Science.gov

Sample records for local boundary integral

  1. Prediction of local and integrated heat transfer in nozzles using an integral turbulent boundary layer method

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Schmidt, J. F.; Ehlers, R. C.

    1972-01-01

    An empirical modification of an existing integral energy turbulent boundary layer method is proposed in order to improve the estimates of local heat transfer in converging-diverging nozzles and consequently, provide better assessments of the total or integrated heat transfer. The method involves the use of a modified momentum-heat analogy which includes an acceleration term comprising the nozzle geometry and free stream velocity. The original and modified theories are applied to heat transfer data from previous studies which used heated air in 30 deg - 15 deg, 45 deg - 15 deg, and 60 deg - 15 deg water-cooled nozzles.

  2. Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options

    NASA Astrophysics Data System (ADS)

    Rad, Jamal Amani; Parand, Kourosh; Abbasbandy, Saeid

    2015-05-01

    For the first time in mathematical finance field, we propose the local weak form meshless methods for option pricing; especially in this paper we select and analysis two schemes of them named local boundary integral equation method (LBIE) based on moving least squares approximation (MLS) and local radial point interpolation (LRPI) based on Wu's compactly supported radial basis functions (WCS-RBFs). LBIE and LRPI schemes are the truly meshless methods, because, a traditional non-overlapping, continuous mesh is not required, either for the construction of the shape functions, or for the integration of the local sub-domains. In this work, the American option which is a free boundary problem, is reduced to a problem with fixed boundary using a Richardson extrapolation technique. Then the θ -weighted scheme is employed for the time derivative. Stability analysis of the methods is analyzed and performed by the matrix method. In fact, based on an analysis carried out in the present paper, the methods are unconditionally stable for implicit Euler (θ = 0) and Crank-Nicolson (θ = 0.5) schemes. It should be noted that LBIE and LRPI schemes lead to banded and sparse system matrices. Therefore, we use a powerful iterative algorithm named the Bi-conjugate gradient stabilized method (BCGSTAB) to get rid of this system. Numerical experiments are presented showing that the LBIE and LRPI approaches are extremely accurate and fast.

  3. Boundary Preserving Dense Local Regions.

    PubMed

    Kim, Jaechul; Grauman, Kristen

    2015-05-01

    We propose a dense local region detector to extract features suitable for image matching and object recognition tasks. Whereas traditional local interest operators rely on repeatable structures that often cross object boundaries (e.g., corners, scale-space blobs), our sampling strategy is driven by segmentation, and thus preserves object boundaries and shape. At the same time, whereas existing region-based representations are sensitive to segmentation parameters and object deformations, our novel approach to robustly sample dense sites and determine their connectivity offers better repeatability. In extensive experiments, we find that the proposed region detector provides significantly better repeatability and localization accuracy for object matching compared to an array of existing feature detectors. In addition, we show our regions lead to excellent results on two benchmark tasks that require good feature matching: weakly supervised foreground discovery and nearest neighbor-based object recognition. PMID:26353319

  4. On Local Boundary CFT and Non-Local CFT on the Boundary

    NASA Astrophysics Data System (ADS)

    Rehren, Karl-Henning

    The holographic relation between local boundary conformal quantum field theories (BCFT) and their non-local boundary restrictions is reviewed, and non-vacuum BCFT's, whose existence was conjectured previously, are constructed. (Based on joint work [18] with R. Longo.)

  5. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  6. Boundary-integral simulations of containerless solidification

    NASA Astrophysics Data System (ADS)

    Ajaev, Vladimir S.; Davis, Stephen H.

    2003-05-01

    We carry out boundary-integral simulations of a two-dimensional liquid droplet surrounded by air and solidified from a cool point on the boundary. There are three interfaces in the problem: solid-liquid, air-liquid, and air-solid. All three evolve in time in such a way that certain tri-junction conditions must be satisfied. Our numerical method describes the quasi-steady evolution of the interfaces in the limit of zero surface energy on the solidification front. A new iterative technique is developed to describe the interface evolution when mass and total energy are conserved and the local tri-junction conditions are satisfied at every instant in time. A method is also developed for efficient numerical integration over the interfaces by taking advantage of analytical formulas for Green's functions. We start the simulations by studying the case of equal densities of the solid and liquid. This allows us to verify the numerical method and obtain some estimates of the speed of the solidification front. Solid-liquid interface flattening is observed at the intermediate stages of solidification. When the densities of the two phases are different, elongated solidified particles are observed when the solid density is smaller than the liquid density. At the final stages of solidification, a corner is formed in agreement with observations in related experiments.

  7. Integrated modelling of toroidal rotation with the 3D non-local drift-kinetic code and boundary models for JT-60U analyses and predictive simulations

    NASA Astrophysics Data System (ADS)

    Honda, M.; Satake, S.; Suzuki, Y.; Yoshida, M.; Hayashi, N.; Kamiya, K.; Matsuyama, A.; Shinohara, K.; Matsunaga, G.; Nakata, M.; Ide, S.; Urano, H.

    2015-07-01

    The integrated simulation framework for toroidal momentum transport is developed, which self-consistently calculates the neoclassical toroidal viscosity (NTV), the radial electric field {{E}r} and the resultant toroidal rotation {{V}φ} together with the scrape-off-layer (SOL) physics-based boundary model. The coupling of three codes, the 1.5D transport code TOPICS, the three-dimensional (3D) equilibrium code VMEC and the 3D δ f drift-kinetic equation solver FORTEC-3D, makes it possible to calculate the NTV due to the non-axisymmetric perturbed magnetic field caused by toroidal field coils. Analyses reveal that the NTV significantly influences {{V}φ} in JT-60U and {{E}r} holds the key to determine the NTV profile. The sensitivity of the {{V}φ} profile to the boundary rotation necessitates a boundary condition modelling for toroidal momentum. Owing to the high-resolution measurement system in JT-60U, the {{E}r} gradient is found to be virtually zero at the separatrix regardless of toroidal rotation velocities. Focusing on {{E}r} , the boundary model of toroidal momentum is developed in conjunction with the SOL/divertor plasma code D5PM. This modelling realizes self-consistent predictive simulations for operation scenario development in ITER.

  8. Anchored boundary conditions for locally isostatic networks

    NASA Astrophysics Data System (ADS)

    Theran, Louis; Nixon, Anthony; Ross, Elissa; Sadjadi, Mahdi; Servatius, Brigitte; Thorpe, M. F.

    2015-11-01

    Finite pieces of locally isostatic networks have a large number of floppy modes because of missing constraints at the surface. Here we show that by imposing suitable boundary conditions at the surface the network can be rendered effectively isostatic. We refer to these as anchored boundary conditions. An important example is formed by a two-dimensional network of corner sharing triangles, which is the focus of this paper. Another way of rendering such networks isostatic is by adding an external wire along which all unpinned vertices can slide (sliding boundary conditions). This approach also allows for the incorporation of boundaries associated with internal holes and complex sample geometries, which are illustrated with examples. The recent synthesis of bilayers of vitreous silica has provided impetus for this work. Experimental results from the imaging of finite pieces at the atomic level need such boundary conditions, if the observed structure is to be computer refined so that the interior atoms have the perception of being in an infinite isostatic environment.

  9. Integrated Laboratories: Crossing Traditional Boundaries

    ERIC Educational Resources Information Center

    Dillner, Debra K.; Ferrante, Robert F.; Fitzgerald, Jeffrey P.; Heuer, William B.; Schroeder, Maria J.

    2007-01-01

    A new, integrated laboratory curriculum was recently developed at the U.S. Naval Academy in response to the 1999 ACS Committee on Professional Training guidelines that required inclusion of biochemistry and a stronger emphasis on student research. To meet these ACS requirements and to introduce more student choice in the major, we embarked on a…

  10. Integrable open boundary conditions for XXC models

    NASA Astrophysics Data System (ADS)

    Arnaudon, Daniel; Maassarani, Ziad

    1998-10-01

    The XXC models are multistate generalizations of the well known spin-½ XXZ model. These integrable models share a common underlying su(2) structure. We derive integrable open boundary conditions for the hierarchy of conserved quantities of the XXC models . Due to lack of crossing unitarity of the R-matrix, we develop specific methods to prove integrability. The symmetry of the spectrum is determined.

  11. Integrated watershed planning across jurisdictional boundaries

    NASA Astrophysics Data System (ADS)

    Watts, A. W.; Roseen, R.; Stacey, P.; Bourdeau, R.

    2014-12-01

    We will present the foundation for an Coastal Watershed Integrated Plan for three communities in southern New Hampshire. Small communities are often challenged by complex regulatory requirements and limited resources, but are wary of perceived risks in engaging in collaborative projects with other communities. Potential concerns include loss of control, lack of resources to engage in collaboration, technical complexity, and unclear benefits. This project explores a multi-town subwatershed application of integrated planning across jurisdictional boundaries that addresses some of today's highest priority water quality issues: wastewater treatment plant upgrades for nutrient removal; green infrastructure stormwater management for developing and re-developing areas; and regional monitoring of ecosystem indicators in support of adaptive management to achieve nutrient reduction and other water quality goals in local and downstream waters. The project outcome is a collaboratively-developed inter-municipal integrated plan, and a monitoring framework to support cross jurisdictional planning and assess attainment of water quality management goals. This research project has several primary components: 1) assessment of initial conditions, including both the pollutant load inputs and the political, economic and regulatory status within each community, 2) a pollutant load model for point and non-point sources, 3) multi-criteria evaluation of load reduction alternatives 4) a watershed management plan optimized for each community, and for Subwatersheds combining multiple communities. The final plan will quantify the financial and other benefits/drawbacks to each community for both inter municipal and individual pollution control approaches. We will discuss both the technical and collaborative aspects of the work, with lessons learned regarding science to action, incorporation of social, economic and water quality assessment parameters, and stakeholder/researcher interaction.

  12. Bulk locality and boundary creating operators

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu; Ooguri, Hirosi

    2015-10-01

    We formulate a minimum requirement for CFT operators to be localized in the dual AdS. In any spacetime dimensions, we show that a general solution to the requirement is a linear superposition of operators creating spherical boundaries in CFT, with the dilatation by the imaginary unit from their centers. This generalizes the recent proposal by Miyaji et al. for bulk local operators in the three dimensional AdS. We show that Ishibashi states for the global conformal symmetry in any dimensions and with the imaginary di-latation obey free field equations in AdS and that incorporating bulk interactions require their superpositions. We also comment on the recent proposals by Kabat et al., and by H. Verlinde.

  13. Boundary Lax pairs from non-ultra-local Poisson algebras

    SciTech Connect

    Avan, Jean; Doikou, Anastasia

    2009-11-15

    We consider non-ultra-local linear Poisson algebras on a continuous line. Suitable combinations of representations of these algebras yield representations of novel generalized linear Poisson algebras or 'boundary' extensions. They are parametrized by a boundary scalar matrix and depend, in addition, on the choice of an antiautomorphism. The new algebras are the classical-linear counterparts of the known quadratic quantum boundary algebras. For any choice of parameters, the non-ultra-local contribution of the original Poisson algebra disappears. We also systematically construct the associated classical Lax pair. The classical boundary principal chiral model is examined as a physical example.

  14. Boundary-Layer Receptivity and Integrated Transition Prediction

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan

    2005-01-01

    The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.

  15. Implementation of sinh method in integration space for boundary integrals with near singularity in potential problems

    NASA Astrophysics Data System (ADS)

    Xie, Guizhong; Zhang, Dehai; Zhang, Jianming; Meng, Fannian; Du, Wenliao; Wen, Xiaoyu

    2016-07-01

    As a widely used numerical method, boundary element method (BEM) is efficient for computer aided engineering (CAE). However, boundary integrals with near singularity need to be calculated accurately and efficiently to implement BEM for CAE analysis on thin bodies successfully. In this paper, the distance in the denominator of the fundamental solution is first designed as an equivalent form using approximate expansion and the original sinh method can be revised into a new form considering the minimum distance and the approximate expansion. Second, the acquisition of the projection point by Newton-Raphson method is introduced. We acquire the nearest point between the source point and element edge by solving a cubic equation if the location of the projection point is outside the element, where boundary integrals with near singularity appear. Finally, the subtriangles of the local coordinate space are mapped into the integration space and the sinh method is applied in the integration space. The revised sinh method can be directly performed in the integration element. Averification test of our method is proposed. Results demonstrate that our method is effective for regularizing the boundary integrals with near singularity.

  16. Integrability of a deterministic cellular automaton driven by stochastic boundaries

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž; Mejía-Monasterio, Carlos

    2016-05-01

    We propose an interacting many-body space–time-discrete Markov chain model, which is composed of an integrable deterministic and reversible cellular automaton (rule 54 of Bobenko et al 1993 Commun. Math. Phys. 158 127) on a finite one-dimensional lattice {({{{Z}}}2)}× n, and local stochastic Markov chains at the two lattice boundaries which provide chemical baths for absorbing or emitting the solitons. Ergodicity and mixing of this many-body Markov chain is proven for generic values of bath parameters, implying the existence of a unique nonequilibrium steady state. The latter is constructed exactly and explicitly in terms of a particularly simple form of matrix product ansatz which is termed a patch ansatz. This gives rise to an explicit computation of observables and k-point correlations in the steady state as well as the construction of a nontrivial set of local conservation laws. The feasibility of an exact solution for the full spectrum and eigenvectors (decay modes) of the Markov matrix is suggested as well. We conjecture that our ideas can pave the road towards a theory of integrability of boundary driven classical deterministic lattice systems.

  17. 40 CFR 255.21 - Local consultation on boundaries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Local consultation on boundaries. 255.21 Section 255.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Procedures for Identifying Regions and Agencies § 255.21 Local consultation...

  18. Computing the Casimir force using regularized boundary integral equations

    NASA Astrophysics Data System (ADS)

    Kilen, Isak; Jakobsen, Per Kristen

    2014-11-01

    In this paper we use a novel regularization procedure to reduce the calculation of the Casimir force for 2D scalar fields between compact objects to the solution of a classical integral equation defined on the boundaries of the objects. The scalar fields are subject to Dirichlet boundary conditions on the object boundaries. We test the integral equation by comparing with what we get for parallel plates, concentric circles and adjacent circles using mode summation and the functional integral method. We show how symmetries in the shapes and configuration of boundaries can easily be incorporated into our method and that it leads to fast evaluation of the Casimir force for symmetric situations.

  19. Boundary-integral methods in elasticity and plasticity. [solutions of boundary value problems

    NASA Technical Reports Server (NTRS)

    Mendelson, A.

    1973-01-01

    Recently developed methods that use boundary-integral equations applied to elastic and elastoplastic boundary value problems are reviewed. Direct, indirect, and semidirect methods using potential functions, stress functions, and displacement functions are described. Examples of the use of these methods for torsion problems, plane problems, and three-dimensional problems are given. It is concluded that the boundary-integral methods represent a powerful tool for the solution of elastic and elastoplastic problems.

  20. Solution of elastoplastic torsion problem by boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.

    1975-01-01

    The boundary integral method was applied to the elastoplastic analysis of the torsion of prismatic bars, and the results are compared with those obtained by the finite difference method. Although fewer unknowns were used, very good accuracy was obtained with the boundary integral method. Both simply and multiply connected bodies can be handled with equal ease.

  1. Instability of a Supersonic Boundary-Layer with Localized Roughness

    NASA Technical Reports Server (NTRS)

    Marxen, Olaf; Iaccarino, Gianluca; Shaqfeh, Eric S. G.

    2010-01-01

    A localized 3-D roughness causes boundary-layer separation and (weak) shocks. Most importantly, streamwise vortices occur which induce streamwise (low U, high T) streaks. Immersed boundary method (volume force) suitable to represent roughness element in DNS. Favorable comparison between bi-global stability theory and DNS for a "y-mode" Outlook: Understand the flow physics (investigate "z-modes" in DNS through sinuous spanwise forcing, study origin of the beat in DNS).

  2. Local and social facets of planetary boundaries: right to nutrients

    NASA Astrophysics Data System (ADS)

    Kahiluoto, Helena; Kuisma, Miia; Kuokkanen, Anna; Mikkilä, Mirja; Linnanen, Lassi

    2015-10-01

    Anthropogenic nutrient flows exceed the planetary boundaries. The boundaries and the current excesses vary spatially. Such variations have both an ecological and a social facet. We explored the spatial variation using a bottom-up approach. The local critical boundaries were determined through the current or accumulated flow of the preceding five years before the planetary boundary criteria were met. Finland and Ethiopia served as cases with contrasting ecology and wealth. The variation in excess depends on historical global inequities in the access to nutrients. Globally, the accumulated use per capita is 2300 kg reactive nitrogen (Nr) and 200 kg phosphorus (P). For Finland, the accumulated use per capita is 3400 kg Nr and 690 kg P, whereas for Ethiopia, it is 26 kg Nr and 12 kg P. The critical N boundary in Finland is currently exceeded by 40 kg cap-1 a-1 and the accumulated excess is 65 kg cap-1 a-1, while the global current excess is 24 kg cap-1 a-1 and there is space in Ethiopia to increase even the accumulated flow. The critical P boundary is exceeded in Finland and (although less so) in Ethiopia, but for contrary reasons: (1) the excessive past inflow to the agrifood system in Finland and (2) the excessive outflow from the agrifood system triggered by deficits in inflow and waste management in Ethiopia. The critical boundaries set by Finnish marine systems are lower and those set by freshwaters are higher than the planetary boundaries downscaled per capita. The shift to dominance of internal loading in watercourses represents a tipping point. We conclude that food security within the safe boundaries requires global redistribution of nutrients in residues, soils and sediments and of rights to use nutrients. Bottom-up assessments reveal local dynamics that shed new light on the relevant boundary criteria and on estimates and remedies.

  3. Integrable Boundary for Quad-Graph Systems: Three-Dimensional Boundary Consistency

    NASA Astrophysics Data System (ADS)

    Caudrelier, Vincent; Crampé, Nicolas; Zhang, Qi Cheng

    2014-02-01

    We propose the notion of integrable boundary in the context of discrete integrable systems on quad-graphs. The equation characterizing the boundary must satisfy a compatibility equation with the one characterizing the bulk that we called the three-dimensional (3D) boundary consistency. In comparison to the usual 3D consistency condition which is linked to a cube, our 3D boundary consistency condition lives on a half of a rhombic dodecahedron. The We provide a list of integrable boundaries associated to each quad-graph equation of the classification obtained by Adler, Bobenko and Suris. Then, the use of the term ''integrable boundary'' is justified by the facts that there are Bäcklund transformations and a zero curvature representation for systems with boundary satisfying our condition. We discuss the three-leg form of boundary equations, obtain associated discrete Toda-type models with boundary and recover previous results as particular cases. Finally, the connection between the 3D boundary consistency and the set-theoretical reflection equation is established.

  4. Treatment of domain integrals in boundary element methods

    SciTech Connect

    Nintcheu Fata, Sylvain

    2012-01-01

    A systematic and rigorous technique to calculate domain integrals without a volume-fitted mesh has been developed and validated in the context of a boundary element approximation. In the proposed approach, a domain integral involving a continuous or weakly-singular integrand is first converted into a surface integral by means of straight-path integrals that intersect the underlying domain. Then, the resulting surface integral is carried out either via analytic integration over boundary elements or by use of standard quadrature rules. This domain-to-boundary integral transformation is derived from an extension of the fundamental theorem of calculus to higher dimension, and the divergence theorem. In establishing the method, it is shown that the higher-dimensional version of the first fundamental theorem of calculus corresponds to the well-known Poincare lemma. The proposed technique can be employed to evaluate integrals defined over simply- or multiply-connected domains with Lipschitz boundaries which are embedded in an Euclidean space of arbitrary but finite dimension. Combined with the singular treatment of surface integrals that is widely available in the literature, this approach can also be utilized to effectively deal with boundary-value problems involving non-homogeneous source terms by way of a collocation or a Galerkin boundary integral equation method using only the prescribed surface discretization. Sample problems associated with the three-dimensional Poisson equation and featuring the Newton potential are successfully solved by a constant element collocation method to validate this study.

  5. Integrated foreground segmentation and boundary matting for live videos.

    PubMed

    Minglun Gong; Yiming Qian; Li Cheng

    2015-04-01

    The objective of foreground segmentation is to extract the desired foreground object from input videos. Over the years, there have been significant amount of efforts on this topic. Nevertheless, there still lacks a simple yet effective algorithm that can process live videos of objects with fuzzy boundaries (e.g., hair) captured by freely moving cameras. This paper presents an algorithm toward this goal. The key idea is to train and maintain two competing one-class support vector machines at each pixel location, which model local color distributions for both foreground and background, respectively. The usage of two competing local classifiers, as we have advocated, provides higher discriminative power while allowing better handling of ambiguities. By exploiting this proposed machine learning technique, and by addressing both foreground segmentation and boundary matting problems in an integrated manner, our algorithm is shown to be particularly competent at processing a wide range of videos with complex backgrounds from freely moving cameras. This is usually achieved with minimum user interactions. Furthermore, by introducing novel acceleration techniques and by exploiting the parallel structure of the algorithm, near real-time processing speed (14 frames/s without matting and 8 frames/s with matting on a midrange PC & GPU) is achieved for VGA-sized videos. PMID:25675459

  6. Boundary Integral Solutions to Three-Dimensional Unconfined Darcy's Flow

    NASA Astrophysics Data System (ADS)

    Lennon, Gerard P.; Liu, Philip L.-F.; Liggett, James A.

    1980-08-01

    The boundary integral equation method (BIEM) is used to solve three-dimensional potential flow problems in porous media. The problems considered here are time dependent and have a nonlinear boundary condition on the free surface. The entire boundary, including the moving free surface, discretized into linear finite elements for the purpose of evaluating the boundary integrals. The technique allows transient, three-dimensional problems to be solved with reasonable computational costs. Numerical examples include recharge through rectangular and circular areas and seepage flow from a surface pond. The examples are used to illustrate the method and show the nonlinear effects.

  7. Magnetization due to localized states on graphene grain boundary

    PubMed Central

    Dutta, Sudipta; Wakabayashi, Katsunori

    2015-01-01

    Magnetism in graphene has been found to originate from various defects, e.g., vacancy, edge formation, add-atoms etc. Here, we discuss about an alternate route of achieving magnetism in graphene via grain boundary. During chemical vapor deposition of graphene, several graphene nucleation centers grow independently and face themselves with unusual bonding environment, giving rise to the formation of grain boundaries. We investigate the origin of magnetism in such grain boundaries within first-principles calculations, by letting two nucleation centers interact with each other at their interface. We observe formation of unprecedented point defect, consisting of fused three-membered and larger carbon rings, which induces net magnetization to graphene quantum dots. In case of periodic lattices, the appearance of array of point defects leads to the formation of magnetic grain boundaries. The net magnetization on these defects arises due to the deviation from bipartite characteristics of pristine graphene. We observe magnetic grain boundary induced dispersion less flat bands near Fermi energy, showing higher localization of electrons. These flat bands can be accessed via small doping, leading to enhanced magnetism. Moreover, the grain boundaries can induce asymmetric spin conduction behavior along the cross boundary direction. These properties can be exploited for sensor and spin-filtering applications. PMID:26145161

  8. Localized travelling waves in the asymptotic suction boundary layer

    NASA Astrophysics Data System (ADS)

    Kreilos, Tobias; Gibson, John F.; Schneider, Tobias M.

    2016-05-01

    We present two spanwise-localized travelling wave solutions in the asymptotic suction boundary layer, obtained by continuation of solutions of plane Couette flow. One of the solutions has the vortical structures located close to the wall, similar to spanwise-localized edge states previously found for this system. The vortical structures of the second solution are located in the free stream far above the laminar boundary layer and are supported by a secondary shear gradient that is created by a large-scale low-speed streak. The dynamically relevant eigenmodes of this solution are concentrated in the free stream, and the departure into turbulence from this solution evolves in the free stream towards the walls. For invariant solutions in free-stream turbulence, this solution thus shows that that the source of energy of the vortical structures can be a dynamical structure of the solution itself, instead of the laminar boundary layer.

  9. 40 CFR 255.21 - Local consultation on boundaries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Local consultation on boundaries. 255.21 Section 255.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Procedures for Identifying Regions and...

  10. 40 CFR 255.21 - Local consultation on boundaries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Local consultation on boundaries. 255.21 Section 255.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Procedures for Identifying Regions and...

  11. 40 CFR 255.21 - Local consultation on boundaries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Local consultation on boundaries. 255.21 Section 255.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Procedures for Identifying Regions and...

  12. Ab initio local energy and local stress: application to tilt and twist grain boundaries in Cu and Al.

    PubMed

    Wang, Hao; Kohyama, Masanori; Tanaka, Shingo; Shiihara, Yoshinori

    2013-07-31

    The energy-density and stress-density schemes (Shiihara et al 2010 Phys. Rev. B 81 075441) within the projector augmented wave (PAW) method based on the generalized gradient approximation (GGA) have been applied to tilt and twist grain boundaries (GBs) and single vacancies in Cu and Al. Local energy and local stress at GBs and defects are obtained by integrating the energy and stress densities in each local region by the Bader integration using a recent algorithm (Yu et al 2011 J. Chem. Phys. 134 064111) as well as by the layer-by-layer integration so as to settle the gauge-dependent problem in the kinetic terms. Results are compared with those by the fuzzy-Voronoi integration and by the embedded atom method (EAM). The features of local energy and local stress at GBs and vacancies depend on the bonding nature of each material. Valence electrons in Al mainly located in the interatomic regions show remarkable response to structural disorder as significant valence charge redistribution or bond reconstruction, often leading to long-range variations of charges, energies and stresses, quite differently from d electrons in Cu mainly located near nuclei. All these features can be well represented by our local energy and local stress. The EAM potential for Al does not reproduce correct local energy or local stress, while the EAM potential for Cu provides satisfactory results. PMID:23835349

  13. Response of Hypervelocity Boundary Layers to Global and Local Distortion

    NASA Astrophysics Data System (ADS)

    Flaherty, William; Austin, Joanna

    2013-11-01

    Concave surface curvature can impose significant distortion to compressible boundary layer flows due to multiple, potentially coupled, effects including an adverse pressure gradient, bulk flow compression, and possible centrifugal instabilities. Approximate methods provide insight into dominant mechanisms, however few strategies are capable of treating heat transfer effects and predictions diverge significantly from the available experimental data at larger pressure gradient. In this work, we examine the response of boundary layers to global and local distortions in hypervelocity flows where thermochemical energy exchange has significant impact on boundary layer structure and stability. Experiments are carried out in a novel expansion tube facility built at Illinois. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle, even at the conditions of greatest distortion. As a model problem to study the evolution of large-scale structures under strained conditions, streamwise vortices are imposed into the boundary layer. The impact of the additional local distortion is investigated. The heat transfer scaling is found to be robust even in the presence of the imposed structures.

  14. Breaking integrability at the boundary: the sine-Gordon model with Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Arthur, Robert; Dorey, Patrick; Parini, Robert

    2016-04-01

    We explore boundary scattering in the sine-Gordon model with a non-integrable family of Robin boundary conditions. The soliton content of the field after collision is analysed using a numerical implementation of the direct scattering problem associated with the inverse scattering method. We find that an antikink may be reflected into various combinations of an antikink, a kink, and one or more breathers, depending on the values of the initial antikink velocity and a parameter associated with the boundary condition. In addition we observe regions with an intricate resonance structure arising from the creation of an intermediate breather whose recollision with the boundary is highly dependent on the breather phase.

  15. Piloting and path integration within and across boundaries.

    PubMed

    Mou, Weimin; Wang, Lin

    2015-01-01

    Three experiments investigated whether navigation is less efficient across boundaries than within boundaries. In an immersive virtual environment, participants learned objects' locations in a large room or a small room. Participants then pointed to the objects' original locations after physically walking a circuitous path without vision. For participants who learned the objects in the large room, the testing position and the learning position were in the same room so that participants did not cross boundaries before testing; for participants who learned the objects in the small room, the testing position and the learning position were in 2 different rooms so that participants crossed boundaries before testing. Participants who learned the objects in the large room, during testing, either saw cues indicating the targets' locations (piloting group) or not (path integration group). Participants who learned the objects in the small room, during testing did not see any cues correctly indicating the targets' locations. The results showed that pointing accuracy was higher for those who learned the objects in the large room and in the piloting group than for those who learned the objects in the small room. However, this cross-boundary cost did not occur when we contrasted participants who learned objects in the large room and in the path integration group with participants who learned in a small room. These results suggested that navigation that relies on path integration only is not sensitive to boundary crossing, although navigation that relies on piloting is less efficient across boundaries than within boundaries. PMID:24933698

  16. On the Implementation of 3D Galerkin Boundary Integral Equations

    SciTech Connect

    Nintcheu Fata, Sylvain; Gray, Leonard J

    2010-01-01

    In this article, a reverse contribution technique is proposed to accelerate the construction of the dense influence matrices associated with a Galerkin approximation of singular and hypersingular boundary integral equations of mixed-type in potential theory. In addition, a general-purpose sparse preconditioner for boundary element methods has also been developed to successfully deal with ill-conditioned linear systems arising from the discretization of mixed boundary-value problems on non-smooth surfaces. The proposed preconditioner, which originates from the precorrected-FFT method, is sparse, easy to generate and apply in a Krylov subspace iterative solution of discretized boundary integral equations. Moreover, an approximate inverse of the preconditioner is implicitly built by employing an incomplete LU factorization. Numerical experiments involving mixed boundary-value problems for the Laplace equation are included to illustrate the performance and validity of the proposed techniques.

  17. Local and bulk melting of Cu at grain boundaries

    SciTech Connect

    Luo, Shengnian; Han, Li - Bo; An, Qi; Zheng, Lianqing

    2008-01-01

    We investigate gain boundary (GB) melting using molecular dynamics simulations on face-centered-cubic Cu bicrystals with symmetric {l_angle}110{r_angle} tilt grain boundaries. Two representative types of GBs are explored: {Sigma} = 11/(113)/50.48{sup o} (low GB energy) and {Sigma} = 27/(552)/148.41{sup o} (high GB energy). The temperature and temporal evolutions of the Cu bicrystals under stepped heating are characterized in terms of order parameters and diffusion coefficients, as ell as the nucleation and growth of melt. Within the GB region, continuous local melting precedes discontinuous bulk melting, while continuous solid state disordering may precede local melting. Premelting may occur for local melting but not for bulk melting. For {Sigma} = 11/(113)/50.48{sup o}, premelting of the GB region is negligible, and local melting occurs near the thermodynamic melting temperature. The GB region as a whole is superheated by about 13% before its bulk melting. In the case of {Sigma} = 27/(552)/148.41, considerable premelting is observed for local melting, while the bulk melting occurs with negligible superheating. The exact melting behavior of a general GB depends on the GB energy, but is likely bracketed within these two cases.

  18. Integral Formulation of the Boundary Value Problem in Waveguides.

    ERIC Educational Resources Information Center

    Sancho, M.

    1980-01-01

    Presents an integral approach to the boundary value problem in waveguides deduced from the Kirchoff's integral formulation of the electromagnetic field. Also, the basis for the numerical solution of more general problems is given, including the example of the isosceles right triangular guide. (Author/SK)

  19. Crossing Boundaries: Explorations in Integrative Curriculum.

    ERIC Educational Resources Information Center

    Braunger, Jane; Hart-Landsberg, Sylvia

    Curriculum in the United States is largely a fragmented set of subjects and teachers to present them. Many Pacific Northwestern educators are looking for innovative ways to organize curriculum that over comes the traditional structure. As knowledge of the learning process increases, integrative curriculum is being employed more frequently. Several…

  20. Dissolving Boundaries: Toward an Integrative Curriculum.

    ERIC Educational Resources Information Center

    Brazee, Edward N.; Capelluti, Jody

    An examination of the issues surrounding the concept of change is fundamental to curriculum improvement for elementary and middle schools. New beliefs surround an integrative rather than a separate subject isolation approach to curriculum. This report examines past, current, and future curriculum practice and considerations, focusing on a new…

  1. Boundary Recovery For Delaunay Tetrahedral Meshes Using Local Topological Transformations

    PubMed Central

    Ghadyani, Hamid; Sullivan, John; Wu, Ziji

    2009-01-01

    Numerous high-quality, volume mesh-generation systems exist. However, no strategy can address all geometry situations without some element qualities being compromised. Many 3D mesh generation algorithms are based on Delaunay tetrahedralization which frequently fails to preserve the input boundary surface topology. For biomedical applications, this surface preservation can be critical as they usually contain multiple material regions of interest coherently connected. In this paper we present an algorithm as a post-processing method that optimizes local regions of compromised element quality and recovers the original boundary surface facets (triangles) regardless of the original mesh generation strategy. The algorithm carves out a small sub-volume in the vicinity of the missing boundary facet or compromised element, creating a cavity. If the task is to recover a surface boundary facet, a natural exit hole in the cavity will be present. This hole is patched with the missing boundary surface face first followed by other patches to seal the cavity. If the task was to improve a compromised region, then the cavity is already sealed. Every triangular facet of the cavity shell is classified as an active face and can be connected to another shell node creating a tetrahedron. In the process the base of the tetrahedron is removed from the active face list and potentially 3 new active faces are created. This methodology is the underpinnings of our last resort method. Each active face can be viewed as the trunk of a tree. An exhaustive breath and depth search will identify all possible tetrahedral combinations to uniquely fill the cavity. We have streamlined this recursive process reducing the time complexity by orders of magnitude. The original surfaces boundaries (internal and external) are fully restored and the quality of compromised regions improved. PMID:20305743

  2. Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images.

    PubMed

    Shao, Yeqin; Gao, Yaozong; Wang, Qian; Yang, Xin; Shen, Dinggang

    2015-12-01

    Automatic and accurate segmentation of the prostate and rectum in planning CT images is a challenging task due to low image contrast, unpredictable organ (relative) position, and uncertain existence of bowel gas across different patients. Recently, regression forest was adopted for organ deformable segmentation on 2D medical images by training one landmark detector for each point on the shape model. However, it seems impractical for regression forest to guide 3D deformable segmentation as a landmark detector, due to large number of vertices in the 3D shape model as well as the difficulty in building accurate 3D vertex correspondence for each landmark detector. In this paper, we propose a novel boundary detection method by exploiting the power of regression forest for prostate and rectum segmentation. The contributions of this paper are as follows: (1) we introduce regression forest as a local boundary regressor to vote the entire boundary of a target organ, which avoids training a large number of landmark detectors and building an accurate 3D vertex correspondence for each landmark detector; (2) an auto-context model is integrated with regression forest to improve the accuracy of the boundary regression; (3) we further combine a deformable segmentation method with the proposed local boundary regressor for the final organ segmentation by integrating organ shape priors. Our method is evaluated on a planning CT image dataset with 70 images from 70 different patients. The experimental results show that our proposed boundary regression method outperforms the conventional boundary classification method in guiding the deformable model for prostate and rectum segmentations. Compared with other state-of-the-art methods, our method also shows a competitive performance. PMID:26439938

  3. Integrating Science with Local Experiences

    ERIC Educational Resources Information Center

    Black, Kathie

    2004-01-01

    Science exists in many forms, but an appreciation of science as an integral part of every day does not occur in the vacuum of laboratory experience or through classroom activities. Throughout the communities, a plethora of places exist to see science at work, from the usually recommended museums and parks to the less thought of factories and…

  4. The Boundary Integral Equation Method for Porous Media Flow

    NASA Astrophysics Data System (ADS)

    Anderson, Mary P.

    Just as groundwater hydrologists are breathing sighs of relief after the exertions of learning the finite element method, a new technique has reared its nodes—the boundary integral equation method (BIEM) or the boundary equation method (BEM), as it is sometimes called. As Liggett and Liu put it in the preface to The Boundary Integral Equation Method for Porous Media Flow, “Lately, the Boundary Integral Equation Method (BIEM) has emerged as a contender in the computation Derby.” In fact, in July 1984, the 6th International Conference on Boundary Element Methods in Engineering will be held aboard the Queen Elizabeth II, en route from Southampton to New York. These conferences are sponsored by the Department of Civil Engineering at Southampton College (UK), whose members are proponents of BIEM. The conferences have featured papers on applications of BIEM to all aspects of engineering, including flow through porous media. Published proceedings are available, as are textbooks on application of BIEM to engineering problems. There is even a 10-minute film on the subject.

  5. Application of boundary integral equations to elastoplastic problems

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Albers, L. U.

    1975-01-01

    The application of boundary integral equations to elastoplastic problems is reviewed. Details of the analysis as applied to torsion problems and to plane problems is discussed. Results are presented for the elastoplastic torsion of a square cross section bar and for the plane problem of notched beams. A comparison of different formulations as well as comparisons with experimental results are presented.

  6. Local-time representation of path integrals

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Zatloukal, Václav

    2015-12-01

    We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x -dependent local-time profiles. The latter quantify the time that the sample paths x (t ) in the Feynman path integral spend in the vicinity of an arbitrary point x . Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed.

  7. Numerical solution of boundary-integral equations for molecular electrostatics.

    PubMed

    Bardhan, Jaydeep P

    2009-03-01

    Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived. PMID:19275391

  8. Boundary layer integral matrix procedure: Verification of models

    NASA Technical Reports Server (NTRS)

    Bonnett, W. S.; Evans, R. M.

    1977-01-01

    The three turbulent models currently available in the JANNAF version of the Aerotherm Boundary Layer Integral Matrix Procedure (BLIMP-J) code were studied. The BLIMP-J program is the standard prediction method for boundary layer effects in liquid rocket engine thrust chambers. Experimental data from flow fields with large edge-to-wall temperature ratios are compared to the predictions of the three turbulence models contained in BLIMP-J. In addition, test conditions necessary to generate additional data on a flat plate or in a nozzle are given. It is concluded that the Cebeci-Smith turbulence model be the recommended model for the prediction of boundary layer effects in liquid rocket engines. In addition, the effects of homogeneous chemical reaction kinetics were examined for a hydrogen/oxygen system. Results show that for most flows, kinetics are probably only significant for stoichiometric mixture ratios.

  9. An Efficient Boundary Integral Method for the Mullins Sekerka Problem

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Chen, Xinfu; Hou, Thomas Y.

    1996-09-01

    We use a boundary integral technique to study the two space dimensional Mullins-Sekerka free boundary problem which originates from a study of solidification and liquidation of materials of negligible specific heat. This is an area preserving and curve shortening motion. Evolution equations for the free boundaries are derived in terms of the tangent angle and total arclength, which makes a small scale decomposition possible and the Fourier transform a powerful tool in numerical calculations. With this formulation, implicit schemes can be implemented to avoid the difficult numerical stiffness associated with explicit schemes. We can compute solutions up to the time when there is a topological change, i.e., when particles touch or break up. Our numerical results for systems of a single particle or multi-particles provide some valuable information in the particle dynamics, such as the circularization of each individual particle, and the mass transfer between different particles during particle interactions.

  10. Defining a boundary in goal localization: Infinite number of points or extended surfaces.

    PubMed

    Mou, Weimin; Zhou, Ruojing

    2013-07-01

    Four experiments examined the roles of extended surfaces and the number of points in the boundary superiority effect in goal localization. Participants learned the locations of 4 objects in the presence of a boundary, landmarks, or both in an immersive virtual environment by reproducing the locations with feedback. Participants then localized the objects in the presence of either the boundary or the landmarks during testing without feedback. The results showed that when both 1 landmark and a circular boundary were presented during learning, localization error during testing increased significantly when only the landmark was presented during testing, whereas localization error did not increase when only the boundary was presented during testing, thus demonstrating a boundary superiority effect. This boundary superiority effect was not observed when 36 landmarks forming a circle and a circular boundary were presented during learning. The landmark superiority effect was observed when 36 landmarks, forming a circular shape, and 1/36th part of the circular boundary were presented during learning. Furthermore, when a varied number of landmarks were presented with a circular boundary during learning, the localization error when the boundary was removed during testing was negatively correlated with the number of the landmarks. These results indicate that the superiority of a circular boundary to a landmark might be due to the larger number of points in the circular boundary but not due to the extended surface of the circular boundary. PMID:23088544

  11. Discretization of the Induced-Charge Boundary Integral Equation

    PubMed Central

    Bardhan, Jaydeep P.; Eisenberg, Robert S.; Gillespie, Dirk

    2013-01-01

    Boundary-element methods (BEM) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few Angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein/solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch, Wang, and White (IEEE. Trans. Comput.-Aided Des. 20:1398, 2001) to compute the BEM matrix elements is always more accurate than the traditional centroid collocation method. Qualocation is no more expensive to implement than collocation and can save significant computional time by reducing the number of boundary elements needed to discretize the dielectric interfaces. PMID:19658728

  12. Discretization of the induced-charge boundary integral equation.

    SciTech Connect

    Bardhan, J. P.; Eisenberg, R. S.; Gillespie, D.; Rush Univ. Medical Center

    2009-07-01

    Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch et al. [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.

  13. Discretization of the induced-charge boundary integral equation

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.; Eisenberg, Robert S.; Gillespie, Dirk

    2009-07-01

    Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.

  14. Local-time representation of path integrals.

    PubMed

    Jizba, Petr; Zatloukal, Václav

    2015-12-01

    We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x-dependent local-time profiles. The latter quantify the time that the sample paths x(t) in the Feynman path integral spend in the vicinity of an arbitrary point x. Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed. PMID:26764662

  15. Integrated program designed for local governments.

    PubMed

    1993-01-01

    Local Philippine governments are required under the 1991 Local Government Code to plan and manage their own health and nutrition programs. In response to their requests, the Municipal Integrated Nutrition Program (MINP) is being developed. This program will integrate the local efforts of the following national nutrition programs: the Teacher-Child-Parent Approach of the Department of Education, Culture, and Sports; the Community-Based Planning and Management of Nutrition Programs of the Department of Health; the Early Childhood Enrichment Program of the Department of Social welfare and Development; and the Bio-Intensive Gardening for Home/Community Food Security of the Department of Agriculture. The Nutrition Center of the Philippines (NCP) has assisted in the development, testing, and evaluation of the MINP. In 1993, MINP models will begin in 1 or 2 barangays in Carmen, Cebu; Hilongos, Leyte; and Dapitan City in Zamboanga del Norte. NCP will provide program materials and technical assistance. Modeling activities will include advocating to local government units; designing and installing nutrition planning capability via planning workshops; packaging of program requirements and costs; designing a strategy to mobilize resources; facilitating purchase, delivery, and payment of program requirements; facilitating and coordinating training; designing and installing a monitoring and evaluation system; and documenting and disseminating. Local government officials, technical government agencies, nongovernment organizations, and private entities will work together. PMID:12287618

  16. A boundary integral formalism for stochastic ray tracing in billiards

    SciTech Connect

    Chappell, David J.; Tanner, Gregor

    2014-12-15

    Determining the flow of rays or non-interacting particles driven by a force or velocity field is fundamental to modelling many physical processes. These include particle flows arising in fluid mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain.

  17. Defining a Boundary in Goal Localization: Infinite Number of Points or Extended Surfaces

    ERIC Educational Resources Information Center

    Mou, Weimin; Zhou, Ruojing

    2013-01-01

    Four experiments examined the roles of extended surfaces and the number of points in the boundary superiority effect in goal localization. Participants learned the locations of 4 objects in the presence of a boundary, landmarks, or both in an immersive virtual environment by reproducing the locations with feedback. Participants then localized the…

  18. Effects of reconstructed magnetic field from sparse noisy boundary measurements on localization of active neural source.

    PubMed

    Shen, Hui-min; Lee, Kok-Meng; Hu, Liang; Foong, Shaohui; Fu, Xin

    2016-01-01

    Localization of active neural source (ANS) from measurements on head surface is vital in magnetoencephalography. As neuron-generated magnetic fields are extremely weak, significant uncertainties caused by stochastic measurement interference complicate its localization. This paper presents a novel computational method based on reconstructed magnetic field from sparse noisy measurements for enhanced ANS localization by suppressing effects of unrelated noise. In this approach, the magnetic flux density (MFD) in the nearby current-free space outside the head is reconstructed from measurements through formulating the infinite series solution of the Laplace's equation, where boundary condition (BC) integrals over the entire measurements provide "smooth" reconstructed MFD with the decrease in unrelated noise. Using a gradient-based method, reconstructed MFDs with good fidelity are selected for enhanced ANS localization. The reconstruction model, spatial interpolation of BC, parametric equivalent current dipole-based inverse estimation algorithm using reconstruction, and gradient-based selection are detailed and validated. The influences of various source depths and measurement signal-to-noise ratio levels on the estimated ANS location are analyzed numerically and compared with a traditional method (where measurements are directly used), and it was demonstrated that gradient-selected high-fidelity reconstructed data can effectively improve the accuracy of ANS localization. PMID:26358243

  19. The development of high angle deformation boundaries and local orientations in aluminum

    SciTech Connect

    Hughes, D.A.

    1996-03-01

    High angle boundaries and their local surroundings are important for all aspects of recrystallization including nucleation, growth and texture formation. They are thus important for processing of aluminum alloys. Deformation induced high angle boundaries have been observed and quantitatively characterized using transmission electron microscopy in aluminum following rolling to large reductions. The distribution of local orientations between individual dislocation boundaries and their angle/axis pairs have been measured using convergent beam Kikuchi analysis and are compared to the macroscopic texture. The sequence of near neighbor orientations shows that individual grains subdivide across their thickness into three to four different texture components separated by sharp boundaries. The local orientations surrounding high angle boundaries are much more diverse than suggested by simple models and single crystal studies. The origins for these high angle boundaries are suggested and discussed.

  20. The Application of a Boundary Integral Equation Method to the Prediction of Ducted Fan Engine Noise

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tweed, J.; Farassat, F.

    1999-01-01

    The prediction of ducted fan engine noise using a boundary integral equation method (BIEM) is considered. Governing equations for the BIEM are based on linearized acoustics and describe the scattering of incident sound by a thin, finite-length cylindrical duct in the presence of a uniform axial inflow. A classical boundary value problem (BVP) is derived that includes an axisymmetric, locally reacting liner on the duct interior. Using potential theory, the BVP is recast as a system of hypersingular boundary integral equations with subsidiary conditions. We describe the integral equation derivation and solution procedure in detail. The development of the computationally efficient ducted fan noise prediction program TBIEM3D, which implements the BIEM, and its utility in conducting parametric noise reduction studies are discussed. Unlike prediction methods based on spinning mode eigenfunction expansions, the BIEM does not require the decomposition of the interior acoustic field into its radial and axial components which, for the liner case, avoids the solution of a difficult complex eigenvalue problem. Numerical spectral studies are presented to illustrate the nexus between the eigenfunction expansion representation and BIEM results. We demonstrate BIEM liner capability by examining radiation patterns for several cases of practical interest.

  1. Kolmogorov turbulence, Anderson localization and KAM integrability

    NASA Astrophysics Data System (ADS)

    Shepelyansky, D. L.

    2012-06-01

    The conditions for emergence of Kolmogorov turbulence, and related weak wave turbulence, in finite size systems are analyzed by analytical methods and numerical simulations of simple models. The analogy between Kolmogorov energy flow from large to small spacial scales and conductivity in disordered solid state systems is proposed. It is argued that the Anderson localization can stop such an energy flow. The effects of nonlinear wave interactions on such a localization are analyzed. The results obtained for finite size system models show the existence of an effective chaos border between the Kolmogorov-Arnold-Moser (KAM) integrability at weak nonlinearity, when energy does not flow to small scales, and developed chaos regime emerging above this border with the Kolmogorov turbulent energy flow from large to small scales.

  2. Turning the corner in fertility: high DNA integrity of boundary-following sperm.

    PubMed

    Eamer, Lise; Vollmer, Marion; Nosrati, Reza; San Gabriel, Maria C; Zeidan, Krista; Zini, Armand; Sinton, David

    2016-07-01

    We present a passive microfluidic sperm selection strategy that collects motile sperm based on their preference to follow boundaries and turn corners. Clinical assessment of selected human sperm from the device revealed a strong correlation between high DNA integrity and the tendency for sperm to follow boundaries. Human sperm with preference to follow boundaries on the left- or right-hand sides have higher (>51%) DNA integrity than straight swimmers and significantly higher (>67%) DNA integrity than sperm in raw semen. Boundary following behaviour offers a strategy to selecting sperm with the highest DNA integrity to improve the success rate of assisted reproduction. PMID:27241827

  3. From Flashes to Edges to Objects: Recovery of Local Edge Fragments Initiates Spatiotemporal Boundary Formation.

    PubMed

    Erlikhman, Gennady; Kellman, Philip J

    2016-01-01

    Spatiotemporal boundary formation (SBF) is the perception of illusory boundaries, global form, and global motion from spatially and temporally sparse transformations of texture elements (Shipley and Kellman, 1993a, 1994; Erlikhman and Kellman, 2015). It has been theorized that the visual system uses positions and times of element transformations to extract local oriented edge fragments, which then connect by known interpolation processes to produce larger contours and shapes in SBF. To test this theory, we created a novel display consisting of a sawtooth arrangement of elements that disappeared and reappeared sequentially. Although apparent motion along the sawtooth would be expected, with appropriate spacing and timing, the resulting percept was of a larger, moving, illusory bar. This display approximates the minimal conditions for visual perception of an oriented edge fragment from spatiotemporal information and confirms that such events may be initiating conditions in SBF. Using converging objective and subjective methods, experiments showed that edge formation in these displays was subject to a temporal integration constraint of ~80 ms between element disappearances. The experiments provide clear support for models of SBF that begin with extraction of local edge fragments, and they identify minimal conditions required for this process. We conjecture that these results reveal a link between spatiotemporal object perception and basic visual filtering. Motion energy filters have usually been studied with orientation given spatially by luminance contrast. When orientation is not given in static frames, these same motion energy filters serve as spatiotemporal edge filters, yielding local orientation from discrete element transformations over time. As numerous filters of different characteristic orientations and scales may respond to any simple SBF stimulus, we discuss the aperture and ambiguity problems that accompany this conjecture and how they might be resolved

  4. From Flashes to Edges to Objects: Recovery of Local Edge Fragments Initiates Spatiotemporal Boundary Formation

    PubMed Central

    Erlikhman, Gennady; Kellman, Philip J.

    2016-01-01

    Spatiotemporal boundary formation (SBF) is the perception of illusory boundaries, global form, and global motion from spatially and temporally sparse transformations of texture elements (Shipley and Kellman, 1993a, 1994; Erlikhman and Kellman, 2015). It has been theorized that the visual system uses positions and times of element transformations to extract local oriented edge fragments, which then connect by known interpolation processes to produce larger contours and shapes in SBF. To test this theory, we created a novel display consisting of a sawtooth arrangement of elements that disappeared and reappeared sequentially. Although apparent motion along the sawtooth would be expected, with appropriate spacing and timing, the resulting percept was of a larger, moving, illusory bar. This display approximates the minimal conditions for visual perception of an oriented edge fragment from spatiotemporal information and confirms that such events may be initiating conditions in SBF. Using converging objective and subjective methods, experiments showed that edge formation in these displays was subject to a temporal integration constraint of ~80 ms between element disappearances. The experiments provide clear support for models of SBF that begin with extraction of local edge fragments, and they identify minimal conditions required for this process. We conjecture that these results reveal a link between spatiotemporal object perception and basic visual filtering. Motion energy filters have usually been studied with orientation given spatially by luminance contrast. When orientation is not given in static frames, these same motion energy filters serve as spatiotemporal edge filters, yielding local orientation from discrete element transformations over time. As numerous filters of different characteristic orientations and scales may respond to any simple SBF stimulus, we discuss the aperture and ambiguity problems that accompany this conjecture and how they might be resolved

  5. Control of a shock wave-boundary layer interaction using localized arc filament plasma actuators

    NASA Astrophysics Data System (ADS)

    Webb, Nathan Joseph

    Supersonic flight is currently possible, but expensive. Inexpensive supersonic travel will require increased efficiency of high-speed air entrainment, an integral part of air-breathing propulsion systems. Although mixed compression inlet geometry can significantly improve entrainment efficiency, numerous Shock Wave-Boundary Layer Interactions (SWBLIs) are generated in this configuration. The boundary layer must therefore develop through multiple regions of adverse pressure gradient, causing it to thicken, and, in severe cases, separate. The associated increase in unsteadiness can have adverse effects on downstream engine hardware. The most severe consequence of these interactions is the increased aerodynamic blockage generated by the thickened boundary layer. If the increase is sufficient, it can choke the flow, causing inlet unstart, and resulting in a loss of thrust and high transient forces on the engine, airframe, and aircraft occupants. The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions. This work seeks to examine the effectiveness of LAFPAs as a separation control method for an oblique, impinging SWBLI. The low frequency unsteadiness in the reflected shock was thought to be the natural manifestation of a Kelvin-Helmholtz instability in the shear layer above the separation region. The LAFPAs were therefore placed upstream of the interaction to allow their perturbations to convect to the receptivity region (near the shear layer origin

  6. A time-domain finite element boundary integration method for ultrasonic nondestructive evaluation.

    PubMed

    Shi, Fan; Choi, Wonjae; Skelton, Elizabeth A; Lowe, Michael J S; Craster, Richard V

    2014-12-01

    A 2-D and 3-D numerical modeling approach for calculating the elastic wave scattering signals from complex stress-free defects is evaluated. In this method, efficient boundary integration across the complex boundary of the defect is coupled with a time-domain finite element (FE) solver. The model is designed to simulate time-domain ultrasonic nondestructive evaluation in bulk media. This approach makes use of the hybrid concept of linking a local numerical model to compute the near-field scattering behavior and theoretical mathematical formulas for postprocessing to calculate the received signals. It minimizes the number of monitoring signals from the FE calculation so that the computation effort in postprocessing decreases significantly. In addition, by neglecting the conventional regular monitoring box, the region for FE calculation can be made smaller. In this paper, the boundary integral method is implemented in a commercial FE code, and it is validated by comparing the scattering signals with results from corresponding full FE models. The coupled method is then implemented in real inspection scenarios in both 2-D and 3-D, and the accuracy and the efficiency are demonstrated. The limitations of the proposed model and future works are also discussed. PMID:25474780

  7. Modal analysis of the impact of the boundaries on transverse Anderson localization in a one-dimensional disordered optical lattice

    NASA Astrophysics Data System (ADS)

    Abaie, Behnam; Hosseini, Seyed Rasoul; Karbasi, Salman; Mafi, Arash

    2016-04-01

    Impact of the boundaries on transversely localized modes of a truncated one-dimensional disordered optical lattice is numerically studied. The results show lower modal number density near the boundaries compared with the bulk, while the average decay rate of the tail of localized modes is the same near the boundaries as in the bulk. It is suggested that the perceived suppressed localization near the boundaries is due to a lower mode density: on average, it is less probable to excite a localized mode near the boundaries; however, once it is excited, its localization is with the same exponential decay rate as any other localized mode.

  8. Boundary diffraction wave integrals for diffraction modeling of external occulters.

    PubMed

    Cady, Eric

    2012-07-01

    An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly model these effects. We present a fast method for the calculation of electric fields following an occulter, based on the concept of the boundary diffraction wave: the 2D structure of the occulter is reduced to a 1D edge integral which directly incorporates the occulter shape, and which can be easily adjusted to include changes in occulter position and shape, as well as the effects of sources-such as exoplanets-which arrive off-axis to the occulter. The structure of a typical implementation of the algorithm is included. PMID:22772218

  9. The D(D3)-anyon chain: integrable boundary conditions and excitation spectra

    NASA Astrophysics Data System (ADS)

    Finch, Peter E.; Frahm, Holger

    2013-05-01

    Chains of interacting non-Abelian anyons with local interactions invariant under the action of the Drinfeld double of the dihedral group D3 are constructed. Formulated as a spin chain the Hamiltonians are generated from commuting transfer matrices of an integrable vertex model for periodic and braided as well as open boundaries. A different anyonic model with the same local Hamiltonian is obtained within the fusion path formulation. This model is shown to be related to an integrable fusion interaction round the face model. Bulk and surface properties of the anyon chain are computed from the Bethe equations for the spin chain. The low-energy effective theories and operator content of the models (in both the spin chain and fusion path formulation) are identified from analytical and numerical studies of the finite-size spectra. For all boundary conditions considered the continuum theory is found to be a product of two conformal field theories. Depending on the coupling constants the factors can be a Z4 parafermion or a {M}_{(5,6)} minimal model.

  10. Boundary Ambiguity in Parents with Chronically Ill Children: Integrating Theory and Research

    ERIC Educational Resources Information Center

    Berge, Jerica M.; Holm, Kristen E.

    2007-01-01

    This article integrates theory and research related to boundary ambiguity in parents of children with a chronic health condition. We propose that boundary ambiguity is a risk factor for psychological distress in these parents. Clinical applications and a case example highlight how boundary ambiguity can be assessed and managed in clinical settings…

  11. Application of boundary integral method to elastic analysis of V-notched beams

    NASA Technical Reports Server (NTRS)

    Rzasnicki, W.; Mendelson, A.; Albers, L. U.

    1973-01-01

    A semidirect boundary integral method, using Airy's stress function and its derivatives in Green's boundary integral formula, is used to obtain an accurate numerical solution for elastic stress and strain fields in V-notched beams in pure bending. The proper choice of nodal spacing on the boundary is shown to be necessary to achieve an accurate stress field in the vicinity of the tip of the notch. Excellent agreement is obtained with the results of the collocation method of solution.

  12. Piloting and Path Integration within and across Boundaries

    ERIC Educational Resources Information Center

    Mou, Weimin; Wang, Lin

    2015-01-01

    Three experiments investigated whether navigation is less efficient across boundaries than within boundaries. In an immersive virtual environment, participants learned objects' locations in a large room or a small room. Participants then pointed to the objects' original locations after physically walking a circuitous path without vision.…

  13. Relations for local radiative heat transfer between rectangular boundaries of an absorbing-emitting medium

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1993-01-01

    An analytical solution was obtained by Siegel (1991, 1992) for local boundary heat fluxes by a radiating medium at uniform temperature in a 2D rectangular region. It is shown here that, after local fluxes from the medium to the walls have been evaluated, it is very easy to compute local fluxes arriving from the adjacent and opposite walls. This extends the previous analysis and provides convenient relations to include radiation from a black boundary, each side of the rectangle being at a different uniform temperature. The final expressions are helpful in performing spectral calculations that must be made for many spectral bands.

  14. Turbulent shear spectra and local isotropy in the low-speed boundary layer

    NASA Technical Reports Server (NTRS)

    Sandborn, Virgil A; Braun, Willis H

    1956-01-01

    From measurements of turbulent shear spectra together with previously reported longitudinal turbulent energy spectra, the concept of local isotropy in a low-speed boundary layer was examined. Results of these measurements and measurements of the time derivatives of turbulent velocities in the x- and y- directions for various frequency bands showed no evidence of local isotropy in the boundary layer. Several methods (based on isotropy) of evaluating the turbulent dissipation term failed to give consistent answers, further emphasizing a lack of local isotropy.

  15. Local boundary reflections in lattice Boltzmann schemes: Spurious boundary layers and their impact on the velocity, diffusion and dispersion

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Roux, Laetitia; Silva, Goncalo

    2015-10-01

    This work demonstrates that in advection-diffusion Lattice Boltzmann schemes, the local mass-conserving boundary rules, such as bounce-back and local specular reflection, may modify the transport coefficients predicted by the Chapman-Enskog expansion when they enforce to zero not only the normal, but also the tangential boundary flux. In order to accommodate it to the bulk solution, the system develops a Knudsen-layer correction to the non-equilibrium part of the population solution. Two principal secondary effects-(i) decrease in the diffusion coefficient, and (ii) retardation of the average advection velocity, obtained in a closed analytical form, are proportional, respectively, to freely assigned diagonal weights for equilibrium mass and velocity terms. In addition, due to their transverse velocity gradients, the boundary layers affect the longitudinal diffusion coefficient similarly to Taylor dispersion, as they grow as the square of the Péclet number. These numerical artifacts can be eliminated or reduced by a proper space distribution of the free-tunable collision eigenvalue in two-relaxation-time schemes.

  16. Formalism for the calculation of local elastic constants at grain boundaries by means of atomistic simulation

    NASA Astrophysics Data System (ADS)

    Kluge, M. D.; Wolf, D.; Lutsko, J. F.; Phillpot, S. R.

    1990-03-01

    A new formalism for use in atomistic simulations to calculate the full local elastic-constant tensor in terms of local stresses and strains is presented. Results of simulations on a high-angle (001) twist grain boundary are illustrated, using both a Lennard-Jones potential for Cu and an embedded-atom potential for Au. The two conceptionally rather different potentials show similar anomalies in all elastic constants, confined to within a few lattice planes of the grain boundary, with an especially dramatic reduction in the resistance to shear parallel to the grain-boundary plane. It is found that the primary cause of the anomalies is the atomic disorder near the grain boundary, as evidenced by the slice-by-slice radial distribution functions for the inhomogeneous interface system.

  17. A non-local free boundary problem arising in a theory of financial bubbles

    PubMed Central

    Berestycki, Henri; Monneau, Regis; Scheinkman, José A.

    2014-01-01

    We consider an evolution non-local free boundary problem that arises in the modelling of speculative bubbles. The solution of the model is the speculative component in the price of an asset. In the framework of viscosity solutions, we show the existence and uniqueness of the solution. We also show that the solution is convex in space, and establish several monotonicity properties of the solution and of the free boundary with respect to parameters of the problem. To study the free boundary, we use, in particular, the fact that the odd part of the solution solves a more standard obstacle problem. We show that the free boundary is and describe the asymptotics of the free boundary as c, the cost of transacting the asset, goes to zero. PMID:25288815

  18. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics.

    PubMed

    Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y C

    2015-01-01

    A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals. PMID:26064591

  19. Boundary integral equation analysis for steady thermoelastic problems using thermoelastic potential

    SciTech Connect

    Koizumi, T.; Shibuya, T.; Kurokawa, K.; Tsuji, T.; Takakuda, K.

    1988-01-01

    In a boundary integral formulation for a thermoelastic problem, the temperature change is treated as an equivalent body force. Therefore, even in the case of zero body force, the formulation involves volume integrals. In the present paper, it is proved that the introduction of the thermoelastic potential succeeds in eliminating the volume integrals in the three-dimensional formulation. The formulations are transformed from Cartesian coordinates into axisymmetric coordinates. All the surface integrals are replaced by line integrals along the boundary of the axisymmetric domain. By using the above formulation, the deformation and stress distributions of a bonded cylinder subjected to a uniform temperature change are analyzed numerically. 7 references.

  20. Numerical simulation of Stokes flow around particles via a hybrid Finite Difference-Boundary Integral scheme

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Amitabh

    2013-11-01

    An efficient algorithm for simulating Stokes flow around particles is presented here, in which a second order Finite Difference method (FDM) is coupled to a Boundary Integral method (BIM). This method utilizes the strong points of FDM (i.e. localized stencil) and BIM (i.e. accurate representation of particle surface). Specifically, in each iteration, the flow field away from the particles is solved on a Cartesian FDM grid, while the traction on the particle surface (given the the velocity of the particle) is solved using BIM. The two schemes are coupled by matching the solution in an intermediate region between the particle and surrounding fluid. We validate this method by solving for flow around an array of cylinders, and find good agreement with Hasimoto's (J. Fluid Mech. 1959) analytical results.

  1. Spherically symmetric gravity coupled to a scalar field with a local Hamiltonian: the complete initial-boundary value problem using metric variables

    NASA Astrophysics Data System (ADS)

    Gambini, Rodolfo; Pullin, Jorge

    2013-01-01

    We discuss a gauge fixing of gravity coupled to a scalar field in spherical symmetry such that the Hamiltonian is an integral over space of a local density. In a previous paper, we had presented it using Ashtekar’s new variables. Here we study it in metric variables. We specify completely the initial-boundary value problem for ingoing Gaussian pulses.

  2. Shear flow beneath oceanic plates - Local nonsimilarity boundary layers for olivine rheology

    NASA Technical Reports Server (NTRS)

    Yuen, D. A.; Tovish, A.; Schubert, G.

    1978-01-01

    The principle of local similarity, which has been used to model the two-dimensional boundary layers in the oceanic upper mantle, permits calculation of the temperature, velocity, and stress fields with essentially analytic techniques. Finite difference numerical methods are hard pressed to resolve the detail required by the large variation of viscosity between the lithosphere and the asthenosphere. In this paper the local similarity approximation has been justified by quantitatively evaluating the effect of nonsimilarity due to viscous heating, nonlinear temperature- and pressure-dependent rheology, buoyancy, adiabatic cooling, etc. Nonsimilar effects produce only small modifications of the locally similar boundary layers; important geophysical observables such as surface heat flux and ocean floor topography are given to better than 10 percent by the locally similar solution. A posteriori evaluations of the terms neglected in the boundary layer simplification of the complete equations have been conducted on the locally similar temperature and velocity profiles close to the spreading ridge. The boundary layer models are valid to depths of 100 km at 3 m.y. and 10 km at 0.3 m.y.

  3. Local versus nonlocal boundary-layer diffusion in a global climate model

    SciTech Connect

    Holtslag, A.A.M. ); Boville, B.A. )

    1993-10-01

    The results of a local and a nonlocal scheme for vertical diffusion in the atmospheric boundary layer are compared within the context of a global climate model. The global model is an updated version of the NCAR Community Climate Model (CCM2). The local diffusion scheme uses an eddy diffusivity determined independently at each point in the vertical, based on local vertical gradients of wind and virtual potential temperature, similar to the usual approach in global atmospheric models. The nonlocal scheme determines an eddy-diffusivity profile based on a diagnosed boundary-layer height and a turbulent velocity scale. It also incorporates nonlocal (vertical) transport effects for heat and moisture. The two diffusion schemes are summarized, and their results are compared with independent radiosonde observations for a number of locations. The focus herein is on the temperature and humidity structure over ocean, where the surface temperatures are specified, since the boundary-layer scheme interacts strongly with the land-surface parameterization. Systematic differences are shown in global-climate simulations, with CCM2 using the two schemes. The nonlocal scheme transports moisture away from the surface more rapidly than the local scheme, and deposits the moisture at higher levels. The local scheme tends to saturate the lowest model levels unrealistically, which typically leads to clouds too low in the atmosphere. The nonlocal scheme has been chosen for CCM2 because of its more comprehensive representation of the physics of boundary-layer transport in dry convective conditions. 35 refs., 12 figs.

  4. Direct numerical simulation of bedload transport using a local, dynamic boundary condition

    USGS Publications Warehouse

    Schmeeckle, M.W.; Nelson, J.M.

    2003-01-01

    Temporally and spatially averaged models of bedload transport are inadequate to describe the highly variable nature of particle motion at low transport stages. The primary sources of this variability are the resisting forces to downstream motion resulting from the geometrical relation (pocket friction angle) of a bed grain to the grains that it rests upon, variability of the near-bed turbulent velocity field and the local modification of this velocity field by upstream, protruding grains. A model of bedload transport is presented that captures these sources of variability by directly integrating the equations of motion of each particle of a simulated mixed grain-size sediment bed. Experimental data from the velocity field downstream and below the tops of upstream, protruding grains are presented. From these data, an empirical relation for the velocity modification resulting from upstream grains is provided to the bedload model. The temporal variability of near-bed turbulence is provided by a measured near-bed time series of velocity over a gravel bed. The distribution of pocket friction angles results as a consequence of directly calculating the initiation and cessation of motion of each particle as a result of the combination of fluid forcing and interaction with other particles. Calculations of bedload flux in a uniform boundary and simulated pocket friction angles agree favourably with previous studies.

  5. Local homeoprotein diffusion can stabilize boundaries generated by graded positional cues.

    PubMed

    Quiñinao, Cristóbal; Prochiantz, Alain; Touboul, Jonathan

    2015-05-15

    Boundary formation in the developing neuroepithelium decides on the position and size of compartments in the adult nervous system. In this study, we start from the French Flag model proposed by Lewis Wolpert, in which boundaries are formed through the combination of morphogen diffusion and of thresholds in cell responses. In contemporary terms, a response is characterized by the expression of cell-autonomous transcription factors, very often of the homeoprotein family. Theoretical studies suggest that this sole mechanism results in the formation of boundaries of imprecise shapes and positions. Alan Turing, on the other hand, proposed a model whereby two morphogens that exhibit self-activation and reciprocal inhibition, and are uniformly distributed and diffuse at different rates lead to the formation of territories of unpredictable shapes and positions but with sharp boundaries (the 'leopard spots'). Here, we have combined the two models and compared the stability of boundaries when the hypothesis of local homeoprotein intercellular diffusion is, or is not, introduced in the equations. We find that the addition of homeoprotein local diffusion leads to a dramatic stabilization of the positioning of the boundary, even when other parameters are significantly modified. This novel Turing/Wolpert combined model has thus important theoretical consequences for our understanding of the role of the intercellular diffusion of homeoproteins in the developmental robustness of and the changes that take place in the course of evolution. PMID:25968317

  6. Comments on localized and integral localized approximations in spherical coordinates

    NASA Astrophysics Data System (ADS)

    Gouesbet, Gérard; Lock, James A.

    2016-08-01

    Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Comments on these procedures are, however, required in order to help researchers make correct decisions concerning their use. This paper has the flavor of a short review and takes the opportunity to attract the attention of the readers to a required refinement of terminology.

  7. Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish

    SciTech Connect

    Ochakovskaya, Oksana A

    2013-02-28

    Sharp conditions are found describing the admissible rate of decrease of a nontrivial function whose integrals over all hyperbolic discs with fixed radius vanish. For the first time, the boundary behaviour of the function is investigated in a neighbourhood of a single point on the boundary of the domain of definition. Bibliography: 17 titles.

  8. Integrated Multi-Strategic Web Document Pre-Processing for Sentence and Word Boundary Detection.

    ERIC Educational Resources Information Center

    Shim, Junhyeok; Kim, Dongseok; Cha, Jeongwon; Lee, Gary Geunbae; Seo, Jungyun

    2002-01-01

    Discussion of natural language processing focuses on a multi-strategic integrated text preprocessing method for difficult problems of sentence boundary disambiguation and word boundary disambiguation of Web texts. Describes an evaluation of the method using Korean Web document collections. (Author/LRW)

  9. Non-local sub-characteristic zones of influence in unsteady interactive boundary-layers

    NASA Technical Reports Server (NTRS)

    Rothmayer, A. P.

    1992-01-01

    The properties of incompressible, unsteady, interactive, boundary layers are examined for a model hypersonic boundary layer and internal flow past humps or, equivalently, external flow past short-scaled humps. Using a linear high frequency analysis, it is shown that the domains of dependence within the viscous sublayer may be a strong function of position within the sublayer and may be strongly influenced by the pressure displacement interaction, or the prescribed displacement condition. Detailed calculations are presented for the hypersonic boundary layer. This effect is found to carry over directly to the fully viscous problem as well as the nonlinear problem. In the fully viscous problem, the non-local character of the domains of dependence manifests itself in the sub-characteristics. Potential implications of the domain of dependence structure on finite difference computations of unsteady boundary layers are briefly discussed.

  10. Integrabilities of the long-range t-J models with twisted boundary conditions

    SciTech Connect

    Liu, J.T.; Wang, D.F.

    1997-02-01

    The integrability of the one-dimensional long-range supersymmetric t-J model has previously been established for both open systems and those closed by periodic boundary conditions through explicit construction of its integrals of motion. Recently the system has been extended to include the effect of magnetic flux, which gives rise to a closed chain with twisted boundary conditions. While the t-J model with twisted boundary conditions has been solved for the ground state and full energy spectrum, proof of its integrability has so far been lacking. In this paper we extend the proof of integrability of the long-range supersymmetric t-J model and its SU(m{vert_bar}n) generalization to include the case of twisted boundary conditions. {copyright} {ital 1997} {ital The American Physical Society}

  11. Multiple integral representation for the trigonometric SOS model with domain wall boundaries

    NASA Astrophysics Data System (ADS)

    Galleas, W.

    2012-05-01

    Using the dynamical Yang-Baxter algebra we derive a functional equation for the partition function of the trigonometric SOS model with domain wall boundary conditions. The solution of the equation is given in terms of a multiple contour integral.

  12. A numerically exact local solver applied to salt boundary inversion in seismic full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Willemsen, Bram; Malcolm, Alison; Lewis, Winston

    2016-03-01

    In a set of problems ranging from 4-D seismic to salt boundary estimation, updates to the velocity model often have a highly localized nature. Numerical techniques for these applications such as full-waveform inversion (FWI) require an estimate of the wavefield to compute the model updates. When dealing with localized problems, it is wasteful to compute these updates in the global domain, when we only need them in our region of interest. This paper introduces a local solver that generates forward and adjoint wavefields which are, to machine precision, identical to those generated by a full-domain solver evaluated within the region of interest. This means that the local solver computes all interactions between model updates within the region of interest and the inhomogeneities in the background model outside. Because no approximations are made in the calculation of the forward and adjoint wavefields, the local solver can compute the identical gradient in the region of interest as would be computed by the more expensive full-domain solver. In this paper, the local solver is used to efficiently generate the FWI gradient at the boundary of a salt body. This gradient is then used in a level set method to automatically update the salt boundary.

  13. Local inhomogeneities in a Robertson-Walker background. II. Flux conditions at boundary surfaces

    SciTech Connect

    Lake, K.

    1980-12-15

    Energy flux doncitions imposed on spherical boundary surfaces are examined. The zero flux restriction which is the hallmark of the standard ''Swiss cheese'' type construction, is relaxed. We discuss a class of locally inhomogeneous exact solutions to the Einstein equations which admit an effectively Newtonian accretion mode.

  14. Topology and boundary shape optimization as an integrated design tool

    NASA Technical Reports Server (NTRS)

    Bendsoe, Martin Philip; Rodrigues, Helder Carrico

    1990-01-01

    The optimal topology of a two dimensional linear elastic body can be computed by regarding the body as a domain of the plane with a high density of material. Such an optimal topology can then be used as the basis for a shape optimization method that computes the optimal form of the boundary curves of the body. This results in an efficient and reliable design tool, which can be implemented via common FEM mesh generator and CAD type input-output facilities.

  15. Three-dimensional analysis of chevron-notched specimens by boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L.

    1983-01-01

    The chevron-notched short bar and short rod specimens was analyzed by the boundary integral equations method. This method makes use of boundary surface elements in obtaining the solution. The boundary integral models were composed of linear triangular and rectangular surface segments. Results were obtained for two specimens with width to thickness ratios of 1.45 and 2.00 and for different crack length to width ratios ranging from 0.4 to 0.7. Crack opening displacement and stress intensity factors determined from displacement calculations along the crack front and compliance calculations were compared with experimental values and with finite element analysis.

  16. Fermionic path integrals and local anomalies

    NASA Astrophysics Data System (ADS)

    Roepstorff, G.

    2003-05-01

    No doubt, the subject of path integrals proved to be an immensely fruitful human, i.e. Feynman's idea. No wonder it is more timely than ever. Some even claim that it is the most daring, innovative and revolutionary idea since the days of Heisenberg and Bohr. It is thus likely to generate enthusiasm, if not addiction among physicists who seek simplicity together with perfection. Professor Devreese's long-lasting interest in, if not passion on the subject stems from his firm conviction that, beyond being the tool of choice, path integration provides the key to all quantum phenomena, be it in solid state, atomic, molecular or particle physics as evidenced by the impressive list of publications at the address http://lib.ua.ac.be/AB/a867.html. In this note, I review a pitfall of fermionic path integrals and a way to get around it in situations relevant to the Standard Model of particle physics.

  17. A moving-frame boundary-integral method for particle transport in microchannels of complex shape

    NASA Astrophysics Data System (ADS)

    Zinchenko, Alexander Z.; Ashley, John F.; Davis, Robert H.

    2012-04-01

    A new, three-dimensional algorithm is developed to accurately simulate low-Reynolds number, flow-driven motion of a neutrally buoyant spherical particle in plane-parallel microchannels of complex shape. The channel profile may consist of an arbitrary number of straight line segments with sharp corners in an arbitrary configuration. This geometry provides a suitable model for particle transport in many microfluidic devices with multiple branch bifurcations. The particle may be comparable with the narrowest channel dimensions, but is typically much smaller than the overall channel domain, which creates difficulties with a standard boundary-integral approach. To make simulations feasible, the 3D problem is solved locally in a computational cell that is smaller than the full domain and is dynamically constructed around the particle as it moves through the channel; the outer boundary conditions are provided by the 2D flow that would exist in the channel in the absence of the particle. Difficulties with particle-corner close interactions are alleviated using special iterative techniques, (near-) singularity subtractions and corner-fitted, gap-adaptive discretizations of the cell boundary. The algorithm is applied to simulate "pinched-flow fractionation" and predict how particle interactions with a narrow pinch region and sharp corners result in particle focusing and separation in the outlet according to their size. As another application, the particle motion through a T-bifurcation with sharp corners is simulated, with calculation of the particle flux partition ratio for a broad range of parameters. It is demonstrated how the particle-corner interactions can make the side branch inaccessible to particles, even for relatively strong fluid suction through this branch.

  18. Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics

    NASA Astrophysics Data System (ADS)

    Yang, Zhiguo; Wang, Li-Lian; Rong, Zhijian; Wang, Bo; Zhang, Baile

    2016-04-01

    In this paper, we present an efficient spectral-element method (SEM) for solving general two-dimensional Helmholtz equations in anisotropic media, with particular applications in accurate simulation of polygonal invisibility cloaks, concentrators and circular rotators arisen from the field of transformation electromagnetics (TE). In practice, we adopt a transparent boundary condition (TBC) characterized by the Dirichlet-to-Neumann (DtN) map to reduce wave propagation in an unbounded domain to a bounded domain. We then introduce a semi-analytic technique to integrate the global TBC with local curvilinear elements seamlessly, which is accomplished by using a novel elemental mapping and analytic formulas for evaluating global Fourier coefficients on spectral-element grids exactly. From the perspective of TE, an invisibility cloak is devised by a singular coordinate transformation of Maxwell's equations that leads to anisotropic materials coating the cloaked region to render any object inside invisible to observers outside. An important issue resides in the imposition of appropriate conditions at the outer boundary of the cloaked region, i.e., cloaking boundary conditions (CBCs), in order to achieve perfect invisibility. Following the spirit of [48], we propose new CBCs for polygonal invisibility cloaks from the essential "pole" conditions related to singular transformations. This allows for the decoupling of the governing equations of inside and outside the cloaked regions. With this efficient spectral-element solver at our disposal, we can study the interesting phenomena when some defects and lossy or dispersive media are placed in the cloaking layer of an ideal polygonal cloak.

  19. Probing local strain at MX(2)-metal boundaries with surface plasmon-enhanced Raman scattering.

    PubMed

    Sun, Yinghui; Liu, Kai; Hong, Xiaoping; Chen, Michelle; Kim, Jonghwan; Shi, Sufei; Wu, Junqiao; Zettl, Alex; Wang, Feng

    2014-09-10

    Interactions between metal and atomically thin two-dimensional (2D) materials can exhibit interesting physical behaviors that are of both fundamental interests and technological importance. In addition to forming a metal–semiconductor Schottky junction that is critical for electrical transport, metal deposited on 2D layered materials can also generate a local mechanical strain. We investigate the local strain at the boundaries between metal (Ag, Au) nanoparticles and MX2 (M = Mo, W; X = S) layers by exploiting the strong local field enhancement at the boundary in surface plasmon-enhanced Raman scattering (SERS). We show that the local mechanical strain splits both the in-plane vibration mode E2g(1) and the out-of-plane vibration mode A1g in monolayer MoS2, and activates the in-plane mode E1g that is normally forbidden in backscattering Raman process. In comparison, the effects of mechanical strain in thicker MoS2 layers are significantly weaker. We also observe that photoluminescence from the indirect bandgap transition (when the number of layers is ≥2) is quenched with the metal deposition, while a softened and broadened shoulder peak emerges close to the original direct-bandgap transition because of the mechanical strain. The strain at metal–MX2 boundaries, which locally modifies the electronic and phonon structures of MX2, can have important effects on electrical transport through the metal–MX2 contact. PMID:25133959

  20. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations

    PubMed Central

    Feischl, Michael; Gantner, Gregor; Praetorius, Dirk

    2015-01-01

    We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence. PMID:26085698

  1. A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

    SciTech Connect

    D'Elia, Marta; Perego, Mauro; Bochev, Pavel B.; Littlewood, David John

    2015-12-21

    We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result, the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.

  2. A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

    DOE PAGESBeta

    D'Elia, Marta; Perego, Mauro; Bochev, Pavel B.; Littlewood, David John

    2015-12-21

    We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result,more » the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.« less

  3. Shape integral method for magnetospheric shapes. [boundary layer calculations

    NASA Technical Reports Server (NTRS)

    Michel, F. C.

    1979-01-01

    A method is developed for calculating the shape of any magnetopause to arbitrarily high precision. The method uses an integral equation which is evaluated for a trial shape. The resulting values of the integral equation as a function of auxiliary variables indicate how close one is to the desired solution. A variational method can then be used to improve the trial shape. Some potential applications are briefly mentioned.

  4. INTEGRATING A LINEAR INTERPOLATION FUNCTION ACROSS TRIANGULAR CELL BOUNDARIES

    SciTech Connect

    J. R. WISEMAN; J. S. BROCK

    2000-04-01

    Computational models of particle dynamics often exchange solution data with discretized continuum-fields using interpolation functions. These particle methods require a series expansion of the interpolation function for two purposes: numerical analysis used to establish the model's consistency and accuracy, and logical-coordinate evaluation used to locate particles within a grid. This report presents discrete-expansions for a linear interpolation function commonly used within triangular cell geometries. Discrete-expansions, unlike a Taylor's series, account for interpolation discontinuities across cell boundaries and, therefore, are valid throughout a discretized domain. Verification of linear discrete-expansions is demonstrated on a simple test problem.

  5. A Tool for Local Thickness Determination and Grain Boundary Characterization by CTEM and HRTEM Techniques.

    PubMed

    Kiss, Ákos K; Rauch, Edgar F; Pécz, Béla; Szívós, János; Lábár, János L

    2015-04-01

    A new approach for measurement of local thickness and characterization of grain boundaries is presented. The method is embodied in a software tool that helps to find and set sample orientations useful for high-resolution transmission electron microscopic (HRTEM) examination of grain boundaries in polycrystalline thin films. The novelty is the simultaneous treatment of the two neighboring grains and orienting both grains and the boundary plane simultaneously. The same metric matrix-based formalism is used for all crystal systems. Input into the software tool includes orientation data for the grains in question, which is determined automatically for a large number of grains by the commercial ASTAR program. Grain boundaries suitable for HRTEM examination are automatically identified by our software tool. Individual boundaries are selected manually for detailed HRTEM examination from the automatically identified set. Goniometer settings needed to observe the selected boundary in HRTEM are advised by the software. Operation is demonstrated on examples from cubic and hexagonal crystal systems. PMID:25801740

  6. Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems

    NASA Astrophysics Data System (ADS)

    Ivanyshyn Yaman, Olha; Le Louër, Frédérique

    2016-09-01

    This paper deals with the material derivative analysis of the boundary integral operators arising from the scattering theory of time-harmonic electromagnetic waves and its application to inverse problems. We present new results using the Piola transform of the boundary parametrisation to transport the integral operators on a fixed reference boundary. The transported integral operators are infinitely differentiable with respect to the parametrisations and simplified expressions of the material derivatives are obtained. Using these results, we extend a nonlinear integral equations approach developed for solving acoustic inverse obstacle scattering problems to electromagnetism. The inverse problem is formulated as a pair of nonlinear and ill-posed integral equations for the unknown boundary representing the boundary condition and the measurements, for which the iteratively regularized Gauss-Newton method can be applied. The algorithm has the interesting feature that it avoids the numerous numerical solution of boundary value problems at each iteration step. Numerical experiments are presented in the special case of star-shaped obstacles.

  7. Extended displacement discontinuity boundary integral equation and boundary element method for cracks in thermo-magneto-electro-elastic media

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Dang, HuaYang; Xu, GuangTao; Fan, CuiYing; Zhao, MingHao

    2016-08-01

    The extended displacement discontinuity boundary integral equation (EDDBIE) and boundary element method is developed for the analysis of planar cracks of arbitrary shape in the isotropic plane of three-dimensional (3D) transversely isotropic thermo-magneto-electro-elastic (TMEE) media. The extended displacement discontinuities (EDDs) include conventional displacement discontinuity, electric potential discontinuity, magnetic potential discontinuity, as well as temperature discontinuity across crack faces; correspondingly, the extended stresses represent conventional stress, electric displacement, magnetic induction and heat flux. Employing a Hankel transformation, the fundamental solutions for unit point EDDs in 3D transversely isotropic TMEE media are derived. The EDDBIEs for a planar crack of arbitrary shape in the isotropic plane of a 3D transversely isotropic TMEE medium are then established. Using the boundary integral equation method, the singularities of near-crack border fields are obtained and the extended stress field intensity factors are expressed in terms of the EDDs on crack faces. According to the analogy between the EDDBIEs for an isotropic thermoelastic material and TMEE medium, an analogical solution method for crack problems of a TMEE medium is proposed for coupled multi-field loadings. Employing constant triangular elements, the EDDBIEs are discretized and numerically solved. As an application, the problems of an elliptical crack subjected to combined mechanical-electric-magnetic-thermal loadings are investigated.

  8. Signal subspace integration for improved seizure localization

    PubMed Central

    Stamoulis, Catherine; Fernández, Iván Sánchez; Chang, Bernard S.; Loddenkemper, Tobias

    2012-01-01

    A subspace signal processing approach is proposed for improved scalp EEG-based localization of broad-focus epileptic seizures, and estimation of the directions of source arrivals (DOA). Ictal scalp EEGs from adult and pediatric patients with broad-focus seizures were first decomposed into dominant signal modes, and signal and noise subspaces at each modal frequency, to improve the signal-to-noise ratio while preserving the original data correlation structure. Transformed (focused) modal signals were then resynthesized into wideband signals from which the number of sources and DOA were estimated. These were compared to denoised signals via principal components analysis (PCA). Coherent subspace processing performed better than PCA, significantly improved the localization of ictal EEGs and the estimation of distinct sources and corresponding DOAs. PMID:23366067

  9. Signal subspace integration for improved seizure localization.

    PubMed

    Stamoulis, Catherine; Fernández, Iván Sánchez; Chang, Bernard S; Loddenkemper, Tobias

    2012-01-01

    A subspace signal processing approach is proposed for improved scalp EEG-based localization of broad-focus epileptic seizures, and estimation of the directions of source arrivals (DOA). Ictal scalp EEGs from adult and pediatric patients with broad-focus seizures were first decomposed into dominant signal modes, and signal and noise subspaces at each modal frequency, to improve the signal-to-noise ratio while preserving the original data correlation structure. Transformed (focused) modal signals were then resynthesized into wideband signals from which the number of sources and DOA were estimated. These were compared to denoised signals via principal components analysis (PCA). Coherent subspace processing performed better than PCA, significantly improved the localization of ictal EEGs and the estimation of distinct sources and corresponding DOAs. PMID:23366067

  10. Local Integral Estimates for Quasilinear Equations with Measure Data.

    PubMed

    Tian, Qiaoyu; Zhang, Shengzhi; Xu, Yonglin; Mu, Jia

    2016-01-01

    Local integral estimates as well as local nonexistence results for a class of quasilinear equations -Δ p u = σP(u) + ω for p > 1 and Hessian equations F k [-u] = σP(u) + ω were established, where σ is a nonnegative locally integrable function or, more generally, a locally finite measure, ω is a positive Radon measure, and P(u) ~ exp⁡αu (β) with α > 0 and β ≥ 1 or P(u) = u (p-1). PMID:27294190

  11. Local Integral Estimates for Quasilinear Equations with Measure Data

    PubMed Central

    Tian, Qiaoyu; Zhang, Shengzhi; Xu, Yonglin; Mu, Jia

    2016-01-01

    Local integral estimates as well as local nonexistence results for a class of quasilinear equations −Δpu = σP(u) + ω for p > 1 and Hessian equations Fk[−u] = σP(u) + ω were established, where σ is a nonnegative locally integrable function or, more generally, a locally finite measure, ω is a positive Radon measure, and P(u) ~ exp⁡αuβ with α > 0 and β ≥ 1 or P(u) = up−1. PMID:27294190

  12. Integrals of motion for one-dimensional Anderson localized systems

    NASA Astrophysics Data System (ADS)

    Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; Shastry, B. Sriram

    2016-03-01

    Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.

  13. Wavelet-based identification of localized turbulent regions in a transitional boundary layer

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Joe; Nishio, Yu; Izawa, Seiichiro; Fukunishi, Yu

    2014-11-01

    A numerical study in order to develop a method to identify localized turbulent regions in a transitional boundary layer is carried out using a wavelet transformation. Finding the onset of turbulence is quite difficult because it is not easy to distinguish the localized turbulent regions from ``non-active'' groups of vortices. The base flow with low-speed streaks is generated by placing an array of obstacles. Then a short duration jet is ejected from the wall into the low-speed streak. First, a hairpin vortex appears in the laminar boundary layer which travels downstream growing up. Downstream, localized turbulent regions appear in the boundary layer, where a lot of vortices are entangled with each other. A wavelet analysis is applied to the spatial waveforms of streamwise velocity fluctuations obtained from these two flow fields. It is shown that the hairpin vortex appears as a high amplitude spot in the wavelet spectrum, which is small in both wavenumber-wise and streamwise scales. On the other hand, the isolated turbulent region appears more wide spread in the wavenumber-wise scale. So, using this method, localized turbulent regions can be identified.

  14. OhioLINK: Implementing Integrated Library Services across Institutional Boundaries.

    ERIC Educational Resources Information Center

    Hawks, Carol Pitts

    1995-01-01

    Discusses the implementation of the OhioLINK (Ohio Library and Information Network) system, an integrated library system linking 23 public and private academic institutions and the Ohio State Library. Topics include a history of OhioLINK; organizational structure; decision-making procedures; public relations strategies; cooperative circulation;…

  15. On the determination of phase boundaries via thermodynamic integration across coexistence regions

    SciTech Connect

    Abramo, Maria Concetta Caccamo, Carlo Costa, Dino Giaquinta, Paolo V. Malescio, Gianpietro Munaò, Gianmarco; Prestipino, Santi

    2015-06-07

    Specialized Monte Carlo methods are nowadays routinely employed, in combination with thermodynamic integration (TI), to locate phase boundaries of classical many-particle systems. This is especially useful for the fluid-solid transition, where a critical point does not exist and both phases may notoriously go deeply metastable. Using the Lennard-Jones model for demonstration, we hereby investigate on the alternate possibility of tracing reasonably accurate transition lines directly by integrating the pressure equation of state computed in a canonical-ensemble simulation with local moves. The recourse to this method would become a necessity when the stable crystal structure is not known. We show that, rather counterintuitively, metastability problems can be alleviated by reducing (rather than increasing) the size of the system. In particular, the location of liquid-vapor coexistence can exactly be predicted by just TI. On the contrary, TI badly fails in the solid-liquid region, where a better assessment (to within 10% accuracy) of the coexistence pressure can be made by following the expansion, until melting, of the defective solid which has previously emerged from the decay of the metastable liquid.

  16. Seismic response of laterally inhomogeneous geological region by boundary integral equations

    NASA Astrophysics Data System (ADS)

    Parvanova, S.; Dineva, P.; Fontara, I.-K.; Wuttke, F.

    2015-07-01

    The proposed study deals with synthesis of seismograms by BIEM (boundary integral equation method) taking into account all three base components-seismic source, wave path and local region of interest. Consider a laterally inhomogeneous geological profile situated in a half-plane with non-parallel layers. Seismic load is time-harmonic or transient in time. It is presented by incident SH wave or wave radiating from an embedded line seismic source. Two types of lateral inhomogeneities with arbitrary shape and located in the inhomogeneous half-plane are considered: (i) free-surface relief as a canyon or a hill; (ii) alluvial basin with properties different from those of the layered half-plane. The computational tool is BIEM based on the frequency-dependent elastodynamic fundamental solutions. A relation between displacements and tractions along the free surface and arbitrary interface of the soil stratum is derived, which is applicable for arbitrary geometry of the interfaces between soil layers. Validation and convergence study is presented. All simulations reveal the sensitivity of the synthetic seismic signals on the type and characteristics of the seismic time-harmonic or transient load, on the wave path inhomogeneity and on the specific geotechnical properties of the local geological region.

  17. A finite Reynolds number approach for the prediction of boundary layer receptivity in localized regions

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Street, Craig L.

    1991-01-01

    Previous theoretical work on the boundary layer receptivity problem has utilized large Reynolds number asymptotic theories, thus being limited to a narrow part of the frequency - Reynolds number domain. An alternative approach is presented for the prediction of localized instability generation which has a general applicability, and also accounts for finite Reynolds number effects. This approach is illustrated for the case of Tollmien-Schlichting wave generation in a Blasius boundary layer due to the interaction of a free stream acoustic wave with a region of short scale variation in the surface boundary condition. The specific types of wall inhomogeneities studied are: regions of short scale variations in wall suction, wall admittance, and wall geometry (roughness). Extensive comparison is made between the results of the finite Reynolds number approach and previous asymptotic predictions, which also suggests an alternative way of using the latter at Reynolds numbers of interest in practice.

  18. Boundary integral equation Neumann-to-Dirichlet map method for gratings in conical diffraction.

    PubMed

    Wu, Yumao; Lu, Ya Yan

    2011-06-01

    Boundary integral equation methods for diffraction gratings are particularly suitable for gratings with complicated material interfaces but are difficult to implement due to the quasi-periodic Green's function and the singular integrals at the corners. In this paper, the boundary integral equation Neumann-to-Dirichlet map method for in-plane diffraction problems of gratings [Y. Wu and Y. Y. Lu, J. Opt. Soc. Am. A26, 2444 (2009)] is extended to conical diffraction problems. The method uses boundary integral equations to calculate the so-called Neumann-to-Dirichlet maps for homogeneous subdomains of the grating, so that the quasi-periodic Green's functions can be avoided. Since wave field components are coupled on material interfaces with the involvement of tangential derivatives, a least squares polynomial approximation technique is developed to evaluate tangential derivatives along these interfaces for conical diffraction problems. Numerical examples indicate that the method performs equally well for dielectric or metallic gratings. PMID:21643404

  19. Including local rainfall dynamics and uncertain boundary conditions into a 2-D regional-local flood modelling cascade

    NASA Astrophysics Data System (ADS)

    Bermúdez, María; Neal, Jeffrey C.; Bates, Paul D.; Coxon, Gemma; Freer, Jim E.; Cea, Luis; Puertas, Jerónimo

    2016-04-01

    Flood inundation models require appropriate boundary conditions to be specified at the limits of the domain, which commonly consist of upstream flow rate and downstream water level. These data are usually acquired from gauging stations on the river network where measured water levels are converted to discharge via a rating curve. Derived streamflow estimates are therefore subject to uncertainties in this rating curve, including extrapolating beyond the maximum observed ratings magnitude. In addition, the limited number of gauges in reach-scale studies often requires flow to be routed from the nearest upstream gauge to the boundary of the model domain. This introduces additional uncertainty, derived not only from the flow routing method used, but also from the additional lateral rainfall-runoff contributions downstream of the gauging point. Although generally assumed to have a minor impact on discharge in fluvial flood modeling, this local hydrological input may become important in a sparse gauge network or in events with significant local rainfall. In this study, a method to incorporate rating curve uncertainty and the local rainfall-runoff dynamics into the predictions of a reach-scale flood inundation model is proposed. Discharge uncertainty bounds are generated by applying a non-parametric local weighted regression approach to stage-discharge measurements for two gauging stations, while measured rainfall downstream from these locations is cascaded into a hydrological model to quantify additional inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these inputs and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Improvements in model performance when incorporating these processes are quantified using observed

  20. Magnetic patterning: local manipulation of the intergranular exchange coupling via grain boundary engineering

    PubMed Central

    Huang, Kuo-Feng; Liao, Jung-Wei; Hsieh, Cheng-Yu; Wang, Liang-Wei; Huang, Yen-Chun; Wen, Wei-Chih; Chang, Mu-Tung; Lo, Shen-Chuan; Yuan, Jun; Lin, Hsiu-Hau; Lai, Chih-Huang

    2015-01-01

    Magnetic patterning, with designed spatial profile of the desired magnetic properties, has been a rising challenge for developing magnetic devices at nanoscale. Most existing methods rely on locally modifying magnetic anisotropy energy or saturation magnetization, and thus post stringent constraints on the adaptability in diverse applications. We propose an alternative route for magnetic patterning: by manipulating the local intergranular exchange coupling to tune lateral magnetic properties. As demonstration, the grain boundary structure of Co/Pt multilayers is engineered by thermal treatment, where the stress state of the multilayers and thus the intergranular exchange coupling can be modified. With Ag passivation layers on top of the Co/Pt multilayers, we can hinder the stress relaxation and grain boundary modification. Combining the pre-patterned Ag passivation layer with thermal treatment, we can design spatial variations of the magnetic properties by tuning the intergranular exchange coupling, which diversifies the magnetic patterning process and extends its feasibility for varieties of new devices. PMID:26156786

  1. Comparison of different integral equation formulations for bodies of revolution with anisotropic surface impedance boundary conditions

    NASA Astrophysics Data System (ADS)

    Chang, A. H.; Yee, K. S.; Prodan, J.

    1992-08-01

    To obtain an accurate solution in the method of moments (MM), it is vital that an appropriate integral equation be used. In solving the problem of scattering from bodies of revolution (BOR) with anisotropic surface impedance boundary conditions (IBC), different answers may result from seemingly minor differences in the integral equation formulation adopted. In this communication different types of integral equations are compared with one another when they are applied to bodies of revolution.

  2. Singularity Preserving Numerical Methods for Boundary Integral Equations

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  3. Parameter estimation for boundary value problems by integral equations of the second kind

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1988-01-01

    This paper is concerned with the parameter estimation for boundary integral equations of the second kind. The parameter estimation technique through use of the spline collocation method is proposed. Based on the compactness assumption imposed on the parameter space, the convergence analysis for the numerical method of parameter estimation is discussed. The results obtained here are applied to a boundary parameter estimation for 2-D elliptic systems.

  4. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  5. Dynamical many-body localization in an integrable model

    NASA Astrophysics Data System (ADS)

    Keser, Aydin Cem; Ganeshan, Sriram; Refael, Gil; Galitski, Victor

    2016-08-01

    We investigate dynamical many-body localization and delocalization in an integrable system of periodically-kicked, interacting linear rotors. The linear-in-momentum Hamiltonian makes the Floquet evolution operator analytically tractable for arbitrary interactions. One of the hallmarks of this model is that depending on certain parameters, it manifests both localization and delocalization in momentum space. We present a set of "emergent" integrals of motion, which can serve as a fundamental diagnostic of dynamical localization in the interacting case. We also propose an experimental scheme, involving voltage-biased Josephson junctions, to realize such many-body kicked models.

  6. A finite element-boundary integral method for cavities in a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. However, due to a lack of rigorous mathematical models for conformal antenna arrays, antenna designers resort to measurement and planar antenna concepts for designing non-planar conformal antennas. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We extend this formulation to conformal arrays on large metallic cylinders. In this report, we develop the mathematical formulation. In particular, we discuss the shape functions, the resulting finite elements and the boundary integral equations, and the solution of the conformal finite element-boundary integral system. Some validation results are presented and we further show how this formulation can be applied with minimal computational and memory resources.

  7. Analytical solution of boundary integral equations for 2-D steady linear wave problems

    NASA Astrophysics Data System (ADS)

    Chuang, J. M.

    2005-10-01

    Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed, free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore, an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.

  8. Application of the method of integral relations to laminar boundary layers in three dimensions

    NASA Technical Reports Server (NTRS)

    Holt, M.; Modarress, D.

    1977-01-01

    The method of integral relations is extended to general three-dimensional compressible laminar boundary layer flows. The transformation employed to transform the basic three-dimensional compressible boundary layer equations into quasi-incompressible form is an extension of the Howarth transformation. The resulting system of differential equations is integrated numerically by the method of integral relations as proposed by Dorodnitsyn. To demonstrate the accuracy of the method, it is applied to calculation of the parabolic flow over a flat plate and the boundary flow over an infinite yawed cylinder, for which solutions are known. It is then applied to the flow over a flat plate disturbed by a cylinder normal to the plate, for which a finite-difference solution is available for comparison. It is finally applied to calculating the crossflow velocity variation for supersonic flow over a swept wedge.

  9. A spectral boundary integral equation method for the 2-D Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1994-01-01

    In this paper, we present a new numerical formulation of solving the boundary integral equations reformulated from the Helmholtz equation. The boundaries of the problems are assumed to be smooth closed contours. The solution on the boundary is treated as a periodic function, which is in turn approximated by a truncated Fourier series. A Fourier collocation method is followed in which the boundary integral equation is transformed into a system of algebraic equations. It is shown that in order to achieve spectral accuracy for the numerical formulation, the nonsmoothness of the integral kernels, associated with the Helmholtz equation, must be carefully removed. The emphasis of the paper is on investigating the essential elements of removing the nonsmoothness of the integral kernels in the spectral implementation. The present method is robust for a general boundary contour. Aspects of efficient implementation of the method using FFT are also discussed. A numerical example of wave scattering is given in which the exponential accuracy of the present numerical method is demonstrated.

  10. Magnetic local time variation and scaling of poleward auroral boundary dynamics

    NASA Astrophysics Data System (ADS)

    Longden, N.; Chisham, G.; Freeman, M. P.

    2014-12-01

    The balance of dayside and nightside reconnection processes within the Earth's magnetosphere and its effect on the amount of open magnetic flux threading the ionosphere is well understood in terms of the expanding-contracting polar cap model. However, the nature and character of the consequential fluctuations in the polar cap boundary are poorly understood. By using the poleward auroral luminosity boundary (PALB), as measured by the FUV instrument of the IMAGE spacecraft, as a proxy for the polar cap boundary, we have studied the motion of this boundary for more than 2 years across the complete range of magnetic local time. Our results show that the dayside PALB dynamics are broadly self-similar on timescales of 12 min to 6 h and appear to be monofractal. Similarity with the characteristics of solar wind and interplanetary magnetic field variability suggests that this dayside monofractal behavior is predominantly inherited from the solar wind via the reconnection process. The nightside PALB dynamics exhibit scale-free behavior at intermediate time scales (12-90 min) and appear to be multifractal. We propose that this character is a result of the intermittent multifractal structure of magnetotail reconnection.

  11. Blow-up problems for the heat equation with a local nonlinear Neumann boundary condition

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhou, Zhengfang

    2016-09-01

    This paper estimates the blow-up time for the heat equation ut = Δu with a local nonlinear Neumann boundary condition: The normal derivative ∂ u / ∂ n =uq on Γ1, one piece of the boundary, while on the rest part of the boundary, ∂ u / ∂ n = 0. The motivation of the study is the partial damage to the insulation on the surface of space shuttles caused by high speed flying subjects. We show the finite time blow-up of the solution and estimate both upper and lower bounds of the blow-up time in terms of the area of Γ1. In many other work, they need the convexity of the domain Ω and only consider the problem with Γ1 = ∂ Ω. In this paper, we remove the convexity condition and only require ∂Ω to be C2. In addition, we deal with the local nonlinearity, namely Γ1 can be just part of ∂Ω.

  12. Integrating Sustainability into the Curriculum: Crossing Disciplinary Boundaries

    NASA Astrophysics Data System (ADS)

    Pushnik, J.

    2012-12-01

    The next generation will confront an increased number of global issues that interface the complexities of socioeconomic perspectives, environmental stability, poverty and development. Recently California State University Chico undertook a general education reform, providing a unique opportunity to craft a general education pathway to prepare students for these challenges by focusing a curriculum on sustainability. The Sustainability Pathway emphasizes a system thinking approach to help students understand and be able to address a set of problems involving the biosphere processes, human institutions and the economic vitality. The curriculum intentionally integrates courses from across the disciplines of natural sciences, social sciences, agriculture, engineering, economics, arts and humanities into a central focused theme of sustainability. The diverse backgrounds and academic focus of the participating faculty has necessitate the development of a common language and a cohesion within the curriculum. To address these needs a faculty learning community (FLC) was established to build on a common set of case studies. Three regional environmental water related issues were selected that had demonstrable socioeconomic, equity/ethical dimensions and environmental consequences. These case studies are Klamath River basin in northern California, the Bay-Delta project in the central part of the state and the Sultan Sea in southern California. Members of the FLC has contributed a perspective from their academic discipline which includes proposed reading lists, web based resources and PowerPoint presentations which are housed in common web- based resource repository. The pedagogical rational is to create linkages and cohesion among the courses in the curriculum by iteratively examining these case studies as basis for development of a multidisciplinary perspective as students progress through their general education.

  13. Integrals of motion for one-dimensional Anderson localized systems

    DOE PAGESBeta

    Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; Shastry, B. Sriram

    2016-03-02

    Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. Weanswer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precisemore » sense, motivate our construction.Wenote that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order.Weshow that despite the infinite range hopping, all states but one are localized.Wealso study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant.Weformulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Lastly, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.« less

  14. Salient object detection based on discriminative boundary and multiple cues integration

    NASA Astrophysics Data System (ADS)

    Jiang, Qingzhu; Wu, Zemin; Tian, Chang; Liu, Tao; Zeng, Mingyong; Hu, Lei

    2016-01-01

    In recent years, many saliency models have achieved good performance by taking the image boundary as the background prior. However, if all boundaries of an image are equally and artificially selected as background, misjudgment may happen when the object touches the boundary. We propose an algorithm called weighted contrast optimization based on discriminative boundary (wCODB). First, a background estimation model is reliably constructed through discriminating each boundary via Hausdorff distance. Second, the background-only weighted contrast is improved by fore-background weighted contrast, which is optimized through weight-adjustable optimization framework. Then to objectively estimate the quality of a saliency map, a simple but effective metric called spatial distribution of saliency map and mean saliency in covered window ratio (MSR) is designed. Finally, in order to further promote the detection result using MSR as the weight, we propose a saliency fusion framework to integrate three other cues-uniqueness, distribution, and coherence from three representative methods into our wCODB model. Extensive experiments on six public datasets demonstrate that our wCODB performs favorably against most of the methods based on boundary, and the integrated result outperforms all state-of-the-art methods.

  15. A Formulation of Asymptotic and Exact Boundary Conditions Using Local Operators

    NASA Technical Reports Server (NTRS)

    Hagstrom, T.; Hariharan, S. I.

    1998-01-01

    In this paper we describe a systematic approach for constructing asymptotic boundary conditions for isotropic wave-like equations using local operators. The conditions take a recursive form with increasing order of accuracy. In three dimensions the recursion terminates and the resulting conditions are exact for solutions which are described by finite combinations of angular spherical harmonics. First, we develop the expansion for the two-dimensional wave equation and construct a sequence of easily implementable boundary conditions. We show that in three dimensions and analogous conditions are again easily implementable in addition to being exact. Also, we provide extensions of these ideas to hyperbolic systems. Namely, Maxwell's equations for TM waves are used to demonstrate the construction. Finally, we provide numerical examples to demonstrate the effectiveness of these conditions for a model problem governed by the wave equation.

  16. Investigation of supersonic turbulent boundary-layer separation on a compression ramp by an integral method

    NASA Technical Reports Server (NTRS)

    Patel, D. K.; Czarnecki, K. R.

    1977-01-01

    An investigation was made to determine the feasibility of using a boundary layer integral method to study the separation of a turbulent boundary layer on a two dimensional ramp at supersonic speeds. The numerical calculations were made for a free stream Mach number of 3, a Reynolds number of 10 million, and over a ramp angle range from 0 deg to 30 deg. For ramp angles where no flow separation was indicated, theoretical calculations were in reasonable agreement with experimental data except for a somewhat belated rise in pressure. For larger ramp angles, where separation was present, the investigation produced results that were not in agreement with experiment or with results calculated by time dependent Navier-Stokes methods. This apparently was true because no provision had been made for a proper shock boundary layer interaction where strong normal pressure gradients are induced within the boundary layer under the shock independent of surface curvature effects.

  17. Integrating medical and environmental sociology with environmental health: crossing boundaries and building connections through advocacy.

    PubMed

    Brown, Phil

    2013-06-01

    This article reviews the personal and professional processes of developing an interdisciplinary approach to understanding the complex issues of environmental health in their community, political-economic, social science, and scientific contexts. This interdisciplinary approach includes a synthesis of research, policy work, and advocacy. To examine multiple forms of interdisciplinarity, I examine pathways of integrating medical and environmental sociology via three challenges to the boundaries of traditional research: (1) crossing the boundaries of medical and environmental sociology, (2) linking social science and environmental health science, and (3) crossing the boundary of research and advocacy. These boundary crossings are discussed in light of conceptual and theoretical developments of popular epidemiology, contested illnesses, and health social movements. This interdisciplinary work offers a more comprehensive sociological lens for understanding complex problems and a practical ability to join with scientists, activists, and officials to meet public health needs for amelioration and prevention of environmental health threats. PMID:23598897

  18. Interpreting the Coulomb-field approximation for generalized-Born electrostatics using boundary-integral equation theory.

    SciTech Connect

    Bardhan, J. P.; Mathematics and Computer Science

    2008-10-14

    The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM) simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement

  19. Calculation of three-dimensional boundary layers on rotor blades using integral methods

    SciTech Connect

    Karimipanah, M.T.; Olsson, E. )

    1993-04-01

    The important effects of rotation and compressibility on rotor blade boundary layers are theoretically investigated. The calculations are based on the momentum integral method and results from calculations of a transonic compressor rotor are presented. Influence of rotation is shown by comparing the incompressible rotating flow with the stationary one. Influence of compressibility is shown by comparing the compressible rotating flow with the incompressible rotating one. Two computer codes for three-dimensional laminar and turbulent boundary layers, originally developed by SSPA Maritime Consulting AB, have been further developed by introducing rotation and compressibility terms into the boundary layer equations. The effect of rotation and compressibility on the transition have been studied. The Coriolis and centrifugal forces that contribute to the development of the boundary layers and influence its behavior generate crosswise flow inside the blade boundary layers, the magnitude of which depends upon the angular velocity of the rotor and the rotor geometry. The calculations show the influence of rotation and compressibility on the boundary layer parameters. Momentum thickness and shape factor increase with increasing rotation and decrease when compressible flow is taken into account. For skin friction such effects have inverse influences. The different boundary layer parameters behave similarly on the suction and pressure sides with the exception of the crossflow angle, the crosswise momentum thickness, and the skin friction factor. The codes use a nearly orthogonal streamline coordinate system, which is fixed to the blade surface and rotates with the blade.

  20. Sustaining ecosystem services: Overcoming the dilemma posed by local actions and planetary boundaries

    NASA Astrophysics Data System (ADS)

    Jonas, Matthias; Ometto, Jean Pierre; Batistella, Mateus; Franklin, Oskar; Hall, Marianne; Lapola, David M.; Moran, Emilio F.; Tramberend, Sylvia; Queiroz, Bernardo Lanza; Schaffartzik, Anke; Shvidenko, Anatoly; Nilsson, Sten B.; Nobre, Carlos A.

    2014-08-01

    Resolving challenges related to the sustainability of natural capital and ecosystem services is an urgent issue. No roadmap on reaching sustainability exists; and the kind of sustainable land use required in a world that acknowledges both multiple environmental boundaries and local human well-being presents a quandary. In this commentary, we argue that a new globally consistent and expandable systems-analytical framework is needed to guide and facilitate decision making on sustainability from the planetary to the local level, and vice versa. This framework would strive to link a multitude of Earth system processes and targets; it would give preference to systemic insight over data complexity through being highly explicit in spatiotemporal terms. Its strength would lie in its ability to help scientists uncover and explore potential, and even unexpected, interactions between Earth's subsystems with planetary environmental boundaries and socioeconomic constraints coming into play. Equally importantly, such a framework would allow countries such as Brazil, a case study in this commentary, to understand domestic or even local sustainability measures within a global perspective and to optimize them accordingly.

  1. Histone Crosstalk Directed by H2B Ubiquitination Is Required for Chromatin Boundary Integrity

    PubMed Central

    Ma, Meiji Kit-Wan; Heath, Carol; Hair, Alan; West, Adam G.

    2011-01-01

    Genomic maps of chromatin modifications have provided evidence for the partitioning of genomes into domains of distinct chromatin states, which assist coordinated gene regulation. The maintenance of chromatin domain integrity can require the setting of boundaries. The HS4 insulator element marks the 3′ boundary of a heterochromatin region located upstream of the chicken β-globin gene cluster. Here we show that HS4 recruits the E3 ligase RNF20/BRE1A to mediate H2B mono-ubiquitination (H2Bub1) at this insulator. Knockdown experiments show that RNF20 is required for H2Bub1 and processive H3K4 methylation. Depletion of RNF20 results in a collapse of the active histone modification signature at the HS4 chromatin boundary, where H2Bub1, H3K4 methylation, and hyperacetylation of H3, H4, and H2A.Z are rapidly lost. A remarkably similar set of events occurs at the HSA/HSB regulatory elements of the FOLR1 gene, which mark the 5′ boundary of the same heterochromatin region. We find that persistent H2Bub1 at the HSA/HSB and HS4 elements is required for chromatin boundary integrity. The loss of boundary function leads to the sequential spreading of H3K9me2, H3K9me3, and H4K20me3 over the entire 50 kb FOLR1 and β-globin region and silencing of FOLR1 expression. These findings show that the HSA/HSB and HS4 boundary elements direct a cascade of active histone modifications that defend the FOLR1 and β-globin gene loci from the pervasive encroachment of an adjacent heterochromatin domain. We propose that many gene loci employ H2Bub1-dependent boundaries to prevent heterochromatin spreading. PMID:21811414

  2. On preconditioning techniques for dense linear systems arising from singular boundary integral equations

    SciTech Connect

    Chen, Ke

    1996-12-31

    We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.

  3. Breaking Concept Boundaries to Enhance Creative Potential: Using Integrated Concept Maps for Conceptual Self-Awareness

    ERIC Educational Resources Information Center

    Kao, Gloria Yi-Ming; Lin, Sunny S. J.; Sun, Chuen-Tsai

    2008-01-01

    The authors address the role of computer support for building conceptual self-awareness--that is, enabling students to think outside of concept boundaries in hope of enhancing creative potential. Based on meta-cognition theory, we developed an integrated concept mapping system (ICMSys) to improve users' conceptual self-awareness in addition to…

  4. Dual nature of localization in guiding systems with randomly corrugated boundaries: Anderson-type versus entropic

    SciTech Connect

    Tarasov, Yu.V. Shostenko, L.D.

    2015-05-15

    A unified theory for the conductance of an infinitely long multimode quantum wire whose finite segment has randomly rough lateral boundaries is developed. It enables one to rigorously take account of all feasible mechanisms of wave scattering, both related to boundary roughness and to contacts between the wire rough section and the perfect leads within the same technical frameworks. The rough part of the conducting wire is shown to act as a mode-specific randomly modulated effective potential barrier whose height is governed essentially by the asperity slope. The mean height of the barrier, which is proportional to the average slope squared, specifies the number of conducting channels. Under relatively small asperity amplitude this number can take on arbitrary small, up to zero, values if the asperities are sufficiently sharp. The consecutive channel cut-off that arises when the asperity sharpness increases can be regarded as a kind of localization, which is not related to the disorder per se but rather is of entropic or (equivalently) geometric origin. The fluctuating part of the effective barrier results in two fundamentally different types of guided wave scattering, viz., inter- and intramode scattering. The intermode scattering is shown to be for the most part very strong except in the cases of (a) extremely smooth asperities, (b) excessively small length of the corrugated segment, and (c) the asperities sharp enough for only one conducting channel to remain in the wire. Under strong intermode scattering, a new set of conducting channels develops in the corrugated waveguide, which have the form of asymptotically decoupled extended modes subject to individual solely intramode random potentials. In view of this fact, two transport regimes only are realizable in randomly corrugated multimode waveguides, specifically, the ballistic and the localized regime, the latter characteristic of one-dimensional random systems. Two kinds of localization are thus shown to

  5. The outer boundary conditions of the heliosphere: Observations and models of the local interstellar cloud

    NASA Astrophysics Data System (ADS)

    Slavin, Jonathan D.

    2016-03-01

    The outer boundary conditions of the heliosphere are set by the circumheliospheric interstellar medium, which is part of the Local Interstellar Cloud (LIC). In particular the ram pressure, ionization and magnetic field strength are important for determining the size and shape of the heliosphere. The in situ as well as line of sight data indicate that the LIC is a warm, partially ionized cloud. We discuss the observational evidence on the nature of the LIC and theoretical models that explain its temperature and ionization.

  6. Non-local susceptibility of the wire medium in the spatial domain considering material boundaries

    NASA Astrophysics Data System (ADS)

    Hanson, George W.; Silveirinha, Mário G.; Burghignoli, Paolo; Yakovlev, Alexander B.

    2013-08-01

    We show that the non-local susceptibility \\bar{\\boldsymbol{\\chi}}\\left (\\mathbf{r},\\mathbf{r}^{\\prime }\\right ) for a non-translationally invariant homogenized wire medium is, modulo a constant, given by a simple Green function related to the material geometry. We also show that two previous methods for solving wave interaction problems for bounded wire media (wave expansion method and transport equation) are equivalent to each other, and to a third method involving particle reflection at the boundary. We discuss the importance of the dead layer or virtual interface, and find it to be analogous to the excitonic semiconductor case. Several examples are provided to clarify the material.

  7. N{sup ±}-integrals and boundary values of Cauchy-type integrals of finite measures

    SciTech Connect

    Aliev, R. A. E-mail: alievrashid@box.az

    2014-07-31

    Let Γ be a simple closed Lyapunov contour with finite complex measure ν, and let G{sup +} be the bounded and G{sup −} the unbounded domains with boundary Γ. Using new notions (so-called N-integration and N{sup +}- and N{sup −}-integrals), we prove that the Cauchy-type integrals F{sup +}(z), z∈G{sup +}, and F{sup −}(z), z∈G{sup −}, of ν are Cauchy N{sup +}- and N{sup −}-integrals, respectively. In the proof of the corresponding results, the additivity property and the validity of the change-of-variable formula for the N{sup +}- and N{sup −}-integrals play an essential role. Bibliography: 21 titles. (paper)

  8. Local isotropy in distorted turbulent boundary layers at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Saddoughi, Seyed G.

    1993-01-01

    This is a report on the continuation of our experimental investigations of the hypothesis of local isotropy in shear flows. This hypothesis, which states that at sufficiently high Reynolds numbers the small-scale structures of turbulent motions are independent of large-scale structures and mean deformations, has been used in theoretical studies of turbulence and computational methods such as large-eddy simulation. Since Kolmogorov proposed his theory, there have been many experiments, conducted in wakes, jets, mixing layers, a tidal channel, and atmospheric and laboratory boundary layers, in which attempts have been made to verify - or refute - the local-isotropy hypothesis. However, a review of the literature over the last five decades indicated that, despite all these experiments in shear flows, there was no consensus in the scientific community regarding this hypothesis, and, therefore, it seemed worthwhile to undertake a fresh experimental investigation into this question.

  9. Strain localization in ultramylonitic calcite marbles by dislocation creep-accommodated grain boundary sliding

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard; Clancy White, Joseph

    2015-04-01

    Strain localization in monomineralic rocks is often associated with brittle precursors, resulting in stress and strain concentration, followed by grain size reduction and activation of grain-size-sensitive deformation mechanisms such as diffusion creep, grain boundary sliding and cataclastic flow. The aforementioned mechanisms typically tend to produce a random crystallographic orientation or a decrease in intensity of a pre-existing texture. However, reports of fine grained polycrystalline materials showing a preferred crystallographic orientation indicate a need for subsequent grain re-organization by either static annealing or the activation of additional deformation mechanisms in conjunction with grain boundary sliding. We present observations from an almost pure calcite marble layer from Syros Island (Cyclades, Greece) deformed in lower greenschist facies conditions. The presence of a crack (i.e. cross-cutting element) that rotated during shear resulted in the formation of a flanking structure. At the location of maximum displacement (120 cm) along the cross-cutting element, the marble is extremely fine grained (3 µm) leading to anticipation of deformation by grain-size-sensitive mechanisms. Detailed microstructural analysis of the highly strained (80 < gamma < 1000) calcite ultramylonite by optical microscopy, electron backscatter diffraction and scanning transmission electron microscopy show that recrystallization by bulging results in small, strain-free grains. The change in grain size appears to be concomitant with increased activity of independent grain boundary sliding as indicated by a random misorientation angle distribution. At the same time, dislocation multiplication through Frank-Read sources produces high mean dislocation density (~ 5x10^13 m^-2) as well as a weak primary CPO; the latter all argue that grain boundary sliding was accommodated by dislocation activity. Theoretical and experimental determined relationships (paleowattmeter

  10. A combined integrating and differentiating matrix formulation for boundary value problems on rectangular domains

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1986-01-01

    Integrating and differentiating matrices allow the numerical integration and differential of functions whose values are known at points of a discrete grid. Previous derivations of these matrices were restricted to one dimensional grids or to rectangular grids with uniform spacing in at least one direction. Integrating and differentiating matrices were developed for grids with nonuniform spacing in both directions. The use of these matrices as operators to reformulate boundary value problems on rectangular domains as matrix problems for a finite dimensional solution vector is considered. The method requires nonuniform grids which include near boundary points. An eigenvalue problem for the transverse vibrations of a simply supported rectangular plate is solved to illustrate the method.

  11. Numerical simulation of scattering of acoustic waves by inelastic bodies using hypersingular boundary integral equation

    SciTech Connect

    Daeva, S.G.; Setukha, A.V.

    2015-03-10

    A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.

  12. Living Authors, Living Stories: Integrating Local Authors into Our Curriculum

    ERIC Educational Resources Information Center

    Newman, Beatrice Mendez

    2009-01-01

    Keeping literature classrooms vibrant, energized, and current can require supreme pedagogical effort, especially in light of students' sometimes pointed disinterest in traditional and/or canonical texts. Integrating local authors into a standard curriculum can be an effective strategy for invigorating students' interest in literature and helping…

  13. STATE AND LOCAL AREA INTEGRATED TELEPHONE SURVEY (SLAITS)

    EPA Science Inventory

    The State and Local Area Integrated Telephone Survey (SLAITS) is a telephone interview mechanism that employs the sampling frame of the National Immunization Survey. The purpose of SLAITS is to provide high quality health and welfare-related data on individuals and families at th...

  14. A GPU-accelerated direct-sum boundary integral Poisson-Boltzmann solver

    NASA Astrophysics Data System (ADS)

    Geng, Weihua; Jacob, Ferosh

    2013-06-01

    In this paper, we present a GPU-accelerated direct-sum boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace based linear algebraic solver such as the GMRES. The molecular surfaces are discretized with flat triangles and centroid collocation. To speed up our method, we take advantage of the parallel nature of the boundary integral formulation and parallelize the schemes within CUDA shared memory architecture on GPU. The schemes use only 11N+6Nc size-of-double device memory for a biomolecule with N triangular surface elements and Nc partial charges. Numerical tests of these schemes show well-maintained accuracy and fast convergence. The GPU implementation using one GPU card (Nvidia Tesla M2070) achieves 120-150X speed-up to the implementation using one CPU (Intel L5640 2.27 GHz). With our approach, solving PB equations on well-discretized molecular surfaces with up to 300,000 boundary elements will take less than about 10 min, hence our approach is particularly suitable for fast electrostatics computations on small to medium biomolecules.

  15. Charged hadrons in local finite-volume QED+QCD with C⋆ boundary conditions

    NASA Astrophysics Data System (ADS)

    Lucini, B.; Patella, A.; Ramos, A.; Tantalo, N.

    2016-02-01

    In order to calculate QED corrections to hadronic physical quantities by means of lattice simulations, a coherent description of electrically-charged states in finite volume is needed. In the usual periodic setup, Gauss's law and large gauge transformations forbid the propagation of electrically-charged states. A possible solution to this problem, which does not violate the axioms of local quantum field theory, has been proposed by Wiese and Polley, and is based on the use of C⋆ boundary conditions. We present a thorough analysis of the properties and symmetries of QED in isolation and QED coupled to QCD, with C⋆ boundary conditions. In particular we learn that a certain class of electrically-charged states can be constructed in a fully consistent fashion without relying on gauge fixing and without peculiar complications. This class includes single particle states of most stable hadrons. We also calculate finite-volume corrections to the mass of stable charged particles and show that these are much smaller than in non-local formulations of QED.

  16. Local Interstellar Magnetic Field Determined from the Interstellar Boundary Explorer Ribbon

    NASA Astrophysics Data System (ADS)

    Zirnstein, E. J.; Heerikhuisen, J.; Funsten, H. O.; Livadiotis, G.; McComas, D. J.; Pogorelov, N. V.

    2016-02-01

    The solar wind emanating from the Sun interacts with the local interstellar medium (LISM), forming the heliosphere. Hydrogen energetic neutral atoms (ENAs) produced by the solar-interstellar interaction carry important information about plasma properties from the boundaries of the heliosphere, and are currently being measured by NASA's Interstellar Boundary Explorer (IBEX). IBEX observations show the existence of a “ribbon” of intense ENA emission projecting a circle on the celestial sphere that is centered near the local interstellar magnetic field (ISMF) vector. Here we show that the source of the IBEX ribbon as a function of ENA energy outside the heliosphere, uniquely coupled to the draping of the ISMF around the heliopause, can be used to precisely determine the magnitude (2.93 ± 0.08 μG) and direction (227.°28 ± 0.°69, 34.°62 ± 0.°45 in ecliptic longitude and latitude) of the pristine ISMF far (∼1000 AU) from the Sun. We find that the ISMF vector is offset from the ribbon center by ∼8.°3 toward the direction of motion of the heliosphere through the LISM, and their vectors form a plane that is consistent with the direction of deflected interstellar neutral hydrogen, thought to be controlled by the ISMF. Our results yield draped ISMF properties close to that observed by Voyager 1, the only spacecraft to directly measure the ISMF close to the heliosphere, and give predictions of the pristine ISMF that Voyager 1 has yet to sample.

  17. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods

    PubMed Central

    Li, Xiaofan; Nie, Qing

    2015-01-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green’s functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated. PMID:26487788

  18. Numerical computation of unsteady laminar boundary layers with separation using two-parameter integral method

    NASA Astrophysics Data System (ADS)

    Akamatsu, T.; Matsushita, M.; Murata, S.

    1985-11-01

    A two-parameter integral method is presented which is applicable even to separated boundary layers. The governing equation system, which consists of three moment equations of the boundary layer equation, is shown to be classifiable as a quasi-linear hyperbolic system under the assumed velocity profile function. The governing system is numerically solved by a dissipative finite difference scheme in order to capture a discontinuous solution associated with the singularity of unsteady separation. The spontaneous generation of singularity associated with unsteady separation is confirmed as the focusing of characteristics. The starting flows of a circular and an elliptic cylinder are considered as definite examples. This method is found to give excellent results in comparison with exact methods, not only for practically important boundary layer quantities such as displacement thickness or skin friction coefficient, but also for generation of separation singularity.

  19. Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps

    SciTech Connect

    Yuan Jianhua; Lu Yayan Antoine, Xavier

    2008-04-20

    Efficient numerical methods for analyzing photonic crystals (PhCs) can be developed using the Dirichlet-to-Neumann (DtN) maps of the unit cells. The DtN map is an operator that takes the wave field on the boundary of a unit cell to its normal derivative. In frequency domain calculations for band structures and transmission spectra of finite PhCs, the DtN maps allow us to reduce the computation to the boundaries of the unit cells. For two-dimensional (2D) PhCs with unit cells containing circular cylinders, the DtN maps can be constructed from analytic solutions (the cylindrical waves). In this paper, we develop a boundary integral equation method for computing DtN maps of general unit cells containing cylinders with arbitrary cross sections. The DtN map method is used to analyze band structures for 2D PhCs with elliptic and other cylinders.

  20. Canonical formulation and path integral for local vacuum energy sequestering

    NASA Astrophysics Data System (ADS)

    Bufalo, R.; KlusoÅ, J.; Oksanen, M.

    2016-08-01

    We establish the Hamiltonian analysis and the canonical path integral for a local formulation of vacuum energy sequestering. In particular, by considering the state of the Universe as a superposition of vacuum states corresponding to different values of the cosmological and gravitational constants, the path integral is extended to include integrations over the cosmological and gravitational constants. The result is an extension of the Ng-van Dam form of the path integral of unimodular gravity. It is argued to imply a relation between the fraction of the most likely values of the gravitational and cosmological constants and the average values of the energy density and pressure of matter over spacetime. Finally, we construct and analyze a Becchi-Rouet-Stora-Tyutin-exact formulation of the theory, which can be considered as a topological field theory.

  1. Deriving appropriate boundary conditions, and accelerating position-jump simulations, of diffusion using non-local jumping.

    PubMed

    Taylor, P R; Baker, R E; Yates, C A

    2014-01-01

    In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations. PMID:25514045

  2. Deriving appropriate boundary conditions, and accelerating position-jump simulations, of diffusion using non-local jumping

    NASA Astrophysics Data System (ADS)

    Taylor, P. R.; Baker, R. E.; Yates, C. A.

    2015-02-01

    In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations.

  3. Implementation of a symmetric boundary integral formulation for cohesive cracks in homogeneous media and at interfaces

    SciTech Connect

    Tavara, Luis; Mantic, Vladislav; Salvadori, Alberto; Gray, Leonard J; Paris, Federico

    2009-01-01

    A symmetric boundary integral formulation for cohesive cracks growing in the interior of homogeneous linear elastic isotropic media and/or at interfaces between these media is developed and implemented in a numerical code. The solution of a problem that includes cohesive cracks depends on the cohesive law adopted. In the present work, models based on the concept of free energy density per unit undeformed area are considered. The corresponding constitutive cohesive equations present a softening branch which induces to the problem a potential instability. Thus, the development and implementation of a suitable solution algorithm capable of following the growth of the cohesive zone becomes an important issue. An arc-length control combined with a Newton-Raphson algorithm for iterative solution of nonlinear equations is used. The Boundary Element Method is very attractive for modeling cohesive crack problems as all nonlinearities are located on the boundaries (including the crack boundaries) of linear elastic domains. A Galerkin approximation scheme, applied to a suitable symmetric integral formulation, ensures an easy treatment of cracks in homogeneous media and excellent convergence behavior of the numerical solution. Numerical results for the wedge split test are presented and compared with experimental results available in the literature.

  4. Mixed direct-iterative methods for boundary integral formulations of continuum dielectric solvation models

    SciTech Connect

    Corcelli, S.A.; Kress, J.D.; Pratt, L.R.

    1995-08-07

    This paper develops and characterizes mixed direct-iterative methods for boundary integral formulations of continuum dielectric solvation models. We give an example, the Ca{sup ++}{hor_ellipsis}Cl{sup {minus}} pair potential of mean force in aqueous solution, for which a direct solution at thermal accuracy is difficult and, thus for which mixed direct-iterative methods seem necessary to obtain the required high resolution. For the simplest such formulations, Gauss-Seidel iteration diverges in rare cases. This difficulty is analyzed by obtaining the eigenvalues and the spectral radius of the non-symmetric iteration matrix. This establishes that those divergences are due to inaccuracies of the asymptotic approximations used in evaluation of the matrix elements corresponding to accidental close encounters of boundary elements on different atomic spheres. The spectral radii are then greater than one for those diverging cases. This problem is cured by checking for boundary element pairs closer than the typical spatial extent of the boundary elements and for those cases performing an ``in-line`` Monte Carlo integration to evaluate the required matrix elements. These difficulties are not expected and have not been observed for the thoroughly coarsened equations obtained when only a direct solution is sought. Finally, we give an example application of hybrid quantum-classical methods to deprotonation of orthosilicic acid in water.

  5. The Effect of Local Wind Along an Eastern Boundary Current on the Local Wave Pattern: The Canary Current Case

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro

    2015-04-01

    There are two types of waves at the ocean surface. During the generation and growing processes, they are designated as wind sea; as waves propagate away from their generation area, they are called swell. Swell waves travel long distances across the globe with little attenuation For this reason the wave field does not necessarily reflect the local wind field characteristics. Since swell propagates long distances, across entire ocean basins, in the open ocean the wave field is, most of the times, the result of contributions from waves with different frequencies and directions, reflecting different origins and ages. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the air-sea interaction community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the air-sea coupling is different depending on the wave regime. Waves modulate the exchange of momentum, heat, and mass across the air-sea interface, and this modulation is different and dependent on the prevalence of one type of waves: wind sea or swell. For fully developed seas the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, like marginal or enclosed seas, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. The wind pattern along eastern boundary currents, in the summer, is equator-ward and coast parallel, due to the presence of a semi-permanente high pressure system off-shore, in the ocean, and to a thermal low in-land. The resulting coast parallel winds are the geostrophically adjusted response to this synoptic pattern that drives upwelling along EBC, due to the Eknam transport offshore, sharpening the thermal and

  6. A finite element-boundary integral method for conformal antenna arrays on a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.; Woo, Alex C.; Yu, C. Long

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This is due to the lack of rigorous mathematical models for conformal antenna arrays, and as a result the design of conformal arrays is primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. Herewith we shall extend this formulation for conformal arrays on large metallic cylinders. In this we develop the mathematical formulation. In particular we discuss the finite element equations, the shape elements, and the boundary integral evaluation, and it is shown how this formulation can be applied with minimal computation and memory requirements. The implementation shall be discussed in a later report.

  7. A finite element-boundary integral method for conformal antenna arrays on a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.

  8. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    SciTech Connect

    Littlewood, David John; Silling, Stewart A.; Mitchell, John A.; Seleson, Pablo D.; Bond, Stephen D.; Parks, Michael L.; Turner, Daniel Z.; Burnett, Damon J.; Ostien, Jakob; Gunzburger, Max

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  9. Localized electronic states at grain boundaries on the surface of graphene and graphite

    NASA Astrophysics Data System (ADS)

    Luican-Mayer, Adina; Barrios-Vargas, Jose E.; Toft Falkenberg, Jesper; Autès, Gabriel; Cummings, Aron W.; Soriano, David; Li, Guohong; Brandbyge, Mads; Yazyev, Oleg V.; Roche, Stephan; Andrei, Eva Y.

    2016-09-01

    Recent advances in large-scale synthesis of graphene and other 2D materials have underscored the importance of local defects such as dislocations and grain boundaries (GBs), and especially their tendency to alter the electronic properties of the material. Understanding how the polycrystalline morphology affects the electronic properties is crucial for the development of applications such as flexible electronics, energy harvesting devices or sensors. We here report on atomic scale characterization of several GBs and on the structural-dependence of the localized electronic states in their vicinity. Using low temperature scanning tunneling microscopy and spectroscopy, together with tight binding and ab initio numerical simulations we explore GBs on the surface of graphite and elucidate the interconnection between the local density of states and their atomic structure. We show that the electronic fingerprints of these GBs consist of pronounced resonances which, depending on the relative orientation of the adjacent crystallites, appear either on the electron side of the spectrum or as an electron-hole symmetric doublet close to the charge neutrality point. These two types of spectral features will impact very differently the transport properties allowing, in the asymmetric case to introduce transport anisotropy which could be utilized to design novel growth and fabrication strategies to control device performance.

  10. Navigating the boundary of science for decision making at the state and local level

    NASA Astrophysics Data System (ADS)

    Gonzales, L. M.; Wood, C.; Boland, M. A.; Rose, C. A.

    2015-12-01

    Scientific information should play a vital role in many decision making processes, yet issues incorporating geoscience information often arise due to inherent differences between how scientists and decision makers operate. Decision makers and scientists have different priorities, produce work at different rates, and often lack an understanding of each others' institutional constraints. Boundary organizations, entities that facilitate collaboration and information flow across traditional boundaries such as that between scientists and decision makers, are in a unique position to improve the dialogue between disparate groups. The American Geosciences Institute (AGI), a nonprofit federation of 50 geoscience societies and organizations, is linking the geoscience and decision-making communities through its Critical Issues Program. AGI's Critical Issues program has first-hand experience in improving the transfer of information across the science-decision making boundary, particularly in areas pertaining to water resources and hazards. This presentation will focus on how, by collaborating with organizations representing the decision making and geoscience communities to inform our program development, we have created our three main content types - website, webinar series, and research database - to better meet the needs of the decision-making process. The program presents existing geoscience information in a way that makes the interconnected nature of geoscience topics more easily understood, encourages discussion between the scientific and decision-making communities, and has established a trusted source of impartial geoscience information. These efforts have focused on state and local decision makers—groups that increasingly influence climate and risk-related decisions, yet often lack the resources to access and understand geoscience information.

  11. A boundary integral method for an inverse problem in thermal imaging

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt

    1992-01-01

    An inverse problem in thermal imaging involving the recovery of a void in a material from its surface temperature response to external heating is examined. Uniqueness and continuous dependence results for the inverse problem are demonstrated, and a numerical method for its solution is developed. This method is based on an optimization approach, coupled with a boundary integral equation formulation of the forward heat conduction problem. Some convergence results for the method are proved, and several examples are presented using computationally generated data.

  12. Airfoil Design Using a Coupled Euler and Integral Boundary Layer Method with Adjoint Based Sensitivities

    NASA Technical Reports Server (NTRS)

    Edwards, S.; Reuther, J.; Chattot, J. J.

    1997-01-01

    The objective of this paper is to present a control theory approach for the design of airfoils in the presence of viscous compressible flows. A coupled system of the integral boundary layer and the Euler equations is solved to provide rapid flow simulations. An adjunct approach consistent with the complete coupled state equations is employed to obtain the sensitivities needed to drive a numerical optimization algorithm. Design to target pressure distribution is demonstrated on an RAE 2822 airfoil at transonic speed.

  13. Airfoil design using a coupled euler and integral boundary layer method with adjoint based sensitivities

    NASA Astrophysics Data System (ADS)

    Edwards, S.; Reuther, J.; Chattot, J. J.

    The objective of this paper is to present a control theory approach for the design of airfoils in the presence of viscous compressible flows. A coupled system of the integral boundary layer and the Euler equations is solved to provide rapid flow simulations. An adjoint approach consistent with the complete coupled state equations is employed to obtain the sensitivities needed to drive a numerical optimization algorithm. Design to a target pressure distribution is demonstrated on an RAE 2822 airfoil at transonic speeds.

  14. Epitaxial integration of a nanoscale BiFeO3 phase boundary with silicon.

    PubMed

    Liang, Wen-I; Peng, Chun-Yen; Huang, Rong; Kuo, Wei-Cheng; Huang, Yen-Chin; Adamo, Carolina; Chen, Yi-Chun; Chang, Li; Juang, Jenh-Yih; Schlom, Darrel G; Chu, Ying-Hao

    2016-01-21

    The successful integration of the strain-driven nanoscale phase boundary of BiFeO3 onto a silicon substrate is demonstrated with extraordinary ferroelectricity and ferromagnetism. The detailed strain history is delineated through a reciprocal space mapping technique. We have found that a distorted monoclinic phase forms prior to a tetragonal-like phase, a phenomenon which may correlates with the thermal strain induced during the growth process. PMID:26689266

  15. Epitaxial integration of a nanoscale BiFeO3 phase boundary with silicon

    NASA Astrophysics Data System (ADS)

    Liang, Wen-I.; Peng, Chun-Yen; Huang, Rong; Kuo, Wei-Cheng; Huang, Yen-Chin; Adamo, Carolina; Chen, Yi-Chun; Chang, Li; Juang, Jenh-Yih; Schlom, Darrel G.; Chu, Ying-Hao

    2016-01-01

    The successful integration of the strain-driven nanoscale phase boundary of BiFeO3 onto a silicon substrate is demonstrated with extraordinary ferroelectricity and ferromagnetism. The detailed strain history is delineated through a reciprocal space mapping technique. We have found that a distorted monoclinic phase forms prior to a tetragonal-like phase, a phenomenon which may correlates with the thermal strain induced during the growth process.

  16. The Reduction of Ducted Fan Engine Noise Via a Boundary Integral Equation Method

    NASA Technical Reports Server (NTRS)

    Tweed, John

    2000-01-01

    Engineering studies for reducing ducted fan engine noise were conducted using the noise prediction code TBIEM3D. To conduct parametric noise reduction calculations, it was necessary to advance certain theoretical and computational aspects of the boundary integral equation method (BIEM) described in and implemented in TBIEM3D. Also, enhancements and upgrades to TBIEM3D were made for facilitating the code's use in this research and by the aeroacoustics engineering community.

  17. Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding

    PubMed Central

    Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.

    2013-01-01

    We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561

  18. Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding.

    PubMed

    Kreienkamp, Amelia B; Liu, Lucy Y; Minkara, Mona S; Knepley, Matthew G; Bardhan, Jaydeep P; Radhakrishnan, Mala L

    2013-06-01

    We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins-a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein-protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models' differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561

  19. A fast numerical solution of scattering by a cylinder: Spectral method for the boundary integral equations

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1994-01-01

    It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.

  20. Resistive switching in hafnium dioxide layers: Local phenomenon at grain boundaries

    NASA Astrophysics Data System (ADS)

    Lanza, M.; Bersuker, G.; Porti, M.; Miranda, E.; Nafría, M.; Aymerich, X.

    2012-11-01

    Overcoming challenges associated with implementation of resistive random access memory technology for non-volatile information storage requires identifying the material characteristics responsible for resistive switching. In order to connect the switching phenomenon to the nano-scale morphological features of the dielectrics employed in memory cells, we applied the enhanced conductive atomic force microscopy technique for in situ analysis of the simultaneously collected electrical and topographical data on HfO2 stacks of various degrees of crystallinity. We demonstrate that the resistive switching is a local phenomenon associated with the formation of a conductive filament with a sufficiently small cross-section, which is determined by the maximum passing current. Switchable filament is found to be formed at the dielectric sites where the forming voltages were sufficiently small, which, in the case of the stoichiometric HfO2, is observed exclusively at the grain boundary regions representing low resistant conductive paths through the dielectric film.

  1. Localized and distributed boundary-layer receptivity to convected unsteady wake in free stream

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1994-01-01

    Receptivity to a model convected disturbance in the presence of localized and distributed variations in wall geometry and wall-suction velocity is examined. The model free-stream disturbance corresponds to the time-harmonic wake of a vibrating ribbon that is placed at a suitable distance above the surface of a thin airfoil. The advantages of using this disturbance for experiments on receptivity to convected disturbances are outlined. A brief parametric study is presented for a flat-plate boundary layer. The study quantifies the effect of wake position as well as wake width; in addition, it should be helpful in the choice of an optimal setting for a controlled experiment of the above type, which the above parametric study shows as feasible.

  2. Local surface sampling step estimation for extracting boundaries of planar point clouds

    NASA Astrophysics Data System (ADS)

    Brie, David; Bombardier, Vincent; Baeteman, Grégory; Bennis, Abdelhamid

    2016-09-01

    This paper presents a new approach to estimate the surface sampling step of planar point clouds acquired by Terrestrial Laser Scanner (TLS) which is varying with the distance to the surface and the angular positions. The local surface sampling step is obtained by doing a first order Taylor expansion of planar point coordinates. Then, it is shown how to use it in Delaunay-based boundary point extraction. The resulting approach, which is implemented in the ModiBuilding software, is applied to two facade point clouds of a building. The first is acquired with a single station and the second with two stations. In both cases, the proposed approach performs very accurately and appears to be robust to the variations of the point cloud density.

  3. Low-frequency sound propagation modeling over a locally-reacting boundary using the parabolic approximation

    NASA Technical Reports Server (NTRS)

    Robertson, J. S.; Siegman, W. L.; Jacobson, M. J.

    1989-01-01

    There is substantial interest in the analytical and numerical modeling of low-frequency, long-range atmospheric acoustic propagation. Ray-based models, because of frequency limitations, do not always give an adequate prediction of quantities such as sound pressure or intensity levels. However, the parabolic approximation method, widely used in ocean acoustics, and often more accurate than ray models for lower frequencies of interest, can be applied to acoustic propagation in the atmosphere. Modifications of an existing implicit finite-difference implementation for computing solutions to the parabolic approximation are discussed. A locally-reacting boundary is used together with a one-parameter impedance model. Intensity calculations are performed for a number of flow resistivity values in both quiescent and windy atmospheres. Variations in the value of this parameter are shown to have substantial effects on the spatial variation of the acoustic signal.

  4. Numerical solutions to ill-posed and well-posed impedance boundary condition integral equations

    NASA Astrophysics Data System (ADS)

    Rogers, J. R.

    1983-11-01

    Exterior scattering from a three-dimensional impedance body can be formulated in terms of various integral equations derived from the Leontovich impedance boundary condition (IBC). The electric and magnetic field integral equations are ill-posed because they theoretically admit spurious solutions at the frequencies of interior perfect conductor cavity resonances. A combined field formulation is well-posed because it does not allow the spurious solutions. This report outlines the derivation of IBC integral equations and describes a procedure for constructing moment-method solutions for bodies of revolution. Numerical results for scattering from impedance spheres are presented which contrast the stability and accuracy of solutions to the ill-posed equations with those of the well-posed equation. The results show that numerical solutions for exterior scattering to the electric and magnetic field integral equations can be severely contaminated by spurious resonant solutions regardless of whether the surface impedance of the body is lossy or lossless.

  5. Coupling finite element and integral equation solutions using decoupled boundary meshes

    NASA Technical Reports Server (NTRS)

    Cwik, Tom

    1992-01-01

    A method is outlined for calculating scattered fields from inhomogeneous penetrable objects using a coupled finite element-integral equation solution. The finite element equation can efficiently model fields in penetrable and inhomogeneous regions, while the integral equation exactly models fields on the finite element mesh boundary and in the exterior region. By decoupling the interior finite element and exterior integral equation meshes, considerable flexibility is found in both the number of field expansion points as well as their density. Only the nonmetal portions of the object need be modeled using a finite element expansion; exterior perfect conducting surfaces are modeled using an integral equation with a single unknown field since E(tan) is identically zero on these surfaces. Numerical convergence, accuracy, and stability at interior resonant frequencies are studied in detail.

  6. A boundary integral approach to analyze the viscous scattering of a pressure wave by a rigid body

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2008-01-01

    The paper provides boundary integral equations for solving the problem of viscous scattering of a pressure wave by a rigid body. By using this mathematical tool uniqueness and existence theorems are proved. Since the boundary conditions are written in terms of velocities, vector boundary integral equations are obtained for solving the problem. The paper introduces single-layer viscous potentials and also a stress tensor. Correspondingly, a viscous double-layer potential is defined. The properties of all these potentials are investigated. By representing the scattered field as a combination of a single-layer viscous potential and a double-layer viscous potential the problem is reduced to the solution of a singular vectorial integral equation of Fredholm type of the second kind. In the case where the stress vector on the boundary is the main quantity of interest the corresponding boundary singular integral equation is proved to have a unique solution. PMID:18709178

  7. Heterogeneous optoelectronic integration using locally polymerized imprinted hard mask

    NASA Astrophysics Data System (ADS)

    Sodhi, Avantika; Beach, Samuel J.; Chen, Luis; Jacob-Mitos, Matt; Roth, Jonathan E.; Bowers, John; Theogarajan, Luke

    2013-03-01

    This paper presents a novel technique for the integration of Complementary Metal-Oxide Semiconductor (CMOS) chip with a Photonic Integrated Circuit (PIC). This proposed technique is demonstrated by integrating a PIC comprising of 2X2 optical switches and a CMOS header processor, implemented in the IBM 130nm CMOS technology. The processor configures the switch fabric on the PIC allowing for the design of ultra-fast low-power optical packet switching. An innovative CMOS chip based imprinted hard mask technique, utilizing a heat curable Polydimethylsiloxane (PDMS), allows for accurate microfabrication of wafer-scale sockets. The fabricated sockets in the PIC are at-most 9 μm larger than the chip on all sides. Accurate alignment between chips is achieved by using bottom side contact lithography printer to pattern alignment marks on the backside of the chip, making the process insensitive to chip size variations. Independent temperature control of the arm and the stage in the flip-chip bonder enables localized polymerization of PDMS to form imprinted hard mask for integration of PIC with more than one CMOS chip, enabling seamless multichip integration. The horizontal gap and the vertical displacement between the chip and the PIC were 7 and 0.5 um respectively. Electrical connections between the CMOS chip and the PIC were patterned and tested both electrically and optically. These measurements show that the functionality of the PIC and the CMOS chip were not affected by the integration process.

  8. A direct traction boundary integral equation method for three-dimension crack problems in infinite and finite domains

    NASA Astrophysics Data System (ADS)

    Xie, Guizhong; Zhang, Jianming; Huang, Cheng; Lu, Chenjun; Li, Guangyao

    2014-04-01

    This paper presents a direct traction boundary integral equation method (TBIEM) for three-dimensional crack problems. The TBIEM is based on the traction boundary integral equation (TBIE). The TBIE is collocated on both the external boundary and one of the crack surfaces. The displacements and tractions are used as unknowns on the external boundary and the relative crack opening displacements (CODs) are introduced as unknowns on the crack surface. In our implementation, all the surfaces of the considered structure are discretized into discontinuous elements to satisfy the continuity requirement for the existence of finite-part integrals, and special crack-front elements are constructed to capture the crack-tip behavior. To calculate the finite-part integrals, an adaptive singular integral technique is proposed. The stress intensity factors (SIFs) are computed through a modified COD extrapolation method. Numerical examples of SIFs computation are presented to demonstrate the accuracy and efficiency of our method.

  9. Turbulent boundary layer induced vibration up to high frequencies by means of local energy methods

    NASA Astrophysics Data System (ADS)

    Hardy, Pierre; Jezequel, Louis; Ichchou, Mohammed; Jacques, Yves

    2002-11-01

    The local energy method developed in the last years revealed appropriate in medium and high frequencies and supplies an accurate description of the spread of vibration and acoustic fields up to high frequencies. Our aim in the paper is to provide a complete description of the turbulent boundary layer (TBL) induced vibration by means of this method, for a simply supported thin plate. The first step in the energy method proof is the characterization of energy input from a given model of the TBL pressure interspectrum. Then, is deduced the uncoherent structural response of the panel, and the uncoherent normal mean square velocity. The latter provides, using the acoustic radiation resistance, a prediction of noise radiating by the panel up to high frequencies. Accuracy of the local energy analysis versus the usual random normal modes decomposition is demonstrated. Ultimately, a numerical parametric survey is given for various internal loss level. Precisely, the link between results provided here and SEA predictions of TBL structural induced vibration is discussed.

  10. Local conservation laws in spin-\\frac{1}{2} XY chains with open boundary conditions

    NASA Astrophysics Data System (ADS)

    Fagotti, Maurizio

    2016-06-01

    We revisit the conserved quantities of the spin-\\frac{1}{2} XY model with open boundary conditions. In the absence of a transverse field, we find new families of local charges and show that half of the seeming conservation laws are conserved only if the number of sites is odd. In even chains the set of noninteracting charges is abelian, like in the periodic case when the number of sites is odd. In odd chains the set is doubled and becomes non-abelian, like in even periodic chains. The dependence of the charges on the parity of the chain’s size undermines the common belief that the thermodynamic limit of diagonal ensembles exists. We consider also the transverse-field Ising chain, where the situation is more ordinary. The generalization to the XY model in a transverse field is not straightforward and we propose a general framework to carry out similar calculations. We conjecture the form of the bulk part of the local charges and discuss the emergence of quasilocal conserved quantities. We provide evidence that in a region of the parameter space there is a reduction of the number of quasilocal conservation laws invariant under chain inversion. As a by-product, we study a class of block-Toeplitz-plus-Hankel operators and identify the conditions that their symbols satisfy in order to commute with a given block-Toeplitz.

  11. Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Fung, Jimmy C. H.; Chan, Allen; Lau, Alexis

    2012-06-01

    A realistic reproduction of planetary boundary layer (PBL) structure and its evolution is critical to numerical simulation of regional meteorology and air quality. Conversely, insufficient realism in the simulated physical properties often leads to degraded meteorological and air quality prognostic skills. This study employed the Weather Research and Forecasting model (WRF) to evaluate model performance and to quantify meteorological prediction differences produced by four widely used PBL schemes. Evaluated were two nonlocal PBL schemes, YSU and ACM2, and two local PBL schemes, MYJ and Boulac. The model grid comprised four nested domains at horizontal resolutions of 27 km, 9 km, 3 km and 1 km respectively. Simulated surface variables 2 m temperature and 10 m wind at 1 km resolution were compared to measurements collected in Hong Kong. A detailed analysis of land-atmosphere energy balance explicates heat flux and temperature variability among the PBL schemes. Differences in vertical profiles of horizontal velocity, potential temperature, bulk Richardson number and water vapor mixing ratio were examined. Diagnosed PBL heights, estimated by scheme specific formulations, exhibited the large intrascheme variance. To eliminate formulation dependence in PBL height estimation, lidar measurements and a unified diagnosis were jointly used to reanalyze PBL heights. The diagnosis showed that local PBL schemes produced shallower PBL heights than those of nonlocal PBL schemes. It is reasonable to infer that WRF, coupled with the ACM2 PBL physics option can be a viable producer of meteorological forcing to regional air quality modeling in the Pearl River Delta (PRD) Region.

  12. The Reduction of Ducted Fan Engine Noise Via A Boundary Integral Equation Method

    NASA Technical Reports Server (NTRS)

    Tweed, J.; Dunn, M.

    1997-01-01

    The development of a Boundary Integral Equation Method (BIEM) for the prediction of ducted fan engine noise is discussed. The method is motivated by the need for an efficient and versatile computational tool to assist in parametric noise reduction studies. In this research, the work in reference 1 was extended to include passive noise control treatment on the duct interior. The BEM considers the scattering of incident sound generated by spinning point thrust dipoles in a uniform flow field by a thin cylindrical duct. The acoustic field is written as a superposition of spinning modes. Modal coefficients of acoustic pressure are calculated term by term. The BEM theoretical framework is based on Helmholtz potential theory. A boundary value problem is converted to a boundary integral equation formulation with unknown single and double layer densities on the duct wall. After solving for the unknown densities, the acoustic field is easily calculated. The main feature of the BIEM is the ability to compute any portion of the sound field without the need to compute the entire field. Other noise prediction methods such as CFD and Finite Element methods lack this property. Additional BIEM attributes include versatility, ease of use, rapid noise predictions, coupling of propagation and radiation both forward and aft, implementable on midrange personal computers, and valid over a wide range of frequencies.

  13. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    SciTech Connect

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  14. Integrated modeling and characterization of local crack chemistry

    SciTech Connect

    Savchik, J.A.; Burke, M.S.

    1995-12-31

    The MULTEQ computer program has become an industry wide tool which can be used to calculate the chemical composition in a flow occluded region as the solution within concentrates due to a local boiling process. These results can be used to assess corrosion concerns in plant equipment such as steam generators. Corrosion modeling attempts to quantify corrosion assessments by accounting for the mass transport processes involved in the corrosion mechanism. MULTEQ has played an ever increasing role in defining the local chemistry for such corrosion models. This paper will outline how the integration of corrosion modeling with the analysis of corrosion films and deposits can lead to the development of a useful modeling tool, wherein MULTEQ is interactively linked to a diffusion and migration transport process. This would provide a capability to make detailed inferences of the local crack chemistry based on the analyses of the local corrosion films and deposits inside a crack and thus provide guidance for chemical fixes to avoid cracking. This methodology is demonstrated for a simple example of a cracked tube. This application points out the utility of coupling MULTEQ with a mass transport process and the feasibility of an option in a future version of MULTEQ that would permit relating film and deposit analyses to the local chemical environment. This would increase the amount of information obtained from removed tube analyses and laboratory testing that can contribute to an overall program for mitigating tubing and crevice corrosion.

  15. Graphical construction of a local perspective on differentiation and integration

    NASA Astrophysics Data System (ADS)

    Hong, Ye Yoon; Thomas, Michael O. J.

    2015-06-01

    Recent studies of the transition from school to university mathematics have identified a number of epistemological gaps, including the need to change from an emphasis on equality to that of inequality. Another crucial epistemological change during this transition involves the movement from the pointwise and global perspectives of functions usually established through the school curriculum to a view of function that includes a local, or interval, perspective. This is necessary for study of concepts such as continuity and limit that underpin calculus and analysis at university. In this study, a first-year university calculus course in Korea was constructed that integrated use of digital technology and considered the epistemic value of the associated techniques. The aim was to encourage versatile thinking about functions, especially in relation to properties arising from a graphical investigation of differentiation and integration. In this paper, the results of this approach for the learning of derivative and antiderivative, based on integrated technology use, are presented. They show the persistence of what Tall ( Mathematics Education Research Journal, 20(2), 5-24, 2008) describes as symbolic world algebraic thinking on the part of a significant minority of students, who feel the need to introduce algebraic methods, in spite of its disadvantages, even when no explicit algebra is provided. However, the results also demonstrate the ability of many of the students to use technology mediation to build local or interval conceptual thinking about derivative and antiderivative functions.

  16. Application of the method of integral relations to boundary layer flows over blunt bodies

    NASA Technical Reports Server (NTRS)

    Modarress, D.

    1978-01-01

    Calculations of boundary layer flows past blunt bodies at angles of incidence are presented. Using the method of integral relations together with the method of lines, the full three-dimensional boundary layer equations are reduced to a system of first-order ordinary differential equations. The streamwise shear stress function and the cross-flow velocity component are represented as suitable functions of the streamwise velocity component. The role of the zone of dependence is automatically satisfied by the choice of differencing in the method of lines. Solutions correct to the second order are obtained in the positive shear region for flow over an ellipsoid at 30-deg incidence. The results are compared with corresponding finite difference solutions.

  17. A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules

    NASA Astrophysics Data System (ADS)

    Geng, Weihua; Krasny, Robert

    2013-08-01

    We present a treecode-accelerated boundary integral (TABI) solver for electrostatics of solvated biomolecules described by the linear Poisson-Boltzmann equation. The method employs a well-conditioned boundary integral formulation for the electrostatic potential and its normal derivative on the molecular surface. The surface is triangulated and the integral equations are discretized by centroid collocation. The linear system is solved by GMRES iteration and the matrix-vector product is carried out by a Cartesian treecode which reduces the cost from O(N2) to O(NlogN), where N is the number of faces in the triangulation. The TABI solver is applied to compute the electrostatic solvation energy in two cases, the Kirkwood sphere and a solvated protein. We present the error, CPU time, and memory usage, and compare results for the Poisson-Boltzmann and Poisson equations. We show that the treecode approximation error can be made smaller than the discretization error, and we compare two versions of the treecode, one with uniform clusters and one with non-uniform clusters adapted to the molecular surface. For the protein test case, we compare TABI results with those obtained using the grid-based APBS code, and we also present parallel TABI simulations using up to eight processors. We find that the TABI solver exhibits good serial and parallel performance combined with relatively simple implementation, efficient memory usage, and geometric adaptability.

  18. On the Assessment of Acoustic Scattering and Shielding by Time Domain Boundary Integral Equation Solutions

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.; Pizzo, Michelle E.; Nark, Douglas M.

    2016-01-01

    Based on the time domain boundary integral equation formulation of the linear convective wave equation, a computational tool dubbed Time Domain Fast Acoustic Scattering Toolkit (TD-FAST) has recently been under development. The time domain approach has a distinct advantage that the solutions at all frequencies are obtained in a single computation. In this paper, the formulation of the integral equation, as well as its stabilization by the Burton-Miller type reformulation, is extended to cases of a constant mean flow in an arbitrary direction. In addition, a "Source Surface" is also introduced in the formulation that can be employed to encapsulate regions of noise sources and to facilitate coupling with CFD simulations. This is particularly useful for applications where the noise sources are not easily described by analytical source terms. Numerical examples are presented to assess the accuracy of the formulation, including a computation of noise shielding by a thin barrier motivated by recent Historical Baseline F31A31 open rotor noise shielding experiments. Furthermore, spatial resolution requirements of the time domain boundary element method are also assessed using point per wavelength metrics. It is found that, using only constant basis functions and high-order quadrature for surface integration, relative errors of less than 2% may be obtained when the surface spatial resolution is 5 points-per-wavelength (PPW) or 25 points-per-wavelength squared (PPW2).

  19. An integral analysis of transonic normal shock wave/turbulent boundary layer interactions in internal flow

    NASA Technical Reports Server (NTRS)

    Om, D.; Childs, M. E.

    1983-01-01

    An approximate integral viscous-inviscid interaction method is presented for calculating the development of a turbulent boundary layer subjected to a normal shock wave induced adverse pressure gradient in an internal axisymmetric flow. The inflow conditions and the downstream pressure are provided for the computation. In the supersonic region of shock pressure rise, the Prandtl-Meyer function is used to couple the viscous and inviscid flows. An analytical model for the coupling process is postulated and appropriate equations are defined. Downstream of the sonic point, one-dimensional inviscid flow is assumed for coupling with the viscous flow. The turbulent boundary layer is calculated using Green's integral lag-entrainment method. Comparisons of the solutions with the experimental data are made for interactions which are unseparated, near separation and separated. For comparison purposes, solutions to the time-dependent, mass-averaged, Navier-Stokes equations incorporating a two-equation, Wilcox-Rubesin turbulence model are also shown. The computed results from the integral method show good agreement with experimental data for unseparated interactions and reasonable agreement with the trend of the viscous effects when the interaction becomes increasingly separated.

  20. Integrating seismological and tectonic studies to constrain lithospheric evolution at complex plate boundaries

    NASA Astrophysics Data System (ADS)

    Hayes, Gavin Peter

    The relative motion of tectonic plates across their boundaries generates deformation in the surrounding lithosphere. How this deformation is expressed reflects both present-day plate configurations and how plate boundaries evolve. To understand the behavior of plate boundaries, we must study how they have developed. The advances made in seismology over the past fifty years---both in observation and application---provide tools ideal for such analysis. Here, I use these tools to investigate the tectonic evolution of complex plate boundaries. I focus on two areas that have experienced geologically recent plate tectonic variations---the Mendocino triple junction in northern California, and the Australia:Pacific plate boundary south of New Zealand. In northern California, the northward migration of the Mendocino triple junction over the past ˜10Ma has driven a synchronous pattern of thickening and thinning of North American crust. In studying this deformation I find major thinning is localized to a narrow region of crust in the Redwood Valley area. This thinning is accompanied by a steeply dipping Moho (>15°), and by high Poisson's Ratio's in the lower crust, characteristic of layers of melt. These melts may link to shallow (˜10km) dike injections that drive a migrating sequence of seismicity in the shallow crust near Lake Pillsbury. The limited data sets available led me to develop new tools in receiver function and crustal velocity ratio analyses that significantly improve our ability to resolve spatial changes in crustal properties. The application of these techniques forms a second major aspect of this thesis. Finally, I analyze the deformation of Australian lithosphere adjacent to the plate boundary south of New Zealand. I perform earthquake relocations on the distribution of intra- and inter-plate seismicity, and combined with plate reconstructions since the late Oligocene show that deformation occurs over a ˜150km wide area west of the current plate boundary

  1. A finite element boundary integral formulation for radiation and scattering by cavity antennas using tetrahedral elements

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, J. L.; Chatterjee, A.; Jin, J. M.

    1992-01-01

    A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration.

  2. Analysis of Well-Clear Boundary Models for the Integration of UAS in the NAS

    NASA Technical Reports Server (NTRS)

    Upchurch, Jason M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Chamberlain, James P.; Consiglio, Maria C.

    2014-01-01

    The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defnes the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. Analytical techniques are used to study the properties and relationships satisfied by the models. Some of these properties are numerically quantifed using statistical methods.

  3. Generalized method of moments: a boundary integral framework for adaptive analysis of acoustic scattering.

    PubMed

    Nair, N V; Shanker, B; Kempel, L

    2012-09-01

    Boundary integral equations (BIEs) find applications in problems ranging from sonar to medical diagnostics. The two ingredients of the BIE solution technique are (1) representation of the domain and (2) design of approximation spaces to represent physical quantities on the domain. These, in concert, affect accuracy and convergence of the simulation. This paper presents a framework that permits the development of a scheme for refinement (of size and order) in both geometry and function representations. Further, this permits flexibility in the types of basis functions that can be used. Capabilities of the proposed framework are shown via a number of numerical examples. PMID:22978854

  4. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    NASA Astrophysics Data System (ADS)

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  5. Extending the diffusion approximation to the boundary using an integrated diffusion model

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Du, Zhidong; Pan, Liang

    2015-06-01

    The widely used diffusion approximation is inaccurate to describe the transport behaviors near surfaces and interfaces. To solve such stochastic processes, an integro-differential equation, such as the Boltzmann transport equation (BTE), is typically required. In this work, we show that it is possible to keep the simplicity of the diffusion approximation by introducing a nonlocal source term and a spatially varying diffusion coefficient. We apply the proposed integrated diffusion model (IDM) to a benchmark problem of heat conduction across a thin film to demonstrate its feasibility. We also validate the model when boundary reflections and uniform internal heat generation are present.

  6. An inverse method for the design of bodies of revolution by boundary integral modelling

    NASA Astrophysics Data System (ADS)

    Lewis, R. I.

    A surface vorticity boundary integral method is presented for the design of bodies of revolution in axisymmetric flow. The analysis finds the desired body shape to deliver a prescribed surface potential flow velocity or pressure distribution. To achieve this the body surface is simulated by a flexible vorticity sheet of prescribed strength. Starting from an arbitrary first guess for the body shape, normally an ellipsoid, the flexible vortex sheet is successively realigned with its own self-induced flow field during an iterative process which converges accurately onto the desired shape. A well-proven analysis method is also presented for back-checking the final design.

  7. A finite element: Boundary integral method for electromagnetic scattering. Ph.D. Thesis Technical Report, Feb. - Sep. 1992

    NASA Technical Reports Server (NTRS)

    Collins, J. D.; Volakis, John L.

    1992-01-01

    A method that combines the finite element and boundary integral techniques for the numerical solution of electromagnetic scattering problems is presented. The finite element method is well known for requiring a low order storage and for its capability to model inhomogeneous structures. Of particular emphasis in this work is the reduction of the storage requirement by terminating the finite element mesh on a boundary in a fashion which renders the boundary integrals in convolutional form. The fast Fourier transform is then used to evaluate these integrals in a conjugate gradient solver, without a need to generate the actual matrix. This method has a marked advantage over traditional integral equation approaches with respect to the storage requirement of highly inhomogeneous structures. Rectangular, circular, and ogival mesh termination boundaries are examined for two-dimensional scattering. In the case of axially symmetric structures, the boundary integral matrix storage is reduced by exploiting matrix symmetries and solving the resulting system via the conjugate gradient method. In each case several results are presented for various scatterers aimed at validating the method and providing an assessment of its capabilities. Important in methods incorporating boundary integral equations is the issue of internal resonance. A method is implemented for their removal, and is shown to be effective in the two-dimensional and three-dimensional applications.

  8. A new Cretaceous-Tertiary boundary locality in the western powder River basin, Wyoming: biological and geological implications

    USGS Publications Warehouse

    Nichols, D.J.; Brown, J.L.; Attrep, M., Jr.; Orth, C.J.

    1992-01-01

    A newly discovered Cretaceous-Tertiary (K-T) boundary locality in the western Powder River basin, Wyoming, is characterized by a palynologically defined extinction horizon, a fern-spore abundance anomaly, a strong iridium anomaly, and shock-metamorphosed quartz grains. Detailed microstratigraphic analyses show that about one third of the palynoflora (mostly angiosperm pollen) disappeared abruptly, placing the K-T boundary within a distinctive, 1- to 2-cm-thick claystone layer. Shocked quartz grains are concentrated at the top of this layer, and although fern-spore and iridium concentrations are high in this layer, they reach their maximum concentrations in a 2-cm-thick carbonaceous claystone that overlies the boundary claystone layer. The evidence supports the theory that the K-T boundary event was associated with the impact of an extraterrestrial body or bodies. Palynological analyses of samples from the K-T boundary interval document extensive changes in the flora that resulted from the boundary event. The palynologically and geochemically defined K-T boundary provides a unique time-line of use in regional basin analysis. ?? 1992.

  9. Simplified model for determining local heat flux boundary conditions for slagging wall

    SciTech Connect

    Bingzhi Li; Anders Brink; Mikko Hupa

    2009-07-15

    In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equation is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.

  10. A locally stabilized immersed boundary method for the compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Brehm, C.; Hader, C.; Fasel, H. F.

    2015-08-01

    A higher-order immersed boundary method for solving the compressible Navier-Stokes equations is presented. The distinguishing feature of this new immersed boundary method is that the coefficients of the irregular finite-difference stencils in the vicinity of the immersed boundary are optimized to obtain improved numerical stability. This basic idea was introduced in a previous publication by the authors for the advection step in the projection method used to solve the incompressible Navier-Stokes equations. This paper extends the original approach to the compressible Navier-Stokes equations considering flux vector splitting schemes and viscous wall boundary conditions at the immersed geometry. In addition to the stencil optimization procedure for the convective terms, this paper discusses other key aspects of the method, such as imposing flux boundary conditions at the immersed boundary and the discretization of the viscous flux in the vicinity of the boundary. Extensive linear stability investigations of the immersed scheme confirm that a linearly stable method is obtained. The method of manufactured solutions is used to validate the expected higher-order accuracy and to study the error convergence properties of this new method. Steady and unsteady, 2D and 3D canonical test cases are used for validation of the immersed boundary approach. Finally, the method is employed to simulate the laminar to turbulent transition process of a hypersonic Mach 6 boundary layer flow over a porous wall and subsonic boundary layer flow over a three-dimensional spherical roughness element.

  11. An exterior Poisson solver using fast direct methods and boundary integral equations with applications to nonlinear potential flow

    NASA Technical Reports Server (NTRS)

    Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.

    1986-01-01

    A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.

  12. Efficient solution of time-domain boundary integral equations arising in sound-hard scattering

    NASA Astrophysics Data System (ADS)

    Veit, Alexander; Merta, Michal; Zapletal, Jan; Lukáš, Dalibor

    2016-08-01

    We consider the efficient numerical solution of the three-dimensional wave equation with Neumann boundary conditions via time-domain boundary integral equations. A space-time Galerkin method with $C^\\infty$-smooth, compactly supported basis functions in time and piecewise polynomial basis functions in space is employed. We discuss the structure of the system matrix and its efficient parallel assembly. Different preconditioning strategies for the solution of the arising systems with block Hessenberg matrices are proposed and investigated numerically. Furthermore, a C++ implementation parallelized by OpenMP and MPI in shared and distributed memory, respectively, is presented. The code is part of the boundary element library BEM4I. Results of numerical experiments including convergence and scalability tests up to a thousand cores on a cluster are provided. The presented implementation shows good parallel scalability of the system matrix assembly. Moreover, the proposed algebraic preconditioner in combination with the FGMRES solver leads to a significant reduction of the computational time.

  13. Analysis of mixed-mode crack propagation using the boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L. J.

    1986-01-01

    Crack propagation in a rotating inner raceway of a high speed roller bearing is analyzed using the boundary integral equation method. The method consists of an edge crack in a plate under tension, upon which varying Hertzian stress fields are superimposed. A computer program for the boundary integral equation method was written using quadratic elements to determine the stress and displacement fields for discrete roller positions. Mode I and Mode II stress intensity factors and crack extension forces G sub 00 (energy release rate due to tensile opening mode) and G sub r0 (energy release rate due to shear displacement mode) were computed. These calculations permit determination of that crack growth angle for which the change in the crack extension forces is maximum. The crack driving force was found to be the alternating mixed-mode loading that occurs with each passage of the most heavily loaded roller. The crack is predicted to propagate in a step-like fashion alternating between radial and inclined segments, and this pattern was observed experimentally. The maximum changes DeltaG sub 00 and DeltaG sub r0 of the crack extension forces are found to be good measures of the crack propagation rate and direction.

  14. A coupled finite-element, boundary-integral method for simulating ultrasonic flowmeters.

    PubMed

    Bezdĕk, Michal; Landes, Hermann; Rieder, Alfred; Lerch, Reinhard

    2007-03-01

    Today's most popular technology of ultrasonic flow measurement is based on the transit-time principle. In this paper, a numerical simulation technique applicable to the analysis of transit-time flowmeters is presented. A flowmeter represents a large simulation problem that also requires computation of acoustic fields in moving media. For this purpose, a novel boundary integral method, the Helmholtz integral-ray tracing method (HIRM), is derived and validated. HIRM is applicable to acoustic radiation problems in arbitrary mean flows at low Mach numbers and significantly reduces the memory demands in comparison with the finite-element method (FEM). It relies on an approximate free-space Green's function which makes use of the ray tracing technique. For simulation of practical acoustic devices, a hybrid simulation scheme consisting of FEM and HIRM is proposed. The coupling of FEM and HIRM is facilitated by means of absorbing boundaries in combination with a new, reflection-free, acoustic-source formulation. Using the coupled FEM-HIRM scheme, a full three-dimensional (3-D) simulation of a complete transit-time flowmeter is performed for the first time. The obtained simulation results are in good agreement with measurements both at zero flow and under flow conditions. PMID:17375833

  15. Local probe microscopic studies on Al-doped ZnO: Pseudoferroelectricity and band bending at grain boundaries

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2016-01-01

    In this paper, based on piezoforce measurements, we show the presence of opposite polarization at grains and grain boundaries of Al-doped ZnO (AZO). The polarization can be flipped by 180° in phase by switching the polarity of the applied electric field, revealing the existence of nanoscale pseudoferroelectricity in AZO grown on Pt/TiO2/SiO2/Si substrate. We also demonstrate an experimental evidence on local band bending at grain boundaries of AZO films using conductive atomic force microscopy and Kelvin probe force microscopy. The presence of an opposite polarization at grains and grain boundaries gives rise to a polarization-driven barrier formation at grain boundaries. With the help of conductive atomic force microscopy, we show that the polarization-driven barrier along with the defect-induced electrostatic potential barrier account for the measured local band bending at grain boundaries. The present study opens a new avenue to understand the charge transport in light of both polarization and electrostatic effects.

  16. Solution of Poisson's Equation with Global, Local and Nonlocal Boundary Conditions

    ERIC Educational Resources Information Center

    Aliev, Nihan; Jahanshahi, Mohammad

    2002-01-01

    Boundary value problems (BVPs) for partial differential equations are common in mathematical physics. The differential equation is often considered in simple and symmetric regions, such as a circle, cube, cylinder, etc., with global and separable boundary conditions. In this paper and other works of the authors, a general method is used for the…

  17. The Sensitivity of Large-Eddy Simulation to Local and Nonlocal Drag Coefficients at the Lower Boundary

    NASA Technical Reports Server (NTRS)

    Schowalter, D. G.; DeCroix, D. S.; Lin, Y. L.; Arya, S. P.; Kaplan, M. L.

    1996-01-01

    It was found that the homogeneity of the surface drag coefficient plays an important role in the large scale structure of turbulence in large-eddy simulation of the convective atmospheric boundary layer. Particularly when a ground surface temperature was specified, large horizontal anisotropies occurred when the drag coefficient depended upon local velocities and heat fluxes. This was due to the formation of streamwise roll structures in the boundary layer. In reality, these structures have been found to form when shear is approximately balanced by buoyancy. The present cases, however, were highly convective. The formation was caused by particularly low values of the drag coefficient at the entrance to thermal plume structures.

  18. Generalization of Boundary-Layer Momentum-Integral Equations to Three-Dimensional Flows Including Those of Rotating System

    NASA Technical Reports Server (NTRS)

    Mager, Arthur

    1952-01-01

    The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.

  19. RF photonic front-end integrating with local oscillator loop.

    PubMed

    Yu, H; Chen, M; Gao, H; Yang, S; Chen, H; Xie, S

    2014-02-24

    Broadband Radio frequency (RF) photonic front-ends are one of the vital applications of the microwave photonics. A tunable and broadband RF photonic front-end integrating with the optoelectronic oscillator (OEO) based local oscillator has been proposed and experimentally demonstrated, in which only one phase modulator (PM) is employed thanks to the characteristic of the PM. The silicon-on-insulator based narrow-bandwidth band-pass filter is introduced for signal processing. The application condition of the proposed RF photonic front-end has been discussed and the performance of the front-end has also been measured. The SFDR at a frequency of about 7.02 GHz is measured to be 88.6 dB-Hz(2/3). PMID:24663712

  20. Local and Global Illumination in the Volume Rendering Integral

    SciTech Connect

    Max, N; Chen, M

    2005-10-21

    This article is intended as an update of the major survey by Max [1] on optical models for direct volume rendering. It provides a brief overview of the subject scope covered by [1], and brings recent developments, such as new shadow algorithms and refraction rendering, into the perspective. In particular, we examine three fundamentals aspects of direct volume rendering, namely the volume rendering integral, local illumination models and global illumination models, in a wavelength-independent manner. We review the developments on spectral volume rendering, in which visible light are considered as a form of electromagnetic radiation, optical models are implemented in conjunction with representations of spectral power distribution. This survey can provide a basis for, and encourage, new efforts for developing and using complex illumination models to achieve better realism and perception through optical correctness.

  1. Local Outer Radiating Boundary Conditions for the Finite-Difference Time-Domain Method Applied to Maxwell's Equations.

    NASA Astrophysics Data System (ADS)

    Steich, David James

    1995-01-01

    The Finite Difference Time Domain (FDTD) method is a simple yet powerful method for numerically solving electromagnetic wave phenomenon on computers. The FDTD technique discretizes Maxwell's equations with finite difference equations. These finite difference equations, which approximate local field behavior, are applied to large spatial lattices allowing calculation of a vast array of electromagnetical phenomenon. The greatest strengths of the FDTD method are in its simplicity, efficiency, and diversity. FDTD is capable of modeling the scattering and coupling to lossy dielectrics, lossy magnetics, anisotropic media, dispersive media, and nonlinear materials for general geometric shapes. Wideband frequency information can be obtained using FDTD for both near and far field observation points in a single computational run. However, along with all of its benefits, the FDTD algorithm has some deficiencies. For most problems of interest, poor accuracy at geometry interfaces of differing media and at outer problem space boundarys where the spatial lattice must be truncated are the two largest error sources of the FDTD algorithm. Although most accuracy issues can be circumvented by expending large amounts of computer memory and cpu time, using excessive computer resources is not always possible and is never appealing. The purpose of this thesis is to generalize, analyze, and test various mainstream local Outer Radiating Boundary Conditions (ORBCs) for the FDTD method applied to Maxwell's equations in order to help gain a better understanding of present ORBC limitations. A common mathematical model is presented for the boundary conditions. Boundary conditions shown to fit the model include Mur, Superabsorption, Liao, Higdon, and Lindman ORBCs of varying orders. Simple operators are defined and then used to generate the final discretized equations for each of the boundary conditions, automatically, without requiring complicated high order equations. The procedure also allows

  2. An integral wall model for Large Eddy Simulation (iWMLES) and applications to developing boundary layers over smooth and rough plates

    NASA Astrophysics Data System (ADS)

    Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles

    2014-11-01

    A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).

  3. Ellipsoidally-shaped local absorbing boundaries for three-dimensional scalar wave propagation

    NASA Astrophysics Data System (ADS)

    Kallivokas, L. F.; Lee, S.

    2004-12-01

    In this paper we discuss the performance of second-order absorbing conditions prescribed on ellipsoidally-shaped truncation boundaries for the resolution of scalar wave phenomena in three dimensions. The second-order conditions employed herein belong to a larger class of arbitrarily-shaped convex absorbing boundaries developed earlier [21] for acoustic scattering and radiation problems in unbounded domains. In [21] we discussed their performance when used on spherical truncation boundaries for applications in both the time- and frequency-domains. Here, we extend their applicability to ellipsoidal geometries and demonstrate that significant computational savings are attainable due to the reduced computational domain afforded by the ellipsoid.

  4. Derivation and implementation of the boundary integral formula for the convective acoustic wave equation in time domain.

    PubMed

    Lee, Yong Woo; Lee, Duck Joo

    2014-12-01

    Kirchhoff's formula for the convective wave equation is derived using the generalized function theory. The generalized convective wave equation for a stationary surface is obtained, and the integral formulation, the convective Kirchhoff's formula, is derived. The formula has a similar form to the classical Kirchhoff's formula, but an additional term appears due to a moving medium effect. For convenience, the additional term is manipulated to a final form as the classical Kirchhoff's formula. The frequency domain boundary integral can be obtained from the current time domain boundary integral form. The derived formula is verified by comparison with the analytic solution of source in the uniform flow. The formula is also utilized as a boundary integral equation. Time domain boundary element method (BEM) analysis using the boundary integral equation is conducted, and the results show good agreement with the analytical solution. The formula derived here can be useful for sound radiation and scattering by arbitrary bodies in a moving medium in the time domain. PMID:25480045

  5. A finite element-boundary integral method for scattering and radiation by two- and three-dimensional structures

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.; Collins, Jeffery D.

    1991-01-01

    A review of a hybrid finite element-boundary integral formulation for scattering and radiation by two- and three-dimensional composite structures is presented. In contrast to other hybrid techniques involving the finite element method, the proposed one is in principle exact and can be implemented using a low O(N) storage. This is of particular importance for large scale applications and is a characteristic of the boundary chosen to terminate the finite element mesh, usually as close to the structure as possible. A certain class of these boundaries lead to convolutional boundary integrals which can be evaluated via the fast Fourier transform (FFT) without a need to generate a matrix; thus, retaining the O(N) storage requirement. The paper begins with a general description of the method. A number of two- and three-dimensional applications are then given, including numerical computations which demonstrate the method's accuracy, efficiency, and capability.

  6. An efficient boundary integral formulation for flow through fractured porous media

    SciTech Connect

    Lough, M.F.; Lee, S.H.; Kamath, J.

    1998-07-01

    In this paper the authors present a new model for flow in fractured porous media. They formulate the model in terms of a coupled system of boundary integral equations and present an efficient procedure for solving the equations using the boundary element method. In the new model, the flow in the matrix is governed by the usual Darcy law for porous media, with the fractures being treated as planar sources embedded in the matrix. The flow in an individual fracture is governed by a two-dimensional Darcy law (as in a Hele-Shaw cell), with an associated planar sink distribution. The essential feature of this approach is that the fractures are treated as special planes rather than narrow-gap voids. The error in the resulting system of equations is on the order of an intrinsic dimensionless parameter (the ratio of the fracture gap size to the scale of the volume under consideration). They also describe how they adapt the new model to compute effective grid block permeabilities. This was the principal motivation behind the development of the new model. Using effective grid block permeabilities to model flow in fractured oil and gas reservoirs is a much more efficient process than modeling the flow when every fracture is precisely represented. They present some numerical examples that illustrate the new flow model and how it is used to model flow in a reservoir.

  7. Simulating and interpreting Kelvin probe force microscopy images on dielectrics with boundary integral equations

    NASA Astrophysics Data System (ADS)

    Shen, Yongxing; Barnett, David M.; Pinsky, Peter M.

    2008-02-01

    Kelvin probe force microscopy (KPFM) is designed for measuring the tip-sample contact potential differences by probing the sample surface, measuring the electrostatic interaction, and adjusting a feedback circuit. However, for the case of a dielectric (insulating) sample, the contact potential difference may be ill defined, and the KPFM probe may be sensing electrostatic interactions with a certain distribution of sample trapped charges or dipoles, leading to difficulty in interpreting the images. We have proposed a general framework based on boundary integral equations for simulating the KPFM image based on the knowledge about the sample charge distributions (forward problem) and a deconvolution algorithm solving for the trapped charges on the surface from an image (inverse problem). The forward problem is a classical potential problem, which can be efficiently solved using the boundary element method. Nevertheless, the inverse problem is ill posed due to data incompleteness. For some special cases, we have developed deconvolution algorithms based on the forward problem solution. As an example, this algorithm is applied to process the KPFM image of a gadolinia-doped ceria thin film to solve for its surface charge density, which is a more relevant quantity for samples of this kind than the contact potential difference (normally only defined for conductive samples) values contained in the raw image.

  8. Advances in the study of boundary value problems for nonlinear integrable PDEs

    NASA Astrophysics Data System (ADS)

    Pelloni, Beatrice

    2015-02-01

    In this review I summarize some of the most significant advances of the last decade in the analysis and solution of boundary value problems for integrable partial differential equations (PDEs) in two independent variables. These equations arise widely in mathematical physics, and in order to model realistic applications, it is essential to consider bounded domain and inhomogeneous boundary conditions. I focus specifically on a general and widely applicable approach, usually referred to as the unified transform or Fokas transform, that provides a substantial generalization of the classical inverse scattering transform. This approach preserves the conceptual efficiency and aesthetic appeal of the more classical transform approaches, but presents a distinctive and important difference. While the inverse scattering transform follows the ‘separation of variables’ philosophy, albeit in a nonlinear setting, the unified transform is based on the idea of synthesis, rather than separation, of variables. I will outline the main ideas in the case of linear evolution equations, and then illustrate their generalization to certain nonlinear cases of particular significance.

  9. Integrating remote sensing and GIS data for the Natural Systems Boundary (NSB) model

    SciTech Connect

    Leary, T.J.; Flamm, R.O.; Haddad, K.D.

    1997-06-01

    Significant alterations in hydrology, water quality, and land use have put the entire south Florida ecosystem on the brink of collapse. Considerable federal, state, and local efforts have focused on this region to develop and implement management options for environmental and economic restoration and sustainability. The Governor`s Commission for a Sustainable South Florida was created to represent a broad array of interests in the region and is charged with setting the state is vision, direction, and management options for an environmentally and economically sustainable south Florida ecosystem. The Commission`s Science Research Advisory Committee (SRAC) was given the responsibility of delineating and evaluating alternative natural system boundaries. To meet the Commission`s recommendations, the SRAC empowered the Florida Marine Research Institute (FMR1) to develop a GIS-based modeling application. The resulting ARCVIEW application allows managers and scientists to delineate alternative Natural Systems Boundaries (NSBs) by varying the selection and weight (relative importance) of management criteria such as hydrology, habitat, wildlife, and water quality. Repetitive model runs with modifications to the user-defined inputs afford managers the opportunity to better understand the complexity of the data and their relationship to management objectives.

  10. A Family of Well-Clear Boundary Models for the Integration of UAS in the NAS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Narkawicz, Anthony; Chamberlain, James; Consiglio, Maria; Upchurch, Jason

    2014-01-01

    The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defines the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. For these models, algorithms that predict well-clear violations along aircraft current trajectories are provided. These algorithms are analogous to conflict detection algorithms but instead of predicting loss of separation, they predict whether well-clear violations will occur during a given lookahead time interval. Analytical techniques are used to study the properties and relationships satisfied by the models.

  11. Prediction of metallic nano-optical trapping forces by finite element-boundary integral method.

    PubMed

    Pan, Xiao-Min; Xu, Kai-Jiang; Yang, Ming-Lin; Sheng, Xin-Qing

    2015-03-01

    The hybrid of finite element and boundary integral (FE-BI) method is employed to predict nano-optical trapping forces of arbitrarily shaped metallic nanostructures. A preconditioning strategy is proposed to improve the convergence of the iterative solution. Skeletonization is employed to speed up the design and optimization where iteration has to be repeated for each beam configuration. The radiation pressure force (RPF) is computed by vector flux of the Maxwell's stress tensor. Numerical simulations are performed to validate the developed method in analyzing the plasmonic effects as well as the optical trapping forces. It is shown that the proposed method is capable of predicting the trapping forces of complex metallic nanostructures accurately and efficiently. PMID:25836836

  12. Boundary integral equation method calculations of surface regression effects in flame spreading

    NASA Technical Reports Server (NTRS)

    Altenkirch, R. A.; Rezayat, M.; Eichhorn, R.; Rizzo, F. J.

    1982-01-01

    A solid-phase conduction problem that is a modified version of one that has been treated previously in the literature and is applicable to flame spreading over a pyrolyzing fuel is solved using a boundary integral equation (BIE) method. Results are compared to surface temperature measurements that can be found in the literature. In addition, the heat conducted through the solid forward of the flame, the heat transfer responsible for sustaining the flame, is also computed in terms of the Peclet number based on a heated layer depth using the BIE method and approximate methods based on asymptotic expansions. Agreement between computed and experimental results is quite good as is agreement between the BIE and the approximate results.

  13. Cones of localized shear strain in incompressible elasticity with prestress: Green's function and integral representations.

    PubMed

    Argani, L P; Bigoni, D; Capuani, D; Movchan, N V

    2014-09-01

    The infinite-body three-dimensional Green's function set (for incremental displacement and mean stress) is derived for the incremental deformation of a uniformly strained incompressible, nonlinear elastic body. Particular cases of the developed formulation are the Mooney-Rivlin elasticity and the J2-deformation theory of plasticity. These Green's functions are used to develop a boundary integral equation framework, by introducing an ad hoc potential, which paves the way for a boundary element formulation of three-dimensional problems of incremental elasticity. Results are used to investigate the behaviour of a material deformed near the limit of ellipticity and to reveal patterns of shear failure. In fact, within the investigated three-dimensional framework, localized deformations emanating from a perturbation are shown to be organized in conical geometries rather than in planar bands, so that failure is predicted to develop through curved and thin surfaces of intense shearing, as can for instance be observed in the cup-cone rupture of ductile metal bars. PMID:25197258

  14. Prediction method for two-dimensional aerodynamic losses of cooled vanes using integral boundary-layer parameters

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.; Augler, R. E.

    1980-01-01

    A generalized analysis to predict the two-dimensional aerodynamic losses of film-cooled vanes by using integral boundary-layer parameters is presented. Heat-transfer and trailing-edge injection effects are included in the method. An approximate solution of the generalized equations is also included to show more clearly the effect of the different boundary-layer and cooling parameters on the losses. The analytical predictions agree well with the experimental results, indicating that available boundary-layer calculations for cooled vanes are of sufficient accuracy to use in the prediction method.

  15. DYNAMIC PLANE-STRAIN SHEAR RUPTURE WITH A SLIP-WEAKENING FRICTION LAW CALCULATED BY A BOUNDARY INTEGRAL METHOD.

    USGS Publications Warehouse

    Andrews, D.J.

    1985-01-01

    A numerical boundary integral method, relating slip and traction on a plane in an elastic medium by convolution with a discretized Green function, can be linked to a slip-dependent friction law on the fault plane. Such a method is developed here in two-dimensional plane-strain geometry. Spontaneous plane-strain shear ruptures can make a transition from sub-Rayleigh to near-P propagation velocity. Results from the boundary integral method agree with earlier results from a finite difference method on the location of this transition in parameter space. The methods differ in their prediction of rupture velocity following the transition. The trailing edge of the cohesive zone propagates at the P-wave velocity after the transition in the boundary integral calculations. Refs.

  16. Integrated high Tc superconducting magnetometer with multiturn input coil and grain boundary junctions

    NASA Astrophysics Data System (ADS)

    Shen, Y. Q.; Sun, Z. J.; Kromann, R.; Holst, T.; Vase, P.; Freloft, T.

    1995-10-01

    We have fabricated and tested integrated magnetometers based on the superconducting quantum interference device (SQUID). The magnetometer consists of two patterned films of YBa2Cu3O7, separated by an insulating layer of SrTiO3. A multiturn input coil was integrated on top of the SQUID, where the misorientation angle in a SrTiO3 bicrystal substrate was used to form the grain boundary junctions. The noise spectrum was characterized at 77 K and showed that above 10 Hz the magnetometer sensitivity is limited by a white noise level of around 4×10-5 Φ0/Hz1/2. In the 4 mm × 4 mm detection area of the input coil, this translates into a magnetic field sensitivity of 320 fT/ Hz1/2 at 100 Hz. Compared to the theoretical value of an optimized SQUID the white noise level of the magnetometer is two times higher. Below 10 Hz the noise is dominated by 1/f noise mainly due to the critical current fluctuations.

  17. Local Melatoninergic System as the Protector of Skin Integrity

    PubMed Central

    Slominski, Andrzej T.; Kleszczyński, Konrad; Semak, Igor; Janjetovic, Zorica; Żmijewski, Michał A.; Kim, Tae-Kang; Slominski, Radomir M.; Reiter, Russel J.; Fischer, Tobias W.

    2014-01-01

    The human skin is not only a target for the protective actions of melatonin, but also a site of melatonin synthesis and metabolism, suggesting an important role for a local melatoninergic system in protection against ultraviolet radiation (UVR) induced damages. While melatonin exerts many effects on cell physiology and tissue homeostasis via membrane bound melatonin receptors, the strong protective effects of melatonin against the UVR-induced skin damage including DNA repair/protection seen at its high (pharmocological) concentrations indicate that these are mainly mediated through receptor-independent mechanisms or perhaps through activation of putative melatonin nuclear receptors. The destructive effects of the UVR are significantly counteracted or modulated by melatonin in the context of a complex intracutaneous melatoninergic anti-oxidative system with UVR-enhanced or UVR-independent melatonin metabolites. Therefore, endogenous intracutaneous melatonin production, together with topically-applied exogenous melatonin or metabolites would be expected to represent one of the most potent anti-oxidative defense systems against the UV-induced damage to the skin. In summary, we propose that melatonin can be exploited therapeutically as a protective agent or as a survival factor with anti-genotoxic properties or as a “guardian” of the genome and cellular integrity with clinical applications in UVR-induced pathology that includes carcinogenesis and skin aging. PMID:25272227

  18. Properties of localized polar cap flow enhancements and their connection to nightside poleward boundary intensifications and substorms

    NASA Astrophysics Data System (ADS)

    Zou, Y.; Nishimura, Y.; Lyons, L. R.; Shiokawa, K.; Donovan, E.; Ruohoniemi, J. M.; McWilliams, K. A.; Nishitani, N.

    2014-12-01

    Previous radar observations have shown that polar cap flows are highly structured and that localized flow enhancements are related to nightside auroral disturbances. However, such studies are limited to available echo regions. Utilizing wide spatial coverage by an all-sky imager at Resolute Bay and simultaneous SuperDARN radar measurements, we determined properties of such localized flow enhancements and their statistical association with nightside auroral activity. We found that narrow flow enhancements are well collocated with airglow patches with substantially larger velocities (>~200 m/s up to ~700 m/s) than the weak large-scale polar cap convection. The flow widths are similar to the patch widths. During the evolution across nightside the polar cap, the flow directions and speeds are consistent with the patch propagation directions and speeds. These correspondences indicate that patches can visualize localized flow enhancements reflecting the flow width, speed and direction. Such associations were prevalent (~67%) in our survey and tended to be observed under By-dominated IMF. The typical flow channel speed, propagation time, and width within our observation areas were 600 m/s, tens of minutes, and 200-300 km, respectively. Localized flow enhancements were usually observed as a channel elongated in the noon-midnight meridian and directed towards pre-midnight (post-midnight) for +By (-By), and accounted for ~10-40% of the plasma transport across the entire polar cap. Utilizing airglow patches as tracers of localized flow enhancements, we also found that as localized polar cap structures move across the polar cap and impinge on the poleward boundary of the nightside auroral oval, they are followed by poleward boundary intensifications (PBIs), which can extend equatorward as auroral streamers, some of which further propagate equatorward and are followed by a substorm auroral onset. This suggests that localized flow enhancements within the polar cap can contribute

  19. GPR simulation based on complex frequency shifted recursive integration PML boundary of 3D high order FDTD

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zeng, Zhaofa; Huang, Ling; Liu, Fengshan

    2012-12-01

    When applying the finite difference time domain (FDTD) method in Ground Penetrating Radar (GPR) simulation, the absorbing boundary conditions (ABC) are used to mitigate undesired reflection that can arise at the model's truncation boundaries. The classical PML boundary can make spurious reflection for the waves, such as reaching to the PML interface with near-grazing angles, low frequency waves or evanescent waves. The non-split complex frequency shifted PML which base on recursive integration (CFS-RIPML) has a good absorption effect for these interference waves. Meanwhile, the recursive integration, which does not need split field component, can overcome the shortcoming of CFS technique that needs more intermediate variable and large memory. In addition, the high-order FDTD can improve calculation accuracy and reduce the error caused by numerical dispersion effectively. In this paper, we derive the 3D high-order FDTD method with CFS-RIPML boundary and apply it in GPR simulation. The results show that the CFS-RIPML has significantly better absorption effect and lower reflections error than UPML and PML boundary. Compared with the two-order, the high-order FDTD can improve calculation accuracy effectively with the same grid size. Combination with CFS-RIPML boundary and high-order FDTD can improve the reliability and calculation accuracy of GPR and other geophysics numerical simulation.

  20. Three-dimensional local ALE-FEM method for fluid flow in domains containing moving boundaries/objects interfaces

    SciTech Connect

    Carrington, David Bradley; Monayem, A. K. M.; Mazumder, H.; Heinrich, Juan C.

    2015-03-05

    A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is a fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.

  1. A hybrid non-reflective boundary technique for efficient simulation of guided waves using local interaction simulation approach

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Cesnik, Carlos E. S.

    2016-04-01

    Local interaction simulation approach (LISA) is a highly parallelizable numerical scheme for guided wave simulation in structural health monitoring (SHM). This paper addresses the issue of simulating wave propagation in unbounded domain through the implementation of non-reflective boundary (NRB) in LISA. In this study, two different categories of NRB, i.e., the non-reflective boundary condition (NRBC) and the absorbing boundary layer (ABL), have been investigated in the parallelized LISA scheme. For the implementation of NRBC, a set of general LISA equations considering the effect from boundary stress is obtained first. As a simple example, the Lysmer and Kuhlemeyer (L-K) model is applied here to demonstrate the easiness of NRBC implementation in LISA. As a representative of ABL implementation, the LISA scheme incorporating the absorbing layers with increasing damping (ALID) is also proposed, based on elasto-dynamic equations considering damping effect. Finally, an effective hybrid model combining L-K and ALID methods in LISA is developed, and guidelines for implementing the hybrid model is presented. Case studies on a three-dimensional plate model compares the performance of hybrid method to that of L-K and ALID acting independently. The simulation results demonstrate that best absorbing efficiency is achieved with the hybrid method.

  2. Shape identification technique for a two-dimensional elliptic system by boundary integral equation method

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1989-01-01

    The geometrical structure of the boundary shape for a two-dimensional boundary value problem is identified. The output least square identification method is considered for estimating partially unknown boundary shapes. A numerical parameter estimation technique using the spline collocation method is proposed.

  3. Prototype Local Data Integration System and Central Florida Data Deficiency

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Case, Jonathan

    1998-01-01

    This report describes the Applied Meteorology Unit's (AMU) task on the Local Data Integration System (LDIS) and central Florida data deficiency. The objectives of the task are to identify all existing meteorological data sources within 250 km of the Kennedy Space Center (KSC) and the Eastern Range at Cape Canaveral Air Station (CCAS), identify and configure an appropriate LDIS to integrate these data, and implement a working prototype to be used for limited case studies and data non-incorporation (DNI) experiments. The ultimate goal for running LDIS is to generate products that may enhance weather nowcasts and short-range (less than 6 h) forecasts issued in support of the 45th Weather Squadron (45 WS), Spaceflight Meteorology Group (SMG), and the Melbourne National Weather Service (NWS MLB) operational requirements. The LDIS has the potential to provide added value for nowcasts and short term forecasts for two reasons. First, it incorporates all data operationally available in east central Florida. Second, it is run at finer spatial and temporal resolutions than current national-scale operational models. In combination with a suitable visualization tool, LDIS may provide users with a more complete and comprehensive understanding of evolving fine-scale weather features than could be developed by individually examining the disparate data sets over the same area and time. The utility of LDIS depends largely on the reliability and availability of observational data. Therefore, it is important to document all existing meteorological data sources around central Florida that can be incorporated by it. Several factors contribute to the data density and coverage over east central Florida including the level in the atmosphere, distance from KSC/CCAS, time, and prevailing weather. The central Florida mesonet consists of existing surface meteorological and hydrological data available from the Tampa NWS and data servers at Miami and Jacksonville. However the utility of these

  4. Justification of the collocation method for the integral equation for a mixed boundary value problem for the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Khalilov, E. H.

    2016-07-01

    The surface integral equation for a spatial mixed boundary value problem for the Helmholtz equation is considered. At a set of chosen points, the equation is replaced with a system of algebraic equations, and the existence and uniqueness of the solution of this system is established. The convergence of the solutions of this system to the exact solution of the integral equation is proven, and the convergence rate of the method is determined.

  5. Integrated stratigraphy of the Cenomanian-Turonian boundary interval: improving understanding of Oceanic Anoxic Events

    NASA Astrophysics Data System (ADS)

    Jarvis, Ian

    2014-05-01

    The Cenomanian-Turonian boundary (CTB) interval ~ 94 Ma represented a period of major global palaeoenvironmental change. Increasingly detailed multidisciplinary studies integrating sedimentological, palaeontological and geochemical data from multiple basins, are enabling the development of refined but complex models that aid understanding of the mechanisms driving changes in ocean productivity and climate. This paper reviews some of the exciting new developments in this field. Facies change characterizes the CTB interval in most areas. In the Chalk seas of northern Europe, a widespead hiatus was followed by the deposition of clay-rich organic-lean beds of the Plenus Marl and its equivalents, and then nodular chalks. In the North Sea basin and its onshore extension in eastern England and northern Germany, black shales of the Black Band (Blodøks Formation, Hasseltal Formation) occur. Similarly, in northern Tethys, a brief interval of black shale accumulation within a predominantly carbonate succession, is exemplified by the Niveau Thomel in the Vocontian Basin (SE France), and the Livello Bonarelli in Italy. Widespread deposition of organic-rich marine sediments during CTB times led to 12C depletion in surface carbon reservoirs (oceans, atmosphere, biosphere), and a large positive global δ13C excursion preserved in marine carbonates and both marine and terrestrial organic matter (Oceanic Anoxic Event 2). Significant biotic turnover characterises the boundary interval, and inter-regional correlation may be achieved at high resolution using integrated biostratigraphy employing macrofossils (ammonites, inoceramid bivalves), microfossils (planktonic foraminifera, dinoflagellate cysts) and calcareous nannofossils. Correlations can be tested against those based on comparison of δ13C profiles - carbon isotope chemostratigraphy, supplemented by oxygen isotope and elemental data. Interpretation of paired carbonate - organic matter δ13C data from multiple CTB sections

  6. Analysis of Water Conflicts across Natural and Societal Boundaries: Integration of Quantitative Modeling and Qualitative Reasoning

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Balaram, P.; Islam, S.

    2009-12-01

    Water issues and problems have bewildered humankind for a long time yet a systematic approach for understanding such issues remain elusive. This is partly because many water-related problems are framed from a contested terrain in which many actors (individuals, communities, businesses, NGOs, states, and countries) compete to protect their own and often conflicting interests. We argue that origin of many water problems may be understood as a dynamic consequence of competition, interconnections, and feedback among variables in the Natural and Societal Systems (NSSs). Within the natural system, we recognize that triple constraints on water- water quantity (Q), water quality (P), and ecosystem (E)- and their interdependencies and feedback may lead to conflicts. Such inherent and multifaceted constraints of the natural water system are exacerbated often at the societal boundaries. Within the societal system, interdependencies and feedback among values and norms (V), economy (C), and governance (G) interact in various ways to create intractable contextual differences. The observation that natural and societal systems are linked is not novel. Our argument here, however, is that rigid disciplinary boundaries between these two domains will not produce solutions to the water problems we are facing today. The knowledge needed to address water problems need to go beyond scientific assessment in which societal variables (C, G, and V) are treated as exogenous or largely ignored, and policy research that does not consider the impact of natural variables (E, P, and Q) and that coupling among them. Consequently, traditional quantitative methods alone are not appropriate to address the dynamics of water conflicts, because we cannot quantify the societal variables and the exact mathematical relationships among the variables are not fully known. On the other hand, conventional qualitative study in societal domain has mainly been in the form of individual case studies and therefore

  7. A combined finite element and boundary integral formulation for solution via CGFFT of 2-dimensional scattering problems

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Volakis, John L.

    1989-01-01

    A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principle advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.

  8. Modeling for planetary boundaries: a network analysis of representations of complex human-environmental interactions in integrated global models

    NASA Astrophysics Data System (ADS)

    Friedrich, Johannes; Fetzer, Ingo; Cornell, Sarah

    2016-04-01

    The planetary boundaries framework is an approach to global sustainability that emphasises non-linear threshold behavior in anthropogenically perturbed Earth system processes. However, knowledge about the characteristics and positions of thresholds, and the scope for management of the boundaries is not well established. Global integrated models can help to improve this understanding, by reflecting the complex feedbacks between human and environmental systems. This study analyses the current state of integrated models with regard to the main processes identified as 'critical Earth system processes' in the planetary boundaries framework, and identifies gaps and suggests priorities for future improvements. Our approach involves creating a common ontology of model descriptions, and performing a network analysis on the state of system integration in models. The distinct clusters of specific biophysical and social-economic systems obviously has enabled progress in those specific areas of global change, but it now constrains analysis of important human-driven Earth system dynamics. The modeling process therefore has to be improved through technical integration, scientific gap-filling, and also changes in scientific institutional dynamics. Combined, this can advance model potentials that may help us to find sustainable pathways within planetary boundaries.

  9. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  10. Some free boundary problems involving non-local diffusion and aggregation

    PubMed Central

    Carrillo, José Antonio; Vázquez, Juan Luis

    2015-01-01

    We report on recent progress in the study of evolution processes involving degenerate parabolic equations which may exhibit free boundaries. The equations we have selected follow two recent trends in diffusion theory: considering anomalous diffusion with long-range effects, which leads to fractional operators or other operators involving kernels with large tails; and the combination of diffusion and aggregation effects, leading to delicate long-term equilibria whose description is still incipient. PMID:26261360