Local-field correction in the strong-coupling regime
Hien, Tran Minh; Dung, Ho Trung; Welsch, Dirk-Gunnar
2011-04-15
The influence of the local-field correction on the strong atom-field coupling regime are investigated using the real-cavity model. The atom is positioned at the center of a multilayer sphere. Three types of mirrors are considered: perfectly reflecting, Lorentz band gap, and Bragg-distributed ones, with special emphasis on experimental practicability. In particular, the influence of the local field on the spectral resonance lines, the Rabi oscillation frequency and decay rate, and the condition indicating the occurrence of the strong-coupling regime are studied in detail. It is shown that the local-field correction gives rise to a structureless plateau in the density of states of the electromagnetic field. The level of the plateau rises with increasing material density and/or absorption, which may eventually destroy the strong-coupling regime. The effect of the local field is especially pronounced at high-material densities due to direct energy transfer from the guest atom to the medium. At lower material density and/or absorption, variation of the material density does not seem to affect much the strong-coupling regime, except for a small shift in the resonance frequency.
Coulomb's law corrections and fermion field localization in a tachyonic de Sitter thick braneworld
NASA Astrophysics Data System (ADS)
Cartas-Fuentevilla, Roberto; Escalante, Alberto; Germán, Gabriel; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio
2016-05-01
Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aims we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ̅ in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb's law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb's law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb's law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally observed or
Finite-temperature electron correlations in the framework of a dynamic local-field correction
Schweng, H.K.; Boehm, H.M. )
1993-07-15
The quantum-mechanical version of the Singwi-Tosi-Land-Sjoelander (STLS) approximation is applied to finite temperatures. This approximation has two main advantages. First, it includes a dynamic local-field correction and second, it gives positive values for the pair-distribution function in the short-range region at zero temperature. This is even valid for rather low densities. After a description of the numerical difficulties arising with the use of a dynamic approximation, the results for the static-structure factor and the pair-distribution function are discussed thoroughly. Detailed work is performed on the static part of the local-field correction, with special emphasis put on the investigation of its structure. A peak is found at a wave vector [ital q][approx]2.8 (in units of the Fermi wave vector) for small temperatures, which tends towards higher values of [ital q] with increasing temperature. This peak causes an attractive particle-hole interaction in a certain [ital q] region and thus gives rise to the appearance of a charge-density wave. A parametric description is given for the static local-field correction in order to simplify further applications. Furthermore, the exchange-and-correlation free energy is considered. The results are compared with the STLS results and with the modified convolution approach.
Local-field corrections to surface and interface core-level shifts in insulators
Rotenberg, E. ); Olmstead, M.A. )
1992-11-15
We present a model for the extra-atomic contributions to core-level shifts in insulating thin films on polarizable substrates. The final-state shift is calculated from the screening-dependent local fields at a photoemitting atom and shown to be comparable to the initial-state Madelung potential shift in polar crystals. For Xe(111) films, our model completely accounts for experimental results. For NaCl(100) and CaF{sub 2}(111) surfaces, we present predictions of surface core-level shifts for simple bulk terminations. We discuss corrections which can be incorporated into our model.
NASA Astrophysics Data System (ADS)
Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth; Hansen, Ole
2014-10-01
We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance. Strong perturbations produce a nonlinear correction term that depends on the strength of the inhomogeneity. Solution of the specific case of a finite-sized circular inhomogeneity coaxial with a circular specimen suggests a first-order correction for the general case. Our results are confirmed by computer simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.
Tal, Assaf; Gonen, Oded
2012-01-01
PURPOSE To analyze the effect of B0 field drift on multi voxel MR spectroscopic imaging and to propose an approach for its correction. THEORY AND METHODS It is shown, both theoretically and in a phantom, that for ~30 minute acquisitions a linear B0 drift (~0.1 ppm/hour) will cause localization errors that can reach several voxels (centimeters) in the slower varying phase encoding directions. An efficient and unbiased estimator is proposed for tracking the drift by interleaving short (~T2*), non-localized acquisitions on the non-suppressed water each TR, as shown in 10 volunteers at 1.5 and 3 T. RESULTS The drift is shown to be predominantly linear in both the phantom and the volunteers at both fields. The localization errors are observed and quantified in the phantom. The unbiased estimator is shown to reliably track the instantaneous frequency in-vivo despite only using a small portion of the FID. CONCLUSION Contrary to single-voxel MR spectroscopy, where it leads to line broadening, field drift can lead to localization errors in the longer chemical shift imaging experiments. Fortunately, this drift can be obtained at a negligible cost to sequence timing, and corrected for in post processing. PMID:23165750
Bello, F.
2011-07-15
This research focuses on a coherently driven four-level atomic medium with the aim of inducing a negative index of refraction while taking into consideration local field corrections as well as magnetoelectric cross coupling (i.e.,chirality) within the material's response functions. Two control fields are used to render the medium transparent for a probe field which simultaneously couples to an electric and a magnetic dipole transition, thus allowing one to test the permittivity and permeability of the material at the same time. Numerical simulations show that a negative index of refraction with low absorption can be obtained for a range of probe detunings while depending on number density and the ratio between the intensities of the control fields.
Fortmann, Carsten; Wierling, August; Roepke, Gerd
2010-02-15
The dynamic structure factor, which determines the Thomson scattering spectrum, is calculated via an extended Mermin approach. It incorporates the dynamical collision frequency as well as the local-field correction factor. This allows to study systematically the impact of electron-ion collisions as well as electron-electron correlations due to degeneracy and short-range interaction on the characteristics of the Thomson scattering signal. As such, the plasmon dispersion and damping width is calculated for a two-component plasma, where the electron subsystem is completely degenerate. Strong deviations of the plasmon resonance position due to the electron-electron correlations are observed at increasing Brueckner parameters r{sub s}. These results are of paramount importance for the interpretation of collective Thomson scattering spectra, as the determination of the free electron density from the plasmon resonance position requires a precise theory of the plasmon dispersion. Implications due to different approximations for the electron-electron correlation, i.e., different forms of the one-component local-field correction, are discussed.
Fortmann, Carsten; Wierling, August; Röpke, Gerd
2010-02-01
The dynamic structure factor, which determines the Thomson scattering spectrum, is calculated via an extended Mermin approach. It incorporates the dynamical collision frequency as well as the local-field correction factor. This allows to study systematically the impact of electron-ion collisions as well as electron-electron correlations due to degeneracy and short-range interaction on the characteristics of the Thomson scattering signal. As such, the plasmon dispersion and damping width is calculated for a two-component plasma, where the electron subsystem is completely degenerate. Strong deviations of the plasmon resonance position due to the electron-electron correlations are observed at increasing Brueckner parameters r(s). These results are of paramount importance for the interpretation of collective Thomson scattering spectra, as the determination of the free electron density from the plasmon resonance position requires a precise theory of the plasmon dispersion. Implications due to different approximations for the electron-electron correlation, i.e., different forms of the one-component local-field correction, are discussed. PMID:20365663
NASA Astrophysics Data System (ADS)
Fortmann, Carsten; Wierling, August; Röpke, Gerd
2010-02-01
The dynamic structure factor, which determines the Thomson scattering spectrum, is calculated via an extended Mermin approach. It incorporates the dynamical collision frequency as well as the local-field correction factor. This allows to study systematically the impact of electron-ion collisions as well as electron-electron correlations due to degeneracy and short-range interaction on the characteristics of the Thomson scattering signal. As such, the plasmon dispersion and damping width is calculated for a two-component plasma, where the electron subsystem is completely degenerate. Strong deviations of the plasmon resonance position due to the electron-electron correlations are observed at increasing Brueckner parameters rs . These results are of paramount importance for the interpretation of collective Thomson scattering spectra, as the determination of the free electron density from the plasmon resonance position requires a precise theory of the plasmon dispersion. Implications due to different approximations for the electron-electron correlation, i.e., different forms of the one-component local-field correction, are discussed.
Error Field Correction in ITER
Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.; Schaffer, Michael J.
2008-05-22
A new method for correcting magnetic field errors in the ITER tokamak is developed using the Ideal Perturbed Equilibrium Code (IPEC). The dominant external magnetic field for driving islands is shown to be localized to the outboard midplane for three ITER equilibria that represent the projected range of operational scenarios. The coupling matrices between the poloidal harmonics of the external magnetic perturbations and the resonant fields on the rational surfaces that drive islands are combined for different equilibria and used to determine an ordered list of the dominant errors in the external magnetic field. It is found that efficient and robust error field correction is possible with a fixed setting of the correction currents relative to the currents in the main coils across the range of ITER operating scenarios that was considered.
PRINCIPLE OF INTERACTION REGION LOCAL CORRECTION
WEI,J.
1999-09-07
For hadron storage rings like the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), the machine performance at collision is usually limited by the field quality of the interaction region (IR) magnets. A robust local correction for the IR region is valuable in improving the dynamic aperture with practically achievable magnet field quality. The authors present in this paper the action-angle kick minimization principle on which the local IR correction for both RHIC and the LHC are based.
Local-field correction to the spontaneous decay rate of atoms embedded in bodies of finite size
Ho Trung Dung; Buhmann, Stefan Yoshi; Welsch, Dirk-Gunnar
2006-08-15
The influence of the size and shape of a dispersing and absorbing dielectric body on the local-field-corrected spontaneous decay of an excited atom embedded in a body is studied on the basis of the real-cavity model. By means of a Born expansion of the Green tensor of the system it is shown that to linear order in the susceptibility of the body the decay rate exactly follows Tomas's formula found for the special case of an atom at the center of a homogeneous dielectric sphere [Phys. Rev. A 63, 053811 (2001)]. It is further shown that for an atom situated at the interior of an arbitrary dielectric body this formula remains valid beyond linear order. The case of an atom embedded in a weakly polarizable sphere is discussed in detail.
Shell corrections, magic numbers, and mean field
Denisov, V. Yu.
2007-02-15
It is shown that the positions of deep local minima of shell corrections associated with magic numbers in the region of superheavy nuclei depend on the parameters of the central and spin-orbit mean-field potentials. The accuracy of nuclear-mass predictions made within various models for superheavy nuclei is analyzed.
NASA Astrophysics Data System (ADS)
Sharma, Renuka; Gupta, Manish; Khan, Haniph
2005-08-01
The superconducting state parameters (SSP) viz. electron-phonon coupling strength (), Coulomb pseudopotential (*), transition temperature (Tc), isotope effect exponent () and interaction strength (N0V) for two metallic glasses, i.e. Be90Al10 and Be70Al_{30}, have been investigated by extending the BCS-Eliasberg-McMillan formalism for the metallic glass superconductors incorporating the effect of local field correction in dielectric screening functions which in turn become prominent in determining superconducting state parameters of the metallic glasses under consideration. We have employed eleven forms of dielectric screening functions - viz. Hartree, RPA, Modified Hubbard, Overhauser, Geldart-Vosko, Animalu, King-Cutler, SCS, Vashistha-Singwi, Ichimaru-Utsumi, and Farid et al. - in conjunction with Ashcroft's potential to predict superconducting state parameters. It is observed that the values of SSP are quite sensitive to the form of dielectric screening functions. In conclusion the present computed values of SSP for the RPA form of dielectric screening are in good agreement with the experimental values and other theoretical results for both glassy materials, which confirms the validity of the proposed formalism.
NASA Astrophysics Data System (ADS)
Greshnov, A. A.; Kolesnikova, E. N.; Utesov, O. I.; Zegrya, G. G.
2010-02-01
The divergent at ω=0 quantum correction to conductivity δσ2(ω) of the leading order in (kFl)-1 has been calculated neglecting Cooperon-type contributions suppressed by moderate or strong magnetic field. In the so-called diffusion approximation this quantity is equal to zero up to the second order in (kFl)-1. More subtle treatment of the problem shows that δσ2(ω) is non-zero due to ballistic contributions neglected previously. Knowledge of δσ2(ω) allows to estimate value of the so-called unitary localization length as ξu≈lexp(1.6g2) where Drude conductivity is given by σ0=ge2/h. This estimation underpins the statement of the linear growth of σxx peaks with Landau level number n in the integer quantum Hall effect regime [1] (Greshnov and Zegrya, 2008; Greshnov et al., 2008) at least for n≤2 and calls Pruisken-Khmelnitskii hypothesis of universality [2] (Levine et al., 1983; Khmelnitskii, 1983) in question.
Continuous quantum error correction through local operations
Mascarenhas, Eduardo; Franca Santos, Marcelo; Marques, Breno; Terra Cunha, Marcelo
2010-09-15
We propose local strategies to protect global quantum information. The protocols, which are quantum error-correcting codes for dissipative systems, are based on environment measurements, direct feedback control, and simple encoding of the logical qubits into physical qutrits whose decaying transitions are indistinguishable and equally probable. The simple addition of one extra level in the description of the subsystems allows for local actions to fully and deterministically protect global resources such as entanglement. We present codes for both quantum jump and quantum state diffusion measurement strategies and test them against several sources of inefficiency. The use of qutrits in information protocols suggests further characterization of qutrit-qutrit disentanglement dynamics, which we also give together with simple local environment measurement schemes able to prevent distillability sudden death and even enhance entanglement in situations in which our feedback error correction is not possible.
Conservation of ζ with radiative corrections from heavy field
NASA Astrophysics Data System (ADS)
Tanaka, Takahiro; Urakawa, Yuko
2016-06-01
In this paper, we address a possible impact of radiative corrections from a heavy scalar field χ on the curvature perturbation ζ. Integrating out χ, we derive the effective action for ζ, which includes the loop corrections of the heavy field χ. When the mass of χ is much larger than the Hubble scale H, the loop corrections of χ only yield a local contribution to the effective action and hence the effective action simply gives an action for ζ in a single field model, where, as is widely known, ζ is conserved in time after the Hubble crossing time. Meanwhile, when the mass of χ is comparable to H, the loop corrections of χ can give a non-local contribution to the effective action. Because of the non-local contribution from χ, in general, ζ may not be conserved, even if the classical background trajectory is determined only by the evolution of the inflaton. In this paper, we derive the condition that ζ is conserved in time in the presence of the radiative corrections from χ. Namely, we show that when the dilatation invariance, which is a part of the diffeomorphism invariance, is preserved at the quantum level, the loop corrections of the massive field χ do not disturb the constant evolution of ζ at super Hubble scales. In this discussion, we show the Ward-Takahashi identity for the dilatation invariance, which yields a consistency relation for the correlation functions of the massive field χ.
TRACE Image Flat Field and Sensitivity Corrections
NASA Astrophysics Data System (ADS)
Nightingale, R. W.; Tarbell, T. D.; Wolfson, C. J.
2003-05-01
As of April 1, 2003, the TRACE instrument has been in orbit for 5 years. During this time the lumogen phosphor coating on the CCD has degraded due to the flux of extreme ultraviolet (EUV) photons. We have utilized flat field images obtained for the UV 1700 Å and broad-band white light (WL) channels, together with the synoptic disk center, and low-resolution ``dosimeter'' image data from throughout the mission, to correct for the degradation at all of the TRACE UV and EUV wavelengths. A set of time dependent power and multiplier parameters have been determined from fitting these flat fields to the mission synoptic data for the various UV wavelengths. By comparing the relative EUV sensitivity at different positions on the detector throughout the mission using images of the same active region at different pointings, we have calibrated the sensitivity changes and flat fields at the EUV wavelengths, including 171 Å and 195 Å. The WL flat field images have not changed within +/-1.5 % over the mission to date. The WL flat fields are also used in the corrections for all images, to remove small artifacts intrinsic to the CCD and dust shadows common to certain channels. All these corrections have now been implemented as an update into the SolarSoft (SSW) routine TRACE_PREP.PRO, and normally are automatically applied to the images after the dark pedestal and current corrections. Plots of the time dependence of the sensitivity and examples of the flat field corrections, along with their use in TRACE_PREP.PRO, will be presented. This work was supported by the TRACE project at LMSAL (contract NAS5-38099).
Residual Field Correction of Pulsed Bending Magnet
NASA Astrophysics Data System (ADS)
Takano, Junpei; Igarashi, Susumu; Kamikubota, Norihiko; Meigo, Shin-ichiro; Sato, Kenichi; Shirakata, Masashi; Yamada, Shuei
The Japan Proton Accelerator Research Complex (J-PARC) has an accelerator chain, Linac, Rapid Cycling Synchrotron (RCS), and Main Ring (MR). The RCS accelerates the proton beam up to 3 GeV every 40 msec. After the beam is extracted from the RCS, it is delivered to a beam transport line, which is 3NBT for the Material and Life Science Experimental Facility (MLF). Some bunches of the proton beam are bended from the 3NBT to another beam transport line, which is 3-50BT for the MR, by using a pulsed bending magnet (PB) [1]. However, the beam orbit in the 3NBT is kicked by the residual magnetic field of the PB. In order to correct the residual magnetic field, additional coils had been wound on the PB poles. As a result of scanning the current pattern of the correction coils, the orbit distortion in the 3NBT has been reduced.
Mean Field Analysis of Quantum Annealing Correction
NASA Astrophysics Data System (ADS)
Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A.
2016-06-01
Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p -body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p =2 , where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p ≥3 , where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder.
Mean Field Analysis of Quantum Annealing Correction.
Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A
2016-06-01
Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p=2, where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p≥3, where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder. PMID:27314705
Data correction for gantry-tilted local CT.
Liang, Hongzhu; Zhang, Cishen; Yan, Ming
2008-06-01
The gantry-tilted helical cone-beam computed tomography (CT) has an inherent problem that the relative shift of the region of interest (ROI) blurs the reconstructed image. This problem becomes more serious in the gantry-tilted local CT imaging due to the nature of local scanning. This paper proposes a new method to improve the gantry-tilted local imaging by correcting the local scanning data. Computer simulations show that the proposed method can enhance the local imaging performance to a certain extent in terms of the image sharpening and artifacts reduction. PMID:18314308
NASA Technical Reports Server (NTRS)
Kirchner, D.; Lentz, C.; Ressler, H.
1994-01-01
At the Technical University Graz (TUG), Austria, the Global Positioning System (GPS) has been used for time transfer purposes since the early 80's and from that time on local meteorological parameters have been recorded together with each measurement (satellite track). The paper compares the tropospheric corrections (delays) obtained from models usually employed in GPS receivers and those using locally measured meteorological parameters.
Indoor localization using magnetic fields
NASA Astrophysics Data System (ADS)
Pathapati Subbu, Kalyan Sasidhar
Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing
Better band gaps with asymptotically corrected local exchange potentials
Singh, Prashant; Harbola, Manoj K.; Hemanadhan, M.; Mookerjee, Abhijit; Johnson, D. D.
2016-02-22
In this study, we formulate a spin-polarized van Leeuwen and Baerends (vLB) correction to the local density approximation (LDA) exchange potential [R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994)] that enforces the ionization potential (IP) theorem following T. Stein et al. [Phys. Rev. Lett. 105, 266802 (2010)]. For electronic-structure problems, the vLB correction replicates the behavior of exact-exchange potentials, with improved scaling and well-behaved asymptotics, but with the computational cost of semilocal functionals. The vLB + IP correction produces a large improvement in the eigenvalues over those from the LDA due to correct asymptotic behaviormore » and atomic shell structures, as shown in rare-gas, alkaline-earth, zinc-based oxides, alkali halides, sulfides, and nitrides. In half-Heusler alloys, this asymptotically corrected LDA reproduces the spin-polarized properties correctly, including magnetism and half-metallicity. We also consider finite-sized systems [e.g., ringed boron nitride (B12N12) and graphene (C24)] to emphasize the wide applicability of the method.« less
Better band gaps with asymptotically corrected local exchange potentials
NASA Astrophysics Data System (ADS)
Singh, Prashant; Harbola, Manoj K.; Hemanadhan, M.; Mookerjee, Abhijit; Johnson, D. D.
2016-02-01
We formulate a spin-polarized van Leeuwen and Baerends (vLB) correction to the local density approximation (LDA) exchange potential [R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994), 10.1103/PhysRevA.49.2421] that enforces the ionization potential (IP) theorem following T. Stein et al. [Phys. Rev. Lett. 105, 266802 (2010), 10.1103/PhysRevLett.105.266802]. For electronic-structure problems, the vLB correction replicates the behavior of exact-exchange potentials, with improved scaling and well-behaved asymptotics, but with the computational cost of semilocal functionals. The vLB + IP correction produces a large improvement in the eigenvalues over those from the LDA due to correct asymptotic behavior and atomic shell structures, as shown in rare-gas, alkaline-earth, zinc-based oxides, alkali halides, sulfides, and nitrides. In half-Heusler alloys, this asymptotically corrected LDA reproduces the spin-polarized properties correctly, including magnetism and half-metallicity. We also consider finite-sized systems [e.g., ringed boron nitride (B12N12 ) and graphene (C24)] to emphasize the wide applicability of the method.
Electroweak Sudakov Corrections using Effective Field Theory
Chiu Juiyu; Golf, Frank; Kelley, Randall; Manohar, Aneesh V.
2008-01-18
Electroweak Sudakov corrections of the form {alpha}{sup n}log{sup m}s/M{sub W,Z}{sup 2} are summed using renormalization group evolution in soft-collinear effective theory. Results are given for the scalar, vector, and tensor form factors for fermion and scalar particles. The formalism for including massive gauge bosons in soft-collinear effective theory is developed.
Scene-based nonuniformity correction using local constant statistics.
Zhang, Chao; Zhao, Wenyi
2008-06-01
In scene-based nonuniformity correction, the statistical approach assumes all possible values of the true-scene pixel are seen at each pixel location. This global-constant-statistics assumption does not distinguish fixed pattern noise from spatial variations in the average image. This often causes the "ghosting" artifacts in the corrected images since the existing spatial variations are treated as noises. We introduce a new statistical method to reduce the ghosting artifacts. Our method proposes a local-constant statistics that assumes that the temporal signal distribution is not constant at each pixel but is locally true. This considers statistically a constant distribution in a local region around each pixel but uneven distribution in a larger scale. Under the assumption that the fixed pattern noise concentrates in a higher spatial-frequency domain than the distribution variation, we apply a wavelet method to the gain and offset image of the noise and separate out the pattern noise from the spatial variations in the temporal distribution of the scene. We compare the results to the global-constant-statistics method using a clean sequence with large artificial pattern noises. We also apply the method to a challenging CCD video sequence and a LWIR sequence to show how effective it is in reducing noise and the ghosting artifacts. PMID:18516156
Local Dynamic Reactive Power for Correction of System Voltage Problems
Kueck, John D; Rizy, D Tom; Li, Fangxing; Xu, Yan; Li, Huijuan; Adhikari, Sarina; Irminger, Philip
2008-12-01
Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results
Cellular automata based byte error correcting codes over finite fields
NASA Astrophysics Data System (ADS)
Köroğlu, Mehmet E.; Şiap, İrfan; Akın, Hasan
2012-08-01
Reed-Solomon codes are very convenient for burst error correction which occurs frequently in applications, but as the number of errors increase, the circuit structure of implementing Reed-Solomon codes becomes very complex. An alternative solution to this problem is the modular and regular structure of cellular automata which can be constructed with VLSI economically. Therefore, in recent years, cellular automata have became an important tool for error correcting codes. For the first time, cellular automata based byte error correcting codes analogous to extended Reed-Solomon codes over binary fields was studied by Chowdhury et al. [1] and Bhaumik et al. [2] improved the coding-decoding scheme. In this study cellular automata based double-byte error correcting codes are generalized from binary fields to primitive finite fields Zp.
Eddy current correction in volume-localized MR spectroscopy
NASA Technical Reports Server (NTRS)
Lin, C.; Wendt, R. E. 3rd; Evans, H. J.; Rowe, R. M.; Hedrick, T. D.; LeBlanc, A. D.
1994-01-01
The quality of volume-localized magnetic resonance spectroscopy is affected by eddy currents caused by gradient switching. Eddy currents can be reduced with improved gradient systems; however, it has been suggested that the distortion due to eddy currents can be compensated for during postprocessing with a single-frequency reference signal. The authors propose modifying current techniques for acquiring the single-frequency reference signal by using relaxation weighting to reduce interference from components that cannot be eliminated by digital filtering alone. Additional sequences with T1 or T2 weighting for reference signal acquisition are shown to have the same eddy current characteristics as the original signal without relaxation weighting. The authors also studied a new eddy current correction method that does not require a single-frequency reference signal. This method uses two free induction decays (FIDs) collected from the same volume with two sequences with opposite gradients. Phase errors caused by eddy currents are opposite in these two FIDs and can be canceled completely by combining the FIDs. These methods were tested in a phantom. Eddy current distortions were corrected, allowing quantitative measurement of structures such as the -CH = CH- component, which is otherwise undetectable.
WFC3 Low-Frequency Flat Field Corrections
NASA Astrophysics Data System (ADS)
Mack, Jennifer
2010-07-01
Multiple dithered observations of the globular cluster Omega Centauri (NGC 5139) have been used to measure inflight corrections to the WFC3 UVIS and IR ground flat fields for a subset of key filters. To obtain an adequate characterization of the flat field over the detector field of view (FOV), 9 pointings were obtained for each filter using a 3x3 box dither pattern with steps of approximately 25% of the FOV. By measuring relative changes in the brightness of a star over different portions of the detector, low-frequency spatial variations in the detector response (L-flats) have been used to correct the flat fields obtained during ground testing. The broad wavelength range covered by these observations allow an interpolation of the L-flat correction for the remaining wide, medium and narrow-band filters, assuming a simple linear dependence with pivot wavelength. Initial results indicate that the required L-flat corrections are ±1.5% (standard deviation) in the IR and ±1.0% in the UVIS, and that the photometric response for a given star after applying the L-flat correction is now stable to better than 1% for any position in the field of view. Followup observations of the same field at multiple orientations will be used to verify the accuracy of the L-flat solutions and to quantify any temporal changes in the detector response while in orbit.
An improved variational level set method for MR image segmentation and bias field correction.
Zhan, Tianming; Zhang, Jun; Xiao, Liang; Chen, Yunjie; Wei, Zhihui
2013-04-01
In this paper, we propose an improved variational level set approach to correct the bias and to segment the magnetic resonance (MR) images with inhomogeneous intensity. First, we use a Gaussian distribution with bias field as a local region descriptor in two-phase level set formulation for segmentation and bias field correction of the images with inhomogeneous intensities. By using the information of the local variance in this descriptor, our method is able to obtain accurate segmentation results. Furthermore, we extend this method to three-phase level set formulation for brain MR image segmentation and bias field correction. By using this three-phase level set function to replace the four-phase level set function, we can reduce the number of convolution operations in each iteration and improve the efficiency. Compared with other approaches, this algorithm demonstrates a superior performance. PMID:23219273
Generalized conservation laws in non-local field theories
NASA Astrophysics Data System (ADS)
Kegeles, Alexander; Oriti, Daniele
2016-04-01
We propose a geometrical treatment of symmetries in non-local field theories, where the non-locality is due to a lack of identification of field arguments in the action. We show that the existence of a symmetry of the action leads to a generalized conservation law, in which the usual conserved current acquires an additional non-local correction term, obtaining a generalization of the standard Noether theorem. We illustrate the general formalism by discussing the specific physical example of complex scalar field theory of the type describing the hydrodynamic approximation of Bose-Einstein condensates. We expect our analysis and results to be of particular interest for the group field theory formulation of quantum gravity.
Relativistic Scott correction in self-generated magnetic fields
NASA Astrophysics Data System (ADS)
Erdős, László; Fournais, Søren; Solovej, Jan Philip
2012-09-01
We consider a large neutral molecule with total nuclear charge Z in a model with self-generated classical magnetic field and where the kinetic energy of the electrons is treated relativistically. To ensure stability, we assume that Zα < 2/π, where α denotes the fine structure constant. We are interested in the ground state energy in the simultaneous limit Z → ∞, α → 0 such that κ = Zα is fixed. The leading term in the energy asymptotics is independent of κ, it is given by the Thomas-Fermi energy of order Z7/3 and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form S(αZ)Z2. The current paper extends the result of Solovej et al. [Commun. Pure Appl. Math. LXIII, 39-118 (2010)] on the Scott correction for relativistic molecules to include a self-generated magnetic field. Furthermore, we show that the corresponding Scott correction function S, first identified by Solovej et al. [Commun. Pure Appl. Math. LXIII, 39-118 (2010)], is unchanged by including a magnetic field. We also prove new Lieb-Thirring inequalities for the relativistic kinetic energy with magnetic fields.
Localization Corrections for Mobile Laser Scanner Using Local Support-Based Outlier Filtering
NASA Astrophysics Data System (ADS)
Lehtola, V. V.; Virtanen, J.-P.; Rönnholm, P.; Nüchter, A.
2016-06-01
Following the pioneering work introduced in [Lehtola et al., ISPRS J. Photogramm. Remote Sens. 99, 2015, pp. 25-29], we extend the state-of-the-art intrinsic localization solution for a single two-dimensional (2D) laser scanner from one into (quasi) three dimensions (3D). By intrinsic localization, we mean that no external sensors are used to localize the scanner, such as inertial measurement devices (IMU) or global navigation satellite systems (GNSS). Specifically, the proposed method builds on a novel concept of local support-based filtering of outliers, which enables the use of six degrees-of-freedom (DoF) simultaneous localization and mapping (SLAM) for the purpose of enacting appropriate trajectory corrections into the previous one-dimensional solution. Moreover, the local support-based filtering concept is platform independent, and is therefore likely to be widely generalizable. The here presented overall method is yet limited into quasi-3D by its inability to recover trajectories with steep curvature, but in the future, it may be further extended into full 3D.
Intensity calibration and flat-field correction for fluorescence microscopes.
Model, Michael
2014-04-01
Standardization in fluorescence microscopy involves calibration of intensity in reproducible units and correction for spatial nonuniformity of illumination (flat-field or shading correction). Both goals can be achieved using concentrated solutions of fluorescent dyes. When a drop of a highly concentrated fluorescent dye is placed between a slide and a coverslip it produces a spatially uniform field, resistant to photobleaching and with reproducible quantum yield; it can be used as a brightness standard for wide-field and confocal microscopes. For wide-field microscopes, calibration can be further extended to absolute molecular units. This can be done by imaging a solution of known concentration and known depth; the latter can be prepared by placing a small spherical lens in a diluted solution of the same fluorophore that is used in the biological specimen. PMID:24692055
Alternative Methods for Field Corrections in Helical Solenoids
Lopes, M. L.; Krave, S. T.; Tompkins, J. C.; Yonehara, K.; Flanagan, G.; Kahn, S. A.; Melconian, K.
2015-05-01
Helical cooling channels have been proposed for highly efficient 6D muon cooling. Helical solenoids produce solenoidal, helical dipole, and helical gradient field components. Previous studies explored the geometric tunability limits on these main field components. In this paper we present two alternative correction schemes, tilting the solenoids and the addition of helical lines, to reduce the required strength of the anti-solenoid and add an additional tuning knob.
Loop Corrections to Standard Model fields in inflation
NASA Astrophysics Data System (ADS)
Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi
2016-08-01
We calculate 1-loop corrections to the Schwinger-Keldysh propagators of Standard-Model-like fields of spin-0, 1/2, and 1, with all renormalizable interactions during inflation. We pay special attention to the late-time divergences of loop corrections, and show that the divergences can be resummed into finite results in the late-time limit using dynamical renormalization group method. This is our first step toward studying both the Standard Model and new physics in the primordial universe.
Receptive Field Inference with Localized Priors
Park, Mijung; Pillow, Jonathan W.
2011-01-01
The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron's spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards solutions that are more likely a priori, typically those with small, smooth, or sparse coefficients. Here we introduce a novel Bayesian receptive field estimator designed to incorporate locality, a powerful form of prior information about receptive field structure. The key to our approach is a hierarchical receptive field model that flexibly adapts to localized structure in both spacetime and spatiotemporal frequency, using an inference method known as empirical Bayes. We refer to our method as automatic locality determination (ALD), and show that it can accurately recover various types of smooth, sparse, and localized receptive fields. We apply ALD to neural data from retinal ganglion cells and V1 simple cells, and find it achieves error rates several times lower than standard estimators. Thus, estimates of comparable accuracy can be achieved with substantially less data. Finally, we introduce a computationally efficient Markov Chain Monte Carlo (MCMC) algorithm for fully Bayesian inference under the ALD prior, yielding accurate Bayesian confidence intervals for small or noisy datasets. PMID:22046110
Re-visit local coupling correction in the interaction regions of RHIC
Luo, Y.; Fischer, W.; Liu, C.; Marusic, A.; Minty, M.; Ptitsyn, V.; Schoefer, V.; Tepikian, S.; Trbojevic, D.; Zimmer, C.
2011-11-01
In this article we will re-visit the local coupling correction in the interaction regions (IRs) of the Relativistic Heavy Ion Collider (RHIC). We will review the measurement data of triplet quadrupole rolls, the local coupling correction strengths in the RHIC control system, and the methods for the local coupling correction with local skew quadrupole correctors. Based on the in-turnnel measurement data of triplet roll errors in 2011, we will analytically calculate and simulate IR-bump method to find out the local skew correction strengths and compare them at store and at injection with the Blue and Yellow ring lattices in the 2011 polarized proton (p-p) and Au-Au runs. The vertical dispersion from the triplet roll errors, local and global coupling correction skew quadrupoles, and the vertical dipole correctors are calculated and discussed.
Small field correction factors for the IBA Razor.
Liu, Paul Z Y; Reggiori, Giacomo; Lobefalo, Francesca; Mancosu, Pietro; Tomatis, Stefano; McKenzie, David R; Suchowerska, Natalka
2016-08-01
The IBA Razor diode supersedes the IBA SFD and is intended for use in small fields. However, its behaviour in small fields has not yet been quantified. In this work, we examine the response of the Razor diode against the air core scintillation dosimeter (FOD) and Gafchromic film in photon beams from three Varian linac beams. Fields between 4mm and 30mm in width were measured, both with and without a flattening filter and at two energies. The Razor exhibited an over-response of up to 4.5% for MLC collimated fields and 7.1% for stereotactic cone collimated fields. The presence of the flattening filter altered the over-response by up to 1.5%. The small field correction factors are tabulated and agree with the mathematical relation of Liu et al. (2014). Four samples of the Razor were used, two having received a significant prior dose. The correction factors for the four samples differed and may depend on their dose history. PMID:27497923
Radiative corrections from heavy fast-roll fields during inflation
Jain, Rajeev Kumar; Sandora, McCullen; Sloth, Martin S.
2015-06-09
We investigate radiative corrections to the inflaton potential from heavy fields undergoing a fast-roll phase transition. We find that a logarithmic one-loop correction to the inflaton potential involving this field can induce a temporary running of the spectral index. The induced running can be a short burst of strong running, which may be related to the observed anomalies on large scales in the cosmic microwave spectrum, or extend over many e-folds, sustaining an effectively constant running to be searched for in the future. We implement this in a general class of models, where effects are mediated through a heavy messenger field sitting in its minimum. Interestingly, within the present framework it is a generic outcome that a large running implies a small field model with a vanishing tensor-to-scalar ratio, circumventing the normal expectation that small field models typically lead to an unobservably small running of the spectral index. An observable level of tensor modes can also be accommodated, but, surprisingly, this requires running to be induced by a curvaton. If upcoming observations are consistent with a small tensor-to-scalar ratio as predicted by small field models of inflation, then the present study serves as an explicit example contrary to the general expectation that the running will be unobservable.
ACS Flat Field Corrections from Observations of 47 Tucanae
NASA Astrophysics Data System (ADS)
Mack, J.; Bohlin, R. C.; Gilliland, R. L.; van der Marel, R.; Blakeslee, J. P.; de Marchi, G.
2002-12-01
The uniformity of the WFC and HRC detector response has been assessed using multiple dithered pointings of 47 Tucanae. By placing the same stars over different portions of the detector and measuring relative changes in brightness, low frequency spatial variations in the response of each detector have been measured. The original WFC and HRC laboratory flat fields produce photometric errors of 5 to 18 percent from corner-to-corner. The required low-order correction (L-flat) has been applied to the lab flats, and new flat fields have been delivered for use in the calibration pipeline. Initial results suggest the photometric response for a given star is now the same to 1 for any position in the field of view. As a further test, the improved flat fields are compared with observations of the bright earth at UV wavelengths (F330W) and with skyflats from ERO data at long wavelengths (F775W).
Local respiratory motion correction for PET/CT imaging: Application to lung cancer
Lamare, F. Fernandez, P.; Fayad, H.; Visvikis, D.
2015-10-15
Purpose: Despite multiple methodologies already proposed to correct respiratory motion in the whole PET imaging field of view (FOV), such approaches have not found wide acceptance in clinical routine. An alternative can be the local respiratory motion correction (LRMC) of data corresponding to a given volume of interest (VOI: organ or tumor). Advantages of LRMC include the use of a simple motion model, faster execution times, and organ specific motion correction. The purpose of this study was to evaluate the performance of LMRC using various motion models for oncology (lung lesion) applications. Methods: Both simulated (NURBS based 4D cardiac-torso phantom) and clinical studies (six patients) were used in the evaluation of the proposed LRMC approach. PET data were acquired in list-mode and synchronized with respiration. The implemented approach consists first in defining a VOI on the reconstructed motion average image. Gated PET images of the VOI are subsequently reconstructed using only lines of response passing through the selected VOI and are used in combination with a center of gravity or an affine/elastic registration algorithm to derive the transformation maps corresponding to the respiration effects. Those are finally integrated in the reconstruction process to produce a motion free image over the lesion regions. Results: Although the center of gravity or affine algorithm achieved similar performance for individual lesion motion correction, the elastic model, applied either locally or to the whole FOV, led to an overall superior performance. The spatial tumor location was altered by 89% and 81% for the elastic model applied locally or to the whole FOV, respectively (compared to 44% and 39% for the center of gravity and affine models, respectively). This resulted in similar associated overall tumor volume changes of 84% and 80%, respectively (compared to 75% and 71% for the center of gravity and affine models, respectively). The application of the nonrigid
Tls Field Data Based Intensity Correction for Forest Environments
NASA Astrophysics Data System (ADS)
Heinzel, J.; Huber, M. O.
2016-06-01
Terrestrial laser scanning (TLS) is increasingly used for forestry applications. Besides the three dimensional point coordinates, the 'intensity' of the reflected signal plays an important role in forestry and vegetation studies. The benefit of the signal intensity is caused by the wavelength of the laser that is within the near infrared (NIR) for most scanners. The NIR is highly indicative for various vegetation characteristics. However, the intensity as recorded by most terrestrial scanners is distorted by both external and scanner specific factors. Since details about system internal alteration of the signal are often unknown to the user, model driven approaches are impractical. On the other hand, existing data driven calibration procedures require laborious acquisition of separate reference datasets or areas of homogenous reflection characteristics from the field data. In order to fill this gap, the present study introduces an approach to correct unwanted intensity variations directly from the point cloud of the field data. The focus is on the variation over range and sensor specific distortions. Instead of an absolute calibration of the values, a relative correction within the dataset is sufficient for most forestry applications. Finally, a method similar to time series detrending is presented with the only pre-condition of a relative equal distribution of forest objects and materials over range. Our test data covers 50 terrestrial scans captured with a FARO Focus 3D S120 scanner using a laser wavelength of 905 nm. Practical tests demonstrate that our correction method removes range and scanner based alterations of the intensity.
Gauge field localization on brane worlds
Guerrero, Rommel; Rodriguez, R. Omar; Melfo, Alejandra; Pantoja, Nelson
2010-04-15
We consider the effects of spacetime curvature and brane thickness on the localization of gauge fields on a brane via kinetic terms induced by localized fermions. We find that in a warped geometry with an infinitely thin brane, both the infrared and the ultraviolet behavior of the electromagnetic propagator are affected, providing a more stringent bound on the brane's tension than that coming from the requirement of four-dimensional gravity on the brane. On the other hand, for a thick wall in a flat spacetime, where the fermions are localized by means of a Yukawa coupling, we find that four-dimensional electromagnetism is recovered in a region bounded from above by the same critical distance appearing in the thin case, but also from below by a new scale related to the brane's thickness and the electromagnetic couplings. This imposes very stringent bounds on the brane's thickness which seem to invalidate the localization mechanism for this case.
Quantum corrections to the cosmological evolution of conformally coupled fields
Cembranos, Jose A.R.; Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe E-mail: olive@physics.umn.edu E-mail: uzan@iap.fr
2009-07-01
Because the source term for the equations of motion of a conformally coupled scalar field, such as the dilaton, is given by the trace of the matter energy momentum tensor, it is commonly assumed to vanish during the radiation dominated epoch in the early universe. As a consequence, such fields are generally frozen in the early universe. Here we compute the finite temperature radiative correction to the source term and discuss its consequences on the evolution of such fields in the early universe. We discuss in particular, the case of scalar tensor theories of gravity which have general relativity as an attractor solution. We show that, in some cases, the universe can experience an early phase of contraction, followed by a non-singular bounce, and standard expansion. This can have interesting consequences for the abundance of thermal relics; for instance, it can provide a solution to the gravitino problem. We conclude by discussing the possible consequences of the quantum corrections to the evolution of the dilaton.
Flat-field and Dark Frame Corrections for IRIS Data
NASA Astrophysics Data System (ADS)
Saar, S. H.; Jaeggli, S. A.; Bush, R. I.; Boerner, P.; Wuelser, J.; Tarbell, T. D.; Lites, B. W.; De Pontieu, B.
2013-12-01
We discuss the development of flat-field and dark frame corrections for Interface Region Imaging Spectrograph (IRIS) data. Flat-fields for IRIS were taken prior to launch using a lamp filtered to NUV wavelengths; following launch the Sun itself was used as a flat-field source. The solar flat-field for the slit-jaw imagers is constructed using the Chae method, which extracts the moving object and fixed gain patterns from a set of dithered images. The spectrographic flat-fields are produced by significantly defocusing the telescope and averaging many images in a scan to remove solar structure, so that the average spectral profile can be removed. A given dark frame consists of pedestal and dark current components. In IRIS, both are temperature dependent, though they respond to different measured temperatures; the dark current is also exposure time dependent. Each CCD readout port has a slightly different temperature and exposure time response. We have analyzed a series of dark frames over an IRIS orbit to calibrate for these effects. We plan to continue to monitor the flat-field and dark frames regularly for any changes.
Dispersion-Corrected Mean-Field Electronic Structure Methods.
Grimme, Stefan; Hansen, Andreas; Brandenburg, Jan Gerit; Bannwarth, Christoph
2016-05-11
Mean-field electronic structure methods like Hartree-Fock, semilocal density functional approximations, or semiempirical molecular orbital (MO) theories do not account for long-range electron correlation (London dispersion interaction). Inclusion of these effects is mandatory for realistic calculations on large or condensed chemical systems and for various intramolecular phenomena (thermochemistry). This Review describes the recent developments (including some historical aspects) of dispersion corrections with an emphasis on methods that can be employed routinely with reasonable accuracy in large-scale applications. The most prominent correction schemes are classified into three groups: (i) nonlocal, density-based functionals, (ii) semiclassical C6-based, and (iii) one-electron effective potentials. The properties as well as pros and cons of these methods are critically discussed, and typical examples and benchmarks on molecular complexes and crystals are provided. Although there are some areas for further improvement (robustness, many-body and short-range effects), the situation regarding the overall accuracy is clear. Various approaches yield long-range dispersion energies with a typical relative error of 5%. For many chemical problems, this accuracy is higher compared to that of the underlying mean-field method (i.e., a typical semilocal (hybrid) functional like B3LYP). PMID:27077966
NASA Astrophysics Data System (ADS)
Guerci, Daniele; Borge, Juan; Raimondi, Roberto
2016-08-01
We evaluate the spin polarization (Edelstein or inverse spin galvanic effect) and the spin Hall current induced by an applied electric field by including the weak localization corrections for a two-dimensional electron gas. We show that the weak localization effects yield logarithmic corrections to both the spin polarization conductivity relating the spin polarization and the electric field and to the spin Hall angle relating the spin and charge currents. The renormalization of both the spin polarization conductivity and the spin Hall angle combine to produce a zero correction to the total spin Hall conductivity as required by an exact identity. Suggestions for the experimental observation of the effect are given.
Taylor, John S.; Folta, James A.; Montcalm, Claude
2005-01-18
Figure errors are corrected on optical or other precision surfaces by changing the local density of material in a zone at or near the surface. Optical surface height is correlated with the localized density of the material within the same region. A change in the height of the optical surface can then be caused by a change in the localized density of the material at or near the surface.
Chromatic analysis and possible local chromatic correction in RHIC
Luo, Y.; Fischer, W.; Gu, X.; Trbojevic, D.
2011-03-28
In this article we will answer the following questions for the RHIC polarized proton (p-p) and Au-Au run lattices: (1) what are the sources of second order chromaticities? (2) what is the dependence of second order chromaticity on the on-momentum {beta}-beat? (3) what is the dependence of second order chromaticity on {beta}* at IP6 and IP8? To answer these questions, we use the perturbation theory to numerically calculate the contributions of each quadrupole and sextupole to the first, second, and third order chromaticities. Possible local methods to reduce chromatic effects in RHIC ring are shortly discussed.
Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee
2013-12-15
Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson'sr, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson'sr increased from 0.86 to 0.92 with the bias field correction
NASA Astrophysics Data System (ADS)
Gómez, Sergio S.; Melo, Juan I.; Romero, Rodolfo H.; Aucar, Gustavo A.; de Azúa, Martín Ruiz
2005-02-01
We have calculated the relativistic corrections to the diamagnetic term of the nuclear magnetic shielding constants for a series of molecules containing heavy atoms. An analysis of the contributions from localized orbitals is performed. We establish quantitatively the relative importance of inner core and valence shell molecular orbitals in each correcting term. Contributions from the latter are much less important than those from the former. The calculated values of the correction σL-PSO, first derived within the linear response elimination of small component formalism, show a power-law dependence on the nuclear charge ˜Z3.5, in contrast with the ˜Z3.1 behavior of the mass-velocity external-field correction to the paramagnetic term previously reported.
A robust vector field correction method via a mixture statistical model of PIV signal
NASA Astrophysics Data System (ADS)
Lee, Yong; Yang, Hua; Yin, Zhouping
2016-03-01
Outlier (spurious vector) is a common problem in practical velocity field measurement using particle image velocimetry technology (PIV), and it should be validated and replaced by a reliable value. One of the most challenging problems is to correctly label the outliers under the circumstance that measurement noise exists or the flow becomes turbulent. Moreover, the outlier's cluster occurrence makes it difficult to pick out all the outliers. Most of current methods validate and correct the outliers using local statistical models in a single pass. In this work, a vector field correction (VFC) method is proposed directly from a mixture statistical model of PIV signal. Actually, this problem is formulated as a maximum a posteriori (MAP) estimation of a Bayesian model with hidden/latent variables, labeling the outliers in the original field. The solution of this MAP estimation, i.e., the outlier set and the restored flow field, is optimized iteratively using an expectation-maximization algorithm. We illustrated this VFC method on two kinds of synthetic velocity fields and two kinds of experimental data and demonstrated that it is robust to a very large number of outliers (even up to 60 %). Besides, the proposed VFC method has high accuracy and excellent compatibility for clustered outliers, compared with the state-of-the-art methods. Our VFC algorithm is computationally efficient, and corresponding Matlab code is provided for others to use it. In addition, our approach is general and can be seamlessly extended to three-dimensional-three-component (3D3C) PIV data.
Full-field interferometry using infinity corrected optics
NASA Astrophysics Data System (ADS)
Charrett, T. O. H.; Tatam, R. P.
2016-01-01
In this paper the construction of full-field (imaging) interferometers using infinity corrected optics commonly used in microscopy is discussed, with an emphasis on self-mixing interferometry configurations where the imaged light field is mixed with itself rather than a reference wave. Such configurations are used in speckle shearing interferometry, flow visualisation and quantitative flow measurement. The critical considerations for constructing path-length imbalanced full-field interferometers for these and similar applications are discussed, expressions are derived for key calculations and interferograms from example interferometers are presented. These include the concept of balancing the infinity-spaces of the two arms via the use of a glass block to minimise the optical path difference variation across the interferogram and ensure adequate sampling of the fringes on the detector. Further, the use of tilted glass blocks in single-pass and double-pass arrangements is detailed for the generation and control of spatial carrier fringes without extensive realignment of the interferometer, and for phase shifting.
Magnetic fields in Local Group dwarf irregulars
NASA Astrophysics Data System (ADS)
Chyży, K. T.; Weżgowiec, M.; Beck, R.; Bomans, D. J.
2011-05-01
Aims: We wish to clarify whether strong magnetic fields can be effectively generated in typically low-mass dwarf galaxies and to assess the role of dwarf galaxies in the magnetization of the Universe. Methods: We performed a search for radio emission and magnetic fields in an unbiased sample of 12 Local Group (LG) irregular and dwarf irregular galaxies with the 100-m Effelsberg telescope at 2.64 GHz. Three galaxies were detected. A higher frequency (4.85 GHz) was used to search for polarized emission in five dwarfs that are the most luminous ones in the infrared domain, of which three were detected. Results: Magnetic fields in LG dwarfs are weak, with a mean value of the total field strength of <4.2 ± 1.8 μG, three times lower than in the normal spirals. The strongest field among all LG dwarfs of 10 μG (at 2.64 GHz) is observed in the starburst dwarf IC 10. The production of total magnetic fields in dwarf systems appears to be regulated mainly by the star-formation surface density (with the power-law exponent of 0.30 ± 0.04) or by the gas surface density (with the exponent 0.47 ± 0.09). In addition, we find systematically stronger fields in objects of higher global star-formation rate. The dwarf galaxies follow a similar far-infrared relationship (with a slope of 0.91 ± 0.08) to that determined for high surface brightness spiral galaxies. The magnetic field strength in dwarf galaxies does not correlate with their maximum rotational velocity, indicating that a small-scale rather than a large-scale dynamo process is responsible for producting magnetic fields in dwarfs. If magnetization of the Universe by galactic outflows is coeval with its metal enrichment, we show that more massive objects (such as Lyman break galaxies) can efficiently magnetize the intergalactic medium with a magnetic field strength of about 0.8 nG out to a distance of 160-530 kpc at redshifts 5-3, respectively. Magnetic fields that are several times weaker and shorter magnetization
Improved positioning by addition of atmospheric corrections to local area differential GPS
NASA Astrophysics Data System (ADS)
Singh, Malkiat; Reilly, Michael H.
2006-10-01
A local area differential GPS (DGPS) method applies corrections from a reference GPS receiver to improve positioning accuracy for a roaming GPS receiver. Increasing separation between reference and roaming receivers dilutes this improvement, largely because ionospheric and tropospheric effects differ between their two locations. We correct differential corrections for this difference and determine the improvement with this "atmospheric" DGPS method at roaming receiver positions that are separated from a Coast Guard reference receiver at Annapolis, Maryland, by 44, 67, and 228 km. For ionospheric corrections we use our Raytrace-Ionospheric conductivity and electron density-Bent-Gallagher ionospheric propagation model with driving parameters obtained from two-frequency data of surveyed reference GPS receivers. For tropospheric corrections we use the Hopfield model and weather station data for surface temperature, pressure, and relative humidity. Internet delivery of atmospheric differential corrections is used to avoid blockage or range cutoff of radio transmissions. Some comparisons are made with Wide Area Augmentation System GPS receiver performance.
Hong, Cheolpyo; Lee, Dong-Hoon; Han, Bong Soo
2014-07-01
Open-configuration magnetic resonance imaging (MRI) systems are becoming increasingly desirable for musculoskeletal imaging and image-guided radiotherapy because of their non-claustrophobic configuration. However, geometric image distortion in large fields-of-view (FOV) due to field inhomogeneity and gradient nonlinearity hinders the practical applications of open-type MRI. We demonstrated the use of geometric distortion correction for increasing FOV in open MRI. Geometric distortion was modeled and corrected as a global polynomial function. The appropriate polynomial order was identified as the minimum difference between the coordinates of control points in the distorted MR image space and those predicted by polynomial modeling. The sixth order polynomial function was found to give the optimal value for geometric distortion correction. The area of maximum distortion was<1 pixel with an FOV of 285mm. The correction performance error was increased at most 1.2% and 2.9% for FOVs of 340mm and~400mm compared with the FOV of 285mm. In particular, unresolved distortion was generated by local deformation near the gradient coil center. PMID:24698340
NASA Astrophysics Data System (ADS)
Choi, D.; Lee, M. H.; Suk, M. K.; Nam, K. Y.; Hwang, J.; Ko, J. S.
2015-12-01
The Weather Radar Center at Korea Meteorological Administration (KMA) has radar network for warnings for heavy rainfall and severe storms. We have been operating an operational real-time adjusted the Radar-Automatic Weather Station (AWS) Rainrate (RAR) system developed by KMA in 2006 for providing radar-based quantitative precipitation estimation (QPE) to meteorologists. This system has several uncertainty in estimating precipitation by radar reflectivity (Z) and rainfall intensity (R) relationship. To overcome uncertainty of the RAR system and improve the accuracy of QPE, we are applied the Local Gauge Correction (LGC) method which uses geo-statistical effective radius of errors of the QPE to RAR system in 2012. According to the results of previous study in 2014 (Lee et al., 2014), the accuracy of the RAR system with LGC method improved about 7.69% than before in the summer season of 2012 (from June to August). It has also improved the accuracy of hydrograph when we examined the accuracy of flood simulation using hydrologic model and data derived by the RAR system with LGC method. We confirmed to have its effectiveness through these results after the application of LGC method. It is required for high quality data of long term to utilize in hydrology field. To provide QPE data more precisely and collect past-time data, we produce that calculated by the RAR system with LGC method in the summer season from 2006 to 2009 and investigate whether the accuracy of past-time radar rainfall estimation enhance or not. Keywords : Radar-AWS Rainrate system, Local gauge correction, past-time Radar rainfall estimation Acknowledgements : This research is supported by "Development and application of Cross governmental dual-pol radar harmonization (WRC-2013-A-1)" project of the Weather Radar Center, Korea Meteorological Administration in 2015.
Correcting for Glacial Isostatic Adjustment in the static gravity field in northwestern Europe
NASA Astrophysics Data System (ADS)
Root, Bart; van der Wal, Wouter; Ebbing, Jörg; Novák, Pavel; Vermeersen, Bert
2014-05-01
Around 20,000 years ago, large ice sheets covered the surface of the Earth. In the late-Pleistocene large parts of these ice sheets melted, causing the crustal surface of Earth to relax. This process is called Glacial Isostatic Adjustment (GIA) and can be observed by sea level indicators, GPS uplift rates, and gravity changes. Several studies have tried to observe GIA in the static gravity field; however, they used simplistic models for the lithosphere. This study has two aims: i) to find out if it is possible to retrieve the GIA gravity signal with current knowledge of the density distribution of the lithosphere and ii) to see what the effect is on geophysical models that are constrained by gravity after correcting for the GIA gravity signal. To remove lithospheric density anomalies from the static gravity field, a spherical harmonic forward gravity field model is used, which calculates the gravity signal of a layered Earth. We found that is not possible to separate the GIA gravity effect from the uncertain density anomalies and boundary geometries in the crust and upper mantle. Therefore, we propose to correct the static gravity field with results from a numerical GIA model. Unknown upper mantle and lower mantle viscosities in such a model are estimated using local GIA observations, and using the global ice loading model history, ICE-5G. The best fitting models produce a free-air gravity anomaly of -28.4 +/-1.5 mGal (peak) and a remaining uplift of 240 m. When gravity observations and topography are corrected for GIA in geophysical modeling, this results in significant changes in the geometry or density of lithospheric structures, up to 30 km for a lithospheric model in Fennoscandia. The correction will also have an impact on the understanding of density anomalies of the lithosphere in other areas where GIA gravity anomalies are significant, such as North America, Greenland, and Antarctica.
2015-11-01
In the article by Heuslein et al, which published online ahead of print on September 3, 2015 (DOI: 10.1161/ATVBAHA.115.305775), a correction was needed. Brett R. Blackman was added as the penultimate author of the article. The article has been corrected for publication in the November 2015 issue. PMID:26490278
Gauge threshold corrections for {N}=2 heterotic local models with flux, and mock modular forms
NASA Astrophysics Data System (ADS)
Carlevaro, Luca; Israël, Dan
2013-03-01
We determine threshold corrections to the gauge couplings in local models of {N}=2 smooth heterotic compactifications with torsion, given by the direct product of a warped Eguchi-Hanson space and a two-torus, together with a line bundle. Using the worldsheet cft description previously found and by suitably regularising the infinite target space volume divergence, we show that threshold corrections to the various gauge factors are governed by the non-holomorphic completion of the Appell-Lerch sum. While its holomorphic Mock-modular component captures the contribution of states that localise on the blown-up two-cycle, the non-holomorphic correction originates from non-localised bulk states. We infer from this analysis universality properties for {N}=2 heterotic local models with flux, based on target space modular invariance and the presence of such non-localised states. We finally determine the explicit dependence of these one-loop gauge threshold corrections on the moduli of the two-torus, and by S-duality we extract the corresponding string-loop and E1-instanton corrections to the Kähler potential and gauge kinetic functions of the dual type i model. In both cases, the presence of non-localised bulk states brings about novel perturbative and non-perturbative corrections, some features of which can be interpreted in the light of analogous corrections to the effective theory in compact models.
Blumhagen, Jan O. Ladebeck, Ralf; Fenchel, Matthias; Braun, Harald; Quick, Harald H.; Faul, David; Scheffler, Klaus
2014-02-15
Purpose: In quantitative PET imaging, it is critical to accurately measure and compensate for the attenuation of the photons absorbed in the tissue. While in PET/CT the linear attenuation coefficients can be easily determined from a low-dose CT-based transmission scan, in whole-body MR/PET the computation of the linear attenuation coefficients is based on the MR data. However, a constraint of the MR-based attenuation correction (AC) is the MR-inherent field-of-view (FoV) limitation due to static magnetic field (B{sub 0}) inhomogeneities and gradient nonlinearities. Therefore, the MR-based human AC map may be truncated or geometrically distorted toward the edges of the FoV and, consequently, the PET reconstruction with MR-based AC may be biased. This is especially of impact laterally where the patient arms rest beside the body and are not fully considered. Methods: A method is proposed to extend the MR FoV by determining an optimal readout gradient field which locally compensates B{sub 0} inhomogeneities and gradient nonlinearities. This technique was used to reduce truncation in AC maps of 12 patients, and the impact on the PET quantification was analyzed and compared to truncated data without applying the FoV extension and additionally to an established approach of PET-based FoV extension. Results: The truncation artifacts in the MR-based AC maps were successfully reduced in all patients, and the mean body volume was thereby increased by 5.4%. In some cases large patient-dependent changes in SUV of up to 30% were observed in individual lesions when compared to the standard truncated attenuation map. Conclusions: The proposed technique successfully extends the MR FoV in MR-based attenuation correction and shows an improvement of PET quantification in whole-body MR/PET hybrid imaging. In comparison to the PET-based completion of the truncated body contour, the proposed method is also applicable to specialized PET tracers with little uptake in the arms and might
2015-12-01
In the article by Narayan et al (Narayan O, Davies JE, Hughes AD, Dart AM, Parker KH, Reid C, Cameron JD. Central aortic reservoir-wave analysis improves prediction of cardiovascular events in elderly hypertensives. Hypertension. 2015;65:629–635. doi: 10.1161/HYPERTENSIONAHA.114.04824), which published online ahead of print December 22, 2014, and appeared in the March 2015 issue of the journal, some corrections were needed.On page 632, Figure, panel A, the label PRI has been corrected to read RPI. In panel B, the text by the upward arrow, "10% increase in kd,” has been corrected to read, "10% decrease in kd." The corrected figure is shown below.The authors apologize for these errors. PMID:26558821
Collective-field-corrected strong field approximation for laser-irradiated metal clusters
NASA Astrophysics Data System (ADS)
Keil, Th; Bauer, D.
2014-06-01
The strong field approximation (SFA) formulated in terms of so-called ‘quantum orbits’ led to much insight into intense-laser driven ionization dynamics. In plain SFA, the emitted electron is treated as a free electron in the laser field alone. However, with improving experimental techniques and more advanced numerical simulations, it becomes more and more obvious that the plain SFA misses interesting effects even on a qualitative level. Examples are holographic side lobes, the low-energy structure, radial patterns in photoelectron spectra at low kinetic energies and strongly rotated angular distributions. For this reason, increasing efforts have been recently devoted to Coulomb corrections of the SFA. In the current paper, we follow a similar line but consider ionization of metal clusters. It is known that photoelectrons from clusters can be much more energetic than those emitted from atoms or small molecules, especially if the Mie resonance of the expanding cluster is evoked. We develop a SFA that takes the collective field inside the cluster via the simple rigid-sphere model into account. Our approach is based on field-corrected quantum orbits so that the acceleration process (or any other spectral feature of interest) can be investigated in detail.
NASA Astrophysics Data System (ADS)
1995-04-01
Seismic images of the Brooks Range, Arctic Alaska, reveal crustal-scale duplexing: Correction Geology, v. 23, p. 65 68 (January 1995) The correct Figure 4A, for the loose insert, is given here. See Figure 4A below. Corrected inserts will be available to those requesting copies of the article from the senior author, Gary S. Fuis, U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025. Figure 4A. P-wave velocity model of Brooks Range region (thin gray contours) with migrated wide-angle reflections (heavy red lines) and migreated vertical-incidence reflections (short black lines) superimposed. Velocity contour interval is 0.25 km/s; 4,5, and 6 km/s contours are labeled. Estimated error in velocities is one contour interval. Symbols on faults shown at top are as in Figure 2 caption.
Oh, Se-Hong; Chung, Jun-Young; In, Myung-Ho; Zaitsev, Maxim; Kim, Young-Bo; Speck, Oliver; Cho, Zang-Hee
2012-10-01
Despite its wide use, echo-planar imaging (EPI) suffers from geometric distortions due to off-resonance effects, i.e., strong magnetic field inhomogeneity and susceptibility. This article reports a novel method for correcting the distortions observed in EPI acquired at ultra-high-field such as 7 T. Point spread function (PSF) mapping methods have been proposed for correcting the distortions in EPI. The PSF shift map can be derived either along the nondistorted or the distorted coordinates. Along the nondistorted coordinates more information about compressed areas is present but it is prone to PSF-ghosting artifacts induced by large k-space shift in PSF encoding direction. In contrast, shift maps along the distorted coordinates contain more information in stretched areas and are more robust against PSF-ghosting. In ultra-high-field MRI, an EPI contains both compressed and stretched regions depending on the B0 field inhomogeneity and local susceptibility. In this study, we present a new geometric distortion correction scheme, which selectively applies the shift map with more information content. We propose a PSF-ghost elimination method to generate an artifact-free pixel shift map along nondistorted coordinates. The proposed method can correct the effects of the local magnetic field inhomogeneity induced by the susceptibility effects along with the PSF-ghost artifact cancellation. We have experimentally demonstrated the advantages of the proposed method in EPI data acquisitions in phantom and human brain using 7-T MRI. PMID:22213517
NASA Astrophysics Data System (ADS)
Mao, G.; Vogl, S.; Laux, P.; Wagner, S.; Kunstmann, H.
2014-07-01
Dynamically downscaled precipitation fields from regional climate model (RCM) often cannot be used directly for local climate change impact studies. Due to their inherent biases, i.e. systematic over- or underestimations compared to observations, several correction approaches have been developed. Most of the bias correction procedures such as the quantile mapping approach employ a transfer function that based on the statistical differences between RCM output and observations. Apart from such transfer function based statistical correction algorithms, a stochastic bias correction technique, based on the concept of Copula theory, is developed here and applied to correct precipitation fields from the Weather Research and Forecasting (WRF) model. As Dynamically downscaled precipitation fields we used high resolution (7 km, daily) WRF simulations for Germany driven by ERA40 reanalysis data for 1971-2000. The REGNIE data set from Germany Weather Service is used as gridded observation data (1 km, daily) and rescaled to 7 km for this application. The 30 year time series are splitted into a calibration (1971-1985) and validation (1986-2000) period of equal length. Based on the estimated dependence structure between WRF and REGNIE data and the identified respective marginal distributions in calibration period, separately analyzed for the different seasons, conditional distribution functions are derived for each time step in validation period. This finally allows to get additional information about the range of the statistically possible bias corrected values. The results show that the Copula-based approach efficiently corrects most of the errors in WRF derived precipitation for all seasons. It is also found that the Copula-based correction performs better for wet bias correction than for dry bias correction. In autumn and winter, the correction introduced a small dry bias in the Northwest of Germany. The average relative bias of daily mean precipitation from WRF for the
2016-02-01
Neogi T, Jansen TLTA, Dalbeth N, et al. 2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 2015;74:1789–98. The name of the 20th author was misspelled. The correct spelling is Janitzia Vazquez-Mellado. We regret the error. PMID:26881284
Experimental Flat-Field for Correction of XRT Contamination Spots
NASA Astrophysics Data System (ADS)
McKenzie, D. E.; Fox, J. L.; Kankelborg, C.
2012-08-01
Beginning in mid-2007, the XRT images are marred by dark spots due to beads of congealed contaminant. While programs are available for improving the cosmetic appearance of the images, no method has yet been demonstrated for a quantitative correction. We have employed a flatfielding method developed for MSU's MOSES sounding rocket payload, in an attempt to restore capabilities for quantitative photometry in the affected pixels. Initial results are encouraging; characterization of the uncertainties in the photometric correction are ongoing. We report on the degree to which this flatfielding attempt has been successful.
NASA Astrophysics Data System (ADS)
Kim, Dahan; Curthoys, Nikki M.; Parent, Matthew T.; Hess, Samuel T.
2013-09-01
Multi-colour localization microscopy has enabled sub-diffraction studies of colocalization between multiple biological species and quantification of their correlation at length scales previously inaccessible with conventional fluorescence microscopy. However, bleed-through, or misidentification of probe species, creates false colocalization and artificially increases certain types of correlation between two imaged species, affecting the reliability of information provided by colocalization and quantified correlation. Despite the potential risk of these artefacts of bleed-through, neither the effect of bleed-through on correlation nor methods for its correction in correlation analyses have been systematically studied at typical rates of bleed-through reported to affect multi-colour imaging. Here, we present a reliable method of bleed-through correction applicable to image rendering and correlation analysis of multi-colour localization microscopy. Application of our bleed-through correction shows that our method accurately corrects the artificial increase in both types of correlation studied (Pearson coefficient and pair correlation), at all rates of bleed-through tested, in all types of correlation examined. In particular, anti-correlation could not be quantified without our bleed-through correction, even at rates of bleed-through as low as 2%. While it is demonstrated with dichroic-based multi-colour FPALM here, our presented method of bleed-through correction can be applied to all types of localization microscopy (PALM, STORM, dSTORM, GSDIM, etc), including both simultaneous and sequential multi-colour modalities, provided the rate of bleed-through can be reliably determined.
Correcting GOES-R Magnetometer Data for Stray Fields
NASA Technical Reports Server (NTRS)
Carter, Delano R.; Freesland, Douglas C.; Tadikonda, Sivakumara K.; Kronenwetter, Jeffrey; Todirita, Monica; Dahya, Melissa; Chu, Donald
2016-01-01
Time-varying spacecraft magnetic fields or stray fields are a problem for magnetometer systems. While constant fields can be removed with zero offset calibration, stray fields are difficult to distinguish from ambient field variations. Putting two magnetometers on a long boom and solving for both the ambient and stray fields can be a good idea, but this gradiometer solution is even more susceptible to noise than a single magnetometer. Unless the stray fields are larger than the magnetometer noise, simply averaging the two measurements is a more accurate approach. If averaging is used, it may be worthwhile to explicitly estimate and remove stray fields. Models and estimation algorithms are provided for solar array, arcjet and reaction wheel fields.
Localization of Free Field Realizations of Affine Lie Algebras
NASA Astrophysics Data System (ADS)
Futorny, Vyacheslav; Grantcharov, Dimitar; Martins, Renato A.
2015-04-01
We use localization technique to construct new families of irreducible modules of affine Kac-Moody algebras. In particular, localization is applied to the first free field realization of the affine Lie algebra or, equivalently, to imaginary Verma modules.
Generalized-exchange local-spin-density-functional theory: Self-interaction correction
NASA Astrophysics Data System (ADS)
Manoli, S.; Whitehead, M. A.
1988-07-01
The local-spin-density (LSD) generalized-exchange (GX) theory is corrected for self-interaction by splitting the single-particle Fermi hole into pure-exchange and self-interaction holes. An analysis of these components shows that the non-self-interaction-corrected GX scheme overestimates the pure exchange while underestimating the self-interaction. This self-interaction-corrected scheme is called the GX-SI scheme. Using this method of correcting for self-interaction, two other approximate self-interaction-corrected (SIC) GX schemes can be derived in which (1) the GX-LSD-SI total exchange does not include the nonlocal, self-interaction potential and (2) the GX-SIX exchange is very similar to the exchange derived by Gopinathan [Phys. Rev. A 15, 2135 (1977)]. Neither of these exchanges obeys the sum rule. The GX-SI scheme contains correction terms to the LSD GX which are smaller than the corresponding ones derived in the SIC of Perdew and Zunger [Phys. Rev. B 23, 5048 (1981)]. This shows that the LSD-GX exchange is a better approximation to the true exchange of an inhomogeneous electron gas around an atom than the LSD free-electron gas exchange.
NASA Astrophysics Data System (ADS)
Huang, Rongzong; Wu, Huiying
2015-03-01
A lattice Boltzmann (LB) model for the convection-diffusion equation (CDE) with divergence-free velocity field is proposed, and the Chapman-Enskog analysis shows that the CDE can be recovered correctly. In the present model, the convection term is treated as a source term in the lattice Boltzmann equation (LBE) rather than being directly recovered by LBE; thus the CDE is intrinsically solved as a pure diffusion equation with a corresponding source term. To avoid the adoption of a nonlocal finite-difference scheme for computing the convection term, a local scheme is developed based on the Chapman-Enskog analysis. Most importantly, by properly specifying the discrete source term in the moment space, the local scheme can reach the same order (ɛ2) at which the CDE is recovered by a LB model. Numerical tests, including a one-dimensional periodic problem, diffusion of a Gaussian hill, diffusion of a rectangular pulse, and natural convection in a square cavity, are carried out to verify the present model. Numerical results are satisfactorily consistent with analytical solutions or previous numerical results, and show higher accuracy due to the correct recovery of CDE.
2016-02-01
In the article by Guessous et al (Guessous I, Pruijm M, Ponte B, Ackermann D, Ehret G, Ansermot N, Vuistiner P, Staessen J, Gu Y, Paccaud F, Mohaupt M, Vogt B, Pechère-Bertschi A, Martin PY, Burnier M, Eap CB, Bochud M. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions. Hypertension. 2015;65:691–696. doi: 10.1161/HYPERTENSIONAHA.114.04512), which published online ahead of print December 8, 2014, and appeared in the March 2015 issue of the journal, a correction was needed.One of the author surnames was misspelled. Antoinette Pechère-Berstchi has been corrected to read Antoinette Pechère-Bertschi.The authors apologize for this error. PMID:26763012
NASA Technical Reports Server (NTRS)
Henry, R. C.; Anderson, R. C.; Fastie, W. G.
1980-01-01
A direct measurement has been made of the spectrum (1180-1680 A) and Gould-latitude dependence of the local interstellar radiation field, over about one-third of the sky. The result is corrected to give expected values for the entire sky. The average local 1180-1680 A energy density is 5.8 x 10 to the -17th ergs/cu cm A. The surface brightness falls off toward high latitudes much more steeply than published models predict.
Versluis, M J; Sutton, B P; de Bruin, P W; Börnert, P; Webb, A G; van Osch, M J
2012-12-01
Spatio-temporal magnetic field changes in the brain caused by breathing or body movements can lead to image artifacts. This is especially a problem in T(2)(*)-weighted sequences. With the acquisition of an extra echo (navigator), it is possible to measure the magnetic field change induced frequency offset for a given slice during image acquisition. However, substantial local variation across a slice can occur. This work describes an extension of the conventional navigator technique that improves the estimation of the magnetic field distribution in the brain during strong field fluctuations. This is done using the combination of signals from multiple coil elements, the coil sensitivity profiles, and frequency encoding: termed sensitivity-encoded navigator echoes. In vivo validation was performed in subjects who performed normal breathing, nose touching, and deep breathing during scanning. The sensitivity-encoded navigator technique leads to an error reduction in estimating the field distribution in the brain of 73% ± 16% compared with 56% ± 14% for conventional estimation. Image quality can be improved via incorporating this navigator information appropriately into the image reconstruction. When the sensitivity-encoded navigator technique was applied to a T(2)(*)-weighted sequence at 7 T, a ghosting reduction of 47% ± 13% was measured during nose touching experiments compared with no correction. PMID:22362637
Electroweak corrections to high energy processes using effective field theory
Chiu Juiyu; Golf, Frank; Kelley, Randall; Manohar, Aneesh V.
2008-03-01
Electroweak Sudakov logarithms at high energy, of the form ({alpha}/sin{sup 2}{theta}{sub W}){sup n}log{sup m}s/M{sub Z,W}{sup 2}, are summed using effective theory methods. The corrections are computed to processes involving two external particles in the standard model. The results include nonzero particle masses, such as the t-quark mass, electroweak mixing effects which lead to unequal W and Z masses, and radiative Higgs corrections proportional to the Yukawa couplings. We show that the matching at the scale M{sub W,Z} has a term at most linear in logs/{mu}{sup 2} to all orders. The effective theory formalism is compared with, and extends, previous work based on infrared evolution equations.
Correction of the field distortion in embedded laser marking system
NASA Astrophysics Data System (ADS)
Wang, Dongyun; Yu, Qiwei; Ye, Xinpiao
2014-04-01
Because of inherent and random errors, the pillow-shaped and barrel-shaped distortions are occurred in the embedded laser marking system. These seriously affect marking quality. However, the existed correcting approaches are almost all used on PC based laser marking controller. They require very high processing speeds of the processor which cannot be satisfied in the embedded controller. In order to find a suitable method, the causes of distortions were analyzed deeply. After that, a linear compensation method is put forward herein. It needs to determine two coefficients by standard process and tries to improve the marking quality by compensating the marking data before converted to voltage by digital-to-analogue converter. It is not complex as the PC based one, but can correct the distortions to some extent. Experiments show that this method can efficiently decrease the distortions and improve the marking quality.
Local concurrent error detection and correction in data structures using virtual backpointers
NASA Technical Reports Server (NTRS)
Li, Chung-Chi Jim; Chen, Paul Peichuan; Fuchs, W. Kent
1989-01-01
A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data strutures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared database of Virtual Double Linked Lists.
Local concurrent error detection and correction in data structures using virtual backpointers
NASA Technical Reports Server (NTRS)
Li, C. C.; Chen, P. P.; Fuchs, W. K.
1987-01-01
A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data structures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared databased of Virtual Double Linked Lists.
A Local Corrections Algorithm for Solving Poisson's Equation inThree Dimensions
McCorquodale, Peter; Colella, Phillip; Balls, Gregory T.; Baden,Scott B.
2006-10-30
We present a second-order accurate algorithm for solving thefree-space Poisson's equation on a locally-refined nested grid hierarchyin three dimensions. Our approach is based on linear superposition oflocal convolutions of localized charge distributions, with the nonlocalcoupling represented on coarser grids. There presentation of the nonlocalcoupling on the local solutions is based on Anderson's Method of LocalCorrections and does not require iteration between different resolutions.A distributed-memory parallel implementation of this method is observedto have a computational cost per grid point less than three times that ofa standard FFT-based method on a uniform grid of the same resolution, andscales well up to 1024 processors.
The orientation of the local interstellar magnetic field.
Opher, M; Stone, E C; Gombosi, T I
2007-05-11
The orientation of the local interstellar magnetic field introduces asymmetries in the heliosphere that affect the location of heliospheric radio emissions and the streaming direction of ions from the termination shock of the solar wind. We combined observations of radio emissions and energetic particle streaming with extensive three-dimensional magnetohydrodynamic computer simulations of magnetic field draping over the heliopause to show that the plane of the local interstellar field is approximately 60 degrees to 90 degrees from the galactic plane. This finding suggests that the field orientation in the Local Interstellar Cloud differs from that of a larger-scale interstellar magnetic field thought to parallel the galactic plane. PMID:17495167
Phosphate vibrations probe local electric fields and hydration in biomolecules
Levinson, Nicholas M.; Bolte, Erin E.; Miller, Carrie S.
2011-01-01
The role of electric fields in important biological processes like binding and catalysis has been studied almost exclusively by computational methods. Experimental measurements of the local electric field in macromolecules are possible using suitably calibrated vibrational probes. Here we demonstrate that the vibrational transitions of phosphate groups are highly sensitive to an electric field and quantify that sensitivity, allowing local electric field measurements to be made in phosphate-containing biological systems without chemical modification. PMID:21809829
2015-05-22
The Circulation Research article by Keith and Bolli (“String Theory” of c-kitpos Cardiac Cells: A New Paradigm Regarding the Nature of These Cells That May Reconcile Apparently Discrepant Results. Circ Res. 2015:116:1216-1230. doi: 10.1161/CIRCRESAHA.116.305557) states that van Berlo et al (2014) observed that large numbers of fibroblasts and adventitial cells, some smooth muscle and endothelial cells, and rare cardiomyocytes originated from c-kit positive progenitors. However, van Berlo et al reported that only occasional fibroblasts and adventitial cells derived from c-kit positive progenitors in their studies. Accordingly, the review has been corrected to indicate that van Berlo et al (2014) observed that large numbers of endothelial cells, with some smooth muscle cells and fibroblasts, and more rarely cardiomyocytes, originated from c-kit positive progenitors in their murine model. The authors apologize for this error, and the error has been noted and corrected in the online version of the article, which is available at http://circres.ahajournals.org/content/116/7/1216.full ( PMID:25999426
NASA Astrophysics Data System (ADS)
1998-12-01
Alleged mosasaur bite marks on Late Cretaceous ammonites are limpet (patellogastropod) home scars Geology, v. 26, p. 947 950 (October 1998) This article had the following printing errors: p. 947, Abstract, line 11, “sepia” should be “septa” p. 947, 1st paragraph under Introduction, line 2, “creep” should be “deep” p. 948, column 1, 2nd paragraph, line 7, “creep” should be “deep” p. 949, column 1, 1st paragraph, line 1, “creep” should be “deep” p. 949, column 1, 1st paragraph, line 5, “19774” should be “1977)” p. 949, column 1, 4th paragraph, line 7, “in particular” should be “In particular” CORRECTION Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming Geology, v. 26, p. 1011 1014 (November 1998) An error appeared in the References Cited. The correct reference appears below: Fricke, H. C., Clyde, W. C., O'Neil, J. R., and Gingerich, P. D., 1998, Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: Oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming): Earth and Planetary Science Letters, v. 160, p. 193 208.
Local Magnetic Field Role in Star Formation
NASA Astrophysics Data System (ADS)
Koch, P. M.; Tang, Y. W.; Ho, P. T. P.; Zhang, Q.; Girart, J. M.; Chen, H. R. V.; Lai, S. P.; Li, H. B.; Li, Z. Y.; Liu, H. B.; Padovani, M.; Qiu, K.; Rao, R.; Yen, H. W.; Frau, P.; Chen, H. H.; Ching, T. C.
2016-05-01
We highlight distinct and systematic observational features of magnetic field morphologies in polarized submm dust continuum. We illustrate this with specific examples and show statistical trends from a sample of 50 star-forming regions.
An improved method for flat-field correction of flat panel x-ray detector.
Kwan, Alexander L C; Seibert, J Anthony; Boone, John M
2006-02-01
In this Technical Note, the effects of different flat-field techniques are examined for a cesium iodide flat panel detector, which exhibited a slightly nonlinear exposure response. The results indicate that the variable flat-field correction method with the appropriate polynomial fit provides excellent correction throughout the entire exposure range. The averaged normalized variation factor, used to assess the nonuniformity of the flat-field correction, decreased from 30.76 for the fixed correction method to 4.13 for the variable flat-field correction method with a fourth-order polynomial fit for the 60 kVp spectrum, and from 16.42 to 3.97 for the 95 kVp spectrum. PMID:16532945
An improved method for flat-field correction of flat panel x-ray detector
Kwan, Alexander L.C.; Seibert, J. Anthony; Boone, John M.
2006-02-15
In this Technical Note, the effects of different flat-field techniques are examined for a cesium iodide flat panel detector, which exhibited a slightly nonlinear exposure response. The results indicate that the variable flat-field correction method with the appropriate polynomial fit provides excellent correction throughout the entire exposure range. The averaged normalized variation factor, used to assess the nonuniformity of the flat-field correction, decreased from 30.76 for the fixed correction method to 4.13 for the variable flat-field correction method with a fourth-order polynomial fit for the 60 kVp spectrum, and from 16.42 to 3.97 for the 95 kVp spectrum.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Markarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Astrophysics Data System (ADS)
Makarov, V. V.; Murphy, D. W.
2007-07-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (VX,VY,VZ)=(10.5,18.5,7.3)+/-0.1 km s-1 not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (VX,VY,VZ)=(9.9,15.6,6.9)+/-0.2 km s-1. The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0+/-1.4, B=-13.1+/-1.2, K=1.1+/-1.8, and C=-2.9+/-1.4 km s-1 kpc-1. The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at ~-20 km s-1 kpc-1. A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z>1 kpc), but here we surmise its existence in the thin disk at z<200 pc. The most unexpected and unexplained term within
Local field and quantum effects for current perpendicular to planes in multilayers
Zhang, X.G.; Butler, W.H.
1996-12-31
The calculation of giant-magnetoresistance and in general, of electron transport for multilayers in the case of current perpendicular to the planes (CPP) requires both the two-point conductivity and the solution to the local field problem. In this paper we present a solution to the local field problem at an interface using two approaches. In the first approach we find the semiclassical solution for the local field when there is a band mismatch between two sides of an interface, and examine the deviation of the total resistance from the result of ``self-averaging``, in the lowest order of the value of the potential step. In the second approach, we solve for the quantum correction to the local field through a numerical iterative scheme. The oscillations due to the quantum correction are surprisingly large, but their correction to the total resistance is remarkably small. Our results imply that the ``self-averaging`` of the resistance, which is usually assumed in analysis of CPP, is only approximate. 8 refs., 2 figs., 2 tabs.
Bremsstrahlung function, leading Lüscher correction at weak coupling and localization
NASA Astrophysics Data System (ADS)
Bonini, Marisa; Griguolo, Luca; Preti, Michelangelo; Seminara, Domenico
2016-02-01
We discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. These observables localize on a two-dimensional gauge theory on S 2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Lüscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in {N}=4 Super Yang-Mills theory.
Error Field Correction in DIII-D Ohmic Plasmas With Either Handedness
Park, Jong-Kyu; Schaffer, Micahel J.; La Haye, Robert J.; Scoville, Timothy J.; Menard, Jonathon E.
2011-05-16
Error field correction results in DIII-D plasmas are presented in various configurations. In both left-handed and right-handed plasma configurations, where the intrinsic error fields become different due to the opposite helical twist (handedness) of the magnetic field, the optimal error correction currents and the toroidal phases of internal(I)-coils are empirically established. Applications of the Ideal Perturbed Equilibrium Code to these results demonstrate that the field component to be minimized is not the resonant component of the external field, but the total field including ideal plasma responses. Consistency between experiment and theory has been greatly improved along with the understanding of ideal plasma responses, but non-ideal plasma responses still need to be understood to achieve the reliable predictability in tokamak error field correction.
The ISOCAM field-of-view distortion correction
NASA Technical Reports Server (NTRS)
Ali, B.; Ott, S.; Vo, T. D.; Gastaud, R.; Okumura, K.
2000-01-01
We describe results from new re-analysis of the ISOCAM field-of-view distortion. In this contribution we describe the procedure for determining the distortion, the implentation and resulting effects on the ISOCAM astrometric measurements, mosaicking and flux calibration.
A new approach for beam hardening correction based on the local spectrum distributions
NASA Astrophysics Data System (ADS)
Rasoulpour, Naser; Kamali-Asl, Alireza; Hemmati, Hamidreza
2015-09-01
Energy dependence of material absorption and polychromatic nature of x-ray beams in the Computed Tomography (CT) causes a phenomenon which called "beam hardening". The purpose of this study is to provide a novel approach for Beam Hardening (BH) correction. This approach is based on the linear attenuation coefficients of Local Spectrum Distributions (LSDs) in the various depths of a phantom. The proposed method includes two steps. Firstly, the hardened spectra in various depths of the phantom (or LSDs) are estimated based on the Expectation Maximization (EM) algorithm for arbitrary thickness interval of known materials in the phantom. The performance of LSD estimation technique is evaluated by applying random Gaussian noise to transmission data. Then, the linear attenuation coefficients with regarding to the mean energy of LSDs are obtained. Secondly, a correction function based on the calculated attenuation coefficients is derived in order to correct polychromatic raw data. Since a correction function has been used for the conversion of the polychromatic data to the monochromatic data, the effect of BH in proposed reconstruction must be reduced in comparison with polychromatic reconstruction. The proposed approach has been assessed in the phantoms which involve less than two materials, but the correction function has been extended for using in the constructed phantoms with more than two materials. The relative mean energy difference in the LSDs estimations based on the noise-free transmission data was less than 1.5%. Also, it shows an acceptable value when a random Gaussian noise is applied to the transmission data. The amount of cupping artifact in the proposed reconstruction method has been effectively reduced and proposed reconstruction profile is uniform more than polychromatic reconstruction profile.
From Object Fields to Local Variables: A Practical Approach to Field-Sensitive Analysis
NASA Astrophysics Data System (ADS)
Albert, Elvira; Arenas, Puri; Genaim, Samir; Puebla, German; Ramírez Deantes, Diana Vanessa
Static analysis which takes into account the value of data stored in the heap is typically considered complex and computationally intractable in practice. Thus, most static analyzers do not keep track of object fields (or fields for short), i.e., they are field-insensitive. In this paper, we propose locality conditions for soundly converting fields into local variables. This way, field-insensitive analysis over the transformed program can infer information on the original fields. Our notion of locality is context-sensitive and can be applied both to numeric and reference fields. We propose then a polyvariant transformation which actually converts object fields meeting the locality condition into variables and which is able to generate multiple versions of code when this leads to increasing the amount of fields which satisfy the locality conditions. We have implemented our analysis within a termination analyzer for Java bytecode.
Hao, Feng Mattsson, Ann E.; Armiento, Rickard
2014-05-14
We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However, of central importance for this scheme is an index that identifies regions in space where the correction provided by the confined electron gas should be applied. The electron localization function (ELF) is a well-known indicator of strongly localized electrons. We use a model of a confined electron gas based on the harmonic oscillator to show that regions with high ELF directly coincide with regions where common exchange energy functionals have large errors. This suggests that the harmonic oscillator model together with an index based on the ELF provides the crucial ingredients for future improved semi-local functionals. For a practical illustration of how the proposed scheme is intended to work for a physical system we discuss monoclinic cupric oxide, CuO. A thorough discussion of this system leads us to promote the cell geometry of CuO as a useful benchmark for future semi-local functionals. Very high ELF values are found in a shell around the O ions, and take its maximum value along the Cu–O directions. An estimate of the exchange functional error from the effect of electron confinement in these regions suggests a magnitude and sign that could account for the error in cell geometry.
Optical probe, local fields, and Lorentz factor in ferroelectrics
NASA Astrophysics Data System (ADS)
Blinov, L. M.; Lazarev, V. V.; Palto, S. P.; Yudin, S. G.
2014-06-01
An optical probe is suggested that allows measurements of the local field and Lorentz factor ( L) in ferroelectric medium. The copolymer poly (vinylidene fluoride/trifluoroethylene) is mixed with Pd-tetraphenylporphyrin (TPP-Pd) that has a very narrow absorption band. Thus, TPP-Pd serves as a molecular optical probe of the local field. During the switching of the electric field lower than the coercive one the factor L of an unpolarized ferroelectric mixture is found to be of about 1/3 that corresponds to the random distribution of molecular dipoles in the ferroelectric. With increasing field, the dipole orientation acquires a lower symmetry and L tends to zero as predicted by lattice sum calculations for vinylidene fluoride. The knowledge of the field dependence of L and the usage of the optical probe makes it possible to measure directly the local and macroscopic fields in the individual elements of various ferroelectric-dielectric heterostructures.
Acoustic source localization in mixed field using spherical microphone arrays
NASA Astrophysics Data System (ADS)
Huang, Qinghua; Wang, Tong
2014-12-01
Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field ones, or mixed field sources.
The importance of slow-roll corrections during multi-field inflation
Avgoustidis, Anastasios; Cremonini, Sera; Davis, Anne-Christine; Ribeiro, Raquel H.; Turzyński, Krzysztof; Watson, Scott E-mail: S.Cremonini@damtp.cam.ac.uk E-mail: R.Ribeiro@damtp.cam.ac.uk E-mail: gswatson@syr.edu
2012-02-01
We re-examine the importance of slow-roll corrections during the evolution of cosmological perturbations in models of multi-field inflation. We find that in many instances the presence of light degrees of freedom leads to situations in which next to leading order slow-roll corrections become significant. Examples where we expect such corrections to be crucial include models in which modes exit the Hubble radius while the inflationary trajectory undergoes an abrupt turn in field space, or during a phase transition. We illustrate this with several examples — hybrid inflation, double quadratic inflation and double quartic inflation. Utilizing both analytic estimates and full numerical results, we find that corrections can be as large as 20%. Our results have implications for many existing models in the literature, as these corrections must be included to obtain accurate observational predictions — particularly given the level of accuracy expected from CMB experiments such as Planck.
Self-interaction-corrected local-spin-density calculations for rare earth materials
Svane, A.; Temmerman, W.M.; Szotek, Z.; Laegsgaard, J.; Winter, H.
2000-04-20
The ab initio self-interaction-corrected (SIC) local-spin-density (LSD) approximation is discussed with emphasis on the ability to describe localized f-electron states in rare earth solids. Two methods for minimizing the SIC-LSD total energy functional are discussed, one using a unified Hamiltonian for all electron states, thus having the advantages of Bloch's theorem, the other one employing an iterative scheme in real space. Results for cerium and cerium compounds as well as other rare earths are presented. For the cerium compounds the onset of f-electron delocalization can be accurately described, including the intricate isostructural phase transitions in elemental cerium and CeP. In Pr and Sm the equilibrium lattice constant and zero temperature equation of state is greatly improved in comparison with the LSD results.
NASA Astrophysics Data System (ADS)
Williams, Timothy C.; Shaddix, Christopher R.
2007-12-01
Intensified charge-coupled devices (ICCDs) are used extensively in many scientific and engineering environments to image weak or temporally short optical events. Care has to be taken in interpreting the images from ICCDs if quantitative results are required. In particular, nonuniform gain (flat field) and nonlinear response effects must be properly accounted for. Traditional flat-field corrections can only be applied in the linear regime of the ICCD camera, which limits the usable dynamic range. This paper reports a more general approach to image correction whereby the nonlinear gain response of each pixel of the ICCD is characterized over the full dynamic range of the camera. Image data can then be corrected for the combined effects of nonuniform gain and nonlinearity. The results from a two-color pyrometry measurement of soot field temperature are used to illustrate the capabilities of the new correction approach.
Plasmon localization and local field distribution in metal-dielectric films.
Genov, Dentcho A; Sarychev, Andrey K; Shalaev, Vladimir M
2003-05-01
An exact and very efficient numerical method for calculating the effective conductivity and local-field distributions in random R-L-C networks is developed. Using this method, the local-field properties of random metal-dielectric films are investigated in a wide spectral range and for a variety of metal concentrations p. It is shown that for metal concentrations close to the percolation threshold (p=p(c)) and frequencies close to the resonance, the local-field intensity is characterized by a non-Gaussian, exponentially broad distribution. For low and high metal concentrations a scaling region is formed that is due to the increasing number of noninteracting dipoles. The local electric fields are studied in terms of characteristic length parameters. The roles of both localized and extended eigenmodes in Kirchhoff's Hamiltonian are investigated. PMID:12786300
Deformable registration of CT and cone-beam CT by local CBCT intensity correction
NASA Astrophysics Data System (ADS)
Park, Seyoun; Plishker, William; Shekhar, Raj; Quon, Harry; Wong, John; Lee, Junghoon
2015-03-01
In this paper, we propose a method to accurately register CT to cone-beam CT (CBCT) by iteratively correcting local CBCT intensity. CBCT is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. To address this issue, we correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. This correction-registration step is repeated until the result image converges. We tested the proposed method on eight head-and-neck cancer cases and compared its performance with state-of-the-art registration methods, Bspline, demons, and optical flow, which are widely used for CT-CBCT registration. Normalized mutual-information (NMI), normalized cross-correlation (NCC), and structural similarity (SSIM) were computed as similarity measures for the performance evaluation. Our method produced overall NMI of 0.59, NCC of 0.96, and SSIM of 0.93, outperforming existing methods by 3.6%, 2.4%, and 2.8% in terms of NMI, NCC, and SSIM scores, respectively. Experimental results show that our method is more consistent and roust than existing algorithms, and also computationally efficient with faster convergence.
A flat-field correction method for photon-counting-detector-based micro-CT
NASA Astrophysics Data System (ADS)
Park, So E.; Kim, Jae G.; Hegazy, M. A. A.; Cho, Min H.; Lee, Soo Y.
2014-03-01
As low-dose computed tomography becomes a hot issue in the field of clinical x-ray imaging, photon counting detectors have drawn great attention as alternative x-ray image sensors. Even though photon-counting image sensors have several advantages over the integration-type sensors, such as low noise and high DQE, they are known to be more sensitive to the various experimental conditions like temperature and electric drift. Particularly, time-varying detector response during the CT scan is troublesome in photon-counting-detector-based CTs. To overcome the time-varying behavior of the image sensor during the CT scan, we developed a flat-field correction method together with an automated scanning mechanism. We acquired the flat-field images and projection data every view alternatively. When we took the flat-field image, we moved down the imaging sample away from the field-of-view with aid of computer controlled linear positioning stage. Then, we corrected the flat-field effects view-by-view with the flat-field image taken at given view. With a CdTe photon-counting image sensor (XRI-UNO, IMATEK), we took CT images of small bugs. The CT images reconstructed with the proposed flat-field correction method were much superior to the ones reconstructed with the conventional flat-field correction method.
Localized spin wave modes in parabolic field wells
NASA Astrophysics Data System (ADS)
McMichael, Robert; Tartakovskaya, Elena; Pardavi-Horvath, Martha
We describe spin wave modes trapped in parabolic-profile field wells. Trapped spin waves can be used as local probes of magnetic properties with resolution down to 100 nm in ferromagnetic resonance force microscopy. Localized modes have been shown to form around field minima from a number of sources, including stray fields from magnetic probe tips and inhomogeneous magnetostatic fields near film edges. Here, we address the most basic trap, which is a parabolic minimum in the applied field. The magnetic eigenmodes in this trap are tractable enough to serve as approximations in more realistic situations. For a parabolic field, we select basis mode profiles proportional to Hermite functions because they are eigenfuctions of the applied field and exchange parts of the equations of motion. Additionally, we find that these Hermite modes are approximate eigenfunctions of magnetostatic interactions, showing good agreement with micromagnetic calculations. More precise agreement is achieved by diagonalizing the equations of motion using only a few modes.
NASA Astrophysics Data System (ADS)
Rahman, Md. Mahbubur; Im, Sang Hyuk; Lee, Jae-Joon
2016-03-01
Correction for `Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles' by Md. Mahbubur Rahman et al., Nanoscale, 2016, DOI: 10.1039/c5nr08155f.
Rahman, Md Mahbubur; Im, Sang Hyuk; Lee, Jae-Joon
2016-04-14
Correction for 'Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles' by Md. Mahbubur Rahman et al., Nanoscale, 2016, DOI: 10.1039/c5nr08155f. PMID:26991406
Non-local means-based nonuniformity correction for infrared focal-plane array detectors
NASA Astrophysics Data System (ADS)
Yu, Hui; Zhang, Zhi-jie; Chen, Fu-sheng; Wang, Chen-sheng
2014-11-01
The infrared imaging systems are normally based on the infrared focal-plane array (IRFPA) which can be considered as an array of independent detectors aligned at the focal plane of the imaging system. Unfortunately, every detector on the IRFPA may have a different response to the same input infrared signal which is known as the nonuniformity problem. Then we can observe the fixed pattern noise (FPN) from the resulting images. Standard nonuniformity correction (NUC) methods need to be recalibrated after a short period of time due the temporal drift of the FPN. Scene-based nonuniformity correction (NUC) techniques eliminate the need for calibration by correction coefficients based on the scene being viewed. However, in the scene-based NUC method the problem of ghosting artifacts widely seriously decreases the image quality, which can degrade the performance of many applications such as target detection and track. This paper proposed an improved scene-based method based on the retina-like neural network approach. The method incorporates the use of non-local means (NLM) method into the estimation of the gain and the offset of each detector. This method can not only estimates the accurate correction coefficient but also restrict the ghosting artifacts efficiently. The proposed method relies on the use of NLM method which is a very successful image denoising method. And then the NLM used here can preserve the image edges efficiently and obtain a reliable spatial estimation. We tested the proposed NUC method by applying it to an IR sequence of frames. The performance of the proposed method was compared the other well-established adaptive NUC techniques.
Local Field Factors and Dielectric Properties of Liquid Benzene.
Davari, Nazanin; Daub, Christopher D; Åstrand, Per-Olof; Unge, Mikael
2015-09-01
Local electric field factors are calculated for liquid benzene by combining molecular dynamic simulations with a subsequent force-field model based on a combined charge-transfer and point-dipole interaction model for the local field factor. The local field factor is obtained as a linear response of the local field to an external electric field, and the response is calculated at frequencies through the first absorption maximum. It is found that the largest static local field factor is around 2.4, while it is around 6.4 at the absorption frequency. The linear susceptibility, the dielectric constant, and the first absorption maximum of liquid benzene are also studied. The electronic contribution to the dielectric constant is around 2.3 at zero frequency, in good agreement with the experimental value around 2.2, while it increases to 6.3 at the absorption frequency. The π → π* excitation energy is around 6.0 eV, as compared to the gas-phase value of around 6.3 eV, while the experimental values are 6.5 and 6.9 eV for the liquid and gas phase, respectively, demonstrating that the gas-to-liquid shift is well-described. PMID:26241379
NASA Astrophysics Data System (ADS)
Manuel, Cristina; Soto, Joan; Stetina, Stephan
2016-07-01
We show that effective field theory techniques can be efficiently used to compute power corrections to the hard thermal loops in a high temperature T expansion. To this aim, we use the recently proposed on-shell effective field theory, which describes the quantum fluctuations around on-shell degrees of freedom. We provide the on-shell effective field theory Lagrangian up to third order in the energy expansion for QED and use it for the computation of power corrections to the retarded photon polarization tensor for soft external momenta. Here soft denotes a scale of order e T , where e is the gauge coupling constant. We develop the necessary techniques to perform these computations and study the contributions to the polarization tensor proportional to e2T2, e2T , and e2T0. The first one describes the hard thermal loop contribution, the second one vanishes, while the third one provides corrections of order e2 to the soft photon propagation. We check that the results agree with the direct calculation from QED, up to local pieces, as expected in an effective field theory.
Creating Local Field Trips: Seeing Geographical Principles through Empirical Eyes.
ERIC Educational Resources Information Center
Wheeler, James O.
1985-01-01
Discusses how instructors can design a local field trip for undergraduate students enrolled in an economic geography class. The purpose of the field trip is to help students observe and interpret familiar scenes in terms of geographical concepts such as central place theory, changing land use, and spatial competition. (RM)
Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers
Danby, G.T.; Jackson, J.W.
1990-03-19
A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.
Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers
Danby, Gordon T.; Jackson, John W.
1991-01-01
A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.
Anisotropies in magnetic field evolution and local Lyapunov exponents
Tang, X.Z.; Boozer, A.H.
2000-01-13
The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates.
Magnetic-field-induced localization in 2D topological insulators.
Delplace, Pierre; Li, Jian; Büttiker, Markus
2012-12-14
Localization of the helical edge states in quantum spin Hall insulators requires breaking time-reversal invariance. In experiments, this is naturally implemented by applying a weak magnetic field B. We propose a model based on scattering theory that describes the localization of helical edge states due to coupling to random magnetic fluxes. We find that the localization length is proportional to B^{-2} when B is small and saturates to a constant when B is sufficiently large. We estimate especially the localization length for the HgTe/CdTe quantum wells with known experimental parameters. PMID:23368362
Local Flow Field and Slip Length of Superhydrophobic Surfaces.
Schäffel, David; Koynov, Kaloian; Vollmer, Doris; Butt, Hans-Jürgen; Schönecker, Clarissa
2016-04-01
While the global slippage of water past superhydrophobic surfaces has attracted wide interest, the local distribution of slip still remains unclear. Using fluorescence correlation spectroscopy, we performed detailed measurements of the local flow field and slip length for water in the Cassie state on a microstructured superhydrophobic surface. We revealed that the local slip length is finite, nonconstant, anisotropic, and sensitive to the presence of surfactants. In combination with numerical calculations of the flow, we can explain all these properties by the local hydrodynamics. PMID:27081981
Local Flow Field and Slip Length of Superhydrophobic Surfaces
NASA Astrophysics Data System (ADS)
Schäffel, David; Koynov, Kaloian; Vollmer, Doris; Butt, Hans-Jürgen; Schönecker, Clarissa
2016-04-01
While the global slippage of water past superhydrophobic surfaces has attracted wide interest, the local distribution of slip still remains unclear. Using fluorescence correlation spectroscopy, we performed detailed measurements of the local flow field and slip length for water in the Cassie state on a microstructured superhydrophobic surface. We revealed that the local slip length is finite, nonconstant, anisotropic, and sensitive to the presence of surfactants. In combination with numerical calculations of the flow, we can explain all these properties by the local hydrodynamics.
Local and nonlocal parallel heat transport in general magnetic fields
Del-Castillo-Negrete, Diego B; Chacon, Luis
2011-01-01
A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.
Localized electron heating by strong guide-field magnetic reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Inomoto, Michiaki; Sugawara, Takumichi; Yamasaki, Kotaro; Ushiki, Tomohiko; Ono, Yasushi
2015-10-01
Localized electron heating of magnetic reconnection was studied under strong guide-field using two merging spherical tokamak plasmas in the University of Tokyo Spherical Tokamak experiment. Our new slide-type two-dimensional Thomson scattering system is documented for the first time the electron heating localized around the X-point. Shape of the high electron temperature area does not agree with that of energy dissipation term Et.jt . If we include a guide-field effect term Bt/(Bp+αBt) for Et.jt , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point.
Corrected mean-field models for spatially dependent advection-diffusion-reaction phenomena
NASA Astrophysics Data System (ADS)
Simpson, Matthew J.; Baker, Ruth E.
2011-05-01
In the exclusion-process literature, mean-field models are often derived by assuming that the occupancy status of lattice sites is independent. Although this assumption is questionable, it is the foundation of many mean-field models. In this work we develop methods to relax the independence assumption for a range of discrete exclusion-process-based mechanisms motivated by applications from cell biology. Previous investigations that focused on relaxing the independence assumption have been limited to studying initially uniform populations and ignored any spatial variations. By ignoring spatial variations these previous studies were greatly simplified due to translational invariance of the lattice. These previous corrected mean-field models could not be applied to many important problems in cell biology such as invasion waves of cells that are characterized by moving fronts. Here we propose generalized methods that relax the independence assumption for spatially inhomogeneous problems, leading to corrected mean-field descriptions of a range of exclusion-process-based models that incorporate (i) unbiased motility, (ii) biased motility, and (iii) unbiased motility with agent birth and death processes. The corrected mean-field models derived here are applicable to spatially variable processes including invasion wave-type problems. We show that there can be large deviations between simulation data and traditional mean-field models based on invoking the independence assumption. Furthermore, we show that the corrected mean-field models give an improved match to the simulation data in all cases considered.
The Influence of Radiosonde 'Age' on TRMM Field Campaign Soundings Humidity Correction
NASA Technical Reports Server (NTRS)
Roy, Biswadev; Halverson, Jeffrey B.; Wang, Jun-Hong
2002-01-01
Hundreds of Vaisala sondes with a RS80-H Humicap thin-film capacitor humidity sensor were launched during the Tropical Rainfall Measuring Mission (TRMM) field campaigns in Large Scale Biosphere-Atmosphere held in Brazil (LBA) and in Kwajalein experiment (KWAJEX) held in the Republic of Marshall Islands. Using Six humidity error correction algorithms by Wang et al., these sondes were corrected for significant dry bias in the RS80-H data. It is further shown that sonde surface temperature error must be corrected for a better representation of the relative humidity. This error becomes prominent due to sensor arm-heating in the first 50-s data.
Sharma, Swati; Rousseau, François; Heitz, Fabrice; Rumbach, Lucien; Armspach, Jean-Paul
2013-01-01
Brain atrophy is considered an important marker of disease progression in many chronic neuro-degenerative diseases such as multiple sclerosis (MS). A great deal of attention is being paid toward developing tools that manipulate magnetic resonance (MR) images for obtaining an accurate estimate of atrophy. Nevertheless, artifacts in MR images, inaccuracies of intermediate steps and inadequacies of the mathematical model representing the physical brain volume change, make it rather difficult to obtain a precise and unbiased estimate. This work revolves around the nature and magnitude of bias in atrophy estimations as well as a potential way of correcting them. First, we demonstrate that for different atrophy estimation methods, bias estimates exhibit varying relations to the expected atrophy and these bias estimates are of the order of the expected atrophies for standard algorithms, stressing the need for bias correction procedures. Next, a framework for estimating uncertainty in longitudinal brain atrophy by means of constructing confidence intervals is developed. Errors arising from MRI artifacts and bias in estimations are learned from example atrophy simulations and anatomies. Results are discussed for three popular non-rigid registration approaches with the help of simulated localized brain atrophy in real MR images. PMID:23988649
Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields
Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca
2014-11-01
Purpose: A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. Methods: The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. Results: An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and −20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric
Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields
Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca
2014-01-01
Purpose: A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. Methods: The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. Results: An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and −20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric
The perturbation correction factor of ionisation chambers in beta-radiation fields.
Böhm, J
1980-01-01
In determining the absorbed dose in a solid medium by means of gas-filled ionisation chambers, the perturbation of the radiation field by the chamber needs to be taken into account. So far, an appropriate correction factor has neither been calculated nor measured for beta-radiation. This work describes its experimental determination for an extrapolation chamber and beta-radiation fields of 147Pm, 204Tl, and 90Sr + 90Y. The results show that the correction factor may be assumed to be the product of a shield factor and a scatter factor the magnitudes of which depend on the chamber geometry and the radiation field. The change of the perturbation correction factor with phantom depth is important for the measurement of depth dose curves. This is demonstrated by an example. PMID:7360793
Scheme for precise correction of orbit variation caused by dipole error field of insertion device
NASA Astrophysics Data System (ADS)
Nakatani, T.; Agui, A.; Aoyagi, H.; Matsushita, T.; Takao, M.; Takeuchi, M.; Yoshigoe, A.; Tanaka, H.
2005-05-01
We developed a scheme for precisely correcting the orbit variation caused by a dipole error field of an insertion device (ID) in a storage ring and investigated its performance. The key point for achieving the precise correction is to extract the variation of the beam orbit caused by the change of the ID error field from the observed variation. We periodically change parameters such as the gap and phase of the specified ID with a mirror-symmetric pattern over the measurement period to modulate the variation. The orbit variation is measured using conventional wide-frequency-band detectors and then the induced variation is extracted precisely through averaging and filtering procedures. Furthermore, the mirror-symmetric pattern enables us to independently extract the orbit variations caused by a static error field and by a dynamic one, e.g., an error field induced by the dynamical change of the ID gap or phase parameter. We built a time synchronization measurement system with a sampling rate of 100Hz and applied the scheme to the correction of the orbit variation caused by the error field of an APPLE-2-type undulator installed in the SPring-8 storage ring. The result shows that the developed scheme markedly improves the correction performance and suppresses the orbit variation caused by the ID error field down to the order of submicron. This scheme is applicable not only to the correction of the orbit variation caused by a special ID, the gap or phase of which is periodically changed during an experiment, but also to the correction of the orbit variation caused by a conventional ID which is used with a fixed gap and phase.
NASA Astrophysics Data System (ADS)
Smit, K.; van Asselen, B.; Kok, J. G. M.; Aalbers, A. H. L.; Lagendijk, J. J. W.; Raaymakers, B. W.
2013-09-01
In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953.
Smit, K; van Asselen, B; Kok, J G M; Aalbers, A H L; Lagendijk, J J W; Raaymakers, B W
2013-09-01
In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953. PMID:23938362
Localized Dictionaries Based Orientation Field Estimation for Latent Fingerprints.
Xiao Yang; Jianjiang Feng; Jie Zhou
2014-05-01
Dictionary based orientation field estimation approach has shown promising performance for latent fingerprints. In this paper, we seek to exploit stronger prior knowledge of fingerprints in order to further improve the performance. Realizing that ridge orientations at different locations of fingerprints have different characteristics, we propose a localized dictionaries-based orientation field estimation algorithm, in which noisy orientation patch at a location output by a local estimation approach is replaced by real orientation patch in the local dictionary at the same location. The precondition of applying localized dictionaries is that the pose of the latent fingerprint needs to be estimated. We propose a Hough transform-based fingerprint pose estimation algorithm, in which the predictions about fingerprint pose made by all orientation patches in the latent fingerprint are accumulated. Experimental results on challenging latent fingerprint datasets show the proposed method outperforms previous ones markedly. PMID:26353229
Pedestrian simulations in hexagonal cell local field model
NASA Astrophysics Data System (ADS)
Leng, Biao; Wang, Jianyuan; Xiong, Zhang
2015-11-01
Pedestrian dynamics have caused wide concern over the recent years. This paper presents a local field (LF) model based on regular hexagonal cells to simulate pedestrian dynamics in scenarios such as corridors and bottlenecks. In this model, the simulation scenarios are discretized into regular hexagonal cells. The local field is a small region around pedestrian. Each pedestrian will choose his/her target cell according to the situation in his/her local field. Different walking strategies are considered in the simulation in corridor scenario and the fundamental graphs are used to verify this model. Different shapes of exit are also discussed in the bottleneck scenario. The statistics of push effect show that the smooth bottleneck exit may be more safe.
Nonrigid motion correction in 3D using autofocusing with localized linear translations.
Cheng, Joseph Y; Alley, Marcus T; Cunningham, Charles H; Vasanawala, Shreyas S; Pauly, John M; Lustig, Michael
2012-12-01
MR scans are sensitive to motion effects due to the scan duration. To properly suppress artifacts from nonrigid body motion, complex models with elements such as translation, rotation, shear, and scaling have been incorporated into the reconstruction pipeline. However, these techniques are computationally intensive and difficult to implement for online reconstruction. On a sufficiently small spatial scale, the different types of motion can be well approximated as simple linear translations. This formulation allows for a practical autofocusing algorithm that locally minimizes a given motion metric--more specifically, the proposed localized gradient-entropy metric. To reduce the vast search space for an optimal solution, possible motion paths are limited to the motion measured from multichannel navigator data. The novel navigation strategy is based on the so-called "Butterfly" navigators, which are modifications of the spin-warp sequence that provides intrinsic translational motion information with negligible overhead. With a 32-channel abdominal coil, sufficient number of motion measurements were found to approximate possible linear motion paths for every image voxel. The correction scheme was applied to free-breathing abdominal patient studies. In these scans, a reduction in artifacts from complex, nonrigid motion was observed. PMID:22307933
Locally oriented potential field for controlling multi-robots
NASA Astrophysics Data System (ADS)
Romero, Roseli A. F.; Prestes, Edson; Idiart, Marco A. P.; Faria, Gedson
2012-12-01
In this paper, we present an extension of the boundary value problem path planner (BVP PP) to control multiple robots in a robot soccer scenario. This extension is called Locally Oriented Potential Field (LOPF) and computes a potential field from the numerical solution of a BVP using local relaxations in different patches of the solution space. This permits that a single solution of the BVP endows distinct robots with different behaviors in a team. We present the steps to implement LOPF as well as several results obtained in simulation.
MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK
SCOVILLE, JT; LAHAYE, RJ
2002-10-01
OAK A271 MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK. Error field optimization on DIII-D tokamak plasma discharges has routinely been done for the last ten years with the use of the external ''n = 1 coil'' or the ''C-coil''. The optimum level of correction coil current is determined by the ability to avoid the locked mode instability and access previously unstable parameter space at low densities. The locked mode typically has toroidal and poloidal mode numbers n = 1 and m = 2, respectively, and it is this component that initially determined the correction coil current and phase. Realization of the importance of nearby n = 1 mode components m = 1 and m = 3 has led to a revision of the error field correction algorithm. Viscous and toroidal mode coupling effects suggested the need for additional terms in the expression for the radial ''penetration'' field B{sub pen} that can induce a locked mode. To incorporate these effects, the low density locked mode threshold database was expanded. A database of discharges at various toroidal fields, plasma currents, and safety factors was supplement4ed with data from an experiment in which the fields of the n = 1 coil and C-coil were combined, allowing the poloidal mode spectrum of the error field to be varied. A multivariate regression analysis of this new low density locked mode database was done to determine the low density locked mode threshold scaling relationship n{sub e} {proportional_to} B{sub T}{sup -0.01} q{sub 95}{sup -0.79} B{sub pen} and the coefficients of the poloidal mode components in the expression for B{sub pen}. Improved plasma performance is achieved by optimizing B{sub pen} by varying the applied correction coil currents.
Localized Electron Heating by Strong Guide-Field Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team
2015-11-01
Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.
Nonequilibrium electromagnetics: Local and macroscopic fields and constitutive relationships
Baker-Jarvis, James; Kabos, Pavel; Holloway, Christopher L.
2004-09-01
We study the electrodynamics of materials using a Liouville-Hamiltonian-based statistical-mechanical theory. Our goal is to develop electrodynamics from an ensemble-average viewpoint that is valid for microscopic and nonequilibrium systems at molecular to submolecular scales. This approach is not based on a Taylor series expansion of the charge density to obtain the multipoles. Instead, expressions of the molecular multipoles are used in an inverse problem to obtain the averaging statistical-density function that is used to obtain the macroscopic fields. The advantages of this method are that the averaging function is constructed in a self-consistent manner and the molecules can either be treated as point multipoles or contain more microstructure. Expressions for the local and macroscopic fields are obtained, and evolution equations for the constitutive parameters are developed. We derive equations for the local field as functions of the applied, polarization, magnetization, strain density, and macroscopic fields.
Transformation of the dihedral corrective map for D-amino residues using the CHARMM force field
NASA Astrophysics Data System (ADS)
Turpin, Eleanor R.; Hirst, Jonathan D.
2012-08-01
Molecular dynamics simulations in explicit solvent were performed on two peptides and two proteins containing D-amino residues, using three implementations of the CHARMM22 all-atom force field: (a) with the standard CMAP corrective term, (b) neglecting the correction entirely and (c) using a transformation of the CMAP grid (φ, ψ) → (-φ, -ψ) for the D-amino residues. The transformed map led to sampling of conformations which are closest to the X-ray crystallographic structures for D-amino residues and the standard CMAP correction destabilises D-amino secondary structure. Thus, the transformation of the CMAP term is needed to simulate proteins and peptides containing D-amino residues correctly.
Limitations to flat-field correction methods when using an X-ray spectrum
NASA Astrophysics Data System (ADS)
Davidson, D. W.; Fröjdh, C.; O'Shea, V.; Nilsson, H.-E.; Rahman, M.
2003-08-01
Flat-field correction methods are implemented in order to eliminate non-uniformities in X-ray imaging sensors. If the compensation is perfect, then the remaining variations result from noise over the detector area. The efficiency of the compensation is reduced when an object is placed in the beam. A principle cause of this effect is believed to be the spectrum hardening caused by the object. In a normal application the correction factors are calculated for a certain spectrum, meaning that the average of the correction for the individual photon energies are used. If the composition of the spectrum changes the correction factor will also change. In this paper, we present a theory for the sensitivity of the gain constants on X-ray spectra. The theory is supported by experimental data obtained with X-ray spectra and monochromatic X-rays.
Virtual local target method for avoiding local minimum in potential field based robot navigation.
Zou, Xi-Yong; Zhu, Jing
2003-01-01
A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation. Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments. PMID:12765277
Localization and mass spectra of various matter fields on scalar-tensor brane
Xie, Qun-Ying; Zhao, Zhen-Hua; Zhong, Yi; Yang, Jie; Zhou, Xiang-Nan
2015-03-10
Recently, a new scalar-tensor braneworld model was presented in [http://dx.doi.org/10.1103/PhysRevD.86.127502]. It not only solves the gauge hierarchy problem but also reproduces a correct Friedmann-like equation on the brane. In this new model, there are two different brane solutions, for which the mass spectra of gravity on the brane are the same. In this paper, we investigate localization and mass spectra of various bulk matter fields (i.e., scalar, vector, Kalb-Ramond, and fermion fields) on the brane. It is shown that the zero modes of all the matter fields can be localized on the positive tension brane under some conditions, and the mass spectra of each kind of bulk matter field for the two brane solutions are different except for some special cases, which implies that the two brane solutions are not physically equivalent. When the coupling constants between the dilaton and bulk matter fields take special values, the mass spectra for both solutions are the same, and the scalar and vector zero modes are localized on the negative tension brane, while the KR zero mode is still localized on the positive tension brane.
Visualizing electromagnetic fields at the nanoscale by single molecule localization.
Steuwe, Christian; Erdelyi, Miklos; Szekeres, G; Csete, M; Baumberg, Jeremy J; Mahajan, Sumeet; Kaminski, Clemens F
2015-05-13
Coupling of light to the free electrons at metallic surfaces allows the confinement of electric fields to subwavelength dimensions, far below the optical diffraction limit. While this is routinely used to manipulate light at the nanoscale, in electro-optic devices and enhanced spectroscopic techniques, no characterization technique for imaging the underlying nanoscopic electromagnetic fields exists, which does not perturb the field or employ complex electron beam imaging. Here, we demonstrate the direct visualization of electromagnetic fields on patterned metallic substrates at nanometer resolution, exploiting a strong "autonomous" fluorescence-blinking behavior of single molecules within the confined fields allowing their localization. Use of DNA-constructs for precise positioning of fluorescence dyes on the surface induces this distance-dependent autonomous blinking thus completely obviating the need for exogenous agents or switching methods. Mapping such electromagnetic field distributions at nanometer resolution aids the rational design of nanometals for diverse photonic applications. PMID:25915093
Suppression of edge-localized modes by magnetic field perturbations
Kleva, Robert G.; Guzdar, Parvez N.
2010-11-15
Transport bursts in simulations of edge-localized modes (ELMs) in tokamaks are suppressed by the application of magnetic field perturbations. The amplitude of the applied magnetic field perturbations is characterized by a stochasticity parameter S. When S>1, magnetic flux surfaces are destroyed and the magnetic field lines diffuse in minor radius. As S increases in the simulations, the magnitude of the ELM bursts decreases. The size of bursts is reduced to a very small value while S is still less than unity and most of the magnetic flux surfaces are still preserved. Magnetic field line stochasticity is not a requirement for the stabilization of ELMs by the magnetic field perturbations. The magnetic field perturbations act by suppressing the growth of the resistive ballooning instability that underlies the ELM bursts.
Laboratory spectra of field samples as a check on two atmospheric correction methods
NASA Technical Reports Server (NTRS)
Xu, Pung; Greeley, Ronald
1993-01-01
Atmospheric correction is the first step toward quantitative analysis of imaging spectroscopy data. Two methods, MODTRAN model and the empirical line, were used to convert AVIRIS radiance values to reflectance values. A set of laboratory spectra of field samples corresponding to AVIRIS coverage was used to assess these methods. This will also serve to select bands for future quantative analyses.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... FR 80393-80394, December 23, 2011). Following publication of the notice, the Field Museum staff re... objects, the abalone shell. In the Federal Register (76 FR 80393-80394, December 23, 2011), paragraph... Federal Register (76 FR 80393-80394, December 23, 2011), paragraph ten is corrected by substituting...
Statistical Interpretation of the Local Field Inside Dielectrics.
ERIC Educational Resources Information Center
Berrera, Ruben G.; Mello, P. A.
1982-01-01
Compares several derivations of the Clausius-Mossotti relation to analyze consistently the nature of approximations used and their range of applicability. Also presents a statistical-mechanical calculation of the local field for classical system of harmonic oscillators interacting via the Coulomb potential. (Author/SK)
Local Scalar Fields Equivalent to Nambu-Goto Strings
NASA Astrophysics Data System (ADS)
Hosotani, Yutaka
1981-08-01
We prove the mathematical equivalence of Nambu-Goto strings to local scalar fields S(x) and T (x) described by the Lagrangian L=-d4x{[∂(S,T)∂(xμ,xν)]22}12 Implications to the quantization problem of strings are also discussed.
Harmonic analysis on local fields and adelic spaces. II
NASA Astrophysics Data System (ADS)
Osipov, Denis V.; Parshin, Aleksei N.
2011-08-01
We develop harmonic analysis in certain categories of filtered Abelian groups and vector spaces. The objects of these categories include local fields and adelic spaces arising from arithmetic surfaces. We prove some structure theorems for quotients of the adèle groups of algebraic and arithmetic surfaces.
Gene flow in maize fields with different local pollen densities
NASA Astrophysics Data System (ADS)
Goggi, A. Susana; Lopez-Sanchez, Higinio; Caragea, Petrutza; Westgate, Mark; Arritt, Raymond; Clark, Craig A.
2007-08-01
The development of maize ( Zea mays L.) varieties as factories of pharmaceutical and industrial compounds has renewed interest in controlling pollen dispersal. The objective of this study was to compare gene flow into maize fields of different local pollen densities under the same environmental conditions. Two fields of approximately 36 ha were planted with a nontransgenic, white hybrid, in Ankeny, Iowa, USA. In the center of both fields, a 1-ha plot of a yellow-seeded stacked RR/Bt transgenic hybrid was planted as a pollen source. Before flowering, the white receiver maize of one field was detasseled in a 4:1 ratio to reduce the local pollen density (RPD). The percentage of outcross in the field with RPD was 42.2%, 6.3%, and 1.3% at 1, 10, and 35 m from the central plot, respectively. The percentage of outcross in the white maize with normal pollen density (NPD) was 30.1%, 2.7%, and 0.4%, respectively, at these distances. At distances greater than 100 m, the outcross frequency decreased below 0.1 and 0.03% in the field with RPD and NPD, respectively. A statistical model was used to compare pollen dispersal based on observed outcross percentages. The likelihood ratio test confirmed that the models of outcrossing in the two fields were significantly different ( P is practically 0). Results indicated that when local pollen is low, the incoming pollen has a competitive advantage and the level of outcross is significantly greater than when the local pollen is abundant.
Locally smeared operator product expansions in scalar field theory
Monahan, Christopher; Orginos, Kostas
2015-04-01
We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standard operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.
Locally smeared operator product expansions in scalar field theory
Monahan, Christopher; Orginos, Kostas
2015-04-01
We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standardmore » operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.« less
On the correction, perturbation and modification of small field detectors in relative dosimetry.
Papaconstadopoulos, P; Tessier, F; Seuntjens, J
2014-10-01
The purpose of this study was to derive a complete set of correction and perturbation factors for output factors (OF) and dose profiles. Modern small field detectors were investigated including a plastic scintillator (Exradin W1, SI), a liquid ionization chamber (microLion 31018, PTW), an unshielded diode (Exradin D1V, SI) and a synthetic diamond (microDiamond 60019, PTW). A Monte Carlo (MC) beam model was commissioned for use in small fields following two commissioning procedures: (1) using intermediate and moderately small fields (down to 2 × 2 cm(2)) and (2) using only small fields (0.5 × 0.5 cm(2) -2 × 2 cm(2)). In the latter case the detectors were explicitly modelled in the dose calculation. The commissioned model was used to derive the correction and perturbation factors with respect to a small point in water as suggested by the Alfonso formalism. In MC calculations the design of two detectors was modified in order to minimize or eliminate the corrections needed. The results of this study indicate that a commissioning process using large fields does not lead to an accurate estimation of the source size, even if a 2 × 2 cm(2) field is included. Furthermore, the detector should be explicitly modelled in the calculations. On the output factors, the scintillator W1 needed the smallest correction (+0.6%), followed by the microDiamond (+1.3%). Larger corrections were observed for the microLion (+2.4%) and diode D1V (-2.4%). On the profiles, significant corrections were observed out of the field on the gradient and tail regions. The scintillator needed the smallest corrections (-4%), followed by the microDiamond (-11%), diode D1V (+13%) and microLion (-15%). The major perturbations reported were due to volume averaging and high density materials that surround the active volumes. These effects presented opposite trends in both OF and profiles. By decreasing the radius of the microLion to 0.85 mm we could modify the volume averaging effect in order
Convective Flow Induced by Localized Traveling Magnetic Fields
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Rose, M. Franklin (Technical Monitor)
2001-01-01
An axisymmetric traveling magnetic field induces a meridional base flow in a cylindrical zone of an electrically conducting liquid. This remotely induced flow can be conveniently controlled, in magnitude and direction, and can have benefits for crystal growth applications. In particular, it can be used to offset natural convection. For long vertical cylinders, non-uniform and localized in the propagating direction, magnetic fields are required for this purpose. Here we investigate a particular form of this field, namely that induced by a set of a few electric current coils. An order of magnitude reduction of buoyancy convection is theoretically demonstrated for a vertical Bridgman crystal growth configuration.
Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields
NASA Astrophysics Data System (ADS)
Czarnecki, D.; Zink, K.
2013-04-01
The application of small photon fields in modern radiotherapy requires the determination of total scatter factors Scp or field factors \\Omega ^{f_{clin} ,f_{msr}}_{Q_{clin} ,Q_{msr}} with high precision. Both quantities require the knowledge of the field-size-dependent and detector-dependent correction factor k^{f_{clin} ,f_{msr}}_{Q_{clin} ,Q_{msr}}. The aim of this study is the determination of the correction factor k^{f_{clin} ,f_{msr}}_{Q_{clin} ,Q_{msr}} for different types of detectors in a clinical 6 MV photon beam of a Siemens KD linear accelerator. The EGSnrc Monte Carlo code was used to calculate the dose to water and the dose to different detectors to determine the field factor as well as the mentioned correction factor for different small square field sizes. Besides this, the mean water to air stopping power ratio as well as the ratio of the mean energy absorption coefficients for the relevant materials was calculated for different small field sizes. As the beam source, a Monte Carlo based model of a Siemens KD linear accelerator was used. The results show that in the case of ionization chambers the detector volume has the largest impact on the correction factor k^{f_{clin} ,f_{msr}}_{Q_{clin} ,Q_{msr}}; this perturbation may contribute up to 50% to the correction factor. Field-dependent changes in stopping-power ratios are negligible. The magnitude of k^{f_{clin} ,f_{msr}}_{Q_{clin} ,Q_{msr}} is of the order of 1.2 at a field size of 1 × 1 cm2 for the large volume ion chamber PTW31010 and is still in the range of 1.05-1.07 for the PinPoint chambers PTW31014 and PTW31016. For the diode detectors included in this study (PTW60016, PTW 60017), the correction factor deviates no more than 2% from unity in field sizes between 10 × 10 and 1 × 1 cm2, but below this field size there is a steep decrease of k^{f_{clin} ,f_{msr}}_{Q_{clin} ,Q_{msr}} below unity, i.e. a strong overestimation of dose. Besides the field size and detector dependence, the results
Dynamic-local-field approximation for the quantum solids
NASA Technical Reports Server (NTRS)
Etters, R. D.; Danilowicz, R. L.
1974-01-01
A local-molecular-field description for the ground-state properties of the quantum solids is presented. The dynamical behavior of atoms contributing to the local field, which acts on an arbitrary pair of test particles, is incorporated by decoupling the pair correlations between these field atoms. The energy, pressure, compressibility, single-particle-distribution function, and the rms atomic deviations about the equilibrium lattice sites are calculated for H2, He-3, and He-4 over the volume range from 5 to 24.5 cu cm/mole. The results are in close agreement with existing Monte Carlo calculations wherever comparisons are possible. At very high pressure, the results agree with simplified descriptions which depend on negligible overlap of the system wave function between neighboring lattice sites.
Quantum entanglement of local operators in conformal field theories.
Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi
2014-03-21
We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles. PMID:24702348
Cosmology with many light scalar fields: Stochastic inflation and loop corrections
NASA Astrophysics Data System (ADS)
Adshead, Peter; Easther, Richard; Lim, Eugene A.
2009-03-01
We explore the consequences of the existence of a very large number of light scalar degrees of freedom in the early universe. We distinguish between participator and spectator fields. The former have a small mass, and can contribute to the inflationary dynamics; the latter are either strictly massless or have a negligible VEV. In N-flation and generic assisted inflation scenarios, inflation is a cooperative phenomenon driven by N participator fields, none of which could drive inflation on its own. We review upper bounds on N, as a function of the inflationary Hubble scale H. We then consider stochastic and eternal inflation in models with N participator fields showing that individual fields may evolve stochastically while the whole ensemble behaves deterministically, and that a wide range of eternal inflationary scenarios are possible in this regime. We then compute one-loop quantum corrections to the inflationary power spectrum. These are largest with N spectator fields and a single participator field, and the resulting bound on N is always weaker than those obtained in other ways. We find that loop corrections to the N-flation power spectrum do not scale with N, and thus place no upper bound on the number of participator fields. This result also implies that, at least to leading order, the theory behaves like a composite single scalar field. In order to perform this calculation, we address a number of issues associated with loop calculations in the Schwinger-Keldysh “in-in” formalism.
Scalar field reconstruction of power-law entropy-corrected holographic dark energy
NASA Astrophysics Data System (ADS)
Ebrahimi, Esmaeil; Sheykhi, Ahmad
2011-10-01
A so-called 'power-law entropy-corrected holographic dark energy' (PLECHDE) was recently proposed to explain the dark energy (DE)-dominated universe. This model is based on the power-law corrections to black hole entropy that appear when dealing with the entanglement of quantum fields between the inside and the outside of the horizon. In this paper, we suggest a correspondence between the interacting PLECHDE and the tachyon, quintessence, K-essence and dilaton scalar field models of DE in a non-flat Friedmann-Robertson-Walker universe. Then, we reconstruct the potential terms accordingly, and present the dynamical equations that describe the evolution of the scalar field DE models.
Empirical Corrections to the Amber RNA Force Field with Target Metadynamics.
Gil-Ley, Alejandro; Bottaro, Sandro; Bussi, Giovanni
2016-06-14
The computational study of conformational transitions in nucleic acids still faces many challenges. For example, in the case of single stranded RNA tetranucleotides, agreement between simulations and experiments is not satisfactory due to inaccuracies in the force fields commonly used in molecular dynamics simulations. We here use experimental data collected from high-resolution X-ray structures to attempt an improvement of the latest version of the AMBER force field. A modified metadynamics algorithm is used to calculate correcting potentials designed to enforce experimental distributions of backbone torsion angles. Replica-exchange simulations of tetranucleotides including these correcting potentials show significantly better agreement with independent solution experiments for the oligonucleotides containing pyrimidine bases. Although the proposed corrections do not seem to be portable to generic RNA systems, the simulations revealed the importance of the α and ζ backbone angles for the modulation of the RNA conformational ensemble. The correction protocol presented here suggests a systematic procedure for force-field refinement. PMID:27153317
Empirical Corrections to the Amber RNA Force Field with Target Metadynamics
2016-01-01
The computational study of conformational transitions in nucleic acids still faces many challenges. For example, in the case of single stranded RNA tetranucleotides, agreement between simulations and experiments is not satisfactory due to inaccuracies in the force fields commonly used in molecular dynamics simulations. We here use experimental data collected from high-resolution X-ray structures to attempt an improvement of the latest version of the AMBER force field. A modified metadynamics algorithm is used to calculate correcting potentials designed to enforce experimental distributions of backbone torsion angles. Replica-exchange simulations of tetranucleotides including these correcting potentials show significantly better agreement with independent solution experiments for the oligonucleotides containing pyrimidine bases. Although the proposed corrections do not seem to be portable to generic RNA systems, the simulations revealed the importance of the α and ζ backbone angles for the modulation of the RNA conformational ensemble. The correction protocol presented here suggests a systematic procedure for force-field refinement. PMID:27153317
Localization of disordered bosons and magnets in random fields
Yu, Xiaoquan; Müller, Markus
2013-10-15
We study localization properties of disordered bosons and spins in random fields at zero temperature. We focus on two representatives of different symmetry classes, hard-core bosons (XY magnets) and Ising magnets in random transverse fields, and contrast their physical properties. We describe localization properties using a locator expansion on general lattices. For 1d Ising chains, we find non-analytic behavior of the localization length as a function of energy at ω=0, ξ{sup −1}(ω)=ξ{sup −1}(0)+A|ω|{sup α}, with α vanishing at criticality. This contrasts with the much smoother behavior predicted for XY magnets. We use these results to approach the ordering transition on Bethe lattices of large connectivity K, which mimic the limit of high dimensionality. In both models, in the paramagnetic phase with uniform disorder, the localization length is found to have a local maximum at ω=0. For the Ising model, we find activated scaling at the phase transition, in agreement with infinite randomness studies. In the Ising model long range order is found to arise due to a delocalization and condensation initiated at ω=0, without a closing mobility gap. We find that Ising systems establish order on much sparser (fractal) subgraphs than XY models. Possible implications of these results for finite-dimensional systems are discussed. -- Highlights: •Study of localization properties of disordered bosons and spins in random fields. •Comparison between XY magnets (hard-core bosons) and Ising magnets. •Analysis of the nature of the magnetic transition in strong quenched disorder. •Ising magnets: activated scaling, no closing mobility gap at the transition. •Ising order emerges on sparser (fractal) support than XY order.
Heel effect adaptive flat field correction of digital x-ray detectors
Yu, Yongjian; Wang, Jue
2013-08-15
Purpose: Anode heel effect renders large-scale background nonuniformities in digital radiographs. Conventional offset/gain calibration is performed at mono source-to-image distance (SID), and disregards the SID-dependent characteristic of heel effect. It results in a residual nonuniform background in the corrected radiographs when the SID settings for calibration and correction differ. In this work, the authors develop a robust and efficient computational method for digital x-ray detector gain correction adapted to SID-variant heel effect, without resorting to physical filters, phantoms, complicated heel effect models, or multiple-SID calibration and interpolation.Methods: The authors present the Duo-SID projection correction method. In our approach, conventional offset/gain calibrations are performed only twice, at the minimum and maximum SIDs of the system in typical clinical use. A fast iterative separation algorithm is devised to extract the detector gain and basis heel patterns from the min/max SID calibrations. The resultant detector gain is independent of SID, while the basis heel patterns are parameterized by the min- and max-SID. The heel pattern at any SID is obtained from the min-SID basis heel pattern via projection imaging principles. The system gain desired at a specific acquisition SID is then constructed using the projected heel pattern and detector gain map.Results: The method was evaluated for flat field and anatomical phantom image corrections. It demonstrated promising improvements over interpolation and conventional gain calibration/correction methods, lowering their correction errors by approximately 70% and 80%, respectively. The separation algorithm was able to extract the detector gain and heel patterns with less than 2% error, and the Duo-SID corrected images showed perceptually appealing uniform background across the detector.Conclusions: The Duo-SID correction method has substantially improved on conventional offset/gain corrections for
Spectral investigation of nonlinear local field effects in Ag nanoparticles
Sato, Rodrigo Takeda, Yoshihiko; Ohnuma, Masato; Oyoshi, Keiji
2015-03-21
The capability of Ag nanoparticles to modulate their optical resonance condition, by optical nonlinearity, without an external feedback system was experimentally demonstrated. These optical nonlinearities were studied in the vicinity of the localized surface plasmon resonance (LSPR), using femtosecond pump-and-probe spectroscopy with a white-light continuum probe. Transient transmission changes ΔT/T exhibited strong photon energy and particle size dependence and showed a complex and non-monotonic change with increasing pump light intensity. Peak position and change of sign redshift with increasing pump light intensity demonstrate the modulation of the LSPR. These features are discussed in terms of the intrinsic feedback via local field enhancement.
Local capacitor model for plasmonic electric field enhancement.
Kang, J H; Kim, D S; Park, Q-Han
2009-03-01
We present a local capacitor model that enables a simple yet quantitatively accurate description of lightning rod effect in nanoplasmonics. A notion of lambda-zone capacitance is proposed and applied to predict the strongly induced electric field by a light source near nanoscale metal edges such as metal tip or metal gap. The enhancement factor, calculated from the local capacitor model, shows excellent agreement with more rigorous results. The lambda-zone capacitor allows a blockwise treatment of nano-optical devices and constitutes a basic element of optical nanocircuits. PMID:19392523
Faller, Sven
2008-06-15
In this paper we consider general relativity and its combination with scalar quantum electrodynamics (QED) as an effective quantum field theory at energies well below the Planck scale. This enables us to compute the one-loop quantum corrections to the Newton and Coulomb potentials induced by the combination of graviton and photon fluctuations. We derive the relevant Feynman rules and compute the nonanalytical contributions to the one-loop scattering matrix for charged scalars in the nonrelativistic limit. In particular, we derive the post-Newtonian corrections of order Gm/c{sup 2}r from general relativity and the genuine quantum corrections of order G({Dirac_h}/2{pi})/c{sup 3}r{sup 2}.
Monitoring and correcting spatio-temporal variations of the MR scanner’s static magnetic field
El-Sharkawy, AbdEl Monem; Schär, Michael; Bottomley, Paul A.
2007-01-01
The homogeneity and stability of the static magnetic field are of paramount importance to the accuracy of MR procedures that are sensitive to phase errors and magnetic field inhomogeneity. It is shown that intense gradient utilization in clinical horizontal-bore superconducting MR scanners of three different vendors results in main magnetic fields that vary on a long time scale both spatially and temporally by amounts of order 0.8–2.5 ppm. The observed spatial changes have linear and quadratic variations that are strongest along the z direction. It is shown that the effect of such variations is of sufficient magnitude to completely obfuscate thermal phase shifts measured by proton-resonance frequency-shift MR thermometry and certainly affect accuracy. In addition, field variations cause signal loss and line-broadening in MR spectroscopy, as exemplified by a fourfold line-broadening of metabolites over the course of a 45 min human brain study. The field variations are consistent with resistive heating of the magnet structures. It is concluded that correction strategies are required to compensate for these spatial and temporal field drifts for phase-sensitive MR protocols. It is demonstrated that serial field mapping and phased difference imaging correction protocols can substantially compensate for the drift effects observed in the MR thermometry and spectroscopy experiments. PMID:17043837
Importance of far-field Topographic and Isostatic corrections for regional density modeling
NASA Astrophysics Data System (ADS)
Szwillus, Ebbing, Holzrichter
2016-07-01
The long-wavelength gravity field contains information about processes in the sub-lithospheric mantle. As satellite-derived gravity models now provide the long to medium-wavelength gravity field at unprecedented accuracy, techniques used to process gravity data need to be updated. We show that when determining these long-wavelengths, the treatment of topographic and isostatic effects is a likely source of error. We constructed a global isostatic model and calculated global topographic and isostatic effect. These calculations were done for ground stations as well as stations at satellite height. We considered both gravity and gravity gradients. Using these results, we determined how much of the gravity signal comes from distant sources. We find that a significant long-wavelength bias is introduced if far-field effects on the topographic effect are neglected. However, due to isostatic compensation far-field effects of the topographic effect are to a large degree compensated by the far-field isostatic effect. This means that far-field effects can be reduced effectively by always considering topographic masses together with their compensating isostatic masses. We show that to correctly represent the ultra-long wavelengths, a global background model should be used. This is demonstrated both globally and for a continental-scale case area in North America. In the case of regional modeling, where the ultra-long wavelengths are not of prime importance, gravity gradients can be used to help minimize correction errors caused by far-field effects.
Measuring Earth's Local Magnetic Field Using a Helmholtz Coil
NASA Astrophysics Data System (ADS)
Williams, Jonathan E.
2014-04-01
In this paper, I present a low-cost interactive experiment for measuring the strength of Earth's local magnetic field. This activity can be done in most high schools or two-year physics laboratories with limited resources, yet will have a tremendous learning impact. This experiment solidifies the three-dimensional nature of Earth's magnetic field vector and helps reinforce the aspect of the vertical component of Earth's magnetic field. Students should realize that Earth's magnetic field is not fully horizontal (except at the magnetic equator) and that a compass simply indicates the direction of the horizontal component of Earth's magnetic field. A magnetic dip needle compass can be used to determine the angle (known as the "dip angle" or "inclination angle") measured from the direction in which Earth's magnetic field vector points to the horizontal. In this activity, students will be able to determine the horizontal component of the field using a Helmholtz coil and, knowing the dip angle, the Earth's magnetic field strength can be determined.
Effect Of Various Parameters On Field Uniformity Corrections In Scintillation Cameras
NASA Astrophysics Data System (ADS)
Olch, Arthur J.; Graham, L. S.; Uszler, J. M.; Holly, F. E.
1980-12-01
Many Anger scintillation cameras are equipped with microprocessors for live correction of field nonuniformities. The purpose of this study was to evaluate the corrected flood field uniformity after varying count rate, analyzer window size, analyzer window position, and scatter. A 2.54 cm thick Tc-99m disk source was used with large and small field Anger cameras under conditions simulating clinical usage. Uniformity was evaluated quantitatively by computing the location and percentage of cells in a 64X64 matrix that were within +/-5% of the mean cell count; it was judged qualitatively by examination of the computer thresholded image. The corrected 2.54 cm thick Tc-99m disk flood image showed virtually no change in uniformity as scatter medium was increased from 0 cm to 8.9 cm. When count rate was varied from 5K to 44K cps as much as a 13% decrease in field uniformity was observed. Changing the analyzer window size produced a 5-21% decrease in uniformity while changing the window position resulted in even more significant image degradation. Knowledge of these camera characteristics is important in improving clinical images.
Automated model-based bias field correction of MR images of the brain.
Van Leemput, K; Maes, F; Vandermeulen, D; Suetens, P
1999-10-01
We propose a model-based method for fully automated bias field correction of MR brain images. The MR signal is modeled as a realization of a random process with a parametric probability distribution that is corrupted by a smooth polynomial inhomogeneity or bias field. The method we propose applies an iterative expectation-maximization (EM) strategy that interleaves pixel classification with estimation of class distribution and bias field parameters, improving the likelihood of the model parameters at each iteration. The algorithm, which can handle multichannel data and slice-by-slice constant intensity offsets, is initialized with information from a digital brain atlas about the a priori expected location of tissue classes. This allows full automation of the method without need for user interaction, yielding more objective and reproducible results. We have validated the bias correction algorithm on simulated data and we illustrate its performance on various MR images with important field inhomogeneities. We also relate the proposed algorithm to other bias correction algorithms. PMID:10628948
Orientation correlation and local field in liquid nitrobenzene
NASA Astrophysics Data System (ADS)
Shelton, David P.
2016-06-01
Hyper-Rayleigh scattering (HRS) is sensitive to long-range molecular orientation correlation in isotropic liquids composed of dipolar molecules. Measurements of the polarization, angle, and spectral dependence for HRS from liquid nitrobenzene (NB) are analyzed to determine the NB molecular orientation correlations at long range. The longitudinal and transverse orientation correlation functions for r > 3 nm are BL(r) = (a/r)3 and BT(r) = - BL(r)/2, where a = 0.20 ± 0.01 nm. Measurements of HRS induced by dissolved ions are also analyzed and combined with molecular dynamics simulation and dielectric response results, to determine the molecular dipole moment μ = 3.90 ± 0.04 D, Kirkwood orientation correlation factor gK = 0.68 ± 0.02, and local field factor f(0) = 0.85 ± 0.04 × Onsager local field factor in liquid nitrobenzene.
Orientation correlation and local field in liquid nitrobenzene.
Shelton, David P
2016-06-21
Hyper-Rayleigh scattering (HRS) is sensitive to long-range molecular orientation correlation in isotropic liquids composed of dipolar molecules. Measurements of the polarization, angle, and spectral dependence for HRS from liquid nitrobenzene (NB) are analyzed to determine the NB molecular orientation correlations at long range. The longitudinal and transverse orientation correlation functions for r > 3 nm are BL(r) = (a/r)(3) and BT(r) = - BL(r)/2, where a = 0.20 ± 0.01 nm. Measurements of HRS induced by dissolved ions are also analyzed and combined with molecular dynamics simulation and dielectric response results, to determine the molecular dipole moment μ = 3.90 ± 0.04 D, Kirkwood orientation correlation factor gK = 0.68 ± 0.02, and local field factor f(0) = 0.85 ± 0.04 × Onsager local field factor in liquid nitrobenzene. PMID:27334178
Tyler, Madelaine K; Liu, Paul Z Y; Lee, Christopher; McKenzie, David R; Suchowerska, Natalka
2016-01-01
Flattening filter-free (FFF) beams are becoming the preferred beam type for stereotactic radiosurgery (SRS) and stereotactic ablative radiation therapy (SABR), as they enable an increase in dose rate and a decrease in treatment time. This work assesses the effects of the flattening filter on small field output factors for 6 MV beams generated by both Elekta and Varian linear accelerators, and determines differences between detector response in flattened (FF) and FFF beams. Relative output factors were measured with a range of detectors (diodes, ionization cham-bers, radiochromic film, and microDiamond) and referenced to the relative output factors measured with an air core fiber optic dosimeter (FOD), a scintillation dosimeter developed at Chris O'Brien Lifehouse, Sydney. Small field correction factors were generated for both FF and FFF beams. Diode measured detector response was compared with a recently published mathematical relation to predict diode response corrections in small fields. The effect of flattening filter removal on detector response was quantified using a ratio of relative detector responses in FFF and FF fields for the same field size. The removal of the flattening filter was found to have a small but measurable effect on ionization chamber response with maximum deviations of less than ± 0.9% across all field sizes measured. Solid-state detectors showed an increased dependence on the flattening filter of up to ± 1.6%. Measured diode response was within ± 1.1% of the published mathematical relation for all fields up to 30 mm, independent of linac type and presence or absence of a flattening filter. For 6 MV beams, detector correction factors between FFF and FF beams are interchangeable for a linac between FF and FFF modes, providing that an additional uncertainty of up to ± 1.6% is accepted. PMID:27167280
The local dayside reconnection rate for oblique interplanetary magnetic fields
NASA Astrophysics Data System (ADS)
Komar, C. M.; Cassak, P. A.
2016-06-01
We present an analysis of local properties of magnetic reconnection at the dayside magnetopause for various interplanetary magnetic field (IMF) orientations in global magnetospheric simulations. This has heretofore not been practical because it is difficult to locate where reconnection occurs for oblique IMF, but new techniques make this possible. The approach is to identify magnetic separators, the curves separating four regions of differing magnetic topology, which map the reconnection X line. The electric field parallel to the X line is the local reconnection rate. We compare results to a simple model of local two-dimensional asymmetric reconnection. To do so, we find the plasma parameters that locally drive reconnection in the magnetosheath and magnetosphere in planes perpendicular to the X line at a large number of points along the X line. The global magnetohydrodynamic simulations are from the three-dimensional Block-Adaptive, Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code with a uniform resistivity, although the techniques described here are extensible to any global magnetospheric simulation model. We find that the predicted local reconnection rates scale well with the measured values for all simulations, being nearly exact for due southward IMF. However, the absolute predictions differ by an undetermined constant of proportionality, whose magnitude increases as the IMF clock angle changes from southward to northward. We also show similar scaling agreement in a simulation with oblique southward IMF and a dipole tilt. The present results will be an important component of a full understanding of the local and global properties of dayside reconnection.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Makarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...
Riemann correlator in de Sitter including loop corrections from conformal fields
NASA Astrophysics Data System (ADS)
Fröb, Markus B.; Roura, Albert; Verdaguer, Enric
2014-07-01
The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H4/mp4. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicit result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.
Riemann correlator in de Sitter including loop corrections from conformal fields
Fröb, Markus B.; Verdaguer, Enric
2014-07-01
The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H{sup 4}/m{sub p}{sup 4}. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicit result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.
Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S.; Rimner, Andreas
2014-10-15
Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image
Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing
2015-01-01
In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions. PMID:25658390
Systematic 1{ital /N} corrections for bosonic and fermionic vector models without auxiliary fields
de Mello Koch, R.; Rodrigues, J.P.
1996-12-01
In this paper, colorless bilocal fields are employed to study the large {ital N} limit of both fermionic and bosonic vector models. The Jacobian associated with the change of variables from the original fields to the bilocals is computed exactly, thereby providing an exact effective action. This effective action is shown to reproduce the familiar perturbative expansion for the two and four point functions. In particular, in the case of fermionic vector models, the effective action accounts correctly for the Fermi statistics. The theory also is studied nonperturbatively. The stationary points of the effective action are shown to provide the usual large {ital N} gap equations. The homogeneous equation associated with the quadratic (in the bilocals) action is simply the two particle Bethe-Salpeter equation. Finally, the leading correction in 1/{ital N} is shown to be in agreement with the exact {ital S} matrix of the model. {copyright} {ital 1996 The American Physical Society.}
Comparing bias correction methods for high-resolution COSMO-CLM daily precipitation fields
NASA Astrophysics Data System (ADS)
Gutjahr, O.; Heinemann, G.
2012-04-01
Regional climate models (RCMs) are approaching to the 1km scale. This is necessary, since impact models, like hydrological or species distribution models, forced with the output of RCMs need input data on this high resolution in order to capture adequately the behaviour of the system on small scales and the extreme statistics. However, RCMs are still subject to systematic biases when compared to observations. Especially precipitation is often affected with large and non-linear bias. Since extreme values are critical to any impact model, a special care must be established for the tails of the distributions. Within the "Global-Change"-project of the Research Initiative Rhineland-Palatinate (http://www.uni-trier.de/index.php?id=40193&L=2), a new parametric bias correction method has been developed, which includes an extension for extreme values. Daily precipitation fields from COSMO-CLM (version 4.8.11) model output for the time period 1991-2000 and 2091-2100 were then bias corrected. This new method is compared to existing parametric and non-parametric methods in order to answer the question whether an extension with an extreme value distribution for the tail is necessary. Additionally, the effect of the bias correction on the climate signal is investigated, which should be the same after the corrections. As observations, 128 precipitation stations (DWD/LUWG) were used. Both parametric bias correction methods are able to correct the precipitation fields and are thus valid replacements for the empirical method but the extension with an extreme value distribution is an improvement, especially concerning estimated return values, which were underestimated in the uncorrected model and did not show any similarity to observations. Without an extension for extreme values, the pattern of the climate change signal deviates largely from the original and reveals another source of uncertainty. The comparison of the methods demonstrates the importance of special treatment of the
Numerical simulations of localized high field 1H MR spectroscopy
Kaiser, Lana G.; Young, Karl; Matson, Gerald B.
2008-01-01
The limited bandwidths of volume selective RF pulses in localized in vivo MRS experiments introduce spatial artifacts that complicate spectral quantification of J-coupled metabolites. These effects are commonly referred to as a spatial interference or “4 compartment” artifacts and are more pronounced at higher field strengths. The main focus of this study is to develop a generalized approach to numerical simulations that combines full density matrix calculations with 3D localization to investigate the spatial artifacts and to provide accurate prior knowledge for spectral fitting. Full density matrix calculations with 3D localization using experimental pulses were carried out for PRESS (TE=20, 70 ms), STEAM (TE=20, 70 ms) and LASER (TE=70 ms) pulse sequences and compared to non-localized simulations and to phantom solution data at 4 Tesla. Additional simulations at 1.5 and 7 Tesla were carried out for STEAM and PRESS (TE=20 ms). Four brain metabolites that represented a range from weak to strong J-coupling networks were included in the simulations (lactate, N-acetylaspartate, glutamate and myo-inositol). For longer TE, full 3D localization was necessary to achieve agreement between the simulations and phantom solution spectra for the majority of cases in all pulse sequence simulations. For short echo time (TE=20 ms), ideal pulses without localizing gradients gave results that were in agreement with phantom results at 4 T for STEAM, but not for PRESS (TE=20). Numerical simulations that incorporate volume localization using experimental RF pulses are shown to be a powerful tool for generation of accurate metabolic basis sets for spectral fitting and for optimization of experimental parameters. PMID:18789736
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-11
... corrections to the final rule published in the Federal Register of Wednesday, September 15, 2010, at 75 FR... In the final rule FR Doc. 2010-21821, beginning on page 56164 in the Federal Register of Wednesday, September 15, 2010, 75 FR 56164, make the following corrections: Sec. 35.104 0 1. On page 56177, in...
NASA Astrophysics Data System (ADS)
Sedek, Mohamed; Gross, Lutz; Tyson, Stephen
2016-07-01
We present a new computational method of automatic normal moveout (NMO) correction that not only accurately flattens and corrects the far offset data, but simultaneously provides NMO velocity (v_nmo ) for each individual seismic trace. The method is based on a predefined number of NMO velocity sweeps using linear vertical interpolation of different NMO velocities at each seismic trace. At each sweep, we measure the semblance between the zero offset trace (pilot trace) and the next seismic trace using a trace-by-trace rather than sample-by-sample based semblance measure; then after all the sweeps are done, the one with the maximum semblance value is chosen, which is assumed to be the most suitable NMO velocity trace that accurately flattens seismic reflection events. Other traces follow the same process, and a final velocity field is then extracted. Isotropic, anisotropic and lateral heterogenous synthetic geological models were built to test the method. A range of synthetic background noise, ranging from 10 to 30 %, was applied to the models. In addition, the method was tested on Hess's VTI (vertical transverse isotropy) model. Furthermore, we tested our method on a real pre-stack seismic CDP gathered from a gas field in Alaska. The results from the presented examples show an excellent NMO correction and extracted a reasonably accurate NMO velocity field.
Localized strain field measurement on laminography data with mechanical regularization
NASA Astrophysics Data System (ADS)
Taillandier-Thomas, Thibault; Roux, Stéphane; Morgeneyer, Thilo F.; Hild, François
2014-04-01
For an in-depth understanding of the failure of structural materials the study of deformation mechanisms in the material bulk is fundamental. In situ synchrotron computed laminography provides 3D images of sheet samples and digital volume correlation yields the displacement and strain fields between each step of experimental loading by using the natural contrast of the material. Difficulties arise from the lack of data, which is intrinsic to laminography and leads to several artifacts, and the little absorption contrast in the 3D image texture of the studied aluminum alloy. To lower the uncertainty level and to have a better mechanical admissibility of the measured displacement field, a regularized digital volume correlation procedure is introduced and applied to measure localized displacement and strain fields.
Local excitations in mean-field spin glasses
NASA Astrophysics Data System (ADS)
Krzakala, F.; Parisi, G.
2004-06-01
We address the question of geometrical as well as energetic properties of local excitations in mean-field Ising spin glasses. We study analytically the Random Energy Model and numerically a dilute mean-field model, first on tree-like graphs, equivalent to a replica-symmetric computation, and then directly on finite-connectivity random lattices. In the first model, characterized by a discontinuous replica symmetry breaking, we found that the energy of finite-volume excitation is infinite, whereas in the dilute mean-field model, described by a continuous replica symmetry breaking, it slowly decreases with sizes and saturates at a finite value, in contrast with what would be naively expected. The geometrical properties of these excitations are similar to those of lattice animals or branched polymers. We discuss the meaning of these results in terms of replica symmetry breaking and also possible relevance in finite-dimensional systems.
Entropy-corrected holographic scalar field models of dark energy in Kaluza-Klein universe
NASA Astrophysics Data System (ADS)
Sharif, M.; Jawad, Abdul
2013-12-01
We investigate the evolution of interacting holographic dark energy with logarithmic corrections in the flat Kaluza-Klein universe. We evaluate the equation of state parameter and also reconstruct the scalar field models in this scenario. For this purpose, the well-known choice of scale factor in the power law form is taken. It is interesting to mention here that the corresponding equation of state parameter crosses the phantom divide line for a particular choice of interacting parameters. Finally, we conclude that the behavior of the dynamical scalar field as well as the scalar potential is consistent with the present observations.
New localization mechanism and Hodge duality for q -form field
NASA Astrophysics Data System (ADS)
Fu, Chun-E.; Liu, Yu-Xiao; Guo, Heng; Zhang, Sheng-Li
2016-03-01
In this paper, we investigate the problem of localization and the Hodge duality for a q -form field on a p -brane with codimension one. By a general Kaluza-Klein (KK) decomposition without gauge fixing, we obtain two Schrödinger-like equations for two types of KK modes of the bulk q -form field, which determine the localization and mass spectra of these KK modes. It is found that there are two types of zero modes (the 0-level modes): a q -form zero mode and a (q -1 )-form one, which cannot be localized on the brane at the same time. For the n -level KK modes, there are two interacting KK modes, a massive q -form KK mode and a massless (q -1 )-form one. By analyzing gauge invariance of the effective action and choosing a gauge condition, the n -level massive q -form KK mode decouples from the n -level massless (q -1 )-form one. It is also found that the Hodge duality in the bulk naturally becomes two dualities on the brane. The first one is the Hodge duality between a q -form zero mode and a (p -q -1 )-form one, or between a (q -1 )-form zero mode and a (p -q )-form one. The second duality is between two group KK modes: one is an n -level massive q -form KK mode with mass mn and an n -level massless (q -1 )-form mode; another is an n -level (p -q )-form one with the same mass mn and an n -level massless (p -q -1 )-form mode. Because of the dualities, the effective field theories on the brane for the KK modes of the two dual bulk form fields are physically equivalent.
Noncommutative correction to Aharonov-Bohm scattering: A field theory approach
Anacleto, M.A.; Gomes, M.; Silva, A.J. da; Spehler, D.
2004-10-15
We study a noncommutative nonrelativistic theory in 2+1 dimensions of a scalar field coupled to the Chern-Simons field. In the commutative situation this model has been used to simulate the Aharonov-Bohm effect in the field theory context. We verified that, contrary to the commutative result, the inclusion of a quartic self-interaction of the scalar field is not necessary to secure the ultraviolet renormalizability of the model. However, to obtain a smooth commutative limit the presence of a quartic gauge invariant self-interaction is required. For small noncommutativity we fix the corrections to the Aharonov-Bohm scattering and prove that up to one loop the model is free from dangerous infrared/ultraviolet divergences.
NASA Astrophysics Data System (ADS)
Fried, Jasper P.; Metaxas, Peter J.
2016-02-01
We have carried out micromagnetic simulations of the gyrotropic resonance mode of a magnetic vortex in the presence of spatially localized and spatially uniform out-of-plane magnetic fields. We show that the field-induced change in the gyrotropic mode frequency is significantly larger when the field is centrally localized over lengths which are comparable to or a few times larger than the vortex core radius. When aligned with the core magnetization, such fields generate an additional confinement of the core. This confinement increases the vortex stiffness in the small-displacement limit, leading to a resonance shift which is greater than that expected for a uniform out-of-plane field of the same amplitude. Fields generated by uniformly magnetized spherical particles having a fixed separation from the disk are found to generate analogous effects except that there is a maximum in the shift at intermediate particle sizes where field localization and stray field magnitude combine optimally to generate a maximum confinement.
Numerical correction of distorted images in full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Min, Gihyeon; Kim, Ju Wan; Choi, Woo June; Lee, Byeong Ha
2012-03-01
We propose a numerical method which can numerically correct the distorted en face images obtained with a full field optical coherence tomography (FF-OCT) system. It is shown that the FF-OCT image of the deep region of a biological sample is easily blurred or degraded because the sample has a refractive index (RI) much higher than its surrounding medium in general. It is analyzed that the focal plane of the imaging system is segregated from the imaging plane of the coherence-gated system due to the RI mismatch. This image-blurring phenomenon is experimentally confirmed by imaging the chrome pattern of a resolution test target through its glass substrate in water. Moreover, we demonstrate that the blurred image can be appreciably corrected by using the numerical correction process based on the Fresnel-Kirchhoff diffraction theory. The proposed correction method is applied to enhance the image of a human hair, which permits the distinct identification of the melanin granules inside the cortex layer of the hair shaft.
Near-Field Source Localization by Using Focusing Technique
NASA Astrophysics Data System (ADS)
He, Hongyang; Wang, Yide; Saillard, Joseph
2008-12-01
We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007) is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics.
Acquiring local field potential information from amperometric neurochemical recordings
Zhang, Hao; Lin, Shih-Chieh; Nicolelis, Miguel A.L.
2009-01-01
Simultaneous acquisition of in vivo electrophysiological and neurochemical information is essential for understanding how endogenous neurochemicals modulate the dynamics of brain activity. However, up to now such a task has rarely been accomplished due to the major technical challenge of operating two independent recording systems simultaneously in real-time. Here we propose a simpler solution for achieving this goal by using only a standard electrochemical technique - amperometry. To demonstrate its feasibility, we compared amperometric signals with simultaneously recorded local field potential (LFP) signals. We found that the high frequency component (HFC) of the amperometric signals did not reflect neurochemical fluctuations, but instead it resembled LFPs in several aspects, including: (1) coherent spectral fluctuations; (2) clear characterization of different brain states; (3) identical hippocampal theta depth profile. As such, our findings provide the first demonstration that both LFP and local neurochemical information can be simultaneously acquired from electrochemical sensors alone. PMID:19428527
Electron Spin Resonance Imaging Utilizing Localized Microwave Magnetic Field
NASA Astrophysics Data System (ADS)
Furusawa, Masahiro; Ikeya, Motoji
1990-02-01
A method for two-dimensional electron spin resonance (ESR) imaging utilizing a localized microwave field is presented with an application of the image processing technique. Microwaves are localized at the surface of a sample by placing a sample in contact with a pinholed cavity wall. A two-dimensional ESR image can be obtained by scanning the sample in contact with the cavity. Some ESR images which correspond to distribution of natural radiation damages and paramagnetic impurities in carbonate fossils of a crinoid and an ammonite are presented as applications in earth science. Resolution of a raw ESR image is restricted by the diameter of the hole (1 mm). Higher resolution of 0.2 mm is obtained by using a deconvolution algorithm and instrument function for the hole. Restored images of a test sample of DPPH and of a fossil crinoid are presented.
Optimization of wavefront-coded infinity-corrected microscope systems with extended depth of field
Zhao, Tingyu; Mauger, Thomas; Li, Guoqiang
2013-01-01
The depth of field of an infinity-corrected microscope system is greatly extended by simply applying a specially designed phase mask between the objective and the tube lens. In comparison with the method of modifying the structure of objective, it is more cost effective and provides improved flexibility for assembling the system. Instead of using an ideal optical system for simulation which was the focus of the previous research, a practical wavefront-coded infinity-corrected microscope system is designed in this paper by considering the various aberrations. Two new optimization methods, based on the commercial optical design software, are proposed to design a wavefront-coded microscope using a non-symmetric phase mask and a symmetric phase mask, respectively. We use polynomial phase mask and rational phase mask as examples of the non-symmetric and symmetric phase masks respectively. Simulation results show that both optimization methods work well for a 32 × infinity-corrected microscope system with 0.6 numerical aperture. The depth of field is extended to about 13 times of the traditional one. PMID:24010008
Methyl bromide emissions from a covered field: III. Correcting chamber flux for temperature
Yates, S.R.; Gan, J.; Ernst, F.F.; Wang, D.
1996-07-01
An experiment was conducted to investigate the environmental fate and transport of methyl bromide (MeBr) in agricultural systems. Part of this experiment involved the use of three flow-through chambers to estimate the MeBr flux through a sheet of clear polyethylene plastic covering the field. Using the chamber data, the total mass lost to the atmosphere was estimated to be 96% of the applied mass, and the results were highly variable between chambers (i.e., standard deviation of 298 kg or 35%). The air temperature inside the chamber was found to be much higher than the air temperature outside and was highly correlated with the diurnal variation in incoming solar radiation. Since the diffusion through polyethylene film was found to be strongly dependent on the temperature, a method was developed to correct the chamber flux density data for enhanced diffusion caused by increases in the temperature inside the chamber. After correcting for temperature, the estimated total MeBr emission was reduced to approximately 59% (21% standard deviation) of the applied amount, which is about 5% less than was measured using other methods. When chambers are used to measure volatilization of MeBr or other fumigants from fields covered with a sheet of polyethylene plastic, the chambers should be designed to minimize internal heating or some method should be used to correct the volatilization rate for the effects of temperature. 16 refs., 5 figs., 1 tab.
Localizing gauge fields on a topological Abelian string and the Coulomb law
Torrealba S, Rafael S.
2010-07-15
The confinement of electromagnetic field is studied in axial symmetrical, warped, six-dimensional brane world, using a recently proposed topological Abelian string-vortex solution as background. It was found, that the massless gauge field fluctuations follow four-dimensional Maxwell equations in the Lorenz gauge. The massless zero mode is localized when the thickness of the string vortex is less than 5{beta}/4{pi}e{sup 2}v{sup 2} and there are no other localized massless modes. There is also an infinite of nonlocalized massive Fourier modes, that follow four-dimensional Proca equations with a continuous spectrum. To compute the corrections to the Coulomb potential, a radial cutoff was introduced, in order to achieve a discrete mass spectrum. As a main result, a (R{sub o}/{beta}R{sup 2}) correction was found for the four-dimensional effective Coulomb law; the result is in correspondence with the observed behavior of the Coulomb potential at today's measurable distances.
Bias Corrections for Regional Estimates of the Time-averaged Geomagnetic Field
NASA Astrophysics Data System (ADS)
Constable, C.; Johnson, C. L.
2009-05-01
We assess two sources of bias in the time-averaged geomagnetic field (TAF) and paleosecular variation (PSV): inadequate temporal sampling, and the use of unit vectors in deriving temporal averages of the regional geomagnetic field. For the first temporal sampling question we use statistical resampling of existing data sets to minimize and correct for bias arising from uneven temporal sampling in studies of the time- averaged geomagnetic field (TAF) and its paleosecular variation (PSV). The techniques are illustrated using data derived from Hawaiian lava flows for 0-5~Ma: directional observations are an updated version of a previously published compilation of paleomagnetic directional data centered on ± 20° latitude by Lawrence et al./(2006); intensity data are drawn from Tauxe & Yamazaki, (2007). We conclude that poor temporal sampling can produce biased estimates of TAF and PSV, and resampling to appropriate statistical distribution of ages reduces this bias. We suggest that similar resampling should be attempted as a bias correction for all regional paleomagnetic data to be used in TAF and PSV modeling. The second potential source of bias is the use of directional data in place of full vector data to estimate the average field. This is investigated for the full vector subset of the updated Hawaiian data set. Lawrence, K.P., C.G. Constable, and C.L. Johnson, 2006, Geochem. Geophys. Geosyst., 7, Q07007, DOI 10.1029/2005GC001181. Tauxe, L., & Yamazkai, 2007, Treatise on Geophysics,5, Geomagnetism, Elsevier, Amsterdam, Chapter 13,p509
Quantization of non-local field theory and string field theory
NASA Astrophysics Data System (ADS)
Hata, Hiroyuki
1989-02-01
The interaction vertex in covariant string field theory (SFT) is non-local in the time coordinate and the conventional canonical quantization is inapplicable to it. As an approach to quantizing this system we apply Hayashi's theory of the Hamilton formalism for field theories with non-local interactions. We find that the resulting one-loop amplitudes in covariant closed SFT coincide with those in the light-cone gauge SFT. I would like to thank T. Kugo, H. Kunitomo, M.M. Nojiri, K. Ogawa and K. Suehiro for valuable discussions, and especially Professor S. Tanaka for directing my attention to Hayashi's theory.
Exponentially localized Wannier functions in periodic zero flux magnetic fields
NASA Astrophysics Data System (ADS)
De Nittis, G.; Lein, M.
2011-11-01
In this work, we investigate conditions which ensure the existence of an exponentially localized Wannier basis for a given periodic hamiltonian. We extend previous results [Panati, G., Ann. Henri Poincare 8, 995-1011 (2007), 10.1007/s00023-007-0326-8] to include periodic zero flux magnetic fields which is the setting also investigated by Kuchment [J. Phys. A: Math. Theor. 42, 025203 (2009), 10.1088/1751-8113/42/2/025203]. The new notion of magnetic symmetry plays a crucial rôle; to a large class of symmetries for a non-magnetic system, one can associate "magnetic" symmetries of the related magnetic system. Observing that the existence of an exponentially localized Wannier basis is equivalent to the triviality of the so-called Bloch bundle, a rank m hermitian vector bundle over the Brillouin zone, we prove that magnetic time-reversal symmetry is sufficient to ensure the triviality of the Bloch bundle in spatial dimension d = 1, 2, 3. For d = 4, an exponentially localized Wannier basis exists provided that the trace per unit volume of a suitable function of the Fermi projection vanishes. For d > 4 and d ⩽ 2m (stable rank regime) only the exponential localization of a subset of Wannier functions is shown; this improves part of the analysis of Kuchment [J. Phys. A: Math. Theor. 42, 025203 (2009), 10.1088/1751-8113/42/2/025203]. Finally, for d > 4 and d > 2m (unstable rank regime) we show that the mere analysis of Chern classes does not suffice in order to prove triviality and thus exponential localization.
On the Local-Field Distribution in Attractor Neural Networks
NASA Astrophysics Data System (ADS)
Korutcheva, E.; Koroutchev, K.
In this paper a simple two-layer neural network's model, similar to that studied by D. Amit and N. Brunel,11 is investigated in the frames of the mean-field approximation. The distributions of the local fields are analytically derived and compared to those obtained in Ref. 11. The dynamic properties are discussed and the basin of attraction in some parametric space is found. A procedure for driving the system into a basin of attraction by using a regulation imposed on the network is proposed. The effect of outer stimulus is shown to have a destructive influence on the attractor, forcing the latter to disappear if the distribution of the stimulus has high enough variance or if the stimulus has a spatial structure with sufficient contrast. The techniques, used in this paper, for obtaining the analytical results can be applied to more complex topologies of linked recurrent neural networks.
Lehtola, Susi; Head-Gordon, Martin; Jónsson, Hannes
2016-07-12
Implentation of seminumerical stability analysis for calculations using the Perdew-Zunger self-interaction correction is described. It is shown that real-valued solutions of the Perdew-Zunger equations for gas phase atoms are unstable with respect to imaginary orbital rotations, confirming that a proper implementation of the correction requires complex-valued orbitals. The orbital density dependence of the self-interaction corrected functional is found to lead to multiple local minima in the case of the acrylic acid, H6, and benzene molecules. In the case of benzene, symmetry breaking that results in incorrect ground state geometry is found to occur, erroneously leading to alternating bond lengths in the molecule. PMID:27232582
Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram
Zang, Pengxiao; Liu, Gangjun; Zhang, Miao; Dongye, Changlei; Wang, Jie; Pechauer, Alex D.; Hwang, Thomas S.; Wilson, David J.; Huang, David; Li, Dengwang
2016-01-01
We propose an innovative registration method to correct motion artifacts for wide-field optical coherence tomography angiography (OCTA) acquired by ultrahigh-speed swept-source OCT (>200 kHz A-scan rate). Considering that the number of A-scans along the fast axis is much higher than the number of positions along slow axis in the wide-field OCTA scan, a non-orthogonal scheme is introduced. Two en face angiograms in the vertical priority (2 y-fast) are divided into microsaccade-free parallel strips. A gross registration based on large vessels and a fine registration based on small vessels are sequentially applied to register parallel strips into a composite image. This technique is extended to automatically montage individual registered, motion-free angiograms into an ultrawide-field view. PMID:27446709
Prime focus wide-field corrector designs with lossless atmospheric dispersion correction
Saunders, Will; Gillingham, Peter; Smith, Greg; Kent, Steve; Doel, Peter
2014-07-18
Wide-Field Corrector designs are presented for the Blanco and Mayall telescopes, the CFHT and the AAT. The designs are Terezibh-style, with 5 or 6 lenses, and modest negative optical power. They have 2.2-3 degree fields of view, with curved and telecentric focal surfaces suitable for fiber spectroscopy. Some variants also allow wide-field imaging, by changing the last WFC element. Apart from the adaptation of the Terebizh design for spectroscopy, the key feature is a new concept for a 'Compensating Lateral Atmospheric Dispersion Corrector', with two of the lenses being movable laterally by small amounts. This provides excellent atmospheric dispersion correction, without any additional surfaces or absorption. A novel and simple mechanism for providing the required lens motions is proposed, which requires just 3 linear actuators for each of the two moving lenses.
Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram.
Zang, Pengxiao; Liu, Gangjun; Zhang, Miao; Dongye, Changlei; Wang, Jie; Pechauer, Alex D; Hwang, Thomas S; Wilson, David J; Huang, David; Li, Dengwang; Jia, Yali
2016-07-01
We propose an innovative registration method to correct motion artifacts for wide-field optical coherence tomography angiography (OCTA) acquired by ultrahigh-speed swept-source OCT (>200 kHz A-scan rate). Considering that the number of A-scans along the fast axis is much higher than the number of positions along slow axis in the wide-field OCTA scan, a non-orthogonal scheme is introduced. Two en face angiograms in the vertical priority (2 y-fast) are divided into microsaccade-free parallel strips. A gross registration based on large vessels and a fine registration based on small vessels are sequentially applied to register parallel strips into a composite image. This technique is extended to automatically montage individual registered, motion-free angiograms into an ultrawide-field view. PMID:27446709
Radiative corrections to the Casimir Pressure under the influence of temperature and external fields
Robaschik, D.; Scharonhorst, K.; Wieczorek, E.
1987-03-01
Generalizing the quantum field theory (QFT) with boundary conditions in covariant gauge to the case of finite temperature, we develop the quantum electrodynamics (QED) with boundary conditions in the Matsubara approach as well as in the thermofield formulation. We rederive the known results of the free-field theory for the pressure and the free energy of the Casimir problem. For infinitely thin plates we calculate the radiative corrections in second-order perturbation theory at finite temperature. Thereby it turns out that the calculation in of the vacuum energy at the vanishing temperature via the Z functional is much simplier than the calculation via the energy momentum tensor. This observation allows determination of the influence of static electromagnetic fields on the Casimir problem. copyright 1987 Academic Press, Inc.
Influence of magnetic field on electric-field-induced local polar states in manganites
NASA Astrophysics Data System (ADS)
Mamin, R. F.; Strle, J.; Bizyaev, D. A.; Yusupov, R. V.; Kabanov, V. V.; Kranjec, A.; Borovsak, M.; Mihailovic, D.; Bukharaev, A. A.
2015-11-01
It is shown that creation of local charged states at the surface of the lanthanum-strontium manganite single crystals by means of bias application via a conducting atomic force microscope tip is strongly affected by magnetic field. Both a charge and a size of created structures increase significantly on application of the magnetic field during the induction. We argue that the observed phenomenon originates from a known tendency of manganites toward charge segregation and its intimate relation to magnetic ordering.
Influence of magnetic field on electric-field-induced local polar states in manganites
Mamin, R. F.; Strle, J.; Kabanov, V. V.; Kranjec, A.; Borovsak, M.; Mihailovic, D.; Bizyaev, D. A.; Yusupov, R. V.; Bukharaev, A. A.
2015-11-09
It is shown that creation of local charged states at the surface of the lanthanum-strontium manganite single crystals by means of bias application via a conducting atomic force microscope tip is strongly affected by magnetic field. Both a charge and a size of created structures increase significantly on application of the magnetic field during the induction. We argue that the observed phenomenon originates from a known tendency of manganites toward charge segregation and its intimate relation to magnetic ordering.
Localized plasmonic field enhancement in shaped graphene nanoribbons.
Xia, Sheng-Xuan; Zhai, Xiang; Wang, Ling-Ling; Lin, Qi; Wen, Shuang-Chun
2016-07-25
Graphene nanoribbon (GNR), as a fundamental component to support the surface plasmon waves, are envisioned to play an important role in graphene plasmonics. However, to achieve extremely confinement of the graphene surface plasmons (GSPs) is still a challenging. Here, we propose a scheme to realize the excitation of localized surface plasmons with very strong field enhancement at the resonant frequency. By sinusoidally patterning the boundaries of GNRs, a new type of plasmon mode with field energy concentrated on the shaped grating crest (crest mode) can be efficiently excited, creating a sharp notch on the transmission spectra. Specifically, the enhanced field energies are featured by 3 times of magnitude stronger than that of the unpatterned classical GNRs. Through theoretical analyses and numerical calculations, we confirm that the enhanced fields of the crest modes can be tuned not only by changing the width, period and Fermi energy as traditional ribbons, but also by varying the grating amplitude and period. This new technique of manipulating the light-graphene interaction gives an insight of modulating plasmon resonances on graphene nanostrutures, making the proposed pattern method an attractive candidate for designing optical filters, spatial light modulators, and other active plasmonic devices. PMID:27464087
Deviations from the local field approximation in negative streamer heads
NASA Astrophysics Data System (ADS)
Li, Chao; Brok, W. J. M.; Ebert, Ute; van der Mullen, J. J. A. M.
2007-06-01
Negative streamer ionization fronts in nitrogen under normal conditions are investigated both in a particle model and in a fluid model in local field approximation. The parameter functions for the fluid model are derived from swarm experiments in the particle model. The front structure on the inner scale is investigated in a one-dimensional setting, allowing reasonable run time and memory consumption and high numerical accuracy without introducing superparticles. If the reduced electric field immediately before the front is ⩽50kV/(cmbar), solutions of fluid and particle model agree very well. If the field increases up to 200kV/(cmbar), the solutions of particle and fluid model deviate, in particular, the ionization level behind the front becomes up to 60% higher in the particle model while the velocity is rather insensitive. Particle and fluid model deviate because electrons with high energies do not yet fully run away from the front, but are somewhat ahead. This leads to increasing ionization rates in the particle model at the very tip of the front. The energy overshoot of electrons in the leading edge of the front actually agrees quantitatively with the energy overshoot in the leading edge of an electron swarm or avalanche in the same electric field.
NASA Astrophysics Data System (ADS)
Carrier, Pierre; Tang, Jok M.; Saad, Yousef; Freericks, James K.
Inhomogeneous dynamical mean-field theory has been employed to solve many interesting strongly interacting problems from transport in multilayered devices to the properties of ultracold atoms in a trap. The main computational step, especially for large systems, is the problem of calculating the inverse of a large sparse matrix to solve Dyson's equation and determine the local Green's function at each lattice site from the corresponding local self-energy. We present a new e_cient algorithm, the Lanczos-based low-rank algorithm, for the calculation of the inverse of a large sparse matrix which yields this local (imaginary time) Green's function. The Lanczos-based low-rank algorithm is based on a domain decomposition viewpoint, but avoids explicit calculation of Schur complements and relies instead on low-rank matrix approximations derived from the Lanczos algorithm, for solving the Dyson equation. We report at least a 25-fold improvement of performance compared to explicit decomposition (such as sparse LU) of the matrix inverse. We also report that scaling relative to matrix sizes, of the low-rank correction method on the one hand and domain decomposition methods on the other, are comparable.
Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy.
Li, Yiye; Wen, Tao; Zhao, Ruifang; Liu, Xixi; Ji, Tianjiao; Wang, Hai; Shi, Xiaowei; Shi, Jian; Wei, Jingyan; Zhao, Yuliang; Wu, Xiaochun; Nie, Guangjun
2014-11-25
Near-infrared plasmonic nanoparticles demonstrate great potential in disease theranostic applications. Herein a nanoplatform, composed of mesoporous silica-coated gold nanorods (AuNRs), is tailor-designed to optimize the photodynamic therapy (PDT) for tumor based on the plasmonic effect. The surface plasmon resonance of AuNRs was fine-tuned to overlap with the exciton absorption of indocyanine green (ICG), a near-infrared photodynamic dye with poor photostability and low quantum yield. Such overlap greatly increases the singlet oxygen yield of incorporated ICG by maximizing the local field enhancement, and protecting the ICG molecules against photodegradation by virtue of the high absorption cross section of the AuNRs. The silica shell strongly increased ICG payload with the additional benefit of enhancing ICG photostability by facilitating the formation of ICG aggregates. As-fabricated AuNR@SiO2-ICG nanoplatform enables trimodal imaging, near-infrared fluorescence from ICG, and two-photon luminescence/photoacoustic tomography from the AuNRs. The integrated strategy significantly improved photodynamic destruction of breast tumor cells and inhibited the growth of orthotopic breast tumors in mice, with mild laser irradiation, through a synergistic effect of PDT and photothermal therapy. Our study highlights the effect of local field enhancement in PDT and demonstrates the importance of systematic design of nanoplatform to greatly enhancing the antitumor efficacy. PMID:25375193
Matched field localization based on CS-MUSIC algorithm
NASA Astrophysics Data System (ADS)
Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng
2016-04-01
The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.
Rajendran, Ramji Ramaswamy; Plastaras, John P.; Mick, Rosemarie; McMichael Kohler, Diane; Kassaee, Alireza; Vapiwala, Neha
2010-03-15
Purpose: To evaluate dosimetric consequences of daily isocenter correction during prostate cancer radiation therapy using the Calypso 4D localization system. Methods and Materials: Data were analyzed from 28 patients with electromagnetic transponders implanted in their prostates for daily target localization and tracking. Treatment planning isocenters were recorded based on the values of the vertical, longitudinal, and lateral axes. Isocenter location obtained via alignment with skin tattoos was compared with that obtained via the electromagnetic localization system. Daily isocenter shifts, based on the isocenter location differences between the two alignment methods in each spatial axis, were calculated for each patient over their entire course. The mean isocenter shifts were used to determine dosimetric consequences of treatment based on skin tattoo alignments alone. Results: The mean += SD of the percentages of treatment days with shifts beyond += 0.5 cm for vertical, longitudinal and lateral shifts were 62% += 28%, 35% += 26%, and 38% +=21%, respectively. If daily electromagnetic localization was not used, the excess in prescribed dose delivered to 70% of the rectum was 10 Gy and the deficit in prescribed dose delivered to 95% of the planning target volume was 10 Gy. The mean isocenter shift was not associated with the volumes of the prostate, rectum, or bladder, or with patient body mass index. Conclusions: Daily isocenter localization can reduce the treatment dose to the rectum. Correcting for this variability could lead to improved dose delivery, reduced side effects, and potentially improved treatment outcomes.
Filipuzzi, M; Garrigo, E; Venencia, C; Germanier, A
2014-06-01
Purpose: To calculate the spatial response function of various radiation detectors, to evaluate the dependence on the field size and to analyze the small fields profiles corrections by deconvolution techniques. Methods: Crossline profiles were measured on a Novalis Tx 6MV beam with a HDMLC. The configuration setup was SSD=100cm and depth=5cm. Five fields were studied (200×200mm2,100×100mm2, 20×20mm2, 10×10mm2and 5×5mm2) and measured were made with passive detectors (EBT3 radiochromic films and TLD700 thermoluminescent detectors), ionization chambers (PTW30013, PTW31003, CC04 and PTW31016) and diodes (PTW60012 and IBA SFD). The results of passive detectors were adopted as the actual beam profile. To calculate the detectors kernels, modeled by Gaussian functions, an iterative process based on a least squares criterion was used. The deconvolutions of the measured profiles were calculated with the Richardson-Lucy method. Results: The profiles of the passive detectors corresponded with a difference in the penumbra less than 0.1mm. Both diodes resolve the profiles with an overestimation of the penumbra smaller than 0.2mm. For the other detectors, response functions were calculated and resulted in Gaussian functions with a standard deviation approximate to the radius of the detector in study (with a variation less than 3%). The corrected profiles resolve the penumbra with less than 1% error. Major discrepancies were observed for cases in extreme conditions (PTW31003 and 5×5mm2 field size). Conclusion: This work concludes that the response function of a radiation detector is independent on the field size, even for small radiation beams. The profiles correction, using deconvolution techniques and response functions of standard deviation equal to the radius of the detector, gives penumbra values with less than 1% difference to the real profile. The implementation of this technique allows estimating the real profile, freeing from the effects of the detector used for the
From neurons to circuits: linear estimation of local field potentials.
Rasch, Malte; Logothetis, Nikos K; Kreiman, Gabriel
2009-11-01
Extracellular physiological recordings are typically separated into two frequency bands: local field potentials (LFPs) (a circuit property) and spiking multiunit activity (MUA). Recently, there has been increased interest in LFPs because of their correlation with functional magnetic resonance imaging blood oxygenation level-dependent measurements and the possibility of studying local processing and neuronal synchrony. To further understand the biophysical origin of LFPs, we asked whether it is possible to estimate their time course based on the spiking activity from the same electrode or nearby electrodes. We used "signal estimation theory" to show that a linear filter operation on the activity of one or a few neurons can explain a significant fraction of the LFP time course in the macaque monkey primary visual cortex. The linear filter used to estimate the LFPs had a stereotypical shape characterized by a sharp downstroke at negative time lags and a slower positive upstroke for positive time lags. The filter was similar across different neocortical regions and behavioral conditions, including spontaneous activity and visual stimulation. The estimations had a spatial resolution of approximately 1 mm and a temporal resolution of approximately 200 ms. By considering a causal filter, we observed a temporal asymmetry such that the positive time lags in the filter contributed more to the LFP estimation than the negative time lags. Additionally, we showed that spikes occurring within approximately 10 ms of spikes from nearby neurons yielded better estimation accuracies than nonsynchronous spikes. In summary, our results suggest that at least some circuit-level local properties of the field potentials can be predicted from the activity of one or a few neurons. PMID:19889990
The effect of finite field size on classification and atmospheric correction
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Fraser, R. S.
1981-01-01
The atmospheric effect on the upward radiance of sunlight scattered from the Earth-atmosphere system is strongly influenced by the contrasts between fields and their sizes. For a given atmospheric turbidity, the atmospheric effect on classification of surface features is much stronger for nonuniform surfaces than for uniform surfaces. Therefore, the classification accuracy of agricultural fields and urban areas is dependent not only on the optical characteristics of the atmosphere, but also on the size of the surface do not account for the nonuniformity of the surface have only a slight effect on the classification accuracy; in other cases the classification accuracy descreases. The radiances above finite fields were computed to simulate radiances measured by a satellite. A simulation case including 11 agricultural fields and four natural fields (water, soil, savanah, and forest) was used to test the effect of the size of the background reflectance and the optical thickness of the atmosphere on classification accuracy. It is concluded that new atmospheric correction methods, which take into account the finite size of the fields, have to be developed to improve significantly the classification accuracy.
The importance of matched poloidal spectra to error field correction in DIII-D
Paz-Soldan, C. Lanctot, M. J.; Buttery, R. J.; La Haye, R. J.; Strait, E. J.; Logan, N. C.; Park, J.-K.; Solomon, W. M.; Shiraki, D.; Hanson, J. M.
2014-07-15
Optimal error field correction (EFC) is thought to be achieved when coupling to the least-stable “dominant” mode of the plasma is nulled at each toroidal mode number (n). The limit of this picture is tested in the DIII-D tokamak by applying superpositions of in- and ex-vessel coil set n = 1 fields calculated to be fully orthogonal to the n = 1 dominant mode. In co-rotating H-mode and low-density Ohmic scenarios, the plasma is found to be, respectively, 7× and 20× less sensitive to the orthogonal field as compared to the in-vessel coil set field. For the scenarios investigated, any geometry of EFC coil can thus recover a strong majority of the detrimental effect introduced by the n = 1 error field. Despite low sensitivity to the orthogonal field, its optimization in H-mode is shown to be consistent with minimizing the neoclassical toroidal viscosity torque and not the higher-order n = 1 mode coupling.
Time-localized projectors in string field theory with an E-field
Maccaferri, C.; Scherer Santos, R.J.; Tolla, D.D.
2005-03-15
We extend the analysis of Bonora et al. [hep-th/0409063] to the case of a constant electric field turned on the world volume and on a transverse direction of a D-brane. We show that time localization is still obtained by inverting the discrete eigenvalues of the lump solution. The lifetime of the unstable soliton is shown to depend on two free parameters: the b parameter and the value of the electric field. As a by-product, we construct the normalized diagonal basis of the star algebra in the B{sub {mu}}{sub {nu}}-field background.
Solving outside-axial-field-of-view scatter correction problem in PET via digital experimentation
NASA Astrophysics Data System (ADS)
Andreyev, Andriy; Zhu, Yang-Ming; Ye, Jinghan; Song, Xiyun; Hu, Zhiqiang
2016-03-01
Unaccounted scatter impact from unknown outside-axial-field-of-view (outside-AFOV) activity in PET is an important degrading factor for image quality and quantitation. Resource consuming and unpopular way to account for the outside- AFOV activity is to perform an additional PET/CT scan of adjacent regions. In this work we investigate a solution to the outside-AFOV scatter problem without performing a PET/CT scan of the adjacent regions. The main motivation for the proposed method is that the measured random corrected prompt (RCP) sinogram in the background region surrounding the measured object contains only scattered events, originating from both inside- and outside-AFOV activity. In this method, the scatter correction simulation searches through many randomly-chosen outside-AFOV activity estimates along with known inside-AFOV activity, generating a plethora of scatter distribution sinograms. This digital experimentation iterates until a decent match is found between a simulated scatter sinogram (that include supposed outside-AFOV activity) and the measured RCP sinogram in the background region. The combined scatter impact from inside- and outside-AFOV activity can then be used for scatter correction during final image reconstruction phase. Preliminary results using measured phantom data indicate successful phantom length estimate with the method, and, therefore, accurate outside-AFOV scatter estimate.
Local field potentials reflect multiple spatial scales in V4
Mineault, Patrick J.; Zanos, Theodoros P.; Pack, Christopher C.
2013-01-01
Local field potentials (LFP) reflect the properties of neuronal circuits or columns recorded in a volume around a microelectrode (Buzsáki et al., 2012). The extent of this integration volume has been a subject of some debate, with estimates ranging from a few hundred microns (Katzner et al., 2009; Xing et al., 2009) to several millimeters (Kreiman et al., 2006). We estimated receptive fields (RFs) of multi-unit activity (MUA) and LFPs at an intermediate level of visual processing, in area V4 of two macaques. The spatial structure of LFP receptive fields varied greatly as a function of time lag following stimulus onset, with the retinotopy of LFPs matching that of MUAs at a restricted set of time lags. A model-based analysis of the LFPs allowed us to recover two distinct stimulus-triggered components: an MUA-like retinotopic component that originated in a small volume around the microelectrodes (~350 μm), and a second component that was shared across the entire V4 region; this second component had tuning properties unrelated to those of the MUAs. Our results suggest that the LFP reflects neural activity across multiple spatial scales, which both complicates its interpretation and offers new opportunities for investigating the large-scale structure of network processing. PMID:23533106
Locality of Gravitational Systems from Entanglement of Conformal Field Theories.
Lin, Jennifer; Marcolli, Matilde; Ooguri, Hirosi; Stoica, Bogdan
2015-06-01
The Ryu-Takayanagi formula relates the entanglement entropy in a conformal field theory to the area of a minimal surface in its holographic dual. We show that this relation can be inverted for any state in the conformal field theory to compute the bulk stress-energy tensor near the boundary of the bulk spacetime, reconstructing the local data in the bulk from the entanglement on the boundary. We also show that positivity, monotonicity, and convexity of the relative entropy for small spherical domains between the reduced density matrices of any state and of the ground state of the conformal field theory are guaranteed by positivity conditions on the bulk matter energy density. As positivity and monotonicity of the relative entropy are general properties of quantum systems, this can be interpreted as a derivation of bulk energy conditions in any holographic system for which the Ryu-Takayanagi prescription applies. We discuss an information theoretical interpretation of the convexity in terms of the Fisher metric. PMID:26196612
Localizing a large-dimensional field of sonobuoys
NASA Astrophysics Data System (ADS)
Collison, Nicole E.; Dosso, Stan E.
2003-04-01
For target localization, multistatic sonar systems require an adequate knowledge of both the source and receiver positions. In this paper, we use a regularized acoustic inversion method on measured direct-arrival times from several impulsive sources to track a freely drifting sonobuoy field. The shallow-water experiment involved 11 sonobuoys within a 6×8 km field, with 6 sources over approximately 70 min. Regularization allows prior information to be built into the inversion, which in this case consists of estimates (with associated uncertainties) of the source and initial sonobuoy drop positions determined from the GPS position of the aircraft at the instant of drop, as well as a model for smooth sonobuoy tracks. Closely spaced sonobuoys move along similar tracks, although there is considerable movement in different directions over the entire field (260-700 m). Positioning uncertainties are estimated using a Monte Carlo appraisal procedure to be approximately 100 m (absolute) and 65 m (relative). Submitted for the Signal Processing Young Presenter Award.
Active control of Type-I Edge-Localized Modes with n=1 Perturbation Fields in the JET Tokamak
Liang, Y.; Koslowski, R.; Thomas, P.; Nardon, E.; Alper, B.; Baranov, Y.; Beurskens, M.; Bigi, M.; Crombe, K.; de la Luna, E.; De Vries, P.; Fundamenski, W.; Rachlew, Elisabeth G; Zimmermann, O.
2007-06-01
Type-I edge-localized modes (ELMs) have been mitigated at the JET tokamak using a static external n=1 perturbation field generated by four error field correction coils located far from the plasma. During the application of the n=1 field the ELM frequency increased by a factor of 4 and the amplitude of the D signal decreased. The energy loss per ELM normalized to the total stored energy, W/W, dropped to values below 2%. Transport analyses shows no or only a moderate (up to 20%) degradation of energy confinement time during the ELM mitigation phase.
Park, Yang-Kyun; Sharp, Gregory C
2016-04-01
Gain calibration for X-ray imaging systems with a movable flat panel detector and an intrinsic crosshair is a challenge due to the geometry-dependent heel effect and crosshair artifact. This study aims to develop a gain correction method for such systems by implementing the Multi-Acquisition Gain Image Correction technique. Flood field images containing crosshair and heel effect were acquired in 4 different flat panel detector positions at fixed exposure parameters. The crosshair region was automatically detected using common image processing algorithms and removed by a simple interpolation procedure, resulting in a crosshair-removed image. A large kernel-based correction was then used to remove the heel effect. Mask filters corresponding to each crosshair region were applied to the resultant heel effect-removed images to invalidate the pixels of the original crosshair region. Finally, a seamless gain map was composed with corresponding valid pixels from the processed images either by the sequential replacement or by the selective averaging techniques developed in this study. Quantitative evaluation was performed based on normalized noise power spectrum and detective quantum efficiency improvement factor for the flood field images corrected by the Multi-Acquisition Gain Image Correction-based gain maps. For comparison purposes, a single crosshair-removed gain map was also tested. As a result, it was demonstrated that the Multi-Acquisition Gain Image Correction technique achieved better image quality than the crosshair-removed technique, showing lower normalized noise power spectrum values over most of spatial frequencies. The improvement was more obvious at the priori-crosshair region of the gain map. The mean detective quantum efficiency improvement factor was 1.09 ± 0.06, 2.46 ± 0.32, and 3.34 ± 0.36 in the priori-crosshair region and 2.35 ± 0.31, 2.33 ± 0.31, and 3.09 ± 0.34 in the normal region, for crosshair-removed, Multi-Acquisition Gain Image
Bennett, Kochise Mukamel, Shaul
2014-01-28
The semi-classical theory of radiation-matter coupling misses local-field effects that may alter the pulse time-ordering and cascading that leads to the generation of new signals. These are then introduced macroscopically by solving Maxwell's equations. This procedure is convenient and intuitive but ad hoc. We show that both effects emerge naturally by including coupling to quantum modes of the radiation field that are initially in the vacuum state to second order. This approach is systematic and suggests a more general class of corrections that only arise in a QED framework. In the semi-classical theory, which only includes classical field modes, the susceptibility of a collection of N non-interacting molecules is additive and scales as N. Second-order coupling to a vacuum mode generates an effective retarded interaction that leads to cascading and local field effects both of which scale as N{sup 2}.
NASA Astrophysics Data System (ADS)
Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won
2016-02-01
A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1 × 1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.
Size-extensive vibrational self-consistent field methods with anharmonic geometry corrections
NASA Astrophysics Data System (ADS)
Hermes, Matthew R.; Keçeli, Murat; Hirata, So
2012-06-01
In the size-extensive vibrational self-consistent field (XVSCF) method introduced earlier [M. Keçeli and S. Hirata, J. Chem. Phys. 135, 134108 (2011)], 10.1063/1.3644895, only a small subset of even-order force constants that can form connected diagrams were used to compute extensive total energies and intensive transition frequencies. The mean-field potentials of XVSCF formed with these force constants have been shown to be effectively harmonic, making basis functions, quadrature, or matrix diagonalization in the conventional VSCF method unnecessary. We introduce two size-consistent VSCF methods, XVSCF(n) and XVSCF[n], for vibrationally averaged geometries in addition to energies and frequencies including anharmonic effects caused by up to the nth-order force constants. The methods are based on our observations that a small number of odd-order force constants of certain types can form open, connected diagrams isomorphic to the diagram of the mean-field potential gradients and that these nonzero gradients shift the potential minima by intensive amounts, which are interpreted as anharmonic geometry corrections. XVSCF(n) evaluates these mean-field gradients and force constants at the equilibrium geometry and estimates this shift accurately, but approximately, neglecting the coupling between these two quantities. XVSCF[n] solves the coupled equations for geometry corrections and frequencies with an iterative algorithm, giving results that should be identical to those of VSCF when applied to an infinite system. We present the diagrammatic and algebraic definitions, algorithms, and initial implementations as well as numerical results of these two methods. The results show that XVSCF(n) and XVSCF[n] reproduce the vibrationally averaged geometries of VSCF for naphthalene and anthracene in their ground and excited vibrational states accurately at fractions of the computational cost.
Power-law entropy-corrected Ricci dark energy and dynamics of scalar fields
NASA Astrophysics Data System (ADS)
Pasqua, Antonio; Jamil, Mubasher; Myrzakulov, Ratbay; Majeed, Bushra
2012-10-01
Motivated by the holographic principle, it has previously been suggested that the dark energy (DE) density can be inversely proportional to the area A of the event horizon of the Universe. However, this kind of model would have a casuality problem. In this work, we study the power-law entropy-corrected holographic DE (PLECHDE) model in the non-flat Friedmann-Robertson-Walker universe, with the future event horizon replaced by the average radius of the Ricci scalar curvature. We derive the equation of state parameter ωΛ, the deceleration parameter q and the evolution of energy density parameter ΩD‧ in the presence of interaction between DE and dark matter. We consider the correspondence between our Ricci-PLECHDE model and the modified Chaplygin gas and the tachyon, K-essence, dilaton and quintessence scalar fields. The potential and dynamics of the scalar field models have been reconstructed according to the evolutionary behaviour of the interacting entropy-corrected holographic DE model.
Gago-Arias, Araceli; Antolin, Elena; Fayos-Ferrer, Francisco; Simon, Rocio; Gonzalez-Castano, Diego M.; Palmans, Hugo; Sharpe, Peter; Gomez, Faustino; Pardo-Montero, Juan
2013-01-15
Purpose: The aim of this work is the application of the formalism for ionization chamber reference dosimetry of small and nonstandard fields [R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjaell, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich, and S. Vatnitsky, 'A new formalism for reference dosimetry of small and nonstandard fields,' Med. Phys. 35, 5179-5186 (2008)] to the CyberKnife robotic radiosurgery system. Correction factors for intermediate calibration fields, a machine-specific reference field (msr) and two plan-class specific reference fields (pcsr), have been studied. Furthermore, the applicability of the new formalism to clinical dosimetry has been analyzed through the investigation of two clinical treatments. Methods: PTW31014 and Scanditronix-Wellhofer CC13 ionization chamber measurements were performed for the fields under investigation. Absorbed dose to water was determined using alanine reference dosimetry, and experimental correction factors were calculated from alanine to ionization chamber readings ratios. In addition, correction factors were calculated for the intermediate calibration fields and one of the clinical treatment fields using the Monte Carlo method and these were compared with the experimental values. Results: Overall correction factors deviating from unity by approximately 2% were obtained from both measurements and simulations, with values below and above unity for the studied intermediate calibration fields and clinical fields for the ionization chambers under consideration. Monte Carlo simulations yielded correction factors comparable with those obtained from measurements for the machine-specific reference field, although differences from 1% to 3.3% were observed between measured and calculated correction factors for the composite intermediate calibration fields. Dose distribution inhomogeneities are thought to be responsible for such discrepancies. Conclusions: The differences found between overall
Spin resonance strength of a localized rf magnetic field
NASA Astrophysics Data System (ADS)
Lee, S. Y.
2006-07-01
Spin-resonance strength produced by a localized rf field has been a focus of recent publications [V. S. Morozov , Phys. Rev. ST Accel. Beams 7, 024002 (2004).PRABFM1098-440210.1103/PhysRevSTAB.7.024002; M. A. Leonova (to be published).; T. Roser, in Handbook of Accelerator Physics and Engineering, edited by A. W. Chao and M. Tigner (World Scientific, Singapore, 1999), p. 151.; M. Bai, W. W. MacKay, and T. Roser, Phys. Rev. ST Accel. Beams 8, 099001 (2005).PRABFM1098-440210.1103/PhysRevSTAB.8.099001; V. S. Morozov , Phys. Rev. ST Accel. Beams 8, 099002 (2005).PRABFM1098-440210.1103/PhysRevSTAB.8.099002]. This paper discusses the debated factor of 2, and provides a formula to calculate the component enhanced by the induced betatron motion.
Wedge-Local Fields in Integrable Models with Bound States
NASA Astrophysics Data System (ADS)
Cadamuro, Daniela; Tanimoto, Yoh
2015-12-01
Recently, large families of two-dimensional quantum field theories with factorizing S-matrices have been constructed by the operator-algebraic methods, by first showing the existence of observables localized in wedge-shaped regions. However, these constructions have been limited to the class of S-matrices whose components are analytic in rapidity in the physical strip. In this work, we construct candidates for observables in wedges for scalar factorizing S-matrices with poles in the physical strip and show that they weakly commute on a certain domain. We discuss some technical issues concerning further developments, especially the self-adjointness of the candidate operators here and strong commutativity between them.
Spatially Distributed Local Fields in the Hippocampus Encode Rat Position
Agarwal, Gautam; Stevenson, Ian H.; Berényi, Antal; Mizuseki, Kenji; Buzsáki, György; Sommer, Friedrich T.
2016-01-01
Although neuronal spikes can be readily detected from extracellular recordings, synaptic and subthreshold activity remains undifferentiated within the local field potential (LFP). In the hippocampus, neurons discharge selectively when the rat is at certain locations, while LFPs at single anatomical sites exhibit no such place-tuning. Nonetheless, because the representation of position is sparse and distributed, we hypothesized that spatial information can be recovered from multiple-site LFP recordings. Using high-density sampling of LFP and computational methods, we show that the spatiotemporal structure of the theta rhythm can encode position as robustly as neuronal spiking populations. Because our approach exploits the rhythmicity and sparse structure of neural activity, features found in many brain regions, it is useful as a general tool for discovering distributed LFP codes. PMID:24812401
Probing {N}=2 superconformal field theories with localization
NASA Astrophysics Data System (ADS)
Fiol, Bartomeu; Garolera, Blai; Torrentsa, Genís
2016-01-01
We use supersymmetric localization to study probes of four dimensional Lagrangian {N}=2 superconformal field theories. We first derive a unique equation for the eigenvalue density of these theories. We observe that these theories have a Wigner eigenvalue density precisely when they satisfy a necessary condition for having a holographic dual with a sensible higher-derivative expansion. We then compute in the saddle-point approximation the vacuum expectation value of 1/2-BPS circular Wilson loops, and the two-point functions of these Wilson loops with the Lagrangian density and with the stress-energy tensor. This last computation also provides the corresponding Bremsstrahlung functions and entanglement entropies. As expected, whenever a finite fraction of the matter is in the fundamental representation, the results are drastically different from those of {N}=4 supersymmetric Yang-Mills theory.
Tomé, Wolfgang A; Orton, Nigel P
2008-01-01
We describe quality assurance paradigms for ultrasound imaging systems for target localization (UISTL). To determine the absolute localization accuracy of a UISTL, an absolute coordinate system can be established in the treatment room and spherical targets at various depths can be localized. To test the ability of such a system to determine the magnitude of internal organ motion, a phantom that mimics the human male pelvic anatomy can be used to simulate different organ motion ranges. To assess the interuser variability of ultrasound (US) guidance, different experienced users can independently determine the daily organ shifts for the same patients for a number of consecutive fractions. The average accuracy for a UISTL for the localization of spherical targets at various depths has been found to be 0.57 +/- 0.47 mm in each spatial dimension for various focal depths. For the phantom organ motion test it was found that the true organ motion could be determined to within 1.0 mm along each axis. The variability between different experienced users who localized the same 5 patients for five consecutive fractions was small in comparison to the indicated shifts. In addition to the quality assurance tests that address the ability of a UISTL to accurately localize a target, a thorough quality assurance program should also incorporate the following two aspects to ensure consistent and accurate localization in daily clinical use: (1) adequate training and performance monitoring of users of the US target localization system, and (2) prescreening of patients who may not be good candidates for US localization. PMID:18406938
Quality Assurance of Ultrasound Imaging Systems for Target Localization and Online Setup Corrections
Tome, Wolfgang A. Orton, Nigel P.
2008-05-01
We describe quality assurance paradigms for ultrasound imaging systems for target localization (UISTL). To determine the absolute localization accuracy of a UISTL, an absolute coordinate system can be established in the treatment room and spherical targets at various depths can be localized. To test the ability of such a system to determine the magnitude of internal organ motion, a phantom that mimics the human male pelvic anatomy can be used to simulate different organ motion ranges. To assess the interuser variability of ultrasound (US) guidance, different experienced users can independently determine the daily organ shifts for the same patients for a number of consecutive fractions. The average accuracy for a UISTL for the localization of spherical targets at various depths has been found to be 0.57 {+-} 0.47 mm in each spatial dimension for various focal depths. For the phantom organ motion test it was found that the true organ motion could be determined to within 1.0 mm along each axis. The variability between different experienced users who localized the same 5 patients for five consecutive fractions was small in comparison to the indicated shifts. In addition to the quality assurance tests that address the ability of a UISTL to accurately localize a target, a thorough quality assurance program should also incorporate the following two aspects to ensure consistent and accurate localization in daily clinical use: (1) adequate training and performance monitoring of users of the US target localization system, and (2) prescreening of patients who may not be good candidates for US localization.
Lillaney, Prasheel; Shin, Mihye; Conolly, Steven M.; Fahrig, Rebecca
2012-01-01
Purpose: Combining x-ray fluoroscopy and MR imaging systems for guidance of interventional procedures has become more commonplace. By designing an x-ray tube that is immune to the magnetic fields outside of the MR bore, the two systems can be placed in close proximity to each other. A major obstacle to robust x-ray tube design is correcting for the effects of the magnetic fields on the x-ray tube focal spot. A potential solution is to design active shielding that locally cancels the magnetic fields near the focal spot. Methods: An iterative optimization algorithm is implemented to design resistive active shielding coils that will be placed outside the x-ray tube insert. The optimization procedure attempts to minimize the power consumption of the shielding coils while satisfying magnetic field homogeneity constraints. The algorithm is composed of a linear programming step and a nonlinear programming step that are interleaved with each other. The coil results are verified using a finite element space charge simulation of the electron beam inside the x-ray tube. To alleviate heating concerns an optimized coil solution is derived that includes a neodymium permanent magnet. Any demagnetization of the permanent magnet is calculated prior to solving for the optimized coils. The temperature dynamics of the coil solutions are calculated using a lumped parameter model, which is used to estimate operation times of the coils before temperature failure. Results: For a magnetic field strength of 88 mT, the algorithm solves for coils that consume 588 A/cm2. This specific coil geometry can operate for 15 min continuously before reaching temperature failure. By including a neodymium magnet in the design the current density drops to 337 A/cm2, which increases the operation time to 59 min. Space charge simulations verify that the coil designs are effective, but for oblique x-ray tube geometries there is still distortion of the focal spot shape along with deflections of approximately
NASA Astrophysics Data System (ADS)
Hahn, Torsten; Liebing, Simon; Kortus, Jens; Pederson, Mark
The correction of the self-interaction error that is inherent to all standard density functional theory (DFT) calculations is an object of increasing interest. We present our results on the application of the recently developed Fermi-orbital based approach for the self-interaction correction (FO-SIC) to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. Our focus lies on the direct estimation of the ionization potential from orbital eigenvalues and on the ordering of electronic levels in metal-organic molecules. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable. Support by DFG FOR1154 is greatly acknowledged.
NASA Astrophysics Data System (ADS)
Hahn, T.; Liebing, S.; Kortus, J.; Pederson, Mark R.
2015-12-01
The correction of the self-interaction error that is inherent to all standard density functional theory calculations is an object of increasing interest. In this article, we apply the very recently developed Fermi-orbital based approach for the self-interaction correction [M. R. Pederson et al., J. Chem. Phys. 140, 121103 (2014) and M. R. Pederson, J. Chem. Phys. 142, 064112 (2015)] to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable.
Hahn, T. Liebing, S.; Kortus, J.; Pederson, Mark R.
2015-12-14
The correction of the self-interaction error that is inherent to all standard density functional theory calculations is an object of increasing interest. In this article, we apply the very recently developed Fermi-orbital based approach for the self-interaction correction [M. R. Pederson et al., J. Chem. Phys. 140, 121103 (2014) and M. R. Pederson, J. Chem. Phys. 142, 064112 (2015)] to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable.
Oh, Jeong-Hoon; Park, Kyung Ho; Kim, Byung Guk
2016-01-01
Abstract Cryptotia attributable to deficient posterior skin coverage frequently recurs. Because local flaps cover only the posterior aspects of the defective upper auricular cartilage and lack functional support to resist collapse of the helix, especially if severe helical cartilage anomalies are present, additional support is required to prevent the postoperative recurrence of this anomaly. The authors present cases of cryptotia treated using local flaps including a Z-plasty or formation of a trefoil flap with an additional cartilage wedge graft on the cephaloauricular sulcus to enhance projection of the helix. The combination of a graft with a local flap using a large Z-plasty or trefoil flap efficiently corrects the cryptotia, and is associated with minimal visible scarring and few complications, including recurrence. PMID:26967080
Chiral restoration at finite T under the magnetic field with the meson-loop corrections
NASA Astrophysics Data System (ADS)
Nam, Seung-Il; Kao, Chung-Wen
2011-05-01
We investigate the (partial) chiral restoration at finite temperature (T) under the strong external magnetic field B=B0z^ of the SU(2) light-flavor QCD matter. To this end, we employ the instanton-liquid QCD vacuum configuration accompanied with the linear Schwinger method for inducing the magnetic field. The Harrington-Shepard caloron solution is used to modify the instanton parameters, i.e. the average instanton size (ρ¯) and interinstanton distance (R¯), as functions of T. In addition, we include the meson-loop corrections as the large-Nc corrections because they are critical for reproducing the universal chiral-restoration pattern. We present the numerical results for the constituent-quark mass as well as chiral condensate, which signal the spontaneous breakdown of chiral-symmetry (SBχS), as functions of T and B0. From our results we observe that the strengths of those chiral order parameters are enhanced with respect to B0 due to the magnetic-catalysis effect. We also find that there appears a region where the u and d-quark constituent masses coincide with each other at eB0≈(7-9)mπ2, even in the presence of the explicit isospin breaking (mu≠md). The critical T for the chiral restoration Tc tends to shift to the higher temperature in the presence of the B0 for the chiral limit but keeps almost stationary for the physical quark mass case. The strength of the isospin breaking between the quark condensates is also explored in detail by defining the ratio R≡(⟨iu†u⟩-⟨id†d⟩)/(⟨iu†u⟩+⟨id†d⟩), which indicates the competition between the explicitly isospin-breaking effect and magnetic-catalysis effect. We also compute the pion weak-decay constant Fπ and pion mass mπ below Tc, varying the strength of the magnetic field, showing correct partial chiral-restoration behaviors. Besides we find that the changes for the Fπ and mπ due to the magnetic field is relatively small, in comparison to those caused by the finite T effect.
Chiral restoration at finite T under the magnetic field with the meson-loop corrections
Nam, Seung-il; Kao, Chung-Wen
2011-05-01
We investigate the (partial) chiral restoration at finite temperature (T) under the strong external magnetic field B=B{sub 0}z-circumflex of the SU(2) light-flavor QCD matter. To this end, we employ the instanton-liquid QCD vacuum configuration accompanied with the linear Schwinger method for inducing the magnetic field. The Harrington-Shepard caloron solution is used to modify the instanton parameters, i.e. the average instanton size ({rho}) and interinstanton distance (R), as functions of T. In addition, we include the meson-loop corrections as the large-N{sub c} corrections because they are critical for reproducing the universal chiral-restoration pattern. We present the numerical results for the constituent-quark mass as well as chiral condensate, which signal the spontaneous breakdown of chiral-symmetry (SB{chi}S), as functions of T and B{sub 0}. From our results we observe that the strengths of those chiral order parameters are enhanced with respect to B{sub 0} due to the magnetic-catalysis effect. We also find that there appears a region where the u and d-quark constituent masses coincide with each other at eB{sub 0{approx_equal}}(7-9)m{sub {pi}}{sup 2}, even in the presence of the explicit isospin breaking (m{sub u{ne}}m{sub d}). The critical T for the chiral restoration T{sub c} tends to shift to the higher temperature in the presence of the B{sub 0} for the chiral limit but keeps almost stationary for the physical quark mass case. The strength of the isospin breaking between the quark condensates is also explored in detail by defining the ratio R{identical_to}(
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hwang, S. Y.
1985-01-01
Strain redistribution corrections were developed for a simplified inelastic analysis procedure to economically calculate material cyclic response at the critical location of a structure for life prediction proposes. The method was based on the assumption that the plastic region in the structure is local and the total strain history required for input can be defined from elastic finite-element analyses. Cyclic stress-strain behavior was represented by a bilinear kinematic hardening model. The simplified procedure predicts stress-strain response with reasonable accuracy for thermally cycled problems but needs improvement for mechanically load-cycled problems. Neuber-type corrections were derived and incorporated in the simplified procedure to account for local total strain redistribution under cyclic mechanical loading. The corrected simplified method was used on a mechanically load-cycled benchmark notched-plate problem. The predicted material response agrees well with the nonlinear finite-element solutions for the problem. The simplified analysis computer program was 0.3% of the central processor unit time required for a nonlinear finite-element analysis.
2-D Path Corrections for Local and Regional Coda Waves: A Test of Transportability
Mayeda, K M; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D S; Morasca, P
2005-07-13
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. [2003] has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. We will compare performance of 1-D versus 2-D path corrections in a variety of regions. First, the complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Next, we will compare results for the Italian Alps using high frequency data from the University of Genoa. For Northern California, we used the same station and event distribution and compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7 {le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter
NASA Astrophysics Data System (ADS)
Mao, Ganquan; Vogl, Stefanie; Laux, Patrick; Wagner, Sven; Kunstmann, Harald
2014-05-01
Precipitation information is crucial for regional hydrological and agricultural climate change impact studies. Regional climate models (RCMs) are suitable tools to provide high spatial resolution precipitation products at regional scales, however, they are usually biased not only in absolute values, but also in reproducing observed spatial patterns. Therefore, bias correction techniques are required to obtain suited meteorological information on regional scale. We present a Copula-based method to correct precipitation fields from the Weather Research and Forecasting (WRF) model by merging modelled fields with gridded observation data. Germany is selected as our research domain. High resolution (7km) WRF simulations are used in this study, which is driven by ERA40 reanalysis data for 1971-2000. REGNIE data from Germany Weather Service (DWD) were used as gridded observation data source (1km/daily) and rescaled to 7km for this application. The critical step of this proposed bias correction approach is the establishment of bivariate Copula models, each of them consists of two marginal distributions and one Copula function. The marginal distributions are used to describe the statistical properties of REGNIE and WRF-ERA40 data, while the theoretical Copula function represents the dependence structure between REGNIE and WRF-ERA40 data. Based on this Copula model, the conditional distribution of REGNIE conditioned on WRF-ERA40 can be derived. To generate bias corrected WRF-ERA40 precipitation, a random sample of possible outcomes is drawn from this conditional distribution. This also allows for a quantitative estimation of the inherent uncertainties. The expectation/median/mode value of the stochastic samples can be used as an estimation of the corrected value. For the application, a split-sampling approach is used. Results show that the marginal distributions of REGNIE and WRF-ERA40 are different which implies deficiencies of the WRF-ERA40 simulations to reproduce the