Local virial and tensor theorems.
Cohen, Leon
2011-11-17
We show that for any wave function and potential the local virial theorem can always be satisfied 2K(r) = r·ΔV by choosing a particular expression for the local kinetic energy. In addition, we show that for each choice of local kinetic energy there are an infinite number of quasi-probability distributions which will generate the same expression. We also consider the local tensor virial theorem. PMID:21863837
Illustrating the Central Limit Theorem
ERIC Educational Resources Information Center
Corcoran, Mimi
2016-01-01
Statistics is enjoying some well-deserved limelight across mathematics curricula of late. Some statistical concepts, however, are not especially intuitive, and students struggle to comprehend and apply them. As an AP Statistics teacher, the author appreciates the central limit theorem as a foundational concept that plays a crucial role in…
A Randomized Central Limit Theorem
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Klafter, Joseph
2010-05-01
The Central Limit Theorem (CLT), one of the most elemental pillars of Probability Theory and Statistical Physics, asserts that: the universal probability law of large aggregates of independent and identically distributed random summands with zero mean and finite variance, scaled by the square root of the aggregate-size (√{n}), is Gaussian. The scaling scheme of the CLT is deterministic and uniform - scaling all aggregate-summands by the common and deterministic factor √{n}. This Letter considers scaling schemes which are stochastic and non-uniform, and presents a "Randomized Central Limit Theorem" (RCLT): we establish a class of random scaling schemes which yields universal probability laws of large aggregates of independent and identically distributed random summands. The RCLT universal probability laws, in turn, are the one-sided and the symmetric Lévy laws.
Visualizing the Central Limit Theorem through Simulation
ERIC Educational Resources Information Center
Ruggieri, Eric
2016-01-01
The Central Limit Theorem is one of the most important concepts taught in an introductory statistics course, however, it may be the least understood by students. Sure, students can plug numbers into a formula and solve problems, but conceptually, do they really understand what the Central Limit Theorem is saying? This paper describes a simulation…
Central limit theorems under special relativity
McKeague, Ian W.
2015-01-01
Several relativistic extensions of the Maxwell–Boltzmann distribution have been proposed, but they do not explain observed lognormal tail-behavior in the flux distribution of various astrophysical sources. Motivated by this question, extensions of classical central limit theorems are developed under the conditions of special relativity. The results are related to CLTs on locally compact Lie groups developed by Wehn, Stroock and Varadhan, but in this special case the asymptotic distribution has an explicit form that is readily seen to exhibit lognormal tail behavior. PMID:25798020
Limit Theorems for Dispersing Billiards with Cusps
NASA Astrophysics Data System (ADS)
Bálint, P.; Chernov, N.; Dolgopyat, D.
2011-12-01
Dispersing billiards with cusps are deterministic dynamical systems with a mild degree of chaos, exhibiting "intermittent" behavior that alternates between regular and chaotic patterns. Their statistical properties are therefore weak and delicate. They are characterized by a slow (power-law) decay of correlations, and as a result the classical central limit theorem fails. We prove that a non-classical central limit theorem holds, with a scaling factor of {sqrt{nlog n}} replacing the standard {sqrt{n}} . We also derive the respective Weak Invariance Principle, and we identify the class of observables for which the classical CLT still holds.
Local theorems for nonidentically distributed lattice random variables.
NASA Technical Reports Server (NTRS)
Mason, J. D.
1972-01-01
Derivation of local limit theorems for a sequence X sub n of independent integral-valued lattice random variables involving only a finite number of distinct nondegenerate distributions. Given appropriate sequences A sub n and B sub n of constants such that 1/B sub n (X sub 1 +
Randomized central limit theorems: A unified theory
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Klafter, Joseph
2010-08-01
The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles’ aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles’ extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic—scaling all ensemble components by a common deterministic scale. However, there are “random environment” settings in which the underlying scaling schemes are stochastic—scaling the ensemble components by different random scales. Examples of such settings include Holtsmark’s law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)—in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes—and present “randomized counterparts” to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.
Local theorems in strengthened form for lattice random variables.
NASA Technical Reports Server (NTRS)
Mason, J. D.
1971-01-01
Investigation of some conditions which are sufficient for a sequence of independent integral-valued lattice random variables to satisfy a local theorem in strengthened form. A number of theorems giving the conditions under which the investigated sequence satisfies a local theorem in strengthened form are proven with the aid of lemmas derived by Kruglov (1968).
Central limit theorem for reducible and irreducible open quantum walks
NASA Astrophysics Data System (ADS)
Sadowski, Przemysław; Pawela, Łukasz
2016-07-01
In this work we aim at proving central limit theorems for open quantum walks on {mathbb {Z}}^d. We study the case when there are various classes of vertices in the network. In particular, we investigate two ways of distributing the vertex classes in the network. First, we assign the classes in a regular pattern. Secondly, we assign each vertex a random class with a transition invariant distribution. For each way of distributing vertex classes, we obtain an appropriate central limit theorem, illustrated by numerical examples. These theorems may have application in the study of complex systems in quantum biology and dissipative quantum computation.
Central limit theorem for reducible and irreducible open quantum walks
NASA Astrophysics Data System (ADS)
Sadowski, Przemysław; Pawela, Łukasz
2016-04-01
In this work we aim at proving central limit theorems for open quantum walks on {{Z}}^d . We study the case when there are various classes of vertices in the network. In particular, we investigate two ways of distributing the vertex classes in the network. First, we assign the classes in a regular pattern. Secondly, we assign each vertex a random class with a transition invariant distribution. For each way of distributing vertex classes, we obtain an appropriate central limit theorem, illustrated by numerical examples. These theorems may have application in the study of complex systems in quantum biology and dissipative quantum computation.
Some functional limit theorems for compound Cox processes
NASA Astrophysics Data System (ADS)
Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.
2016-06-01
An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.
From Einstein's theorem to Bell's theorem: a history of quantum non-locality
NASA Astrophysics Data System (ADS)
Wiseman, H. M.
2006-04-01
In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.
Improving Conceptions in Analytical Chemistry: The Central Limit Theorem
ERIC Educational Resources Information Center
Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.
2006-01-01
This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)
Extremely localized nonorthogonal orbitals by the pairing theorem.
Zoboki, T; Mayer, I
2011-03-01
Using the concepts of Löwdin pairing theorem, a method is developed to calculate extremely localized, but nonorthogonal, sets of molecular orbitals and their strictly localized counterparts. The method is very suitable to study to what extent a given model of bonding in a given molecule can be considered adequate from the point of view of the actual LCAO-MO (Hartree Fock or DFT) wave function and is expected to be useful for doing local approximations of electron correlation. PMID:20941738
FAST TRACK COMMUNICATION: Central limit theorem and deformed exponentials
NASA Astrophysics Data System (ADS)
Vignat, C.; Plastino, A.
2007-11-01
The central limit theorem (CLT) can be ranked among the most important ones in probability theory and statistics and plays an essential role in several basic and applied disciplines, notably in statistical thermodynamics. We show that there exists a natural extension of the CLT from exponentials to so-called deformed exponentials (also denoted as q-Gaussians). Our proposal applies exactly in the usual conditions in which the classical CLT is used.
On the quenched central limit theorem for random dynamical systems
NASA Astrophysics Data System (ADS)
Abdelkader, Mohamed; Aimino, Romain
2016-06-01
We provide a necessary and sufficient condition under which the quenched central limit theorem without random centering holds for one-dimensional random systems that are uniformly expanding. This condition holds in particular when all the maps preserve a common measure. We also give a counter example which shows that this condition is not necessarily satisfied when the maps do not preserve a common measure.
Mixing rates and limit theorems for random intermittent maps
NASA Astrophysics Data System (ADS)
Bahsoun, Wael; Bose, Christopher
2016-04-01
We study random transformations built from intermittent maps on the unit interval that share a common neutral fixed point. We focus mainly on random selections of Pomeu-Manneville-type maps {{T}α} using the full parameter range 0<α <∞ , in general. We derive a number of results around a common theme that illustrates in detail how the constituent map that is fastest mixing (i.e. smallest α) combined with details of the randomizing process, determines the asymptotic properties of the random transformation. Our key result (theorem 1.1) establishes sharp estimates on the position of return time intervals for the quenched dynamics. The main applications of this estimate are to limit laws (in particular, CLT and stable laws, depending on the parameters chosen in the range 0<α <1 ) for the associated skew product; these are detailed in theorem 3.2. Since our estimates in theorem 1.1 also hold for 1≤slant α <∞ we study a second class of random transformations derived from piecewise affine Gaspard-Wang maps, prove existence of an infinite (σ-finite) invariant measure and study the corresponding correlation asymptotics. To the best of our knowledge, this latter kind of result is completely new in the setting of random transformations.
Central Limit Theorems for the Shrinking Target Problem
NASA Astrophysics Data System (ADS)
Haydn, Nicolai; Nicol, Matthew; Vaienti, Sandro; Zhang, Licheng
2013-12-01
Suppose B i := B( p, r i ) are nested balls of radius r i about a point p in a dynamical system ( T, X, μ). The question of whether T i x∈ B i infinitely often (i.o.) for μ a.e. x is often called the shrinking target problem. In many dynamical settings it has been shown that if diverges then there is a quantitative rate of entry and for μ a.e. x∈ X. This is a self-norming type of strong law of large numbers. We establish self-norming central limit theorems (CLT) of the form (in distribution) for a variety of hyperbolic and non-uniformly hyperbolic dynamical systems, the normalization constants are . Dynamical systems to which our results apply include smooth expanding maps of the interval, Rychlik type maps, Gibbs-Markov maps, rational maps and, in higher dimensions, piecewise expanding maps. For such central limit theorems the main difficulty is to prove that the non-stationary variance has a limit in probability.
Central Limit Theorem: New SOCR Applet and Demonstration Activity
Dinov, Ivo D.; Christou, Nicolas; Sanchez, Juana
2011-01-01
Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multifaceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem). PMID:21833159
Central Limit Theorem: New SOCR Applet and Demonstration Activity.
Dinov, Ivo D; Christou, Nicolas; Sanchez, Juana
2008-07-01
Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multifaceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem). PMID:21833159
Continuous-variable entanglement distillation and noncommutative central limit theorems
NASA Astrophysics Data System (ADS)
Campbell, Earl T.; Genoni, Marco G.; Eisert, Jens
2013-04-01
Entanglement distillation transforms weakly entangled noisy states into highly entangled states, a primitive to be used in quantum repeater schemes and other protocols designed for quantum communication and key distribution. In this work, we present a comprehensive framework for continuous-variable entanglement distillation schemes that convert noisy non-Gaussian states into Gaussian ones in many iterations of the protocol. Instances of these protocols include (a) the recursive-Gaussifier protocol, (b) the temporally reordered recursive-Gaussifier protocol, and (c) the pumping-Gaussifier protocol. The flexibility of these protocols gives rise to several beneficial trade-offs related to success probabilities or memory requirements, which can be adjusted to reflect experimental demands. Despite these protocols involving measurements, we relate the convergence in this protocol to new instances of noncommutative central limit theorems, in a formalism that we lay out in great detail. Implications of the findings for quantum repeater schemes are discussed.
Planetary Accretion, Oxygen Isotopes and the Central Limit Theorem
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Hill, Hugh G. M.; Vondrak, Richard R. (Technical Monitor)
2001-01-01
The accumulation of presolar dust into increasingly larger aggregates (CAIs and Chondrules, Asteroids, Planets) should result in a very drastic reduction in the numerical spread in oxygen isotopic composition between bodies of similar size, in accord with the Central Limit Theorem. Observed variations in oxygen isotopic composition are many orders of magnitude larger than would be predicted by a simple, random accumulation model that begins in a well-mixed nebula - no matter which size-scale objects are used as the beginning or end points of the calculation. This discrepancy implies either that some as yet unspecified process acted on the solids in the Solar Nebula to increase the spread in oxygen isotopic composition during each and every stage of accumulation or that the nebula was heterogeneous and maintained this heterogeneity throughout most of nebular history. Large-scale nebular heterogeneity would have significant consequences for many areas of cosmochemistry, including the application of some well-known isotopic systems to the dating of nebular events or the prediction of bulk compositions of planetary bodies on the basis of a uniform cosmic abundance.
Finiteness theorems for limit cycles: a digest of the revised proof
NASA Astrophysics Data System (ADS)
Ilyashenko, Yu S.
2016-02-01
This is the first paper in a series of two presenting a digest of the proof of the finiteness theorem for limit cycles of a planar polynomial vector field. At the same time we sketch the proof of the following two theorems: an analogous result for analytic vector fields, and a description of the asymptotics of the monodromy transformation for polycycles of such fields.
The Free Will Theorem and Limits on Realistic Theories
NASA Astrophysics Data System (ADS)
Godfrey, Christopher
2010-03-01
The rGRWf model (Tumulka 2006) is a proposed solution of the measurement problem of quantum mechanics involving a stochastic nonlinear wave equation embedded in a relativistic framework. Its primary feature is a mechanism that suppresses superpositions of macroscopically different states for macroscopic systems. However, the Free Will Theorem (FWT) proposed by Conway and Kochen (Conway and Kochen 2007, 2009) purports to prove that no theory that is both non-deterministic and relativistic can reproduce all possible measurement results on a system of two entangled spin-one particles. Here we examine both the rGRWf model and the FWT. It is demonstrated that underlying assumptions in the postulates of the FWT rule out certain classes of realistic physical theories. These underlying assumptions and the characteristics of physical theories permitted by the FWT axioms are discussed.
The Implicit Function Theorem and Non-Existence of Limit of Functions of Several Variables
ERIC Educational Resources Information Center
dos Santos, A. L. C.; da Silva, P. N.
2008-01-01
We use the Implicit Function Theorem to establish a result of non-existence of limit to a certain class of functions of several variables. We consider functions given by quotients such that both the numerator and denominator functions are null at the limit point. We show that the non-existence of the limit of such function is related with the…
Central Limit Theorems for Linear Statistics of Heavy Tailed Random Matrices
NASA Astrophysics Data System (ADS)
Benaych-Georges, Florent; Guionnet, Alice; Male, Camille
2014-07-01
We show central limit theorems (CLT) for the linear statistics of symmetric matrices with independent heavy tailed entries, including entries in the domain of attraction of α-stable laws and entries with moments exploding with the dimension, as in the adjacency matrices of Erdös-Rényi graphs. For the second model, we also prove a central limit theorem of the moments of its empirical eigenvalues distribution. The limit laws are Gaussian, but unlike the case of standard Wigner matrices, the normalization is the one of the classical CLT for independent random variables.
Central Limit Theorems and Uniform Laws of Large Numbers for Arrays of Random Fields
Jenish, Nazgul; Prucha, Ingmar R.
2009-01-01
Over the last decades, spatial-interaction models have been increasingly used in economics. However, the development of a sufficiently general asymptotic theory for nonlinear spatial models has been hampered by a lack of relevant central limit theorems (CLTs), uniform laws of large numbers (ULLNs) and pointwise laws of large numbers (LLNs). These limit theorems form the essential building blocks towards developing the asymptotic theory of M-estimators, including maximum likelihood and generalized method of moments estimators. The paper establishes a CLT, ULLN, and LLN for spatial processes or random fields that should be applicable to a broad range of data processes. PMID:20161289
The Power of Doing: A Learning Exercise That Brings the Central Limit Theorem to Life
ERIC Educational Resources Information Center
Price, Barbara A.; Zhang, Xiaolong
2007-01-01
This article demonstrates an active learning technique for teaching the Central Limit Theorem (CLT) in an introductory undergraduate business statistics class. Groups of students carry out one of two experiments in the lab, tossing a die in sets of 5 rolls or tossing a die in sets of 10 rolls. They are asked to calculate the sample average of each…
NASA Astrophysics Data System (ADS)
Biskup, M.; Salvi, M.; Wolff, T.
2014-06-01
Given a resistor network on with nearest-neighbor conductances, the effective conductance in a finite set with a given boundary condition is the minimum of the Dirichlet energy over functions with the prescribed boundary values. For shift-ergodic conductances, linear (Dirichlet) boundary conditions and square boxes, the effective conductance scaled by the volume of the box converges to a deterministic limit as the box-size tends to infinity. Here we prove that, for i.i.d. conductances with a small ellipticity contrast, also a (non-degenerate) central limit theorem holds. The proof is based on the corrector method and the Martingale Central Limit Theorem; a key integrability condition is furnished by the Meyers estimate. More general domains, boundary conditions and ellipticity contrasts will be addressed in a subsequent paper.
The random-motion theorem in a local cosmology with dark energy
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.; Teerikorpi, P.; Valtonen, M. Yu.
2010-03-01
It is shown that the random-motion theorem in cosmology proven in the early 1960s can be generalized to take into account the presence of a uniform dark-energy background. The role of the dark energy is substantial: its repulsive force exceeds the gravitational force due to darkmatter and baryons, both on the scale of the Universe as a whole and on local scales of about 1 Mpc. The generalized random-motion theorem has the form of a differential equation relating the kinetic energy of the random motion and the potential energy of the particles due to their own gravitational field and the repulsive dark-energy field. One consequence of the generalized theorem is a virial relation containing the potential energy in the repulsive field.
Zipf's law is not a consequence of the central limit theorem
NASA Astrophysics Data System (ADS)
Troll, G.; Beim Graben, P.
1998-02-01
It has been observed that the rank statistics of string frequencies of many symbolic systems (e.g., word frequencies of natural languages) follows Zipf's law in good approximation. We show that, contrary to claims in the literature, Zipf's law cannot be realized by the central limit theorem(s). The observation that a log-normal distribution of string frequencies yields an approximately Zipf-like rank statistics is actually misleading. Indeed, Zipf's law for the rank statistics is strictly equivalent to a power law distribution of frequencies. There are two natural ways to perform the infinite size limit for the vocabulary. The first one is the method of choice in the literature; it makes the upper word length bound tend to infinity and leads in the case of a multistate Bernoulli process via a central limit theorem to a log-normal frequency distribution. An alternative and for text samples actually better realizable way is to make the lower frequency bound tend to zero. This limit procedure leads to a power law distribution and hence to Zipf's law-at least for Bernoulli processes and to a very good approximation for natural languages where it passes the χ2 test. For the Bernoulli case we will give a heuristic proof.
Limit theorems in the imitative monomer-dimer mean-field model via Stein's method
NASA Astrophysics Data System (ADS)
Chen, Wei-Kuo
2016-08-01
We consider the imitative monomer-dimer model on the complete graph introduced in the work of Alberici et al. [J. Math. Phys. 55, 063301-1-063301-27 (2014)]. It was shown that this model is described by the monomer density and has a phase transition along certain coexistence curve, where the monomer and dimer phases coexist. More recently, it was understood [D. Alberici et al., Commun. Math. Phys. (published online, 2016)] that the monomer density exhibits the central limit theorem away from the coexistence curve and enjoys a non-normal limit theorem at criticality with normalized exponent 3/4. By reverting the model to a weighted Curie-Weiss model with hard core interaction, we establish the complete description of the fluctuation properties of the monomer density on the full parameter space via Stein's method of exchangeable pairs. Our approach recovers what were established in the work of Alberici et al. [Commun. Math. Phys. (published online, 2016)] and furthermore allows to obtain the conditional central limit theorems along the coexistence curve. In all these results, the Berry-Esseen inequalities for the Kolmogorov-Smirnov distance are given.
Day, Troy
2012-04-01
The process of evolutionary diversification unfolds in a vast genotypic space of potential outcomes. During the past century, there have been remarkable advances in the development of theory for this diversification, and the theory's success rests, in part, on the scope of its applicability. A great deal of this theory focuses on a relatively small subset of the space of potential genotypes, chosen largely based on historical or contemporary patterns, and then predicts the evolutionary dynamics within this pre-defined set. To what extent can such an approach be pushed to a broader perspective that accounts for the potential open-endedness of evolutionary diversification? There have been a number of significant theoretical developments along these lines but the question of how far such theory can be pushed has not been addressed. Here a theorem is proven demonstrating that, because of the digital nature of inheritance, there are inherent limits on the kinds of questions that can be answered using such an approach. In particular, even in extremely simple evolutionary systems, a complete theory accounting for the potential open-endedness of evolution is unattainable unless evolution is progressive. The theorem is closely related to Gödel's incompleteness theorem, and to the halting problem from computability theory. PMID:21849390
Day, Troy
2012-01-01
The process of evolutionary diversification unfolds in a vast genotypic space of potential outcomes. During the past century, there have been remarkable advances in the development of theory for this diversification, and the theory's success rests, in part, on the scope of its applicability. A great deal of this theory focuses on a relatively small subset of the space of potential genotypes, chosen largely based on historical or contemporary patterns, and then predicts the evolutionary dynamics within this pre-defined set. To what extent can such an approach be pushed to a broader perspective that accounts for the potential open-endedness of evolutionary diversification? There have been a number of significant theoretical developments along these lines but the question of how far such theory can be pushed has not been addressed. Here a theorem is proven demonstrating that, because of the digital nature of inheritance, there are inherent limits on the kinds of questions that can be answered using such an approach. In particular, even in extremely simple evolutionary systems, a complete theory accounting for the potential open-endedness of evolution is unattainable unless evolution is progressive. The theorem is closely related to Gödel's incompleteness theorem, and to the halting problem from computability theory. PMID:21849390
Non-normalizable densities in strong anomalous diffusion: beyond the central limit theorem.
Rebenshtok, Adi; Denisov, Sergey; Hänggi, Peter; Barkai, Eli
2014-03-21
Strong anomalous diffusion, where ⟨|x(t)|(q)⟩ ∼ tqν(q) with a nonlinear spectrum ν(q) ≠ const, is wide spread and has been found in various nonlinear dynamical systems and experiments on active transport in living cells. Using a stochastic approach we show how this phenomenon is related to infinite covariant densities; i.e., the asymptotic states of these systems are described by non-normalizable distribution functions. Our work shows that the concept of infinite covariant densities plays an important role in the statistical description of open systems exhibiting multifractal anomalous diffusion, as it is complementary to the central limit theorem. PMID:24702341
Thermodynamics of trajectories and local fluctuation theorems for harmonic quantum networks
NASA Astrophysics Data System (ADS)
Pigeon, Simon; Fusco, Lorenzo; Xuereb, André; De Chiara, Gabriele; Paternostro, Mauro
2016-01-01
We present a general method to undertake a thorough analysis of the thermodynamics of the quantum jump trajectories followed by an arbitrary quantum harmonic network undergoing linear and bilinear dynamics. The approach is based on the phase-space representation of the state of a harmonic network. The large deviation function associated with this system encodes the full counting statistics of exchange and also allows one to deduce fluctuation theorems (FTs) obeyed by the dynamics. We illustrate the method showing the validity of a local FT about the exchange of excitations between a restricted part of the environment (i.e., a local bath) and a harmonic network coupled with different schemes.
Influence of global correlations on central limit theorems and entropic extensivity
NASA Astrophysics Data System (ADS)
Marsh, John A.; Fuentes, Miguel A.; Moyano, Luis G.; Tsallis, Constantino
2006-12-01
We consider probabilistic models of N identical distinguishable, binary random variables. If these variables are strictly or asymptotically independent, then, for N→∞, (i) the attractor in distribution space is, according to the standard central limit theorem, a Gaussian, and (ii) the Boltzmann-Gibbs-Shannon entropy S≡-∑i=1Wpln pi (where W=2 N) is extensive, meaning that S BGS( N)∼ N. If these variables have any nonvanishing global (i.e., not asymptotically independent) correlations, then the attractor deviates from the Gaussian. The entropy appears to be more robust, in the sense that, in some cases, SBGS remains extensive even in the presence of strong global correlations. In other cases, however, even weak global correlations make the entropy deviate from the normal behavior. More precisely, in such cases the entropic form Sq≡{1}/{q-1} (1-∑i=1Wpiq) (with S 1tbnd6 S BGS) can become extensive for some value of q≠1. This scenario is illustrated with several new as well as previously described models. The discussion illuminates recent progress into q-describable nonextensive probabilistic systems, and the conjectured q-Central Limit Theorem ( q-CLT) which posses a q-Gaussian attractor.
Sanov and central limit theorems for output statistics of quantum Markov chains
Horssen, Merlijn van; Guţă, Mădălin
2015-02-15
In this paper, we consider the statistics of repeated measurements on the output of a quantum Markov chain. We establish a large deviations result analogous to Sanov’s theorem for the multi-site empirical measure associated to finite sequences of consecutive outcomes of a classical stochastic process. Our result relies on the construction of an extended quantum transition operator (which keeps track of previous outcomes) in terms of which we compute moment generating functions, and whose spectral radius is related to the large deviations rate function. As a corollary to this, we obtain a central limit theorem for the empirical measure. Such higher level statistics may be used to uncover critical behaviour such as dynamical phase transitions, which are not captured by lower level statistics such as the sample mean. As a step in this direction, we give an example of a finite system whose level-1 (empirical mean) rate function is independent of a model parameter while the level-2 (empirical measure) rate is not.
Theorems and Application of Local Activity of CNN with Five State Variables and One Port
Xiong, Gang; Dong, Xisong; Xie, Li; Yang, Thomas
2012-01-01
Coupled nonlinear dynamical systems have been widely studied recently. However, the dynamical properties of these systems are difficult to deal with. The local activity of cellular neural network (CNN) has provided a powerful tool for studying the emergence of complex patterns in a homogeneous lattice, which is composed of coupled cells. In this paper, the analytical criteria for the local activity in reaction-diffusion CNN with five state variables and one port are presented, which consists of four theorems, including a serial of inequalities involving CNN parameters. These theorems can be used for calculating the bifurcation diagram to determine or analyze the emergence of complex dynamic patterns, such as chaos. As a case study, a reaction-diffusion CNN of hepatitis B Virus (HBV) mutation-selection model is analyzed and simulated, the bifurcation diagram is calculated. Using the diagram, numerical simulations of this CNN model provide reasonable explanations of complex mutant phenomena during therapy. Therefore, it is demonstrated that the local activity of CNN provides a practical tool for the complex dynamics study of some coupled nonlinear systems. PMID:22611440
The Star Forming Main Sequence and its Scatter as Conequences of the Central Limit Theorem
NASA Astrophysics Data System (ADS)
Kelson, Daniel
2015-01-01
Star formation rates of disk galaxies strongly correlate with stellar mass, with a small dispersion in specific star formation rate at fixed mass. With such small scattter this main sequence of star formation has been interpreted as deterministic and fundamental. Here it is demonstrated that it is a simple consequence off he central limit theorem. Treating the star formation histories of galaxies as integrable, non-differentiable functions, where stochastic changes in star formation rate in a galaxy's history are not fully independent of each other, we derive the median specific star formation rate for the flat part of the main sequence from 0
Central limit theorem for a class of globally correlated random variables
NASA Astrophysics Data System (ADS)
Budini, Adrián A.
2016-06-01
The standard central limit theorem with a Gaussian attractor for the sum of independent random variables may lose its validity in the presence of strong correlations between the added random contributions. Here, we study this problem for similar interchangeable globally correlated random variables. Under these conditions, a hierarchical set of equations is derived for the conditional transition probabilities. This result allows us to define different classes of memory mechanisms that depend on a symmetric way on all involved variables. Depending on the correlation mechanisms and statistics of the single variables, the corresponding sums are characterized by distinct probability densities. For a class of urn models it is also possible to characterize their domain of attraction, which, as in the standard case, is parametrized by the probability density of each random variable. Symmetric and asymmetric q -Gaussian attractors (q <1 ) arise in a particular two-state case of these urn models.
A central-limit theorem for a single-false match rate
NASA Astrophysics Data System (ADS)
Dietz, Zachariah; Schuckers, Michael E.
2010-04-01
In this paper, we present a central limit theorem (CLT) for the estimation of a false match rate for a single matching system. The false match rate is often a significant factor in an evaluation of such a matching system. To achieve the main result here we utilize the covariance/correlation structure for matching proposed by Schuckers. Along with the main result we present an illustration of the methodology here on biometric authentication data from Ross and Jain. This illustration is from resampling match decisions on three different biometric modalities: hand geometry, fingerprint and facial recognition and shows that as the number of matching pairs grows the sampling distribution for an FMR approaches a Gaussian distribution. These results suggest that statistical inference for a FMR based upon a Gaussian distribution is appropriate.
Bi-centenary of successes of Fourier theorem: its power and limitations in optical system designs
NASA Astrophysics Data System (ADS)
Roychoudhuri, Chandrasekhar
2007-09-01
We celebrate the two hundred years of successful use of the Fourier theorem in optics. However, there is a great enigma associated with the Fourier transform integral. It is one of the most pervasively productive and useful tool of physics and optics because its foundation is based on the superposition of harmonic functions and yet we have never declared it as a principle of physics for valid reasons. And, yet there are a good number of situations where we pretend it to be equivalent to the superposition principle of physics, creating epistemological problems of enormous magnitude. The purpose of the paper is to elucidate the problems while underscoring the successes and the elegance of the Fourier theorem, which are not explicitly discussed in the literature. We will make our point by taking six major engineering fields of optics and show in each case why it works and under what restricted conditions by bringing in the relevant physics principles. The fields are (i) optical signal processing, (ii) Fourier transform spectrometry, (iii) classical spectrometry of pulsed light, (iv) coherence theory, (v) laser mode locking and (vi) pulse broadening. We underscore that mathematical Fourier frequencies, not being physical frequencies, cannot generate real physical effects on our detectors. Appreciation of this fundamental issue will open up ways to be innovative in many new optical instrument designs. We underscore the importance of always validating our design platforms based on valid physics principles (actual processes undergoing in nature) captured by an appropriate hypothesis based on diverse observations. This paper is a comprehensive view of the power and limitations of Fourier Transform by summarizing a series of SPIE conference papers presented during 2003-2007.
ERIC Educational Resources Information Center
Yu, Chong Ho; And Others
Central limit theorem (CLT) is considered an important topic in statistics, because it serves as the basis for subsequent learning in other crucial concepts such as hypothesis testing and power analysis. There is an increasing popularity in using dynamic computer software for illustrating CLT. Graphical displays do not necessarily clear up…
Assessment of the statistics of the Strehl ratio: predictions of central limit theorem analysis
NASA Astrophysics Data System (ADS)
Tyler, Glenn A.
2006-11-01
For a beam propagating through turbulence, the statistics of the Strehl ratio are determined by recognizing that the real and imaginary parts of the on-axis far-field pattern can be represented as the sum of many contributions from the aperture. With this in mind, the central limit theorem (CLT) can be used to develop the statistics of the real and imaginary parts of the optical field, which through the appropriate mathematical manipulations as described here can then be used to develop the probability distribution of the far-field irradiance. The results obtained in this way (which we call the CLT theory or analysis) provide an analytic expression that agrees with the results of detailed wave-optics simulations. This provides an approach by which the statistics of the Strehl ratio can be rapidly determined. A key feature of this work is that the analytic results depend on the values of a few relevant turbulence parameters that include r0,fG, and σ2l. Therefore, a measurement of these parameters at various sites of interest allows us to rapidly assess the detailed nature of the statistical fluctuations of the far-field irradiance that will be experienced at these locations.
ERIC Educational Resources Information Center
Moen, David H.; Powell, John E.
2008-01-01
Using Microsoft® Excel, several interactive, computerized learning modules are developed to illustrate the Central Limit Theorem's appropriateness for comparing the difference between the means of any two populations. These modules are used in the classroom to enhance the comprehension of this theorem as well as the concepts that provide the…
THE LOCAL LIMIT OF GLOBAL GYROKINETIC SIMULATIONS
CANDY J; WALTZ RE; DORLAND W
2003-10-01
OAK-B135 Global gyrokinetic simulations of turbulence include physical effects that are not retained in local flux-tube simulations. nevertheless, in the limit of sufficiently small {rho}* (gyroradius compared to system size) it is expected that a local simulation should agree with a global one (at the local simulation radius) since all effects that are dropped in the local simulations are expected to vanish as {rho}* {yields} 0. In this note, global simulations of a well-established test case are indeed shown to recover the flux-tube limit at each radius.
NASA Astrophysics Data System (ADS)
Salgado-García, R.; Maldonado, Cesar
2013-12-01
We study the diffusion of an ensemble of overdamped particles sliding over a tilted random potential (produced by the interaction of a particle with a random polymer) with long-range correlations. We found that the diffusion properties of such a system are closely related to the correlation function of the corresponding potential. We model the substrate as a symbolic trajectory of a shift space which enables us to obtain a general formula for the diffusion coefficient when normal diffusion occurs. The total time that the particle takes to travel through n monomers can be seen as an ergodic sum to which we can apply the central limit theorem. The latter can be implemented if the correlations decay fast enough in order for the central limit theorem to be valid. On the other hand, we presume that when the central limit theorem breaks down the system give rise to anomalous diffusion. We give two examples exhibiting a transition from normal to anomalous diffusion due to this mechanism. We also give analytical expressions for the diffusion exponents in both cases by assuming convergence to a stable law. Finally we test our predictions by means of numerical simulations.
Salgado-García, R; Maldonado, Cesar
2013-12-01
We study the diffusion of an ensemble of overdamped particles sliding over a tilted random potential (produced by the interaction of a particle with a random polymer) with long-range correlations. We found that the diffusion properties of such a system are closely related to the correlation function of the corresponding potential. We model the substrate as a symbolic trajectory of a shift space which enables us to obtain a general formula for the diffusion coefficient when normal diffusion occurs. The total time that the particle takes to travel through n monomers can be seen as an ergodic sum to which we can apply the central limit theorem. The latter can be implemented if the correlations decay fast enough in order for the central limit theorem to be valid. On the other hand, we presume that when the central limit theorem breaks down the system give rise to anomalous diffusion. We give two examples exhibiting a transition from normal to anomalous diffusion due to this mechanism. We also give analytical expressions for the diffusion exponents in both cases by assuming convergence to a stable law. Finally we test our predictions by means of numerical simulations. PMID:24483421
The Star-Forming Main Sequence as a Natural Consequence of the Central Limit Theorem
NASA Astrophysics Data System (ADS)
Kelson, Daniel David
2015-08-01
Star-formation rates (SFR) of disk galaxies correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and fundamental. Here I demonstrate that such a correlation arises naturally from the central limit theorem. The derivation begins by approximating in situ stellar mass growth as a stochastic process, much like a random walk, where the expectation of SFR at any time is equal to the SFR at the previous time. The SFRs of real galaxies, however, do not experience wholly random stochastic changes over time, but change in a highly correlated fashion due to the long reach of gravity and the correlation of structure in the universe. We therefore generalize the results for star-formation as a stochastic process that has random correlations over random and potentially infinite timescales. For unbiased samples of (disk) galaxies we derive expectation values for SSFR and its scatter, such that
Occupancy of phase space, extensivity of Sq, and q-generalized central limit theorem
NASA Astrophysics Data System (ADS)
Tsallis, Constantino
2006-06-01
Increasing the number N of elements of a system typically makes the entropy to increase. The question arises on what particular entropic form we have in mind and how it increases with N. Thermodynamically speaking it makes sense to choose an entropy which increases linearly with N for large N, i.e., which is extensive. If the N elements are probabilistically independent (no interactions) or quasi-independent (e.g., short-range interacting), it is known that the entropy which is extensive is that of Boltzmann-Gibbs-Shannon, SBG≡-k∑i=1Wpilnpi. If they are, however, globally correlated (e.g., through long-range interactions), the answer depends on the particular nature of the correlations. There is a large class of correlations (in one way or another related to scale-invariance) for which an appropriate entropy is that on which nonextensive statistical mechanics is based, i.e., Sq≡k(1-∑i=1Wpiq)/q-1 ( S1=SBG), where q is determined by the specific correlations. We briefly review and illustrate these ideas through simple examples of occupation of phase space. A very similar scenario emerges with regard to the central limit theorem (CLT). If the variables that are being summed are independent (or quasi-independent, in the sense that they gradually become independent if N→∞), two basic possibilities exist: if the variance of the random variables that are being composed is finite, the N→∞ attractor in the space of distributions is a Gaussian, whereas if it diverges, it is a Lévy distribution. If the variables that are being summed are however globally correlated, there is no reason to expect the usual CLTs to hold. The N→∞ attractor is expected to depend on the nature of the correlations. That class of correlations (or part of it) that makes Sq to be extensive for q≠1 is expected to have a qe-Gaussian as its N→∞ attractor, where qe depends on q [ qe(q) such that qe(1)=1], and where qe-Gaussians are proportional to [1-(1-qe)β x2] ( β>0; qe<3
NASA Astrophysics Data System (ADS)
Gheorghe, Munteanu Bogdan; Alexei, Leahu; Sergiu, Cataranciuc
2013-09-01
We prove the limit theorem for life time distribution connected with reliability systems when their life time is a Pascal Convolution of independent and identically distributed random variables. We show that, in some conditions, such distributions may be approximated by means of Erlang distributions. As a consequnce, survival functions for such systems may be, respectively, approximated by Erlang survival functions. By using Monte Carlo method we experimantally confirm the theoretical results of our theorem.
The flat Grothendieck-Riemann-Roch theorem without adiabatic techniques
NASA Astrophysics Data System (ADS)
Ho, Man-Ho
2016-09-01
In this paper we give a simplified proof of the flat Grothendieck-Riemann-Roch theorem. The proof makes use of the local family index theorem and basic computations of the Chern-Simons form. In particular, it does not involve any adiabatic limit computation of the reduced eta-invariant.
Resolution limits of ultrafast ultrasound localization microscopy.
Desailly, Yann; Pierre, Juliette; Couture, Olivier; Tanter, Mickael
2015-11-21
As in other imaging methods based on waves, the resolution of ultrasound imaging is limited by the wavelength. However, the diffraction-limit can be overcome by super-localizing single events from isolated sources. In recent years, we developed plane-wave ultrasound allowing frame rates up to 20,000 fps. Ultrafast processes such as rapid movement or disruption of ultrasound contrast agents (UCA) can thus be monitored, providing us with distinct punctual sources that could be localized beyond the diffraction limit. We previously showed experimentally that resolutions beyond λ/10 can be reached in ultrafast ultrasound localization microscopy (uULM) using a 128 transducer matrix in reception. Higher resolutions are theoretically achievable and the aim of this study is to predict the maximum resolution in uULM with respect to acquisition parameters (frequency, transducer geometry, sampling electronics). The accuracy of uULM is the error on the localization of a bubble, considered a point-source in a homogeneous medium. The proposed model consists in two steps: determining the timing accuracy of the microbubble echo in radiofrequency data, then transferring this time accuracy into spatial accuracy. The simplified model predicts a maximum resolution of 40 μm for a 1.75 MHz transducer matrix composed of two rows of 64 elements. Experimental confirmation of the model was performed by flowing microbubbles within a 60 μm microfluidic channel and localizing their blinking under ultrafast imaging (500 Hz frame rate). The experimental resolution, determined as the standard deviation in the positioning of the microbubbles, was predicted within 6 μm (13%) of the theoretical values and followed the analytical relationship with respect to the number of elements and depth. Understanding the underlying physical principles determining the resolution of superlocalization will allow the optimization of the imaging setup for each organ. Ultimately, accuracies better than the size of
Central limit theorem for the solution to the heat equation with moving time
NASA Astrophysics Data System (ADS)
Liu, Junfeng; Tudor, Ciprian A.
2016-03-01
We consider the solution to the stochastic heat equation driven by the time-space white noise and study the asymptotic behavior of its spatial quadratic variations with “moving time”, meaning that the time variable is not fixed and its values are allowed to be very big or very small. We investigate the limit distribution of these variations via Malliavin calculus.
ERIC Educational Resources Information Center
See, Lai-Chu; Huang, Yu-Hsun; Chang, Yi-Hu; Chiu, Yeo-Ju; Chen, Yi-Fen; Napper, Vicki S.
2010-01-01
This study examines the timing using computer-enriched instruction (CEI), before or after a traditional lecture to determine cross-over effect, period effect, and learning effect arising from sequencing of instruction. A 2 x 2 cross-over design was used with CEI to teach central limit theorem (CLT). Two sequences of graduate students in nursing…
Generalised Central Limit Theorems for Growth Rate Distribution of Complex Systems
NASA Astrophysics Data System (ADS)
Takayasu, Misako; Watanabe, Hayafumi; Takayasu, Hideki
2014-04-01
We introduce a solvable model of randomly growing systems consisting of many independent subunits. Scaling relations and growth rate distributions in the limit of infinite subunits are analysed theoretically. Various types of scaling properties and distributions reported for growth rates of complex systems in a variety of fields can be derived from this basic physical model. Statistical data of growth rates for about 1 million business firms are analysed as a real-world example of randomly growing systems. Not only are the scaling relations consistent with the theoretical solution, but the entire functional form of the growth rate distribution is fitted with a theoretical distribution that has a power-law tail.
Chen, Jing-Ling; Su, Hong-Yi; Xu, Zhen-Peng; Wu, Yu-Chun; Wu, Chunfeng; Ye, Xiang-Jun; Żukowski, Marek; Kwek, L C
2015-01-01
We demonstrate here that for a given mixed multi-qubit state if there are at least two observers for whom mutual Einstein-Podolsky-Rosen steering is possible, i.e. each observer is able to steer the other qubits into two different pure states by spontaneous collapses due to von Neumann type measurements on his/her qubit, then nonexistence of local realistic models is fully equivalent to quantum entanglement (this is not so without this condition). This result leads to an enhanced version of Gisin's theorem (originally: all pure entangled states violate local realism). Local realism is violated by all mixed states with the above steering property. The new class of states allows one e.g. to perform three party secret sharing with just pairs of entangled qubits, instead of three qubit entanglements (which are currently available with low fidelity). This significantly increases the feasibility of having high performance versions of such protocols. Finally, we discuss some possible applications. PMID:26108704
NASA Astrophysics Data System (ADS)
Lu, Deyu
The adiabatic-connection fluctuation-dissipation theorem (ACFDT) is a formal theoretical framework to treat van der Waals (vdW) dispersion interactions. Under the random phase approximation (RPA), it yields the correct asymptotic behavior at large distances, but the short-range correlation is overestimated. It has been demonstrated that non-local exchange-correlation kernels can systematically correct the errors of RPA for homogenous electron gas. However, direct extension of non-local kernels derived from the electron gas model to inhomogeneous systems raises several issues. In addition to the high computational expense, the non-local kernels worsen the rare gas dimer binding curve as compared to RPA. In this study, we propose a quasi-local approximation of the non-local kernel in order to address these issues. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.
K-means-type algorithms: a generalized convergence theorem and characterization of local optimality.
Selim, S Z; Ismail, M A
1984-01-01
The K-means algorithm is a commonly used technique in cluster analysis. In this paper, several questions about the algorithm are addressed. The clustering problem is first cast as a nonconvex mathematical program. Then, a rigorous proof of the finite convergence of the K-means-type algorithm is given for any metric. It is shown that under certain conditions the algorithm may fail to converge to a local minimum, and that it converges under differentiability conditions to a Kuhn-Tucker point. Finally, a method for obtaining a local-minimum solution is given. PMID:21869168
5 CFR 531.606 - Maximum limits on locality rates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the pay limitations established in 5 CFR 304.105. (d) A portion of a locality payment that is not... rates. (a) Except as provided by paragraph (b) of this section, a locality rate may not exceed the rate of basic pay payable for level IV of the Executive Schedule. (b)(1) A locality rate for an...
NASA Astrophysics Data System (ADS)
Pluchino, Alessandro; Rapisarda, Andrea; Tsallis, Constantino
2008-05-01
We give a closer look at the Central Limit Theorem (CLT) behavior in quasi-stationary states of the Hamiltonian Mean Field model, a paradigmatic one for long-range-interacting classical many-body systems. We present new calculations which show that, following their time evolution, we can observe and classify three kinds of long-standing quasi-stationary states (QSS) with different correlations. The frequency of occurrence of each class depends on the size of the system. The different microscopic nature of the QSS leads to different dynamical correlations and therefore to different results for the observed CLT behavior.
Kaveh, Kamran; Komarova, Natalia L.; Kohandel, Mohammad
2015-01-01
Evolutionary models on graphs, as an extension of the Moran process, have two major implementations: birth–death (BD) models (or the invasion process) and death–birth (DB) models (or voter models). The isothermal theorem states that the fixation probability of mutants in a large group of graph structures (known as isothermal graphs, which include regular graphs) coincides with that for the mixed population. This result has been proved by Lieberman et al. (2005 Nature 433, 312–316. (doi:10.1038/nature03204)) in the case of BD processes, where mutants differ from the wild-types by their birth rate (and not by their death rate). In this paper, we discuss to what extent the isothermal theorem can be formulated for DB processes, proving that it only holds for mutants that differ from the wild-type by their death rate (and not by their birth rate). For more general BD and DB processes with arbitrary birth and death rates of mutants, we show that the fixation probabilities of mutants are different from those obtained in the mass-action populations. We focus on spatial lattices and show that the difference between BD and DB processes on one- and two-dimensional lattices is non-small even for large population sizes. We support these results with a generating function approach that can be generalized to arbitrary graph structures. Finally, we discuss several biological applications of the results. PMID:26064637
NASA Astrophysics Data System (ADS)
Guney, Veli Ugur
In this work we look for novel classes of Bell's inequalities and methods to produce them. We also find their quantum violations including, if possible, the maximum one. The Jordan bases method that we explain in Chapter 2 is about using a pair of certain type of orthonormal bases whose spans are subspaces related to measurement outcomes of incompatible quantities on the same physical system. Jordan vectors are the briefest way of expressing the relative orientation of any two subspaces. This feature helps us to reduce the dimensionality of the parameter space on which we do searches for optimization. The work is published in [24]. In Chapter 3, we attempt to find a connection between group theory and Bell's theorem. We devise a way of generating terms of a Bell's inequality that are related to elements of an algebraic group. The same group generates both the terms of the Bell's inequality and the observables that are used to calculate the quantum value of the Bell expression. Our results are published in [25][26]. In brief, Bell's theorem is the main tool of a research program that was started by Einstein, Podolsky, Rosen [19] and Bohr [8] in the early days of quantum mechanics in their discussions about the core nature of physical systems. These debates were about a novel type of physical states called superposition states, which are introduced by quantum mechanics and manifested in the apparent inevitable randomness in measurement outcomes of identically prepared systems. Bell's huge contribution was to find a means of quantifying the problem and hence of opening the way to experimental verification by rephrasing the questions as limits on certain combinations of correlations between measurement results of spatially separate systems [7]. Thanks to Bell, the fundamental questions related to the nature of quantum mechanical systems became quantifiable [6]. According to Bell's theorem, some correlations between quantum entangled systems that involve incompatible
Localization and limit laws of a three-state alternate quantum walk on a two-dimensional lattice
NASA Astrophysics Data System (ADS)
Machida, Takuya; Chandrashekar, C. M.
2015-12-01
A two-dimensional discrete-time quantum walk (DTQW) can be realized by alternating a two-state DTQW in one spatial dimension followed by an evolution in the other dimension. This was shown to reproduce a probability distribution for a certain configuration of a four-state DTQW on a two-dimensional lattice. In this work we present a three-state alternate DTQW with a parametrized coin-flip operator and show that it can produce localization that is also observed for a certain other configuration of the four-state DTQW and nonreproducible using the two-state alternate DTQW. We will present two limit theorems for the three-state alternate DTQW. One of the limit theorems describes a long-time limit of a return probability, and the other presents a convergence in distribution for the position of the walker on a rescaled space by time. We find that the spatial entanglement generated by the three-state alternate DTQW is higher than that by the four-state DTQW. Using all our results, we outline the relevance of these walks in three-level physical systems.
A new upper limit to the local population II density.
NASA Technical Reports Server (NTRS)
Weistrop, D.
1972-01-01
An upper limit to the local population II density is derived, in terms of the mass-luminosity ratio, on the basis of U, B, and V photometric observations of several thousand stars with V magnitudes between 12 and 18 in a region near the North Galactic Pole. The photographic and photoelectric photometry and the reduction procedures are discussed. Models of the density distribution and luminosity function of the population II stars are used to predict their distribution in color and apparent magnitude. The derived local density of population II is found to be significantly lower than previous estimates. Possible causes for this discrepancy are considered.
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.; Lumley, J. L.; Abid, R.
1994-01-01
A nonlinear representation for the rapid-pressure correlation appearing in the Reynolds stress equations, consistent with the Taylor-Proudman theorem, is presented. The representation insures that the modeled second-order equations are frame-invariant with respect to rotation when the flow is two-dimensional in planes perpendicular to the axis of rotation. The representation satisfies realizability in a new way: a special ansatz is used to obtain analytically, the values of coefficients valid away from the realizability limit: the model coefficients are functions of the state of the turbulence that are valid for all states of the mechanical turbulence attaining their constant limiting values only when the limit state is achieved. Utilization of all the mathematical constraints are not enough to specify all the coefficients in the model. The unspecified coefficients appear as free parameters which are used to insure that the representation is asymptotically consistent with the known equilibrium states of a homogeneous sheared turbulence. This is done by insuring that the modeled evolution equations have the same fixed points as those obtained from computer and laboratory experiments for the homogeneous shear. Results of computations of the homogeneous shear, with and without rotation, and with stabilizing and destabilizing curvature, are shown. Results are consistently better, in a wide class of flows which the model not been calibrated, than those obtained with other nonlinear models.
NASA Astrophysics Data System (ADS)
Seyed-Aghazadeh, Banafsheh; Modarres-Sadeghi, Yahya
2015-11-01
Vortex-induced vibration (VIV) of a low mass ratio flexible cylinder (m*<1), is studied experimentally. The flexible tension-dominated cylinder was held fixed at both ends and was immersed in the uniform incoming flow. Dynamic response of the system was studied in the reduced velocity range of U* = 2.9 - 14.5 and the Reynolds number range of Re = 315 - 1580. Continuous response of the cylinder was reconstructed from limited number of measurement points based on modal expansion theorem modified using Modal Assurance Criterion (MAC). This reconstruction technique made it possible to properly reconstruct a continuous response along the length of the cylinder, even when the measurement points were localized in a small region of the cylinder. Mono- and multi-frequency excitation responses as well as transition from low mode numbers to higher ones were studied. Also, flow forces acting on the cylinder were calculated and they showed a consistent relation between the regions where the cylinder was being excited by the flow (CLv>0) and the counterclockwise figure-eight trajectories of oscillations in which the phase difference between the inline and crossflow directions were in the range of φxy =[ 0 π].
Magnetic localization limit in TC graded ferromagnetic thin films
NASA Astrophysics Data System (ADS)
Kirby, Brian; Fallarino, Lorenzo; Riego, Patricia; Pancaldi, Matteo; Berger, Andreas; Miller, Casey
We have recently demonstrated that the effective Curie temperature (TC) of a ferromagnetic alloy thin film can be continuously varied as a function of depth via a corresponding compositional gradient. This work showed that the effective TC can be made to vary continuously over tens of nm. However, over a short enough distance, the system must become localized, with exchange coupling dominating the effects of the compositional gradient. Understanding this localization limit is important for potential applications, as it dictates the length-scale below which this technique stops being a viable engineering tool (at least for itinerant ferromagnets and their thermodynamic properties). To determine the localization limit in this class of system, we have fabricated a series of Co[1- x]Cr[ x] alloy alloy films, where x varies sinusoidally between 0.28 (nominal TC ~ 250 K) and 0.22 (TC > 300 K), and have used polarized neutron reflectometry to study samples of differing oscillation wavelength. These measurements confirm the desired sinusoidal pattern was achieved, and reveal the temperature-dependence of the magnetic depth profile. Results will be presented in the context of mean-field simulations.
Chen, Jing-Ling; Su, Hong-Yi; Xu, Zhen-Peng; Wu, Yu-Chun; Wu, Chunfeng; Ye, Xiang-Jun; Żukowski, Marek; Kwek, L. C.
2015-01-01
We demonstrate here that for a given mixed multi-qubit state if there are at least two observers for whom mutual Einstein-Podolsky-Rosen steering is possible, i.e. each observer is able to steer the other qubits into two different pure states by spontaneous collapses due to von Neumann type measurements on his/her qubit, then nonexistence of local realistic models is fully equivalent to quantum entanglement (this is not so without this condition). This result leads to an enhanced version of Gisin’s theorem (originally: all pure entangled states violate local realism). Local realism is violated by all mixed states with the above steering property. The new class of states allows one e.g. to perform three party secret sharing with just pairs of entangled qubits, instead of three qubit entanglements (which are currently available with low fidelity). This significantly increases the feasibility of having high performance versions of such protocols. Finally, we discuss some possible applications. PMID:26108704
Stephan, Carl N
2014-03-01
By pooling independent study means (x¯), the T-Tables use the central limit theorem and law of large numbers to average out study-specific sampling bias and instrument errors and, in turn, triangulate upon human population means (μ). Since their first publication in 2008, new data from >2660 adults have been collected (c.30% of the original sample) making a review of the T-Table's robustness timely. Updated grand means show that the new data have negligible impact on the previously published statistics: maximum change = 1.7 mm at gonion; and ≤1 mm at 93% of all landmarks measured. This confirms the utility of the 2008 T-Table as a proxy to soft tissue depth population means and, together with updated sample sizes (8851 individuals at pogonion), earmarks the 2013 T-Table as the premier mean facial soft tissue depth standard for craniofacial identification casework. The utility of the T-Table, in comparison with shorths and 75-shormaxes, is also discussed. PMID:24313424
Limits to the quantification of local climate change
NASA Astrophysics Data System (ADS)
Chapman, Sandra C.; Stainforth, David A.; Watkins, Nicholas W.
2015-09-01
We demonstrate how the fundamental timescales of anthropogenic climate change limit the identification of societally relevant aspects of changes in precipitation. We show that it is nevertheless possible to extract, solely from observations, some confident quantified assessments of change at certain thresholds and locations. Maps of such changes, for a variety of hydrologically-relevant, threshold-dependent metrics, are presented. In places in Scotland, for instance, the total precipitation on heavy rainfall days in winter has increased by more than 50%, but only in some locations has this been accompanied by a substantial increase in total seasonal precipitation; an important distinction for water and land management. These results are important for the presentation of scientific data by climate services, as a benchmark requirement for models which are used to provide projections on local scales, and for process-based climate and impacts research to understand local modulation of synoptic and global scale climate. They are a critical foundation for adaptation planning and for the scientific provision of locally relevant information about future climate.
Limits of localized control in extended nonlinear systems
NASA Astrophysics Data System (ADS)
Handel, Andreas
We investigate the limits of localized linear control in spatially extended, nonlinear systems. Spatially extended, nonlinear systems can be found in virtually every field of engineering and science. An important category of such systems are fluid flows. Fluid flows play an important role in many commercial applications, for instance in the chemical, pharmaceutical and food-processing industries. Other important fluid flows include air- or water flows around cars, planes or ships. In all these systems, it is highly desirable to control the flow of the respective fluid. For instance control of the air flow around an airplane or car leads to better fuel-economy and reduced noise production. Usually, it is impossible to apply control everywhere. Consider an airplane: It would not be feasibly to cover the whole body of the plane with control units. Instead, one can place the control units at localized regions, such as points along the edge of the wings, spaced as far apart from each other as possible. These considerations lead to an important question: For a given system, what is the minimum number of localized controllers that still ensures successful control? Too few controllers will not achieve control, while using too many leads to unnecessary expenses and wastes resources. To answer this question, we study localized control in a class of model equations. These model equations are good representations of many real fluid flows. Using these equations, we show how one can design localized control that renders the system stable. We study the properties of the control and derive several expressions that allow us to determine the limits of successful control. We show how the number of controllers that are needed for successful control depends on the size and type of the system, as well as the way control is implemented. We find that especially the nonlinearities and the amount of noise present in the system play a crucial role. This analysis allows us to determine under
Septins localize to microtubules during nutritional limitation in Saccharomyces cerevisiae
Pablo-Hernando, M Evangelina; Arnaiz-Pita, Yolanda; Tachikawa, Hiroyuki; del Rey, Francisco; Neiman, Aaron M; Vázquez de Aldana, Carlos R
2008-01-01
Background In Saccharomyces cerevisiae, nutrient limitation stimulates diploid cells to undergo DNA replication and meiosis, followed by the formation of four haploid spores. Septins are a family of proteins that assemble a ring structure at the mother-daughter neck during vegetative growth, where they control cytokinesis. In sporulating cells, the septin ring disassembles and septins relocalize to the prospore membrane. Results Here, we demonstrate that nutrient limitation triggers a change in the localization of at least two vegetative septins (Cdc10 and Cdc11) from the bud neck to the microtubules. The association of Cdc10 and Cdc11 with microtubules persists into meiosis, and they are found associated with the meiotic spindle until the end of meiosis II. In addition, the meiosis-specific septin Spr28 displays similar behavior, suggesting that this is a common feature of septins. Septin association to microtubules is a consequence of the nutrient limitation signal, since it is also observed when haploid cells are incubated in sporulation medium and when haploid or diploid cells are grown in medium containing non-fermentable carbon sources. Moreover, during meiosis II, when the nascent prospore membrane is formed, septins moved from the microtubules to this membrane. Proper organization of the septins on the membrane requires the sporulation-specific septins Spr3 and Spr28. Conclusion Nutrient limitation in S. cerevisiae triggers the sporulation process, but it also induces the disassembly of the septin bud neck ring and relocalization of the septin subunits to the nucleus. Septins remain associated with microtubules during the meiotic divisions and later, during spore morphogenesis, they are detected associated to the nascent prospore membranes surrounding each nuclear lobe. Septin association to microtubules also occurs during growth in non-fermentable carbon sources. PMID:18826657
Local and Global Limits on Visual Processing in Schizophrenia
Tibber, Marc S.; Anderson, Elaine J.; Bobin, Tracy; Carlin, Patricia; Shergill, Sukhwinder S.; Dakin, Steven C.
2015-01-01
Schizophrenia has been linked to impaired performance on a range of visual processing tasks (e.g. detection of coherent motion and contour detection). It has been proposed that this is due to a general inability to integrate visual information at a global level. To test this theory, we assessed the performance of people with schizophrenia on a battery of tasks designed to probe voluntary averaging in different visual domains. Twenty-three outpatients with schizophrenia (mean age: 40±8 years; 3 female) and 20 age-matched control participants (mean age 39±9 years; 3 female) performed a motion coherence task and three equivalent noise (averaging) tasks, the latter allowing independent quantification of local and global limits on visual processing of motion, orientation and size. All performance measures were indistinguishable between the two groups (ps>0.05, one-way ANCOVAs), with one exception: participants with schizophrenia pooled fewer estimates of local orientation than controls when estimating average orientation (p = 0.01, one-way ANCOVA). These data do not support the notion of a generalised visual integration deficit in schizophrenia. Instead, they suggest that distinct visual dimensions are differentially affected in schizophrenia, with a specific impairment in the integration of visual orientation information. PMID:25689281
OVII and Temperature Limits on the Local Hot Bubble
NASA Astrophysics Data System (ADS)
Pirtle, Robert; Petre, N.; McCammon, D.; Morgan, K.; Sauter, P.; Clavadetscher, K.; Fujimoto, R.; Hagihara, T.; Masui, K.; Mitsuda, K.; Takei, Y.; Wang, Q. D.; Yamasaki, N. Y.; Yao, Y.; Yoshino, T.
2013-01-01
The observed ¼-keV (ROSAT R12 band) X-ray background originates largely in a region of hot ionized gas roughly 100 pc in extent surrounding the Sun known as the Local Hot Bubble (LHB). The observed flux is quite uniform at low latitudes (|b| < 30°), but there a several large areas at intermediate and high latitudes that are enhanced by factors of 2 - 3. Charge exchange between highly charged ions in the Solar wind and interstellar neutral H and He moving through interplanetary space might provide a very roughly isotropic contribution about equal to the low- latitude flux (Koutroumpa et al. 2008), but cannot produce the enhancements. Correlations with the interstellar absorbing column show that some of these bright regions are apparently due to clumps of hot gas in the Galactic halo, while many of them show no correlation and must be due to extensions of the LHB (Kuntz & Snowden 2000, Bellm & Vaillancourt 2005). Global fits of simple plasma emission spectra give temperatures near 1.0 x 106 K for both LHB and halo emission, but the possibility of a substantial contamination by charge exchange could distort this result in unknown ways. Thermal excitation of O VII is strongly temperature dependent in this range, so we have tried to correlate O VII fluxes measured with Suzaku with variations in ¼-keV intensity from the ROSAT R12 band map to determine the temperature. We take eleven O VII intensity measurements from Yoshino et al. (2009), one from Masui et al. (2009), and an additional eighteen from archival Suzaku pointings and correlate these with the R12 band local and halo intensities as separated by Kunzt & Snowden (2000). The lack of detectable correlation in both cases strongly limits any O VII production by the material producing the enhancements, and upper limits to the temperatures are set. This work was supported in part by the National Science Foundation's REU program through NSF Award AST-1004881 and by NASA grant NNX09AF09G. *present address: Department
New Erdős-Kac Type Theorems for Signed Measures on Square-Free Integers
NASA Astrophysics Data System (ADS)
Avdeeva, Maria; Li, Dong; Sinai, Yakov G.
2013-11-01
We consider a family of signed measures supported on the set of square-free numbers. We prove some local limit theorems for the prime divisor counting function ω(n) and establish new Erdős-Kac type results.
Limits on the OVII Emission from the Local Hot Bubble
NASA Astrophysics Data System (ADS)
Jaeckel, Felix T; Li, Yaqiong; Morgan, Kelsey; Petre, Natalia; Sauter, Patrick; McCammon, Dan
2014-06-01
Constraining the properties of the gas in the local hot-bubble (LHB) is important for the understanding of the interstellar medium surrounding the sun. Much information about its energetic state is embedded in the observations of the low-energy diffuse X-ray background. From molecular-cloud shadowing observations (Galeazzi et al. 2006, R. Smith et al. 2007, Henley et al. 2007) it is known that a significant fraction of the 0.57keV OVII X-ray flux originates locally (< ~300 pc).To investigate the origin of this OVII emission, we analyze the correlation between OVII flux (extracted from Suzaku observations cleaned of point sources) against the local fraction of the ROSAT ¼ keV emission (R12 band), as separated from the distant (hot halo/extragalactic) component by Snowden (1998) and Kuntz (2000).Observations were selected to avoid galactic in-plane emission and features of other large-scale ISM structures. After correcting OVII flux for the more distant latitude-dependent emission, we find that it is essentially uncorrelated with the local ¼ keV emission, implying that the local hot bubble is not the source of the observed OVII emission. The lack of OVII emission further precludes temperatures above ~1E6K for the LHB gas (assuming collisional equilibrium models with solar abundance).
Local Area Networks in Education: Overview, Applications, and Current Limitations.
ERIC Educational Resources Information Center
Piele, Philip K.
Local area networks (LAN) are privately owned communication systems that connect multivendor devices at high speed. As microcomputers become more common in schools, user interest in sharing information, software, and peripherals will increase. A basic understanding of the operation of all LAN's can be gained by knowing four elements: media,…
Douma, Huub; Vasconcelos, Ivan; Snieder, Roel
2011-05-01
By analyzing correlation-type reciprocity theorems for wavefields in perturbed media, it is shown that the correlation-type reciprocity theorem for the scattered field is the progenitor of the generalized optical theorem. This reciprocity theorem, in contrast to the generalized optical theorem, allows for inhomogeneous background properties and does not make use of a far-field condition. This theorem specializes to the generalized optical theorem when considering a finite-size scatterer embedded in a homogeneous background medium and when utilizing the far-field condition. Moreover, it is shown that the reciprocity theorem for the scattered field is responsible for the cancellation of non-physical (spurious) arrivals in seismic interferometry, and as such provides the mathematical description of such arrivals. Even though here only acoustic waves are treated, the presented treatment is not limited to such wavefields and can be generalized to general wavefields. Therefore, this work provides the framework for deriving equivalents of the generalized optical theorem for general wavefields. PMID:21568381
Local Revenues for Schools: Limits and Options in California
ERIC Educational Resources Information Center
Perry, Mary; Edwards, Brian
2009-01-01
With K-12 schools representing the single largest expenditure in the state budget, education funding has been a central issue throughout the chaos that has recently characterized California's budget process. School districts throughout California have endured deep cuts in state funding, and more cuts are looming. But state law severely limits the…
Quantization of Chirikov Map and Quantum KAM Theorem.
NASA Astrophysics Data System (ADS)
Shi, Kang-Jie
KAM theorem is one of the most important theorems in classical nonlinear dynamics and chaos. To extend KAM theorem to the regime of quantum mechanics, we first study the quantum Chirikov map, whose classical counterpart provides a good example of KAM theorem. Under resonance condition 2pihbar = 1/N, we obtain the eigenstates of the evolution operator of this system. We find that the wave functions in the coherent state representation (CSR) are very similar to the classical trajectories. In particular, some of these wave functions have wall-like structure at the locations of classical KAM curves. We also find that a local average is necessary for a Wigner function to approach its classical limit in the phase space. We then study the general problem theoretically. Under similar conditions for establishing the classical KAM theorem, we obtain a quantum extension of KAM theorem. By constructing successive unitary transformations, we can greatly reduce the perturbation part of a near-integrable Hamiltonian system in a region associated with a Diophantine number {rm W}_{o}. This reduction is restricted only by the magnitude of hbar.. We can summarize our results as follows: In the CSR of a nearly integrable quantum system, associated with a Diophantine number {rm W}_ {o}, there is a band near the corresponding KAM torus of the classical limit of the system. In this band, a Gaussian wave packet moves quasi-periodically (and remain close to the KAM torus) for a long time, with possible diffusion in both the size and the shape of its wave packet. The upper bound of the tunnelling rate out of this band for the wave packet can be made much smaller than any given power of hbar, if the original perturbation is sufficiently small (but independent of hbar). When hbarto 0, we reproduce the classical KAM theorem. For most near-integrable systems the eigenstate wave function in the above band can either have a wall -like structure or have a vanishing amplitude. These conclusions
ERIC Educational Resources Information Center
Parameswaran, Revathy
2009-01-01
This paper reports on an experiment studying twelfth grade students' understanding of Rolle's Theorem. In particular, we study the influence of different concept images that students employ when solving reasoning tasks related to Rolle's Theorem. We argue that students' "container schema" and "motion schema" allow for rich concept images.…
The Interaction Equivalency Theorem
ERIC Educational Resources Information Center
Miyazoe, Terumi; Anderson, Terry
2010-01-01
This paper examines the key issues regarding The Interaction Equivalency Theorem posited by Anderson (2003a), which consists of the three interaction elements found in formal education courses among teacher, student, and content. It first examines the core concepts of the theorem and argues that two theses of different dimensions can be…
ERIC Educational Resources Information Center
Smith, Michael D.
2016-01-01
The Parity Theorem states that any permutation can be written as a product of transpositions, but no permutation can be written as a product of both an even number and an odd number of transpositions. Most proofs of the Parity Theorem take several pages of mathematical formalism to complete. This article presents an alternative but equivalent…
Quantum duality, unbounded operators, and inductive limits
Dosi, Anar
2010-06-15
In this paper, we investigate the inductive limits of quantum normed (or operator) spaces. This construction allows us to treat the space of all noncommutative continuous functions over a quantum domain as a quantum (or local operator) space of all matrix continuous linear operators equipped with S-quantum topology. In particular, we classify all quantizations of the polynormed topologies compatible with the given duality proposing a noncommutative Arens-Mackey theorem. Further, the inductive limits of operator spaces are used to introduce locally compact and locally trace class unbounded operators on a quantum domain and prove the dual realization theorem for an abstract quantum space.
Locally Produced IL-10 Limits Cutaneous Vaccinia Virus Spread
Cush, Stephanie S.; Reynoso, Glennys V.; Kamenyeva, Olena; Bennink, Jack R.; Yewdell, Jonathan W.; Hickman, Heather D.
2016-01-01
Skin infection with the poxvirus vaccinia (VV) elicits a powerful, inflammatory cellular response that clears virus infection in a coordinated, spatially organized manner. Given the high concentration of pro-inflammatory effectors at areas of viral infection, it is unclear how tissue pathology is limited while virus-infected cells are being eliminated. To better understand the spatial dynamics of the anti-inflammatory response to a cutaneous viral infection, we first screened cytokine mRNA expression levels after epicutaneous (ec.) VV infection and found a large increase the anti-inflammatory cytokine IL-10. Ex vivo analyses revealed that T cells in the skin were the primary IL-10-producing cells. To understand the distribution of IL-10-producing T cells in vivo, we performed multiphoton intravital microscopy (MPM) of VV-infected mice, assessing the location and dynamic behavior of IL-10 producing cells. Although virus-specific T cells were distributed throughout areas of the inflamed skin lacking overt virus-infection, IL-10+ cells closely associated with large keratinocytic foci of virus replication where they exhibited similar motility patterns to bulk antigen-specific CD8+ T cells. Paradoxically, neutralizing secreted IL-10 in vivo with an anti-IL-10 antibody increased viral lesion size and viral replication. Additional analyses demonstrated that IL-10 antibody administration decreased recruitment of CCR2+ inflammatory monocytes, which were important for reducing viral burden in the infected skin. Based upon these findings, we conclude that spatially concentrated IL-10 production limits cutaneous viral replication and dissemination, likely through modulation of the innate immune repertoire at the site of viral growth. PMID:26991092
An extension theorem for conformal gauge singularities
Luebbe, Christian; Tod, Paul
2009-11-15
We analyze conformal gauge, or isotropic, singularities in cosmological models in general relativity. Using the calculus of tractors, we find conditions in terms of tractor curvature for a local extension of the conformal structure through a cosmological singularity and prove a local extension theorem along a congruence of timelike conformal geodesics.
A generalization of Bernoulli's theorem
Schaer, C. )
1993-05-15
The conservation of potential vorticity Q can be expressed as [partial derivative]([rho]Q)/[partial derivative]t + [del] [center dot] J = 0, where J denotes the total flux of potential vorticity. It is shown that J is related under statistically steady conditions to the Bernoulli function B by J = [del] [theta] [times] [del] B, where [theta] is the potential temperature. This relation is valid even in the nonhydrostatic limit and in the presence of arbitrary nonconservative forces (such as internal friction) and heating rates. In essence, it can be interpreted as a generalization of Bernoulli's theorem to the frictional and diabatic regime. The classical Bernoulli theorem-valid for inviscid adiabatic and steady flows-states that the intersections of surfaces at constant potential temperature and constant Bernoulli function yield streamlines. In the presence of frictional and diabatic effects, these intersections yield the flux lines along which potential vorticity is transported. 18 refs., 2 figs.
Recursion relations from soft theorems
NASA Astrophysics Data System (ADS)
Luo, Hui; Wen, Congkao
2016-03-01
We establish a set of new on-shell recursion relations for amplitudes satisfying soft theorems. The recursion relations can apply to those amplitudes whose additional physical inputs from soft theorems are enough to overcome the bad large- z behaviour. This work is a generalization of the recursion relations recently obtained by Cheung et al. for amplitudes in scalar effective field theories with enhanced vanishing soft behaviours, which can be regarded as a special case of those with non-vanishing soft limits. We apply the recursion relations to tree-level amplitudes in various theories, including amplitudes in the Akulov-Volkov theory and amplitudes containing dilatons of spontaneously-broken conformal symmetry.
Anti-Bell - Refutation of Bell's theorem
NASA Astrophysics Data System (ADS)
Barukčić, Ilija
2012-12-01
In general, Albert Einstein as one of "the founding fathers of quantum mechanics" had some problems to accept especially the Copenhagen dominated interpretation of quantum mechanics. Einstein's dissatisfaction with Copenhagen's interpretation of quantum mechanics, the absence of locality and causality within the Copenhagen dominated quantum mechanics lead to the well known Einstein, Podolsky and Rosen thought experiment. According to Einstein et al., the Copenhagen dominated quantum mechanics cannot be regarded as a complete physical theory. The Einstein, Podolsky and Rosen thought experiment was the origin of J. S. Bell's publication in 1964; known as Bell's theorem. Meanwhile, some dramatic violations of Bell's inequality (by so called Bell test experiments) have been reported which is taken as an empirical evidence against local realism and causality at quantum level and as positive evidence in favor of the Copenhagen dominated quantum mechanics. Thus far, Quantum mechanics is still regarded as a "strictly" non-local theory. The purpose of this publication is to refute Bell's original theorem. Thus far, if we accept Bell's theorem as correct, we must accept that +0> = +1. We can derive a logical contradiction out of Bell's theorem, Bell's theorem is refuted.
ERIC Educational Resources Information Center
Benyi, Arpad; Casu, Ioan
2009-01-01
Pompeiu's theorem states that if ABC is an "equilateral" triangle and M a point in its plane, then MA, MB, and MC form a new triangle. In this article, we have a new look at this theorem in the realm of arbitrary triangles. We discover what we call Pompeiu's Area Formula, a neat equality relating areas of triangles determined by the points A, B,…
Causality, Bell's theorem, and Ontic Definiteness
NASA Astrophysics Data System (ADS)
Henson, Joe
2011-03-01
Bell's theorem shows that the reasonable relativistic causal principle known as ``local causality'' is not compatible with the predictions of quantum mechanics. It is not possible maintain a satisfying causal principle of this type while dropping any of the better-known assumptions of Bell's theorem. However, another assumption of Bell's theorem is the use of classical logic. One part of this assumption is the principle of ontic definiteness, that is, that it must in principle be possible to assign definite truth values to all propositions treated in the theory. Once the logical setting is clarified somewhat, it can be seen that rejecting this principle does not in any way undermine the type of causal principle used by Bell. Without ontic definiteness, the deterministic causal condition known as Einstein Locality succeeds in banning superluminal influence (including signalling) whilst allowing correlations that violate Bell's inequalities. Objections to altering logic, and the consequences for operational and realistic viewpoints, are also addressed.
Navier Stokes Theorem in Hydrology
NASA Astrophysics Data System (ADS)
Narayanan, M.
2005-12-01
In a paper presented at the 2004 AGU International Conference, the author outlined and stressed the importance of studying and teaching certain important mathematical techniques while developing a course in Hydrology and Fluid Mechanics. The Navier-Stokes equations are the foundation of fluid mechanics, and Stokes' theorem is used in nearly every branch of mechanics as well as electromagnetics. Stokes' Theorem also plays a vital role in many secondary theorems such as those pertaining to vorticity and circulation. Mathematically expressed, Stokes' theorem can be expressed by considering a surface S having a bounding curve C. Here, V is any sufficiently smooth vector field defined on the surface and its bounding curve C. In an article entitled "Corrections to Fluid Dynamics" R. F. Streater, (Open Systems and Information Dynamics, 10, 3-30, 2003.) proposes a kinetic model of a fluid in which five macroscopic fields, the mass, energy, and three components of momentum, are conserved. The dynamics is constructed using the methods of statistical dynamics, and results in a non-linear discrete-time Markov chain for random fields on a lattice. In the continuum limit he obtains a non-linear coupled parabolic system of field equations, showing a correction to the Navier-Stokes equations. In 2001, David Hoff published an article in Journees Equations aux derivees partielles. (Art. No. 7, 9 p.). His paper is entitled : Dynamics of Singularity Surfaces for Compressible Navier-Stokes Flows in Two Space Dimensions. In his paper, David Hoff proves the global existence of solutions of the Navier-Stokes equations of compressible, barotropic flow in two space dimensions with piecewise smooth initial data. These solutions remain piecewise smooth for all time, retaining simple jump discontinuities in the density and in the divergence of the velocity across a smooth curve, which is convected with the flow. The strengths of these discontinuities are shown to decay exponentially in time
Bradetich, Ryan; Dearien, Jason A; Grussling, Barry Jakob; Remaley, Gavin
2013-11-05
The present disclosure provides systems and methods for remote device management. According to various embodiments, a local intelligent electronic device (IED) may be in communication with a remote IED via a limited bandwidth communication link, such as a serial link. The limited bandwidth communication link may not support traditional remote management interfaces. According to one embodiment, a local IED may present an operator with a management interface for a remote IED by rendering locally stored templates. The local IED may render the locally stored templates using sparse data obtained from the remote IED. According to various embodiments, the management interface may be a web client interface and/or an HTML interface. The bandwidth required to present a remote management interface may be significantly reduced by rendering locally stored templates rather than requesting an entire management interface from the remote IED. According to various embodiments, an IED may comprise an encryption transceiver.
Advances and limits of using population genetics to understand local adaptation.
Tiffin, Peter; Ross-Ibarra, Jeffrey
2014-12-01
Local adaptation shapes species diversity, can be a stepping stone to ecological speciation, and can facilitate species range expansion. Population genetic analyses, which complement organismal approaches in advancing our understanding of local adaptation, have become widespread in recent years. We focus here on using population genetics to address some key questions in local adaptation: what traits are involved? What environmental variables are the most important? Does local adaptation target the same genes in related species? Do loci responsible for local adaptation exhibit trade-offs across environments? After discussing these questions we highlight important limitations to population genetic analyses including challenges with obtaining high-quality data, deciding which loci are targets of selection, and limits to identifying the genetic basis of local adaptation. PMID:25454508
Raychaudhuri equation and singularity theorems in Finsler spacetimes
NASA Astrophysics Data System (ADS)
Minguzzi, E.
2015-09-01
The Raychaudhuri equation and its consequences for chronality are studied in the context of Finsler spacetimes. It is proved that the notable singularity theorems of Lorentzian geometry extend to the Finslerian domain. Indeed, so do the theorems by Hawking, Penrose, Hawking and Penrose, Geroch, Gannon, Tipler and Kriele, and also the Topological Censorship theorem and so on. It is argued that the notable results in causality theory connected to achronal sets, future sets, domains of dependence, limit curve theorems, length functional, Lorentzian distance and geodesic connectedness, extend to the Finslerian domain. Results concerning the spacetime asymptotic structure, horizons differentiability and conformal transformations are also included.
NASA Astrophysics Data System (ADS)
Miserev, D. S.
2016-06-01
The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p y of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.
NASA Astrophysics Data System (ADS)
Pérez-Espigares, Carlos; Redig, Frank; Giardinà, Cristian
2015-08-01
For non-equilibrium systems of interacting particles and for interacting diffusions in d-dimensions, a novel fluctuation relation is derived. The theorem establishes a quantitative relation between the probabilities of observing two current values in different spatial directions. The result is a consequence of spatial symmetries of the microscopic dynamics, generalizing in this way the Gallavotti-Cohen fluctuation theorem related to the time-reversal symmetry. This new perspective opens up the possibility of direct experimental measurements of fluctuation relations of vectorial observables.
Complementary Variational Theorems for inhomogeneous superconductors
NASA Astrophysics Data System (ADS)
Choy, T. C.
1997-03-01
Complementary variational theorems are derived for an inhomogeneous London (local) superconductor in which both the magnetic permeability μ(r) and the London penetration length λ_L(r) vary randomly in space (T.C. Choy, Physical Review B (1997) (to appear)). An essential feature is the close coupling between magnetic and supercurrent polarisation effects, developed self-consistently in this work. Using these theorems and a suitable ansatz for the single particle polarisabilities, we obtained complementary bounds for a composite superconductor near Tc and T=0^circ K. Our results may be important for the empirical study of systems containing magnetic (normal) and superconducting mixtures, including the high Tc oxide superconductors.
A variational proof of Thomson's theorem
NASA Astrophysics Data System (ADS)
Fiolhais, Miguel C. N.; Essén, Hanno; Gouveia, Tomé M.
2016-08-01
Thomson's theorem of electrostatics, which states the electric charge on a set of conductors distributes itself on the conductor surfaces to minimize the electrostatic energy, is reviewed in this letter. The proof of Thomson's theorem, based on a variational principle, is derived for a set of normal charged conductors, with and without the presence of external electric fields produced by fixed charge distributions. In this novel approach, the variations are performed on both the charge densities and electric potentials, by means of a local Lagrange multiplier associated with Poisson's equation, constraining the two variables.
Virial Theorem and Scale Transformations.
ERIC Educational Resources Information Center
Kleban, Peter
1979-01-01
Discussed is the virial theorem, which is useful in classical, quantum, and statistical mechanics. Two types of derivations of this theorem are presented and the relationship between the two is explored. (BT)
A Schwinger disentangling theorem
Cross, Daniel J.; Gilmore, Robert
2010-10-15
Baker-Campbell-Hausdorff formulas are exceedingly useful for disentangling operators so that they may be more easily evaluated on particular states. We present such a disentangling theorem for general bilinear and linear combinations of multiple boson creation and annihilation operators. This work generalizes a classical result of Schwinger.
Weinberg, Steven
2008-09-15
It is shown that the generating function for tree graphs in the ''in-in'' formalism may be calculated by solving the classical equations of motion subject to certain constraints. This theorem is illustrated by application to the evolution of a single inflaton field in a Robertson-Walker background.
''CPT Theorem'' for Accelerators
Vladimir Shiltsev
2004-08-05
In this paper we attempt to reveal common features in evolution of various colliders' luminosity over commissioning periods. A simplified formula, ''CPT theorem'' or CP = T, is proposed which relates the time needed for commissioning T, the ''complexity'' of the machine C and performance increase goal P.
ERIC Educational Resources Information Center
Musto, Garrod
2010-01-01
Within his classroom, the author is often confronted by students who fail to see, or accept, the relevance of mathematics both to their lives and the world around them. One topic which is regularly perceived as being disconnected from people's daily lives is that of circle theorems, especially among less motivated students. In this article, the…
Cooperation Among Theorem Provers
NASA Technical Reports Server (NTRS)
Waldinger, Richard J.
1998-01-01
This is a final report, which supports NASA's PECSEE (Persistent Cognizant Software Engineering Environment) effort and complements the Kestrel Institute project "Inference System Integration via Logic Morphism". The ultimate purpose of the project is to develop a superior logical inference mechanism by combining the diverse abilities of multiple cooperating theorem provers. In many years of research, a number of powerful theorem-proving systems have arisen with differing capabilities and strengths. Resolution theorem provers (such as Kestrel's KITP or SRI's, SNARK) deal with first-order logic with equality but not the principle of mathematical induction. The Boyer-Moore theorem prover excels at proof by induction but cannot deal with full first-order logic. Both are highly automated but cannot accept user guidance easily. The PVS system (from SRI) in only automatic within decidable theories, but it has well-designed interactive capabilities: furthermore, it includes higher-order logic, not just first-order logic. The NuPRL system from Cornell University and the STeP system from Stanford University have facilities for constructive logic and temporal logic, respectively - both are interactive. It is often suggested - for example, in the anonymous "QED Manifesto"-that we should pool the resources of all these theorem provers into a single system, so that the strengths of one can compensate for the weaknesses of others, and so that effort will not be duplicated. However, there is no straightforward way of doing this, because each system relies on its own language and logic for its success. Thus. SNARK uses ordinary first-order logic with equality, PVS uses higher-order logic. and NuPRL uses constructive logic. The purpose of this project, and the companion project at Kestrel, has been to use the category-theoretic notion of logic morphism to combine systems with different logics and languages. Kestrel's SPECWARE system has been the vehicle for the implementation.
Soft theorems from effective field theory
NASA Astrophysics Data System (ADS)
Larkoski, Andrew J.; Neill, Duff; Stewart, Iain W.
2015-06-01
The singular limits of massless gauge theory amplitudes are described by an effective theory, called soft-collinear effective theory (SCET), which has been applied most successfully to make all-orders predictions for observables in collider physics and weak decays. At tree-level, the emission of a soft gauge boson at subleading order in its energy is given by the Low-Burnett-Kroll theorem, with the angular momentum operator acting on a lower-point amplitude. For well separated particles at tree-level, we prove the Low-Burnett-Kroll theorem using matrix elements of subleading SCET Lagrangian and operator insertions which are individually gauge invariant. These contributions are uniquely determined by gauge invariance and the reparametrization invariance (RPI) symmetry of SCET. RPI in SCET is connected to the infinite-dimensional asymptotic symmetries of the S-matrix. The Low-Burnett-Kroll theorem is generically spoiled by on-shell corrections, including collinear loops and collinear emissions. We demonstrate this explicitly both at tree-level and at one-loop. The effective theory correctly describes these configurations, and we generalize the Low-Burnett-Kroll theorem into a new one-loop subleading soft theorem for amplitudes. Our analysis is presented in a manner that illustrates the wider utility of using effective theory techniques to understand the perturbative S-matrix.
ERIC Educational Resources Information Center
Abramovitz, Buma; Berezina, Miryam; Berman, Abraham; Shvartsman, Ludmila
2009-01-01
In this article we describe the process of studying the assumptions and the conclusion of a theorem. We tried to provide the students with exercises and problems where we discuss the following questions: What are the assumptions of a theorem and what are the conclusions? What is the geometrical meaning of a theorem? What happens when one or more…
ERIC Educational Resources Information Center
Russell, Alan R.
2004-01-01
Pick's theorem can be used in various ways just like a lemon. This theorem generally finds its way in the syllabus approximately at the middle school level and in fact at times students have even calculated the area of a state considering its outline with the help of the above theorem.
Sampling theorems and compressive sensing on the sphere
NASA Astrophysics Data System (ADS)
McEwen, Jason D.; Puy, Gilles; Thiran, Jean-Philippe; Vandergheynst, Pierre; Van De Ville, Dimitri; Wiaux, Yves
2011-09-01
We discuss a novel sampling theorem on the sphere developed by McEwen & Wiaux recently through an association between the sphere and the torus. To represent a band-limited signal exactly, this new sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere, such as the canonical Driscoll & Healy sampling theorem. A reduction in the number of samples required to represent a band-limited signal on the sphere has important implications for compressive sensing, both in terms of the dimensionality and sparsity of signals. We illustrate the impact of this property with an inpainting problem on the sphere, where we show superior reconstruction performance when adopting the new sampling theorem.
THE PARKER MAGNETOSTATIC THEOREM
Low, B. C.
2010-08-01
We demonstrate the Parker Magnetostatic Theorem in terms of a small neighborhood in solution space containing continuous force-free magnetic fields in small deviations from the uniform field. These fields are embedded in a perfectly conducting fluid bounded by a pair of rigid plates where each field is anchored, taking the plates perpendicular to the uniform field. Those force-free fields obtainable from the uniform field by continuous magnetic footpoint displacements at the plates have field topologies that are shown to be a restricted subset of the field topologies similarly created without imposing the force-free equilibrium condition. The theorem then follows from the deduction that a continuous nonequilibrium field with a topology not in that subset must find a force-free state containing tangential discontinuities.
NASA Astrophysics Data System (ADS)
Greaves, Hilary; Thomas, Teruji
2014-02-01
We provide a careful development and rigorous proof of the CPT theorem within the framework of mainstream (Lagrangian) quantum field theory. This is in contrast to the usual rigorous proofs in purely axiomatic frameworks, and non-rigorous proof-sketches in the mainstream approach. We construct the CPT transformation for a general field directly, without appealing to the enumerative classification of representations, and in a manner that is clearly related to the requirements of our proof. Our approach applies equally in Minkowski spacetimes of any dimension at least three, and is in principle neutral between classical and quantum field theories: the quantum CPT theorem has a natural classical analogue. The key mathematical tool is that of complexification; this tool is central to the existing axiomatic proofs, but plays no overt role in the usual mainstream approaches to CPT.
NASA Astrophysics Data System (ADS)
Sarbicki, Gniewomir; Chruściński, Dariusz; Mozrzymas, Marek
2016-07-01
We analyse linear maps of operator algebras {{ B }}H({ H }) mapping the set of rank-k projectors onto the set of rank-l projectors surjectively. A complete characterisation of such maps for prime n={dim} { H } is provided. A particular case corresponding to k=l=1 is well known as Wigner’s theorem. Hence our result may be considered as a generalisation of this celebrated Wigner’s result.
The Steep Nekhoroshev's Theorem
NASA Astrophysics Data System (ADS)
Guzzo, M.; Chierchia, L.; Benettin, G.
2016-03-01
Revising Nekhoroshev's geometry of resonances, we provide a fully constructive and quantitative proof of Nekhoroshev's theorem for steep Hamiltonian systems proving, in particular, that the exponential stability exponent can be taken to be {1/(2nα_1\\cdotsα_{n-2}}) ({α_i}'s being Nekhoroshev's steepness indices and {n ≥ 3} the number of degrees of freedom). On the base of a heuristic argument, we conjecture that the new stability exponent is optimal.
Factors Associated with Operational Limitations of Training and Visit System at the Local Level.
ERIC Educational Resources Information Center
Navaratnam, K. K.
A study examined the factors associated with operational limitations of the Training and Visit System, an information diffusion method, at the local levels. A personal interview survey was conducted to gather data required for this study from agricultural extension personnel from three predominantly agricultural areas in Sri Lanka. Stepwise…
40 CFR 1400.11 - Limitation on dissemination to State and local government officials.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Limitation on dissemination to State and local government officials. 1400.11 Section 1400.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF JUSTICE ACCIDENTAL RELEASE PREVENTION REQUIREMENTS; RISK...
40 CFR 1400.11 - Limitation on dissemination to State and local government officials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Limitation on dissemination to State and local government officials. 1400.11 Section 1400.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF JUSTICE ACCIDENTAL RELEASE PREVENTION REQUIREMENTS; RISK...
40 CFR 1400.11 - Limitation on dissemination to State and local government officials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Limitation on dissemination to State and local government officials. 1400.11 Section 1400.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF JUSTICE ACCIDENTAL RELEASE PREVENTION REQUIREMENTS; RISK...
40 CFR 1400.11 - Limitation on dissemination to State and local government officials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Limitation on dissemination to State and local government officials. 1400.11 Section 1400.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF JUSTICE ACCIDENTAL RELEASE PREVENTION REQUIREMENTS; RISK...
40 CFR 1400.11 - Limitation on dissemination to State and local government officials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Limitation on dissemination to State and local government officials. 1400.11 Section 1400.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF JUSTICE ACCIDENTAL RELEASE PREVENTION REQUIREMENTS; RISK...
Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogues
NASA Astrophysics Data System (ADS)
Li, J. P.; Ding, R. Q.
2012-04-01
To quantify the predictability limit of a chaotic system, the authors recently developed a method using the nonlinear local Lyapunov exponent (NLLE). The NLLE method provides a measure of local predictability limit of chaotic systems and is intended to supplement existing predictability methods. To apply the NLLE in studies of actual atmospheric predictability, an algorithm based on local dynamical analogues is devised to enable the estimation of the NLLE and its derivatives using experimental or observational data. Two examples are given to illustrate the effectiveness of the algorithm, involving the Lorenz63 3-variable model and the Lorenz96 40-variable model; they reveal that the algorithm is applicable in estimating the NLLE of a chaotic system from its experimental time series. On this basis, the NLLE method is used to investigate temporal-spatial distributions of predictability limits of the daily geopotential height and wind fields. The limit of atmospheric predictability varies widely with region, altitude and season. The predictability limits of the daily geopotential height and wind fields are generally less than three weeks in the troposphere, whereas they are approximately one month in the lower stratosphere, revealing a potential predictability source for forecasting weather from the stratosphere. Further work is required to examine broader applications of the NLLE method in predictability studies of the atmosphere, ocean, and other systems.
Building local human resources to implement SLMTA with limited donor funding: The Ghana experience
Nkrumah, Bernard; van der Puije, Beatrice; Bekoe, Veronica; Adukpo, Rowland; Kotey, Nii A.; Yao, Katy; Fonjungo, Peter N.; Luman, Elizabeth T.; Duh, Samuel; Njukeng, Patrick A.; Addo, Nii A.; Khan, Fazle N.; Woodfill, Celia J.I.
2016-01-01
Background In 2009, Ghana adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme in order to improve laboratory quality. The programme was implemented successfully with limited donor funding and local human resources. Objectives To demonstrate how Ghana, which received very limited PEPFAR funding, was able to achieve marked quality improvement using local human resources. Method Local partners led the SLMTA implementation and local mentors were embedded in each laboratory. An in-country training-of-trainers workshop was conducted in order to increase the pool of local SLMTA implementers. Three laboratory cohorts were enrolled in SLMTA in 2011, 2012 and 2013. Participants from each cohort attended in a series of three workshops interspersed with improvement projects and mentorship. Supplemental training on internal audit was provided. Baseline, exit and follow-up audits were conducted using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist. In November 2013, four laboratories underwent official SLIPTA audits by the African Society for Laboratory Medicine (ASLM). Results The local SLMTA team successfully implemented three cohorts of SLMTA in 15 laboratories. Seven out of the nine laboratories that underwent follow-up audits have reached at least one star. Three out of the four laboratories that underwent official ASLM audits were awarded four stars. Patient satisfaction increased from 25% to 70% and sample rejection rates decreased from 32% to 10%. On average, $40 000 was spent per laboratory to cover mentors' salaries, SLMTA training and improvement project support. Conclusion Building in-country capacity through local partners is a sustainable model for improving service quality in resource-constrained countries such as Ghana. Such models promote country ownership, capacity building and the use of local human resources for the expansion of SLMTA. PMID:26937417
A Geometrical Approach to Bell's Theorem
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2000-01-01
Bell's theorem can be proved through simple geometrical reasoning, without the need for the Psi function, probability distributions, or calculus. The proof is based on N. David Mermin's explication of the Einstein-Podolsky-Rosen-Bohm experiment, which involves Stern-Gerlach detectors which flash red or green lights when detecting spin-up or spin-down. The statistics of local hidden variable theories for this experiment can be arranged in colored strips from which simple inequalities can be deduced. These inequalities lead to a demonstration of Bell's theorem. Moreover, all local hidden variable theories can be graphed in such a way as to enclose their statistics in a pyramid, with the quantum-mechanical result lying a finite distance beneath the base of the pyramid.
The global Utiyama theorem in Einstein-Cartan theory
NASA Astrophysics Data System (ADS)
Bruzzo, Ugo
1987-09-01
A global formulation of Utiyama's theorem for Einstein-Cartan-type gravitational theories regarded as gauge theories of the group of space-time diffeomorphisms is given. The local conditions for the Lagrangian to be gauge invariant coincide with those found by other authors [A. Pérez-Rendón Collantes, ``Utiyama type theorems,'' in Poincaré Gauge Approach to Gravity. I, Proceedings Journées Relativistes 1984; A. Pérez-Rendón and J. J. Seisdedos, ``Utiyama type theorems in Poincaré gauge approach to gravity. II, '' Preprints de Mathematicas, Universidad de Salamanca, 1986] in Kibble's and Hehl's approaches.
Analysis of Spatially Limited Local Communication for Multi-Robot Foraging
NASA Astrophysics Data System (ADS)
Krannich, Stephan; Maehle, Erik
This work presents a biologically inspired communication model for foraging swarms of cooperative mobile robots. In contrast to conventional, unrestricted local communication the exchange of messages is here spatially restricted to a nest-like area. The performance of the presented communication concept is evaluated using simulation and comparison to common forms of communication. An implementation on hardware robots allows to determine influences from the real world on the model. Results show that spatial limitation of communication to a single nest area can still speed up the performance of foraging swarms whereas further increasing the quantity of conventional local communication is less effective for the process of foraging.
Tests of the lattice index theorem
Jordan, Gerald; Hoellwieser, Roman; Faber, Manfried; Heller, Urs M.
2008-01-01
We investigate the lattice index theorem and the localization of the zero modes for thick classical center vortices. For nonorientable spherical vortices, the index of the overlap Dirac operator differs from the topological charge although the traces of the plaquettes deviate only by a maximum of 1.5% from trivial plaquettes. This may be related to the fact that even in Landau gauge some links of these configuration are close to the nontrivial center elements.
Recurrence theorems: A unified account
Wallace, David
2015-02-15
I discuss classical and quantum recurrence theorems in a unified manner, treating both as generalisations of the fact that a system with a finite state space only has so many places to go. Along the way, I prove versions of the recurrence theorem applicable to dynamics on linear and metric spaces and make some comments about applications of the classical recurrence theorem in the foundations of statistical mechanics.
A theorem in relativistic electronics
NASA Astrophysics Data System (ADS)
Yongjian, Yu
1990-04-01
This paper presents a theorem that connects the dispersion relation of the Electron Cyclotron Maser' and the oscillation equation of the Gyromonotron. This theorem gives us a simple way of obtaining the osscillating characteristics of the Gyromonotron provided that dispersion relation of the ECRM is given. Though the theorem is proved only with the case of ECRM and Gyromonotron, it holds for other kinds of Electron Masers, FEL4etc. and corresponding osscillators.
Code of Federal Regulations, 2010 CFR
2010-04-01
... administrative cost limits for States and local areas apply to NFJP grants? No, under 20 CFR 667.210(b), limits... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Do the WIA administrative cost limits for States and local areas apply to NFJP grants? 669.555 Section 669.555 Employees' Benefits EMPLOYMENT...
Effects of hole localization on limiting p-type conductivity in oxide and nitride semiconductors
Lyons, J. L.; Janotti, A.; Van de Walle, C. G.
2014-01-07
We examine how hole localization limits the effectiveness of substitutional acceptors in oxide and nitride semiconductors and explain why p-type doping of these materials has proven so difficult. Using hybrid density functional calculations, we find that anion-site substitutional impurities in AlN, GaN, InN, and ZnO lead to atomic-like states that localize on the impurity atom itself. Substitution with cation-site impurities, on the other hand, triggers the formation of polarons that become trapped on nearest-neighbor anions, generally leading to large ionization energies for these acceptors. Unlike shallow effective-mass acceptors, these two types of deep acceptors couple strongly with the lattice, significantly affecting the optical properties and severely limiting prospects for achieving p-type conductivity in these wide-band-gap materials.
Probing local order in glasses from limited-volume electron and x-ray diffraction
NASA Astrophysics Data System (ADS)
Liu, A. C. Y.; Tabor, R. F.; Bourgeois, L.; de Jonge, M. D.; Mudie, S. T.; Petersen, T. C.
2016-05-01
It has long been recognised that spatial fluctuations in local order in disordered assemblies of particles can be probed using limited-volume diffraction measurements. These measurements have unique advantages over broad-beam diffraction experiments that isotropically average over many structural configurations and result in one-dimensional intensity curves, requiring modelling to interpret. Despite the advantages of limiting illumination to a low number of particle configurations, obtaining quantitative measurements of local order from such experiments remains a challenge. The effects on the diffraction pattern of changing the beam energy, lateral size, aberrations and coherence and the specimen thickness have only recently been clarified. We review theoretical and experimental efforts in this direction in the fields of both electron and x-ray diffraction and identify promising areas of future development.
Theorems on Positive Data: On the Uniqueness of NMF
Laurberg, Hans; Christensen, Mads Græsbøll; Plumbley, Mark D.; Hansen, Lars Kai; Jensen, Søren Holdt
2008-01-01
We investigate the conditions for which nonnegative matrix factorization (NMF) is unique and introduce several theorems which can determine whether the decomposition is in fact unique or not. The theorems are illustrated by several examples showing the use of the theorems and their limitations. We have shown that corruption of a unique NMF matrix by additive noise leads to a noisy estimation of the noise-free unique solution. Finally, we use a stochastic view of NMF to analyze which characterization of the underlying model will result in an NMF with small estimation errors. PMID:18497868
Wigner-Araki-Yanase theorem on distinguishability
Miyadera, Takayuki; Imai, Hideki
2006-08-15
The presence of an additive-conserved quantity imposes a limitation on the measurement process. According to the Wigner-Araki-Yanase theorem, perfect repeatability and distinguishability of the apparatus cannot be attained simultaneously. Instead of repeatability, in this paper, the distinguishability in both systems is examined. We derive a trade-off inequality between the distinguishability of the final states on the system and the one on the apparatus. An inequality shows that perfect distinguishability of both systems cannot be attained simultaneously.
Manipulating nutrient limitation using modified local soils: A case study at Lake Taihu (China).
Wang, Lijing; Pan, Gang; Shi, Wenqing; Wang, Zhibin; Zhang, Honggang
2016-09-15
The effect of geo-engineering materials of chitosan modified local soil (MLS) on nutrient limitation was studied in comparable whole ponds in Lake Taihu in October 2013. After 20 kg MLS were sprayed in the whole water pond (400 m(2)), the chlorophyll-a (Chl-a) concentration was decreased from 42 to 18 μg L(-1) within 2 h and remained below 20 μg L(-1) in the following 15 months, while the average Chl-a was 36 μg L(-1) in the control pond throughout the experiment. In situ nutrient addition bioassay experiments indicated that the nutrient limitation was shifted from nitrogen (N) and phosphorus (P) co-limitation to P limitation after MLS treatment from October 2013 to March 2014 compared to the control pond. In the cyanobacterial bloom season of June 2014, N and P co-limitation remained and N was the primary limiting nutrient and P was a secondary one in the control pond where phytoplankton biomass showed significant increase by N addition and further increase by N + P additions, while both N and P became the limiting nutrient for phytoplankton growth where only combined N and P additions showed significant Chl-a stimulation in the treatment pond. In the next summer (June 2014), a cyanobacteria-dominated state still remained in the control pond but chlorophytes, bacillariophytes and cyanophytes distributed equally and submerged vegetation was largely restored in the treatment pond. Meanwhile, the upper limiting concentration of DIN was enhanced from 0.8 to 1.5 mg L(-1) and SRP from 0.1 to 0.3 mg L(-1) compared to the control pond. This study indicates that nutrient limitation can be manipulated by using MLS technology. PMID:27244294
Geometry of the Adiabatic Theorem
ERIC Educational Resources Information Center
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Roo: A parallel theorem prover
Lusk, E.L.; McCune, W.W.; Slaney, J.K.
1991-11-01
We describe a parallel theorem prover based on the Argonne theorem-proving system OTTER. The parallel system, called Roo, runs on shared-memory multiprocessors such as the Sequent Symmetry. We explain the parallel algorithm used and give performance results that demonstrate near-linear speedups on large problems.
A Decomposition Theorem for Finite Automata.
ERIC Educational Resources Information Center
Santa Coloma, Teresa L.; Tucci, Ralph P.
1990-01-01
Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)
Correlation dimension Wonderland theorems
NASA Astrophysics Data System (ADS)
Carvalho, Silas L.; de Oliveira, César R.
2016-06-01
Existence of generic sets of self-adjoint operators, related to correlation dimensions of spectral measures, is investigated in separable Hilbert spaces. Typical results say that, given an orthonormal basis, the set of operators whose corresponding spectral measures are both 0-lower and 1-upper correlation dimensional is generic. The proofs rely on details of the relations among Fourier transform of spectral measures and Hausdorff and packing measures on the real line. Then such results are naturally combined with the Wonderland theorem. Applications are to classes of discrete one-dimensional Schrödinger operators and general (bounded) self-adjoint operators as well. Physical consequences include a proof of exotic dynamical behavior of singular continuous spectrum in some settings.
Rossi, Tuomas P. Sakko, Arto; Puska, Martti J.; Lehtola, Susi; Nieminen, Risto M.
2015-03-07
We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate that the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.
Local adaptation limits lifetime reproductive success of dispersers in a wild salmon metapopulation.
Peterson, Daniel A; Hilborn, Ray; Hauser, Lorenz
2014-01-01
Demographic and evolutionary dynamics in wild metapopulations are critically affected by the balance between dispersal and local adaptation. Where populations are demographically interconnected by migration, gene flow is often assumed to prevent local adaptation. However, reduced fitness of immigrants may limit gene flow between populations adapted to distinct habitat types, although direct quantification of the lifetime reproductive success of immigrants in the wild is lacking. Here, we show that dispersers between stream-spawning populations of sockeye salmon (Oncorhynchus nerka) had similar reproductive success to those that spawned in their natal stream, whereas dispersers from a different habitat (nearby lake beaches) produced half as many offspring. The stream- and beach-spawning ecotypes exhibited striking morphological differences despite their close spatial proximity, yet dispersal from the beach to the streams was more common than dispersal between streams, presenting empirical evidence that variation in immigrant reproductive success is important for the maintenance of intraspecific biodiversity. PMID:24739514
Rossi, Tuomas P; Lehtola, Susi; Sakko, Arto; Puska, Martti J; Nieminen, Risto M
2015-03-01
We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate that the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond. PMID:25747068
Code of Federal Regulations, 2012 CFR
2012-04-01
... the WIA administrative cost limits for States and local areas apply to NFJP grants? No, under 20 CFR... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Do the WIA administrative cost limits for States and local areas apply to NFJP grants? 669.555 Section 669.555 Employees' Benefits EMPLOYMENT...
Code of Federal Regulations, 2014 CFR
2014-04-01
... the WIA administrative cost limits for States and local areas apply to NFJP grants? No, under 20 CFR... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Do the WIA administrative cost limits for States and local areas apply to NFJP grants? 669.555 Section 669.555 Employees' Benefits EMPLOYMENT...
Code of Federal Regulations, 2013 CFR
2013-04-01
... the WIA administrative cost limits for States and local areas apply to NFJP grants? No, under 20 CFR... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Do the WIA administrative cost limits for States and local areas apply to NFJP grants? 669.555 Section 669.555 Employees' Benefits EMPLOYMENT...
Phase space localization for anti-de Sitter quantum mechanics and its zero curvature limit
NASA Technical Reports Server (NTRS)
Elgradechi, Amine M.
1993-01-01
Using techniques of geometric quantization and SO(sub 0)(3,2)-coherent states, a notion of optimal localization on phase space is defined for the quantum theory of a massive and spinning particle in anti-de Sitter space time. It is shown that this notion disappears in the zero curvature limit, providing one with a concrete example of the regularizing character of the constant (nonzero) curvature of the anti-de Sitter space time. As a byproduct a geometric characterization of masslessness is obtained.
A generalized antenna theorem for broadband pulses
NASA Astrophysics Data System (ADS)
Johnson, Michael A.
1989-03-01
Using a very general argument, one can place an upper limit on the fluence that can be delivered to a distant point by passing a pulse with finite energy through an aperture of finite area. Based on a time-dependent form of Huygen's principle, shown is the maximum possible fluence produced by an arbitrary scalar field passing through an aperture to an observation point is about equal to the fluence produced by a nearly monochromatic pulse of the same energy. This fictitious pulse uniformly illuminates the aperture and converges to a geometric focal spot at the observation point. The frequency of the monochromatic wave is made equal to the aperture-averaged root-mean-square frequency of the actual diffracting field. Thus, a pulse with arbitrary time dependence satisfies an antenna theorem very similar to the more well-known version of the theorem satisfied by monochromatic waves.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Local Television Broadcast Signals. 2201.9 Section 2201.9 Agriculture Regulations of the Department of... REGULATIONS General § 2201.9 Limitation on the applicability of the definition of Local Television Broadcast Signals. Notwithstanding the definition of Local Television Broadcast Signals provided in § 2201.1 of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Local Television Broadcast Signals. 2201.9 Section 2201.9 Agriculture Regulations of the Department of... REGULATIONS General § 2201.9 Limitation on the applicability of the definition of Local Television Broadcast Signals. Notwithstanding the definition of Local Television Broadcast Signals provided in § 2201.1 of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Local Television Broadcast Signals. 2201.9 Section 2201.9 Agriculture Regulations of the Department of... REGULATIONS General § 2201.9 Limitation on the applicability of the definition of Local Television Broadcast Signals. Notwithstanding the definition of Local Television Broadcast Signals provided in § 2201.1 of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Local Television Broadcast Signals. 2201.9 Section 2201.9 Agriculture Regulations of the Department of... REGULATIONS General § 2201.9 Limitation on the applicability of the definition of Local Television Broadcast Signals. Notwithstanding the definition of Local Television Broadcast Signals provided in § 2201.1 of...
Analogues of Chernoff's theorem and the Lie-Trotter theorem
NASA Astrophysics Data System (ADS)
Neklyudov, Alexander Yu
2009-10-01
This paper is concerned with the abstract Cauchy problem \\dot x=\\mathrm{A}x, x(0)=x_0\\in\\mathscr{D}(\\mathrm{A}), where \\mathrm{A} is a densely defined linear operator on a Banach space \\mathbf X. It is proved that a solution x(\\,\\cdot\\,) of this problem can be represented as the weak limit \\lim_{n\\to\\infty}\\{\\mathrm F(t/n)^nx_0\\}, where the function \\mathrm F\\colon \\lbrack 0,\\infty)\\mapsto\\mathscr L(\\mathrm X) satisfies the equality \\mathrm F'(0)y=\\mathrm{A}y, y\\in\\mathscr{D}(\\mathrm{A}), for a natural class of operators. As distinct from Chernoff's theorem, the existence of a global solution to the Cauchy problem is not assumed. Based on this result, necessary and sufficient conditions are found for the linear operator \\mathrm{C} to be closable and for its closure to be the generator of a C_0-semigroup. Also, we obtain new criteria for the sum of two generators of C_0-semigroups to be the generator of a C_0-semigroup and for the Lie-Trotter formula to hold. Bibliography: 13 titles.
Crop response to localized organic amendment in soils with limiting physical properties
NASA Astrophysics Data System (ADS)
Lordan, Joan; Pascual, Miquel; Fonseca, Francisco; Villar, Josep Maria; Montilla, Victor; Papió, Josep; Rufat, Josep
2013-04-01
This 2-year study evaluated the use of rice husk as a localized organic amendment in a soil with limiting physical properties. The research was conducted in a commercial peach orchard planted in 2011 using a ridge planting system. Six soil and water management treatments were evaluated in 18 experimental units, which were set up in the field using a randomized complete block design. The treatments were compared both in terms of soil physical properties and crop response. Soil amendment with rice husk was the most effective technique. It improved soil conditions (soil infiltration and soil porosity), providing a better soil environment for root activity and thereby resulted in better crop performance. Concerning growth parameters, the amended treatment presented the highest overall values without negatively affecting crop water status. These techniques were suitable for mitigating the effects of soils with limiting physical conditions. Localized applications of amendments, as proposed in this work, imply an important reduction in application rates. It is important to consider an efficient use of by-products since there is a growing interest in industrial and agronomical exploitations.
Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.
1984-10-19
A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.
Nonrenormalization Theorems without Supersymmetry.
Cheung, Clifford; Shen, Chia-Hsien
2015-08-14
We derive a new class of one-loop nonrenormalization theorems that strongly constrain the running of higher dimension operators in a general four-dimensional quantum field theory. Our logic follows from unitarity: cuts of one-loop amplitudes are products of tree amplitudes, so if the latter vanish then so too will the associated divergences. Finiteness is then ensured by simple selection rules that zero out tree amplitudes for certain helicity configurations. For each operator we define holomorphic and antiholomorphic weights, (w,w[over ¯])=(n-h,n+h), where n and h are the number and sum over helicities of the particles created by that operator. We argue that an operator O_{i} can only be renormalized by an operator O_{j} if w_{i}≥w_{j} and w[over ¯]_{i}≥w[over ¯]_{j}, absent nonholomorphic Yukawa couplings. These results explain and generalize the surprising cancellations discovered in the renormalization of dimension six operators in the standard model. Since our claims rely on unitarity and helicity rather than an explicit symmetry, they apply quite generally. PMID:26317712
Comparison theorems for causal diamonds
NASA Astrophysics Data System (ADS)
Berthiere, Clément; Gibbons, Gary; Solodukhin, Sergey N.
2015-09-01
We formulate certain inequalities for the geometric quantities characterizing causal diamonds in curved and Minkowski spacetimes. These inequalities involve the redshift factor which, as we show explicitly in the spherically symmetric case, is monotonic in the radial direction, and it takes its maximal value at the center. As a by-product of our discussion we rederive Bishop's inequality without assuming the positivity of the spatial Ricci tensor. We then generalize our considerations to arbitrary, static and not necessarily spherically symmetric, asymptotically flat spacetimes. In the case of spacetimes with a horizon our generalization involves the so-called domain of dependence. The respective volume, expressed in terms of the duration measured by a distant observer compared with the volume of the domain in Minkowski spacetime, exhibits behaviors which differ if d =4 or d >4 . This peculiarity of four dimensions is due to the logarithmic subleading term in the asymptotic expansion of the metric near infinity. In terms of the invariant duration measured by a comoving observer associated with the diamond we establish an inequality which is universal for all d . We suggest some possible applications of our results including comparison theorems for entanglement entropy, causal set theory, and fundamental limits on computation.
Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes
NASA Astrophysics Data System (ADS)
Woolgar, Eric; Wylie, William
2016-02-01
We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the "pure Bakry-Émery" N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able to extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (-∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (-∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.
NASA Astrophysics Data System (ADS)
Kushner, Paul J.; Shepherd, Theodore G.
1995-05-01
A study of the semi-geostrophic (SG) geophysical fluid dynamics is presented. SG dynamics shares certain attractive properties with the better known and more widely used quasi-geostrophic (QG) model, but is also a good prototype for balanced models that are more accurate than QG dynamics. An invariant for the semi-geostrophic equations is derived and use it to obtain: (1) a linear stability theorem analogous to Arnold's first theorem; and (2) a small-amplitude local conservation law for invariant, obeying the group-velocity in the WKB limit. The results are analogous to their quasi-geostrophic forms, and reduce to those forms in the limit of small Rossby number.
Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.
1986-01-01
A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.
Coherent cyclotron motion beyond Kohn's theorem
NASA Astrophysics Data System (ADS)
Maag, T.; Bayer, A.; Baierl, S.; Hohenleutner, M.; Korn, T.; Schüller, C.; Schuh, D.; Bougeard, D.; Lange, C.; Huber, R.; Mootz, M.; Sipe, J. E.; Koch, S. W.; Kira, M.
2016-02-01
In solids, the high density of charged particles makes many-body interactions a pervasive principle governing optics and electronics. However, Walter Kohn found in 1961 that the cyclotron resonance of Landau-quantized electrons is independent of the seemingly inescapable Coulomb interaction between electrons. Although this surprising theorem has been exploited in sophisticated quantum phenomena, such as ultrastrong light-matter coupling, superradiance and coherent control, the complete absence of nonlinearities excludes many intriguing possibilities, such as quantum-logic protocols. Here, we use intense terahertz pulses to drive the cyclotron response of a two-dimensional electron gas beyond the protective limits of Kohn's theorem. Anharmonic Landau ladder climbing and distinct terahertz four- and six-wave mixing signatures occur, which our theory links to dynamic Coulomb effects between electrons and the positively charged ion background. This new context for Kohn's theorem unveils previously inaccessible internal degrees of freedom of Landau electrons, opening up new realms of ultrafast quantum control for electrons.
Spatial resolution limits for the localization of noise sources using direct sound mapping
NASA Astrophysics Data System (ADS)
Fernandez Comesaña, D.; Holland, K. R.; Fernandez-Grande, E.
2016-08-01
One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has extensively been used for many years to locate sound sources. However, it is not yet well defined when two sources should be regarded as resolved by means of direct sound mapping. This paper derives the limits of the direct representation of sound pressure, particle velocity and sound intensity by exploring the relationship between spatial resolution, noise level and geometry. The proposed expressions are validated via simulations and experiments. It is shown that particle velocity mapping yields better results for identifying closely spaced sound sources than sound pressure or sound intensity, especially in the acoustic near-field.
Avoiding the local-minimum problem in multi-agent systems with limited sensing and communication
NASA Astrophysics Data System (ADS)
Okamoto, Makiko; Akella, Maruthi R.
2016-06-01
In this paper, we consider a control problem for nonholonomic multi-agent systems in which agents and obstacles operate within a circular-shaped work area. We assume that agents only have limited sensing and communication ranges. We propose a novel control scheme using potential functions that drives agents from the initial to the goal configuration while avoiding collision with other agents, obstacles, and the boundary of the work area. The control scheme employs an avoidance strategy that ensures that the agents are never trapped at local minima that are typically encountered with most potential function-based approaches. A numerical simulation is presented to demonstrate the validity and effectiveness of the proposed control scheme.
Multi Sensor Fusion Framework for Indoor-Outdoor Localization of Limited Resource Mobile Robots
Marín, Leonardo; Vallés, Marina; Soriano, Ángel; Valera, Ángel; Albertos, Pedro
2013-01-01
This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor and an inertial measurement unit (IMU) on an event based schedule, using fewer resources (execution time and bandwidth) but with similar performance when compared to the traditional methods. The event is defined to reflect the necessity of the global information, when the estimation error covariance exceeds a predefined limit. The proposed experimental platforms are based on the LEGO Mindstorm NXT, and consist of a differential wheel mobile robot navigating indoors with a zenithal camera as global sensor, and an Ackermann steering mobile robot navigating outdoors with a SBG Systems GPS accessed through an IGEP board that also serves as datalogger. The IMU in both robots is built using the NXT motor encoders along with one gyroscope, one compass and two accelerometers from Hitecnic, placed according to a particle based dynamic model of the robots. The tests performed reflect the correct performance and low execution time of the proposed framework. The robustness and stability is observed during a long walk test in both indoors and outdoors environments. PMID:24152933
Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots.
Marín, Leonardo; Vallés, Marina; Soriano, Ángel; Valera, Ángel; Albertos, Pedro
2013-01-01
This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor and an inertial measurement unit (IMU) on an event based schedule, using fewer resources (execution time and bandwidth) but with similar performance when compared to the traditional methods. The event is defined to reflect the necessity of the global information, when the estimation error covariance exceeds a predefined limit. The proposed experimental platforms are based on the LEGO Mindstorm NXT, and consist of a differential wheel mobile robot navigating indoors with a zenithal camera as global sensor, and an Ackermann steering mobile robot navigating outdoors with a SBG Systems GPS accessed through an IGEP board that also serves as datalogger. The IMU in both robots is built using the NXT motor encoders along with one gyroscope, one compass and two accelerometers from Hitecnic, placed according to a particle based dynamic model of the robots. The tests performed reflect the correct performance and low execution time of the proposed framework. The robustness and stability is observed during a long walk test in both indoors and outdoors environments. PMID:24152933
NASA Astrophysics Data System (ADS)
Cartin, Daniel
2015-10-01
At this point in time, there is very little empirical evidence on the likelihood of a space-faring species originating in the biosphere of a habitable world. However, there is a tension between the expectation that such a probability is relatively high (given our own origins on Earth), and the lack of any basis for believing the Solar System has ever been visited by an extraterrestrial colonization effort. From the latter observational fact, this paper seeks to place upper limits on the probability of an interstellar civilization arising on a habitable planet in its stellar system, using a percolation model to simulate the progress of such a hypothetical civilization's colonization efforts in the local Solar neighbourhood. To be as realistic as possible, the actual physical positions and characteristics of all stars within 40 parsecs of the Solar System are used as possible colony sites in the percolation process. If an interstellar civilization is very likely to have such colonization programmes, and they can travel over large distances, then the upper bound on the likelihood of such a species arising per habitable world is of the order of 10-3 on the other hand, if civilizations are not prone to colonize their neighbours, or do not travel very far, then the upper limiting probability is much larger, even of order one.
Tau leaping of stiff stochastic chemical systems via local central limit approximation
Yang, Yushu; Rathinam, Muruhan
2013-06-01
Stiffness manifests in stochastic dynamic systems in a more complex manner than in deterministic systems; it is not only important for a time-stepping method to remain stable but it is also important for the method to capture the asymptotic variances accurately. In the context of stochastic chemical systems, time stepping methods are known as tau leaping. Well known existing tau leaping methods have shortcomings in this regard. The implicit tau method is far more stable than the trapezoidal tau method but underestimates the asymptotic variance. On the other hand, the trapezoidal tau method which estimates the asymptotic variance exactly for linear systems suffers from the fact that the transients of the method do not decay fast enough in the context of very stiff systems. We propose a tau leaping method that possesses the same stability properties as the implicit method while it also captures the asymptotic variance with reasonable accuracy at least for the test system S{sub 1}↔S{sub 2}. The proposed method uses a central limit approximation (CLA) locally over the tau leaping interval and is referred to as the LCLA-τ. The CLA predicts the mean and covariance as solutions of certain differential equations (ODEs) and for efficiency we solve these using a single time step of a suitable low order method. We perform a mean/covariance stability analysis of various possible low order schemes to determine the best scheme. Numerical experiments presented show that LCLA-τ performs favorably for stiff systems and that the LCLA-τ is also able to capture bimodal distributions unlike the CLA itself. The proposed LCLA-τ method uses a split implicit step to compute the mean update. We also prove that any tau leaping method employing a split implicit step converges in the fluid limit to the implicit Euler method as applied to the fluid limit differential equation.
Tau leaping of stiff stochastic chemical systems via local central limit approximation
NASA Astrophysics Data System (ADS)
Yang, Yushu; Rathinam, Muruhan
2013-06-01
Stiffness manifests in stochastic dynamic systems in a more complex manner than in deterministic systems; it is not only important for a time-stepping method to remain stable but it is also important for the method to capture the asymptotic variances accurately. In the context of stochastic chemical systems, time stepping methods are known as tau leaping. Well known existing tau leaping methods have shortcomings in this regard. The implicit tau method is far more stable than the trapezoidal tau method but underestimates the asymptotic variance. On the other hand, the trapezoidal tau method which estimates the asymptotic variance exactly for linear systems suffers from the fact that the transients of the method do not decay fast enough in the context of very stiff systems. We propose a tau leaping method that possesses the same stability properties as the implicit method while it also captures the asymptotic variance with reasonable accuracy at least for the test system S1↔S2. The proposed method uses a central limit approximation (CLA) locally over the tau leaping interval and is referred to as the LCLA-τ. The CLA predicts the mean and covariance as solutions of certain differential equations (ODEs) and for efficiency we solve these using a single time step of a suitable low order method. We perform a mean/covariance stability analysis of various possible low order schemes to determine the best scheme. Numerical experiments presented show that LCLA-τ performs favorably for stiff systems and that the LCLA-τ is also able to capture bimodal distributions unlike the CLA itself. The proposed LCLA-τ method uses a split implicit step to compute the mean update. We also prove that any tau leaping method employing a split implicit step converges in the fluid limit to the implicit Euler method as applied to the fluid limit differential equation.
NASA Astrophysics Data System (ADS)
Lampart, Jonas; Lewin, Mathieu
2015-12-01
We prove a generalized version of the RAGE theorem for N-body quantum systems. The result states that only bound states of systems with {0 ≤slant n ≤slant N} particles persist in the long time average. The limit is formulated by means of an appropriate weak topology for many-body systems, which was introduced by the second author in a previous work, and is based on reduced density matrices. This topology is connected to the weak-* topology of states on the algebras of canonical commutation or anti-commutation relations, and we give a formulation of our main result in this setting.
An evaluation based theorem prover
Degano, P.; Sirovich, F.
1985-01-01
A noninductive method for mechanical theorem proving is presented, which deals with a recursive class of theorems involving iterative functions and predicates. The method is based on the symbolic evaluation of the formula to be proved and requires no inductive step. Induction is avoided since a metatheorem is proved which establishes the conditions on the evaluation of any formula which are sufficient to assure that the formula actually holds. The proof of a supposed theorem consists in evaluating the formula and checking the conditions. The method applies to assertions that involve element-by-element checking of typed homogeneous sequences which are hierarchically constructed out of the primitive type consisting of the truth values. The sequences can be computed by means of iterative and ''accumulator'' functions. The paper includes the definition of a simple typed iterative language in which both predicates and functions are expressed. The language precisely defines the scope of the proof method. The method proves a wide variety of theorems about iterative functions on sequences, including that which states that REVERSE is its own inverse, and that it can be inversely distributed on APPEND, that FLATTEN can be distributed on APPEND and that each element of any sequence is a MEMBER of the sequence itself. Although the method is not complete, it does provide the basis for an extremely efficient tool to be used in a complete mechanical theorem prover.
Nambu-Goldstone theorem and spin-statistics theorem
NASA Astrophysics Data System (ADS)
Fujikawa, Kazuo
2016-05-01
On December 19-21 in 2001, we organized a yearly workshop at Yukawa Institute for Theoretical Physics in Kyoto on the subject of “Fundamental Problems in Field Theory and their Implications”. Prof. Yoichiro Nambu attended this workshop and explained a necessary modification of the Nambu-Goldstone theorem when applied to non-relativistic systems. At the same workshop, I talked on a path integral formulation of the spin-statistics theorem. The present essay is on this memorable workshop, where I really enjoyed the discussions with Nambu, together with a short comment on the color freedom of quarks.
New double soft emission theorems
NASA Astrophysics Data System (ADS)
Cachazo, Freddy; He, Song; Yuan, Ellis Ye
2015-09-01
We study the behavior of the tree-level S-matrix of a variety of theories as two particles become soft. By analogy with the recently found subleading soft theorems for gravitons and gluons, we explore subleading terms in double soft emissions. We first consider double soft scalar emissions and find subleading terms that are controlled by the angular momentum operator acting on hard particles. The order of the subleading theorems depends on the presence or not of color structures. Next we obtain a compact formula for the leading term in a double soft photon emission. The theories studied are a special Galileon, Dirac-Born-Infeld, Einstein-Maxwell-Scalar, nonlinear sigma model and Yang-Mills-Scalar. We use the recently found Cachazo-He-Yuan representation of these theories in order to give a simple proof of the leading order part of all these theorems.
The Variation Theorem Applied to H-2+: A Simple Quantum Chemistry Computer Project
ERIC Educational Resources Information Center
Robiette, Alan G.
1975-01-01
Describes a student project which requires limited knowledge of Fortran and only minimal computing resources. The results illustrate such important principles of quantum mechanics as the variation theorem and the virial theorem. Presents sample calculations and the subprogram for energy calculations. (GS)
Khinchin Theorem and Anomalous Diffusion
NASA Astrophysics Data System (ADS)
Lapas, Luciano C.; Morgado, Rafael; Vainstein, Mendeli H.; Rubí, J. Miguel; Oliveira, Fernando A.
2008-12-01
A recent Letter [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.190601] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949)] may fail in some systems. In this Letter we show that for all ranges of normal and anomalous diffusion described by a generalized Langevin equation the Khinchin theorem holds.
Experimentally testing Bell's theorem based on Hardy's nonlocal ladder proofs
NASA Astrophysics Data System (ADS)
Guo, WeiJie; Fan, DaiHe; Wei, LianFu
2015-02-01
Bell's theorem argues the existence of quantum nonlocality which goes basically against the hidden variable theory (HVT). Many experiments have been done via testing the violations of Bell's inequalities to statistically verify the Bell's theorem. Alternatively, by testing the Hardy's ladder proofs we experimentally demonstrate the deterministic violation of HVT and thus confirm the quantum nonlocality. Our tests are implemented with non-maximal entangled photon pairs generated by spontaneous parametric down conversions (SPDCs). We show that the degree freedom of photon entanglement could be significantly enhanced by using interference filters. As a consequence, the Hardy's ladder proofs could be tested and Bell's theorem is verified robustly. The probability of violating the locality reach to 41.9%, which is close to the expectably ideal value 46.4% for the photon pairs with degree of entanglement ɛ = 0.93. The higher violating probability is possible by further optimizing the experimental parameters.
Towards a novel no-hair theorem for black holes
Hertog, Thomas
2006-10-15
We provide strong numerical evidence for a new no-scalar-hair theorem for black holes in general relativity, which rules out spherical scalar hair of static four-dimensional black holes if the scalar field theory, when coupled to gravity, satisfies the Positive Energy Theorem. This sheds light on the no-scalar-hair conjecture for Calabi-Yau compactifications of string theory, where the effective potential typically has negative regions but where supersymmetry ensures the total energy is always positive. In theories where the scalar tends to a negative local maximum of the potential at infinity, we find the no-scalar-hair theorem holds provided the asymptotic conditions are invariant under the full anti-de Sitter symmetry group.
On the role of sharp chains in the transport theorem
NASA Astrophysics Data System (ADS)
Falach, L.; Segev, R.
2016-03-01
A generalized transport theorem for convecting irregular domains is presented in the setting of Federer's geometric measure theory. A prototypical r-dimensional domain is viewed as a flat r-chain of finite mass in an open set of an n-dimensional Euclidean space. The evolution of such a generalized domain in time is assumed to follow a continuous succession of Lipschitz embedding so that the spatial gradient may be nonexistent in a subset of the domain with zero measure. The induced curve is shown to be continuous with respect to the flat norm and differential with respect to the sharp norm on currents in Rn. A time-dependent property is naturally assigned to the evolving region via the action of an r-cochain on the current associated with the domain. Applying a representation theorem for cochains, the properties are shown to be locally represented by an r-form. Using these notions, a generalized transport theorem is presented.
Geometry underlying no-hidden-variable theorems
NASA Astrophysics Data System (ADS)
Fivel, Daniel I.
1991-07-01
The set of orientations of a measuring device (e.g., a Stern-Gerlach magnet) produced by the action of a Lie group constitutes a honmogeneous space S (e.g., a sphere). A hidden-variable measure determines a metric D on S, the triangle inequality being Bell's inequality. But identification of S with Hilbert-space projectors induces a locally convex metric d on S. The Einstein-Podolsky-Rosen (EPR) hypotheses imply that D=d2, which is impossible because the square of a locally convex metric cannot be a metric. This proves the Bell-EPR theorem. Classical systems avoid the contradiction by allowing only values d=0,1. The ``watchdog'' effect is shown to result from the form of the quantum-mechanical metric.
NASA Astrophysics Data System (ADS)
Ivanov, Martin; Kotlarski, Sven; Schär, Christoph
2015-04-01
The Swiss CH2011 scenarios provide a portfolio of climate change scenarios for the region of Switzerland, specifically tailored for use in climate impact research. Although widely applied by a variety of end-users, these scenarios are subject to several limitations related to the underlying delta change methodology. Examples are difficulties to appropriately account for changes in the spatio-temporal variability of meteorological fields and for changes in extreme events. The recently launched ELAPSE project (Enhancing local and regional climate change projections for Switzerland) is connected to the EU COST Action VALUE (www.value-cost.eu) and aims at complementing CH2011 by further scenario products, including a bias-corrected version of daily scenarios at the site scale. For this purpose the well-established empirical quantile mapping (QM) methodology is employed. Here, daily temperature and precipitation output of 15 GCM-RCM model chains of the ENSEMBLES project is downscaled and bias-corrected to match observations at weather stations in Switzerland. We consider established QM techniques based on all empirical quantiles or linear interpolation between the empirical percentiles. In an attempt to improve the downscaling of extreme precipitation events, we also apply a parametric approximation of the daily precipitation distribution by a dynamically weighted mixture of a Gamma distribution for the bulk and a Pareto distribution for the right tail for the first time in the context of QM. All techniques are evaluated and intercompared in a cross-validation framework. The statistical downscaling substantially improves virtually all considered distributional and temporal characteristics as well as their spatial distribution. The empirical methods have in general very similar performances. The parametric method does not show an improvement over the empirical ones. Critical sites and seasons are highlighted and discussed. Special emphasis is placed on investigating the
Expanding the Interaction Equivalency Theorem
ERIC Educational Resources Information Center
Rodriguez, Brenda Cecilia Padilla; Armellini, Alejandro
2015-01-01
Although interaction is recognised as a key element for learning, its incorporation in online courses can be challenging. The interaction equivalency theorem provides guidelines: Meaningful learning can be supported as long as one of three types of interactions (learner-content, learner-teacher and learner-learner) is present at a high level. This…
Discovering the Inscribed Angle Theorem
ERIC Educational Resources Information Center
Roscoe, Matt B.
2012-01-01
Learning to play tennis is difficult. It takes practice, but it also helps to have a coach--someone who gives tips and pointers but allows the freedom to play the game on one's own. Learning to act like a mathematician is a similar process. Students report that the process of proving the inscribed angle theorem is challenging and, at times,…
Generalized Pump-restriction Theorem
Sinitsyn, Nikolai A; Chernyak, Vladimir Y
2008-01-01
We formulate conditions under which periodic modulations of parameters on a finite graph with stochastic transitions among its nodes do not lead to overall pump currents through any given link. Our theorem unifies previously known results with the new ones and provides a universal approach to explore futher restrictions on stochastic pump effect in non-adiabatically driven systems with detailed balance.
Equivalence theorem and infrared divergences
Torma, T.
1996-08-01
We look at the equivalence theorem as a statement about the absence of polynomial infrared divergences when {ital m}{sub {ital W}}{r_arrow}0. We prove their absence in a truncated toy model and conjecture that, if they exist at all, they are due to couplings between light particles. {copyright} {ital 1996 The American Physical Society.}
Angle Defect and Descartes' Theorem
ERIC Educational Resources Information Center
Scott, Paul
2006-01-01
Rene Descartes lived from 1596 to 1650. His contributions to geometry are still remembered today in the terminology "Descartes' plane". This paper discusses a simple theorem of Descartes, which enables students to easily determine the number of vertices of almost every polyhedron. (Contains 1 table and 2 figures.)
An implicit sampling theorem for bounded bandlimited functions
NASA Technical Reports Server (NTRS)
Bar-David, I.
1974-01-01
A rigorous proof of the 'strong bias tone' scheme is embodied in the implicit sampling theorem. The representation of signals that are sample functions of possible nonstationary random processes being of principal interest, the proof could not directly invoke results from classical analysis, which depend on the existence of the Fourier transform of the function under consideration; rather, it is based on Zakai's (1965) theorem on the series expansion of functions, band-limited under a suitably extended definition. A practical circuit that restores an approximate version of the signal from its sine-wave-crossings is presented and possible improvements to it are discussed.
Extension of Euler's theorem to n-dimensional spaces
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.
1989-01-01
Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions. Equivalent formulations of the theorem are given and proved in a way which does not limit them to the three-dimensional Euclidean space. Thus, the equivalent theorems hold in other dimensions. The proof of one formulation presents an algorithm which shows how to compute an angular-difference matrix that represents a single rotation which is equivalent to the sequence of rotations that have generated the final n-D orientation. This algorithm results also in a constant angular velocity which, when applied to the initial orientation, eventually yields the final orientation regardless of what angular velocity generated the latter. The extension of the theorem is demonstrated in a four-dimensional numerical example.
Extension to Eulers's theorem to n-dimensional spaces
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.
1989-01-01
Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions. Equivalent formulations of the theorem are given in this paper and proven in a way which does not limit them to the three-dimensional Euclidean space. Thus, the equivalent theorems hold in other dimensions. The proof of one formulation presents an algorithm which shows how to compute an angular-difference matrix that represents a single rotation which is equivalent to the sequence of rotations that have generated the final n-D orientation. This algorithm results also in a constant angular-velocity which, when applied to the initial orientation, yields eventually the final orientation regardless of what angular velocity generated the latter. Finally, the extension of the theorem is demonstrated in a four-dimensional numerical example.
Analytical proof of Gisin's theorem for three qubits
Choudhary, Sujit K.; Ghosh, Sibasish; Kar, Guruprasad; Rahaman, Ramij
2010-04-15
Gisin's theorem assures that for any pure bipartite entangled state, there is violation of the inequality of Bell and of Clauser, Horne, Shimony, and Holt, revealing its contradiction with local realistic model. Whether a similar result holds for three-qubit pure entangled states remained unresolved. We show analytically that all three-qubit pure entangled states violate a Bell-type inequality, derived on the basis of local realism, by exploiting the Hardy's nonlocality argument.
A Fundamental Theorem on Particle Acceleration
Xie, Ming
2003-05-01
A fundamental theorem on particle acceleration is derived from the reciprocity principle of electromagnetism and a rigorous proof of the theorem is presented. The theorem establishes a relation between acceleration and radiation, which is particularly useful for insightful understanding of and practical calculation about the first order acceleration in which energy gain of the accelerated particle is linearly proportional to the accelerating field.
Investigating the Fundamental Theorem of Calculus
ERIC Educational Resources Information Center
Johnson, Heather L.
2010-01-01
The fundamental theorem of calculus, in its simplified complexity, connects differential and integral calculus. The power of the theorem comes not merely from recognizing it as a mathematical fact but from using it as a systematic tool. As a high school calculus teacher, the author developed and taught lessons on this fundamental theorem that were…
Generalizations of Ptolemy and Brahmagupta Theorems
ERIC Educational Resources Information Center
Ayoub, Ayoub B.
2007-01-01
The Greek astronomer Ptolemy of Alexandria (second century) and the Indian mathematician Brahmagupta (sixth century) each have a significant theorem named after them. Both theorems have to do with cyclic quadrilaterals. Ptolemy's theorem states that: In a cyclic quadrilateral, the product of the diagonals is equal to the sum of the products of two…
Pythagorean Theorem Proofs: Connecting Interactive Websites
ERIC Educational Resources Information Center
Lin, Cheng-Yao
2007-01-01
There are over 400 proofs of the Pythagorean Theorem. Some are visual proofs, others are algebraic. This paper features several proofs of the Pythagorean Theorem in different cultures--Greek, Chinese, Hindu and American. Several interactive websites are introduced to explore ways to prove this beautiful theorem. (Contains 8 figures.)
Bell's theorem, inference, and quantum transactions
NASA Astrophysics Data System (ADS)
Garrett, A. J. M.
1990-04-01
Bell's theorem is expounded as an analysis in Bayesian inference. Assuming the result of a spin measurement on a particle is governed by a causal variable internal (hidden, “local”) to the particle, one learns about it by making a spin measurement; thence about the internal variable of a second particle correlated with the first; and from there predicts the probabilistic result of spin measurements on the second particle. Such predictions are violated by experiment: locality/causality fails. The statistical nature of the observations rules out signalling; acausal, superluminal, or otherwise. Quantum mechanics is irrelevant to this reasoning, although its correct predictions of experiment imply that it has a nonlocal/acausal interpretation. Cramer's new transactional interpretation, which incorporates this feature by adapting the Wheeler-Feynman idea of advanced and retarded processes to the quantum laws, is advocated. It leads to an invaluable way of envisaging quantum processes. The usual paradoxes melt before this, and one, the “delayed choice” experiment, is chosen for detailed inspection. Nonlocality implies practical difficulties in influencing hidden variables, which provides a very plausible explanation for why they have not yet been found; from this standpoint, Bell's theorem reinforces arguments in favor of hidden variables.
Local Accountability in Vocational Education: A Theoretical Model and Its Limitations in Practice.
ERIC Educational Resources Information Center
Stecher, Brian M.; Hanser, Lawrence M.
A study sought to determine the extent to which local accountability systems exist in vocational education and to describe the nature of the underlying relationships between such programs and their constituents. Data were collected through interviews from two local vocational education programs in each of five states (California, Florida,…
McGarry, Conor K.; Bokrantz, Rasmus; O’Sullivan, Joe M.; Hounsell, Alan R.
2014-10-01
Efficacy of inverse planning is becoming increasingly important for advanced radiotherapy techniques. This study’s aims were to validate multicriteria optimization (MCO) in RayStation (v2.4, RaySearch Laboratories, Sweden) against standard intensity-modulated radiation therapy (IMRT) optimization in Oncentra (v4.1, Nucletron BV, the Netherlands) and characterize dose differences due to conversion of navigated MCO plans into deliverable multileaf collimator apertures. Step-and-shoot IMRT plans were created for 10 patients with localized prostate cancer using both standard optimization and MCO. Acceptable standard IMRT plans with minimal average rectal dose were chosen for comparison with deliverable MCO plans. The trade-off was, for the MCO plans, managed through a user interface that permits continuous navigation between fluence-based plans. Navigated MCO plans were made deliverable at incremental steps along a trajectory between maximal target homogeneity and maximal rectal sparing. Dosimetric differences between navigated and deliverable MCO plans were also quantified. MCO plans, chosen as acceptable under navigated and deliverable conditions resulted in similar rectal sparing compared with standard optimization (33.7 ± 1.8 Gy vs 35.5 ± 4.2 Gy, p = 0.117). The dose differences between navigated and deliverable MCO plans increased as higher priority was placed on rectal avoidance. If the best possible deliverable MCO was chosen, a significant reduction in rectal dose was observed in comparison with standard optimization (30.6 ± 1.4 Gy vs 35.5 ± 4.2 Gy, p = 0.047). Improvements were, however, to some extent, at the expense of less conformal dose distributions, which resulted in significantly higher doses to the bladder for 2 of the 3 tolerance levels. In conclusion, similar IMRT plans can be created for patients with prostate cancer using MCO compared with standard optimization. Limitations exist within MCO regarding conversion of navigated plans to
Mitaim, Sanya; Kosko, Bart
2014-11-01
We show that the main forbidden interval theorems of stochastic resonance hold for a correlation performance measure. Earlier theorems held only for performance measures based on mutual information or the probability of error detection. Forbidden interval theorems ensure that a threshold signal detector benefits from deliberately added noise if the average noise does not lie in an interval that depends on the threshold value. We first show that this result holds for correlation for all finite-variance noise and for all forms of infinite-variance stable noise. A second forbidden-interval theorem gives necessary and sufficient conditions for a local noise benefit in a bipolar signal system when the noise comes from a location-scale family. A third theorem gives a general condition for a local noise benefit for arbitrary signals with finite second moments and for location-scale noise. This result also extends forbidden intervals to forbidden bands of parameters. A fourth theorem gives necessary and sufficient conditions for a local noise benefit when both the independent signal and noise are normal. A final theorem derives necessary and sufficient conditions for forbidden bands when using arrays of threshold detectors for arbitrary signals and location-scale noise. PMID:25493756
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Do the WIA administrative cost limits for States and local areas apply to NFJP grants? 669.555 Section 669.555 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR NATIONAL FARMWORKER JOBS PROGRAM UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Under what limited conditions may a Local Board directly be a provider of core services, intensive services, or training services, or act as a One-Stop Operator? 661.310 Section 661.310 Employees' Benefits EMPLOYMENT AND TRAINING...
Aging Wiener-Khinchin Theorem.
Leibovich, N; Barkai, E
2015-08-21
The Wiener-Khinchin theorem shows how the power spectrum of a stationary random signal I(t) is related to its correlation function ⟨I(t)I(t+τ)⟩. We consider nonstationary processes with the widely observed aging correlation function ⟨I(t)I(t+τ)⟩∼t(γ)ϕ(EA)(τ/t) and relate it to the sample spectrum. We formulate two aging Wiener-Khinchin theorems relating the power spectrum to the time- and ensemble-averaged correlation functions, discussing briefly the advantages of each. When the scaling function ϕ(EA)(x) exhibits a nonanalytical behavior in the vicinity of its small argument we obtain the aging 1/f-type of spectrum. We demonstrate our results with three examples: blinking quantum dots, single-file diffusion, and Brownian motion in a logarithmic potential, showing that our approach is valid for a wide range of physical mechanisms. PMID:26340172
NASA Astrophysics Data System (ADS)
Miles, J. A.; Das, Diptaranjan; Simmons, Z. J.; Yavuz, D. D.
2015-09-01
We experimentally demonstrate the localization of excitation between hyperfine ground states of 87Rb atoms to as small as λ /13 -wide spatial regions. We use ultracold atoms trapped in a dipole trap and utilize electromagnetically induced transparency (EIT) for the atomic excitation. The localization is achieved by combining a spatially varying coupling laser (standing wave) with the intensity dependence of EIT. The excitation is fast (150 ns laser pulses) and the dark-state fidelity can be made higher than 94% throughout the standing wave. Because the width of the localized regions is much smaller than the wavelength of the driving light, traditional optical imaging techniques cannot resolve the localized features. Therefore, to measure the excitation profile, we use an autocorrelation-like method where we perform two EIT sequences separated by a time delay, during which we move the standing wave.
Krasilnikov, M. B. Kudryavtsev, A. A.; Kapustin, K. D.
2014-12-15
It is shown that the local approximation for computing the electron distribution function depends both on the ratio between the energy relaxation length and a characteristic plasma length and on the ratio between heating and ambipolar electric fields. In particular, the local approximation is not valid at the discharge periphery even at high pressure due to the fact that the ambipolar electric field practically always is larger than the heating electric field.
Subotnik, Joseph E; Sodt, Alex; Head-Gordon, Martin
2008-01-21
Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scaling. That theory selected which orbitals to correlate based only on the distances between the centers of different, localized orbitals, and the approximate potential energy surfaces were characterized as smooth using only visual identification. This paper now extends our previous algorithm in three important ways. First, locality is now based on both the distances between the centers of orbitals as well as the spatial extent of the orbitals. We find that, by accounting for the spatial extent of a delocalized orbital, one can account for electronic correlation in systems with some electronic delocalization using fast correlation methods designed around orbital locality. Second, we now enforce locality on not just the amplitudes (which measure the exact electron-electron correlation), but also on the two-electron integrals themselves (which measure the bare electron-electron interaction). Our conclusion is that we can bump integrals as well as amplitudes, thereby gaining a tremendous increase in speed and paradoxically increasing the accuracy of our LCCSD approach. Third and finally, we now make a rigorous definition of chemical smoothness as requiring that potential energy surfaces not support artificial maxima, minima, or inflection points. By looking at first and second derivatives from finite difference techniques, we demonstrate complete chemical smoothness of our potential energy surfaces (bumping both amplitudes and integrals). These results are significant both from a theoretical and from a computationally practical point of view. PMID:18205484
On Harnack's theorem and extensions
NASA Astrophysics Data System (ADS)
Costa, Antonio F.; Parlier, Hugo
Harnack's theorem states that the fixed points of an orientation reversing involution of a compact orientable surface of genus g are a set of k disjoint simple closed geodesic where 0≤ k≤ g+1 . The first goal of this article is to give a purely geometric, complete and self-contained proof of this fact. In the case where the fixed curves of the involution do not separate the surface, we prove an extension of this theorem, by exhibiting the existence of auxiliary invariant curves with interesting properties. Although this type of extension is well known (see, for instance, Comment. Math. Helv. 57(4): 603-626 (1982) and Transl. Math. Monogr., vol. 225, Amer. Math. Soc., Providence, RI, 2004), our method also extends the theorem in the case where the surface has boundary. As a byproduct, we obtain a geometric method on how to obtain these auxiliary curves. As a consequence of these constructions, we obtain results concerning presentations of Non-Euclidean crystallographic groups and a new proof of a result on the set of points corresponding to real algebraic curves in the compactification of the Moduli space of complex curves of genus g , overline{M_{g}} . More concretely, we establish that given two real curves there is a path in overline{M_{g}} which passes through at most two singular curves, a result of M. Seppaelae (Ann. Sci. Ecole Norm. Sup. (4), 24(5), 519-544 (1991)).
A global conformal extension theorem for perfect fluid Bianchi space-times
Luebbe, Christian Tod, Paul
2008-12-15
A global extension theorem is established for isotropic singularities in polytropic perfect fluid Bianchi space-times. When an extension is possible, the limiting behaviour of the physical space-time near the singularity is analysed.
Isothermal-sweep theorems for ultracold quantum gases in a canonical ensemble
NASA Astrophysics Data System (ADS)
Iskin, M.
2011-03-01
After deriving the isothermal Hellmann-Feynman theorem (IHFT) that is suitable for mixed states in a canonical ensemble, we use this theorem to obtain the isothermal magnetic-field sweep theorems for the free, average, and trapping energies and for the entropy, specific heat, pressure, and atomic compressibility of strongly correlated ultracold quantum gases. In particular, we apply the sweep theorems to two-component Fermi gases in the weakly interacting Bardeen-Cooper-Schrieffer and Bose-Einstein condensate limits, showing that the temperature dependence of the contact parameter can be determined by varying either the entropy or specific heat with respect to the scattering length. We also use the IHFT to obtain the virial theorem in a canonical ensemble and discuss its implications for quantum gases.
Numerous strategies but limited implementation guidance in US local adaptation plans
NASA Astrophysics Data System (ADS)
Woodruff, Sierra C.; Stults, Missy
2016-08-01
Adaptation planning offers a promising approach for identifying and devising solutions to address local climate change impacts. Yet there is little empirical understanding of the content and quality of these plans. We use content analysis to evaluate 44 local adaptation plans in the United States and multivariate regression to examine how plan quality varies across communities. We find that plans draw on multiple data sources to analyse future climate impacts and include a breadth of strategies. Most plans, however, fail to prioritize impacts and strategies or provide detailed implementation processes, raising concerns about whether adaptation plans will translate into on-the-ground reductions in vulnerability. Our analysis also finds that plans authored by the planning department and those that engaged elected officials in the planning process were of higher quality. The results provide important insights for practitioners, policymakers and scientists wanting to improve local climate adaptation planning and action.
NASA Astrophysics Data System (ADS)
Vandebril, Raf; van Barel, Marc
2006-05-01
In this paper we take a closer look at the nullity theorem as formulated by Markham and Fiedler in 1986. The theorem is a valuable tool in the computations with structured rank matrices: it connects ranks of subblocks of an invertible matrix A with ranks of other subblocks in his inverse A-1. A little earlier, Barrett and Feinsilver, 1981, proved a theorem very close to the nullity theorem, but restricted to semiseparable and tridiagonal matrices, which are each others inverses. We will adapt the ideas of Barrett and Feinsilver to come to a new, alternative proof of the nullity theorem, based on determinantal formulas.In the second part of the paper, we extend the nullity theorem to make it suitable for two types of decompositions, namely the LU and the QR-decomposition. These theorems relate the ranks of subblocks of the factors L, U and Q to the ranks of subblocks of the factored matrix. It is shown, that a combination of the nullity theorem and his extended versions is suitable to predict in an easy manner the structure of decompositions and/or of inverses of structured rank matrices, e.g., higher-order band, higher-order semiseparable, Hessenberg, and many other types of matrices.As examples, to show the power of the nullity theorem and the related theorems, we apply them to semiseparable and related matrices.
Hijacked organic, limited local, faulty fair trade: what's a radical to eat?
Engler, Mark
2012-01-01
Organic farming has been hijacked by big business. Local food can have a larger carbon footprint than products shipped in from overseas. Fair trade doesn't address the real concerns of farmers in the global South. As the food movement has moved from the countercultural fringe to become a mainstream phenomenon, organic, local, and fair trade advocates have been beset by criticism from overt foes and erstwhile allies alike. Now that Starbucks advertises fair trade coffee and Kraft owns Boca soy burgers, it's fair to ask, "What's a radical to eat?" PMID:22834045
Multifluorophore localization as a percolation problem: limits to density and precision.
Small, Alex
2016-07-01
We show that the maximum desirable density of activated fluorophores in a superresolution experiment can be determined by treating the overlapping point spread functions as a problem in percolation theory. We derive a bound on the density of activated fluorophores, taking into account the desired localization accuracy and precision, as well as the number of photons emitted. Our bound on density is close to that reported in experimental work, suggesting that further increases in the density of imaged fluorophores will come at the expense of localization accuracy and precision. PMID:27409704
49 CFR 172.822 - Limitation on actions by states, local governments, and Indian tribes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... state, political subdivision of a state, or an Indian tribe that designates, limits, or prohibits the use of a rail line (other than a rail line owned by a state, political subdivision of a state, or...
Limits on Einstein’s Equivalence Principle from the First Localized Fast Radio Burst FRB 150418
NASA Astrophysics Data System (ADS)
Tingay, S. J.; Kaplan, D. L.
2016-04-01
Fast radio bursts (FRBs) have recently been used to place limits on Einstein's Equivalence Principle via observations of time delays between photons of different radio frequencies by Wei et al. These limits on differential post-Newtonian parameters ({{Δ }}γ \\lt 2.52× {10}-8) are the best yet achieved, but they still rely on uncertain assumptions, namely the relative contributions of dispersion and gravitational delays to the observed time delays and the distances to FRBs. Also, very recently, the first FRB host galaxy has likely been identified, providing the first redshift-based distance estimate to FRB 150418. Moreover, consistency between the {{{Ω }}}{{IGM}} estimate from FRB 150418 and {{{Ω }}}{{IGM}}, expected from ΛCDM models and WMAP observations, leads one to conclude that the observed time delay for FRB 150418 is highly dominated by dispersion, with any gravitational delays being small contributors. This points to even tighter limits on Δγ. In this paper, the technique of Wei et al. is applied to FRB 150418 to produce a limit of Δγ < 1-2 × 10-9, approximately an order of magnitude better than previous limits and in line with expectations by Wei et al. for what could be achieved if the dispersive delay is separated from other effects. Future substantial improvements in such limits will depend on accurately determining the contribution of individual ionized components to the total observed time delays for FRBs.
No-go theorems for generalized chameleon field theories.
Wang, Junpu; Hui, Lam; Khoury, Justin
2012-12-14
The chameleon, or generalizations thereof, is a light scalar that couples to matter with gravitational strength, but whose manifestation depends on the ambient matter density. A key feature is that the screening mechanism suppressing its effects in high-density environments is determined by the local scalar field value. Under very general conditions, we prove two theorems limiting its cosmological impact: (i) the Compton wavelength of such a scalar can be at most ~/= 1 MPc at the present cosmic density, which restricts its impact to nonlinear scales; and (ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time, which precludes the possibility of self-acceleration. These results imply that chameleonlike scalar fields have a negligible effect on the linear-scale growth history; theories that invoke a chameleonlike scalar to explain cosmic acceleration rely on a form of dark energy rather than a genuine modified gravity effect. Our analysis applies to a broad class of chameleon, symmetron, and dilaton theories. PMID:23368302
Implementation of a workplace smoking ban in bars: The limits of local discretion
Montini, Theresa; Bero, Lisa A
2008-01-01
Background In January 1998, the California state legislature extended a workplace smoking ban to bars. The purpose of this study was to explore the conditions that facilitate or hinder compliance with a smoking ban in bars. Methods We studied the implementation of the smoking ban in bars by interviewing three sets of policy participants: bar employers responsible for complying with the law; local government officials responsible for enforcing the law; and tobacco control activists who facilitated implementation. We transcribed the interviews and did a qualitative analysis of the text. Results The conditions that facilitated bar owners' compliance with a smoking ban in bars included: if the cost to comply was minimal; if the bars with which they were in competition were in compliance with the smoking ban; and if there was authoritative, consistent, coordinated, and uniform enforcement. Conversely, the conditions that hindered compliance included: if the law had minimal sanctions; if competing bars in the area allowed smoking; and if enforcement was delayed or inadequate. Conclusion Many local enforcers wished to forfeit their local discretion and believed the workplace smoking ban in bars would be best implemented by a state agency. The potential implication of this study is that, given the complex nature of local politics, smoking bans in bars are best implemented at a broader provincial or national level. PMID:19063716
Localization of type I interferon receptor limits interferon-induced TLR-3 in epithelial cells
This study aimed to expand on the role of type I IFNs in the influenza-induced upregulation of TLR3 and determine whether and how the localization of the IFN-alpha/beta receptor (IFNAR) in respiratory epithelial cells could modify IFN-induced responses. Using differentiated prima...
Limitations of a localized surface plasmon resonance sensor on Salmonella detection
Technology Transfer Automated Retrieval System (TEKTRAN)
We have designed a localized surface plasmon resonance (LSPR) biosensor to perform the whole cell detection of Salmonella using gold nanoparticls fabricated by oblique angle deposition technique. The LSPR sensor showed a plasmon peak shift due to the Salmonella antigen and anti-Salmonella antibody r...
Taking account of local culture: limits to the development of a professional ethos.
Goopy, Suzanne E
2005-06-01
The need to extend the discussion of culture in the study of nursing, combined with an enthusiasm for the possibility of viewing nursing from a new perspective, provides the impetus for this study. Based on fieldwork undertaken in the intensive care unit (RICU) of a major public hospital in Rome (Italy), this paper explores some of the key aspects of the social relations and local staff culture of one particular group of Italian nurses. In a climate of globalization, where the deployment of dominant Anglo-American ideas is difficult to counter, the RICU presents as a setting which challenges the widespread assumptions of universal standards of nursing practice. By building a picture of the working world of these particular nurses, we are assisted in our understanding of nursing practice as a local cultural activity. In exploring the significance of local culture this paper brings into question the universality of the current paradigm of professionalism and professional identity, and emphasizes the value of acknowledging local culture. PMID:15892730
The value, limitations, and challenges of employing local experts in conservation research.
Elbroch, Mark; Mwampamba, Tuyeni H; Santos, Maria J; Zylberberg, Maxine; Liebenberg, Louis; Minye, James; Mosser, Christopher; Reddy, Erin
2011-12-01
Evidence suggests that the involvement of local people in conservation work increases a project's chances of success. Involving citizen scientists in research, however, raises questions about data quality. As a tool to better assess potential participants for conservation projects, we developed a knowledge gradient, K, along which community members occupy different positions on the basis of their experience with and knowledge of a research subject. This gradient can be used to refine the citizen-science concept and allow researchers to differentiate between community members with expert knowledge and those with little knowledge. We propose that work would benefit from the inclusion of select local experts because it would allow researchers to harness the benefits of local involvement while maintaining or improving data quality. We used a case study from the DeHoop Nature Preserve, South Africa, in which we conducted multiple interviews, identified and employed a local expert animal tracker, evaluated the expert's knowledge, and analyzed the data collected by the expert. The expert animal tracker J.J. created his own sampling design and gathered data on mammals. He patrolled 4653 km in 214 days and recorded 4684 mammals. He worked from a central location, and his patrols formed overlapping loops; however, his data proved neither spatially nor temporally autocorrelated. The distinctive data collected by J.J. are consistent with the notion that involving local experts can produce reliable data. We developed a conceptual model to help identify the appropriate participants for a given project on the basis of research budget, knowledge or skills needed, technical literacy requirements, and scope of the project. PMID:21966985
Maximum precision closed-form solution for localizing diffraction-limited spots in noisy images
Larkin, Joshua D.; Cook, Peter R.
2012-01-01
Super-resolution techniques like PALM and STORM require accurate localization of single fluorophores detected using a CCD. Popular localization algorithms inefficiently assume each photon registered by a pixel can only come from an area in the specimen corresponding to that pixel (not from neighboring areas), before iteratively (slowly) fitting a Gaussian to pixel intensity; they fail with noisy images. We present an alternative; a probability distribution extending over many pixels is assigned to each photon, and independent distributions are joined to describe emitter location. We compare algorithms, and recommend which serves best under different conditions. At low signal-to-noise ratios, ours is 2-fold more precise than others, and 2 orders of magnitude faster; at high ratios, it closely approximates the maximum likelihood estimate. PMID:23038398
Neutrophil Recruitment to Lymph Nodes Limits Local Humoral Response to Staphylococcus aureus
Kamenyeva, Olena; Boularan, Cedric; Kabat, Juraj; Cheung, Gordon Y. C.; Cicala, Claudia; Yeh, Anthony J.; Chan, June L.; Periasamy, Saravanan; Otto, Michael; Kehrl, John H.
2015-01-01
Neutrophils form the first line of host defense against bacterial pathogens. They are rapidly mobilized to sites of infection where they help marshal host defenses and remove bacteria by phagocytosis. While splenic neutrophils promote marginal zone B cell antibody production in response to administered T cell independent antigens, whether neutrophils shape humoral immunity in other lymphoid organs is controversial. Here we investigate the neutrophil influx following the local injection of Staphylococcus aureus adjacent to the inguinal lymph node and determine neutrophil impact on the lymph node humoral response. Using intravital microscopy we show that local immunization or infection recruits neutrophils from the blood to lymph nodes in waves. The second wave occurs temporally with neutrophils mobilized from the bone marrow. Within lymph nodes neutrophils infiltrate the medulla and interfollicular areas, but avoid crossing follicle borders. In vivo neutrophils form transient and long-lived interactions with B cells and plasma cells, and their depletion augments production of antigen-specific IgG and IgM in the lymph node. In vitro activated neutrophils establish synapse- and nanotube-like interactions with B cells and reduce B cell IgM production in a TGF- β1 dependent manner. Our data reveal that neutrophils mobilized from the bone marrow in response to a local bacterial challenge dampen the early humoral response in the lymph node. PMID:25884622
New pulsar limit on local Lorentz invariance violation of gravity in the standard-model extension
NASA Astrophysics Data System (ADS)
Shao, Lijing
2014-12-01
In the pure-gravity sector of the minimal standard-model extension, nine Lorentz-violating coefficients of a vacuum-condensed tensor field describe dominant observable deviations from general relativity, out of which eight were already severely constrained by precision experiments with lunar laser ranging, atom interferometry, and pulsars. However, the time-time component of the tensor field, s¯TT, dose not enter into these experiments, and was only very recently constrained by Gravity Probe B. Here we propose a novel idea of using the Lorentz boost between different frames to mix different components of the tensor field, and thereby obtain a stringent limit of s¯TT from binary pulsars. We perform various tests with the state-of-the-art white dwarf optical spectroscopy and pulsar radio timing observations, in order to get new robust limits of s¯TT. With the isotropic cosmic microwave background as a preferred frame, we get |s¯ TT|<1.6 ×10-5 (95% C.L.), and without assuming the existence of a preferred frame, we get |s¯ TT|<2.8 ×10-4 (95% C.L.). These two limits are respectively about 500 times and 30 times better than the current best limit.
The Effect of Local Limitations on General State Aid in Illinois.
ERIC Educational Resources Information Center
Bush, Erik
2002-01-01
Study to determine if a substantive relationship exits between the progression of a federal Tax Increment Financing (TIF) district, the long-term effects of the state Property Tax Extension Limitation Law (PTELL), and the General State Aid funding of school districts in Illinois. Finds that both TIF and PTELL lead to an increase in General State…
New Fermionic Soft Theorems for Supergravity Amplitudes.
Chen, Wei-Ming; Huang, Yu-Tin; Wen, Congkao
2015-07-10
Soft limits of a massless S matrix are known to reflect the symmetries of the theory. In particular, for theories with Goldstone bosons, the double-soft limit of scalars reveals the coset structure of the vacuum manifold. In this Letter, we propose that such universal double-soft behavior is not only true for scalars, but also for spin-1/2 particles in four dimensions and fermions in three dimensions. We first consider the Akulov-Volkov theory and demonstrate that the double-soft limit of Goldstinos yields the supersymmetry algebra. More surprisingly, we also find that amplitudes in 4≤N≤8 supergravity theories in four dimensions as well as N=16 supergravity in three dimensions behave universally in the double-soft-fermion limit, analogous to the scalar ones. The validity of the new soft theorems at loop level is also studied. The results for supergravity are beyond what is implied by supersymmetry Ward identities and may impose nontrivial constraints on the possible counterterms for supergravity theories. PMID:26207460
NASA Astrophysics Data System (ADS)
Adams, R. J.; Wang, G.; Canning, F. X.; Davis, B. A.
2006-12-01
A procedure is outlined for determining compressed representations of the plane wave response matrix (P matrix) for transverse magnetic scattering with respect to the z axis from convex cylinders. The method is based on the determination of band-limited spectral modes that excite spatially localized solutions to the wave equation and satisfy global boundary conditions. Numerical examples indicate that the proposed method provides a representation of the P matrix with reduced computational complexity.
Cosmological perturbations and the Weinberg theorem
NASA Astrophysics Data System (ADS)
Akhshik, Mohammad; Firouzjahi, Hassan; Jazayeri, Sadra
2015-12-01
The celebrated Weinberg theorem in cosmological perturbation theory states that there always exist two adiabatic scalar modes in which the comoving curvature perturbation is conserved on super-horizon scales. In particular, when the perturbations are generated from a single source, such as in single field models of inflation, both of the two allowed independent solutions are adiabatic and conserved on super-horizon scales. There are few known examples in literature which violate this theorem. We revisit the theorem and specify the loopholes in some technical assumptions which violate the theorem in models of non-attractor inflation, fluid inflation, solid inflation and in the model of pseudo conformal universe.
Fluctuation theorem for partially masked nonequilibrium dynamics.
Shiraishi, Naoto; Sagawa, Takahiro
2015-01-01
We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations. PMID:25679593
Fluctuation theorem for partially masked nonequilibrium dynamics
NASA Astrophysics Data System (ADS)
Shiraishi, Naoto; Sagawa, Takahiro
2015-01-01
We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations.
Moon, Sojin; Bannen, Ryan M; Rutkoski, Thomas J; Phillips, George N; Bae, Euiyoung
2014-10-01
Local structural entropy (LSE) is a descriptor for the extent of conformational heterogeneity in short protein sequences that is computed from structural information derived from the Protein Data Bank. Reducing the LSE of a protein sequence by introducing amino acid mutations can result in fewer conformational states and thus a more stable structure, indicating that LSE optimization can be used as a protein stabilization method. Here, we describe a series of LSE optimization experiments designed to stabilize mesophilic and thermophilic adenylate kinases (AKs) and report crystal structures of LSE-optimized AK variants. In the mesophilic AK, thermal stabilization by LSE reduction was effective but limited. Structural analyses of the LSE-optimized mesophilic AK variants revealed a strong correlation between LSE and the apolar buried surface area. Additional mutations designed to introduce noncovalent interactions between distant regions of the polypeptide resulted in further stabilization. Unexpectedly, optimizing the LSE of the thermophilic AK resulted in a decrease in thermal stability. This destabilization was reduced when charged residues were excluded from the possible substitutions during LSE optimization. These observations suggest that stabilization by LSE reduction may result from the optimization of local hydrophobic contacts. The limitations of this process are likely due to ignorance of other interactions that bridge distant regions in a given amino acid sequence. Our results illustrate the effectiveness and limitations of LSE optimization as a protein stabilization strategy and highlight the importance and complementarity of local conformational stability and global interactions in protein thermal stability. PMID:24931334
Non-local rheological properties of granular flows near a jamming limit.
Aranson, I. S.; Tsimring, L. S.; Malloggi, F.; Clement, E.; Materials Science Division; Univ. of California at San Diego; CNRS-ESPCI Univ.
2008-01-01
We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.
NASA Astrophysics Data System (ADS)
Ebrahimi, F.; Blackman, E. G.
2016-06-01
For cylindrical differentially rotating plasmas, we study large-scale magnetic field generation from finite amplitude non-axisymmetric perturbations by comparing numerical simulations with quasi-linear analytic theory. When initiated with a vertical magnetic field of either zero or finite net flux, our global cylindrical simulations exhibit the magnetorotational instability (MRI) and large-scale dynamo growth of radially alternating mean fields, averaged over height and azimuth. This dynamo growth is explained by our analytic calculations of a non-axisymmetric fluctuation-induced electromotive force that is sustained by azimuthal shear of the fluctuating fields. The standard `Ω effect' (shear of the mean field by differential rotation) is unimportant. For the MRI case, we express the large-scale dynamo field as a function of differential rotation. The resulting radially alternating large-scale fields may have implications for angular momentum transport in discs and corona. To connect with previous work on large-scale dynamos with local linear shear and identify the minimum conditions needed for large-scale field growth, we also solve our equations in local Cartesian coordinates. We find that large-scale dynamo growth in a linear shear flow without rotation can be sustained by shear plus non-axisymmetric fluctuations - even if not helical, a seemingly previously unidentified distinction. The linear shear flow dynamo emerges as a more restricted version of our more general new global cylindrical calculations.
An elementary derivation of the quantum virial theorem from Hellmann–Feynman theorem
NASA Astrophysics Data System (ADS)
İpekoğlu, Y.; Turgut, S.
2016-07-01
A simple proof of the quantum virial theorem that can be used in undergraduate courses is given. The proof proceeds by first showing that the energy eigenvalues of a Hamiltonian remain invariant under a scale transformation. Then invoking the Hellmann–Feynman theorem produces the final statement of the virial theorem.
Strong converse theorems using Rényi entropies
NASA Astrophysics Data System (ADS)
Leditzky, Felix; Wilde, Mark M.; Datta, Nilanjana
2016-08-01
We use a Rényi entropy method to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, measurement compression with quantum side information, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [preprint arXiv:1404.5940 [quant-ph] (2014)], which he used to give a new proof of the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the (e, q)-plane, where e and q denote the entanglement cost and quantum communication cost, respectively. In the case of measurement compression with quantum side information, we prove a strong converse theorem for the classical communication cost, which is a new result extending the previously known weak converse. For the remaining tasks, we provide new proofs for strong converse theorems previously established using smooth entropies. For each task, we obtain the strong converse theorem from explicit bounds on the figure of merit of the task in terms of a Rényi generalization of the optimal rate. Hence, we identify candidates for the strong converse exponents for each task discussed in this paper. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched Rényi divergence. In particular, we obtain novel bounds relating these quantities, as well as the Rényi conditional mutual information, to the fidelity of two quantum states.
Feedback localization of freely diffusing fluorescent particles near the optical shot-noise limit
NASA Astrophysics Data System (ADS)
Berglund, Andrew J.; McHale, Kevin; Mabuchi, Hideo
2007-01-01
We report near-optimal tracking of freely diffusing fluorescent particles in a quasi-two-dimensional geometry via photon counting and real-time feedback. We present a quantitative statistical model of our feedback network and find excellent agreement with the experiment. We monitor the motion of a single fluorescent particle with a sensitivity of 15 nm/sqrt Hz while collecting fewer than 5000 fluorescence photons/s. Fluorescent microspheres (diffusion coefficient 1.3 μm2/s) are tracked with a root-mean-square tracking error of 170 nm, within a factor of 2 of the theoretical limit set by photon counting shot noise.
Experiments with central-limit properties of spatial samples from locally covariant random fields
Barringer, T.H.; Smith, T.E.
1992-01-01
When spatial samples are statistically dependent, the classical estimator of sample-mean standard deviation is well known to be inconsistent. For locally dependent samples, however, consistent estimators of sample-mean standard deviation can be constructed. The present paper investigates the sampling properties of one such estimator, designated as the tau estimator of sample-mean standard deviation. In particular, the asymptotic normality properties of standardized sample means based on tau estimators are studied in terms of computer experiments with simulated sample-mean distributions. The effects of both sample size and dependency levels among samples are examined for various value of tau (denoting the size of the spatial kernel for the estimator). The results suggest that even for small degrees of spatial dependency, the tau estimator exhibits significantly stronger normality properties than does the classical estimator of standardized sample means. ?? 1992.
Cosacov, Andrea; Nattero, Julieta; Cocucci, Andrea A.
2008-01-01
Background and Aims Few studies have examined the dynamics of specialist plant–pollinator interactions at a geographical scale. This knowledge is crucial for a more general evolutionary and ecological understanding of specialized plant–pollinator systems. In the present study, variations in pollinator activity, assemblage composition and pollen limitation were explored in the oil-producing species Nierembergia linariifolia (Solanaceae). Methods Pollen limitation in fruit and seed production was analysed by supplementary hand pollination in five wild populations. Pollinator activity and identity were recorded while carrying out supplementary pollination to assess the effect of pollinators on the degree of pollen limitation. In two populations, pollen limitation was discriminated into quantitative and qualitative components by comparing supplementation and hand cross-pollination in fruit set and seed set. The effect of flower number per plant on the number of flowers pollinated per visitor per visit to a plant was examined in one of these populations as a possible cause of low-quality pollination by increasing geitonogamy. Results and Conclusions Although pollen limitation was evident along time and space, differences in magnitude were detected among populations and years that were greatly explained by pollinator activity, which was significantly different across populations. Floral display size had a significant effect on the visitation rate per flower. Limitation by quality clearly affected one population presumably due to a high proportion of geitonogamous pollen. The great inter-population variation in plant–pollinator interaction (both in pollinator assemblages composition and pollinator activity) and fitness consequences, suggests that this system should be viewed as a mosaic of locally selective processes and locally specialized interactions. PMID:18765440
F. Cui; F.J. Presuel-Moreno; R.G. Kelly
2005-10-13
The ability of a SS316L surface wetted with a thin electrolyte layer to serve as an effective cathode for an active localized corrosion site was studied computationally. The dependence of the total net cathodic current, I{sub net}, supplied at the repassivation potential E{sub rp} (of the anodic crevice) on relevant physical parameters including water layer thickness (WL), chloride concentration ([Cl{sup -}]) and length of cathode (Lc) were investigated using a three-level, full factorial design. The effects of kinetic parameters including the exchange current density (i{sub o,c}) and Tafel slope ({beta}{sub c}) of oxygen reduction, the anodic passive current density (i{sub p}) (on the cathodic surface), and E{sub rp} were studied as well using three-level full factorial designs of [Cl{sup -}] and Lc with a fixed WL of 25 {micro}m. The study found that all the three parameters WL, [Cl{sup -}] and Lc as well as the interactions of Lc x WL and Lc x [Cl{sup -}] had significant impact on I{sub net}. A five-factor regression equation was obtained which fits the computation results reasonably well, but demonstrated that interactions are more complicated than can be explained with a simple linear model. Significant effects on I{sub net} were found upon varying either i{sub o,c}, {beta}{sub c}, or E{sub rp}, whereas i{sub p} in the studied range was found to have little impact. It was observed that I{sub net} asymptotically approached maximum values (I{sub max}) when Lc increased to critical minimum values. I{sub max} can be used to determine the stability of coupled localized corrosion and the critical Lc provides important information for experimental design and corrosion protection.
Yaroshchuk, Andriy
2012-11-15
The problem is considered theoretically of dynamics of current-induced concentration polarization of interfaces between ideally perm-selective and non-ideally perm-selective ("leaky") ion-exchange media in binary electrolyte solutions under galvanostatic conditions and at negligible volume flow. In contrast to the previous studies, the analysis is systematically carried out in terms of local thermodynamic equilibrium in the approximation of local electric neutrality in virtual solution. For macroscopically homogeneous media, this enables one to obtain model-independent results in quadratures for the stationary state as well as an approximate scaling-form solution for the transient response to the step-wise increase in electric-current density. These results are formulated in terms of such phenomenological properties of the "leaky" medium as ion transport numbers, diffusion permeability to salt and specific chemical capacity. An easy-to-solve numerically 1D PDE is also formulated in the same terms. A systematic parametric study is carried out within the scope of fine-pore model of "leaky" medium in terms of such properties as volumetric concentration of fixed electric charges and diffusivities of ions of symmetrical electrolyte. While previous studies paid principal attention to the shape and propagation rate of the so-called deionization "shocks", we also consider in detail the time evolution of voltage drop and interface salt concentration. Our analysis confirms the previously predicted pattern of propagating deionization "shocks" within the "leaky" medium but also reveals several novel features. In particular, we demonstrate that the deionization-shock pattern is really pronounced only at intermediate ratios of fixed-charge concentration to the initial salt concentration and at quite high steady-state voltages where the model used in this and previous studies is applicable only at relatively early stages of concentration-polarization process. PMID:22947188
Maheshwari, Anurag; Janssens, Kris; Bogie, Jeroen; Van Den Haute, Chris; Struys, Tom; Lambrichts, Ivo; Baekelandt, Veerle; Stinissen, Piet; Hendriks, Jerome J A; Slaets, Helena; Hellings, Niels
2013-01-01
Demyelination is one of the pathological hallmarks of multiple sclerosis (MS). To date, no therapy is available which directly potentiates endogenous remyelination. Interleukin-11 (IL-11), a member of the gp130 family of cytokines, is upregulated in MS lesions. Systemic IL-11 treatment was shown to ameliorate clinical symptoms in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. IL-11 modulates immune cells and protects oligodendrocytes in vitro. In this study, the cuprizone-induced demyelination mouse model was used to elucidate effects of IL-11 on de- and remyelination, independent of the immune response. Prophylactic-lentiviral- (LV-) mediated overexpression of IL-11 in mouse brain significantly limited acute demyelination, which was accompanied with the preservation of CC1(+) mature oligodendrocytes (OLs) and a decrease in microglial activation (Mac-2(+)). We further demonstrated that IL-11 directly reduces myelin phagocytosis in vitro. When IL-11 expressing LV was therapeutically applied in animals with extensive demyelination, a significant enhancement of remyelination was observed as demonstrated by Luxol Fast Blue staining and electron microscopy imaging. Our results indicate that IL-11 promotes maturation of NG2(+) OPCs into myelinating CC1(+) OLs and may thus explain the enhanced remyelination. Overall, we demonstrate that IL-11 is of therapeutic interest for MS and other demyelinating diseases by limiting demyelination and promoting remyelination. PMID:23818742
Maheshwari, Anurag; Janssens, Kris; Bogie, Jeroen; Van Den Haute, Chris; Struys, Tom; Lambrichts, Ivo; Baekelandt, Veerle; Stinissen, Piet; Hendriks, Jerome J. A.; Hellings, Niels
2013-01-01
Demyelination is one of the pathological hallmarks of multiple sclerosis (MS). To date, no therapy is available which directly potentiates endogenous remyelination. Interleukin-11 (IL-11), a member of the gp130 family of cytokines, is upregulated in MS lesions. Systemic IL-11 treatment was shown to ameliorate clinical symptoms in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. IL-11 modulates immune cells and protects oligodendrocytes in vitro. In this study, the cuprizone-induced demyelination mouse model was used to elucidate effects of IL-11 on de- and remyelination, independent of the immune response. Prophylactic-lentiviral- (LV-) mediated overexpression of IL-11 in mouse brain significantly limited acute demyelination, which was accompanied with the preservation of CC1+ mature oligodendrocytes (OLs) and a decrease in microglial activation (Mac-2+). We further demonstrated that IL-11 directly reduces myelin phagocytosis in vitro. When IL-11 expressing LV was therapeutically applied in animals with extensive demyelination, a significant enhancement of remyelination was observed as demonstrated by Luxol Fast Blue staining and electron microscopy imaging. Our results indicate that IL-11 promotes maturation of NG2+ OPCs into myelinating CC1+ OLs and may thus explain the enhanced remyelination. Overall, we demonstrate that IL-11 is of therapeutic interest for MS and other demyelinating diseases by limiting demyelination and promoting remyelination. PMID:23818742
Artinianness of local cohomology modules
NASA Astrophysics Data System (ADS)
Aghapournahr, Moharram; Melkersson, Leif
2014-04-01
Some uniform theorems on the artinianness of certain local cohomology modules are proven in a general situation. They generalize and imply previous results about the artinianness of some special local cohomology modules in the graded case.
Differentiable Cohomology on Locally Compact Groups
Whyburn, Kenneth
1970-01-01
In this paper the notions of vector field and differential form are extended to locally compact groups which are the inverse limit of Lie groups. This is done using Bruhat's definition of [unk]c∞ functions on such a group. Vector fields are defined as derivations on the [unk]c∞ functions. Then tangent vectors at a point are defined as elements of the inverse limit of the tangent spaces of the Lie groups. Tangent vectors then are put together to form vector fields, corresponding to a bundle definition, and the two notions are shown to be equivalent. Differential forms are defined using a bundle type definition from continuous linear functional on the tangent space. An existence and uniqueness theorem is proven for the exterior differential. Then an analog of the Poincaré lemma leads to the de Rham theorem relating the Cech cohomology with real coefficients to the cohomology of the differential forms. PMID:16591866
Differentiable cohomology on locally compact groups.
Whyburn, K
1970-09-01
In this paper the notions of vector field and differential form are extended to locally compact groups which are the inverse limit of Lie groups. This is done using Bruhat's definition of [unk](c) (infinity) functions on such a group. Vector fields are defined as derivations on the [unk](c) (infinity) functions. Then tangent vectors at a point are defined as elements of the inverse limit of the tangent spaces of the Lie groups. Tangent vectors then are put together to form vector fields, corresponding to a bundle definition, and the two notions are shown to be equivalent. Differential forms are defined using a bundle type definition from continuous linear functional on the tangent space. An existence and uniqueness theorem is proven for the exterior differential. Then an analog of the Poincaré lemma leads to the de Rham theorem relating the Cech cohomology with real coefficients to the cohomology of the differential forms. PMID:16591866
NASA Astrophysics Data System (ADS)
Borghi, Riccardo
2014-03-01
In the present letter, Newton’s theorem for the gravitational field outside a uniform spherical shell is considered. In particular, a purely geometric proof of proposition LXXI/theorem XXXI of Newton’s Principia, which is suitable for undergraduates and even skilled high-school students, is proposed. Minimal knowledge of elementary calculus and three-dimensional Euclidean geometry are required.
General Theorems about Homogeneous Ellipsoidal Inclusions
ERIC Educational Resources Information Center
Korringa, J.; And Others
1978-01-01
Mathematical theorems about the properties of ellipsoids are developed. Included are Poisson's theorem concerning the magnetization of a homogeneous body of ellipsoidal shape, the polarization of a dielectric, the transport of heat or electricity through an ellipsoid, and other problems. (BB)
Bring the Pythagorean Theorem "Full Circle"
ERIC Educational Resources Information Center
Benson, Christine C.; Malm, Cheryl G.
2011-01-01
Middle school mathematics generally explores applications of the Pythagorean theorem and lays the foundation for working with linear equations. The Grade 8 Curriculum Focal Points recommend that students "apply the Pythagorean theorem to find distances between points in the Cartesian coordinate plane to measure lengths and analyze polygons and…
The Classical Version of Stokes' Theorem Revisited
ERIC Educational Resources Information Center
Markvorsen, Steen
2008-01-01
Using only fairly simple and elementary considerations--essentially from first year undergraduate mathematics--we show how the classical Stokes' theorem for any given surface and vector field in R[superscript 3] follows from an application of Gauss' divergence theorem to a suitable modification of the vector field in a tubular shell around the…
A Generalization of the Prime Number Theorem
ERIC Educational Resources Information Center
Bruckman, Paul S.
2008-01-01
In this article, the author begins with the prime number theorem (PNT), and then develops this into a more general theorem, of which many well-known number theoretic results are special cases, including PNT. He arrives at an asymptotic relation that allows the replacement of certain discrete sums involving primes into corresponding differentiable…
A Note on Morley's Triangle Theorem
ERIC Educational Resources Information Center
Mueller, Nancy; Tikoo, Mohan; Wang, Haohao
2012-01-01
In this note, we offer a proof of a variant of Morley's triangle theorem, when the exterior angles of a triangle are trisected. We also offer a generalization of Morley's theorem when angles of an "n"-gon are "n"-sected. (Contains 9 figures.)
A Note on Laplace's Expansion Theorem
ERIC Educational Resources Information Center
Janji, Milan
2005-01-01
A short proof of Laplace's expansion theorem is given. The proof is elementary and can be presented at any level of undergraduate studies where determinants are taught. It is derived directly from the definition so that the theorem may be used as a starting point for further investigation of determinants.
Walters, R W; Grunst, T; Bergelson, J M; Finberg, R W; Welsh, M J; Zabner, J
1999-04-01
Recent identification of two receptors for the adenovirus fiber protein, coxsackie B and adenovirus type 2 and 5 receptor (CAR), and the major histocompatibility complex (MHC) Class I alpha-2 domain allows the molecular basis of adenoviral infection to be investigated. Earlier work has shown that human airway epithelia are resistant to infection by adenovirus. Therefore, we examined the expression and localization of CAR and MHC Class I in an in vitro model of well differentiated, ciliated human airway epithelia. We found that airway epithelia express CAR and MHC Class I. However, neither receptor was present in the apical membrane; instead, both were polarized to the basolateral membrane. These findings explain the relative resistance to adenovirus infection from the apical surface. In contrast, when the virus was applied to the basolateral surface, gene transfer was much more efficient because of an interaction of adenovirus fiber with its receptors. In addition, when the integrity of the tight junctions was transiently disrupted, apically applied adenovirus gained access to the basolateral surface and enhanced gene transfer. These data suggest that the receptors required for efficient infection are not available on the apical surface, and interventions that allow access to the basolateral space where fiber receptors are located increase gene transfer efficiency. PMID:10187807
NASA Astrophysics Data System (ADS)
Briggs, M. A.; Day-Lewis, F. D.; Ong, J. B.; Lane, J. W.; Curtis, G. P.
2012-12-01
In the presence of rate-limited mass transfer (RLMT), conventional chemical sampling of the subsurface preferentially pulls pore water from the mobile domain. Therefore, the characteristics of the immobile domain must be inferred from the mobile tracer signal, which is modified with transport and immobile exchange over a representative length. Because conventional chemical data are not directly sensitive to the immobile zone, this representative length must be sufficient to allow enough exchange between the two domains to inform immobile parameter estimation (e.g., optimal Damkohler range). Flowpath "averaged" RLMT parameters may not well describe the true field variability in the immobile domain size and exchange coefficient, parameters which control the retention and subsequent long-term release of contaminants. In contrast, bulk electrical conductivity is sensitive to the volume-weighted ionic tracer concentration in both the mobile and immobile domains. When co-located bulk conductivity and fluid conductivity are analyzed concurrently, estimates can be obtained for (1) effective RLMT parameters averaged along the upgradient flowpath and (2) local-scale RLMT parameters for the volume from which chemical samples and electrical measurements are taken. Here, we use electrical resistivity tomography (ERT), for the first time, to discriminate and identify effective flowpath and local-scale RLMT parameters, informing the true spatial variability in mass transfer. We apply this technique at the field scale at a uranium contamination site in Naturita, Colorado, USA. Inverse modeling was used to optimize parameter estimates to best simulate both the observed bulk and fluid conductivity, and objectively determine parameter sensitivity, correlation, and confidence. Local RLMT parameters were found to be most sensitive to changes in bulk conductivity, while effective flowpath parameters were most sensitive to changes in fluid conductivity. Observed non-linear hysteresis