNG) market trend will be reviewed based on demand and supply chain relationships. Typical technical issues associated with FLNG design are categorized in terms of global performance evaluation. Although many proven technologies developed through LNG carrier and oil FPSO projects are available for FLNG design, we are still faced with several technical challenges to clear for successful FLNG projects. In this study, some of the challenges encountered during development of the floating LNG facility (i.e. LNG FPSO and FSRU) will be reviewed together with their investigated solution. At the same time, research of new LNG-related technologies such as combined containment system will be presented.

  2. Gas treating alternatives for LNG plants

    SciTech Connect

    Clarke, D.S.; Sibal, P.W.

    1998-12-31

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  3. LNG carrier using membrane tank system delivered

    SciTech Connect

    Not Available

    1993-12-06

    The world's first LNG carrier that incorporates the Technigaz Mark 3 membrane tank system was delivered in October to its owner, Asia LNG Transport Sdn. Bhd., a joint venture between Nippon Yusen K.K. and Perbadanan Nasional Shipping Line Berhad of Malaysia. NKK built the 18,800 cu m, fully double-hull carrier Aman Bintulu at its Tsu works. Construction was completed in September with more than 2 months of sea trials and gas tests using [minus]190 C. Liquid nitrogen and final gas trails with LNG. The orthogonally corrugated stainless membrane primary barrier and the triplex (aluminum foil/fiber glass cloth) composite-material secondary barrier prevent LNG from leaking in the event of an accident.

  4. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect

    Not Available

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  5. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Ying; He, Man; Chen, Beibei; Hu, Bin

    2016-08-01

    A new method by coupling surfactant assisted dispersive liquid liquid microextraction (SA-DLLME) with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the analysis of gold nanoparticles (AuNPs) in environmental water samples. Effective separation of AuNPs from ionic gold species was achieved by using sodium thiosulphate as a complexing agent. Various experimental parameters affecting SA-DLLME of AuNPs, such as the organic solvent, organic solvent volume, pH of the sample, the kind of surfactant, surfactant concentration, vortex time, speed of centrifugation, centrifugation time, and different coating as well as sizes of AuNPs were investigated carefully. Furthermore, the interference of coexisting ions, dissolved organic matter (DOM) and other metal nanoparticles (NPs) were studied. Under the optimal conditions, a detection limit of 2.2 ng L- 1 and an enrichment factor of 152-fold was achieved for AuNPs, and the original morphology of the AuNPs could be maintained during the extraction process. The developed method was successfully applied for the analysis of AuNPs in environmental water samples, including tap water, the East Lake water, and the Yangtze River water, with recoveries in the range of 89.6-102%. Compared with the established methods for metal NPs analysis, the proposed method has the merits of simple and fast operation, low detection limit, high selectivity, good tolerance to the sample matrix and no digestion or dilution required. It provides an efficient quantification methodology for monitoring AuNPs' pollution in the environmental water and evaluating its toxicity.

  6. Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A

    PubMed Central

    Saldaña-Ahuactzi, Zeus; Rodea, Gerardo E.; Cruz-Córdova, Ariadnna; Rodríguez-Ramírez, Viridiana; Espinosa-Mazariego, Karina; González-Montalvo, Martín A.; Ochoa, Sara A.; González-Pedrajo, Bertha; Eslava-Campos, Carlos A.; López-Villegas, Edgar O.; Hernández-Castro, Rigoberto; Arellano-Galindo, José; Patiño-López, Genaro; Xicohtencatl-Cortes, Juan

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and the adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologs. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy images to show that the LngB protein could be localized at the tip of CS21. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells. PMID:27536289

  7. Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A.

    PubMed

    Saldaña-Ahuactzi, Zeus; Rodea, Gerardo E; Cruz-Córdova, Ariadnna; Rodríguez-Ramírez, Viridiana; Espinosa-Mazariego, Karina; González-Montalvo, Martín A; Ochoa, Sara A; González-Pedrajo, Bertha; Eslava-Campos, Carlos A; López-Villegas, Edgar O; Hernández-Castro, Rigoberto; Arellano-Galindo, José; Patiño-López, Genaro; Xicohtencatl-Cortes, Juan

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and the adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologs. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy images to show that the LngB protein could be localized at the tip of CS21. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells. PMID:27536289

  8. Keys to modeling LNG spills on water.

    PubMed

    Hissong, D W

    2007-02-20

    Although no LNG ship has experienced a loss of containment in over 40 years of shipping, it is important for risk management planning to understand the predicted consequences of a spill. A key parameter in assessing the impact of an LNG spill is the pool size. LNG spills onto water generally result in larger pools than land spills because they are unconfined. Modeling of LNG spills onto water is much more difficult than for land spills because the phenomena are more complex and the experimental basis is more limited. The most prevalent practice in predicting pool sizes is to treat the release as instantaneous or constant-rate, and to calculate the pool size using an empirical evaporation or burn rate. The evaporation or burn rate is particularly difficult to estimate for LNG spills on water, because the available data are so limited, scattered, and difficult to extrapolate to the large releases of interest. A more effective modeling of possible spills of LNG onto water calculates, rather than estimating, the evaporation or burn rate. The keys to this approach are to: * Use rigorous multicomponent physical properties. * Use a time-varying analysis of spill and evaporation. * Use a material and energy balance approach. * Estimate the heat transfer from water to LNG in a way that reflects the turbulence. These keys are explained and demonstrated by predictions of a model that incorporates these features. The major challenges are describing the effects of the LNG-water turbulence and the heat transfer from the pool fire to the underlying LNG pool. The model includes a fundamentally based framework for these terms, and the current formulation is based on some of the largest tests to-date. The heat transfer coefficient between the water and LNG is obtained by applying a "turbulence factor" to the value from correlations for quiescent film and transition boiling. The turbulence factor is based on two of the largest unignited tests on water to-date. The heat transfer from

  9. 76 FR 73609 - Cameron LNG, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... operate a boil-off gas (BOG) liquefaction system at its LNG import terminal in Cameron Parish, Louisiana... terminal to liquefy BOG and return such gas in the form of LNG to its storage tanks. Cameron states...

  10. 78 FR 41047 - UGI LNG, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Energy Regulatory Commission UGI LNG, Inc.; Notice of Application On June 17, 2013, UGI LNG, Inc. (UGI... Ontelaunee Township, Berks County, Pennsylvania. As more fully described in the application, the new.... Questions regarding this application may be directed to Frank H. Markle, Counsel for UGI LNG, by calling...

  11. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service maintenance... 49 Transportation 3 2014-10-01 2014-10-01 false Mobile and temporary LNG facilities....

  12. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service maintenance... 49 Transportation 3 2012-10-01 2012-10-01 false Mobile and temporary LNG facilities....

  13. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service maintenance... 49 Transportation 3 2013-10-01 2013-10-01 false Mobile and temporary LNG facilities....

  14. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service maintenance... 49 Transportation 3 2011-10-01 2011-10-01 false Mobile and temporary LNG facilities....

  15. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service maintenance... 49 Transportation 3 2010-10-01 2010-10-01 false Mobile and temporary LNG facilities....

  16. 75 FR 26744 - Cameron LNG, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Energy Regulatory Commission Cameron LNG, LLC; Notice of Application May 5, 2010. On April 22, 2010, Cameron LNG, LLC filed with the Federal Energy Regulatory Commission (Commission) an application under... this application may be directed to William D. Rapp, Senior Regulatory Counsel at Cameron LNG, LLC,...

  17. Safety implications of a large LNG tanker spill over water.

    SciTech Connect

    Hightower, Marion Michael; Gritzo, Louis Alan; Luketa-Hanlin, Anay Josephine

    2005-04-01

    The increasing demand for natural gas in the United States could significantly increase the number and frequency of marine LNG (liquefied natural gas) imports. Although many studies have been conducted to assess the consequences and risks of potential LNG spills, the increasing importance of LNG imports suggests that consistent methods and approaches be identified and implemented to help ensure protection of public safety and property from a potential LNG spill. For that reason the U.S. Department of Energy (DOE), Office of Fossil Energy, requested that Sandia National Laboratories (Sandia) develop guidance on a risk-based analysis approach to assess and quantify potential threats to an LNG ship, the potential hazards and consequences of a large spill from an LNG ship, and review prevention and mitigation strategies that could be implemented to reduce both the potential and the risks of an LNG spill over water. Specifically, DOE requested: (1) An in-depth literature search of the experimental and technical studies associated with evaluating the safety and hazards of an LNG spill from an LNG ship; (2) A detailed review of four recent spill modeling studies related to the safety implications of a large-scale LNG spill over water; (3) Evaluation of the potential for breaching an LNG ship cargo tank, both accidentally and intentionally, identification of the potential for such breaches and the potential size of an LNG spill for each breach scenario, and an assessment of the potential range of hazards involved in an LNG spill; (4) Development of guidance on the use of modern, performance-based, risk management approaches to analyze and manage the threats, hazards, and consequences of an LNG spill over water to reduce the overall risks of an LNG spill to levels that are protective of public safety and property.

  18. 46 CFR 154.703 - Methane (LNG).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methane (LNG). 154.703 Section 154.703 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... system that meets § 154.702; (b) A waste heat or catalytic furnace that burns boil-off gas, and:...

  19. 46 CFR 154.703 - Methane (LNG).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Methane (LNG). 154.703 Section 154.703 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.703 Methane...

  20. U.S. LNG Imports - The Next Wave

    EIA Publications

    2007-01-01

    U.S. LNG imports - The Next Wave, is now available as a special supplement to the January 2007 issue of the Short-Term Energy Outlook (STEO). Although liquefied natural gas (LNG) imports still account for less than 3% of total U.S. natural gas supplies, the global market is growing and the Energy Information Administration (EIA) foresees another wave of U.S. LNG import growth over the next two years. The supplement focuses on recent trends in global and U.S. LNG trade, and presents factors expected to influence LNG imports through 2008. EIA expects year-over-year increases in LNG imports of 34.5% and 38.5% in 2007 and 2008, respectively.

  1. Beauty of Simplicity: Phillips Optimized Cascade LNG Liquefaction Process

    NASA Astrophysics Data System (ADS)

    Andress, D. L.; Watkins, R. J.

    2004-06-01

    Paper describes how use of single component refrigerants yields an LNG liquefaction process that is safe, simple to operate, easy to understand, and robust in reliability. The 34-year operating history of Kenai LNG has proven the inherent advantages of the Phillips Optimized Cascade LNG Process. The paper is written from an operational point of view, and describes basic design parameters and operation of the processes.

  2. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect

    1980-10-01

    Volume 2 consists of 19 reports describing technical effort performed by Government Contractors in the area of LNG Safety and Environmental Control. Report topics are: simulation of LNG vapor spread and dispersion by finite element methods; modeling of negatively buoyant vapor cloud dispersion; effect of humidity on the energy budget of a liquefied natural gas (LNG) vapor cloud; LNG fire and explosion phenomena research evaluation; modeling of laminar flames in mixtures of vaporized liquefied natural gas (LNG) and air; chemical kinetics in LNG detonations; effects of cellular structure on the behavior of gaseous detonation waves under transient conditions; computer simulation of combustion and fluid dynamics in two and three dimensions; LNG release prevention and control; the feasibility of methods and systems for reducing LNG tanker fire hazards; safety assessment of gelled LNG; and a four band differential radiometer for monitoring LNG vapors.

  3. 75 FR 51989 - Southern LNG Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Energy Regulatory Commission Southern LNG Company, L.L.C.; Notice of Application August 16, 2010. Take notice that on August 4, 2010, Southern LNG Company, L.L.C. (Southern LNG), Post Office Box 2563... Regulatory, Southern LNG Company, L.L.C., 569 Brookwood Village, Suite 501, Birmingham, Alabama 35209 at...

  4. 78 FR 20312 - Downeast LNG, Inc., Downeast Pipeline, LLC.; Notice of Availability of the Supplemental Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... Energy Regulatory Commission Downeast LNG, Inc., Downeast Pipeline, LLC.; Notice of Availability of the Supplemental Draft Environmental Impact Statement for the Proposed Downeast LNG Project The staff of the... Impact Statement (EIS) for the Downeast LNG Project, proposed by Downeast LNG, Inc. and Downeast...

  5. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193.2623 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each...

  6. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193.2623 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each...

  7. Candidate Water Vapor Lines to Locate the H2O Snowline through High-dispersion Spectroscopic Observations. I. The Case of a T Tauri Star

    NASA Astrophysics Data System (ADS)

    Notsu, Shota; Nomura, Hideko; Ishimoto, Daiki; Walsh, Catherine; Honda, Mitsuhiko; Hirota, Tomoya; Millar, T. J.

    2016-08-01

    Inside the H2O snowline of protoplanetary disks, water evaporates from the dust-grain surface into the gas phase, whereas it is frozen out onto the dust in the cold region beyond the snowline. H2O ice enhances the solid material in the cold outer part of a disk, which promotes the formation of gas-giant planet cores. We can regard the H2O snowline as the surface that divides the regions between rocky and gaseous giant planet formation. Thus observationally measuring the location of the H2O snowline is crucial for understanding the planetesimal and planet formation processes, and the origin of water on Earth. In this paper, we find candidate water lines to locate the H2O snowline through future high-dispersion spectroscopic observations. First, we calculate the chemical composition of the disk and investigate the abundance distributions of H2O gas and ice, and the position of the H2O snowline. We confirm that the abundance of H2O gas is high not only in the hot midplane region inside the H2O snowline but also in the hot surface layer of the outer disk. Second, we calculate the H2O line profiles and identify those H2O lines that are promising for locating the H2O snowline: the identified lines are those that have small Einstein A coefficients and high upper state energies. The wavelengths of the candidate H2O lines range from mid-infrared to sub-millimeter, and they overlap with the regions accessible to the Atacama Large Millimeter/sub-millimeter Array and future mid-infrared high-dispersion spectrographs (e.g., TMT/MICHI, SPICA).

  8. Get accurate LNG densities with COSTALD

    SciTech Connect

    Hankinson, R.W.; Coker, T.A.; Thomson, G.H.

    1982-04-01

    A fine-tuned version of the COSTALD correlation predicts the densities for 40 LNG-type mixtures at an average absolute error of 0.078%. When tested against 285 points of low-temperature data collected by the US National Bureau of Standards, the average error was 0.199%, compared with a 0.227% error obtained with the NBS's McCarty-Klosek-McKinley technique. The COSTALD correlation relates the saturated molar volume of a liquid to a characteristic volume, the reduced temperature, and, a modified acentric factor for each stream component. The fine-tuning involved adding several interaction parameters dervied from binary density data.

  9. Submarine LNG tanker concept for the Arctic

    SciTech Connect

    Veliotis, P.T.; Reitz, S.

    1981-01-01

    If LNG tankers could travel underwater, they could transport natural gas from Arctic regions year-round. General Dynamics has designed just such a tanker - a 140,000-m/sup 3/ submarine with a methane-fired steam-propulsion system that uses recirculated exhaust gas injected with oxygen to sustain combustion. (Nuclear power would be cheaper but might not be practical if new regulations are imposed.) Developed from parametric variations in cargo capacity, hull material, and ballasting, the design identifies such ship characteristics as length, beam, depth, cargo-system arrangement, speed, and ship control. An economic analysis indicates the concept's competitiveness with both pipelines and icebreaking tankers.

  10. Particle- and Gaseous Emissions from an LNG Powered Ship.

    PubMed

    Anderson, Maria; Salo, Kent; Fridell, Erik

    2015-10-20

    Measurements of particle number and mass concentrations and number size distribution of particles from a ship running on liquefied natural gas (LNG) were made on-board a ship with dual-fuel engines installed. Today there is a large interest in LNG as a marine fuel, as a means to comply with sulfur and NOX regulations. Particles were studied in a wide size range together with measurements of other exhaust gases under different engine loads and different mixtures of LNG and marine gas oil. Results from these measurements show that emissions of particles, NOX, and CO2 are considerably lower for LNG compared to present marine fuel oils. Emitted particles were mainly of volatile character and mainly had diameters below 50 nm. Number size distribution for LNG showed a distinct peak at 9-10 nm and a part of a peak at diameter 6 nm and below. Emissions of total hydrocarbons and carbon monoxide are higher for LNG compared to present marine fuel oils, which points to the importance of considering the methane slip from combustion of LNG. PMID:26422536

  11. Leak response gelling of liquefied natural gas (LNG). Final report Jan-Oct 81

    SciTech Connect

    Tarpley, W.B. Jr; Twesme, E.N.; Zatko, J.R.

    1981-03-01

    Techniques for thixotropic gelling of liquefied natural gas (LNG) in response to leak or rupture in an LNG container were examined, and the hazard-reducing potential of the technique was demonstrated by limiting mobility and reducing evaporation and burning rate. Of 30 candidate gelants for liquefied methane evaluated, gels of highest yield stress and lowest evaporation rate were obtained with carbon blacks and pyrogenic silica, and means were investigated for reducing the volume requirements of these low bulk-density materials; these included the addition of a surfactant, gelant concentration in a liquid carrier at least partially soluble in methane, and pelletization. All of these techniques showed promise, and pelletization of the low-density gelants reduced required gelant volume to 11 percent of the undensified volume. High-shear mixing of the densified gelants as well as of high-density gelants such as bentonite clay into a methane homolog at room temperature improved the speed of gelation. Other dispersion techniques were investigated. It is recommended that future research optimize gelling and dispersion techniques for industry use and develop hardware designs for long-term gelant storage and rapid introduction in the event of spillage.

  12. Adapting British gas LNG facilities to varying gas compositions: The SELEXOL {reg_sign} process and cryogenic separation

    SciTech Connect

    Dewing, R.A.; Waring, S.; Burns, D.

    1996-12-31

    The original design of the UK National Transmission System (NTS) included five peak shave LNG storage sites strategically located around the country. They now form part of the Storage business that offers gas services to gas transportation companies-these include non British Gas companies as well as other parts of British Gas itself. At these sites, natural gas can be taken from the NTS at the request of the gas transportation companies, treated to cryogenic specifications, and liquefied for storage. LNG can then be re-vaporized and re-injected into the NTS or local mains as required. In this way the whole NTS does not have to be sized for peak rates and increases in demand can be met very quickly. Each peak-shave site was originally designed to handle natural gas with CO{sub 2} levels of up to 1 mol% and with ethane and higher hydrocarbon (C{sub 2}+) levels that needed only limited reduction. However, as different natural gas reservoirs came on stream in the early 1990`s the level of CO{sub 2} and C{sub 2}+ in the NTS network began to rise, and significant modifications were required at four of the five LNG sites. 3 refs., 2 figs., 2 tabs.

  13. Topsides equipment, operating flexibility key floating LNG design

    SciTech Connect

    Yost, K.; Lopez, R.; Mok, J.

    1998-03-09

    Use of a large-scale floating liquefied natural gas (LNG) plant is an economical alternative to an onshore plant for producing from an offshore field. Mobil Technology Co., Dallas, has advanced a design for such a plant that is technically feasible, economical, safe, and reliable. Presented were descriptions of the general design basis, hull modeling and testing, topsides and storage layouts, and LNG offloading. But such a design also presents challenges for designing topsides equipment in an offshore environment and for including flexibility and safety. These are covered in this second article. Mobil`s floating LNG plant design calls for a square concrete barge with a moon-pool in the center. It is designed to produce 6 million tons/year of LNG with up to 55,000 b/d of condensate from 1 bcfd of raw feed gas.

  14. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  15. The Asia Pacific LNG trade: Status and technology development

    SciTech Connect

    Hovdestad, W.R.

    1995-10-01

    The Asia Pacific Region is experiencing a period of sustained economic expansion. Economic growth has led to an increasing demand for energy that has spurred a rapid expansion of baseload liquefied natural gas (LNG) facilities in this region. This is illustrated by the fact that seven of the ten baseload facilities in existence provide LNG for markets in the Asia Pacific region. With the three exceptions having been initially commissioned in 1972 and earlier, it is fair to observed that most advances in LNG technology have been developed and applied for this market. The paper presents the current status and identified future trends for the Asia Pacific LNG trade. Technology development in terms of application to onstream production, processing and transportation facilities, including LNG tankers, is presented. The potential of future advances to applied technology and operational practices to improve the cost-effectiveness of new and existing facilities is discussed. Current design data and methods as actually used are examined in terms of identifying where fundamental research and basic physical data are insufficient for optimization purposes. These findings are then summarized and presented in terms of the likely evolution of future and existing LNG projects in the Asia Pacific region.

  16. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    2006-09-30

    The initial scope of work for this project included: 1) Improving the FEM3A advanced turbulence closure module, 2) Adaptation of FEM3A for more general applications, and 3) Verification of dispersion over rough surfaces, with and without obstacle using the advanced turbulence closure module. These work elements were to be performed by Chemical Hazards Research Center (CHRC), Department of Chemical Engineering, University of Arkansas as a subcontractor to Gas Technology Institute (GTI). The tasks for GTI included establishment of the scientific support base for standardization of the FEM3A model, project management, technology transfer, and project administration. Later in the course of the project, the scope of work was modified by the National Energy Technology Laboratories (NETL) to remove the emphasis on FEM3A model and instead, develop data in support of NETL’s FLUENT modeling. With this change, GTI was also instructed to cease activities relative to FEM3A model. GTI’s technical activities through this project included the initial verification of FEM3A model, provision of technical inputs to CHRC researchers regarding the structure of the final product, and participation in technical discussion sessions with CHRC and NETL technical staff. GTI also began the development of a Windows-based front end for the model but the work was stopped due to the change in scope of work. In the meantime, GTI organized a workshop on LNG safety in Houston, Texas. The workshop was very successful and 75 people from various industries participated. All technical objectives were met satisfactorily by Dr. Jerry Havens and Dr. Tom Spicer of CHRC and results are presented in a stand-alone report included as Appendix A to this report.

  17. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    Iraj A. Salehi; Jerry Havens; Tom Spicer

    2006-09-30

    The initial scope of work for this project included: (1) Improving the FEM3A advanced turbulence closure module, (2) Adaptation of FEM3A for more general applications, and (3) Verification of dispersion over rough surfaces, with and without obstacle using the advanced turbulence closure module. These work elements were to be performed by Chemical Hazards Research Center (CHRC), Department of Chemical Engineering, University of Arkansas as a subcontractor to Gas Technology Institute (GTI). The tasks for GTI included establishment of the scientific support base for standardization of the FEM3A model, project management, technology transfer, and project administration. Later in the course of the project, the scope of work was modified by the National Energy Technology Laboratories (NETL) to remove the emphasis on FEM3A model and instead, develop data in support of NETL's FLUENT modeling. With this change, GTI was also instructed to cease activities relative to FEM3A model. GTI's technical activities through this project included the initial verification of FEM3A model, provision of technical inputs to CHRC researchers regarding the structure of the final product, and participation in technical discussion sessions with CHRC and NETL technical staff. GTI also began the development of a Windows-based front end for the model but the work was stopped due to the change in scope of work. In the meantime, GTI organized a workshop on LNG safety in Houston, Texas. The workshop was very successful and 75 people from various industries participated. All technical objectives were met satisfactorily by Dr. Jerry Havens and Dr. Tom Spicer of CHRC and results are presented in a stand-alone report included as Appendix A to this report.

  18. LNG cascading damage study. Volume I, fracture testing report.

    SciTech Connect

    Petti, Jason P.; Kalan, Robert J.

    2011-12-01

    As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

  19. Vapor-phase photo-oxidation of methanol over nano-size titanium dioxide clusters dispersed in MCM-41 host material part 2: catalytic properties and surface transient species.

    PubMed

    Bhattacharyya, K; Varma, S; Kumar, D; Tripathi, A K; Gupta, N M

    2005-05-01

    We report in this paper on the ultraviolet-assisted vapor-phase oxidation of methanol at room temperature, with the help of nano-size clusters of titanium dioxide dispersed in an MCM-41 silicate matrix. The surface species formed during the adsorption/oxidation of methanol and the transformation that they undergo as a result of ultraviolet irradiation were monitored using in-situ Fourier transform infrared and thermal desorption spectroscopy techniques. Parallel experiments conducted on TiO2/MCM, bulk titania, and pristine MCM-41 samples helped in identifying the individual role of titanium dioxide and host matrix in these processes. The photo-catalytic oxidation of methanol, at concentrations of 0.1 to 1.1 mol% in air, gave rise to formation of CO2 and H2O as products, for both the TiO2/MCM and bulk TiO2 samples. No such reaction occurred on titania-free MCM. Furthermore, the rate of reaction depended upon the TiO2 content of a sample and also on the concentration of methanol in reaction mixture. Thus, the rate of conversion increased progressively with the increase in TiO2 loading from 5 to 21 wt% in TiO2/MCM samples, particularly for the experiments with high concentration of methanol. For low methanol concentration (0.1 mol%) in air, the effect of titania content in MCM was very small. The specific activity (per g of titania) of a sample, on the other hand, showed an inverse relationship with the loading of titanium dioxide in a sample. Infrared and temperature-programmed desorption results revealed that the mode of CH3OH adsorption and the reactivity of the transient species formed during the oxidation process were independent of the size of dispersed titania particles. Thus, the particles of approximately 2-6 nm size, present in TiO2/MCM, exhibited a chemisorption behavior similar to that of the bulk titania. The results of the present study provide strong evidence that the hydroxyl groups, both on the host matrix and at the titania sites, participate

  20. 76 FR 81925 - Freeport LNG Development, L.P.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Energy Regulatory Commission Freeport LNG Development, L.P.; Notice of Application Take notice that on December 9, 2011, Freeport LNG Development, L.P. (Freeport LNG), filed an application pursuant to Section 3..., Fulbright & Jaworski L.L.P., 666 Fifth Avenue, New York, New York 10103. Telephone (212) 318-3009, fax...

  1. 75 FR 74029 - Sabine Pass LNG, L.P.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... Energy Regulatory Commission Sabine Pass LNG, L.P.; Notice of Application November 22, 2010. Take notice that on November 12, 2010, Sabine Pass LNG, L.P. (Sabine Pass), 700 Milam Street, Suite 800, Houston... directed to Patricia Outtrim, Sabine Pass LNG, L.P., 700 Milam Street, Suite 800, Houston, Texas 77002,...

  2. 75 FR 53688 - Southern LNG Company, L.L.C.; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern LNG Company, L.L.C.; Notice of Technical Conference August 25, 2010..., Southern LNG Company, L.L.C. (Southern LNG) filed a tariff sheet to revise its tariff with respect to...

  3. 77 FR 788 - Southern LNG Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... Energy Regulatory Commission Southern LNG Company, L.L.C.; Notice of Application Take notice that on December 15, 2011, Southern LNG Company, L.L.C. (SLNG), 569 Brookwood Village, Suite 501, Birmingham... should be directed to Glenn A. Sheffield, Director, Rates & Regulatory Affairs, Southern LNG Company,...

  4. 75 FR 2126 - Calais Pipeline Company, LLC; Calais LNG Project Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... Energy Regulatory Commission Calais Pipeline Company, LLC; Calais LNG Project Company, LLC; Notice of Application January 6, 2010. Take notice that on December 18, 2009, Calais LNG Project Company, LLC (Calais LNG) and Calais Pipeline Company, LLC (Calais Pipeline) 142 ] Main Street, P.O. Box 133, Calais,...

  5. 33 CFR 127.703 - Access to the marine transfer area for LNG.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... area for LNG. 127.703 Section 127.703 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Access to the marine transfer area for LNG. The operator shall ensure that— (a) Access to the marine transfer area for LNG from the shoreside and the waterside is limited to— (1) Personnel who work at...

  6. 33 CFR 127.703 - Access to the marine transfer area for LNG.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... area for LNG. 127.703 Section 127.703 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Access to the marine transfer area for LNG. The operator shall ensure that— (a) Access to the marine transfer area for LNG from the shoreside and the waterside is limited to— (1) Personnel who work at...

  7. 75 FR 54025 - Revision of LNG and LHG Waterfront Facility General Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... final rule entitled ``Revision of LNG and LHG Waterfront Facility General Requirements'' (75 FR 29420... SECURITY Coast Guard 33 CFR Part 127 RIN 1625-AB13 Revision of LNG and LHG Waterfront Facility General... (WSA) requirements for liquefied natural gas (LNG) and liquefied hazardous gas (LHG) facilities....

  8. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... spacing of marine transfer area for LNG. (a) LNG impounding spaces must be located so that the heat flux... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...

  9. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... spacing of marine transfer area for LNG. (a) LNG impounding spaces must be located so that the heat flux... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...

  10. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... spacing of marine transfer area for LNG. (a) LNG impounding spaces must be located so that the heat flux... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...

  11. 75 FR 20591 - AES Sparrows Point LNG, LLC and Mid-Atlantic Express, LLC; Notice of Final General Conformity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... General Conformity Determination for Pennsylvania for the Proposed Sparrows Point LNG Terminal and... liquefied natural gas (LNG) import terminal and natural gas pipeline proposed by AES Sparrows Point LNG, LLC... quality impacts from the construction and operation of the following LNG terminal and natural gas...

  12. Overview study of LNG release prevention and control systems

    SciTech Connect

    Pelto, P.J.; Baker, E.G.; Holter, G.M.; Powers, T.B.

    1982-03-01

    The liquefied natural gas (LNG) industry employs a variety of release prevention and control techniques to reduce the likelihood and the consequences of accidental LNG releases. A study of the effectiveness of these release prevention and control systems is being performed. Reference descriptions for the basic types of LNG facilities were developed. Then an overview study was performed to identify areas that merit subsequent and more detailed analyses. The specific objectives were to characterize the LNG facilities of interest and their release prevention and control systems, identify possible weak links and research needs, and provide an analytical framework for subsequent detailed analyses. The LNG facilities analyzed include a reference export terminal, marine vessel, import terminal, peakshaving facility, truck tanker, and satellite facility. A reference description for these facilities, a preliminary hazards analysis (PHA), and a list of representative release scenarios are included. The reference facility descriptions outline basic process flows, plant layouts, and safety features. The PHA identifies the important release prevention operations. Representative release scenarios provide a format for discussing potential initiating events, effects of the release prevention and control systems, information needs, and potential design changes. These scenarios range from relatively frequent but low consequence releases to unlikely but large releases and are the principal basis for the next stage of analysis.

  13. Insulating polymer concrete for LNG impounding dikes. [Polymer concretes

    SciTech Connect

    Fontana, J.J.; Steinberg, M.

    1986-03-01

    An insulating polymer concrete (IPC) composite has been developed under contract to the Gas Research Institute for possible use as a dike insulation material at Liquid Natural Gas (LNG) storage facilities. In the advent of an LNG spill into the impounding dike area, the boiloff rate of the LNG can be substantially reduced if the surfaces of the dike are insulated. This increased safety at the LNG facility will tend to reduce the hazardous explosive mixture with atmospheric air in the surrounding region. The dike insulation material must have a low thermal conductivity and be unaffected by environmental conditions. The IPC composites developed consist of perlite or glass nodule aggregates bound together as a closed cell structure with a polyester resin. In addition to low thermal conductivity and porosity, these composites have correspondingly high strengths and, therefore, can carry transient loads of workmen and maintenance equipment. Prefabricated IPC panels have been installed experimentally and at least one utility is currently considering a complete installation at its LNG facility. 5 refs., 5 tabs.

  14. Floating LNG plant will stress reliability and safety

    SciTech Connect

    Kinney, C.D.; Schulz, H.R.; Spring, W.

    1997-07-01

    Mobil has developed a unique floating LNG plant design after extensive studies that set safety as the highest priority. The result is a production, storage and offloading platform designed to produce 6 million tons per year of LNG and up to 55,000 bpd of condensate from 1 Bcfd of feed gas. All production and off-loading equipment is supported by a square donut-shaped concrete hull, which is spread-moored. The hull contains storage tanks for 250,000 m{sup 3} of LNG, 6540,000 bbl of condensate and ballast water. Both LNG and condensate can be directly offloaded to shuttle tankers. Since the plant may be moved to produce from several different gas fields during its life, the plant and barge were designed to be generic. It can be used at any location in the Pacific Rim, with up to 15% CO{sub 2}, 100 ppm H{sub 2}S, 55 bbl/MMcf condensate and 650 ft water depth. It can be modified to handle other water depths, depending upon the environment. In addition, it is much more economical than an onshore grassroots LNG plant, with potential capital savings of 25% or more. The paper describes the machinery, meteorology and oceanography, and safety engineering.

  15. Vaporizer performance

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Perez-Ortiz, B. M.; Whitelaw, J. H.

    This paper examines the nature of the flow leaving a vaporizer, its dependence on the flowrates of air and kerosene fuel, the inlet air temperature, and the possible consequences for the performance of a combustor fueled by the vaporizer. A phase Doppler velocimeter was used to examine the distribution of droplet diameters, velocities of the droplets, and the liquid-fuel flux at the exit. Measurements are also reported which show the nature of the two-phase flow away from the vaporizer exits and in important regions within a combustor corresponding to a one-sixth annular sector of a reverse-flow arrangement. The distribution of droplets within the combustor was observed and photographs of the combusting flow are presented.

  16. Vapor fragrancer

    NASA Astrophysics Data System (ADS)

    Sang, Q. Tran; Bryant, Timothy D.

    1987-05-01

    This invention relates to a vapor fragrancer for continuously, uniformly, and economically odorizing or deodorizing an environment. Homes, offices, automobiles, and space stations require either odorizing or deodorizing of the atmosphere to create pleasant conditions for work or leisure. A vapor fragrancer is provided to accomplish these goals. A supplier continuously supplies a predetermined amount of desired liquid fragrance from a container to a retaining material, which is positioned in the circulation path of the atmosphere. The supplier is either a low powered pump or a gravity dispenser. The atmosphere flowing in a circulation path passes over the retaining material containing the liquid fragrance and lifts a fragrant vapor from the retaining material. The atmosphere is thereby continuously and uniformly fragranced.

  17. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    SciTech Connect

    Breazeale, K.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  18. Comparison of CNG and LNG technologies for transportation applications

    SciTech Connect

    Sinor, J.E. Consultants, Inc., Niwot, CO )

    1992-01-01

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  19. Analysis of LNG peakshaving-facility release-prevention systems

    SciTech Connect

    Pelto, P.J.; Baker, E.G.; Powers, T.B.; Schreiber, A.M.; Hobbs, J.M.; Daling, P.M.

    1982-05-01

    The purpose of this study is to provide an analysis of release prevention systems for a reference LNG peakshaving facility. An overview assessment of the reference peakshaving facility, which preceeded this effort, identified 14 release scenarios which are typical of the potential hazards involved in the operation of LNG peakshaving facilities. These scenarios formed the basis for this more detailed study. Failure modes and effects analysis and fault tree analysis were used to estimate the expected frequency of each release scenario for the reference peakshaving facility. In addition, the effectiveness of release prevention, release detection, and release control systems were evaluated.

  20. Monitoring, safety systems for LNG and LPG operators

    SciTech Connect

    True, W.R.

    1998-11-16

    Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.

  1. Pressure Build-Up in LNG and LH2 Vehicular Cryogenic Storage Tanks

    NASA Astrophysics Data System (ADS)

    Barclay, J. A.; Rowe, A. M.; Barclay, M. A.

    2004-06-01

    The use of LNG and LH2 as fuels in heavy duty vehicles is increasing steadily because cryogenic liquids provides superior volumetric and gravimetric energy densities compared to other means of on-board storage. Although several sizes and types of tanks exist, a typical vehicular storage tank has a volume of ˜400 liters (˜100 gallons). The pressure in the ullage space of a tank freshly filled is usually ˜0.25 MPa but may vary during use from ˜0.25 MPa (˜20 psig) to ˜0.92 MPa (˜120 psig). Cryogenic vehicular tanks are typically dual-walled, stainless steel vessels with vacuum and superinsulation isolation between the inner and outer vessel walls. The heat leaks into such tanks are measured as a percentage boil-off per day. For a storage tank of vehicular size range, the boil-off may be ˜ 1 % day, depending upon the cryogen and the quality of the tank. The corresponding heat leak into the cryogenic liquid vaporizes a certain amount of liquid that in turn increases the pressure in the tank which in turn significantly influences the properties of the cryogens. We have used a novel approach to calculate the increase in pressure of LNG and LH2 in a closed cryogenic vessel with a fixed heat leak as a function of time using real equations of state for the properties of the cryogens. The method and results for the time it takes for a freshly filled tank to increase in pressure from the filling pressure of ˜0.25 MPa to a venting pressure of ˜1.73 MPa are presented.

  2. 76 FR 53425 - Pivotal LNG, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Pivotal LNG, Inc.; Notice of Application Take notice that on August 8, 2011... Federal Energy Regulatory Commission (Commission) an application under section 7(c) of the Natural Gas...

  3. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181... minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum liquid... largest tank's maximum liquid capacity, whichever is greater, for the impoundment serving more than...

  4. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181... minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum liquid... largest tank's maximum liquid capacity, whichever is greater, for the impoundment serving more than...

  5. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181... minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum liquid... largest tank's maximum liquid capacity, whichever is greater, for the impoundment serving more than...

  6. Fire performance of LNG carriers insulated with polystyrene foam.

    PubMed

    Havens, Jerry; Venart, James

    2008-10-30

    Analysis of the response of a liquid-full Moss Sphere LNG tank insulated with polystyrene foam to an engulfing LNG fire indicates that current regulatory requirements for pressure relief capacity sufficient to prevent tank rupture are inadequate. The inadequacy of the current requirements stems primarily from two factors. Firstly, the area of the Moss Sphere protruding above what would be the nominal deck on a conventional carrier, which is protected only by a steel weather cover from exposure to heat from a tank-engulfing fire, is being underestimated. Secondly, aluminum foil-covered polystyrene foam insulation applied to the exterior of the LNG tank is protected above the deck only by the steel weather cover under which the insulation could begin to melt in as little as 1-3 min, and could completely liquefy in as few as 10 min. U.S. and International Regulations require that the insulations on the above-deck portion of tanks have approved fire proofing and stability under fire exposure. Polystyrene foam, as currently installed on LNG carriers, does not appear to meet these criteria. As a result of these findings, but giving no consideration to the significant potential for further damage if the polystyrene should burn, the boil-off rate is predicted to be an order-of-magnitude higher than provided for by current PRV sizing requirements. PMID:18372107

  7. Field experiments on high expansion (HEX) foam application for controlling LNG pool fire.

    PubMed

    Suardin, Jaffee A; Wang, Yanjun; Willson, Mike; Mannan, M Sam

    2009-06-15

    Previous research suggests that high expansion foam with an expansion ratio of 500 to 1 is one of the best options for controlling liquefied natural gas (LNG) pool fire on land. However, its effectiveness heavily depends on the foam application rate, foam generator location, and the design of LNG spill containment dike. Examination of these factors is necessary to achieve the maximum benefit for applying HEX on LNG pool fires. While theoretical study of the effects of foam on LNG fires is important, the complicated phenomena involved in LNG pool fire and foam application increase the need for LNG field experimentation. Therefore, five LNG experiments were conducted at Texas A&M University's Brayton Fire Training Field. ANGUS FIRE provided Expandol solution to form 500 to 1 high expansion foam (HEX) and its latest LNG Turbex Fixed High Expansion Foam Generators. In this paper, data collected during five experiments are presented and analyzed. The effectiveness of high expansion foam for controlling LNG pool fires with various application rates at two different types of containment pits is discussed. LNG fire behaviors and the effects of dike wall height are also presented and discussed. PMID:19056175

  8. Oil dispersants

    SciTech Connect

    Flaherty, L.M.

    1989-01-01

    This book contains papers presented at a symposium of the American Society for Testing and Materials. The topics covered include: The effect of elastomers on the efficiency of oil spill dispersants; planning for dispersant use; field experience with dispersants for oil spills on land; and measurements on natural dispersion.

  9. Impact Vaporization of Planetesimal Cores

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Root, S.; Lemke, R. W.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.

    2013-12-01

    The degree of mixing and chemical equilibration between the iron cores of planetesimals and the mantle of the growing Earth has important consequences for understanding the end stages of Earth's formation and planet formation in general. At the Sandia Z machine, we developed a new shock-and-release technique to determine the density on the liquid-vapor dome of iron, the entropy on the iron shock Hugoniot, and the criteria for shock-induced vaporization of iron. We find that the critical shock pressure to vaporize iron is 507(+65,-85) GPa and show that decompression from a 15 km/s impact will initiate vaporization of iron cores, which is a velocity that is readily achieved at the end stages of planet formation. Vaporization of the iron cores increases dispersal of planetesimal cores, enables more complete chemical equilibration of the planetesimal cores with Earth's mantle, and reduces the highly siderophile element abundance on the Moon relative to Earth due to the expanding iron vapor exceeding the Moon's escape velocity. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  10. Analysis of LNG import terminal release prevention systems

    SciTech Connect

    Baker, E G

    1982-04-01

    The release prevention systems of liquefied natural gas (LNG) import terminal were analyzed. A series of potential release scenarios were analyzed to determine the frequency of the release events, the probability these releases are not stopped or isolated by emergency shutdown systems, the estimated release quantities, and the critical components of the system. The two plant areas identified as being most significant with respect to safety are the unloading system and the storage system. Rupture of the main transfer line and gross failure of the storage tanks are the two release scenarios of primary safety interest. Reducing the rate of failure by improved design, better maintenance and testing, or adding redundancy of the critical system components for these plant areas and release scenarios will result in improved safety. Several design alternatives which have the potential to significantly reduce the probability of a large release of LNG occurring at an import terminal are identified. These design alternatives would reduce the probability of a large release of LNG by reducing the expected number of failures which could cause a release or by reducing the magnitude of releases that do occur. All of these alternatives are technically feasible and have been used or considered for use in at least one LNG facility. A more rigorous analysis of the absolute risk of LNG import terminal operation is necessary before the benefits of these design alternatives can be determined. In addition, an economic evaluation of these alternatives must be made so the costs and benefits can be compared. It is concludd that for remotely located facilities many of these alternatives are probably not justified; however, for facilities located in highly populated areas, these alternatives deserve serious consideration.

  11. Investigation of propulsion system for large LNG ships

    NASA Astrophysics Data System (ADS)

    Sinha, R. P.; Nik, Wan Mohd Norsani Wan

    2012-09-01

    Requirements to move away from coal for power generation has made LNG as the most sought after fuel source, raising steep demands on its supply and production. Added to this scenario is the gradual depletion of the offshore oil and gas fields which is pushing future explorations and production activities far away into the hostile environment of deep sea. Production of gas in such environment has great technical and commercial impacts on gas business. For instance, laying gas pipes from deep sea to distant receiving terminals will be technically and economically challenging. Alternative to laying gas pipes will require installing re-liquefaction unit on board FPSOs to convert gas into liquid for transportation by sea. But, then because of increased distance between gas source and receiving terminals the current medium size LNG ships will no longer remain economical to operate. Recognizing this business scenario shipowners are making huge investments in the acquisition of large LNG ships. As power need of large LNG ships is very different from the current small ones, a variety of propulsion derivatives such as UST, DFDE, 2-Stroke DRL and Combined cycle GT have been proposed by leading engine manufacturers. Since, propulsion system constitutes major element of the ship's capital and life cycle cost, which of these options is most suited for large LNG ships is currently a major concern of the shipping industry and must be thoroughly assessed. In this paper the authors investigate relative merits of these propulsion options against the benchmark performance criteria of BOG disposal, fuel consumption, gas emissions, plant availability and overall life cycle cost.

  12. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    SciTech Connect

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  13. Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues

    SciTech Connect

    Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

    1997-07-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

  14. Development of a simple 5-15 litre per hour LNG refueling system

    SciTech Connect

    Corless, A.J.; Sarangi, S.; Hall, J.L.; Barclay, J.A.

    1994-12-31

    A variable capacity, small-scale liquefied natural gas (LNG) refueling system has been designed, built, and tested at the Cryofuel Systems` Laboratory, University of Victoria, Canada. The system, designed to continuously liquefy between 5 and 15 litres of NG, utilizes liquid nitrogen (LN{sub 2}) as its cold source and contains most of the components found in a typical commercial refueling system; i.e. purification system, liquefier, LNG storage, automatic control and monitoring system. This paper describes the design of the system as well as the results of a set of LNG production trials. The performance of the system exceeded expected LNG production rates, but at levels of efficiency somewhat less than predicted. Cryofuel Systems expects to use this system to implement an LNG vehicle demonstration program and to gain experience in the integration of LNG refueling systems which exploit advanced liquefaction technology such as magnetic refrigeration.

  15. A review of recent field tests and mathematical modelling of atmospheric dispersion of large spills of Denser-than-air gases

    NASA Astrophysics Data System (ADS)

    Koopman, Ronald P.; Ermak, Donald L.; Chan, Stevens T.

    Large-scale spills of hazardous materials often produce gas clouds which are denser than air. The dominant physical processes which occur during dense-gas dispersion are very different from those recognized for trace gas releases in the atmosphere. Most important among these processes are stable stratification and gravity flow. Dense-gas flows displace the ambient atmospheric flow and modify ambient turbulent mixing. Thermodynamic and chemical reactions can also contribute to dense-gas effects. Some materials flash to aerosol and vapor when released and the aerosol can remain airborne, evaporating as it moves downwind, causing the cloud to remain cold and dense for long distances downwind. Dense-gas dispersion models, which include phase change and terrain effects have been developed and are capable of simulating many possible accidental releases. A number of large-scale field tests with hazardous materials such as liquefied natural gas (LNG), ammonia (NH 3), hydrofluoric acid(HF) and nitrogen tetroxide(N 2O 4) have been performed and used to evaluate models. The tests have shown that gas concentrations up to ten times higher than those predicted by trace gas models can occur due to aerosols and other dense-gas effects. A methodology for model evaluation has been developed which is based on the important physical characteristics of dense-gas releases.

  16. Flare system for safe disposal of LNG from a disabled tanker

    SciTech Connect

    Not Available

    1982-12-01

    The feasibility of a flare system for the rapid and safe incineration of the cargo of a disabled LNG tanker is evaluated. The project developed design parameters and proof-of-principle investigations of a system for off-loading and flaring LNG from a disabled LNG tanker. The system described offers enough promise to warrant additional investigation, if cargo burning is desired as a way of reducing other possible hazards.

  17. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  18. LNG (liquefied natural gas) in the Asia-Pacific region: Twenty years of trade and outlook for the future

    SciTech Connect

    Kiani, B.

    1990-01-01

    This report discusses the following topics: the current status of LNG trade in the Asia-Pacific region; present structure and projected demand in the Asia-Pacific region; prospective and tentative projects; and LNG contracts: stability versus flexibility.

  19. Kalimantan field development hikes gas supply for LNG export

    SciTech Connect

    Suharmoko, G.R. )

    1991-10-14

    This paper reports on the development of Tambora and Tunu gas fields in Kalimantan that have increased available gas supply for the export of liquefied natural gas (LNG) from Indonesia. The demand for LNG is increasing in the energy thirsty Far East market. And Indonesia, the world's largest exporter, is keeping pace by expanding the Bontang liquefaction plant in East Kalimantan. A fifth train, with a capacity of around 2.5 million tons/year, began operating in January 1990. Start-up of a sixth train, of identical capacity, is planned for January 1994. The Bontang plant is operated by PT Badak on behalf of Pertamina, the Indonesian state oil and gas mining company. The feed to the fifth train comes primarily from the first-phase development of Total Indonesie's two gas fields, Tambora and Tunu. The sixth train will be fed by a second-phase development of the Tunu field.

  20. US North Slope gas and Asian LNG markets

    USGS Publications Warehouse

    Attanasi, E.D.

    1994-01-01

    Prospects for export of liquified natural gas (LNG) from Alaska's North Slope are assessed. Projected market conditions to 2010 show that new LNG capacity beyond announced expansions will be needed to meet regional demand and that supplies will probably come from outside the region. The estimated delivered costs of likely suppliers show that Alaska North Slope gas will not be competitive. The alternative North Slope gas development strategies of transport and sale to the lower 48 states and use on the North Slope for either enhanced oil recovery or conversion to liquids are examined. The alternative options require delaying development until US gas prices increase, exhaustion of certain North Slope oil fields, or advances occur in gas to liquid fuels conversion technology. ?? 1995.

  1. Solar vapor generation enabled by nanoparticles.

    PubMed

    Neumann, Oara; Urban, Alexander S; Day, Jared; Lal, Surbhi; Nordlander, Peter; Halas, Naomi J

    2013-01-22

    Solar illumination of broadly absorbing metal or carbon nanoparticles dispersed in a liquid produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Sunlight-illuminated particles can also drive H(2)O-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation. These phenomena can also enable important compact solar applications such as sterilization of waste and surgical instruments in resource-poor locations. PMID:23157159

  2. Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Chen, Q.-S.; Wegrzyn, J.; Prasad, V.

    2004-10-01

    Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

  3. Coupling dynamic blow down and pool evaporation model for LNG.

    PubMed

    Woodward, John L

    2007-02-20

    Treating the dynamic effects of accidental discharges of liquefied natural gas (LNG) is important for realistic predictions of pool radius. Two phenomena have important influence on pool spread dynamics, time-varying discharge (blow down) and pool ignition. Time-varying discharge occurs because a punctured LNG tanker or storage tank drains with a decreasing liquid head and decreasing head-space pressure. Pool ignition increases the evaporation rate of a pool and consequently decreases the ultimate pool area. This paper describes an approach to treat these phenomena in a dynamic pool evaporation model. The pool evaporation model developed here has two separate regimes. Early in the spill, momentum forces dominate and the pool spreads independently of pool evaporation rate and the corresponding heat transfer rate. After the average pool depth drops below a minimum value, momentum forces are largely dissipated and the thin edges of the pool completely evaporate, so pool area is established by the heat transfer rate. The maximum extent of a burning pool is predicted to be significantly less than that of an unignited pool because the duration of the first regime is reduced by higher heat transfer rates. The maximum extent of an LNG pool is predicted to be larger upon accounting for blow down compared with using a constant average discharge rate. However, the maximum pool extent occurs only momentarily before retreating. PMID:17184912

  4. Design advanced for large-scale, economic, floating LNG plant

    SciTech Connect

    Naklie, M.M.

    1997-06-30

    A floating LNG plant design has been developed which is technically feasible, economical, safe, and reliable. This technology will allow monetization of small marginal fields and improve the economics of large fields. Mobil`s world-scale plant design has a capacity of 6 million tons/year of LNG and up to 55,000 b/d condensate produced from 1 bcfd of feed gas. The plant would be located on a large, secure, concrete barge with a central moonpool. LNG storage is provided for 250,000 cu m and condensate storage for 650,000 bbl. And both products are off-loaded from the barge. Model tests have verified the stability of the barge structure: barge motions are low enough to permit the plant to continue operation in a 100-year storm in the Pacific Rim. Moreover, the barge is spread-moored, eliminating the need for a turret and swivel. Because the design is generic, the plant can process a wide variety of feed gases and operate in different environments, should the plant be relocated. This capability potentially gives the plant investment a much longer project life because its use is not limited to the life of only one producing area.

  5. LNG as a fuel for railroads: Assessment of technology status and economics. Topical report, June-September 1992

    SciTech Connect

    Pera, C.J.; Moyer, C.B.

    1993-01-06

    The objective of the research was to investigate the feasibility of liquefied natural gas (LNG) as a fuel for railroads. The investigation included assessment of the status of relevant technologies (i.e., LNG-fueled locomotive engines, tender cars, refueling equipment), a review of current demonstration projects, and an analytical evaluation of LNG railroad economics.

  6. 78 FR 42587 - Deepwater Port License: Amendment of the Neptune LNG LLC Deepwater Port License and Temporary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... Maritime Administration Deepwater Port License: Amendment of the Neptune LNG LLC Deepwater Port License and Temporary Suspension of Operations at the Neptune LNG Deepwater Port AGENCY: Maritime Administration... Administration (MarAd) provides public notice of its decision to approve the request of Neptune LNG LLC...

  7. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W....

  8. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W....

  9. 40 CFR Table W - 5 of Subpart W-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment ENVIRONMENTAL... Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  10. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W....

  11. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W....

  12. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W....

  13. 75 FR 11169 - AES Sparrows Point LNG, LLC; Mid-Atlantic Express, LLC; Notice of Availability of the Revised...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Sparrows Point LNG Terminal and Pipeline Project March 1, 2010. The staff of the Federal Energy Regulatory... operation of a liquefied natural gas (LNG) import terminal and natural gas pipeline proposed by AES Sparrows... LNG terminal and natural gas pipeline facilities: A ship unloading facility, with two berths,...

  14. 75 FR 353 - AES Sparrows Point LNG, LLC and Mid-Atlantic Express, LLC; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Terminal and Pipeline Project December 29, 2009. The staff of the Federal Energy Regulatory Commission... natural gas (LNG) import terminal and natural gas pipeline proposed by AES Sparrows Point LNG, LLC and Mid... operation of the following LNG terminal and natural gas pipeline facilities: A ship unloading facility,...

  15. 75 FR 29420 - Revision of LNG and LHG Waterfront Facility General Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... proposed rulemaking entitled ``Revision of LNG and LHG Waterfront Facility General Requirements'' (74 FR... easily be obtained from the facility-design specifications'' (60 FR ] 39788). Every LOI provided by an... Regulatory Commission FR Federal Register LHG Liquefied hazardous gas LNG Liquefied natural gas LOI Letter...

  16. 77 FR 10732 - Cameron LNG, LLC; Application for Long-Term Authorization To Export Domestically Produced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ...The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an application (Application), filed on December 21, 2011, by Cameron LNG, LLC (Cameron), requesting long-term, multi-contract authorization to export up to 12 million metric tons per annum (mtpa) of domestically produced liquefied natural gas (LNG) (equivalent to approximately 620 billion cubic feet......

  17. 77 FR 66830 - LNG Development Company, LLC and Oregon Pipeline Company; Northwest Pipeline GP; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... Energy Regulatory Commission LNG Development Company, LLC and Oregon Pipeline Company; Northwest Pipeline GP; Notice of Extension of Comment Period for the Oregon LNG Export and Washington Expansion Projects This notice announces the extension of the public scoping process and comment period for the Oregon...

  18. 76 FR 40723 - Dominion Cove Point LNG, LP; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Dominion Cove Point LNG, LP; Notice of Technical Conference On May 27, 2011, pursuant to section 4 of the Natural Gas Act (NGA), Dominion Cove Point LNG, LP (Cove Point) filed...

  19. The potential for LNG as a railroad fuel in the U.S.

    SciTech Connect

    Fritz, S.G.

    2000-01-01

    Freight railroad operations in the US represent a substantial opportunity for liquefied natural gas (LNG) to displace diesel fuel. With the promise of achieving an overwhelming economic advantage over diesel fuel, this paper presents some discussion to the question, ``Why is the application of LNG for railroad use in the US moving so slowly?'' A brief overview of the freight railroad operations in the US is given, along with a summary of several railroad LNG demonstration projects. US Environmental Protection Agency and California Air Resources Board exhaust emission regulations may cause the railroad industry to move from small-scale LNG demonstration projects to using LNG as a primary freight railroad transportation fuel in selected regions or route-specific applications.

  20. Calibrated vapor generator source

    DOEpatents

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  1. Calibrated vapor generator source

    DOEpatents

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  2. Ocular dispersion

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.

    1999-06-01

    Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

  3. LNG projects make progress in Oman and Yemen

    SciTech Connect

    1997-02-24

    Two LNG projects in the Middle East, one in Oman and the other in Yemen, are due on stream at the turn of the century--each the largest single project ever put together in its country. Officials described their projects at a yearend 1996 conference in Paris by Institut Francais du Petrole and Petrostrategies. The Oman project develops gas reserves, does gas processing, and transports the gas 360 km to a liquefaction plant to be built on the coast. The Yemen project involves a liquefaction plant and an export terminal.

  4. Comparison of hypothetical LNG and fuel oil fires on water.

    PubMed

    Lehr, William; Simecek-Beatty, Debra

    2004-02-27

    Large spills of refined petroleum products have been an occasional occurrence over the past few decades. This has not been true for large spills of liquefied natural gas (LNG). This paper compares the likely similarities and differences between accidental releases from a ship of sizable quantities of these different hydrocarbon fuels, their subsequent spreading, and possible pool-fire behavior. Quantitative estimates are made of the spread rate and maximum slick size, burn rate, and duration; effective thermal radiation; and subsequent soot generation. PMID:15036638

  5. Cryogenic flexible pipes for offshore LNG-LPG production

    SciTech Connect

    Dumay, J.M.

    1981-01-01

    Available in long, flexible pieces (up to several miles), the high-performance Coflexip pipe comprises four basic layers: (1) an interlocked, spiraled-steel carcass to resist crushing and prevent deformation, (2) an inner thermoplastic sheath to render the line internally leakproof, (3) two cross-laid steel-wire armors to oppose the stresses induced by internal pressure, and (4) an external thermoplastic sheath to ensure water-tightness and resist corrosion. Coflexip pipe is particularly suitable for transporting cryogenic liquids such as LNG from, for example, an offshore liquefaction plant.

  6. Chrysler to race hybrid electric-LNG car

    SciTech Connect

    1994-03-07

    Chrysler Corp. hopes to race a hybrid electric-liquefied natural gas car in the Le Mans in 1995. Preparing for a racing program will speed technological advances that could take years under a regular development program. The car converts LNG to electricity with a two-turbine alternator that powers an electric traction motor. Power not used immediately is placed in reserve in an ultra-high-speed carbon-fiber flywheel, which also captures kinetic energy at braking. Even with the accelerated race program, Chrysler says it will likely be the next century before hybrid technology will make it into production cars.

  7. The effects of refueling system operating pressure on LNG and CNG economics

    SciTech Connect

    Corless, A.J.; Barclay, J.A.

    1996-12-31

    Natural gas (NG) liquefaction and compression are energy intensive processes which make up a significant portion of the overall delivered price of liquefied NG (LNG) and compressed NG (CNG). Increases in system efficiency and/or process changes which reduce the required amount of work will improve the overall economics of NG as a vehicle fuel. This paper describes a method of reducing the delivered cost of LNG by liquefying the gas above ambient pressures. Higher pressure LNG is desirable because OEM NG engine manufacturers would like NG delivered to the engine intake manifold at elevated pressures to avoid compromising engine performance. Producing LNG at higher pressures reduces the amount of work required for liquefaction but it is only practical when the LNG is liquefied on-site. Using a thermo-economic approach, it is shown that NG fuel costs can be reduced by as much as 10% when producing LNG at higher pressures. A reduction in the delivered cost is also demonstrated for CNG produced on-site from high pressure LNG.

  8. White paper: Preliminary assessment of LNG vehicle technology, economics, and safety issues, revision 1

    NASA Astrophysics Data System (ADS)

    Powars, Charles; Lucher, Dan; Moyer, Carl; Browning, Lou

    1992-01-01

    The objective of the study is to evaluate the potential of liquified natural gas (LNG) as a vehicle fuel, to determine market inches, and to identify needed technology improvements. The white paper is being issued when the work is approximately 30 percent complete to preview the study direction, draw preliminary conclusions, and make initial recommendations. Interim findings relative to LNG vehicle technology, economics, and safety are presented. It is important to decide if heavier hydrocarbons should be allowed in LNG vehicle fuel. Development of suitable refueling couplings and vehicle fuel supply pressure systems are recommended. Initial economics analyses considered transit buses and pickup and delivery trucks fueled via onsite liquefiers and imported LNG. Net user costs were more than (but in some cases close to) those for diesel fuel and gasoline. Lowering the cost of small-scale liquefiers would significantly improve the economics of LNG vehicles. New emissions regulations may introduce considerations beyond simple cost comparisons. LNG vehicle safety and available accident data are reviewed. Consistent codes for LNG vehicles and refueling facilities are needed.

  9. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    SciTech Connect

    ANDERSON, T.J.

    2006-12-20

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  10. Enabling a viable technique for the optimization of LNG carrier cargo operations

    NASA Astrophysics Data System (ADS)

    Alaba, Onakoya Rasheed; Nwaoha, T. C.; Okwu, M. O.

    2016-07-01

    In this study, we optimize the loading and discharging operations of the Liquefied Natural Gas (LNG) carrier. First, we identify the required precautions for LNG carrier cargo operations. Next, we prioritize these precautions using the analytic hierarchy process (AHP) and experts' judgments, in order to optimize the operational loading and discharging exercises of the LNG carrier, prevent system failure and human error, and reduce the risk of marine accidents. Thus, the objective of our study is to increase the level of safety during cargo operations.

  11. D-optimal experimental design coupled with parallel factor analysis 2 decomposition a useful tool in the determination of triazines in oranges by programmed temperature vaporization-gas chromatography-mass spectrometry when using dispersive-solid phase extraction.

    PubMed

    Herrero, A; Ortiz, M C; Sarabia, L A

    2013-05-01

    The determination of triazines in oranges using a GC-MS system coupled to a programmed temperature vaporizer (PTV) inlet in the context of legislation is performed. Both pretreatment (using a Quick Easy Cheap Effective Rugged and Safe (QuEChERS) procedure) and injection steps are optimized using D-optimal experimental designs for reducing the experimental effort. The relative dirty extracts obtained and the elution time shifts make it necessary to use a PARAFAC2 decomposition to solve these two usual problems in the chromatographic determinations. The "second-order advantage" of the PARAFAC2 decomposition allows unequivocal identification according to document SANCO/12495/2011 (taking into account the tolerances for relative retention time and the relative abundance for the diagnostic ions), avoiding false negatives even in the presence of unknown co-eluents. The detection limits (CCα) found, from 0.51 to 1.05μgkg(-1), are far below the maximum residue levels (MRLs) established by the European Union for simazine, atrazine, terbuthylazine, ametryn, simetryn, prometryn and terbutryn in oranges. No MRL violations were found in the commercial oranges analyzed. PMID:23522618

  12. Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalysts supported on cationic surfactant-templated mesoporous aluminas

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Gil; Youn, Min Hye; Park, Sunyoung; Jung, Ji Chul; Kim, Pil; Chung, Jin Suk; Song, In Kyu

    Two types of mesoporous γ-aluminas (denoted as A-A and A-S) are prepared by a hydrothermal method under different basic conditions using cationic surfactant (cetyltrimethylammonium bromide, CTAB) as a templating agent. A-A and A-S are synthesized in a medium of ammonia solution and sodium hydroxide solution, respectively. Ni/γ-Al 2O 3 catalysts (Ni/A-A and Ni/A-S) are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of a mesoporous γ-Al 2O 3 support on the catalytic performance of Ni/γ-Al 2O 3 is investigated. The identity of basic solution strongly affects the physical properties of the A-A and A-S supports. The high surface-area of the mesoporous γ-aluminas and the strong metal-support interaction of supported catalysts greatly enhance the dispersion of nickel species on the catalyst surface. The well-developed mesopores of the Ni/A-A and Ni/A-S catalysts prohibit the polymerization of carbon species on the catalyst surface during the reaction. In the steam reforming of LNG, both Ni/A-A and Ni/A-S catalysts give better catalytic performance than the nickel catalyst supported on commercial γ-Al 2O 3 (Ni/A-C). In addition, the Ni/A-A catalyst is superior to the Ni/A-S catalyst. The relatively strong metal-support interaction of Ni/A-A catalyst effectively suppresses the sintering of metallic nickel and the carbon deposition in the steam reforming of LNG. The large pores of the Ni/A-A catalyst also play an important role in enhancing internal mass transfer during the reaction.

  13. Vapor phase pyrolysis

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.

  14. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  15. Thermodynamic Processes Involving Liquefied Natural Gas at the LNG Receiving Terminals / Procesy termodynamiczne z wykorzystaniem skroplonego gazu ziemnego w terminalach odbiorczych LNG

    NASA Astrophysics Data System (ADS)

    Łaciak, Mariusz

    2013-06-01

    The increase in demand for natural gas in the world, cause that the production of liquefied natural gas (LNG) and in consequences its regasification becoming more common process related to its transportation. Liquefied gas is transported in the tanks at a temperature of about 111K at atmospheric pressure. The process required to convert LNG from a liquid to a gas phase for further pipeline transport, allows the use of exergy of LNG to various applications, including for electricity generation. Exergy analysis is a well known technique for analyzing irreversible losses in a separate process. It allows to specify the distribution, the source and size of the irreversible losses in energy systems, and thus provide guidelines for energy efficiency. Because both the LNG regasification and liquefaction of natural gas are energy intensive, exergy analysis process is essential for designing highly efficient cryogenic installations. Wzrost zapotrzebowania na gaz ziemny na świecie powoduje, że produkcja skroplonego gazu ziemnego (LNG), a w konsekwencji jego regazyfikacja, staje się coraz bardziej powszechnym procesem związanym z jego transportem. Skroplony gaz transportowany jest w zbiornikach w temperaturze około 111K pod ciśnieniem atmosferycznym. Przebieg procesu regazyfikacji niezbędny do zamiany LNG z fazy ciekłej w gazową dla dalszego transportu w sieci, umożliwia wykorzystanie egzergii LNG do różnych zastosowań, między innymi do produkcji energii elektrycznej. Analiza egzergii jest znaną techniką analizowania nieodwracalnych strat w wydzielonym procesie. Pozwala na określenie dystrybucji, źródła i wielkości nieodwracalnych strat w systemach energetycznych, a więc ustalić wytyczne dotyczące efektywnego zużycia energii. Ponieważ zarówno regazyfikacja LNG jak i skraplanie gazu ziemnego są energochłonne, proces analizy egzergii jest niezbędny do projektowania wysoce wydajnych instalacji kriogenicznych.

  16. Fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Christensen, L. S.; Collins, F. G.; Camp, D. W.

    1980-01-01

    A study of economically viable techniques for dispersing warm fog at commercial airports is presented. Five fog dispersion techniques are examined: evaporation suppression, downwash, mixing, seeding with hygroscopic material, thermal techniques, and charged particle techniques. Thermal techniques, although effective, were found to be too expensive for routine airport operations, and detrimental to the environment. Seeding or helicopter downwash are practical for small-scale or temporary fog clearing, but are probably not useful for airport operations on a routine basis. Considerable disagreement exists on the capability of charged particle techniques, which stems from the fact that different assumptions and parameter values are used in the analytical models. Recommendations resulting from the review of this technique are listed, and include: experimental measurements of the parameters in question; a study to ascertain possible safety hazards, such as increased electrical activity or fuel ignition during refueling operations which could render charged particle techniques impractical; and a study of a single charged particle generator.

  17. Three-dimensional model for simulating atmospheric dispersion of heavy-gases over complex terrain

    SciTech Connect

    Chan, S.T.

    1997-09-01

    To help understand heavy gas releases and simulate the resultant dispersion, we have developed a three-dimensional finite element model called FEM3 and an improved version names FEM3A for solving the time dependent conservation equations based on generalized anelastic approximation. Recent enhancements to the model to include the treatment of dispersion scenarios involving density variations much larger than the liquefied natural gas range and an advanced turbulence submodel based on the buoyancy-extended transport equations. This paper presents the main features of the present model FEM3C and numerical results from the simulations of a field-scale LNG spill experiment.

  18. Accelerated dilution of liquefied natural gas plumes with fences and vortex generators

    SciTech Connect

    Kothari, K.M.; Meroney, R.N.

    1982-05-01

    Wind-tunnel tests confirmed that a passive fence or vortex generator can help dilute a hazardous LNG vapor cloud, leading to a quicker dispersal of the plume. Supplying a large database on the interaction of LNG plumes with such devices, the tests determined the effects of boiloff rate, wind speed, and fence configuration on cloud dispersion.

  19. Vaporization of droplets in premixing chambers

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Chigier, N. A.

    1980-01-01

    Detailed measurements were made of the structures of turbulent fuel sprays vaporizing in heated airstreams. The measurements show the size dependent vaporization and dispersion of the droplets and the important influence of the large eddies in the turbulence. The measurements form a data base for the development of models of fuel spray vaporization. Two laser techniques were specially developed for the investigation. A laser tomography technique converts line-of-sight light scattering measurements into time averaged 'point' measurements of droplet size distribution and volume concentration. A laser anemometer particle sizing technique was further developed to permit accurate measurements of individual particle sizes and velocities, with backscatter collection of light. The experiments are combined with heat transfer models to analyze the performance of miniature thermocouples in liquid sprays.

  20. Optimization and testing of the Beck Engineering free-piston cryogenic pump for LNG systems on heavy vehicles. Final technical report

    SciTech Connect

    Beck, Douglas S.

    2003-01-10

    Task 7 was completed by reaching Milestone 7: Test free piston cryogenic pump (FPCP) in Integrated LNG System. Task 4: Alternative Pump Design was also completed. The type of performance of the prototype LNG system is consistent with requirements of fuel systems for heavy vehicles; however, the maximum flow capacity of the prototype LNG system is significantly less than the total flow requirement. The flow capacity of the prototype LNG system is determined by a cavitation limit for the FPCP.

  1. Vapor spill monitoring method

    DOEpatents

    Bianchini, Gregory M.; McRae, Thomas G.

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  2. Supplemental fuel vapor system

    SciTech Connect

    Foster, P.M.

    1991-01-08

    This patent describes a supplemental fuel system utilizing fuel vapor. It comprises: an internal combustion engine including a carburetor and an intake manifold; a fuel tank provided with air vents; a fuel conduit having a first end connected to the fuel tank and in communication with liquid fuel in the tank and a second end connected to the carburetor; the fuel conduit delivering the liquid fuel to the carburetor from the fuel tank; a fuel vapor conduit having a first end connected to the fuel tank at a location displaced from contact with the liquid fuel and a second end connected to a carbon canister; a PCV conduit having a first end connected to a pollution control valve and a second end connected to the intake manifold; and, an intermediate fuel vapor conduit having a first end connected to the fuel vapor conduit and a second end connected to the PCV conduit; wherein the air vents continuously provide air to the tank to mix with the liquid fuel and form fuel vapor. The fuel vapor drawn from the fuel tank by vacuum developed in the intake manifold and flows through the fuel vapor conduit. The intermediate fuel vapor conduit and the intake manifold to combustion chambers of the internal combustion engine so as to supplement fuel delivered to the engine by the fuel conduit. The liquid fuel and the fuel vapor constantly delivered to the engine during normal operation.

  3. 40 CFR Table W - 5 of Subpart W of Part 98-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Methane Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment... Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W of Part 98—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  4. 40 CFR Table W - 5 of Subpart W of Part 98-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Methane Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment... Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W of Part 98—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  5. Process simulation for a new conceptual design of LNG terminal coupling NGL recovery and LNG re-gasification for maximum energy savings

    NASA Astrophysics Data System (ADS)

    Muqeet, Mohammed A.

    With the high demands of shale gas and promising development of LNG terminals, a lot of research has focused towards the process development for effective recovery of C2+ hydrocarbons (NGL). Shale gas requires a large amount of cold energy to cool down and recover the NGL; and the LNG re-gasification process requires a lot of heat energy to evaporate for NGL recovery. Thus, coupling the shale gas NGL recovery process and LNG re-gasification process, for utilizing the cold energy from LNG re-gasification process to assist NGL recovery from shale gas has significant economic benefits on both energy saving and high value product recovery. Wang et al. developed new conceptual design of such coupled process in 2013 and later Wang and Xu developed an optimal design considering uncertainties in 2014. This work deals with process simulation of both these designs and the feasibility of the process is verified. A steady state model is developed based on the plant design proposed by Wang et al. using Aspen plusRTM and then a dynamic model of the process is developed using Aspen dynamicsRTM. An effective control strategy is developed and the flexibility of the dynamic model is examined by giving disturbances in the shale gas feed. A comparison is made between the two proposed design and the prospects of the design for real plant scenario is discussed.

  6. 77 FR 48145 - Cameron Interstate Pipeline, LLC, Cameron LNG, LLC; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Project in the first quarter of 2015 and complete construction during the second quarter of 2016. The... for commissioning of the initial liquefaction train at the LNG terminal in the fourth quarter of 2016... quarter of 2016. Operations would commence after the commissioning of the first LNG liquefaction...

  7. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines

    PubMed Central

    Ulvestad, Marte; Overland, Indra

    2012-01-01

    This article develops a formal model for comparing the cost structure of the two main transport options for natural gas: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG. PMID:24683269

  8. 78 FR 75339 - Barca LNG LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... LNG LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced From Domestic Natural Gas Resources to Non-Free Trade Agreement Countries for a 25-Year Period AGENCY: Office of...) of natural gas, or 1.6 Bcf per day (Bcf/d). Barca seeks authorization to export the LNG for a...

  9. 75 FR 61475 - Cameron LNG, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Energy Regulatory Commission Cameron LNG, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed Cameron LNG Export Project and Request for Comments on Environmental Issues September... important environmental issues. By this notice, the Commission requests public comments on the scope of...

  10. 77 FR 58118 - Freeport LNG Development, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC, FLNG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... Energy Regulatory Commission Freeport LNG Development, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC, FLNG Liquefaction 3, LLC; Notice of Application Take notice that on August 31, 2012, Freeport LNG Development, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC, and FLNG Liquefaction 3,...

  11. 77 FR 65546 - Sabine Pass Liquefaction, LLC; Sabine Pass LNG, L.P.; Notice of Petition To Amend Authorizations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... Energy Regulatory Commission Sabine Pass Liquefaction, LLC; Sabine Pass LNG, L.P.; Notice of Petition To... Pass Liquefaction, LLC and Sabine Pass LNG, L.P. (collectively, Sabine Pass), 700 Milam Street, Suite... authorizations granted on April 16, 2012 in Docket No. CP11-72-000 (Liquefaction Project) in order to...

  12. 78 FR 66909 - Sabine Pass Liquefaction, LLC; Sabine Pass LNG, L.P.; Notice of Application to Amend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... Energy Regulatory Commission Sabine Pass Liquefaction, LLC; Sabine Pass LNG, L.P.; Notice of Application... Sabine Pass Liquefaction, LLC and Sabine Pass LNG, L.P. (collectively, Sabine Pass), 700 Milam Street... authorizations granted on April 16, 2012 in Docket No. CP11-72-000 (Liquefaction Project), as amended in...

  13. 76 FR 9573 - Sabine Pass Liquefaction, LLC and Sabine Pass LNG, L.P.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... Energy Regulatory Commission Sabine Pass Liquefaction, LLC and Sabine Pass LNG, L.P.; Notice of Application Take notice that on January 31, 2011, Sabine Pass Liquefaction, LLC and Sabine Pass LNG, L.P... the Commission's Regulations, to site, construct, and operate liquefaction and export...

  14. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    NASA Astrophysics Data System (ADS)

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  15. [The preparation, characterization and ultraviolet photodegradation of LNG-HP-beta-CD].

    PubMed

    Wang, Da-wei; Liu, Qi; Liu, Ming; Liu, Xiao-hui

    2011-03-01

    The characteristics of levonorgestrel (LNG), low solubility and the quick degradation under ultraviolet, limited its study and application in rodent contraception. The inclusion complex of hydroxypropyl-beta-cyclodextrin (HP-beta-CD) with LNG was investigated in present study. The inclusion complex was prepared by solution method and characterized by ultraviolet absorption spectrum and infrared spectrum spectra. And the stability was evaluated by being exposed to ultraviolet. The authors' results showed that the accurate and simple method of quantitative determination for LNG was established by ultraviolet spectrum, the molar ratio of the complex was 1:1 calculated from the phase solubility diagram, the stability constant was 187.3 L x mol(-1) at 25 degrees C, and the formation of the inclusion complex was validated by UV-Vis and Fourier transform infrared spectroscopy. Moreover, the degradation rate of the inclusion complex was less than 5%, which was slower than the LNG monomer. The present study indicated that HP-beta-CD could be formed inclusion complexes with LNG and the solubility, and stability were obviously enhanced. PMID:21595245

  16. Results of the evaluation and preliminary validation of a primary LNG mass flow standard

    NASA Astrophysics Data System (ADS)

    van der Beek, Mijndert; Lucas, Peter; Kerkhof, Oswin; Mirzaei, Maria; Blom, Gerard

    2014-10-01

    LNG custody transfer measurements at large terminals have been based on ship tank level gauging for more than 50 years. Flow meter application has mainly been limited to process control in spite of the promise of simplified operations, potentially smaller uncertainties and better control over the measurements for buyers. The reason for this has been the lack of LNG flow calibration standards as well as written standards. In the framework of the EMRP1 ‘Metrology for LNG’ project, Van Swinden Laboratory (VSL) has developed a primary LNG mass flow standard. This standard is so far the only one in the world except for a liquid nitrogen flow standard at the National Institute of Standards and Technology (NIST). The VSL standard is based on weighing and holds a Calibration and Measurement Capability (CMC) of 0.12% to 0.15%. This paper discusses the measurement principle, results of the uncertainty validation with LNG and the differences between water and LNG calibration results of four Coriolis mass flow meters. Most of the calibrated meters do not comply with their respective accuracy claims. Recommendations for further improvement of the measurement uncertainty will also be discussed.

  17. Petroleum Vapor - Field Technical

    EPA Science Inventory

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  18. Water vapor pressure calculation.

    PubMed

    Hall, J R; Brouillard, R G

    1985-06-01

    Accurate calculation of water vapor pressure for systems saturated with water vapor can be performed using the Goff-Gratch equation. A form of the equation that can be adapted for computer programming and for use in electronic databases is provided. PMID:4008425

  19. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  20. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  1. Vapor core turbulence in annular two-phase flow

    SciTech Connect

    Trabold, T.A.; Kumar, R.

    1998-06-01

    This paper reports a new technique to measure vapor turbulence in two-phase flows using hot-film anemometry. Continuous vapor turbulence measurements along with local void fraction, droplet frequency, droplet velocity and droplet diameter were measured in a thin, vertical duct. By first eliminating the portion of the output voltage signal resulting from the interaction of dispersed liquid droplets with the HFA sensor, the discrete voltage samples associated with the vapor phase were separately analyzed. The data revealed that, over the range of liquid droplet sizes and concentrations encountered, the presence of the droplet field acts to enhance vapor turbulence. In addition, there is evidence that vapor turbulence is significantly influenced by the wall-bounded liquid film. The present results are qualitatively consistent with the limited data available in the open literature.

  2. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  3. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    SciTech Connect

    Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

    2005-05-31

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher

  4. Freeze desalination of seawater using LNG cold energy.

    PubMed

    Chang, Jian; Zuo, Jian; Lu, Kang-Jia; Chung, Tai-Shung

    2016-10-01

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around -8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater. PMID:27371931

  5. Applications of human factors engineering to LNG release prevention and control

    SciTech Connect

    Shikiar, R.; Rankin, W.L.; Rideout, T.B.

    1982-06-01

    The results of an investigation of human factors engineering and human reliability applications to LNG release prevention and control are reported. The report includes a discussion of possible human error contributions to previous LNG accidents and incidents, and a discussion of generic HF considerations for peakshaving plants. More specific recommendations for improving HF practices at peakshaving plants are offered based on visits to six facilities. The HF aspects of the recently promulgated DOT regulations are reviewed, and recommendations are made concerning how these regulations can be implemented utilizing standard HF practices. Finally, the integration of HF considerations into overall system safety is illustrated by a presentation of human error probabilities applicable to LNG operations and by an expanded fault tree analysis which explicitly recognizes man-machine interfaces.

  6. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  7. Vapor resistant arteries

    NASA Technical Reports Server (NTRS)

    Shaubach, Robert M. (Inventor); Dussinger, Peter M. (Inventor); Buchko, Matthew T. (Inventor)

    1989-01-01

    A vapor block resistant liquid artery structure for heat pipes. A solid tube artery with openings is encased in the sintered material of a heat pipe wick. The openings are limited to that side of the artery which is most remote from the heat source. The liquid in the artery can thus exit the artery through the openings and wet the sintered sheath, but vapor generated at the heat source is unlikely to move around the solid wall of the artery and reverse its direction in order to penetrate the artery through the openings. An alternate embodiment uses finer pore size wick material to resist vapor entry.

  8. Simulation of a Novel Single-column Cryogenic Air Separation Process Using LNG Cold Energy

    NASA Astrophysics Data System (ADS)

    Jieyu, Zheng; Yanzhong, Li; Guangpeng, Li; Biao, Si

    In this paper, a novel single-column air separation process is proposed with the implementation of heat pump technique and introduction of LNG coldenergy. The proposed process is verifiedand optimized through simulation on the Aspen Hysys® platform. Simulation results reveal that thepower consumption per unit mass of liquid productis around 0.218 kWh/kg, and the total exergy efficiency of the systemis 0.575. According to the latest literatures, an energy saving of 39.1% is achieved compared with those using conventional double-column air separation units.The introduction of LNG cold energy is an effective way to increase the system efficiency.

  9. Comparison of CNG and LNG technologies for transportation applications. Final subcontract report, June 1991--December 1991

    SciTech Connect

    Sinor, J.E.

    1992-01-01

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  10. Design and Development of the Simulation System for Marine LNG Fuel Reliquefaction

    NASA Astrophysics Data System (ADS)

    Li, Boyang; Zhang, Yunqiu; Liu, Yunxin; Li, Diyang

    This paper introduced the background of LNG powered ship reliquefaction plant and its working principle, established the calculation model of simulation system, taking the VLCC ship LNG powered ship as the mother ship, provided the thermodynamic calculation flow chart, developed the software for the operation simulation system and the developed the assessment system and the equipment management system. This software can simulate the operation process and carry out the numerical calculation. It is good for the purpose of training students and has great reference value for research.

  11. AMTEC vapor-vapor series connected cells

    NASA Technical Reports Server (NTRS)

    Underwood, Mark L. (Inventor); Williams, Roger M. (Inventor); Ryan, Margaret A. (Inventor); Nakamura, Barbara J. (Inventor); Oconnor, Dennis E. (Inventor)

    1995-01-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  12. Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    Russel, W. B.; Saville, D. A.; Schowalter, W. R.

    1992-03-01

    The book covers the physical side of colloid science from the individual forces acting between submicron particles suspended in a liquid through the resulting equilibrium and dynamic properties. The relevant forces include Brownian motion, electrostatic repulsion, dispersion attraction, both attraction and repulsion due to soluble polymer, and viscous forces due to relative motion between the particles and the liquid. The balance among Brownian motion and the interparticle forces decides the questions of stability and phase behavior. Imposition of external fields produces complex effects, i.e. electrokinetic phenomena (electric field), sedimentation (gravitational field), diffusion (concentration/chemical potential gradient), and non-Newtonian rheology (shear field). The treatment aims to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterized model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of technological problems and design critical experiments. Some exposure to fluid mechanics, statistical mechanics, and electricity and magnetism is assumed, but each subject is reintroduced in a self-contained manner.

  13. Second Vapor-Level Sensor For Vapor Degreaser

    NASA Technical Reports Server (NTRS)

    Painter, Nance M.; Burley, Richard K.

    1990-01-01

    Second vapor-level sensor installed at lower level in vapor degreaser makes possible to maintain top of vapor at that lower level. Evaporation reduced during idle periods. Provides substantial benefit, without major capital cost of building new vapor degreaser with greater freeboard height.

  14. Gasoline Vapor Recovery

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  15. Scale effects in liquefied-fuel-gas vapor dispersion

    NASA Astrophysics Data System (ADS)

    Fay, J. A.; Ranck, D.

    1981-09-01

    A generalized framework for comparing experimental observations of dense cloud behavior and, ultimately, for comparing the predictions of mathematical models with the experimental data is proposed. The dual bases of this framework are the definition of dimensionless variables and the use of a simple entrainment model to depict the expected relationships among the dimensionless variables. To test the usefulness of this methodology, all the available data from wind tunnel and field tests were correlated in accordance with the proposed scheme.

  16. Light-Drag Enhancement by a Highly Dispersive Rubidium Vapor.

    PubMed

    Safari, Akbar; De Leon, Israel; Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; Boyd, Robert W

    2016-01-01

    The change in the speed of light as it propagates through a moving material has been a subject of study for almost two centuries. This phenomenon, known as the Fresnel light-drag effect, is quite small and usually requires a large interaction path length and/or a large velocity of the moving medium to be observed. Here, we show experimentally that the observed drag effect can be enhanced by over 2 orders of magnitude when the light beam propagates through a moving slow-light medium. Our results are in good agreement with the theoretical prediction, which indicates that, in the limit of large group indices, the strength of the light-drag effect is proportional to the group index of the moving medium. PMID:26799017

  17. Selection of an acid-gas removal process for an LNG plant

    SciTech Connect

    Stone, J.B.; Jones, G.N.; Denton, R.D.

    1996-12-31

    Acid gas contaminants, such as, CO{sub 2}, H{sub 2}S and mercaptans, must be removed to a very low level from a feed natural gas before it is liquefied. CO{sub 2} is typically removed to a level of about 100 ppm to prevent freezing during LNG processing. Sulfur compounds are removed to levels required by the eventual consumer of the gas. Acid-gas removal processes can be broadly classified as: solvent-based, adsorption, cryogenic or physical separation. The advantages and disadvantages of these processes will be discussed along with design and operating considerations. This paper will also discuss the important considerations affecting the choice of the best acid-gas removal process for LNG plants. Some of these considerations are: the remoteness of the LNG plant from the resource; the cost of the feed gas and the economics of minimizing capital expenditures; the ultimate disposition of the acid gas; potential for energy integration; and the composition, including LPG and conditions of the feed gas. The example of the selection of the acid-gas removal process for an LNG plant.

  18. 78 FR 35263 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... Liquefied Natural Gas on a Short-Term Basis AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of... of 24 billion cubic feet (Bcf) of natural gas on a short-term or spot market basis for a two-year... Relating to Regulation of Imported Natural Gas, 49 FR 6684 (Feb. 22, 1984). Freeport LNG states that...

  19. 49 CFR 191.22 - National Registry of Pipeline and LNG operators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false National Registry of Pipeline and LNG operators. 191.22 Section 191.22 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  20. 49 CFR 195.64 - National Registry of Pipeline and LNG Operators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false National Registry of Pipeline and LNG Operators. 195.64 Section 195.64 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  1. 49 CFR 195.64 - National Registry of Pipeline and LNG Operators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false National Registry of Pipeline and LNG Operators. 195.64 Section 195.64 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  2. 49 CFR 191.22 - National Registry of Pipeline and LNG operators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false National Registry of Pipeline and LNG operators. 191.22 Section 191.22 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  3. 49 CFR 195.64 - National Registry of Pipeline and LNG Operators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false National Registry of Pipeline and LNG Operators. 195.64 Section 195.64 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  4. 49 CFR 191.22 - National Registry of Pipeline and LNG operators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false National Registry of Pipeline and LNG operators. 191.22 Section 191.22 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  5. Fundamental Study on Sulfur Attack and Coking of LNG Rocket Engines

    NASA Astrophysics Data System (ADS)

    Higashino, Kazuyuki; Sugioka, Masatoshi; Kobayashi, Takao; Sakai, Masahiro; Minato, Ryojiro; Sasayama, Yousuke; Otsuka, Masaya; Okita, Koichi; Aoki, Kenji; Kawashima, Hideto; Azuma, Nobuyuki

    Liquified Natural Gas (LNG) is one of the most promising propellant for near future space transportation rocket engine because of its low cost and fewer handling concerns. However, for LNG propellant, erosion of engine material by sulfur (sulfur attack) and coking by LNG pyrolysis are significant problems in a regenerative cooling passage. In this study, the effects of sulfur attack and coking are experimentally evaluated for material candidates such as Inconel600, SUS316, Hastelloy-X, and some copper alloys. In the sulfur attack tests, EPMA and Raman analysis indicate that metallic sulfide can be observed only on the surface and XRD analysis indicates that sulfur attack are hardly recognized for all of material in the test conditions. In coking tests, it is clear that coking of methane with 5% propane can proceed more than those of pure methane. The thermal decomposition temperature is significantly decreased by catalytic effects of Ni in engine material. The results of coking tests will be included in the design criteria of combustion chamber, nozzle of the LNG rocket engines.

  6. 75 FR 60095 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... LNG supplies. \\1\\ 15 U.S.C. 717b. \\2\\ See 49 FR 6684, February 22, 1984. Sempra states that in DOE/FE... Supply, Office of Fossil Energy, Forrestal Building, Room 3E-042, 1000 Independence Avenue, SW... Building, Room 3E-042, 1000 Independence Avenue, SW., Washington, DC 20585, (202) 586-9478; (202)...

  7. 77 FR 76013 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Previously Imported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... referenced 49 FR 6684, February 22, 1984. Sempra LNG Marketing states that in its existing authorization to... and Gas Global Security and Supply, Office of Fossil Energy, Forrestal Building, Room 3E-042, 1000... Energy, Forrestal Building, Room 3E-042, 1000 Independence Avenue SW, Washington, DC 20585, (202)...

  8. 49 CFR 191.22 - National Registry of Pipeline and LNG operators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false National Registry of Pipeline and LNG operators. 191.22 Section 191.22 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  9. 49 CFR 195.64 - National Registry of Pipeline and LNG Operators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false National Registry of Pipeline and LNG Operators. 195.64 Section 195.64 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  10. 76 FR 58488 - Dominion Cove Point LNG, LP; Application for Blanket Authorization to Export Previously Imported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... Dominion Cove Point LNG, LP; Application for Blanket Authorization to Export Previously Imported Liquefied Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application. SUMMARY: The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an...

  11. 76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Maritime Administration Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License... Deepwater Port License Application. The application describes an offshore natural gas deepwater port... appeared in the Federal Register on April 11, 2000 (65 FR 19477), see PRIVACY ACT. You may view...

  12. 75 FR 70350 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Maritime Administration Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License.... Coast Guard received an application from Liberty Natural Gas LLC for all Federal authorizations required... the transportation, storage, and further handling of oil or natural gas for transportation to...

  13. 76 FR 78188 - Reconsideration of Letters of Recommendation for Waterfront Facilities Handling LNG and LHG

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ..., 2008, issue of the Federal Register (73 FR 3316). D. Public Meeting We do not now plan to hold a public... the Port DHS Department of Homeland Security FR Federal Register LHG Liquefied hazardous gas LNG... changed that process in a rule updating the letter of intent and LOR regulations (75 FR 29420, Revision...

  14. 77 FR 70886 - Reconsideration of Letters of Recommendation for Waterfront Facilities Handling LNG and LHG

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... information about the safety and security of the waterway (76 FR 78190). In our NPRM we provided notice and... Commission FR Federal Register LHG Liquefied hazardous gas LNG Liquefied natural gas LOI Letter of Intent LOR... the Federal Register (76 FR ] 78188). We received two letters commenting on the proposed rule....

  15. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas § 127.105 Layout...

  16. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas § 127.105 Layout...

  17. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  18. 78 FR 933 - Cameron LNG, LLC; Cameron Interstate Pipeline, LLC; Notice of Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ..., California 92101, filed in Docket No. CP13-25-000 an application, pursuant to section 3 of the Natural Gas... 1.7 billion cubic feet per day (Bcfd) of domestic natural gas. Cameron Interstate requests... Bcfd of domestic natural gas supply to Cameron LNG's liquefaction facilities. Cameron...

  19. In-situ strain monitoring in liquid containers of LNG transporting carriers

    NASA Astrophysics Data System (ADS)

    Oh, Min-Cheol; Seo, Jun-Kyu; Kim, Kyung-Jo; Lee, Sang-Min; Kim, Myung-Hyun

    2008-08-01

    Liquefied natural gas (LNG) transport carriers are exposed to a risk by the repeated bump in the LNG container during the vessel traveling over the wave in ocean. The liquid inside the container, especially when it was not fully contained, make a strong bump onto the insulation panel of the tank wall. The insulation panel consists of several layers of thick polyurethane foam (PUF) to maintain the LNG below the cryogenic temperature, -162°C. Due to the repeated shock on the PUF, a crack could be developed on the tank wall causing a tremendous disaster for LNG carriers. To prevent the accidental crack on the tank, a continuous monitoring of the strain imposed on the PUF is recommended. In this work, a fiber-optic Bragg grating was imbedded inside the PUF for monitoring the strain parallel to the impact direction. The optical fiber sensor with a small diameter of 125 μm was suitable to be inserted in the PUF through a small hole drilled after the PUF was cured. In-situ monitoring of the strain producing the change of Bragg reflection wavelength, a high speed wavelength interrogation method was employed by using an arrayed waveguide grating. By dropping a heavy mass on the PUF, we measured the strain imposed on the insulation panel.

  20. Structural health monitoring for insulation panels of LNG carriers using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Kim, Myung Hyun; Son, Young Joo; Kang, Sung Won; Lee, Jae Myung; Na, Sung Soo

    2006-03-01

    The aim of this study is to investigate dynamic failure initiation and failure modes of insulation panels of LNG carriers. Insulation panels of LNG cargo tanks may include mechanical failures such as cracks as well as delaminations within the layers due to impact sloshing loads and fatigue loadings, and these failures cause a significant decrease of structural integrity. In this study, a structural health monitoring system, employing fiber optic sensors is developed for monitoring various failures that can occur in LNG insulation panels. Fiber optic sensors have the advantage of being embedded inside of insulation panels. The signal of embedded fiber optic sensors is used to calculate the strain of insulation panels and is processed by digital filtering to identify damage initiations. It has been observed that the presence of defects and delaminations produce noticeable changes in the strain measurement in a predictable manner. In addition, fiber optic sensors are used to measure static and dynamic strain variations of insulation panels with and without damage. It is expected that this study will be used as a fundamental study for the safety assessment of the LNG insulation panels.

  1. Development of an FBG-based low temperature measurement system for cargo containment of LNG tankers

    NASA Astrophysics Data System (ADS)

    Kim, D. G.; Yoo, W.; Swinehart, P.; Jiang, B.; Haber, T.; Mendez, A.

    2007-09-01

    Given the growing demand for oil and natural gas to meet the world's energy needs, there is nowadays renewed interest in the use of liquefied natural gas (LNG) systems. For LNG to remain in its liquid phase, the gas has to be kept at cryogenic temperatures (< 160°C). And, as part of the LNG supply process, it becomes necessary to transport it using massive carrier tankers with cargo hulls operating at low temperatures and using special insulating double-wall construction. The safe and reliable storage and transportation of LNG products calls for low temperature monitoring of said containers to detect the onset of any potential leaks and possible thermal insulation degradation. Because of the hazardous nature of this cargo, only intrinsically-safe, explosion proof devices can be used. Optical fiber sensors-- such as fiber Bragg gratings-- are ideal for this application given their dielectric nature and multi-point sensing telemetry capability. In this paper, we describe the development of an on-line, multi-point FBG-based low temperature monitoring system based on a network of specially packaged FBG temperature and strain sensors mounted at critical locations within the inner hull, cofferdam and secondary barriers of a LNG carrier tanker. Given the stringent cryogenic operating temperature conditions, pertinent FBG designs, coatings and packaging approaches were formulated along with adequate installation techniques and integration of the interrogating FBG electronics into the tanker's overall SCADA monitoring system. FBG temperature sensors were demonstrated to be stable and sensitive over the 80-480K range. Stability is +/- 0.25K or better with repeated calibrations, and long term stability at 480K is ~0.2mK/hour.

  2. Vapor core propulsion reactors

    NASA Technical Reports Server (NTRS)

    Diaz, Nils J.

    1991-01-01

    Many research issues were addressed. For example, it became obvious that uranium tetrafluoride (UF4) is a most preferred fuel over uranium hexafluoride (UF6). UF4 has a very attractive vaporization point (1 atm at 1800 K). Materials compatible with UF4 were looked at, like tungsten, molybdenum, rhenium, carbon. It was found that in the molten state, UF4 and uranium attacked most everything, but in the vapor state they are not that bad. Compatible materials were identified for both the liquid and vapor states. A series of analyses were established to determine how the cavity should be designed. A series of experiments were performed to determine the properties of the fluid, including enhancement of the electrical conductivity of the system. CFD's and experimental programs are available that deal with most of the major issues.

  3. Fuel Vaporization Effects

    NASA Technical Reports Server (NTRS)

    Bosque, M. A.

    1983-01-01

    A study of the effects of fuel-air preparation characteristics on combustor performance and emissions at temperature and pressure ranges representative of actual gas turbine combustors is discussed. The effect of flameholding devices on the vaporization process and NOx formation is discussed. Flameholder blockage and geometry are some of the elements that affect the recirculation zone characteristics and subsequently alter combustion stability, emissions and performance. A water cooled combustor is used as the test rig. Preheated air and Jet A fuel are mixed at the entrance of the apparatus. A vaporization probe is used to determine percentage of vaporization and a gas sample probe to determine concentration of emissions in the exhaust gases. The experimental design is presented and experimental expected results are discussed.

  4. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  5. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  6. Vapor concentration monitor

    DOEpatents

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  7. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.

    SciTech Connect

    Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

    2004-12-01

    While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

  8. 75 FR 57766 - Notice of Petition To Amend Authorizations Under Section 3 of the Natural Gas Act; Cameron LNG, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... (Cameron), 101 Ash Street, San Diego, California 92101, filed a petition to amend the authorizations issued... Cameron's proposal in this petition to William D. Rapp, Counsel for Cameron LNG, LLC, 101 Ash Street,...

  9. Worker Protection from Chemical Vapors: Hanford Tank Farms

    SciTech Connect

    Anderson, T.J.

    2007-07-01

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank head-spaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns, risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits (OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors. (authors)

  10. BTSC VAPOR INSTRUSION PRIMER "VAPOR INTRUSION CONSIDERATION FOR REDEVELOPMENT"

    EPA Science Inventory

    This primer is designed for brownfields stakeholders concerned about vapor intrusion, including property owners, real estate developers, and contractors performing environmental site investigations. It provides an overview of the vapor intrusion issue and how it can impact the ap...

  11. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  12. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  13. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  14. Solvent vapor collector

    DOEpatents

    Ellison, Kenneth; Whike, Alan S.

    1979-01-30

    A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.

  15. Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Seung; Cho, Jin-Rae; Kim, Wha-Soo; Noh, Byeong-Jae; Kim, Myung-Hyun; Lee, Jae-Myung

    2013-03-01

    In the present paper, the sloshing resistance performance of a huge-size LNG carrier's insulation system is evaluated by the fluid-structure interaction (FSI) analysis. To do this, the global-local analysis which is based on the arbitrary Lagrangian-Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG sloshing of a KC-1 type LNG carrier insulation system. During the global analysis, the sloshing flow and hydrodynamic pressure of internal LNG are analyzed by postulating the flexible insulation system as a rigid body. In addition, during the local analysis, the local hydroelastic response of the LNG carrier insulation system is computed by solving the local hydroelastic model where the entire and flexible insulation system is adopted and the numerical analysis results of the global analysis such as initial and boundary conditions are implemented into the local finite element model. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.

  16. A structural and stochastic optimal model for projections of LNG imports and exports in Asia-Pacific.

    PubMed

    Kompas, Tom; Che, Tuong Nhu

    2016-06-01

    The Asia-Pacific region, the largest and fastest growing liquefied natural gas (LNG) market in the world, has been undergoing radical changes over the past few years. These changes include considerable additional supplies from North America and Australia, and a recent LNG price slump resulting from an oil-linked pricing mechanism and demand uncertainties. This paper develops an Asia-Pacific Gas Model (APGM), based on a structural, stochastic and optimising framework, providing a valuable tool for the projection of LNG trade in the Asia-Pacific region. With existing social-economic conditions, the model projects that Asia-Pacific LNG imports are expected to increase by 49.1 percent in 2020 and 95.7 percent in 2030, compared to 2013. Total LNG trade value is estimated to increase to US$127.2 billion in 2020 and US$199.0 billion in 2030. Future LNG trade expansion is mainly driven by emerging and large importers (i.e., China and India), and serviced, most importantly, by new supplies from Australia and the USA. The model's projected results are sensitive to changes in expected oil prices, pricing mechanisms, economic growth and energy policies, as well as unexpected geopolitical-economic events. PMID:27441290

  17. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  18. Training Protocols for the Detection of Explosive Vapors in Interior Spaces.

    SciTech Connect

    Phelan, James M.; Webb, Stephen W.

    2007-07-01

    Computational fluid dynamics simulations for dispersal of explosive vapors in interior spaces have been performed including details of typical ventilation systems. The interior spaces investigated include an office area, a single-family house, and a warehouse store. Explosive vapor sources are defined in the various interior spaces, and contours of the vapor concentration in the interior spaces relative to the source concentration are presented for relative concentrations down to 10-5. Training protocols for detection of explosive vapors in interior spaces should include an awareness of the time to equilibrium evident in these simulations as well as the significance of ventilation zones.3

  19. BioVapor Model Evaluation

    EPA Science Inventory

    General background on modeling and specifics of modeling vapor intrusion are given. Three classical model applications are described and related to the problem of petroleum vapor intrusion. These indicate the need for model calibration and uncertainty analysis. Evaluation of Bi...

  20. Chemical vapor deposition reactor. [providing uniform film thickness

    NASA Technical Reports Server (NTRS)

    Chern, S. S.; Maserjian, J. (Inventor)

    1977-01-01

    An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials.

  1. LNGFIRE: A thermal radiation model for LNG fires. Topical report, June 29, 1990. Documentation

    SciTech Connect

    Atallah, S.; Shah, J.N.

    1990-06-29

    The Federal Code Model for predicting exclusion distances from LNG fires (49 CFR 193.2057) was critically evaluated. The results of LNG fire tests carried out to date were reviewed and an improved model for predicting exclusion distances was developed and verified. This model assumes that the flame takes the shape of a cylinder or a parallellepiped, depending on whether the fuel impoundment area is circular or rectangular in shape. It allows for flame drag and tilt in the presence of wind. Based on experimental data, the maximum surface emissive power and the flame attenuation coefficient were estimated at 190 kw/sq m (60,267 Btu/hr sq ft) and 0.3/m (0.09/ft), respectively.

  2. Survey of fire-protection systems at LNG facilities. Topical report, July-November 1990

    SciTech Connect

    Atallah, S.; Borows, K.A.

    1991-04-05

    The objectives of the study were to collect and analyze data relating to the types, costs, and operational problems of gas leak and fire detection devices and of fire prevention and suppression systems used at LNG facilities operating in the United States. Data from 39 LNG facilities, which accounted for 45% of the total U.S. storage capacity, were collected. The report provides information relating to equipment manufacturers, site applications, operational problems, initial installation costs, annual operational costs, and equipment lifetime. Equipment of interest included fixed gas leak, fire and cryogenic detection systems, water deluge and barrier systems, thermal radiation walls and protective coatings, and fixed high expansion foam, dry chemical, carbon dioxide and halon fire suppression systems. In addition, internal fire fighting capabilities were reviewed.

  3. Second Stage Intercooling Using LNG for Turbocharged Heavy Duty Road Vehicles Phase I Final Report

    SciTech Connect

    1999-09-21

    It is well documented in engine performance literature that reduced engine inlet air temperature increases power output and reduces NO, emissions for both diesel and spark ignited (SI) engines. In addition, reduced inlet temperature increases the knock resistance of SI engines. In that most HD natural gas engines are SI derivatives of diesel engines it is appropriate to evaluate the benefits of reduced engine air temperature through LNG fuel. This project investigated the ''real world'' possibilities of a patented process for utilizing the ''cold'' in LNG to chill engine inlet air. The results support the conclusion that doing so is a practical means to increase engine power and reduce engine-out NO{sub x}.

  4. Thermodynamic analysis of liquefied natural gas (LNG) production cycle in APCI process

    NASA Astrophysics Data System (ADS)

    Nezhad, Shahrooz Abbasi; Shabani, Bezhan; Soleimani, Majid

    2012-12-01

    The appropriate production of liquefied natural gas (LNG) with least consuming energy and maximum efficiency is quite important. In this paper, LNG production cycle by means of APCI Process has been studied. Energy equilibrium equations and exergy equilibrium equations of each equipment in the APCI cycle were established. The equipments are described using rigorous thermodynamics and no significant simplification is assumed. Taken some operating parameters as key parameters, influences of these parameters on coefficient of performance (COP) and exergy efficiency of the cascading cycle were analyzed. The results indicate that COP and exergy efficiency will be improved with the increasing of the inlet pressure of MR (mixed refrigerant) compressors, the decreasing of the NG and MR after precooling process, outlet pressure of turbine, inlet temperature of MR compressor and NG temperature after cooling in main cryogenic heat exchanger (MCHE). The COP and exergy efficiency of the APCI cycle will be above 2% and 40%, respectively, after optimizing the key parameters.

  5. Stratified vapor generator

    DOEpatents

    Bharathan, Desikan; Hassani, Vahab

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  6. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature.

  7. Water vaporization on Ceres

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Feldman, Paul D.

    1992-01-01

    A search is presently conducted for OH generated by the photodissociation of atmospheric water vapor in long-exposure IUE spectra of the region around Ceres. A statistically significant detection of OH is noted in an exposure off the northern limb of Ceres after perihelion. The amount of OH is consistent with a polar cap that might be replenished during winter by subsurface percolation, but which dissipates in summer.

  8. Filter vapor trap

    DOEpatents

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  9. The vapor pressures of explosives

    SciTech Connect

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  10. Process study and exergy analysis of a novel air separation process cooled by LNG cold energy

    NASA Astrophysics Data System (ADS)

    Xu, Wendong; Duan, Jiao; Mao, Wenjun

    2014-02-01

    In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed in this paper, which is based on high-efficiency heat exchanger network and chemical packing separation technology. The operating temperature range of LNG cold energy is widened from 133K-203K to 113K-283K by high-efficiency heat exchanger network and air separation pressure is declined from 0.5MPa to about 0.35MPa due to packing separation technology, thereby greatly improve the energy efficiency. Both the traditional and novel air separation processes are simulated with air handling capacity of 20t·h-1. Comparing with the traditional process, the LNG consumption is reduced by 44.2%, power consumption decrease is 211.5 kWh per hour, which means the annual benefit will be up to 1.218 million CNY. And the exergy efficiency is also improved by 42.5%.

  11. Hydrodynamic optimization of twin-skeg LNG ships by CFD and model testing

    NASA Astrophysics Data System (ADS)

    Kim, Keunjae; Tillig, Fabian; Bathfield, Nicolas; Liljenberg, Hans

    2014-06-01

    SSPA experiences a growing interest in twin skeg ships as one attractive green ship solution. The twin skeg concept is well proven with obvious advantages for the design of ships with full hull forms, restricted draft or highly loaded propellers. SSPA has conducted extensive hull optimizations studies of LNG ships of different size based on an extensive hull data base with over 7,000 models tested, including over 400 twin skeg hull forms. Main hull dimensions and different hull concepts such as twin skeg and single screw were of main interest in the studies. In the present paper, one twin skeg and one single screw 170 K LNG ship were designed for optimally selected main dimension parameters. The twin skeg hull was further optimized and evaluated using SHIPFLOW FRIENDSHIP design package by performing parameter variation in order to modify the shape and positions of the skegs. The finally optimized models were then built and tested in order to confirm the lower power demand of twin skeg designed compaed with the signle screw design. This paper is a full description of one of the design developments of a LNG twin skeg hull, from early dimensional parameter study, through design optimization phase towards the confirmation by model tests.

  12. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    SciTech Connect

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  13. Role of Co-Vapors in Vapor Deposition Polymerization

    NASA Astrophysics Data System (ADS)

    Lee, Ji Eun; Lee, Younghee; Ahn, Ki-Jin; Huh, Jinyoung; Shim, Hyeon Woo; Sampath, Gayathri; Im, Won Bin; Huh, Yang–Il; Yoon, Hyeonseok

    2015-02-01

    Polypyrrole (PPy)/cellulose (PPCL) composite papers were fabricated by vapor phase polymerization. Importantly, the vapor-phase deposition of PPy onto cellulose was assisted by employing different co-vapors namely methanol, ethanol, benzene, water, toluene and hexane, in addition to pyrrole. The resulting PPCL papers possessed high mechanical flexibility, large surface-to-volume ratio, and good redox properties. Their main properties were highly influenced by the nature of the co-vaporized solvent. The morphology and oxidation level of deposited PPy were tuned by employing co-vapors during the polymerization, which in turn led to change in the electrochemical properties of the PPCL papers. When methanol and ethanol were used as co-vapors, the conductivities of PPCL papers were found to have improved five times, which was likely due to the enhanced orientation of PPy chain by the polar co-vapors with high dipole moment. The specific capacitance of PPCL papers obtained using benzene, toluene, water and hexane co-vapors was higher than those of the others, which is attributed to the enlarged effective surface area of the electrode material. The results indicate that the judicious choice and combination of co-vapors in vapor-deposition polymerization (VDP) offers the possibility of tuning the morphological, electrical, and electrochemical properties of deposited conducting polymers.

  14. The control of mercury vapor using biotrickling filters.

    PubMed

    Philip, Ligy; Deshusses, Marc A

    2008-01-01

    The feasibility of using biotrickling filters for the removal of mercury vapor from simulated flue gases was evaluated. The experiments were carried out in laboratory-scale biotrickling filters with various mixed cultures naturally attached on a polyurethane foam packing. Sulfur oxidizing bacteria, toluene degraders and denitrifiers were used and compared for their ability to remove Hg 0 vapor. In particular, the biotrickling filters with sulfur oxidizing bacteria were able to remove 100% of mercury vapor, with an inlet concentration of 300-650 microg m(-3), at a gas contact time as low as six seconds. 87-92% of the removed mercury was fixed in or onto the microbial cells while the remaining left the system with the trickling liquid. The removal of mercury vapors in a biotrickling filter with dead cells was almost equivalent to this in biotrickling filters with live cells, indicating that significant abiotic removal mechanisms existed. Sulfur oxidizing bacteria biotrickling filters were the most effective in controlling mercury vapors, suggesting that sulfur played a key role. Identification of the location of metal deposition and of the form of metal was conducted using TEM, energy dispersive X-ray analysis (EDAX) and mercury elution analyses. The results suggested that mercury removal was through a series of complex mechanisms, probably both biotic and abiotic, including sorption in and onto cellular material and possible biotransformations. Overall, the study demonstrates that biotrickling filters appear to be a promising alternative for mercury vapor removal from flue gases. PMID:17692357

  15. Lectures on Dispersion Theory

    DOE R&D Accomplishments Database

    Salam, A.

    1956-04-01

    Lectures with mathematical analysis are given on Dispersion Theory and Causality and Dispersion Relations for Pion-nucleon Scattering. The appendix includes the S-matrix in terms of Heisenberg Operators. (F. S.)

  16. Dispersion y dinamica poblacional

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispersal behavior of fruit flies is appetitive. Measures of dispersion involve two different parameter: the maximum distance and the standard distance. Standard distance is a parameter that describes the probalility of dispersion and is mathematically equivalent to the standard deviation around ...

  17. Hydrazine-Vapor Samplers

    NASA Technical Reports Server (NTRS)

    Young, Rebecca; Mcbrearty, Charles; Curran, Dan; Leavitt, Nilgun

    1994-01-01

    Active sampling unit capable of detecting hydrazine and monomethyl hydrazine vapors at levels as low as 10 ppb in air developed. Includes detachable badge holder and pump which draws air through badge holder at selectable rate of 1 or 2 L/min. Coated strip in each badge designed to align with air passage in badge holder. Two types of badge holders constructed: one has open-face design for general monitoring of air in open spaces, while other has closed-face design with viewing window and intended for sampling through small openings to detect leaks.

  18. Warm Vapor Atom Interferometer

    NASA Astrophysics Data System (ADS)

    Biedermann, Grant; Wheeler, David; Jau, Yuan-Yu; McGuinness, Hayden

    2014-05-01

    We present a light pulse atom interferometer using room temperature rubidium vapor. Doppler sensitive stimulated Raman transitions forming the atom optical elements inherently select a cold velocity group for the interferometer. The interferometer is configured to be sensitive to accelerations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Theory of dispersive microlenses

    NASA Technical Reports Server (NTRS)

    Herman, B.; Gal, George

    1993-01-01

    A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.

  20. Biofiltration of methanol vapor

    SciTech Connect

    Shareefdeen, Z.; Baltzis, B.C. ); Oh, Youngsook; Bartha, R. )

    1993-03-05

    Biofiltration of solvent and fuel vapors may offer a cost-effective way to comply with increasingly strict air emission standards. An important step in the development of this technology is to derive and validate mathematical models of the biofiltration process for predictive and scaleup calculations. For the study of methanol vapor biofiltration, an 8-membered bacterial consortium was obtained from methanol-exposed soil. The bacteria were immobilized on solid support and packed into a 5-cm diameter, 60-cm-high column provided with appropriate flowmeters and sampling ports. The solid support was prepared by mixing two volumes of peat with three volumes of perlite particles. Two series of experiments were performed. In the first, the inlet methanol concentration was kept constant while the superficial air velocity was varied from run to run. In the second series, the air flow rate (velocity) was kept constant while the inlet methanol concentration was varied. The unit proved effective in removing methanol at rates up to 112.8 g h[sup [minus]1] m[sup [minus]3] packing. A mathematical model has been derived and validated. The model described and predicted experimental results closely. Both experimental data and model predictions suggest that the methanol biofiltration process was limited by oxygen diffusion and methanol degradation kinetics.

  1. Vapor-Liquid Equilibria for Some Concentrated Aqueous PolymerSolutions

    SciTech Connect

    Striolo, Alberto; Prausnitz, John M.

    1999-07-01

    Vapor-liquid-equilibrium data were obtained for binary aqueous solutions of six water-soluble linear polymers in the range 70-95 C. A classical gravimetric sorption method was used to measure the amount of solvent absorbed as a function of vapor-phase water pressure. Polymers studied were polyvinylpyrrolidone, polyethyleneoxide, polyvinylalcohol, hydroxyethylcellulose, polyethylenimine, polymethylvinylether. The experimental data were reduced with Hino's lattice model that distinguished the interactions due to London dispersion forces and those due to hydrogen bonding.

  2. LNGFIRE: A thermal-radiation model for LNG fires. Topical report, October 25, 1988-June 29, 1990. documentation

    SciTech Connect

    Atallah, S.; Shah, J.N.

    1990-06-29

    The Federal Code Model for predicting exclusion distances from Liquified Natural Gas (LNG) fires (49 CFR 193.2057) was critically evaluated. The results of LNG fire tests carried out to date were reviewed, and an improved model for predicting exclusion distances was developed and verified. The model assumes that the flame takes the shape of a cylinder or a parallellepiped, depending on whether the fuel impoundment area is circular or rectangular in shape. It allows for flame drag and tilt in the presence of wind.

  3. Designing Optimal LNG Station Network for U.S. Heavy-Duty Freight Trucks using Temporally and Spatially Explicit Supply Chain Optimization

    NASA Astrophysics Data System (ADS)

    Lee, Allen

    The recent natural gas boom has opened much discussion about the potential of natural gas and specifically Liquefied Natural Gas (LNG) in the United States transportation sector. The switch from diesel to natural gas vehicles would reduce foreign dependence on oil, spur domestic economic growth, and potentially reduce greenhouse gas emissions. LNG provides the most potential for the medium to heavy-duty vehicle market partially due to unstable oil prices and stagnant natural gas prices. As long as the abundance of unconventional gas in the United States remains cheap, fuel switching to natural gas could provide significant cost savings for long haul freight industry. Amid a growing LNG station network and ever increasing demand for freight movement, LNG heavy-duty truck sales are less than anticipated and the industry as a whole is less economic than expected. In spite of much existing and mature natural gas infrastructure, the supply chain for LNG is different and requires explicit and careful planning. This thesis proposes research to explore the claim that the largest obstacle to widespread LNG market penetration is sub-optimal infrastructure planning. No other study we are aware of has explicitly explored the LNG transportation fuel supply chain for heavy-duty freight trucks. This thesis presents a novel methodology that links a network infrastructure optimization model (represents supply side) with a vehicle stock and economic payback model (represents demand side). The model characterizes both a temporal and spatial optimization model of future LNG transportation fuel supply chains in the United States. The principal research goal is to assess the economic feasibility of the current LNG transportation fuel industry and to determine an optimal pathway to achieve ubiquitous commercialization of LNG vehicles in the heavy-duty transport sector. The results indicate that LNG is not economic as a heavy-duty truck fuel until 2030 under current market conditions

  4. Local volume-time averaged equations of motion for dispersed, turbulent, multiphase flows

    SciTech Connect

    Sha, W.T.; Slattery, J.C.

    1980-11-01

    In most flows of liquids and their vapors, the phases are dispersed randomly in both space and time. These dispersed flows can be described only statistically or in terms of averages. Local volume-time averaging is used here to derive a self-consistent set of equations governing momentum and energy transfer in dispersed, turbulent, multiphase flows. The empiricisms required for use with these equations are the subject of current research.

  5. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  6. Vapor compression distillation module

    NASA Technical Reports Server (NTRS)

    Nuccio, P. P.

    1975-01-01

    A Vapor Compression Distillation (VCD) module was developed and evaluated as part of a Space Station Prototype (SSP) environmental control and life support system. The VCD module includes the waste tankage, pumps, post-treatment cells, automatic controls and fault detection instrumentation. Development problems were encountered with two components: the liquid pumps, and the waste tank and quantity gauge. Peristaltic pumps were selected instead of gear pumps, and a sub-program of materials and design optimization was undertaken leading to a projected life greater than 10,000 hours of continuous operation. A bladder tank was designed and built to contain the waste liquids and deliver it to the processor. A detrimental pressure pattern imposed upon the bladder by a force-operated quantity gauge was corrected by rearranging the force application, and design goals were achieved. System testing has demonstrated that all performance goals have been fulfilled.

  7. THERMALLY OPERATED VAPOR VALVE

    DOEpatents

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  8. Constrained Vapor Bubble

    NASA Technical Reports Server (NTRS)

    Huang, J.; Karthikeyan, M.; Plawsky, J.; Wayner, P. C., Jr.

    1999-01-01

    The nonisothermal Constrained Vapor Bubble, CVB, is being studied to enhance the understanding of passive systems controlled by interfacial phenomena. The study is multifaceted: 1) it is a basic scientific study in interfacial phenomena, fluid physics and thermodynamics; 2) it is a basic study in thermal transport; and 3) it is a study of a heat exchanger. The research is synergistic in that CVB research requires a microgravity environment and the space program needs thermal control systems like the CVB. Ground based studies are being done as a precursor to flight experiment. The results demonstrate that experimental techniques for the direct measurement of the fundamental operating parameters (temperature, pressure, and interfacial curvature fields) have been developed. Fluid flow and change-of-phase heat transfer are a function of the temperature field and the vapor bubble shape, which can be measured using an Image Analyzing Interferometer. The CVB for a microgravity environment, has various thin film regions that are of both basic and applied interest. Generically, a CVB is formed by underfilling an evacuated enclosure with a liquid. Classification depends on shape and Bond number. The specific CVB discussed herein was formed in a fused silica cell with inside dimensions of 3x3x40 mm and, therefore, can be viewed as a large version of a micro heat pipe. Since the dimensions are relatively large for a passive system, most of the liquid flow occurs under a small capillary pressure difference. Therefore, we can classify the discussed system as a low capillary pressure system. The studies discussed herein were done in a 1-g environment (Bond Number = 3.6) to obtain experience to design a microgravity experiment for a future NASA flight where low capillary pressure systems should prove more useful. The flight experiment is tentatively scheduled for the year 2000. The SCR was passed on September 16, 1997. The RDR is tentatively scheduled for October, 1998.

  9. Vapor pressure of perfluoroalkylalkanes: the role of the dipole.

    PubMed

    Morgado, Pedro; Das, Gaurav; McCabe, Clare; Filipe, Eduardo J M

    2015-01-29

    The vapor pressure of four liquid perfluoroalkylalkanes (CF3(CF2)n(CH2)mCH3; n = 3, m = 4,5,7; n = 5, m = 5) was measured as a function of temperature between 278 and 328 K. Molar enthalpies of vaporization were calculated from the experimental data, and the results were compared with data from the literature for the corresponding alkanes and perfluoroalkanes. The heterosegmented statistical associating fluid theory was used to interpret the results at the molecular level both with and without the explicit inclusion of the dipolar nature of the molecules. Additionally, ab initio calculations were performed for all perfluoroalkylalkanes studied to determine the dipole moment to be used in the theoretical calculations. We demonstrate that the inclusion of a dipolar term is essential for describing the vapor-liquid equilibria of perfluoroalkylalkanes. It is also shown that vapor-liquid equilibria in these compounds result from a subtle balance between dipolar interactions, which decrease the vapor pressure, and the relatively weak dispersive interactions between the hydrogenated and fluorinated segments. PMID:25526174

  10. Student Exposure to Mercury Vapors.

    ERIC Educational Resources Information Center

    Weber, Joyce

    1986-01-01

    Discusses the problem of mercury vapors caused by spills in high school and college laboratories. Describes a study which compared the mercury vapor levels of laboratories in both an older and a newer building. Concludes that the mercurial contamination of chemistry laboratories presents minimal risks to the students. (TW)

  11. Is dispersal neutral?

    PubMed

    Lowe, Winsor H; McPeek, Mark A

    2014-08-01

    Dispersal is difficult to quantify and often treated as purely stochastic and extrinsically controlled. Consequently, there remains uncertainty about how individual traits mediate dispersal and its ecological effects. Addressing this uncertainty is crucial for distinguishing neutral versus non-neutral drivers of community assembly. Neutral theory assumes that dispersal is stochastic and equivalent among species. This assumption can be rejected on principle, but common research approaches tacitly support the 'neutral dispersal' assumption. Theory and empirical evidence that dispersal traits are under selection should be broadly integrated in community-level research, stimulating greater scrutiny of this assumption. A tighter empirical connection between the ecological and evolutionary forces that shape dispersal will enable richer understanding of this fundamental process and its role in community assembly. PMID:24962790

  12. Rapid response calculation of LNG cargo containment system under sloshing load using wavelet transformation

    NASA Astrophysics Data System (ADS)

    Kim, Yooil

    2013-06-01

    Reliable strength assessment of the Liquefied Natural Gas (LNG) cargo containment system under the sloshing impact load is very difficult task due to the complexity of the physics involved in, both in terms of the hydrodynamics and structural mechanics. Out of all those complexities, the proper selection of the design sloshing load which is applied to the structural model of the LNG cargo containment system, is one of the most challenging one due to its inherent randomness as well as the statistical analysis which is tightly linked to the design sloshing load selection. In this study, the response based strength assessment procedure of LNG cargo containment system has been developed and proposed as an alternative design methodology. Sloshing pressure time history, measured from the model test, is decomposed into wavelet basis function targeting the minimization of the number of the basis function together with the maximization of the numerical efficiency. Then the response of the structure is obtained using the finite element method under each wavelet basis function of different scale. Finally, the response of the structure under entire sloshing impact time history is rapidly calculated by synthesizing the structural response under wavelet basis function. Through this analysis, more realistic response of the system under sloshing impact pressure can be obtained without missing the details of pressure time history such as rising pattern, oscillation due to air entrapment and decay pattern and so on. The strength assessment of the cargo containment system is then performed based on the statistical analysis of the stress peaks selected out of the obtained stress time history.

  13. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    Iraj A Salehi; Jerry Havens; Tom Spicer

    2006-05-01

    Work continued to address numerical problems experienced with simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 through 8 in the plan outlined in the first Quarterly report have been completed successfully for the FEM3A model utilizing the Planetary Boundary Layer (PBL) turbulence closure model. Researchers at the University of Arkansas have solved the problems related to stability of the simulations at regulatory conditions of low wind speed and stable atmospheric conditions with FEM3A using the PBL model, and are continuing our program to verify the operation of the model using an updated, verified, version of the k-epsilon turbulence closure model which has been modified to handle dense gas dispersion effects. This quarterly report for DE-FG26-04NT42030 covers a period from January 1, 2006 to March 31, 2006. GTI's activities during the report quarter were limited to administrative work. The work at the University of Arkansas continued in line with the initial scope of work and the identified questions regarding surface to cloud heat transfer as being largely responsible for the instability problems previously encountered. A brief summary of results is discussed in this section and the complete report from University of Arkansas is attached.

  14. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    Iraj A. Salehi; Jerry Havens; Tom Spicer

    2006-09-30

    This quarterly report for DE-FG26-04NT42030 covers a period from July 1, 2006 to October 31, 2006. GTI's activities during the report quarter were limited to administrative work. The work at the University of Arkansas continued in line with the initial scope of work and the identified questions regarding surface to cloud heat transfer as being largely responsible for the instability problems previously encountered. A brief summary of results is discussed in this section and the complete report from University of Arkansas is provided. All work planned for this project has been completed. Specifically: Task A--Simulation of Low-Wind-Speed Stable Atmospheric Conditions: This task has been completed, and a new version of FEM3A will be received by GTI. Task B--Verification for Dispersion over Rough Surfaces With and Without Obstacles: This task has been completed, and a new version of FEM3A will be received by GTI. Task C--Adapting the FEM3A Model for More General Application This task was obviated when DOE redirected the contract near the project midpoint. Task D--Provide assistance and wind tunnel data to DOE for FLUENT development This task has been completed and data requested by DOE-NETL has been delivered. Researchers at the University of Arkansas are preparing the final report that will be received by GTI by November 30, 2006.

  15. SOFIA Water Vapor Monitor Design

    NASA Technical Reports Server (NTRS)

    Cooper, R.; Roellig, T. L.; Yuen, L.; Shiroyama, B.; Meyer, A.; Devincenzi, D. (Technical Monitor)

    2002-01-01

    The SOFIA Water Vapor Monitor (WVM) is a heterodyne radiometer designed to determine the integrated amount of water vapor along the telescope line of sight and directly to the zenith. The basic technique that was chosen for the WVM uses radiometric measurements of the center and wings of the 183.3 GHz rotational line of water to measure the water vapor. The WVM reports its measured water vapor levels to the aircraft Mission Controls and Communication System (MCCS) while the SOFIA observatory is in normal operation at flight altitude. The water vapor measurements are also available to other scientific instruments aboard the observatory. The electrical, mechanical and software design of the WVM are discussed.

  16. CFD Investigation of Pollutant Emission in Can-Type Combustor Firing Natural Gas, LNG and Syngas

    NASA Astrophysics Data System (ADS)

    Hasini, H.; Fadhil, SSA; Mat Zian, N.; Om, NI

    2016-03-01

    CFD investigation of flow, combustion process and pollutant emission using natural gas, liquefied natural gas and syngas of different composition is carried out. The combustor is a can-type combustor commonly used in thermal power plant gas turbine. The investigation emphasis on the comparison of pollutant emission such in particular CO2, and NOx between different fuels. The numerical calculation for basic flow and combustion process is done using the framework of ANSYS Fluent with appropriate model assumptions. Prediction of pollutant species concentration at combustor exit shows significant reduction of CO2 and NOx for syngas combustion compared to conventional natural gas and LNG combustion.

  17. Tested Demonstrations. Gasoline Vapor: An Invisible Pollutant

    ERIC Educational Resources Information Center

    Stephens, Edgar R.

    1977-01-01

    Describes a demonstration concerning the air pollution aspects of gasoline vapor which provides an estimation of the vapor pressure of test fuel, the molecular weight of the vapor, and illustrates a method of controlling the pollution. (SL)

  18. Vapor pressure measured with inflatable plastic bag

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  19. Vapor Pressure, Vapor Composition and Fractional Vaporization of High Temperature Lavas on Io

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Schaefer, L.; Kargel, J. S.

    2003-01-01

    Observations show that Io's atmosphere is dominated by SO2 and other sulfur and sulfur oxide species, with minor amounts of Na, K, and Cl gases. Theoretical modeling and recent observations show that NaCl, which is produced volcanically, is a constituent of the atmosphere. Recent Galileo, HST and ground-based observations show that some volcanic hot spots on Io have extremely high temperatures, in the range 1400-1900 K. At similar temperatures in laboratory experiments, molten silicates and oxides have significant vapor pressures of Na, K, SiO, Fe, Mg, and other gases. Thus vaporization of these species from high temperature lavas on Io seems likely. We therefore modeled the vaporization of silicate and oxide lavas suggested for Io. Our results for vapor chemistry are reported here. The effects of fractional vaporization on lava chemistry are given in a companion abstract by Kargel et al.

  20. Passive vapor extraction feasibility study

    SciTech Connect

    Rohay, V.J.

    1994-06-30

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft{sup 3}/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft{sup 3}/min air flow rates, passive vapor extraction is more cost effective below 100 ppm.

  1. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  2. Visualizing Dispersion Interactions

    ERIC Educational Resources Information Center

    Gottschalk, Elinor; Venkataraman, Bhawani

    2014-01-01

    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  3. Spores Disperse, Too!

    ERIC Educational Resources Information Center

    Schumann, Donna N.

    1981-01-01

    Suggests the use of spores and spore-producing structures to show adaptations facilitating spore dispersal and dispersal to favorable environments. Describes several activities using horsetails, ferns, and mosses. Lists five safety factors related to use of mold spores in the classroom. (DS)

  4. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  5. Dispersal of forest insects

    NASA Technical Reports Server (NTRS)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  6. A Column Dispersion Experiment.

    ERIC Educational Resources Information Center

    Corapcioglu, M. Y.; Koroglu, F.

    1982-01-01

    Crushed glass and a Rhodamine B solution are used in a one-dimensional optically scanned column experiment to study the dispersion phenomenon in porous media. Results indicate that the described model gave satisfactory results and that the dispersion process in this experiment is basically convective. (DC)

  7. Dispersion and space charge

    NASA Astrophysics Data System (ADS)

    Venturini, Marco; Kishek, Rami A.; Reiser, Martin

    1998-11-01

    The presence of space charge affects the value of the dispersion function. On the other hand dispersion has a role in shaping the beam distribution and therefore in determining the resulting forces due to space charge. In this paper we present a framework where the interplay between space charge and dispersion for a continuous beam can be simultaneously treated. We revise the derivation of a new set of rms envelope-dispersion equations we have recently proposed in [1]. The new equations generalize the standard rms envelope equations currently used for matching to the case where bends and a longitudinal momentum spread are present. We report a comparison between the solutions of the rms envelope-dispersion equations and the results obtained using WARP, a Particle in Cell (PIC) code, in the modeling of the Maryland Electron Ring.

  8. Archimedes Mass Filter Vaporizer

    NASA Astrophysics Data System (ADS)

    Putvinski, S.; Agnew, A. F.; Cluggish, B. P.; Ohkawa, T.; Sevier, L.; Umstadter, K. R.; Dresvin, S. V.; Kuteev, B. V.; Feygenson, O. N.; Ivanov, D. V.; Zverev, S. G.; Miroshnikov, I. V.; Egorov, S. M.; Kiesewetter, D. V.; Maliugin, V. I.

    2001-10-01

    Archimedes Technology Group, Inc., is developing a plasma mass separator called the Archimedes Filter that separates waste oxide mixtures ion by ion into two mass groups: light and heavy. Since high-level waste at Hanford has 99.9its radioactivity associated with heavy elements, the Archimedes Filter can effectively decontaminate over three-quarters of that waste. The Filter process involves some preprocessing followed by volatilization and separation by the magnetic and electric fields of the main plasma. This presentation describes the approach to volatilization of the waste oxy-hydroxide mixture by means of a very high heat flux (q > 10 MW/m2). Such a high heat flux is required to ensure congruent evaporation of the complex oxy-hydroxide mixture and is achieved by injection of small droplets of molten waste into an inductively coupled plasma (ICP) torch. This presentation further addresses different issues related to evaporation of the waste including modeling of droplet evaporation, estimates of parameters of plasma torch, and 2D modeling of the plasma. The experimental test bed for oxide vaporization and results of the initial experiments on oxide evaporation in 60 kW ICP torch will also be described.

  9. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.

    1978-01-01

    The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells.

  10. Supercritical microgravity droplet vaporization

    NASA Technical Reports Server (NTRS)

    Hartfield, J.; Curtis, E.; Farrell, P.

    1990-01-01

    Supercritical droplet vaporization is an important issue in many combustion systems, such as liquid fueled rockets and compression-ignition (diesel) engines. In order to study the details of droplet behavior at these conditions, an experiment was designed to provide a gas phase environment which is above the critical pressure and critical temperature of a single liquid droplet. In general, the droplet begins as a cold droplet in the hot, high pressure environment. In order to eliminate disruptions to the droplet by convective motion in the gas, forced and natural convection gas motion are required to be small. Implementation of this requirement for forced convection is straightforward, while reduction of natural convection is achieved by reduction in the g-level for the experiment. The resulting experiment consists of a rig which can stably position a droplet without restraint in a high-pressure, high temperature gas field in microgravity. The microgravity field is currently achieved by dropping the device in the NASA Lewis 2.2 second drop tower. The performance of the experimental device and results to date are presented.

  11. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  12. VAPOR SHIELD FOR INDUCTION FURNACE

    DOEpatents

    Reese, S.L.; Samoriga, S.A.

    1958-03-11

    This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

  13. Analytical and experimental investigation of the dispersion process during rapid transients for the aluminum-based nuclear fuel plates

    SciTech Connect

    Georgevich, V.; Taleyarkhan, R.P.; Kim, S.H.; Fuketa, T.; Soyama, K.; Ishijima, K.

    1995-06-01

    A thermally induced fuel-plate dispersion model was developed to analyze for dispersive potential and determine the onset of fuel plate dispersion for aluminum-based research and test reactor fuels. The effect of rapid energy deposition in a fuel plate was simulated. Several data types for aluminum-based fuels tested in the Nuclear Safety Research Reactor (NSRR) facility in Japan and in the Transient Reactor Test (TREAT) facility in Idaho, US, were reviewed. Analyses of experiments show that the onset of fuel dispersion is clearly linked to a sharp rise in the predicted strain rate, which further coincides with the onset of aluminum vaporization. Analysis also shows that aluminum oxidation and exothermal chemical reaction between the fuel and aluminum can significantly affect: the energy deposition characteristics and, therefore dispersion onset connected with aluminum vaporization, and the onset of aluminum vaporization.

  14. 78 FR 62344 - Sabine Pass Liquefaction Expansion, LLC, Sabine Pass Liquefaction, LLC, and Sabine Pass LNG, L.P...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-18

    ... Sabine Pass LNG, L.P., Cheniere Creole Trail Pipeline, L.P.; Notice of Application Take notice that on... Commission an application under section 3(a) of the Natural Gas Act (NGA) for authorization to site...) filed, in the same application, a request under section 7(c) of the NGA, for authorization to...

  15. 78 FR 75337 - Eos LNG LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced From Domestic Natural Gas Resources to Non-Free Trade Agreement Countries for a 25-Year Period AGENCY: Office of Fossil... natural gas, or 1.6 Bcf per day (Bcf/d). Eos seeks authorization to export the LNG for a 25-year term...

  16. 78 FR 47691 - UGI, Inc.; Notice of Intent to Prepare an Environmental Assessment for the Proposed Temple LNG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Proposed Temple LNG Liquefaction Upgrade and Request for Comments on Environmental Issues The staff of the... EA on the important environmental issues. By this notice, the Commission requests public comments on... jurisdiction by law and/or special expertise with respect to the environmental issues of this project...

  17. 77 FR 277 - Sabine Pass Liquefaction, LLC and Sabine Pass LNG, L.P; Notice of Availability of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Sabine Pass Liquefaction, LLC and Sabine Pass LNG, L.P; Notice of Availability of the Environmental Assessment for the Proposed Sabine Pass Liquefaction Project The staff of the Federal Energy Regulatory Commission...

  18. 75 FR 13755 - Freeport LNG Development, L.P.; Application To Amend Blanket Authorization To Export Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... directive.'' \\7\\ See 49 FR 6684, February 22, 1984. Freeport LNG states that in DOE/FE Order No. 2644, which... Fossil Energy, Forrestal Building, Room 3E-042, 1000 Independence Avenue, SW., Washington, DC 20585. FOR... Oil and Gas Global Security and Supply, Office of Fossil Energy, Forrestal Building, Room 3E-042,...

  19. 78 FR 1851 - Sabine Pass Liquefaction, LLC and Sabine Pass LNG, L.P.; Notice of Intent To Prepare an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... facility; condensate storage, metering and send-out facilities; four gas pipeline meter stations... HRU, condensate storage, and metering facilities would be located within the existing Sabine Pass LNG... wetlands; Cultural resources; Vegetation and wildlife; Air quality and noise; Endangered and...

  20. 78 FR 25432 - Sabine Pass LNG, L.P., Sabine Pass Liquefaction, LLC; Notice of Availability of the Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... Energy Regulatory Commission Sabine Pass LNG, L.P., Sabine Pass Liquefaction, LLC; Notice of Availability of the Environmental Assessment for the Proposed Sabine Pass Liquefaction Project Modification The... assessment (EA) for the Sabine Pass Liquefaction Project Modification (Modification Project), proposed...

  1. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE...

  2. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 33 CFR 127.007, and a Preliminary Waterway Suitability Assessment (WSA) with the U.S. Coast Guard... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF...

  3. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 33 CFR 127.007, and a Preliminary Waterway Suitability Assessment (WSA) with the U.S. Coast Guard... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF...

  4. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE...

  5. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 33 CFR 127.007, and a Preliminary Waterway Suitability Assessment (WSA) with the U.S. Coast Guard... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF...

  6. 78 FR 38024 - Magnolia LNG, LLC; Liquefied Natural Gas Limited; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Magnolia LNG, LLC; Liquefied Natural Gas Limited; Notice of Intent To Prepare an Environmental Impact Statement for the Planned Magnolia Liquefied Natural Gas Project, Request for Comments on Environmental Issues,...

  7. Optimized simulation of vortex jet mill in waste rubber grinding technology by LNG

    NASA Astrophysics Data System (ADS)

    Han, Yuemei

    2015-07-01

    Frozen rubber powder has excellent qualities and application value, and it can be achieved from waste rubber after being crushed at low temperature used liquefied natural gas (LNG) as cryogen. Vortex jet mill was the key equipment to further crush the rubber particles which the pressure-air was jet into in the basic LNG technological process. After confirming the structure and size of the jet nozzle, the Height (H) between the nozzle and the bottom of the mill, the incident angle α and the initial size of the rubber particles were changed then the continuous phase and the track of single particle were optimized in order to gain more excellent crushing effect. The results showed: the jetting gas were spiral rising in the mill and the speed of it was reduced, so the particle was graded by the gas. The impact and collision could reduce the particle diameter and crush them but the result was influenced by the initial size of the particle. The size of the original rubber particles must not be more than 110μm. The simulation was helpful and leading for the experiment.

  8. A stratospheric water vapor feedback

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-12-01

    Variations in stratospheric water vapor play a role in the evolution of our climate. We show here that variations in water vapor since 2004 can be traced to tropical tropopause layer (TTL) temperature perturbations from at least three processes: the quasi-biennial oscillation, the strength of the Brewer-Dobson circulation, and the temperature of the troposphere. The connection between stratospheric water vapor and the temperature of the troposphere implies the existence of a stratospheric water vapor feedback. We estimate the feedback in a chemistry-climate model to have a magnitude of +0.3 W/m2/K, which could be a significant contributor to the overall climate sensitivity. About two-thirds of the feedback comes from the extratropical stratosphere below ~16 km (the lowermost stratosphere), with the rest coming from the stratosphere above ~16 km (the overworld).

  9. Tubing For Sampling Hydrazine Vapor

    NASA Technical Reports Server (NTRS)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  10. Understanding Latent Heat of Vaporization.

    ERIC Educational Resources Information Center

    Linz, Ed

    1995-01-01

    Presents a simple exercise for students to do in the kitchen at home to determine the latent heat of vaporization of water using typical household materials. Designed to stress understanding by sacrificing precision for simplicity. (JRH)

  11. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  12. Water vapor diffusion membranes, 2

    NASA Technical Reports Server (NTRS)

    Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.

    1976-01-01

    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.

  13. Packed Alumina Absorbs Hypergolic Vapors

    NASA Technical Reports Server (NTRS)

    Thomas, J. J.; Mauro, D. M.

    1984-01-01

    Beds of activated alumina effective as filters to remove hypergolic vapors from gas streams. Beds absorb such substances as nitrogen oxides and hydrazines and may also absorb acetylene, ethylene, hydrogen sulfide, benzene, butadiene, butene, styrene, toluene, and xoylene. Bed has no moving parts such as pumps, blowers and mixers. Reliable and energy-conservative. Bed readily adapted to any size from small portable units for use where little vapor release is expected to large stationary units for extensive transfer operations.

  14. Vapor deposition of hardened niobium

    DOEpatents

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  15. Chemical vapor deposition sciences

    SciTech Connect

    1992-12-31

    Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

  16. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a...

  17. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a...

  18. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a...

  19. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a...

  20. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a...

  1. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    SciTech Connect

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  2. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Ermak, D.L.

    1983-01-01

    Ammonia (NH/sub 3/), a by-product of many chemical processes, is widely used as a fertilizer and as a raw material for many chemical syntheses. The purpose of this paper is to discuss the atmospheric dispersion of ammonia resulting from a high pressure release. The resulting nature of the two-phase cloud of ammonia vapor and droplets has a significant effect on its dispersion characteristics. Our calculations of a 40 ton release show that even under moderately high wind conditions, the resulting ammonia cloud remains negatively buoyant for considerable distances downwind.

  3. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Ermak,D.L.

    1983-04-01

    Ammonia (NH/sub 3/), a by-product of many chemical processes, is widely used as a fertilizer and as a raw material for many chemical syntheses. The purpose of this paper is to discuss the atmospheric dispersion of ammonia resulting from a high pressure release. The resulting nature of the two-phase clouds of ammonia vapor and droplets has a significant effect on its dispersion characteristics. Our calculations of a 40 ton release show that even under moderately high wind conditions, the resulting ammonia cloud remains negatively buoyant for considerable distances downwind.

  4. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Ermak, D.L.; Chan, S.T.; Rodean, H.C.

    1983-07-01

    Ammonia (NH/sub 3/), a by-product of many chemical processes, is widely used as a fertilizer and as a raw material for many chemical syntheses. The purpose of this paper is to discuss the atmospheric dispersion of ammonia resulting from a high pressure release. The resulting nature of the two-phase cloud of ammonia vapor and droplets has a significant effect on its dispersion characteristics. Our calculations of a 40 ton release show that even under moderately high wind conditions, the resulting ammonia cloud remains negatively buoyant for considerable distances downwind. 10 references, 15 figures.

  5. Thermogravity system designed for use in dispersion strengthening studies

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    A thermogravimetry system designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 PPM water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.

  6. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  7. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  8. Optical gyroscope with controllable dispersion in four wave mixing regime.

    NASA Astrophysics Data System (ADS)

    Mikhailov, Eugeniy; Wolfe, Owen; Du, Shuangli; Rochester, Simon; Budker, Dmitry; Novikova, Irina

    2016-05-01

    We present our work towards realization of the fast-light gyroscope prototype, in which the sensitivity enhancement (compared to a regular laser gyroscopes) is achieved by adjusting the intra-cavity dispersion. We discuss schematics and underlying nonlinear effects leading to the negative dispersion in Rb vapor: level structure, optically addressed transitions, and configuration of the resonant cavity. We investigate dependence of the pulling factor (i.e., the ratio of the lasing frequency shift with the change of the cavity length to the equivalent resonance frequency shift in the empty cavity) on pump lasers detunings, power, and density of the atomic vapor. The observation of the pulling factor exceeding unity implies the gyroscope sensitivity improvement over the regular system This work is supported by Naval Air Warfare Center STTR program N68335-11-C-0428.

  9. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  10. Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation.

    PubMed

    Zielinski, Marcin S; Choi, Jae-Woo; La Grange, Thomas; Modestino, Miguel; Hashemi, Seyyed Mohammad Hosseini; Pu, Ye; Birkhold, Susanne; Hubbell, Jeffrey A; Psaltis, Demetri

    2016-04-13

    In the past decade, nanomaterials have made their way into a variety of technologies in solar energy, enhancing the performance by taking advantage of the phenomena inherent to the nanoscale. Recent examples exploit plasmonic core/shell nanoparticles to achieve efficient direct steam generation, showing great promise of such nanoparticles as a useful material for solar applications. In this paper, we demonstrate a novel technique for fabricating bimetallic hollow mesoporous plasmonic nanoshells that yield a higher solar vapor generation rate compared with their solid-core counterparts. On the basis of a combination of nanomasking and incomplete galvanic replacement, the hollow plasmonic nanoshells can be fabricated with tunable absorption and minimized scattering. When exposed to sun light, each hollow nanoshell generates vapor bubbles simultaneously from the interior and exterior. The vapor nucleating from the interior expands and diffuses through the pores and combines with the bubbles formed on the outer wall. The lack of a solid core significantly accelerates the initial vapor nucleation and the overall steam generation dynamics. More importantly, because the density of the hollow porous nanoshells is essentially equal to the surrounding host medium these particles are much less prone to sedimentation, a problem that greatly limits the performance and implementation of standard nanoparticle dispersions. PMID:26918518

  11. Fickian dispersion is anomalous

    SciTech Connect

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  12. Fickian dispersion is anomalous

    DOE PAGESBeta

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less

  13. Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide

    USGS Publications Warehouse

    Finkelman, R.B.; Larson, R.R.; Dwornik, E.J.

    1974-01-01

    The first naturally occurring terrestrial example of vapor-liquid-solid (VLS) growth has been observed in condensates from gases released by burning coal in culm banks. Scanning electron microscopy, X-ray diffraction, and energy dispersive analysis indicate that the crystals consist of elongated rods (??? 100 ??m) of germanium sulfide capped by bulbs depleted in germanium. ?? 1974.

  14. Study of Rydberg blockade mediated optical non-linearity in thermal vapor

    NASA Astrophysics Data System (ADS)

    Bhowmick, Arup; Mohapatra, Ashok

    We demonstrate Rydberg blockade by coupling to Rydberg state via two-photon excitation in rubidium thermal vapor. The probe beam coupling to the D 2 transition was blue detuned by 1 . 3 GHz and a coupling beam was scanned to excite the atoms to Rydberg state via two-photon transition (5s1/2 ⟶ n s1/2). The dispersion of the probe beam is modified due to the 2-photon excitation and is measured using an optical heterodyne detection technique in the experiment. We have observed that the dispersion of the probe beam depends linearly on atomic vapor density while coupling to a Rydberg state with principal quantum number, n = 30 . However, density dependent suppression of the dispersion is observed while coupling to the Rydberg state with n = 60 . Since the dispersion of the probe beam due to 2-photon excitation depends on the Rydberg population, the density dependent suppression is explained by introducing the concept of blockade. The blockade radius is measured to be about 2.2 μm which is consistent with the scaling due to Doppler width of the 2-photon resonance in thermal vapor. Our result promises the realization of single photon source and strong single photon non-linearity based on Rydberg blockade in thermal vapor. National Institute of Science Education and Research.

  15. Sound waves in a liquid with polydisperse vapor-gas bubbles

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Fedorov, Yu. V.

    2016-03-01

    A mathematical model is presented for the propagation of plane, spherical, and cylindrical sound waves in a liquid containing polydisperse vapor-gas bubbles with allowance for phase transitions. A system of integro-differential equations is constructed to describe perturbed motion of a two-phase mixture, and a dispersion relation is derived. An expression for equilibrium sound velocity is obtained for a gas-liquid or vapor-liquid mixture. The theoretical results agree well with the known experimental data. The dispersion curves obtained for the phase velocity and the attenuation coefficient in a mixture of water with vapor-gas bubbles are compared for various values of vapor concentration in the bubbles and various bubble distributions in size. The evolution of pressure pulses of plane and cylindrical waves is demonstrated for different values of the initial vapor concentration in bubbles. The calculated frequency dependence of the phase sound velocity in a mixture of water with vapor bubbles is compared with experimental data.

  16. Design, fabrication and testing of porous tungsten vaporizers for mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Zavesky, R.; Kroeger, E.; Kami, S.

    1983-01-01

    The dispersions in the characteristics, performance and reliability of vaporizers for early model 30-cm thrusters were investigated. The purpose of the paper is to explore the findings and to discuss the approaches that were taken to reduce the observed dispersion and present the results of a program which validated those approaches. The information that is presented includes porous tungsten materials specifications, a discussion of assembly procedures, and a description of a test program which screens both material and fabrication processes. There are five appendices providing additional detail in the areas of vaporizer contamination, nitrogen flow testing, bubble testing, porosimeter testing, and mercury purity. Four neutralizers, seven cathodes and five main vaporizers were successfully fabricated, tested, and operated on thrusters. Performance data from those devices is presented and indicates extremely repeatable results from using the design and fabrication procedures.

  17. SiC nanowires synthesized from graphene and silicon vapors

    NASA Astrophysics Data System (ADS)

    Weichenpei, Luo; Gong-yi, Li; Zengyong, Chu; Tianjiao, Hu; Xiaodong, Li; Xuefei, Zhang

    2016-04-01

    The preparation of silicon carbide (SiC) nanowires is basically important for its potential applications in nanodevices, nanocomposites, etc. In the present work, a simple route was reported to synthesize SiC nanowires by heating commercial graphene with silicon vapors and no catalyst. Characterization by scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, electron energy scattering, X-ray diffraction, and Raman dispersive spectrum demonstrates the products are composed of β-SiC crystal. The SiC nanowires have the average diameter of about 50 nm and length of tens of micrometers. The vapor-solid mechanism was employed to interpret the SiC nanowires growth. Gaseous SiO which was produced by the reaction of Si powders with its surface oxidation reacted with the solid graphene to form SiC crystal nuclei. And SiC crystal nuclei would act as active sites for further growing into nanowires.

  18. The use of long acting subcutaneous levonorgestrel (LNG) gel depot as an effective contraceptive option for cotton-top tamarins (Saguinus oedipus).

    PubMed

    Wheaton, C J; Savage, A; Shukla, A; Neiffer, D; Qu, W; Sun, Y; Lasley, B L

    2011-01-01

    Cotton-top tamarins (Saguinus oedipus) are a critically endangered species that have been bred successfully in captivity for many years. For two decades, the Cotton-top Tamarin SSP(©) has been challenged with a high rate of reproduction combined with a history of contraceptive failures and nonrecommended births using the current Depo Provera(®) (medroxyprogesterone acetate) injection followed by MGA (melengestrol acetate) implant contraception combination. To address these issues we have developed and tested the use of levonorgestrel (LNG) as an effective contraception option for cotton-top tamarins. LNG was delivered in an injectable, gel matrix consisting of polylactic-co-glycolic acid, triethyl citrate and N-methylpyrrolidone. This gel matrix forms a biodegradable depot at the subcutaneous injection site providing slow release of the active ingredient. Gel matrix composition and LNG concentration were adjusted in four gel formulations to maximize the duration of contraceptive efficacy while minimizing immediate post-injection increases in fecal LNG concentration. LNG treatment (68.44 ± 8.61 mg/kg) successfully eliminated ovarian cycles (fecal pregnanediol-3-glucuronide (PdG) and estrone conjugates (E(1) C)) for 198.8 ± 70.3 days (formulation four; range 19-50 weeks). It was demonstrated that subcutaneous LNG depot injection was an effective, reversible contraceptive option for the management of cotton-top tamarins in captivity. PMID:20938969

  19. Breakup and vaporization of droplets under locally supersonic conditions

    NASA Astrophysics Data System (ADS)

    Kim, YoungJun; Hermanson, James C.

    2012-07-01

    The disruption and vaporization of simulated fuel droplets in an accelerating supersonic flow was examined experimentally in a draw-down supersonic wind tunnel. The droplets achieved supersonic velocities relative to the surrounding air to give relative Mach numbers of up to 1.8 and Weber numbers of up to 300. Mono-disperse, 100 μm-diameter fluid droplets were generated using a droplet-on-demand generator upstream of the tunnel entrance. Direct close-up single- and multiple-exposure imaging was used to examine the features of droplet breakup and to determine the droplet velocities. Laser-induced fluorescence (LIF) imaging of the disrupting droplets was performed using acetone fluorescence to determine the dispersion of the expelled vapor. Three test liquids were employed: 2-propanol and tetraethylene glycol dimethyl ether as non-volatile fluids and a 50/50 hexanol-pentane mixture (Hex-Pen 50/50). The vapor pressure of the Hex-Pen 50/50 was sufficiently high to cause the droplet fluid to potentially become superheated in the decreased static pressure of the supersonic stream. The dynamics for 2-propanol and Hex-Pen 50/50 droplets were similar up to the point of disruption, which occurred more rapidly for the more volatile Hex-Pen 50/50. A 1D dynamic droplet model was developed to provide a first estimate of the expected droplet acceleration and velocity. The actual droplet velocities were in reasonable agreement with the model up to the point at which significant droplet disruption and mass loss commenced. The droplet deformation and breakup patterns for these supersonic flow conditions can be classified into four different flow regions characterized by changes in the Weber number with downstream distance as the droplets accelerate, however, those flow regimes and Weber number ranges were different than those seen for droplets disrupting in shock tubes. The disruption patterns were seen to be generally similar for the different fluids, though droplet disruption

  20. Vapor pressures of new fluorocarbons

    SciTech Connect

    Kubota, H.; Yamashita, T.; Tanaka, Y.; Makita, T. )

    1989-05-01

    The vapor pressures of four fluorocarbons have been measured at the following temperature ranges: R123 (2,2-dichloro-1,1,1-trifluoroethane), 273-457 K; R123a (1,2-dichloro-1,1,2-trifluoroethane), 303-458 K; R134a (1,1,1,2-tetrafluoroethane), 253-373 K; and R132b (1,2-dichloro-1,1-difluoroethane), 273-398 K. Determinations of the vapor pressure were carried out by a constant-volume apparatus with an uncertainty of less than 1.0%. The vapor pressures of R123 and R123a are very similar to those of R11 over the whole experimental temperature range, but the vapor pressures of R134a and R132b differ somewhat from those of R12 and R113, respectively, as the temperature increases. The numerical vapor pressure data can be fitted by an empirical equation using the Chebyshev polynomial with a mean deviation of less than 0.3%.

  1. The Lithium Vapor Box Divertor

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  2. When is dispersal for dispersal? Unifying marine and terrestrial perspectives.

    PubMed

    Burgess, Scott C; Baskett, Marissa L; Grosberg, Richard K; Morgan, Steven G; Strathmann, Richard R

    2016-08-01

    Recent syntheses on the evolutionary causes of dispersal have focused on dispersal as a direct adaptation, but many traits that influence dispersal have other functions, raising the question: when is dispersal 'for' dispersal? We review and critically evaluate the ecological causes of selection on traits that give rise to dispersal in marine and terrestrial organisms. In the sea, passive dispersal is relatively easy and specific morphological, behavioural, and physiological adaptations for dispersal are rare. Instead, there may often be selection to limit dispersal. On land, dispersal is relatively difficult without specific adaptations, which are relatively common. Although selection for dispersal is expected in both systems and traits leading to dispersal are often linked to fitness, systems may differ in the extent to which dispersal in nature arises from direct selection for dispersal or as a by-product of selection on traits with other functions. Our analysis highlights incompleteness of theories that assume a simple and direct relationship between dispersal and fitness, not just insofar as they ignore a vast array of taxa in the marine realm, but also because they may be missing critically important effects of traits influencing dispersal in all realms. PMID:26118564

  3. Experimental study on flow boiling heat transfer of LNG in a vertical smooth tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-10-01

    An experimental apparatus is set up in this work to study the upward flow boiling heat transfer characteristics of LNG (liquefied natural gas) in vertical smooth tubes with inner diameters of 8 mm and 14 mm. The experiments were performed at various inlet pressures from 0.3 to 0.7 MPa. The results were obtained over the mass flux range from 16 to 200 kg m-2 s-1 and heat fluxes ranging from 8.0 to 32 kW m-2. The influences of quality, heat flux and mass flux, tube diameter on the heat transfer characteristic are examined and discussed. The comparisons of the experimental heat transfer coefficients with the predicted values from the existing correlations are analyzed. The correlation by Zou et al. [16] shows the best accuracy with the RMS deviation of 31.7% in comparison with the experimental data.

  4. LNG combined cycle power plant for stable power supply for Kiheung semiconductor plant

    SciTech Connect

    Chang, Choong Koo; Park, Hyo Jeong; Kim, In Chool

    1995-12-31

    Reserve margins of Korea Electric Power Corporation (KEPCO) was 12% in 1993, however it was reduced to less than 3% in the summer of 1994 due to increase of electric power consumption caused by life style change based on economic growth. Therefore stable supply of electric power to industrial plant was threatened during last summer`s peak. The process of semiconductor manufacturing is very precious and full processing time reaches several months. Furthermore interruption of power supply to the process causes abortion of every product in the process. Therefore, power failure of less than one (1) second, may result in enormous loss of capital. In order to protect disaster caused by power shortage during summer peaks. Samsung Electronics Co., Ltd (SEC) planned to construct LNG combined cycle power plant for the Klheung semiconductor plant which is the world`s leading maker of dynamic random access memory (DRAM) chips.

  5. Development of LM10-MIRA LOX/LNG expander cycle demonstrator engine

    NASA Astrophysics Data System (ADS)

    Rudnykh, Mikhail; Carapellese, Stefano; Liuzzi, Daniele; Arione, Luigi; Caggiano, Giuseppe; Bellomi, Paolo; D'Aversa, Emanuela; Pellegrini, Rocco; Lobov, S. D.; Gurtovoy, A. A.; Rachuk, V. S.

    2016-09-01

    This article contains results of joint works by Konstruktorskoe Buro Khimavtomatiki (KBKhA, Russia) and AVIO Company (Italy) on creation of the LM10-MIRA liquid-propellant rocket demonstrator engine for the third stage of the upgraded "Vega" launcher.Scientific and research activities conducted by KBKhA and AVIO in 2007-2014 in the frame of the LYRA Program, funded by the Italian Space Agency, with ELV as Prime contractor, and under dedicated ASI-Roscosmos inter-agencies agreement, were aimed at development and testing of a 7.5 t thrust expander cycle demonstrator engine propelled by oxygen and liquid natural gas (further referred to as LNG).

  6. Feasibility study on Thailand LNG project. Final report. Volume 2. Appendix. Export trade information

    SciTech Connect

    1995-08-01

    This study, conducted by Bechtel, was funded by the U.S. Trade and Development Agency. The report specifically addresses an LNG terminal and associated gas pipeline, the crude oil pipeline component of the Southern Seaboard project, in addition to a power plant which uses a portion of the gas. Volume II contains the Appendix and is divided into the following sections: (1.0) PTT Data; (2.0) Design Criteria; (3.0) Khao Bo Ya Soils Data; (4.0) Khao Bo Ya Oceanographic Data; (5.0) Thailand Seismic Data; (6.0) Risk Assessment; (7.0) Equipment Lists; (8.0) Equipment Data Sheets; (9.0) Drawings; (10.0) Cost Data; (11.0) Calculations; (12.0) Terms of Reference.

  7. Marine loading vapor control systems

    SciTech Connect

    Babet, F.H.

    1996-09-01

    The EPA and State air quality control boards have mandated the collection and destruction or recovery of vapors generated by the loading of some hydrocarbons and chemicals into marine vessels. This is a brief overview of the main US Coast Guard requirements for marine vapor control systems. As with most regulations, they are open to interpretation. In an attempt to more clearly define the intent of the regulations, the US Coast Guard has issued guidelines to assist the certifying entities in ensuring compliance with intended regulations. If a company is contemplating the installation of a marine loading vapor control system, the authors strongly recommend that one engage the services of a certifying entity, either as the designer, or an advisor and ultimately the certifier of the system. This should be done well up front in the design of the system to avoid costly mistakes which can occur as a result of lack of knowledge or misinterpretation of the regulations and guidelines.

  8. Atomization and vaporization characteristics of airblast fuel injection inside a venturi tube

    NASA Astrophysics Data System (ADS)

    Sun, H.; Chue, T.-H.; Lai, M.-C.; Tacina, R. R.

    1993-06-01

    This paper describes the experimental and numerical characterization of the capillary fuel injection, atomization, dispersion, and vaporization of liquid fuel in a coflowing air stream inside a single venturi tube. The experimental techniques used are all laser-based. Phase Doppler analyzer was used to characterize the atomization and vaporization process. Planar laser-induced fluorescence visualizations give good qualitative picture of the fuel droplet and vapor distribution. Limited quantitative capabilities of the technique are also demonstrated. A modified version of the KIVA-II was used to simulate the entire spray process, including breakup and vaporization. The advantage of venturi nozzle is demonstrated in terms of better atomization, more uniform F/A distribution, and less pressure drop. Multidimensional spray calculations can be used as a design tool only if care is taken for the proper breakup model, and wall impingement process.

  9. Atomization and vaporization characteristics of airblast fuel injection inside a venturi tube

    NASA Technical Reports Server (NTRS)

    Sun, H.; Chue, T.-H.; Lai, M.-C.; Tacina, R. R.

    1993-01-01

    This paper describes the experimental and numerical characterization of the capillary fuel injection, atomization, dispersion, and vaporization of liquid fuel in a coflowing air stream inside a single venturi tube. The experimental techniques used are all laser-based. Phase Doppler analyzer was used to characterize the atomization and vaporization process. Planar laser-induced fluorescence visualizations give good qualitative picture of the fuel droplet and vapor distribution. Limited quantitative capabilities of the technique are also demonstrated. A modified version of the KIVA-II was used to simulate the entire spray process, including breakup and vaporization. The advantage of venturi nozzle is demonstrated in terms of better atomization, more uniform F/A distribution, and less pressure drop. Multidimensional spray calculations can be used as a design tool only if care is taken for the proper breakup model, and wall impingement process.

  10. Kinetics of water vapor diffusion in activated carbon

    NASA Astrophysics Data System (ADS)

    Kurmasheva, D. M.; Kapralov, P. O.; Travkin, V. D.; Artemov, V. G.; Tikhonov, V. I.; Volkov, A. A.

    2014-05-01

    We describe an experimental method for studying rapid processes of water vapor sorption by fine-dispersed and porous materials. The concentration of gas-phase water molecules is detected during adsorption by a laser-diode spectrometer. The kinetic pressure curves are recorded in a time window of 10-1 to 103 s and are analyzed using analogy of the diffusion flow with the electric current in a branched RC circuit. The proposed model establishes the relation between the kinetics curves being measured and the structural parameters of the medium.

  11. Cauchy's dispersion equation reconsidered : dispersion in silicate glasses.

    SciTech Connect

    Smith, D. Y.; Inokuti, M.; Karstens, W.; Physics; Univ. of Vermont; St. Michael's College

    2002-01-01

    We formulate a novel method of characterizing optically transparent substances using dispersion theory. The refractive index is given by a generalized Cauchy dispersion equation with coefficients that are moments of the uv and ir absorptions. Mean dispersion, Abbe number, and partial dispersion are combinations of these moments. The empirical relation between index and dispersion for families of glasses appears as a consequence of Beer's law applied to the uv spectra.

  12. KISMET tungsten dispersal experiment

    SciTech Connect

    Wohletz, K.; Kunkle, T.; Hawkins, W.

    1996-12-01

    Results of the KISMET tungsten dispersal experiment indicate a relatively small degree of wall-rock contamination caused by this underground explosive experiment. Designed as an add-on to the KISMET test, which was performed in the U-1a.02 drift of the LYNER facility at Nevada Test Site on 1 March 1995, this experiment involved recovery and analysis of wall-rock samples affected by the high- explosive test. The chemical, high-explosive blast drove tungsten powder, placed around the test package as a plutonium analog, into the surrounding wall- rock alluvium. Sample analyses by an analytical digital electron microscope (ADEM) show tungsten dispersed in the rock as tiny (<10 {mu}m) particles, agglomerates, and coatings on alluvial clasts. Tungsten concentrations, measured by energy dispersive spectral analysis on the ADEM, indicate penetration depths less than 0.1 m and maximum concentrations of 1.5 wt % in the alluvium.

  13. Fog dispersal technology.

    NASA Technical Reports Server (NTRS)

    Mcgowan, W. A.

    1971-01-01

    The state-of-the-art in fog dispersal technology is briefly discussed. Fog is categorized as supercooled fog, occurring in air temperatures below freezing, and warm fog, occurring at above-freezing temperatures. Operational techniques are available to disperse supercooled fog in the airport area. It is much more difficult to cope with warm fog. Various known concepts to disperse warm fog are evaluated as to their operational merits. The most effective concept for immediate use involves heating the air to cause fog evaporation. Use of helicopter downwash has some application, possibly complementing the promising concept of seeding with sized hygroscopic particles. These latter two concepts appear to have future application, pending further research. The concept using polyelectrolytes is of uncertain value, lacking both a scientific explanation and a substantive evaluation of reported operational successes.

  14. Drilling mud dispersants

    SciTech Connect

    Gleason, P. A.; Brase, I. E.

    1985-05-21

    Dispersants useful in aqueous drilling mud formulations employed in the drilling of subterranean wells where high temperature and high pressure environments are encountered are disclosed. The dispersants, when used in amounts of about 0.1 to 25 ppb provide muds containing colloidal material suspended in an aqueous medium with improved high temperature and high pressure stability. The dispersants are water soluble sulfonated vinyl toluene-maleic anhydride copolymers which have a molar ratio of vinyl toluene to maleic anhydride of about 1:1 to less than about 2:1, a molecular weight of 1,000 to 25,000 and at least about 0.7 sulfonic acid groups per vinyl toluene unit.

  15. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  16. About measuring velocity dispersions

    NASA Astrophysics Data System (ADS)

    Fellhauer, M.

    A lot of our knowledge about the dynamics and total masses of pressure dominated stellar systems relies on measuring the internal velocity disper- sion of the system. We assume virial equilibrium and that we are able to measure only the bound stars of the system without any contamination. This article shows how likely it is to measure the correct velocity dispersion in reality. It will show that as long as we have small samples of velocity mea- surements the distribution of possible outcomes can be very large and as soon as we have a source of error the velocity dispersion can wrong by several standard deviations especially in large samples.

  17. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  18. Uranium Dispersion & Dosimetry Model.

    Energy Science and Technology Software Center (ESTSC)

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  19. Low level vapor verification of monomethyl hydrazine

    NASA Technical Reports Server (NTRS)

    Mehta, Narinder

    1990-01-01

    The vapor scrubbing system and the coulometric test procedure for the low level vapor verification of monomethyl hydrazine (MMH) are evaluated. Experimental data on precision, efficiency of the scrubbing liquid, instrument response, detection and reliable quantitation limits, stability of the vapor scrubbed solution, and interference were obtained to assess the applicability of the method for the low ppb level detection of the analyte vapor in air. The results indicated that the analyte vapor scrubbing system and the coulometric test procedure can be utilized for the quantitative detection of low ppb level vapor of MMH in air.

  20. Waste Tank Vapor Project: Tank vapor database development

    SciTech Connect

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase{reg_sign}, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism{reg_sign} and Business Objects{trademark}. A prototype database was constructed to provide the Waste Tank Vapor Project`s Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994.

  1. Vapor generation methods for explosives detection research

    SciTech Connect

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  2. Method and apparatus for vapor detection

    NASA Technical Reports Server (NTRS)

    Lerner, Melvin (Inventor); Hood, Lyal V. (Inventor); Rommel, Marjorie A. (Inventor); Pettitt, Bruce C. (Inventor); Erikson, Charles M. (Inventor)

    1980-01-01

    The method disclosed herein may be practiced by passing the vapors to be sampled along a path with halogen vapor, preferably chlorine vapor, heating the mixed vapors to halogenate those of the sampled vapors subject to halogenation, removing unreacted halogen vapor, and then sensing the vapors for organic halogenated compounds. The apparatus disclosed herein comprises means for flowing the vapors, both sample and halogen vapors, into a common path, means for heating the mixed vapors to effect the halogenation reaction, means for removing unreacted halogen vapor, and a sensing device for sensing halogenated compounds. By such a method and means, the vapors of low molecular weight hydrocarbons, ketones and alcohols, when present, such as methane, ethane, acetone, ethanol, and the like are converted, at least in part, to halogenated compounds, then the excess halogen removed or trapped, and the resultant vapors of the halogenated compounds sensed or detected. The system is highly sensitive. For example, acetone in a concentration of 30 parts per billion (volume) is readily detected.

  3. Hydrazine vapor inactivates Bacillus spores

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  4. Acoustic Behavior of Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Prosperetti, Andrea; Oguz, Hasan N.

    1996-01-01

    In a microgravity environment vapor bubbles generated at a boiling surface tend to remain near it for a long time. This affects the boiling heat transfer and in particular promotes an early transition to the highly inefficient film boiling regime. This paper describes the physical basis underlying attempts to remove the bubbles by means of pressure radiation forces.

  5. INDOOR AIR VAPOR INTRUSION SEMINAR

    EPA Science Inventory

    This seminar is sponsored by the ORD in collaboration with the Office of Solid Waste and Emergency Response. The goal of this seminar is to present information and guidance to evaluate, assess and characterize chemical vapor pathways migrating into structures resulting from conta...

  6. Laser using lead chloride vapor

    NASA Technical Reports Server (NTRS)

    Chen, C. J.

    1975-01-01

    By applying electric discharge, lead chloride vapor in tube is dissociated into lead and chlorine atoms. Population inversion of lead atoms is attained subsequently by second discharge, before chemical recombination of lead and chlorine has occurred. Optimum time interval between two discharges is required for maximum laser output.

  7. Vacuum vapor deposition gun assembly

    DOEpatents

    Zeren, Joseph D.

    1985-01-01

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  8. Vapor phase explosions: elementary detonations?

    PubMed

    Fowles, G R

    1979-04-13

    Although liquid-vapor explosions are widely observed, there is no established explanation for their initiation and propagation. Thermodynamics admits the possibility that superheated liquids can support detonations analogous to those that occur in chemical explosives. For liquid methane superheated 50 K above its boiling point at 1 atmosphere, the energy of explosion is 2 to 3 percent of that of TNT. PMID:17738085

  9. Simple Chemical Vapor Deposition Experiment

    ERIC Educational Resources Information Center

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  10. Warm fog dispersal

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1983-01-01

    The charged particle generator was further tested after some design modification. The generator performance was measured with additional instrumentation and found to confirm previous measurements. Plans for a field testing were than developed. The overall status of the program and the field test plans were presented to a group of atmospheric scientists and electrostatic experts at the NASA/MSFC sponsored USRA Workshop on Electrostatic Fog Dispersal at NCAR, Boulder, Colorado discussed in previous sections. The recommendations from this workshop are being evaluated as to whether NASA should proceed with the field test or whether further theoretical research on the phenomenon of electrostatic fog dispersal and additional development of the charged particle generator should be carried out. Information obtained from the USRA Workshop clearly identified three physical mechanisms that could possibly influence the fog dispersal process, which heretofore have not been considered, and which may provide additional insight to the direction of further fog dispersal work. These mechanisms are: the effect of corona discharge on the electric field strength at the surface, the influx of fog into the cleared volume by turbulent diffusion, and the increase in supersaturation as liquid water is removed, activating haze particles, and thus generating more fog. Plans are being formulated to investigate these mechanisms.

  11. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  12. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  13. Acoustic dispersive prism

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  14. Service experience with 125,000-m/sup 3/ LNG vessels of spherical-tank design

    SciTech Connect

    Cuneo, J.J.; Gilmore, G.A.; Tornay, E.G.

    1980-01-01

    Serving the Indonesia-Japan LNG project - the largest now in operation - are eight spherical-tank-design vessels (seven dedicated) with capacities of 125,000 m/sup 3/ carrying over 8 million tons of LNG annually. Details are presented on the project's development and start-up, the vessels' construction and design, the preparations involved in placing the ships in service (including extensive crew training and proper outfitting), the gas-trials procedures used, the voyage characteristics, and the improvements made to the vessels based on their service experience (including the relocation of the discharge-line check valves, extension of the tank fill lines, modification of the pump motor insulations, and several other changes made to the cargo and ballast system components, the main reduction-gear lube-oil spray system, and the boilers' internal components). The cargo control-system design and the reliability of the electronic control systems have proved to be the most critical factors affecting the LNG tankers' performance.

  15. Octave spanning wedge dispersive mirrors with low dispersion oscillations.

    PubMed

    Habel, Florian; Shirvanyan, Vage; Trubetskov, Michael; Burger, Christian; Sommer, Annkatrin; Kling, Matthias F; Schultze, Martin; Pervak, Vladimir

    2016-05-01

    A novel concept for octave spanning dispersive mirrors with low spectral dispersion oscillations is presented. The key element of the so-called wedge dispersive mirror is a slightly wedged layer which is coated on a specially optimized dispersive multilayer stack by a common sputter coating process. The group delay dispersion (GDD) of a pulse reflected on a wedge dispersive mirror is nearly free of oscillations. Fabricated mirrors with negative GDD demonstrate the compression of a pulse down to 3.8 fs as good as double angled mirrors optimized for the same bandwidth. PMID:27137538

  16. Atomic vapor laser isotope separation process

    DOEpatents

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  17. Boiler for generating high quality vapor

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  18. Water Vapor Feedbacks to Climate Change

    NASA Technical Reports Server (NTRS)

    Rind, David

    1999-01-01

    The response of water vapor to climate change is investigated through a series of model studies with varying latitudinal temperature gradients, mean temperatures, and ultimately, actual climate change configurations. Questions to be addressed include: what role does varying convection have in water vapor feedback; do Hadley Circulation differences result in differences in water vapor in the upper troposphere; and, does increased eddy energy result in greater eddy vertical transport of water vapor in varying climate regimes?

  19. Remote sensing of water vapor features

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.

    1991-01-01

    The three major objectives of the project are outlined: (1) to describe atmospheric water vapor features as functions of space and time; (2) to evaluate remotely sensed measurements of water vapor content; and (3) to study relations between fine-scale water vapor fields and convective activity. Data from several remote sensors were used. The studies used the GOES/VAS, HIS, and MAMS instruments have provided a progressively finer scale view of water vapor features.

  20. Vapor-Resistant Heat-Pipe Artery

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.; Shaubach, Robert M.; Buchko, Matt

    1991-01-01

    Vapor lock in heat pipe delayed or prevented. Modifications of wick prevent flow of vapor into, or formation of vapor in, liquid-return artery. Small pores of fine-grained sintered wick help to prevent formation of large bubbles. Slotted tube offers few nucleation sites for bubbles. Improves return of liquid in heat pipe.

  1. Vapor Pressure Measurements in a Closed System

    ERIC Educational Resources Information Center

    Iannone, Mark

    2006-01-01

    An alternative method that uses a simple apparatus to measure vapor pressure versus temperature in a closed system, in which the total pressure is the vapor pressure of the liquid sample, is described. The use of this apparatus gives students a more direct picture of vapor pressure than the isoteniscope method and results have generally been quite…

  2. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Vapor pressure. 796.1950 Section 796... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a... the vapor pressure of chemical and on environmental conditions which influence diffusion from...

  3. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Vapor pressure. 796.1950 Section 796... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a... the vapor pressure of chemical and on environmental conditions which influence diffusion from...

  4. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Vapor pressure. 796.1950 Section 796... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a... the vapor pressure of chemical and on environmental conditions which influence diffusion from...

  5. Preparation Of Sources For Plasma Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Waters, William J.; Sliney, Hal; Kowalski, D.

    1993-01-01

    Multicomponent metal targets serving as sources of vapor for plasma vapor deposition made in modified pressureless-sintering process. By use of targets made in modified process, one coats components with materials previously plasma-sprayed or sintered but not plasma-vapor-deposited.

  6. Tomography of dispersive media

    PubMed

    Ernst; Herman

    2000-07-01

    When waves propagate through layered structures, the phase velocity is frequency dependent (dispersive). If one wants to reconstruct the velocity variations in this medium, conventional traveltime-based tomographic methods cannot be used, since each frequency component has a different traveltime. A tomographic method is presented for reconstructing the phase velocity of guided waves in laterally varying media. The dispersive character of guided waves is explicitly accounted for by using a phase-based error criterium instead of "picked" traveltimes. Phase velocity and source waveform can be reconstructed to within a few percent, and the algorithm is shown to be robust in the presence of interference noise. When applied to seismic field data, the reconstructed phase velocity field correlates well with the topography of the area. PMID:10923876

  7. Dispersion Analysis Research Tool

    Energy Science and Technology Software Center (ESTSC)

    1998-11-10

    The DART thermomechanical model, for the prediction of fission-product-induced swelling in aluminum dispersion fuels, calculates irradiation-induced fission gas bubbles as a function of fuel morphology. DART calculates the behavior of a rod, tube, or plate during closure of as-fabricated porosity, during which the fuel particle swelling is accommodated by the relatively soft aluminum matrix flowing into the existing porosity. The code also determines the subsequent macroscopic changes in rod diameter or plate/tube thickness caused bymore » additional fuel deformation processes. In addition, a calculation for the effect of irradiation on the thermal conductivity of the dispersion fuel, and for fuel restructuring and swelling due to the aluminum fuel reaction, amorphization, and recrystallization is included.« less

  8. Dispersion suppressors with bending

    SciTech Connect

    Garren, A.

    1985-10-01

    Dispersion suppressors of two main types are usually used. In one the cell quadrupole focussing structure is the same as in normal cells but some of the dipoles are replaced by drifts. In the other, the quadrupole strengths and/or spacings are different from those of the normal cells, but the bending is about the same as it is in the cells. In SSC designs to date, dispersion suppressors of the former type have been used, consisting of two cells with bending equivalent to one. In this note a suppressor design with normal bending and altered focussing is presented. The advantage of this scheme is that circumference is reduced. The disadvantages are that additional special quadrupoles must be provided (however, they need not be adjustable), and the maximum beta values within them are about 30% higher than the cell maxima.

  9. Nikolaevskiy equation with dispersion.

    PubMed

    Simbawa, Eman; Matthews, Paul C; Cox, Stephen M

    2010-03-01

    The Nikolaevskiy equation was originally proposed as a model for seismic waves and is also a model for a wide variety of systems incorporating a neutral "Goldstone" mode, including electroconvection and reaction-diffusion systems. It is known to exhibit chaotic dynamics at the onset of pattern formation, at least when the dispersive terms in the equation are suppressed, as is commonly the practice in previous analyses. In this paper, the effects of reinstating the dispersive terms are examined. It is shown that such terms can stabilize some of the spatially periodic traveling waves; this allows us to study the loss of stability and transition to chaos of the waves. The secondary stability diagram ("Busse balloon") for the traveling waves can be remarkably complicated. PMID:20365845

  10. Disabling Radiological Dispersal Terror

    SciTech Connect

    Hart, M

    2002-11-08

    Terror resulting from the use of a radiological dispersal device (RDD) relies upon an individual's lack of knowledge and understanding regarding its significance. Disabling this terror will depend upon realistic reviews of the current conservative radiation protection regulatory standards. It will also depend upon individuals being able to make their own informed decisions merging perceived risks with reality. Preparation in these areas will reduce the effectiveness of the RDD and may even reduce the possibility of its use.

  11. Light dispersion in space

    NASA Astrophysics Data System (ADS)

    Barbosa, L. C.

    2015-09-01

    Considering an idea of F. Arago in 1853 regarding light dispersion through the light ether in the interstellar space, this paper presents a new idea on an alternative interpretation of the cosmological red shift of the galaxies in the universe. The model is based on an analogy with the temporal material dispersion that occurs with light in the optical fiber core. Since intergalactic space is transparent, according to the model, this phenomenon is related to the gravitational potential existing in the whole space. Thus, it is possible to find a new interpretation to Hubble's constant. In space, light undergoes a dispersion process in its path, which is interpreted by a red shift equation of the type Δz = HL, since H = (d2n/dλ2 Δv Δλ), where H means the Hubble constant, n is the refractive index of the intergalactic space, Δλ is the spectral width of the extragalactic source, and Δv is the variation of the speed of light caused by the gravitational potential. We observe that this "constant" is governed by three new parameters. Light traveling the intergalactic space undergoes red shift due to this mechanism, while light amplitude decreases with time, and the wavelength always increases, thus producing the same type of behavior given by Hubble's Law. It can be demonstrated that the dark matter phenomenon is produced by the apparent speed of light of the stars on the periphery of the galaxies, without the existence of dark energy. Based on this new idea, the model of the universe is static, lacking expansion. Other phenomena may be interpreted based on this new model of the universe. We have what we call temporal gravitational dispersion of light in space produced by the variations of the speed of light, due to the presence of the gravitational potential in the whole space.

  12. Ascent trajectory dispersion analysis

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of a Space Transportation System ascent trajectory dispersion analysis are documented. Critical trajectory parameter values useful for the definition of lightweight external tank insulation requirements are provided. This analysis was conducted using two of the critical missions specified for the Space Transportation System: a 28.5 deg inclination trajectory launched from the Eastern Test Range (ETR) and a Western Test Range (WTR) trajectory launched into a 104 deg orbital inclination.

  13. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    NASA Astrophysics Data System (ADS)

    Periolatto, M.; Sangermano, M.; Spena, P. Russo

    2016-05-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  14. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    NASA Astrophysics Data System (ADS)

    Joulaei, A.; Moody, J.; Berti, N.; Kasparian, J.; Mirzanejhad, S.; Muggli, P.

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment.

  15. Dispersibility of Amphibious Montmorillonite

    NASA Astrophysics Data System (ADS)

    Yeh, Meng-Heng; Hwang, Weng-Sing; Kuo, Wuei-Jueng

    2005-09-01

    The objective of this study is to develop a suitable method to convert hydrophilic montmorillonite into amphibious montmorillonite by replacing the sodium ions normally found in clay with poly(oxyethylene) (POE)-amide chlorite cations. Amphibious montmorillonite has a high d-spacing and good dispersion characteristics in many different types of solutions, including those having an intermediate hydrophilic lipophilic balance (HLB) value. Four different modifying cations are tested and X-ray diffraction analysis is performed to measure the resulting changes in the d-spacing of the MMT. Scanning electron microscopy is employed to investigate the morphology of the modified clays. A laser-doppler particle analyzer is used to measure the particle size of the clays in various solutions. Dobrat’s method is applied to calculate the dispersibility of each clay and Stoke’s law is used to evaluate the settling rate. The results indicate that the d-spacing of the POE-amide chlorite cation modified montmorillonite increases from 1.28 to 3.51 nm. The amphibious montmorillonite demonstrates good dispersion characteristics in eight commonly employed coating solutions with intermediate HLB values.

  16. Succinimide lubricating oil dispersant

    SciTech Connect

    Wisotsky, M.J.; Bloch, R.; Brownwell, D.W.; Chen, F.J.; Gutierrez, A.

    1987-08-11

    A lubricating oil composition is described exhibiting improved dispersancy in both gasoline and diesel engines comprising a major amount of lubricating oil and 0.5 to 10 weight percent of a dispersant, the dispersant being prepared in a sequential process comprising the steps of: (a) in a first step reacting an oil-soluble polyolefin succinic anhydride, the olefin being a C/sub 3/ or C/sub 4/ olefin and an alkylene polyamine of the formula H/sub 2/N(CH/sub 2/)/sub n/(NH(CH/sub 2/)/sub n/)/sub m/sup -// NH/sub 2/ wherein n is 2 or 3 and m is 0 to 10, in a molar ratio of about 1.0 to 2.2 moles of polyolefin succinic anhydride per mole of polyamine, and (b) reacting the product of step (a) with dicarboxylic acid anhydride selected from the group consisting of maleic anhydride and succinic anhydride in sufficient molar proportions to provide a total mole ratio of about 2,3 to 3.0 moles of anhydride compounds per mole of polyamine.

  17. Active Hydrazine Vapor Sampler (AHVS)

    NASA Technical Reports Server (NTRS)

    Young, Rebecca C.; Mcbrearty, Charles F.; Curran, Daniel J.

    1993-01-01

    The Active Hydrazine Vapor Sampler (AHVS) was developed to detect vapors of hydrazine (HZ) and monomethylhydrazine (MMH) in air at parts-per-billion (ppb) concentration levels. The sampler consists of a commercial personal pump that draws ambient air through paper tape treated with vanillin (4-hydroxy-3-methoxybenzaldehyde). The paper tape is sandwiched in a thin cardboard housing inserted in one of the two specially designed holders to facilitate sampling. Contaminated air reacts with vanillin to develop a yellow color. The density of the color is proportional to the concentration of HZ or MMH. The AHVS can detect 10 ppb in less than 5 minutes. The sampler is easy to use, low cost, and intrinsically safe and contains no toxic material. It is most beneficial for use in locations with no laboratory capabilities for instrumentation calibration. This paper reviews the development, laboratory test, and field test of the device.

  18. Mechanical vapor recompression for waste energy recovery

    SciTech Connect

    Becker, F.E.; Zakak, A.I.

    1985-03-01

    This paper is concerned with energy recovery in petroleum distillation processes utilizing mechanical vapor recompression. Several examples illustrating recompression of head vapors for heating the reboiler of a distillation tower are presented. The advantages of the mechanical vapor recompression system using a screw compressor are discussed in detail. The system is economically attractive with simple payback periods often less than two years. The paper describes the merits of mechanical vapor recompression, using a screw-type compressor for recovering energy at the distillation tower, and how it can be accomplished by using an intermediary fluid such as steam or by recompressing the distillation column vapors directly.

  19. What Good is Raman Water Vapor Lidar?

    NASA Technical Reports Server (NTRS)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  20. Vapor deposition of tantalum and tantalum compounds

    SciTech Connect

    Trkula, M.

    1996-04-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition.

  1. Vaporization Would Cool Primary Battery

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Miyake, Robert N.

    1991-01-01

    Temperature of discharging high-power-density primary battery maintained below specified level by evaporation of suitable liquid from jacket surrounding battery, according to proposal. Pressure-relief valve regulates pressure and boiling temperature of liquid. Less material needed in cooling by vaporization than in cooling by melting. Technique used to cool batteries in situations in which engineering constraints on volume, mass, and location prevent attachment of cooling fins, heat pipes, or like.

  2. Advanced Vapor-Supply Manifold

    NASA Technical Reports Server (NTRS)

    Clark, I. O.; Debnam, William J., Jr.; Fripp, Archibald L., Jr.; Crouch, R. K.

    1986-01-01

    Advanced vapor-supply manifold solves problem of manifold purging. Design virtually eliminates dead gas volumes in manifold system. System incorporates special valve into manifold in way that leaks and contamination problems of previous systems, which use tees and three-port valves, are minimized or eliminated in both main manifold line and in supply line. Of considerable use in gas manifold systems where even small amounts of gaseous impurities constitute problem or where more than one gaseous material used in single system.

  3. Studies on Vapor Adsorption Systems

    NASA Technical Reports Server (NTRS)

    Shamsundar, N.; Ramotowski, M.

    1998-01-01

    The project consisted of performing experiments on single and dual bed vapor adsorption systems, thermodynamic cycle optimization, and thermal modeling. The work was described in a technical paper that appeared in conference proceedings and a Master's thesis, which were previously submitted to NASA. The present report describes some additional thermal modeling work done subsequently, and includes listings of computer codes developed during the project. Recommendations for future work are provided.

  4. Evaporation by mechanical vapor recompression

    NASA Astrophysics Data System (ADS)

    Iverson, C. H.; Coury, G. E.

    1980-04-01

    Progress in the development of a study of the application of the technologies of mechanical vapor recompression and falling film evaporation as applied to the beet sugar industry is reported. Progress is reported in the following areas: technical literature search; report on visit to European factories using these technologies; energy balance studies of factories offered by the industry as candidates for the demonstration plants; and report on energy balance studies and the recommendations as to the site for the demonstration plant.

  5. Chemical vapor deposition of sialon

    DOEpatents

    Landingham, R.L.; Casey, A.W.

    A laminated composite and a method for forming the composite by chemical vapor deposition are described. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200/sup 0/C; and impinging a gas containing N/sub 2/, SiCl/sub 4/, and AlCl/sub 3/ on the surface.

  6. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  7. Acoustic Droplet Vaporization in Microchannels

    NASA Astrophysics Data System (ADS)

    Li, David; Fabiilli, Mario; Kripfgans, Oliver; Fowlkes, J. Brian; Bull, Joseph

    2014-11-01

    Gas embolotherapy is a proposed cancer therapy where gas bubbles acting as embolic agents are selectively generated near the tumor site to block blood supply, resulting to tumor necrosis. The gas bubbles are generated by using focused ultrasound to selective vaporize intravenously injected microdroplets. In this study, albumin encapsulated dodecafluorocarbon microdroplets were isolated in 25 to 100 micron diameter polydimethylsiloxane microchannels. The droplets were vaporized at 37 °C using a single pulse from a 7.5 MHz single element focused transducer with 8-32 cycles at 2.2 to 5.6 MPa peak negative pressure. The vaporization process was recorded using an ultra-high speed camera attached to an inverted microscope. A theoretical Rayleigh-Plesset like model was derived to describe the both the expansion of small spherical bubbles as well as cylindrical bubbles in a long microchannel. The gas phase was described as an ideal gas and the liquid DDFP and bulk fluid were viscous Newtonian fluids. Additionally, surface tension, viscous losses from the channel, and the phase change process were included in the model. The theoretical model matched very well to experiments with channel diameters or 50 micron or less. This work was supported by NIH Grant R01EB006476.

  8. Critical points of metal vapors

    SciTech Connect

    Khomkin, A. L. Shumikhin, A. S.

    2015-09-15

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for most metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.

  9. Means and method for vapor generation

    DOEpatents

    Carlson, Larry W.

    1984-01-01

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  10. Means and method for vapor generation

    DOEpatents

    Carlson, L.W.

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid - starting as feedwater heating where no vapors are present, progressing to nucleate heating where vaporization begins and some vapors are present, and concluding with film heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10 to 30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  11. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1996-04-02

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  12. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1995-11-07

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  13. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1998-06-02

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  14. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, Warren G.; Harris, Michael T.; Scott, Timothy C.; Basaran, Osman A.

    1998-01-01

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  15. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, Warren G.; Harris, Michael T.; Scott, Timothy C.; Basaran, Osman A.

    1996-01-01

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  16. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.

    1995-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  17. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1998-04-14

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  18. Nozzle for electric dispersion reactor

    DOEpatents

    Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.

    1998-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  19. 355-nm high spectral resolution airborne lidar LNG: system description and first results.

    PubMed

    Bruneau, D; Pelon, J; Blouzon, F; Spatazza, J; Genau, P; Buchholtz, G; Amarouche, N; Abchiche, A; Aouji, O

    2015-10-10

    A high spectral resolution (HSR) measurement capability in the ultraviolet has been added to the 3-wavelength-2-polarization-backscatter lidar LNG (lidar aerosols nouvelle génération) and tested during several flights. The system includes a Mach-Zehnder interferometer (MZI) as a spectral discriminator and does not require any frequency locking between the emitter and the interferometer. Results obtained during test flights show that the backscatter and extinction coefficients at 355 nm can be measured with a relative precision of 10% for 60 m and 240 m vertical resolution, respectively, in aerosol layers of 10-6  m-1 sr-1 backscatter coefficient with a 30-km horizontal resolution. The same relative precision is obtained in cirrus clouds of a 2×10-5  m-1 sr-1 backscatter coefficient for the same vertical resolution and a horizontal resolution reduced to 5 km. The capacity of the system to perform wind velocity measurements is also demonstrated with precisions in the range of 1 to 2  ms-1. Particle-to-total backscatter ratio and line-of-sight speed measurements have been performed on ground echoes; averaged data show biases less than 1% and 0.15  ms-1, respectively. PMID:26479818

  20. Meals, quarters for 8,200 needed at peak in LNG project

    SciTech Connect

    Aalund, L.R.

    1998-04-27

    It has everything a real town has except women, children, schools, bars, and old people. It is the huge camp built at Ras Laffan, Qatar, on the shores of the Persian Gulf to lodge and feed over 5,000 workers as they build the first plant in the emirate for liquefying millions of tons of natural gas yearly. Japan`s Chiyoda Corp. is the top contractor for the Qatar Liquefied Gas Co. (QatarGas) project, which is owned by a Qatari, French, American, and Japanese consortium. As part of the plant construction contract, Chiyoda built the camp, which Teyseer Services Co., the Qatar affiliate of the French company, Sodexho Alliance, now runs and maintains. Sodexho is the world`s largest catering/remote site management organization. It has had all its expertise in those fields put to the test for nearly 4 years supporting this world-scale LNG project which will be completed this summer. This project is described.

  1. LNG (liquefied natural gas) as a fuel and refrigerant for diesel powered shrimp boats

    SciTech Connect

    Acker, G. Jr.; Brett, C.E.; Schaetzle, W.J.; Song, Y.K.

    1988-01-01

    A 3406-B Caterpillar and a 4.236 Perkins have been converted from their standard diesel configuration to dual-fuel engines. These engines operate using an aspirated charge of natural gas and a pilot charge of diesel fuel. The pilot is injected for combustion initiation, performing the same task as a spark plug in a spark ignition engine. Natural gas supplies 80% of the total heat addition at full load for both engines. The diesel fuel provides ignition, performs the function of idling the engine, and acts as a coolant for the injector tips. The diesel pilot setting remains constant throughout the operating range and provides a regular repeatable idle for the engine during no-load operation. A shrimp boat is being used to evaluate the dual-fuel system. The vessel normally carries 16000 1 of diesel fuel giving it a trip length of 14-21 days. To operate on natural gas with similar trip length requires liquification and cryogenic storage at -163/sup 0/C. This type of storage provides the necessary energy density needed for on board fuel storage. A 22 m shrimp boat will carry approximately 17000 1 of LNG in insulated tanks. Urethane insulation is used as both an insulator against heat leak and as a partial tank support structure.

  2. Photoevaporation and Disk Dispersal

    NASA Astrophysics Data System (ADS)

    Gorti, Uma

    2016-01-01

    Protoplanetary disks are depleted of their mass on short timescales by viscous accretion, which removes both gas and solids, and by photoevaporation which removes mainly gas. Photoevaporation may facilitate planetesimal formation by lowering the gas/dust mass ratio in disks. Disk dispersal sets constraints on planet formation timescales, and by controlling the availability of gas determines the type of planets that form in the disk. Photoevaporative wind mass loss rates are theoretically estimated to range from ~ 10-10 to 10-8 M ⊙, and disk lifetimes are typically ~ few Myr.

  3. Solitonization of a dispersive wave.

    PubMed

    Braud, F; Conforti, M; Cassez, A; Mussot, A; Kudlinski, A

    2016-04-01

    We report the observation of a nonlinear propagation scenario in which a dispersive wave is transformed into a fundamental soliton in an axially varying optical fiber. The dispersive wave is initially emitted in the normal dispersion region and the fiber properties change longitudinally so that the dispersion becomes anomalous at the dispersive wave wavelength, which allows it to be transformed into a soliton. The solitonic nature of the field is demonstrated by solving the direct Zakharov-Shabat scattering problem. Experimental characterization performed in spectral and temporal domains show evidence of the solitonization process in an axially varying photonic crystal fiber. PMID:27192249

  4. Estimates of abundance of vapor condensate from the impacts of asteroids and comets on the Moon

    NASA Astrophysics Data System (ADS)

    Svetsov, Vladimir; Shuvalov, Valery

    The hypervelocity impacts of asteroids and comets on the Moon and planets can vaporize a substantial mass of target rock comparable with the mass of a projectile. The vapor expands, forming a vapor plume, and, when it cools and reaches the liquid-vapor coexistence curve, molten spherules can condense from the vapor. Ejecta layers bearing condensate spherules have been found on the Earth along with melt droplet spherules, however, the impact-vapor condensate is extremely rare among the lunar samples. The current average impact velocities on the Moon and Earth differ only slightly, and the main distinction is probably that the vapor plume expands to the atmosphere on the Earth and into vacuum on the Moon. Using available ANEOS equations of states for quartz and dunite we have determined parameters behind shock waves for impact velocities from 9 to 30 km/s and calculated release adiabats from various points on the Hugoniot curves to very low pressures. For impacts of quartz projectiles on quartz targets at velocities 9-16 km/s the release adiabats come to the liquid branch of the two-phase curve and, during the following expansion of two-phase mixture, the shock-compressed material vaporizes and does not condense. The condensate can appear during the plume expansion only at higher impact velocities. Using our hydrocode SOVA, we have made numerical simulations of the impacts of quartz and dunite spherical projectiles on the targets from the same materials. Along with the masses of condensates we calculated the masses of melted material. The calculated ratio of vaporized mass to the melted mass proved to be of the order of 0.1. However, we obtained that at velocities below 20 km/s the condensate mass is only a small fraction of vapor and melt masses and, consequently, the major part of vapor disperses in vacuum in the form of separate molecules. At impact velocity 15 km/s the relative abundance of silicate condensates is 0.001 - 0.0001 in accordance with the studies of

  5. Process for recovering organic vapors from air

    DOEpatents

    Baker, Richard W.

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  6. Synthesis of micro-dispersed zirconium oxide for glass manufacturing

    NASA Astrophysics Data System (ADS)

    Goncharuk, V.; Starodubtsev, P.; Maslennikova, I.

    2016-01-01

    A rather simple and original method for processing of zirconium-containing raw material form Algoma deposit (Khabarovsk region, Russia) was suggested, which comprised fluorination of the initial sample with a diluted HF solution followed by the thermal treatment of fluorination products and pyrohydrolysis of zirconium tetrafluoride. Water vapors obtained by hydrogen and oxygen burning in a hydrogen torch as well as by simple evaporation were used for pyrohydrolysis. The feed rate of the water and its temperature were regulated. The temperature of water vapors reached 800-1200 °C. Zirconium dioxide with a purity of 99.97% or more and a dispersity of 0.1 gm or less was synthesized.

  7. Far-field dispersal modeling for fuel-air-explosive devices

    SciTech Connect

    Glass, M.W.

    1990-05-01

    A computer model for simulating the explosive dispersal of a fuel agent in the far-field regime is described and is applied to a wide variety of initial conditions to judge their effect upon the resulting fuel/air cloud. This work was directed toward modeling the dispersal process associated with Fuel-Air-Explosives devices. The far-field dispersal regime is taken to be that time after the initial burster charge detonation in which the shock forces no longer dominate the flow field and initial canister and fuel mass breakup has occurred. The model was applied to a low vapor pressure fuel, a high vapor pressure fuel and a solid fuel. A strong dependence of the final cloud characteristics upon the initial droplet size distribution was demonstrated. The predicted fuel-air clouds were highly non-uniform in concentration. 18 refs., 86 figs., 4 tabs.

  8. Chiroptical Spectroscopy in the Vapor Phase

    NASA Astrophysics Data System (ADS)

    Lahiri, Priyanka; Long, Benjamin D.; Wiberg, Kenneth B.; Vaccaro, Patrick H.

    2011-06-01

    Electromagnetic radiation propagating through an isotropic chiral medium experiences a complex index of refraction that differs in both real (in-phase) and imaginary (in-quadrature) parts for the right-circular and left-circular polarization states that define the helicity basis. The resulting phenomena of circular birefringence (CB) and circular dichroism (CD) lead to observable effects in the form of dispersive rotation and absorptive elliptization for an impinging beam of plane-polarized light, which commonly are measured under conditions of nonresonant and resonant excitation, respectively. This talk will discuss ongoing efforts designed to elucidate the provenance of electronic optical activity under complementary solvated and isolated conditions, with the latter vapor-phase work made possible by our continuing development of Cavity Ring-Down Polarimetry (CRDP). Molecules of interest include the rigid bicyclic ketone (1R,4R)-norbornenone, where the spatial arrangement of distal alkene and carbonyl moeities gives rise to extraordinarily large specific rotation (CB) parameters that are predicted incongruously by different quantum-chemical methods; the monoterpene constitutional isomers (S)-2-carene and (S)-3-carene, which display surprisingly distinct chiroptical properties; and conjugated ketones such as (S)-verbenone, where CD probes of weak π*←n absorption bands have been performed at vibronic resolution. The disparate nature of gas-phase and condensed-phase optical activity will be highlighted, with complementary ab initio calculations serving to elucidate the structural, chemical, and electronic origins of observed behavior. T. Müller, K. B. Wiberg, P. H. Vaccaro, J. R. Cheeseman, and M. J. Frisch, J. Opt. Soc. Am. B 19, 125 (2002) P. H. Vaccaro, ``Chapter 1.II.10: Optical Rotation and Intrinsic Optical Activity'' in Comprehensive Chiroptical Spectroscopy, N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, eds. (John Wiley and Sons, Inc

  9. Sound Propagation in Gas-Vapor-Droplet Suspensions with Evaporation and Nonlinear Particle Relaxation

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2012-01-01

    The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration.

  10. Wick for metal vapor laser

    DOEpatents

    Duncan, David B.

    1992-01-01

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  11. Vapor Compression Distillation Flight Experiment

    NASA Technical Reports Server (NTRS)

    Hutchens, Cindy F.

    2002-01-01

    One of the major requirements associated with operating the International Space Station is the transportation -- space shuttle and Russian Progress spacecraft launches - necessary to re-supply station crews with food and water. The Vapor Compression Distillation (VCD) Flight Experiment, managed by NASA's Marshall Space Flight Center in Huntsville, Ala., is a full-scale demonstration of technology being developed to recycle crewmember urine and wastewater aboard the International Space Station and thereby reduce the amount of water that must be re-supplied. Based on results of the VCD Flight Experiment, an operational urine processor will be installed in Node 3 of the space station in 2005.

  12. Chemical vapor deposition of sialon

    DOEpatents

    Landingham, Richard L.; Casey, Alton W.

    1982-01-01

    A laminated composite and a method for forming the composite by chemical vapor deposition. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200.degree. C.; and impinging a gas containing in a flowing atmosphere of air N.sub.2, SiCl.sub.4, and AlCl.sub.3 on the surface.

  13. Advanced Raman water vapor lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.

    1992-01-01

    Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for

  14. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1976-01-01

    A total of 18 different membranes were procured, characterized, and tested in a modified bench-scale vapor diffusion water reclamation unit. Four membranes were selected for further studies involving membrane fouling. Emphasis was placed on the problem of flux decline due to membrane fouling. This is discussed in greater details under "Summary and Discussion on Membrane Fouling Studies" presented in pages 47-51. The system was also investigated for low temperature application on wash-water where the permeated water is not recovered but vented into space vacuum.

  15. Control of flow through a vapor generator

    DOEpatents

    Radcliff, Thomas D.

    2005-11-08

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  16. Dispersive transport across interfaces

    NASA Astrophysics Data System (ADS)

    Berkowitz, Brian; Adler, Pierre

    2015-04-01

    Experiments demonstrating asymmetrical dispersive transport of a conservative tracer across interfaces between different porous materials have recently been performed. Here, this phenomenon is studied numerically on the pore scale. The flow field is derived by solving the Stokes equation. The dispersive transport is simulated by a large number of particles undergoing random walks under the simultaneous action of convection and diffusion. Two main two-dimensional configurations are studied; each consists of two segments (called coarse and fine) with the same structure, porosity, and length along the main flow, but different characteristic solid/pore sizes. One structure consists of two channels containing cavities of different sizes, and the second of square "grains" of different sizes. At time t=0, a large number of particles is injected (as a pulse) around a given cross-section. The corresponding breakthrough curves (BTCs) are registered as functions of time at six different cross sections. Calculations are made twice; in the first case (CtoF), particles are injected in the coarse side and are transported towards the fine one; in the second one (FtoC), the opposite case is studied. These calculations are performed for various Péclet numbers (Pe). Comparison of the resulting BTCs shows features that are similar to experimental observations, but with qualitative and quantitative differences. The influences of the medium, of the injection and observation planes, and of Pe are detailed and discussed. A BTC for pulse injection can be characterized by its maximum M(t_M) and the time tM at which it occurs. The observed differences for channels bounded by cavities are very small. However for the granular structures, M(t_M) is always larger for FtoC than for CtoF ; tM depends on all the parameters, namely Pe, the size ratio between the large and small grains, the injection and the observation planes. The numerical results are systematically compared with solutions of one

  17. SMED - Sulphur MEditerranean Dispersion

    NASA Astrophysics Data System (ADS)

    Salerno, Giuseppe G.; Sellitto, Pasquale; Corradini, Stefano; Di Sarra, Alcide Giorgio; Merucci, Luca; Caltabiano, Tommaso; La Spina, Alessandro

    2016-04-01

    Emissions of volcanic gases and particles can have profound impacts on terrestrial environment, atmospheric composition, climate forcing, and then on human health at various temporal and spatial scales. Volcanic emissions have been identified as one of the largest sources of uncertainty in our understanding of recent climate change trends. In particular, a primary role is acted by sulphur dioxide emission due to its conversion to volcanic sulphate aerosol via atmospheric oxidation. Aerosols may play a key role in the radiative budget and then in photochemistry and tropospheric composition. Mt. Etna is one of the most prodigious and persistent emitters of gasses and particles on Earth, accounting for about 10% of global average volcanic emission of CO2 and SO2. Its sulphur emissions stand for 0.7 × 106 t S/yr9 and then about 10 times bigger than anthropogenic sulphur emissions in the Mediterranean area. Centrepiece of the SMED project is to advance the understanding of volcanogenic sulphur dioxide and sulphate aerosol particles dispersion and radiative impact on the downwind Mediterranean region by an integrated approach between ground- and space-based observations and modelling. Research is addressed by exploring the potential relationship between proximal SO2 flux and aerosol measured remotely in the volcanic plume of Mt. Etna between 2000 and 2014 and distal aerosol ground-based measurements in Lampedusa, Greece, and Malta from AERONET network. Ground data are combined with satellite multispectral polar and geostationary imagers able to detect and retrieve volcanic ash and SO2. The high repetition time of SEVIRI (15 minutes) will ensure the potential opportunity to follow the entire evolution of the volcanic cloud, while, the higher spatial resolution of MODIS (1x1 km2), are exploited for investigating the probability to retrieve volcanic SO2 abundances from passive degassing. Ground and space observations are complemented with atmospheric Lagrangian model

  18. Sintering behavior of ultrafine silicon carbide powders obtained by vapor phase reaction

    NASA Technical Reports Server (NTRS)

    Okabe, Y.; Miyachi, K.; Hojo, J.; Kato, A.

    1984-01-01

    The sintering behavior of ultrafine SiC powder with average particle size of about 0.01-0.06 microns produced by a vapor phase reaction of the Me4Si-H2 system was studied at the temperature range of 1400-2050 deg. It was found that the homogeneous dispersion of C on SiC particles is important to remove the surface oxide layer effectively. B and C and inhibitive effect on SiC grain growth.

  19. Mechanical Vapor Recompression for waste energy recovery

    SciTech Connect

    Becker, F.E.; Zakak, A.I.

    1985-01-01

    This paper describes energy recovery in petroleum refineries utilizing mechanical vapor recompression. Several examples illustrating recompression of waste steam or vapors from turbine exhausts, vents and distillation towers are presented. The advantages of the Mechanical Vapor Recompression System (MVRS) using a screw compressor are discussed in detail. Significant energy savings can be achieved by integration of the MVRS into the steam flow loop. Attractive simple payback periods, often less than two years, can be achieved.

  20. Novel methods of copper vapor laser excitation

    SciTech Connect

    McColl, W.B.; Ching, H.; Bosch, R.; Brake, M.; Gilgenbach, R.

    1990-12-31

    Microwave and intense electron beam excitation of copper vapor are being investigated to be used in copper vapor lasers for isotope separation. Both methods use copper chloride vapor by heating copper chloride. Helium was used as the buffer gas at 2 to 100 torr. In the microwave system, intense copperlines at 510 nm and 578 nm were observed. Initial electron beam results indicate that light emission follows the beam current.