Science.gov

Sample records for locally heated mems

  1. Localized heating/bonding techniques in MEMS packaging

    NASA Astrophysics Data System (ADS)

    Mabesa, J. R., Jr.; Scott, A. J.; Wu, X.; Auner, G. W.

    2005-05-01

    Packaging is used to protect and enable intelligent sensor systems utilized in manned/unmanned ground vehicle systems/subsystems. Because Micro electro mechanical systems (MEMS) are used often in these sensor or actuation products, it must interact with the surrounding environment, which may be in direct conflict with the desire to isolate the electronics for improved reliability/durability performance. For some very simple devices, performance requirements may allow a high degree of isolation from the environment (e.g., stints and accelerometers). Other more complex devices (i.e. chemical and biological analysis systems, particularly in vivo systems) present extremely complex packaging requirements. Power and communications to MEMS device arrays are also extremely problematic. The following describes the research being performed at the U.S. Army Research, Development, and Engineering Command (RDECOM) Tank and Automotive Research, Development, and Engineering Center (TARDEC), in collaboration with Wayne State University, in Detroit, MI. The focus of the packaging research is limited to six main categories: a) provision for feed-through for electrical, optical, thermal, and fluidic interfaces; b) environmental management including atmosphere, hermiticity, and temperature; c) control of stress and mechanical durability; d) management of thermal properties to minimize absorption and/or emission; e) durability and structural integrity; and f) management of RF/magnetic/electrical and optical interference and/or radiation properties and exposure.

  2. Controlling adhesion between multi-asperity contacting surfaces in MEMS devices by local heating

    NASA Astrophysics Data System (ADS)

    Gkouzou, A.; Kokorian, J.; Janssen, G. C. A. M.; van Spengen, W. M.

    2016-09-01

    In this work, we have incorporated heaters in a MEMS device, which allow the in situ local heating of its contacting surfaces. This design offers a promising solution for MEMS devices with contacting components by preventing capillary-induced adhesion. The force of adhesion was assessed by optically measuring in-plane snap-off displacements. We were able to decrease adhesion from 500 nN to 200 nN with just one heated surface of which the temperature was set above 300 °C. The temperature should not be set too high: we observed increased adhesion due to a direct bonding process once the temperature was increased above 750 °C. Remarkably, adhesion increased by heating from room temperature to 75 °C, which is attributed to more water being transferred to the contact area due to faster kinetics. We observed the same effect in the cases where both surfaces were heated, although at slightly different temperatures. We demonstrated that heating only one surface to between 300 °C and 750 °C is sufficient to significantly lower adhesion, due to the removal of capillary menisci. The required heater is typically most easily implemented in a stationary part of the device.

  3. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2004-11-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  4. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2005-01-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  5. MEMS CLOSED CHAMBER HEAT ENGINE AND ELECTRIC GENERATOR

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2005-01-01

    A heat engine, preferably combined with an electric generator, and advantageously implemented using micro-electromechanical system (MEMS) technologies as an array of one or more individual heat engine/generators. The heat engine is based on a closed chamber containing a motive medium, preferably a gas; means for alternately enabling and disabling transfer of thermal energy from a heat source to the motive medium; and at least one movable side of the chamber that moves in response to thermally-induced expansion and contraction of the motive medium, thereby converting thermal energy to oscillating movement. The electrical generator is combined with the heat engine to utilize movement of the movable side to convert mechanical work to electrical energy, preferably using electrostatic interaction in a generator capacitor. Preferably at least one heat transfer side of the chamber is placed alternately into and out of contact with the heat source by a motion capacitor, thereby alternately enabling and disabling conductive transfer of heat to the motive medium.

  6. Enhanced directional sensitivity of a biomimetic MEMS acoustic localization sensor

    NASA Astrophysics Data System (ADS)

    Gee, Danny; Liu, Haijun; Currano, Luke; Yu, Miao

    2010-04-01

    We present an improved microfabricated sound localization sensor for unobtrusive surveillance systems inspired by the tympanic membranes of the parasitoid fly, Ormia ochracea. The device consists of two silicon diaphragms mechanically coupled by a suspended beam that amplifies the difference in time response, dependent on the incident angle of the sound source. Fabrication techniques were modified to reduce residual stresses and improve device uniformity. Enhanced acoustic cues for devices with central pivoting anchors were measured with laser Doppler vibrometry. Device responses to weak excitations demonstrated good sensitivity over environmental noise. An order of magnitude in time difference amplification was measured at 90° incident angles with a directional sensitivity of .39μs/degree. These results provide a foundation for realizing an accurate bio-inspired MEMS directional microphone.

  7. Nanoparticles heat through light localization.

    PubMed

    Hogan, Nathaniel J; Urban, Alexander S; Ayala-Orozco, Ciceron; Pimpinelli, Alberto; Nordlander, Peter; Halas, Naomi J

    2014-08-13

    Aqueous solutions containing light-absorbing nanoparticles have recently been shown to produce steam at high efficiencies upon solar illumination, even when the temperature of the bulk fluid volume remains far below its boiling point. Here we show that this phenomenon is due to a collective effect mediated by multiple light scattering from the dispersed nanoparticles. Randomly positioned nanoparticles that both scatter and absorb light are able to concentrate light energy into mesoscale volumes near the illuminated surface of the liquid. The resulting light absorption creates intense localized heating and efficient vaporization of the surrounding liquid. Light trapping-induced localized heating provides the mechanism for low-temperature light-induced steam generation and is consistent with classical heat transfer. PMID:24960442

  8. The MEMS Loop Heat Pipe Based on Coherent Porous Silicon - The Modified System Test Structure

    NASA Astrophysics Data System (ADS)

    Cytrynowicz, Debra; Medis, Praveen; Parimi, Srinivas; Shuja, Ahmed; Thurman Henderson, H.; Gerner, Frank M.

    2004-02-01

    The previous papers presented at STAIF 2002 and STAIF 2003 discussed the design, fabrication and characterization of the evaporator section and the initial test cell of a planar MEMS loop heat pipe based upon coherent porous silicon or ``CPS'' technology. The potentially revolutionary advantage of CPS technology is that it is planar and allows for pores or capillaries of absolutely uniform diameter. Coherent porous silicon can be mass-produced by various MEMS fabrication techniques. The preliminary experiments made with the original test structure exhibited the desired temperature and pressure differences, but these differences were extremely small and oscillatory. This paper describes modifications made to the initial test cell design, which were intended to improve its evacuated, closed loop performance. Included among these changes were the redesign of the compensation chamber and condenser, an increase in the porosity of the coherent porous silicon wick, the fabrication of silicon top ``hot'' plates with an increased depth of the vapor reservoir and the integration of metal resistive heater elements onto the backside of the top plates to simulate the input heat. Some changes were made in the test sequence to produce more discernable differences in temperatures and pressures. The most recent results of the tests made with the modified system will be presented.

  9. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes.

    PubMed

    Mele, Luigi; Konings, Stan; Dona, Pleun; Evertz, Francis; Mitterbauer, Christoph; Faber, Pybe; Schampers, Ruud; Jinschek, Joerg R

    2016-04-01

    The introduction of scanning/transmission electron microscopes (S/TEM) with sub-Angstrom resolution as well as fast and sensitive detection solutions support direct observation of dynamic phenomena in-situ at the atomic scale. Thereby, in-situ specimen holders play a crucial role: accurate control of the applied in-situ stimulus on the nanostructure combined with the overall system stability to assure atomic resolution are paramount for a successful in-situ S/TEM experiment. For those reasons, MEMS-based TEM sample holders are becoming one of the preferred choices, also enabling a high precision in measurements of the in-situ parameter for more reproducible data. A newly developed MEMS-based microheater is presented in combination with the new NanoEx™-i/v TEM sample holder. The concept is built on a four-point probe temperature measurement approach allowing active, accurate local temperature control as well as calorimetry. In this paper, it is shown that it provides high temperature stability up to 1,300°C with a peak temperature of 1,500°C (also working accurately in gaseous environments), high temperature measurement accuracy (<4%) and uniform temperature distribution over the heated specimen area (<1%), enabling not only in-situ S/TEM imaging experiments, but also elemental mapping at elevated temperatures using energy-dispersive X-ray spectroscopy (EDS). Moreover, it has the unique capability to enable simultaneous heating and biasing experiments. Microsc. Res. Tech. 79:239-250, 2016. © 2016 Wiley Periodicals, Inc. PMID:26818213

  10. Design of a base station for MEMS CCR localization in an optical sensor network.

    PubMed

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-01-01

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR. PMID:24815681

  11. Design of a Base Station for MEMS CCR Localization in an Optical Sensor Network

    PubMed Central

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-01-01

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR. PMID:24815681

  12. SoundCompass: a distributed MEMS microphone array-based sensor for sound source localization.

    PubMed

    Tiete, Jelmer; Domínguez, Federico; da Silva, Bruno; Segers, Laurent; Steenhaut, Kris; Touhafi, Abdellah

    2014-01-01

    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass's hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field. PMID:24463431

  13. SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization

    PubMed Central

    Tiete, Jelmer; Domínguez, Federico; da Silva, Bruno; Segers, Laurent; Steenhaut, Kris; Touhafi, Abdellah

    2014-01-01

    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass’s hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field. PMID:24463431

  14. Heat And Mass Transfer Analysis of a Film Evaporative MEMS Tunable Array

    NASA Astrophysics Data System (ADS)

    O'Neill, William J.

    This thesis details the heat and mass transfer analysis of a MEMs microthruster designed to provide propulsive, attitude control and thermal control capabilities to a cubesat. This thruster is designed to function by retaining water as a propellant and applying resistive heating in order to increase the temperature of the liquid-vapor interface to either increase evaporation or induce boiling to regulate mass flow. The resulting vapor is then expanded out of a diverging nozzle to produce thrust. Because of the low operating pressure and small length scale of this thruster, unique forms of mass transfer analysis such as non-continuum gas flow were modeled using the Direct Simulation Monte Carlo method. Continuum fluid/thermal simulations using COMSOL Multiphysics have been applied to model heat and mass transfer in the solid and liquid portions of the thruster. The two methods were coupled through variables at the liquid-vapor interface and solved iteratively by the bisection method. The simulations presented in this thesis confirm the thermal valving concept. It is shown that when power is applied to the thruster there is a nearly linear increase in mass flow and thrust. Thus, mass flow can be regulated by regulating the applied power. This concept can also be used as a thermal control device for spacecraft.

  15. Method for localizing heating in tumor tissue

    DOEpatents

    Doss, James D.; McCabe, Charles W.

    1977-04-12

    A method for a localized tissue heating of tumors is disclosed. Localized radio frequency current fields are produced with specific electrode configurations. Several electrode configurations are disclosed, enabling variations in electrical and thermal properties of tissues to be exploited.

  16. MEMS Biomimetic Acoustic Pressure Gradient Sensitive Structure for Sound Source Localization

    PubMed Central

    An, Peng; Yuan, Weizheng; Ren, Sen

    2009-01-01

    The parasitoid fly Ormia ochracea shows an astonishing localization ability with its tiny hearing organ. A novel MEMS biomimetic acoustic pressure gradient sensitive structure was designed and fabricated by mimicking the mechanically coupled tympana of the fly. Firstly, the analytic representation formulas of the resultant force and resultant moment of the incoming plane wave acting on the structure were derived. After that, structure modal analysis was performed and the results show that the structure has out-of-phase and in-phase vibration modes, and the corresponding eigenfrequency is decided by the stiffness of vertical torsional beam and horizontal beam respectively. Acoustic-structural coupled analysis was performed and the results show that phase difference and amplitude difference between the responses of the two square diaphragms of the sensitive structure are effectively enlarged through mechanical coupling beam. The phase difference and amplitude difference increase with increasing incident angle and can be used to distinguish the direction of sound arrival. At last, the fabrication process and results of the device is also presented. PMID:22346718

  17. Local heating realization by reverse thermal cloak

    PubMed Central

    Hu, Run; Wei, Xuli; Hu, Jinyan; Luo, Xiaobing

    2014-01-01

    Transformation thermodynamics, as one of the important branches among the extensions of transformation optics, has attracted plentiful attentions and interests recently. The result of transformation thermodynamics, or called as “thermal cloak”, can realize isothermal region and hide objects from heat. In this paper, we presented the concept of “reverse thermal cloak” to correspond to the thermal cloak and made a simple engineering definition to identify them. By full-wave simulations, we verified that the reverse thermal cloak can concentrate heat and realize local heating. The performance of local heating depends on the anisotropic dispersion of the cloaking layer's thermal conductivity. Three-dimensional finite element simulations demonstrated that the reverse thermal cloak can be used to heat up objects. Besides pre-engineered metamaterials, such reverse thermal cloak can even be realized with homogenous materials by alternating spoke-like structure or Hashin coated-sphere structure. PMID:24398592

  18. Local heating realization by reverse thermal cloak.

    PubMed

    Hu, Run; Wei, Xuli; Hu, Jinyan; Luo, Xiaobing

    2014-01-01

    Transformation thermodynamics, as one of the important branches among the extensions of transformation optics, has attracted plentiful attentions and interests recently. The result of transformation thermodynamics, or called as "thermal cloak", can realize isothermal region and hide objects from heat. In this paper, we presented the concept of "reverse thermal cloak" to correspond to the thermal cloak and made a simple engineering definition to identify them. By full-wave simulations, we verified that the reverse thermal cloak can concentrate heat and realize local heating. The performance of local heating depends on the anisotropic dispersion of the cloaking layer's thermal conductivity. Three-dimensional finite element simulations demonstrated that the reverse thermal cloak can be used to heat up objects. Besides pre-engineered metamaterials, such reverse thermal cloak can even be realized with homogenous materials by alternating spoke-like structure or Hashin coated-sphere structure. PMID:24398592

  19. Local Laser Heat Treatments of Steel Sheets

    NASA Astrophysics Data System (ADS)

    Järvenpää, A.; Jaskari, M.; Hietala, M.; Mäntyjärvi, K.

    In this work UHS structural and abrasion resistant (AR) steels were heat treated with a single 4 kW Yb: YAG-laser beam. Aim of the softening heat treatments was to enhance the formability locally with minimized strength lose. 1.8 mm thick B24CR boron steel was used for hardening tests. Study presents the possibilities and limitations in laser processing showing that a single laser beam is suitable for heat treating of sheets through the whole cross-section up to the thickness of 6 mm. In the case of the 6 mm thick sheets, the achieved maximum temperature in the cross-section varies as a function of the depth. Consequently, the microstructure and mechanical properties differ between the surfaces and the center of the cross-section (layered microstructure). For better understanding, all layers were tested in tensile tests. The 10 mm thick sheet was heat treated separately on the both surfaces by heating to a lower temperature range to produce a shallow tempered layer. The tensile and bendability tests as well as hardness measurements indicated that laser heat treatment can be used to highly improve the bendability locally without significant strength losses. Laser process has been optimized by transverse scanning movement and with a simple FE-model.

  20. Compact Directional Microwave Antenna for Localized Heating

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Lin, Gregory Y.; Chu, Andrew W.; Dobbins, Justin A.; Arndt, G. Dickey; Ngo, Phong

    2008-01-01

    A directional, catheter-sized cylindrical antenna has been developed for localized delivery of microwave radiation for heating (and thus killing) diseased tissue without excessively heating nearby healthy tissue. By "localized" is meant that the antenna radiates much more in a selected azimuthal direction than in the opposite radial direction, so that it heats tissue much more on one side than it does on the opposite side. This antenna can be inserted using either a catheter or a syringe. A 2.4-mm prototype was tested, although smaller antennas are possible. Prior compact, cylindrical antennas designed for therapeutic localized hyperthermia do not exhibit such directionality; that is, they radiate in approximately axisymmetric patterns. Prior directional antennas designed for the same purpose have been, variously, (1) too large to fit within catheters or (2) too large, after deployment from catheters, to fit within the confines of most human organs. In contrast, the present antenna offers a high degree of directionality and is compact enough to be useable as a catheter in some applications.

  1. Implantable apparatus for localized heating of tissue

    DOEpatents

    Doss, James D.

    1987-01-01

    With the object of repetitively treating deep-seated, inoperable tumors by hyperthermia as well as locally heating other internal tissue masses repetitively, a receiving antenna, transmission line, and electrode arrangment are implanted completely within the patient's body, with the receiving antenna just under the surface of the skin and with the electrode arrangement being located so as to most effectively heat the tissue to be treated. An external, transmitting antenna, driven by an external radio-frequency energy source, is closely coupled to the implanted receiving antenna so that the energy coupled across the air-skin interface provides electromagnetic energy suitable for heating the tissue in the vicinity of the implanted electrodes. The resulting increase in tissue temperature may be estimated by an indirect measurement of the decrease in tissue resistivity in the heated region. This change in resistivity appears as a change in the loading of the receiving antenna which can be measured by either determining the change in the phase relationship between the voltage and the current appearing on the transmitting antenna or by measuring the change in the magnitude of the impedance thereof. Optionally, multiple electrode arrays may be activated or inactivated by the application of magnetic fields to operate implanted magnetic reed switches.

  2. Implantable apparatus for localized heating of tissue

    DOEpatents

    Doss, J.D.

    1985-05-20

    With the object of repetitively treating deep-seated, inoperable tumors by hyperthermia as well as locally heating other internal tissue masses repetitively, a receiving antenna, transmission line and electrode arrangement are implanted completely within the patient's body, with the receiving antenna just under the surface of the skin and with the electrode arrangement being located so as to most effectively heat the tissue to be treated. An external, transmitting antenna, driven by an external radio-frequency energy source, is closely coupled to the implanted receiving antenna so that the energy coupled across the air-skin interface provides electromagnetic energy suitable for heating the tissue in the vicinity of the implanted electrodes. The resulting increase in tissue temperature may be estimated by an indirect measurement of the decrease in tissue resistivity in the heat region. This change in resistivity appears as a change in the loading of the receiving antenna which can be measured by either determining the change in the phase relationship between the voltage and the current appearing on the transmitting antenna or by measuring the change in the magnitude of the impedance thereof. Optionally, multiple electrode arrays may be activated or inactivated by the application of magnetic fields to operate implanted magnetic reed swtiches. 5 figs.

  3. DNA transformation via local heat shock

    NASA Astrophysics Data System (ADS)

    Li, Sha; Meadow Anderson, L.; Yang, Jui-Ming; Lin, Liwei; Yang, Haw

    2007-07-01

    This work describes transformation of foreign DNA into bacterial host cells by local heat shock using a microfluidic system with on-chip, built-in platinum heaters. Plasmid DNA encoding ampicillin resistance and a fluorescent protein can be effectively transformed into the DH5α chemically competent E. coli using this device. Results further demonstrate that only one-thousandth of volume is required to obtain transformation efficiencies as good as or better than conventional practices. As such, this work complements other lab-on-a-chip technologies for potential gene cloning/therapy and protein expression applications.

  4. MEMS in microfluidic channels.

    SciTech Connect

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  5. Interface Shape Control Using Localized Heating during Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Aggarwal, M. D.; Croll, A.

    2008-01-01

    Numerical calculations were performed to assess the effect of localized radial heating on the melt-crystal interface shape during vertical Bridgman growth. System parameters examined include the ampoule, melt and crystal thermal conductivities, the magnitude and width of localized heating, and the latent heat of crystallization. Concave interface shapes, typical of semiconductor systems, could be flattened or made convex with localized heating. Although localized heating caused shallower thermal gradients ahead of the interface, the magnitude of the localized heating required for convexity was less than that which resulted in a thermal inversion ahead of the interface. A convex interface shape was most readily achieved with ampoules of lower thermal conductivity. Increasing melt convection tended to flatten the interface, but the amount of radial heating required to achieve a convex interface was essentially independent of the convection intensity.

  6. A tree-on-a-chip: design and analysis of MEMS-based superheated loop heat pipes exploiting nanoporous silicon membranes

    NASA Astrophysics Data System (ADS)

    Chen, I.-T.; Stroock, A. D.

    2014-11-01

    This paper reports the design, fabrication and analysis of a plant-inspired, MEMS- based superheated loop heat pipe (SHLHP) that would exploit nanoporous membranes to allow for operation with large capillary pressures and superheated liquid. The operating principles of SHLHPs differ from conventional designs in 1) the un-coupling of the working fluid from its saturation curve to eliminate limitations associated with temperature head and sub-cooling conditions and 2) the possibility of maintaining sub-saturation throughout the device to eliminate film condensation and improve the condenser thermal conductivity. Nanoporous silicon membranes integrated with DRIE channels are fabricated and characterized. The ability of the membrane to hold liquid under tension is tested by equilibrating water-filled device with various relative humidity and observing the cavitation events within individual voids underneath the membrane. Silicon membranes with desired functionality are further incorporated with patterned glass substrates to form prototype MEMS-based SHLHPs.

  7. Ovenized microelectromechanical system (MEMS) resonator

    SciTech Connect

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  8. Localized heat induced urticaria: report of a case.

    PubMed

    Darling, Matthew; Lambiase, Matthew C; Hodson, Darryl S

    2004-01-01

    Localized heat induced urticaria is a rare clinical entity. Other physical urticarial subtypes include cholinergic, solar, cold, aquagenic, vibratory, and dermatographic. It is characterized by a well-demarcated urticarial lesion provoked by heat in direct contact with the skin. We describe a case of localized heat-induced urticaria in a 49-year-old woman after a heat-challenge test to her forearm. PMID:14964751

  9. Boiling local heat transfer enhancement in minichannels using nanofluids

    PubMed Central

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  10. Human local and total heat losses in different temperature.

    PubMed

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. PMID:26879106

  11. MEMS Flow Sensors Based on Self-Heated aGe-Thermistors in a Wheatstone Bridge

    PubMed Central

    Talic, Almir; Cerimovic, Samir; Beigelbeck, Roman; Kohl, Franz; Sauter, Thilo; Keplinger, Franz

    2015-01-01

    A thermal flow transduction method combining the advantages of calorimetric and hot-film transduction principles is developed and analyzed by Finite Element Method (FEM) simulations and confirmed experimentally. The analyses include electrothermal feedback effects of current driven NTC thermistors. Four thin-film germanium thermistors acting simultaneously as heat sources and as temperature sensors are embedded in a micromachined silicon-nitride membrane. These devices form a self-heated Wheatstone bridge that is unbalanced by convective cooling. The voltage across the bridge and the total dissipated power are exploited as output quantities. The used thin-film thermistors feature an extremely high temperature sensitivity. Combined with properly designed resistance values, a power demand in sub-1mW range enables efficient gas-flow transduction, as confirmed by measurements. Two sensor configurations with different arrangements of the membrane thermistors were examined experimentally. Moreover, we investigated the influence of different layouts on the rise time, the sensitivity, and the usable flow range by means of two-dimensional finite element simulations. The simulation results are in reasonable agreement with corresponding measurement data confirming the basic assumptions and modeling approach. PMID:25928062

  12. MEMS Flow Sensors Based on Self-Heated aGe-Thermistors in a Wheatstone Bridge.

    PubMed

    Talic, Almir; Cerimovic, Samir; Beigelbeck, Roman; Kohl, Franz; Sauter, Thilo; Keplinger, Franz

    2015-01-01

    A thermal flow transduction method combining the advantages of calorimetric and hot-film transduction principles is developed and analyzed by Finite Element Method (FEM) simulations and confirmed experimentally. The analyses include electrothermal feedback effects of current driven NTC thermistors. Four thin-film germanium thermistors acting simultaneously as heat sources and as temperature sensors are embedded in a micromachined silicon-nitride membrane. These devices form a self-heated Wheatstone bridge that is unbalanced by convective cooling. The voltage across the bridge and the total dissipated power are exploited as output quantities. The used thin-film thermistors feature an extremely high temperature sensitivity. Combined with properly designed resistance values, a power demand in sub-1mW range enables efficient gas-flow transduction, as confirmed by measurements. Two sensor configurations with different arrangements of the membrane thermistors were examined experimentally. Moreover, we investigated the influence of different layouts on the rise time, the sensitivity, and the usable flow range by means of two-dimensional finite element simulations. The simulation results are in reasonable agreement with corresponding measurement data confirming the basic assumptions and modeling approach. PMID:25928062

  13. Ultrasonic Multiple-Access Ranging System Using Spread Spectrum and MEMS Technology for Indoor Localization

    PubMed Central

    Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah

    2014-01-01

    Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084

  14. Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Choi, Sukwon; Griffin, Benjamin A.

    2016-02-01

    Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325 nm laser excitation allows detection of the AlN E2(high) phonon mode in the presence of metal electrodes beneath the AlN layer with a high spatial resolution of less than 400 nm. The AlN film stress shifted 400 MPa from regions where AlN was deposited over a bottom metal electrode versus silicon dioxide. Across wafer stress variations were also investigated showing that wafer level stress metrology, for example using wafer curvature measurements, introduces large uncertainties for predicting the impact of AlN residual stress on the device performance.

  15. Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy

    DOE PAGESBeta

    Choi, Sukwon; Griffin, Benjamin A.

    2016-01-06

    Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325 nm laser excitation allows detection of the AlN E2(high) phonon mode in the presence of metal electrodes beneath the AlN layer with a high spatial resolution of less than 400 nm. The AlN film stress shifted 400 MPa from regions where AlN was deposited over a bottom metal electrode versus silicon dioxide. Thus, across wafer stress variations were also investigated showing that wafer level stress metrology, for example using wafer curvature measurements, introduces large uncertaintiesmore » for predicting the impact of AlN residual stress on the device performance.« less

  16. Measurement of local high-level, transient surface heat flux

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1988-01-01

    This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.

  17. Sandia MEMS

    Energy Science and Technology Software Center (ESTSC)

    2002-06-13

    SUMMiT V (Sandia Ultra planar Multi level MEMS Technology) is a 5 level surface micromachine fabrication technology, which customers intornal and external to Sandia can access to fabricate prototype MEMS devices. This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication process b) Provide enabling educational information (including pictures, videos, technical information) c) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standardmore » Parts Library) d) Facilitate the process of having MEMS fabricated at Sandia National Laboratories e) Facilitate the process of having post-fabrication services performed. While there exist some files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Nole that the customer must purchase his/her own copy of Aut0CAD to use with these files.« less

  18. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  19. Solar steam generation by heat localization.

    PubMed

    Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang

    2014-01-01

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications. PMID:25043613

  20. MEMS Calculator

    National Institute of Standards and Technology Data Gateway

    SRD 166 MEMS Calculator (Web, free access)   This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.

  1. Microwave bonding of MEMS component

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Mai, John D. (Inventor); Jackson, Henry W. (Inventor); Budraa, Nasser K. (Inventor); Pike, William T. (Inventor)

    2005-01-01

    Bonding of MEMs materials is carried out using microwave. High microwave absorbing films are placed within a microwave cavity, and excited to cause selective heating in the skin of the material. This causes heating in one place more than another. Thereby minimizing the effects of the bonding microwave energy.

  2. MEMS Incandescent Light Source

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret; King, Kevin; Kim, Lynn; Hansler, Richard; Jones, Eric; George, Thomas

    2001-01-01

    A MEMS-based, low-power, incandescent light source is being developed. This light source is fabricated using three bonded chips. The bottom chip consists of a reflector on Silicon, the middle chip contains a Tungsten filament bonded to silicon and the top layer is a transparent window. A 25-micrometer-thick spiral filament is fabricated in Tungsten using lithography and wet-etching. A proof-of-concept device has been fabricated and tested in a vacuum chamber. Results indicate that the filament is electrically heated to approximately 2650 K. The power required to drive the proof-of-concept spiral filament to incandescence is 1.25 W. The emitted optical power is expected to be approximately 1.0 W with the spectral peak at 1.1 microns. The micromachining techniques used to fabricate this light source can be applied to other MEMS devices.

  3. Conjugate Heat Transfer in a Closed Volume with the Local Heat Sources and Non-Uniform Heat Dissipation on the Boundaries of Heat Conducting Walls

    NASA Astrophysics Data System (ADS)

    Maksimov, Vyacheslav I.; Nagornova, Tatiana A.; Glazyrin, Viktor P.

    2016-02-01

    Is solved the problem of heat transfer in the closed volume, limited by heat-conducting walls, with the local source of heat emission and the heterogeneous conditions of heat sink on the outer boundaries of solution area. The problem of convective heat transfer is solved with using a system of differential Navier-Stokes equations in the Boussinesq approximation. The simulation of turbulent flow conditions of heated air is carried out within the framework to k-ɛ model. On the basis the analysis of the obtained temperature field and the contour lines of stream functions is made conclusion about the essential transiency of the process in question. The obtained values of temperatures and speeds in different sections of region illustrate turbulence of the process. Are investigated laws governing the formation of temperature fields in closed areas with a local heat emission source under the conditions of intensive local heat sink into environment and accumulation of heat in the enclosing constructions.

  4. Thermocapillary deformation of a water layer at local heating

    NASA Astrophysics Data System (ADS)

    Cheverda, V. V.; Fedorets, A. A.; Marchuk, I. V.; Kabov, O. A.

    2016-03-01

    A horizontal water layer of 0.29-0.44 mm thickness, locally heated from the substrate, is investigated. The value of thermocapillary deformation occurring at local heating is measured by an inverted laser scanning confocal microscope Zeiss LSM 510 Meta. The heater in the form of strip of 0.5-mm width, 40-mm length, and 0.5-mm height made of indium oxide is sputtered on a sapphire substrate. The water temperature from the side of the substrate is measured using the infrared scanner Titanium 570M. We studied in detail the effect of the initial layer thickness and heating power on the value of thermocapillary deformation and temperature field. It is shown that deformation increases with an increase in thermal capacity and decrease in the layer thickness. Results of numerical simulation are in good qualitative agreement with the measurement results.

  5. Natural convection flow in porous enclosure with localized heating from below with heat flux

    NASA Astrophysics Data System (ADS)

    Siddiki, Md. Noor-A.-Alam; Molla, Md. Mamun; Saha, Suvash C.

    2016-07-01

    Unsteady natural convection flow in a two dimensional fluid saturated porous enclosure with localized heating from below with heat flux, symmetrical cooling from the sides and the insulated top wall has been investigated numerically. The governing equations are the Darcy's law for the porous media and the energy equation for the temperature field has been considered. The non-dimensional Darcy's law in terms of the stream function is solved by finite difference method using the successive over-relaxation (SOR) scheme and the energy equation is solved by Alternative Direction Alternative (ADI) scheme. The uniform heat flux source is located centrally at the bottom wall. The numerical results are presented in terms of the streamlines and isotherms, as well as the local and average rate of heat transfer for the wide range of the Darcy's Rayleigh number and the length of the heat flux source at the bottom wall.

  6. Localized electron heating by strong guide-field magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Inomoto, Michiaki; Sugawara, Takumichi; Yamasaki, Kotaro; Ushiki, Tomohiko; Ono, Yasushi

    2015-10-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field using two merging spherical tokamak plasmas in the University of Tokyo Spherical Tokamak experiment. Our new slide-type two-dimensional Thomson scattering system is documented for the first time the electron heating localized around the X-point. Shape of the high electron temperature area does not agree with that of energy dissipation term Et.jt . If we include a guide-field effect term Bt/(Bp+αBt) for Et.jt , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point.

  7. Introduction to applications and industries for Microelectromechanical Systems (MEMS).

    SciTech Connect

    Walraven, Jeremy Allen

    2003-07-01

    Microelectromechanical Systems (MEMS) have gained acceptance as viable products for many commercial and government applications. MEMS are currently being used as displays for digital projection systems, sensors for airbag deployment systems, inkjet print head systems, and optical routers. This paper will discuss current and future MEMS applications. What are MEMS? MEMS are typically defined as microscopic devices designed, processed, and used to interact or produce changes within a local environment. A mechanical, electrical, or chemical stimulus can be used to create a mechanical, electrical, or chemical response in a local environment. These smaller, more sophisticated devices that think, act, sense, and communicate are replacing their bulk counterparts in many traditional applications.

  8. Characterization of local heat fluxes around ICRF antennas on JET

    NASA Astrophysics Data System (ADS)

    Campergue, A.-L.; Jacquet, P.; Bobkov, V.; Milanesio, D.; Monakhov, I.; Colas, L.; Arnoux, G.; Brix, M.; Sirinelli, A.; JET-EFDA Contributors

    2014-02-01

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  9. Characterization of local heat fluxes around ICRF antennas on JET

    SciTech Connect

    Campergue, A.-L.; Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A.; Milanesio, D.; Colas, L.; Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  10. Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes

    SciTech Connect

    O'Brien, James Edward; Sohal, Manohar Singh

    2000-08-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.

  11. Local and nonlocal parallel heat transport in general magnetic fields

    SciTech Connect

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  12. Local Heat Flux Measurements with Single Element Coaxial Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.

  13. Nickel foil microcantilevers for magnetic manipulation and localized heating

    PubMed Central

    Gaitas, Angelo; McNaughton, Brandon H.

    2014-01-01

    Cellular manipulation has been investigated by a number of techniques. In this manuscript nickel foil microcantilevers were used for magnetophoresis and manipulation of microparticles and magnetically labeled HeLa cells. The cantilevers were also used for localized heating in liquid, reaching biologically relevant temperatures. This work aims to develop cantilevers for sample enrichment, manipulation, and thermal applications, offering an inexpensive and versatile solution compatible with standard tools in research and clinical diagnostic testing, such as microwell plates. PMID:25541581

  14. Laser-induced local heating of moving multilayer media.

    PubMed

    Mansuripur, M; Connell, G A

    1983-03-01

    Earlier work on the local heating of stationary multilayer structures by focused laser light has been extended to deal with nonstationary situations. The numerical procedures described here are therefore applicable to many important technologies including optical recording, thermal marking, and laser annealing. We demonstrate this in two examples, namely, the effects of readout intensity on the readout signal from a quadrilayer magnetooptic disk and the writing threshold for ablative materials in single-layer and three-layer structures. PMID:18195853

  15. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  16. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    NASA Astrophysics Data System (ADS)

    Grabenstein, V.; Kabelac, S.

    2012-11-01

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the "Temperature Oscillation InfraRed Thermography" (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own

  17. Modification of shear layer characteristics using local periodic heating

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-An; Munday, Phillip; Taira, Kunihiko

    2015-11-01

    Motivated by the recent development of carbon-based thermophone membranes, we examine their use as a flow control actuator by performing 2D DNS of a compressible subsonic shear layer downstream of a splitter plate for a plate thickness based Reynolds number of 4000. Time varying heat flux boundary condition is utilized as the membrane actuator model on the elliptic nose of the splitter plate. A range of boundary layer thicknesses θ and actuation frequencies are chosen to study the effectiveness of the actuator in modifying the shear layer physics through changing vortex rollup and vortex merging dynamics. For incoming boundary layer with large θ, the heat injection does not shift the rollup frequency when using actuation frequencies between the baseline rollup frequency and its first subharmonic. However, vortex merging is observed to occur earlier downstream. When a positive mean heating is introduced at the same frequency, the early occurrence of the vortex merging is still observed even if the fundamental rollup is delayed due to increased viscosity from the local heating near the nose. For shear layers with small θ, the rollup occurs earlier than the baseline and is locked onto the actuation frequency, but no significant change in the merging is observed. This work was supported by the US Army Research Office (Grant W911NF-14-1-0224).

  18. Molecular sensors for MEMS

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Yung

    Molecular sensors, known as pressure-sensitive paint and temperature-sensitive paint, are applied inside MEMS devices to obtain the internal and external flow fields. The spatial resolution for the PSP and TSP measurements has improved to 5 mum. The low-pressure PSP sensor has been investigated for use in MEMS measurements, with an application range from continuum flow to transition flow. PSP and TSP measurements in different micro devices have been obtained with the flow fields covering steady and unsteady, subsonic and supersonic flow. In microchannel measurements, the pressure distributions inside the microchannel have been obtained for Knudsen number from 0.006 to 0.8. Compressibility and rarefaction effects can be observed in the PSP data. Detailed information at the channel inlet was also collected to discuss the entrance effect for different flow regimes. For micronozzle experiments, four different micronozzles have been fabricated to study geometry effects at the micro scale. The pressure maps inside the micronozzle devices have been obtained with PSP sensors. A modified schlieren technique is used to compare the PSP results and investigate the shock wave behavior at high- and low-pressure conditions. Thick viscous layers in the micronozzle have been observed in the low-pressure measurements. For microjet impingements, heat transfer measurements have been collected with different microjet devices by using TSP sensors. For supersonic impinging microjet measurements, both pressure and temperature data have been obtained at different pressure ratios, impingement angles and impingement distances. Measurements reveal that the magnitude and number of shock cells decreases in the micro scale due to strong viscous effects. For microturbine measurements, averaged results of PSP and TSP measurements have been obtained for a rotation speed from 1300 to 4000 rpm. Phase-averaged results have been collected by using a laser triggering system at rotation speed of 1400 rpm

  19. Analysis of laser-produces jets from locally heated targets

    NASA Astrophysics Data System (ADS)

    Schmitz, Holger; Robinson, Alex

    2015-11-01

    Recent simulations showed that it might be possible to produce a jet by locally heating a foil target with a high intensity laser, so as to produce a single blast wave which then drives jet formation. In contrast to many earlier experimental setups, the jets in this configuration are formed by a two stage process similar to that thought to be responsible for jets from young stellar objects. As the blast wave expands into the ambient medium it creates an inverse conical density structure. This inverse cone focuses the flow into a conically converging flow which then turns into a narrow jet. The realisation of this two step process in an experiment could make it possible to study the formation of stellar jets in the laboratory. We present new results investigating the criteria that lead to the creation of the inverse conical structure and the subsequent jet formation. The localised heating necessary for driving the jet is achieved by guiding the electrons in self generated magnetic fields at resistivity gradients. We present simulations demonstrating the geometries that lead to the localised heating suitable for jet formation. This work is funded by the European Research Council, grant STRUCMAGFAST (ERC-StG-2012).

  20. Transient response to localized episodic heating in the tropics

    NASA Technical Reports Server (NTRS)

    Salby, M. L.; Garcia, R. R.

    1985-01-01

    It is generally recognized that equatorial disturbances in the lower stratosphere are excited by convective latent heat release associated with the Internal Tropical Convergence Zone (ITCZ). Recently, attention has also focused on tropical convection with regard to extratropical teleconnection patterns. Unlike equatorial waves which are trapped about the equator but propagate vertically, the latter extend well out of the tropics but are barotropic. They have been most widely discussed in connection with long-term climatological features. Both types of disturbances have been examined largely from the standpoint of steady monochromatic forcing, in the latter case zero frequency or time-mean heating. However, tropical convection as revealed by recent geostationary satellite imagery is anything but regular, surely not steady. Much of the heating variance is concentrated spatially within three localized convective centers: Indonesia, the Amazon, and the Congo. Convective activity within these regions undergoes an irregular evolution over the span of a couple of days. It involves a rather broad spectrum of spatial and temporal scales. The analysis of cloud brightness over the Eastern Atlantic and Africa suggests a characteristic time scale of 3-4 days and correlations scales in latitude and longitude of approximately 30 deg.

  1. Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths

    NASA Astrophysics Data System (ADS)

    Sääskilahti, K.; Oksanen, J.; Tulkki, J.

    2013-07-01

    Modeling of thermal transport in practical nanostructures requires making tradeoffs between the size of the system and the completeness of the model. We study quantum heat transfer in a self-consistent thermal bath setup consisting of two lead regions connected by a center region. Atoms both in the leads and in the center region are coupled to quantum Langevin heat baths that mimic the damping and dephasing of phonon waves by anharmonic scattering. This approach treats the leads and the center region on the same footing and thereby allows for a simple and physically transparent thermalization of the system, enabling also perfect acoustic matching between the leads and the center region. Increasing the strength of the coupling reduces the mean-free path of phonons and gradually shifts phonon transport from ballistic regime to diffusive regime. In the center region, the bath temperatures are determined self-consistently from the requirement of zero net energy exchange between the local heat bath and each atom. By solving the stochastic equations of motion in frequency space and averaging over noise using the general fluctuation-dissipation relation derived by Dhar and Roy [J. Stat. Phys.JSTPBS0022-471510.1007/s10955-006-9235-3 125, 801 (2006)], we derive the formula for thermal current, which contains the Caroli formula for phonon transmission function and reduces to the Landauer-Büttiker formula in the limit of vanishing coupling to local heat baths. We prove that the bath temperatures measure local kinetic energy and can, therefore, be interpreted as true atomic temperatures. In a setup where phonon reflections are eliminated, the Boltzmann transport equation under gray approximation with full phonon dispersion is shown to be equivalent to the self-consistent heat bath model. We also study thermal transport through two-dimensional constrictions in square lattice and graphene and discuss the differences between the exact solution and linear approximations.

  2. Strong contributions of local background climate to urban heat islands.

    PubMed

    Zhao, Lei; Lee, Xuhui; Smith, Ronald B; Oleson, Keith

    2014-07-10

    The urban heat island (UHI), a common phenomenon in which surface temperatures are higher in urban areas than in surrounding rural areas, represents one of the most significant human-induced changes to Earth's surface climate. Even though they are localized hotspots in the landscape, UHIs have a profound impact on the lives of urban residents, who comprise more than half of the world's population. A barrier to UHI mitigation is the lack of quantitative attribution of the various contributions to UHI intensity (expressed as the temperature difference between urban and rural areas, ΔT). A common perception is that reduction in evaporative cooling in urban land is the dominant driver of ΔT (ref. 5). Here we use a climate model to show that, for cities across North America, geographic variations in daytime ΔT are largely explained by variations in the efficiency with which urban and rural areas convect heat to the lower atmosphere. If urban areas are aerodynamically smoother than surrounding rural areas, urban heat dissipation is relatively less efficient and urban warming occurs (and vice versa). This convection effect depends on the local background climate, increasing daytime ΔT by 3.0 ± 0.3 kelvin (mean and standard error) in humid climates but decreasing ΔT by 1.5 ± 0.2 kelvin in dry climates. In the humid eastern United States, there is evidence of higher ΔT in drier years. These relationships imply that UHIs will exacerbate heatwave stress on human health in wet climates where high temperature effects are already compounded by high air humidity and in drier years when positive temperature anomalies may be reinforced by a precipitation-temperature feedback. Our results support albedo management as a viable means of reducing ΔT on large scales. PMID:25008529

  3. Strong contributions of local background climate to urban heat islands

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Lee, Xuhui; Smith, Ronald B.; Oleson, Keith

    2014-07-01

    The urban heat island (UHI), a common phenomenon in which surface temperatures are higher in urban areas than in surrounding rural areas, represents one of the most significant human-induced changes to Earth's surface climate. Even though they are localized hotspots in the landscape, UHIs have a profound impact on the lives of urban residents, who comprise more than half of the world's population. A barrier to UHI mitigation is the lack of quantitative attribution of the various contributions to UHI intensity (expressed as the temperature difference between urban and rural areas, ΔT). A common perception is that reduction in evaporative cooling in urban land is the dominant driver of ΔT (ref. 5). Here we use a climate model to show that, for cities across North America, geographic variations in daytime ΔT are largely explained by variations in the efficiency with which urban and rural areas convect heat to the lower atmosphere. If urban areas are aerodynamically smoother than surrounding rural areas, urban heat dissipation is relatively less efficient and urban warming occurs (and vice versa). This convection effect depends on the local background climate, increasing daytime ΔT by 3.0 +/- 0.3 kelvin (mean and standard error) in humid climates but decreasing ΔT by 1.5 +/- 0.2 kelvin in dry climates. In the humid eastern United States, there is evidence of higher ΔT in drier years. These relationships imply that UHIs will exacerbate heatwave stress on human health in wet climates where high temperature effects are already compounded by high air humidity and in drier years when positive temperature anomalies may be reinforced by a precipitation-temperature feedback. Our results support albedo management as a viable means of reducing ΔT on large scales.

  4. Localization of small heat shock proteins to the higher plant endomembrane system. [Low-molecular-weight heat shock proteins

    SciTech Connect

    Helm, K.W.; Vierling, E. ); LaFayette, P.R.; Nagao, R.T.; Key, J.L. )

    1993-01-01

    Most eukaryotic cells respond to high temperature and other stresses with the production of heat shock proteins, which aid in cell survival. There are four major classes of heat shock proteins HSP90, HSP70, HSP60 and low-molecular weight HSP. The data from this research indicate that members of the low-molecular weight heat shock proteins are most likely resident endoplasmic reticulum (ER) proteins and may be similar in function to related low-molecular weight heat shock proteins in the cytoplasm. The low-molecular weight heat shock proteins, the HSP90 and the HSP70 all appear to localize to the endoplasmic reticulum. Since the ER-localized low-molecular weight heat shock proteins are physically separated from their counterparts in other cell compartments, investigations of the ER-localized heat shock proteins provides a simplified model system for determining the functions of low-molecular weight heat shock proteins in eukaryotes.

  5. Localizing heat-generating defects using fluorescent microthermal imaging

    SciTech Connect

    Tangyunyong, P.; Liang, A.Y.; Righter, A.W.; Barton, D.L.; Soden, J.M.

    1996-10-01

    Fluorescent microthermal imaging (FMI) involves coating a sample surface with a thin fluorescent film that, upon exposure to UV light source, emits temperature-dependent fluorescence. The principle behind FMI was thoroughly reviewed at the ISTFA in 1994. In two recent publications, we identified several factors in film preparation and data processing that dramatically improved the thermal resolution and sensitivity of FMI. These factors include signal averaging, the use of base mixture films, film stabilization and film curing. These findings significantly enhance the capability of FMI as a failure analysis tool. In this paper, we show several examples that use FMI to quickly localize heat-generating defects (``hot spots``). When used with other failure analysis techniques such as focused ion beam (FIB) cross sectioning and scanning electron microscope (SEM) imaging, we demonstrate that FMI is a powerful tool to efficiently identify the root cause of failures in complex ICs. In addition to defect localization, we use a failing IC to I determine the sensitivity of FMI (i.e., the lowest power that can be detected) in an ideal situation where the defects are very localized and near the surface.

  6. Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization

    PubMed Central

    Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

    2013-01-01

    Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139

  7. Homogeneous thermal cloak with constant conductivity and tunable heat localization.

    PubMed

    Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

    2013-01-01

    Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139

  8. Linear irreversible heat engines based on local equilibrium assumptions

    NASA Astrophysics Data System (ADS)

    Izumida, Yuki; Okuda, Koji

    2015-08-01

    We formulate an endoreversible finite-time Carnot cycle model based on the assumptions of local equilibrium and constant energy flux, where the efficiency and the power are expressed in terms of the thermodynamic variables of the working substance. By analyzing the entropy production rate caused by the heat transfer in each isothermal process during the cycle, and using the endoreversible condition applied to the linear response regime, we identify the thermodynamic flux and force of the present system and obtain a linear relation that connects them. We calculate the efficiency at maximum power in the linear response regime by using the linear relation, which agrees with the Curzon-Ahlborn (CA) efficiency known as the upper bound in this regime. This reason is also elucidated by rewriting our model into the form of the Onsager relations, where our model turns out to satisfy the tight-coupling condition leading to the CA efficiency.

  9. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    SciTech Connect

    Aslanyan, V.; Tallents, G. J.

    2014-06-15

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.

  10. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    NASA Astrophysics Data System (ADS)

    Aslanyan, V.; Tallents, G. J.

    2014-06-01

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.

  11. Localized bending and heating at Enceladus' south pole

    NASA Astrophysics Data System (ADS)

    Beuthe, M.

    2015-10-01

    Since the discovery in 2005 of geysers at the southpole of Enceladus, this midsize moon of Saturn has become famous as the most active icy world in the solar system and as a potential harbor for microbial life. All data gathered during flybys by the Cassini probe point to the existence of a subsurface ocean maintained by tidal heating in the icy crust. This explanation, however, is in conflict with geophysical models which only account for a tenth of the heat output. Such models are based on an approach designed for larger satellites, for which elastic effects are weaker and lateral inhomogeneities are less prominent. By contrast, lateral variations of interior structure are probably the key to understand Enceladus' geological activity. We will test the hypothesis that tidal dissipation is greatly enhanced by local bending of a thinner crust in the south polar region. More generally, we plan to develop a new and faster method to compute tidal dis-sipation in small bodies with lateral heterogeneities,consisting in modeling the crust as a two-dimensional spherical shell with variable thickness or rigidity and with depth-dependent rheology.

  12. Efforts in developing design and simulation tools for MEMS: DS/MEMS and CA/MEMS

    NASA Astrophysics Data System (ADS)

    Youn, Sung Kie; Kwak, Byung M.; Kwon, Jang-Hyuk; Chang, Su-Young; Huh, Jae S.; Kim, Eugene

    2002-04-01

    In this work, multi-physics simulation software (CA/MEMS) and design-optimization software (DS/MEMS) tailored for MEMS devices are introduced. The CA/MEMS, which is a simulation engine for DS/MEMS, is a 3-D multi-physics analysis code utilizing various numerical methods such as FEM, BEM and FVM to efficiently model MEMS application problems. The current CA/MEMS includes analysis- modules for structural, thermal, electric, electromagnetic and fluidic fields and is capable of the analyses of various coupled- field problems for MEMS applications. DS/MEMS is design optimization engine for MEMS devices. With integrating CA/MEMS and pre/post processor into CAD environment, DS/MEMS is organized to work in parametric CAD platform. DS/MEMS consists of optimal design module and robust design module. The optimal design module provides users three methods nonlinear programming, Taguchi parameter design and the response surface method. The robust design module, which is specially developed for MEMS application, can be used to minimize the perturbation of performances of MEMS devices under uncertainties of MEMS devices, such as process tolerance and the change of operating environments. To verify the efficiency and accuracy of CA/MEMS and the practical usefulness of DS/MEMS, we have been comparing the simulated results of CA/MEMS with those of other commercial codes and experimental data of manufactured MEMS devices, and investigating the performances of the optimized designs through DS/MEMS.

  13. MEMS Louvers for Thermal Control

    NASA Technical Reports Server (NTRS)

    Champion, J. L.; Osiander, R.; Darrin, M. A. Garrison; Swanson, T. D.

    1998-01-01

    Mechanical louvers have frequently been used for spacecraft and instrument thermal control purposes. These devices typically consist of parallel or radial vanes, which can be opened or closed to vary the effective emissivity of the underlying surface. This project demonstrates the feasibility of using Micro-Electromechanical Systems (MEMS) technology to miniaturize louvers for such purposes. This concept offers the possibility of substituting the smaller, lighter weight, more rugged, and less costly MEMS devices for such mechanical louvers. In effect, a smart skin that self adjusts in response to environmental influences could be developed composed of arrays of thousands of miniaturized louvers. Several orders of magnitude size, weight, and volume decreases are potentially achieved using micro-electromechanical techniques. The use of this technology offers substantial benefits in spacecraft/instrument design, integration and testing, and flight operations. It will be particularly beneficial for the emerging smaller spacecraft and instruments of the future. In addition, this MEMS thermal louver technology can form the basis for related spacecraft instrument applications. The specific goal of this effort was to develop a preliminary MEMS device capable of modulating the effective emissivity of radiators on spacecraft. The concept pursued uses hinged panels, or louvers, in a manner such that heat emitted from the radiators is a function of louver angle. An electrostatic comb drive or other such actuator can control the louver position. The initial design calls for the louvers to be gold coated while the underlying surface is of high emissivity. Since, the base MEMS material, silicon, is transparent in the InfraRed (IR) spectrum, the device has a minimum emissivity when closed and a maximum emissivity when open. An initial set of polysilicon louver devices was designed at the Johns Hopkins Applied Physics Laboratory in conjunction with the Thermal Engineering Branch at

  14. MEMS Applications in Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Reshotko, E.; Mehregany, M.; Bang, C.

    1998-01-01

    Microelectromechanical systems (MEMS) embodies the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible bulk and surface micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including microsensors and microactuators, are attractive because they can be made small (characteristic dimension about 100 microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. For aerodynamic measurements, it is preferred that sensors be small so as to approximate measurement at a point, and in fact, MEMS pressure sensors, wall shear-stress sensors, heat flux sensors and micromachined hot wires are nearing application. For the envisioned application to wind tunnel models, MEMS sensors can be placed on the surface or in very shallow grooves. MEMS devices have often been fabricated on stiff, flat silicon substrates, about 0.5 mm thick, and therefore were not easily mounted on curved surfaces. However, flexible substrates are now available and heat-flux sensor arrays have been wrapped around a curved turbine blade. Electrical leads can also be built into the flexible substrate. Thus MEMS instrumented wind tunnel models do not require deep spanwise grooves for tubes and leads that compromise the strength of conventionally instrumented models. With MEMS, even the electrical leads can potentially be eliminated if telemetry of the signals to an appropriate receiver can be implemented. While semiconductor silicon is well known for its electronic properties, it is also an excellent mechanical material for MEMS applications. However, silicon electronics are limited to operations below about 200 C, and silicon's mechanical properties start to diminish above 400 C. In recent years, silicon carbide (SiC) has emerged as the leading material candidate for

  15. MEMS for Practical Applications

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    Silicon MEMS as electrostatically levitated rotational gyroscopes and 2D optical scanners, and wafer level packaged devices as integrated capacitive pressure sensors and MEMS switches are described. MEMS which use non-silicon materials as LTCC with electrical feedthrough, SiC and LiNbO3 for probe cards for wafer-level burn-in test, molds for glass press molding and SAW wireless passive sensors respectively are also described.

  16. Harvesting Nanocatalytic Heat Localized in Nanoalloy Catalyst as a Heat Source in a Nanocomposite Thin Film Thermoelectric Device.

    PubMed

    Zhao, Wei; Shan, Shiyao; Luo, Jin; Mott, Derrick M; Maenosono, Shinya; Zhong, Chuan-Jian

    2015-10-20

    This report describes findings of an investigation of harvesting nanocatalytic heat localized in a nanoalloy catalyst layer as a heat source in a nanocomposite thin film thermoelectric device for thermoelectric energy conversion. This device couples a heterostructured copper-zinc sulfide nanocomposite for thermoelectrics and low-temperature combustion of methanol fuels over a platinum-cobalt nanoalloy catalyst for producing heat localized in the nanocatalyst layer. The possibility of tuning nanocatalytic heat in the nanocatalyst and thin film thermoelectric properties by compositions points to a promising pathway in thermoelectric energy conversion. PMID:26444621

  17. Comparison of local and regional heat transport processes into the subsurface urban heat island of Karlsruhe, Germany

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2014-05-01

    Temperatures in shallow urban ground are typically elevated. They manifest as subsurface urban heat islands, which are observed worldwide in different metropolitan areas and which have a site-specific areal extent and intensity. As of right now the governing heat transport processes accumulating heat in the subsurface of cities are insufficiently understood. Based on a spatial assessment of groundwater temperatures, six individual heat flux processes could be identified: (1) heat flux from elevated ground surface temperatures (GST), (2) heat flux from basements of buildings, (3) reinjection of thermal waste water, (4) sewage drains, (5) sewage leakage, and (6) district heating. In this study, the contributions of these processes are quantified on local and regional scales for the city of Karlsruhe in Germany. For the regional scale, the Regionalized Monte Carlo (RMC) method is used. This method applies a single Monte Carlo (MC) simulation for the entire study area. At relatively low data demand, the RMC method provides basic insights into the heat contribution for the entire city. For the local scale, the Local Monte Carlo (LMC) method was developed and applied. This method analyzes all dominant heat fluxes spatially dependent by performing an MC simulation for each arbitrary sized pixel of the study area (here 10 x 10 m). This more intricate approach allows for a spatial representation of all heat flux processes, which is necessary for the local planning of geothermal energy use. In order to evaluate the heat transport processes on a regional scale, we compared the mean annual thermal energies that result from the individual heat flux processes. Both methods identify the heat flux from elevated GST and the heat flux from buildings as the dominant regional processes. However, reinjection of thermal wastewater is by far the most dominant local heat flux processes with an average heat flux of 16 ± 2 W/m2 in the affected areas. Although being dominant on the regional

  18. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  19. Local Mass and Heat Transfer on a Turbine Blade Tip

    DOE PAGESBeta

    Jin, P.; Goldstein, R. J.

    2003-01-01

    Locmore » al mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 × 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.« less

  20. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    SciTech Connect

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-12-31

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

  1. A New Heat Supply System of Cogeneration for the Local Community

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hideki; Hisazumi, Yoshinori; Asano, Hitoshi; Morita, Hikaru; Hori, Toshihiro; Matsumoto, Toshiki; Abiko, Tetsuo

    In order for economically viable distributed generation systems for local communities to be widely accepted, it is essential to develop an efficient and low-cost heat supply system. For this purpose, we propose a new heat supply system which we already presented at the ICOPE-05 Chicago. The key technology for the system is to connect compact heat supply units with a heat storage function installed in all the households of the local community, such as condominiums, by a single-loop of hot water pipe. A phase change material was used for the heat supply unit as the heat storage material. However, for easier handling and reducing the cost of the unit, we have developed a new heat supply unit whose heat storage tank is made of plastic. Hot water for space heating is used as the heat storage material. Further we constructed a heat supply system for 7 lived-in households with a 5 kW gas engine and a 42 kW boiler as the heat sources. Some experiments with a heat supply unit and a heat supply system, such as for heat storage and heat supply for peak demand were conducted. Additionally, dynamic simulations of heat demand by 50 households and a COP evaluation of a new CO2 heat pump system using low-temperature exhaust gas from the gas engine were also conducted.

  2. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  3. local alternative sources for cogeneration combined heat and power system

    NASA Astrophysics Data System (ADS)

    Agll, Abdulhakim Amer

    Global demand for energy continues to grow while countries around the globe race to reduce their reliance on fossil fuels and greenhouse gas emissions by implementing policy measures and advancing technology. Sustainability has become an important issue in transportation and infrastructure development projects. While several agencies are trying to incorporate a range of sustainability measures in their goals and missions, only a few planning agencies have been able to implement these policies and they are far from perfect. The low rate of success in implementing sustainable policies is primarily due to incomplete understanding of the system and the interaction between various elements of the system. The conventional planning efforts focuses mainly on performance measures pertaining to the system and its impact on the environment but seldom on the social and economic impacts. The objective of this study is to use clean and alternative energy can be produced from many sources, and even use existing materials for energy generation. One such pathway is using wastewater, animal and organic waste, or landfills to create biogas for energy production. There are three tasks for this study. In topic one evaluated the energy saving that produced from combined hydrogen, heat, and power and mitigate greenhouse gas emissions by using local sustainable energy at the Missouri S&T campus to reduce energy consumption and fossil fuel usage. Second topic aimed to estimate energy recovery and power generation from alternative energy source by using Rankin steam cycle from municipal solid waste at Benghazi-Libya. And the last task is in progress. The results for topics one and two have been presented.

  4. MEMS metrology techniques

    NASA Astrophysics Data System (ADS)

    Novak, Erik

    2004-12-01

    The MEMS industry currently produces over $13 billion in annual revenue, with devices in such diverse applications as blood pressure sensors, projection displays, optical switches, printers, hard drives, and gyroscopes. As production techniques improve, ever more functions may be served by MEMS, and the industry is growing at an annual rate of more than 15%. The large diversity of MEMS leads to many challenges in metrology, as each design has different critical factors which will affect its performance. Unlike traditional semiconductor devices, MEMS require characterization both in their static state and under actuation. Parameters of interest include shape, dimensions, surface roughness, sidewall angles, film thickness, residual stress, feature volumes, response times, thermal properties, resonance frequencies, stiction, environmental immunity and more. This talk will discuss the strengths and weaknesses of a variety of techniques for MEMS surface metrology. Bright- and dark-field microscopy, scanning electron microscopy, contact and non-contact surface profilometry, atomic force microscopy, laser Doppler vibrometry and digital holography are some of the primary techniques used to evaluate MEMS surfaces and motion. While no single technique can fully characterize all MEMS devices, or even one device under all conditions, the utility of each of the different types of instruments is increasing as they are pushed by MEMS and other industries to provide more characterization capability. With a broad understanding of the various metrology techniques available, the one or few critical instruments to measure a given class of devices will hopefully be more easily understood.

  5. MEMS metrology techniques

    NASA Astrophysics Data System (ADS)

    Novak, Erik

    2005-01-01

    The MEMS industry currently produces over $13 billion in annual revenue, with devices in such diverse applications as blood pressure sensors, projection displays, optical switches, printers, hard drives, and gyroscopes. As production techniques improve, ever more functions may be served by MEMS, and the industry is growing at an annual rate of more than 15%. The large diversity of MEMS leads to many challenges in metrology, as each design has different critical factors which will affect its performance. Unlike traditional semiconductor devices, MEMS require characterization both in their static state and under actuation. Parameters of interest include shape, dimensions, surface roughness, sidewall angles, film thickness, residual stress, feature volumes, response times, thermal properties, resonance frequencies, stiction, environmental immunity and more. This talk will discuss the strengths and weaknesses of a variety of techniques for MEMS surface metrology. Bright- and dark-field microscopy, scanning electron microscopy, contact and non-contact surface profilometry, atomic force microscopy, laser Doppler vibrometry and digital holography are some of the primary techniques used to evaluate MEMS surfaces and motion. While no single technique can fully characterize all MEMS devices, or even one device under all conditions, the utility of each of the different types of instruments is increasing as they are pushed by MEMS and other industries to provide more characterization capability. With a broad understanding of the various metrology techniques available, the one or few critical instruments to measure a given class of devices will hopefully be more easily understood.

  6. Close Up - Mem Fox.

    ERIC Educational Resources Information Center

    Moss, Barbara

    2003-01-01

    Presents an interview with Mem Fox, a teacher educator and children's book author well known throughout the world. Discusses writing books for children, and the mistakes she made early in her career as a writer. Notes that Mem is a tireless advocate for meaningful literacy instruction, and her "Radical Reflections: Passionate Opinions on Teaching,…

  7. MEMS in Singapore

    NASA Astrophysics Data System (ADS)

    Tay, Francis E.

    2001-03-01

    Microelectromechanical Systems (MEMS) can be termed as a crossroad technology. Cross road in the sense that it is an amalgamation of various disciplines to produce a solution. Cross road also, in the sense that it is disruptive to the way that solutions used to be provided. At the crossroad, a decision needs to be made either to do things the old way or to embrace the new technology. In this paper, a review is made to the research and development of MEMS technology with potentially widespread applications in Singapore. In most cases, these are preparations to a possible acceleration of MEMS related industry in this part of the world. However, the author also noted that the transfer of MEMS technology from the laboratory to the industry is not a trivial matter. A major decision has to be made due to the high capital outlay and the high operational costs involved. Further, many production related issues such as yield and packaging have to be considered. A large number of MEMS commercial outfits such as Bosch are serving internal customers. As a small country with limited resources, Singapore places great emphasis on building up MEMS research and development activities to support future high value-added design and fabrication. In this paper, some of the MEMS activities in the national universities and institutes in Singapore are introduced, and some recent progress and development of MEMS technology in Singapore are presented.

  8. New emerging MEMS applications

    NASA Astrophysics Data System (ADS)

    Mounier, Eric; Eloy, Jean-Christophe

    2007-02-01

    This paper presents the trends for the years to come for the different MEMS markets. Consumer applications have really started to push the MEMS business in 2005. Many different devices are involved, like pressure sensors (altimeters), microphones, accelerometers, gyroscopes . . . One of the most significant consequences is that all the Top 50 semiconductor companies are now looking at these MEMS applications as possible growth areas. Another result of the growth of the MEMS market is the strong growth of the foundries and contract manufacturers. We have seen growth of more than 35% in 2005 compared to 2004 and we expect similar growth in the next 3 years. We will review the next MEMS applications which have currently a high growth: Si microphones, microdisplays (for RPTV, portable projectors or automotive HUDs), gyroscopes and micro-fuel cells. In the longer term, micro-source of energy could also become an important MEMS market. In term of milestones, the following points can be highlighted: -In 2005 market, the MEMS market is 5.1 B worldwide and very fragmented in terms of companies and products. -In 2010, it will be a 9.7 B market worldwide. MEMS foundries and contract manufacturers will account for at least 8 % of the world market with several being public companies. More than 50% of today's systems companies who have integrated fabs will be using external manufacturers. Several large integrated companies will have created independent MEMS spin-offs and IC manufacturers will be deeply involved in MEMS manufacturing. -In 2015, it will be an 18 B$ market worldwide with no longer systems manufacturers with internal fabs. And we forecast that 50% of the total market will be in the hands of semiconductor manufacturers.

  9. Roles of lattice cooling on local heating in metal-molecule-metal junctions

    NASA Astrophysics Data System (ADS)

    Tsutsui, Makusu; Taniguchi, Masateru; Yokota, Kazumichi; Kawai, Tomoji

    2010-03-01

    We report a quantitative assessment of the efficacy of lattice cooling on mitigating local heating in a current-carrying single molecule wire connected to gold nanoelectrodes by comparative analyses of high-field effective temperatures at different ambient temperatures. We find substantial local heating in benzenedithiol single molecule junctions raising the local temperatures by ˜320 K from the ambient to ˜400 K at 0.85 V. The intense self-heating are attributable to decreased thermal conductance at low temperatures that leads to deteriorated heat transfer at metal-molecule contacts, thereby manifesting a critical role of lattice cooling for alleviating metal-molecule-metal junction overheating.

  10. Imaging Local Heating and Thermal Diffusion of Nanomaterials with Plasmonic Thermal Microscopy.

    PubMed

    Chen, Zixuan; Shan, Xiaonan; Guan, Yan; Wang, Shaopeng; Zhu, Jun-Jie; Tao, Nongjian

    2015-12-22

    Measuring local heat generation and dissipation in nanomaterials is critical for understanding the basic properties and developing applications of nanomaterials, including photothermal therapy and joule heating of nanoelectronics. Several technologies have been developed to probe local temperature distributions in nanomaterials, but a sensitive thermal imaging technology with high temporal and spatial resolution is still lacking. Here, we describe plasmonic thermal microscopy (PTM) to image local heat generation and diffusion from nanostructures in biologically relevant aqueous solutions. We demonstrate that PTM can detect local temperature change as small as 6 mK with temporal resolution of 10 μs and spatial resolution of submicrons (diffraction limit). With PTM, we have successfully imaged photothermal generation from single nanoparticles and graphene pieces, studied spatiotemporal distribution of temperature surrounding a heated nanoparticle, and observed heating at defect sites in graphene. We further show that the PTM images are in quantitative agreement with theoretical simulations based on heat transport theories. PMID:26435320

  11. Organization of ice flow by localized regions of elevated geothermal heat flux

    NASA Astrophysics Data System (ADS)

    Pittard, M. L.; Galton-Fenzi, B. K.; Roberts, J. L.; Watson, C. S.

    2016-04-01

    The impact of localized regions of elevated geothermal heat flux on ice sheet dynamics is largely unknown. Simulations of ice dynamics are produced using poorly resolved and low-resolution estimates of geothermal heat flux. Observations of crustal heat production within the continental crust underneath the Lambert-Amery glacial system in East Antarctica indicate that high heat flux regions of at least 120 mW m-2 exist. Here we investigate the influence of simulated but plausible, localized regions of elevated geothermal heat flux on ice dynamics using a numerical ice sheet model of the Lambert-Amery glacial system. We find that high heat flux regions have a significant effect across areas of slow-moving ice with the influence extending both upstream and downstream of the geothermal anomaly, while fast-moving ice is relatively unaffected. Our results suggest that localized regions of elevated geothermal heat flux may play an important role in the organization of ice sheet flow.

  12. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  13. MEMS programs at DARPA

    NASA Astrophysics Data System (ADS)

    Tang, William C.

    2001-10-01

    Microelectromechanical Systems (MEMS) is one of the three core enabling technologies within the Microsystems Technology Office (MTO) of the Defense Advanced Research Projects Agency (DARPA). Together with Photonics and Electronics, MEMS forms the foundation for a broad variety of advanced research projects sponsored by MTO as well as other offices within DARPA. MEMS technology merges the functions of compute, communicate and power together with sense, actuate and control to change completely the way people and machines interact with the physical world. Using an ever-expanding set of fabrication processes and materials, MEMS will provide the advantages of small size, low-power, low-mass, low-cost and high-functionality to integrated electromechanical systems both on the micro as well as on the macro scales. Further, demands for increased performance; reliability, robustness, lifetime, maintainability and capability of military equipment of all kinds can be met by the integration of MEMS into macro devices and systems. In the post-cold-war era, U.S. forces must be able to conduct prompt, sustained, and synchronized operations with our allies in specific situations and with the freedom to operate in all four domains of military engagementsea, land, air, and space. MEMS technology has now been demonstrated in all four domains. The long-term goal of the DARPA MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies to bring co-located perception and control to systems, processes and the environment.

  14. District heating from electric-generating plants and municipal incinerators: local planner's assessment guide

    SciTech Connect

    Pferdehirt, W.; Kron, N. Jr.

    1980-11-01

    This guide is designed to aid local government planners in the preliminary evaluation of the feasibility of district heating using heat recovered from electric generating plants and municipal incinerators. System feasibility is indicated by: (1) the existence of an adequate supply of nearby waste heat, (2) the presence of a sufficiently dense and large thermal load, and (3) a favorable cost comparison with conventional heating methods. 34 references.

  15. Local jet impingement boiling heat transfer with R113

    NASA Astrophysics Data System (ADS)

    Zhou, D. W.; Ma, C. F.

    An experimental study was performed to characterize the boiling heat transfer of impinging circular submerged jets on simulated microelectronic chips with a nominal area of 5 mm × 5 mm. The heat transfer modes included natural convection, partially developed nucleate boiling, fully developed nucleate boiling and critical heat flux. The study included the effects of jet parameters and fluid subcooling on the nucleate boiling. The results showed that the nucleate boiling data varied only with fluid subcooling regardless of jet parameters and that both the pool and impingement nucleate boiling curves at the same subcooling condition were well correlated. The high heat flux portions of the boiling curves with jet exit velocities greater than 10 m/s were corrected for the elevated saturation temperature. A new expression was developed with an interpolation method to construct the partially developed nucleate boiling curve.

  16. Variable Emissivity Through MEMS Technology

    NASA Technical Reports Server (NTRS)

    Darrin, Ann Garrison; Osiander, Robert; Champion, John; Swanson, Ted; Douglas, Donya; Grob, Lisa M.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    This paper discusses a new technology for variable emissivity (vari-e) radiator surfaces, which has significant advantages over traditional radiators and promises an alternative design technique for future spacecraft thermal control systems. All spacecraft rely on radiative surfaces to dissipate waste heat. These radiators have special coatings, typically with a low solar absorptivity and a high infrared-red emissivity, that are intended to optimize performance under the expected heat load and thermal sink environment. The dynamics of the heat loads and thermal environment make it a challenge to properly size the radiator and often require some means of regulating the heat rejection rate of the radiators in order to achieve proper thermal balance. Specialized thermal control coatings, which can passively or actively adjust their emissivity offer an attractive solution to these design challenges. Such systems would allow intelligent control of the rate of heat loss from a radiator in response to heat load and thermal environmental variations. Intelligent thermal control through variable emissivity systems is well suited for nano and pico spacecraft applications where large thermal fluctuations are expected due to the small thermal mass and limited electric resources. Presently there are three different types of vari-e technologies under development: Micro ElectroMechanical Systems (MEMS) louvers, Electrochromic devices, and Electrophoretic devices. This paper will describe several prototypes of micromachined (MEMS) louvers and experimental results for the emissivity variations measured on theses prototypes. It will further discuss possible actuation mechanisms and space reliability aspects for different designs. Finally, for comparison parametric evaluations of the thermal performances of the new vari-e technology and standard thermal control systems are presented in this paper.

  17. memP

    Energy Science and Technology Software Center (ESTSC)

    2010-02-05

    The lightweight heap profiling tool memP Version 1 provides a library that can be used with MPI applications that make use of heap memory allocations to provide profile data based on the per-task high-water-mark of heap allocation. The memP output is generated as a text report that can present summary information or specific detail of the allocation call site data for each task The memP library source code is based on teh mpiP MPI profilingmore » library (http://mpip.sourceforge.net), but is substantially different in functionality and organization.« less

  18. Local pressure measurements and heat transfer coefficients of flow boiling in a rectangular microchannel

    NASA Astrophysics Data System (ADS)

    Mirmanto, M.

    2016-01-01

    Experiments to investigate local pressure distribution and local heat transfer coefficients during flow boiling of water in a microchannel were performed. The hydraulic diameter of the channel was 0.635 mm. The nominal mass fluxes used were varied from 200 to 700 kg/m2 s and heat fluxes ranging from 171 to 685 kW/m2 were applied. An inlet fluid temperature of 98 °C and pressure of 125 kPa were maintained at the microchannel entrance. There were six pressure tappings inserted into the channel to measure the local pressures and six thermocouple inserted into the channel block with equally distances to measure the wall local temperatures. The local pressure measurements during flow boiling show a non linear line connecting each local pressure, especially at higher heat fluxes or pressure drops. The non linear local pressure influences the value of the estimated local heat transfer coefficient. The effects of mass flux and heat flux on local heat transfer coefficient are also discussed.

  19. Effect of whole-body and local heating on cutaneous vasoconstrictor responses in humans

    NASA Technical Reports Server (NTRS)

    Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Animal studies suggest that alpha-adrenergic-mediated vasoconstriction is compromised during whole-body heating. The purpose of this study was to identify whether whole-body heating and/or local surface heating reduce cutaneous alpha-adrenergic vasoconstrictor responsiveness in human skin. Protocol I: Six subjects were exposed to neutral skin temperature (i.e., 34 degrees C), whole-body heating, and local heating of forearm skin to increase skin blood flow to the same relative magnitude as that observed during whole-body heating. Protocol II: In eight subjects forearm skin was locally heated to 34, 37, 40, and 42 degrees C. During both protocols, alpha-adrenergic vasoconstrictor responsiveness was assessed by local delivery of norepinephrine (NE) via intradermal microdialysis. Skin blood flow was continuously monitored over each microdialysis membrane via laser-Doppler flowmetry. In protocol I, whole-body and local heating caused similar increases in cutaneous vascular conductance (CVC). The EC50 (log NE dose) of the dose-response curves for both whole body (-4.2 +/- 0.1 M) and local heating (-4.7 +/- 0.4 M) were significantly greater (i.e., high dose required to cause 50% reduction in CVC) relative to neutral skin temperature (- 5.6 +/- 0.0 M; P<0.05 for both). In both local and whole-body heated conditions CVC did not return to pre-heating values even at the highest dose of NE. In protocol II, calculated EC50 for 34, 37, 40, and 42 degrees C local heating was - 5.5 +/- 0.4, -4.6 +/- 0.3, -4.5 +/- 0.3, - 4.2 +/- 0.4 M, respectively. Statistical analyses revealed that the EC50 for 37,40 and 42 degrees C were significantly greater than the EC50 for 34 degrees C. These results indicate that even during administration of high concentrations of NE, alpha-adrenergic vasoconstriction does not fully compensate for local heating and whole-body heating induced vasodilatation in young, healthy subjects. Moreover, these data suggest that elevated local temperatures, above 37

  20. Studies of local electron heat transport on TFTR

    SciTech Connect

    Fredrickson, E.D.; Chang, Z.Y.; Janos, A.; McGuire, K.M.; Scott, S.; Taylor, G.

    1993-08-16

    The anomalously fast relaxation of the perturbations to the electron temperature profile caused by a sawtooth crash has been studied extensively on TFTR. We will show that on a short timescale the heat pulse is not simply diffusive as has been generally assumed, but that modeling of the heat pulse requires a transient enhancement in {chi}{sub e} following the sawtooth crash. It will be shown that the time-dependent enhancement in {chi}{sub e} predicted by non-linear thermal transport models, i.e., incremental {chi} models or the Rebut-Lallia-Watkins transport model, is much smaller than that required to explain the anomalies in the heat pulse propagation.

  1. Control of Grain Structure in Pure Copper by a Local Heating

    NASA Astrophysics Data System (ADS)

    Shibayanagi, Toshiya; Tsukamoto, Masahiro; Abe, Nobuyuki

    The present work deals with a preferential grain growth process in a localized region utilizing local heating method in order to fabricate some unique microstructures different from those fabricated in the homogeneous way of microstructure evolution. A Monte Carlo simulation of grain growth under a heterogeneous temperature gradient, i.e. spot heating, was performed. Steep temperature gradient brought about a preferential grain growth in the higher temperature region, showing that the local heating was effective for the control of grain structure of polycrystalline materials. Such type of preferential grain growth became less significant under the mild temperature gradient. Local heating of pure copper foil with 0.2mm in thickness utilizing laser beam was performed by changing the irradiation conditions. In the case of 200W for laser power and 18mm/s for sweep velocity, some grains were observed to have larger grain sizes than their surrounding grains, suggesting a possibility of preferential grain growth in the localized region.

  2. Automatic optimization of localized heat treatment for Al-Si-Mg alloys

    NASA Astrophysics Data System (ADS)

    Ludwig, A.; Holzmann, T.

    2016-03-01

    Material properties of aluminium alloys can usually be achieved by a heat treatment and quenching procedure. In case that only local strengthening is needed, a local heat treatment and quenching strategy could be an option to the energy intensive, time consuming and costly treatment of the whole part. One of the essential problem using a local strengthening procedure is the lack of knowledge about suitable process parameters. Therefore, a multiple criteria optimization approach with local strengthening as target function was set up, whereby the material constitution was calculated based on the precipitation evolution during local heat treatment and cooling. By automatically varying the exposure time and laser power, a series of process simulations was performed to find adequate process parameters for the sufficient local strengthening of the alloy.

  3. Prediction of local and integrated heat transfer in nozzles using an integral turbulent boundary layer method

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Schmidt, J. F.; Ehlers, R. C.

    1972-01-01

    An empirical modification of an existing integral energy turbulent boundary layer method is proposed in order to improve the estimates of local heat transfer in converging-diverging nozzles and consequently, provide better assessments of the total or integrated heat transfer. The method involves the use of a modified momentum-heat analogy which includes an acceleration term comprising the nozzle geometry and free stream velocity. The original and modified theories are applied to heat transfer data from previous studies which used heated air in 30 deg - 15 deg, 45 deg - 15 deg, and 60 deg - 15 deg water-cooled nozzles.

  4. New technique of the local heat flux measurement in combustion chambers of steam boilers

    NASA Astrophysics Data System (ADS)

    Taler, Jan; Taler, Dawid; Sobota, Tomasz; Dzierwa, Piotr

    2011-12-01

    A new method for measurement of local heat flux to water-walls of steam boilers was developed. A flux meter tube was made from an eccentric tube of short length to which two longitudinal fins were attached. These two fins prevent the boiler setting from heating by a thermal radiation from the combustion chamber. The fins are not welded to the adjacent water-wall tubes, so that the temperature distribution in the heat flux meter is not influenced by neighbouring water-wall tubes. The thickness of the heat flux tube wall is larger on the fireside to obtain a greater distance between the thermocouples located inside the wall which increases the accuracy of heat flux determination. Based on the temperature measurements at selected points inside the heat flux meter, the heat flux absorbed by the water-wall, heat transfer coefficient on the inner tube surface and temperature of the water-steam mixture was determined.

  5. Local Thermal Equilibrium for Certain Stochastic Models of Heat Transport

    NASA Astrophysics Data System (ADS)

    Li, Yao; Nándori, Péter; Young, Lai-Sang

    2016-04-01

    This paper is about nonequilibrium steady states (NESS) of a class of stochastic models in which particles exchange energy with their "local environments" rather than directly with one another. The physical domain of the system can be a bounded region of R^d for any d ge 1. We assume that the temperature at the boundary of the domain is prescribed and is nonconstant, so that the system is forced out of equilibrium. Our main result is local thermal equilibrium in the infinite volume limit. In the Hamiltonian context, this would mean that at any location x in the domain, local marginal distributions of NESS tend to a probability with density 1/Z e^{-β (x) H}, permitting one to define the local temperature at x to be β (x)^{-1}. We prove also that in the infinite volume limit, the mean energy profile of NESS satisfies Laplace's equation for the prescribed boundary condition. Our method of proof is duality: by reversing the sample paths of particle movements, we convert the problem of studying local marginal energy distributions at x to that of joint hitting distributions of certain random walks starting from x, and prove that the walks in question become increasingly independent as system size tends to infinity.

  6. Remotely actuated localized pressure and heat apparatus and method of use

    NASA Technical Reports Server (NTRS)

    Merret, John B. (Inventor); Taylor, DeVor R. (Inventor); Wheeler, Mark M. (Inventor); Gale, Dan R. (Inventor)

    2004-01-01

    Apparatus and method for the use of a remotely actuated localized pressure and heat apparatus for the consolidation and curing of fiber elements in, structures. The apparatus includes members for clamping the desired portion of the fiber elements to be joined, pressure members and/or heat members. The method is directed to the application and use of the apparatus.

  7. Photoinduced local heating in silica photonic crystals for fast and reversible switching.

    PubMed

    Gallego-Gómez, Francisco; Blanco, Alvaro; López, Cefe

    2012-12-01

    Fast and reversible photonic-bandgap tunability is achieved in silica artificial opals by local heating. The effect is fully reversible as heat rapidly dissipates through the non-irradiated structure without active cooling and water is readsorbed. The performance is strongly enhanced by decreasing the photoirradiated opal volume, allowing bandgap shifts of 12 nm and response times of 20 ms. PMID:22976241

  8. Non-local heat transport in static solar coronal loops

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Peres, G.; Serio, S.

    1991-04-01

    The limits of applicability of the Spitzer-Harm thermal conductivity in solar coronal loops is investigated, and it is shown that the ratio of electron mean-free path to temperature scale height in large-scale structures can approach the limits of the Spitzer-Harm theory. A nonlocal formulation of heat transport is used to compute a grid of loop models: the effects of nonlocal transport on the distribution of differential emission measure are particularly important in the coronal part of loops longer than the pressure scale height.

  9. Observation of localized heating phenomena during microwave heating of mixed powders using in situ x-ray diffraction technique

    SciTech Connect

    Sabelström, N. Hayashi, M.; Watanabe, T.; Nagata, K.

    2014-10-28

    In materials processing research using microwave heating, there have been several observations of various phenomena occurring known as microwave effects. One significant example of such a phenomenon is increased reaction kinetics. It is believed that there is a possibility that this might be caused by localized heating, were some reactants would attain a higher than apparent temperature. To examine whether such thermal gradients are indeed possible, mixed powders of two microwave non-absorbers, alumina and magnesia, were mixed with graphite, a known absorber, and heated in a microwave furnace. During microwave irradiation, the local temperatures of the respective sample constituents were measured using an in situ x-ray diffraction technique. In the case of the alumina and graphite sample, a temperature difference of around 100 °C could be observed.

  10. Local Equilibrium in Inhomogeneous Stochastic Models of Heat Transport

    NASA Astrophysics Data System (ADS)

    Nándori, Péter

    2016-07-01

    We extend the duality of Kipnis et al. (J Stat Phys 27:65-74, 1982) to inhomogeneous lattice gas systems where either the components have different degrees of freedom or the rate of interaction depends on the spatial location. Then the dual process is applied to prove local equilibrium in the hydrodynamic limit for some inhomogeneous high dimensional systems and in the nonequilibrium steady state for one dimensional systems with arbitrary inhomogeneity.

  11. MEMS Reaction Control and Maneuvering for Picosat Beyond LEO

    NASA Technical Reports Server (NTRS)

    Alexeenko, Alina

    2016-01-01

    The MEMS Reaction Control and Maneuvering for Picosat Beyond LEO project will further develop a multi-functional small satellite technology for low-power attitude control, or orientation, of picosatellites beyond low Earth orbit (LEO). The Film-Evaporation MEMS Tunable Array (FEMTA) concept initially developed in 2013, is a thermal valving system which utilizes capillary forces in a microchannel to offset internal pressures in a bulk fluid. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in a nozzle which induces vacuum boiling and provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. Interplanetary CubeSats can utilize FEMTA for high slew rate attitude corrections in addition to desaturating reaction wheels. The FEMTA in cooling mode can be used for thermal control during high-power communication events, which are likely to accompany the attitude correction. Current small satellite propulsion options are limited to orbit correction whereas picosatellites are lacking attitude control thrusters. The available attitude control systems are either quickly saturated reaction wheels or movable high drag surfaces with long response times.

  12. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1994

    SciTech Connect

    Dr. Ronald D. Boyd

    2000-07-01

    The physical phenomenon of forced convective boiling is probably one of the most interesting and complex transport phenomena. It has been under study for more than two centuries. Simply stated, forced convective subcooled boiling involves a locally boiling fluid: (1) whose mean temperature is below its saturation temperature, and (2) that flows over a surface exposed uniformly or non-uniformly to a high heat flux (HHF). The objective of this work is to assess and/or improve the present ability to predict local axial heat transfer distributions in the subcooled flow boiling regime for the case of uniformly heated coolant channels. This requires an accurate and complete representation of the boiling curve up to the CHF. The present. results will be useful for both heat transfer research and industrial design applications. Future refinements may result in the application of the results to non-uniformly heated channels or other geometries, and other fluids. Several existing heat transfer models for uniformly heated channels were examined for: (1) accurate representation of the boiling curve, and (2) characterizing the local heat transfer coefficient under high heat flux (HHF) conditions. Comparisons with HHF data showed that major correlation modifications were needed in the subcooled partial nucleate boiling (SPNB) region. Since the slope of boiling curve in this region is important to assure continuity of the HHF trends into the fully developed boiling region and up to the critical heat flux, accurate characterization in the SPNB region is essential. Approximations for the asymptotic limits for the SPNB region have been obtained and have been used to develop an improved composite correlation. The developed correlation has been compared with 363 water data points. For the local heat transfer coefficient and wall temperature, the over-all percent standard deviations with respect to the data were 19% and 3%, respectively, for the high velocity water data.

  13. MEMS in Space Systems

    NASA Technical Reports Server (NTRS)

    Lyke, J. C.; Michalicek, M. A.; Singaraju, B. K.

    1995-01-01

    Micro-electro-mechanical systems (MEMS) provide an emerging technology that has the potential for revolutionizing the way space systems are designed, assembled, and tested. The high launch costs of current space systems are a major determining factor in the amount of functionality that can be integrated in a typical space system. MEMS devices have the ability to increase the functionality of selected satellite subsystems while simultaneously decreasing spacecraft weight. The Air Force Phillips Laboratory (PL) is supporting the development of a variety of MEMS related technologies as one of several methods to reduce the weight of space systems and increase their performance. MEMS research is a natural extension of PL research objectives in micro-electronics and advanced packaging. Examples of applications that are under research include on-chip micro-coolers, micro-gyroscopes, vibration sensors, and three-dimensional packaging technologies to integrate electronics with MEMS devices. The first on-orbit space flight demonstration of these and other technologies is scheduled for next year.

  14. Reversible control of current across lipid membranes by local heating

    NASA Astrophysics Data System (ADS)

    Urban, Patrick; Kirchner, Silke R.; Mühlbauer, Christian; Lohmüller, Theobald; Feldmann, Jochen

    2016-03-01

    Lipid membranes are almost impermeable for charged molecules and ions that can pass the membrane barrier only with the help of specialized transport proteins. Here, we report how temperature manipulation at the nanoscale can be employed to reversibly control the electrical resistance and the amount of current that flows through a bilayer membrane with pA resolution. For this experiment, heating is achieved by irradiating gold nanoparticles that are attached to the bilayer membrane with laser light at their plasmon resonance frequency. We found that controlling the temperature on the nanoscale renders it possible to reproducibly regulate the current across a phospholipid membrane and the membrane of living cells in absence of any ion channels.

  15. Reversible control of current across lipid membranes by local heating

    PubMed Central

    Urban, Patrick; Kirchner, Silke R.; Mühlbauer, Christian; Lohmüller, Theobald; Feldmann, Jochen

    2016-01-01

    Lipid membranes are almost impermeable for charged molecules and ions that can pass the membrane barrier only with the help of specialized transport proteins. Here, we report how temperature manipulation at the nanoscale can be employed to reversibly control the electrical resistance and the amount of current that flows through a bilayer membrane with pA resolution. For this experiment, heating is achieved by irradiating gold nanoparticles that are attached to the bilayer membrane with laser light at their plasmon resonance frequency. We found that controlling the temperature on the nanoscale renders it possible to reproducibly regulate the current across a phospholipid membrane and the membrane of living cells in absence of any ion channels. PMID:26940847

  16. RF MEMS Based Reconfigurable Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  17. Measurement of local connective heat transfer coefficients of four ice accretion shapes

    NASA Technical Reports Server (NTRS)

    Smith, M. E.; Armilli, R. V.; Keshock, E. G.

    1984-01-01

    In the analytical study of ice accretions that form on aerodynamic surfaces (airfoils, engine inlets, etc.) it is often necessary to be able to calculate convective heat transfer rates. In order to do this, local convective heat transfer coefficients for the ice accretion shapes must be known. In the past, coefficients obtained for circular cylinders were used as an approximation to the actual coefficients since no better information existed. The purpose of this experimental study was to provide local convective heat transfer coefficients for four shapes that represent ice accretions. The shapes were tested with smooth and rough surfaces. The experimental method chosen was the thin-skin heat rate technique. Using this method local Nusselt numbers were determined for the ice shapes. In general it was found that the convective heat transfer was higher in regions where the model's surfaces were convex and lower in regions where the model's surfaces were concave. The effect of roughness was to increase the heat transfer in the high heat transfer regions by approximately 100% while little change was apparent in the low heat transfer regions.

  18. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  19. Triz in Mems

    NASA Astrophysics Data System (ADS)

    Apte, Prakash R.

    1999-11-01

    TRIZ is a Russian abbreviation. Genrich Altshuller developed it fifty years ago in the former Soviet Union. He examined thousands of inventions made in different technological systems and formulated a 'Theory of Inventive problem solving' (TRIZ). Altshuller's research of over fifty years on Creativity and Inventive Problem Solving has led to many different classifications, methods and tools of invention. Some of these are, Contradictions table, Level of inventions, Patterns in evolution of technological systems, ARIZ-Algorithm for Inventive Problem Solving, Diagnostic problem solving and Anticipatory Failure Determination. MEMS research consists of conceptual design, process technology and including of various Mechanical, ELectrical, Thermal, Magnetic, Acoustic and other effects. MEMS system s are now rapidly growing in complexity. Each system will thus follow one or more 'patterns of evolution' as given by Altshuller. This paper attempts to indicate how various TRIZ tools can be used in MEMS research activities.

  20. Cell Metabolism Monitoring with MEMS Sensor

    NASA Astrophysics Data System (ADS)

    Nakabeppu, Osamu; Sakayori, Junichi

    Cells and living tissue slightly but always generate metabolic heat as long as they are alive. Thus, biological activity can be measured through the observation of metabolic heat, which has been developed as “bio-calorimetry”. On the other hand, further improvements in thermal sensing ability can be expected with use of the MEMS (Micro Electro Mechanical System) technology. The purpose of this study is to develop the monitoring technique of the metabolic heat of cells in as small number as possible with the MEMS technology. If the monitoring technique of metabolism of a few cells or even a single cell is made available, it plays very important rolls in bio- and medical- engineering, pharmaceutical sciences, and so on. In this study, a bio-calorimeter with a MEMS thermopile sensor was made, and its performance and metabolism monitoring of Yeast were tested. The thermopile sensor consisted of 350 thin film thermocouples of Cr and Ni strips of 20 μm width on a 150 μm thick glass plate. The thermopile sensor composed a calorimetric cell as a bottom plate with thick aluminum frame. The calorimetric cell was placed in a triple thermostatic chamber which employs a proportional control with a Peltier device and PID control with heater. The calorimeter showed a sensitivity of 0.62 V/W under the condition of including culture solution, time constant of the calorimetric cell of 90 sec, and a noise equivalent power of 60 nW, which corresponds to metabolic heat of 3 × 103 cells of Yeast. In the growth experiments of Yeast, growth thermograms for 105˜107 cells can be measured with reasonable generation times. It was demonstrated that the detectable number of Yeast cells of the MEMS calorimeter is much smaller than that for the traditional bio-calorimeter.

  1. MEMS Using SOI Substrate

    NASA Technical Reports Server (NTRS)

    Tang, Tony K.

    1999-01-01

    At NASA, the focus for smaller, less costly missions has given impetus for the development of microspacecraft. MicroElectroMechanical System (MEMS) technology advances in the area of sensor, propulsion systems, and instruments, make the notion of a specialized microspacecraft feasible in the immediate future. Similar to the micro-electronics revolution,the emerging MEMS technology offers the integration of recent advances in micromachining and nanofabrication techniques with microelectronics in a mass-producible format,is viewed as the next step in device and instrument miniaturization. MEMS technology offers the potential of enabling or enhancing NASA missions in a variety of ways. This new technology allows the miniaturization of components and systems, where the primary benefit is a reduction in size, mass and power. MEMS technology also provides new capabilities and enhanced performance, where the most significant impact is in performance, regardless of system size. Finally,with the availability of mass-produced, miniature MEMS instrumentation comes the opportunity to rethink our fundamental measurement paradigms. It is now possible to expand our horizons from a single instrument perspective to one involving multi-node distributed systems. In the distributed systems and missions, a new system in which the functionality is enabled through a multiplicity of elements. Further in the future, the integration of electronics, photonics, and micromechanical functionalities into "instruments-on-a-chip" will provide the ultimate size, cost, function, and performance advantage. In this presentation, I will discuss recent development, requirement, and applications of various MEMS technologies and devices for space applications.

  2. EDITORIAL: International MEMS Conference 2006

    NASA Astrophysics Data System (ADS)

    Tay, Francis E. H.; Jianmin, Miao; Iliescu, Ciprian

    2006-04-01

    The International MEMS conference (iMEMS2006) organized by the Institute of Bioengineering and Nanotechnology and Nanyang Technological University aims to provide a platform for academicians, professionals and industrialists in various related fields from all over the world to share and learn from each other. Of great interest is the incorporation of the theme of life sciences application using MEMS. It is the desire of this conference to initiate collaboration and form network of cooperation. This has continued to be the objective of iMEMS since its inception in 1997. The technological advance of MEMS over the past few decades has been truly exciting in terms of development and applications. In order to participate in this rapid development, a conference involving delegates from within the MEMS community and outside the community is very meaningful and timely. With the receipt of over 200 articles, delegates related to MEMS field from all over the world will share their perspectives on topics such as MEMS/MST Design, MEMS Teaching and Education, MEMS/MST Packaging, MEMS/MST Fabrication, Microsystems Applications, System Integration, Wearable Devices, MEMSWear and BioMEMS. Invited speakers and delegates from outside the field have also been involved to provide challenges, especially in the life sciences field, for the MEMS community to potentially address. The proceedings of the conference will be published as an issue in the online Journal of Physics: Conference Series and this can reach a wider audience and will facilitate the reference and citation of the work presented in the conference. We wish to express our deep gratitude to the International Scientific Committee members and the organizing committee members for contributing to the success of this conference. We would like to thank all the delegates, speakers and sponsors from all over the world for presenting and sharing their perspectives on topics related to MEMS and the challenges that MEMS can

  3. Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers

    NASA Astrophysics Data System (ADS)

    Xie, Bin; Singh, Ravi; Torti, F. M.; Keblinski, Pawel; Torti, Suzy

    2012-09-01

    Focusing heat delivery while minimizing collateral damage to normal tissues is essential for successful nanoparticle-mediated laser-induced thermal cancer therapy. We present thermal maps obtained via magnetic resonance imaging characterizing laser heating of a phantom tissue containing a multiwalled carbon nanotube inclusion. The data demonstrate that heating continuously over tens of seconds leads to poor localization (∼ 0.5 cm) of the elevated temperature region. By contrast, for the same energy input, heat localization can be reduced to the millimeter rather than centimeter range by increasing the laser power and shortening the pulse duration. The experimental data can be well understood within a simple diffusive heat conduction model. Analysis of the model indicates that to achieve 1 mm or better resolution, heating pulses of ∼2 s or less need to be used with appropriately higher heating power. Modeling these data using a diffusive heat conduction analysis predicts parameters for optimal targeted delivery of heat for ablative therapy.

  4. Heat conduction in nanoscale materials: a statistical-mechanics derivation of the local heat flux.

    PubMed

    Li, Xiantao

    2014-09-01

    We derive a coarse-grained model for heat conduction in nanoscale mechanical systems. Starting with an all-atom description, this approach yields a reduced model, in the form of conservation laws of momentum and energy. The model closure is accomplished by introducing a quasilocal thermodynamic equilibrium, followed by a linear response approximation. Of particular interest is the constitutive relation for the heat flux, which is expressed nonlocally in terms of the spatial and temporal variation of the temperature. Nanowires made of copper and silicon are presented as examples. PMID:25314400

  5. The dynamics of thermal regime changes of a local working zone in conditions of its heating by gas infrared radiators

    NASA Astrophysics Data System (ADS)

    Nee, A.

    2015-10-01

    Mathematical modeling of unsteady heat transfer in a closed rectangular area with a local heat supply object in a conjugate formulation in working conditions of radiation source of energy is passed. Fields of temperatures and stream functions, illustrating the influence of a local typical object on thermal regime are received. The effect of Grashof number on dimensionless heat transfer coefficient - Nusselt number is investigated. The influence of nonconducted heat supply object on heat transfer rate in solution domain is showed.

  6. Fundamental Study of Local Heat Transfer in Forced Convective Boiling of Ammonia on Vertical Flat Plate

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hun; Arima, Hirofumi; Ikegami, Yasuyuki

    In the present study, the fundamental experiments that investigate characteristics of local heat transfer in forced convective boiling on vertical flat plate with 2-mm channel height are taken to realize plate type compact evaporator for OTEC or STEC. The experiments are performed with ammonia as the working fluid. The experiments are also carried out with the following test conditions; saturated pressure = 0.7, 0.8, 0.9 MPa, mass flux = 7.5, 10, 15 kg/(m2•s), heat flux = 15, 20, 25 kW/m2 and inlet quality = 0.1 ~ 0.4 [-]. The result shows that the wall superheated temperature of forced convective boiling is lower than that of pool boiling. And the heat transfer coefficient increases with an increase in quality and the decrease in the local heat flux and saturated pressure for prescribed experimental conditions. However, local heat transfer coefficients are not affected by mass fluxes in the prescribed experimental conditions. An empirical correlation that can predict the local heat transfer coefficient on vertical flat plate within experimental conditions is also proposed.

  7. Incremental Sheet Forming with Local Heating for Lightweight Hard-To Material

    NASA Astrophysics Data System (ADS)

    Hino, R.; Yoshida, F.; Nagaishi, N.; Naka, T.

    A new incremental sheet forming technology with local heating is proposed to form lightweight hard-to-form sheet metals such as aluminum-magnesium alloy (JIS A5083) sheet or magnesium alloy (JIS AZ31) sheet. The newly designed forming tool has a built-in heater to heat the sheet metal locally and increase the material ductility around the tool-contact point. Incremental forming experiments of A5083 and AZ31 sheets are carried out at several tool-heater temperatures ranging from room temperature to 873K using the new forming method. The experimental results show that the formability of A5083 and AZ31 sheets increases remarkably with increasing local-heating temperature. In addition, springback of formed products decreases with increasing local-heating temperature. The developed incremental sheet forming method with local heating has great advantages in not only formability but also shape fixability. It is an effective forming method for lightweight hard-to-form sheet metal for small scale productions.

  8. Photonic MEMS switch applications

    NASA Astrophysics Data System (ADS)

    Husain, Anis

    2001-07-01

    As carriers and service providers continue their quest for profitable network solutions, they have shifted their focus from raw bandwidth to rapid provisioning, delivery and management of revenue generating services. Inherently transparent to data rate the transmission wavelength and data format, MEMS add scalability, reliability, low power and compact size providing flexible solutions to the management and/or fiber channels in long haul, metro, and access networks. MEMS based photonic switches have gone from the lab to commercial availability and are now currently in carrier trials and volume production. 2D MEMS switches offer low up-front deployment costs while remaining scalable to large arrays. They allow for transparent, native protocol transmission. 2D switches enable rapid service turn-up and management for many existing and emerging revenue rich services such as storage connectivity, optical Ethernet, wavelength leasing and optical VPN. As the network services evolve, the larger 3D MEMS switches, which provide greater scalability and flexibility, will become economically viable to serve the ever-increasing needs.

  9. Quantitative analysis of the local phase transitions induced by the laser heating

    SciTech Connect

    Levlev, Anton V.; Susner, Michael A.; McGuire, Michael A.; Maksymovych, Petro; Kalinin, Sergei V.

    2015-11-04

    Functional imaging enabled by scanning probe microscopy (SPM) allows investigations of nanoscale material properties under a wide range of external conditions, including temperature. However, a number of shortcomings preclude the use of the most common material heating techniques, thereby limiting precise temperature measurements. Here we discuss an approach to local laser heating on the micron scale and its applicability for SPM. We applied local heating coupled with piezoresponse force microscopy and confocal Raman spectroscopy for nanoscale investigations of a ferroelectric-paraelectric phase transition in the copper indium thiophosphate layered ferroelectric. Bayesian linear unmixing applied to experimental results allowed extraction of the Raman spectra of different material phases and enabled temperature calibration in the heated region. Lastly, the obtained results enable a systematic approach for studying temperature-dependent material functionalities in heretofore unavailable temperature regimes.

  10. Quantitative analysis of the local phase transitions induced by the laser heating

    DOE PAGESBeta

    Levlev, Anton V.; Susner, Michael A.; McGuire, Michael A.; Maksymovych, Petro; Kalinin, Sergei V.

    2015-11-04

    Functional imaging enabled by scanning probe microscopy (SPM) allows investigations of nanoscale material properties under a wide range of external conditions, including temperature. However, a number of shortcomings preclude the use of the most common material heating techniques, thereby limiting precise temperature measurements. Here we discuss an approach to local laser heating on the micron scale and its applicability for SPM. We applied local heating coupled with piezoresponse force microscopy and confocal Raman spectroscopy for nanoscale investigations of a ferroelectric-paraelectric phase transition in the copper indium thiophosphate layered ferroelectric. Bayesian linear unmixing applied to experimental results allowed extraction of themore » Raman spectra of different material phases and enabled temperature calibration in the heated region. Lastly, the obtained results enable a systematic approach for studying temperature-dependent material functionalities in heretofore unavailable temperature regimes.« less

  11. Formation of Silicon-Gold Eutectic Bond Using Localized Heating Method

    NASA Astrophysics Data System (ADS)

    Lin, Liwei; Cheng, Yu-Ting; Najafi, Khalil

    1998-11-01

    A new bonding technique is proposed by using localized heating to supplythe bonding energy.Heating is achieved by applying a dc current through micromachined heaters made of gold which serves as both the heating and bonding material.At the interface of silicon and gold, the formation of eutectic bond takes place in about 5 minutes.Assembly of two substrates in microfabrication processescan be achieved by using this method.In this paper the following important results are obtained:1) Gold diffuses into silicon to form a strong eutectic bond by means of localized heating.2) The bonding strength reaches the fracture toughness of the bulk silicon.3) This bonding technique greatly simplifies device fabrication andassembly processes.

  12. Elevated local skin temperature impairs cutaneous vasoconstrictor responses to a simulated haemorrhagic challenge while heat stressed

    PubMed Central

    Pearson, J.; Lucas, R. A. I.; Crandall, C. G.

    2016-01-01

    During a simulated haemorrhagic challenge, syncopal symptoms develop sooner when individuals are hyperthermic relative to normothermic. This is due, in part, to a large displacement of blood to the cutaneous circulation during hyperthermia, coupled with inadequate cutaneous vasoconstriction during the hypotensive challenge. The influence of local skin temperature on these cutaneous vasoconstrictor responses is unclear. This project tested the hypothesis that local skin temperature modulates cutaneous vasoconstriction during simulated haemorrhage in hyperthermic humans. Eight healthy participants (four men and four women; 32 ± 7 years old; 75.2 ± 10.8 kg) underwent lower-body negative pressure to presyncope while heat stressed via a water-perfused suit sufficiently to increase core temperature by 1.2 ± 0.2°C. At forearm skin sites distal to the water-perfused suit, local skin temperature was either 35.2 ± 0.6 (mild heating) or 38.2 ± 0.2°C (moderate heating) throughout heat stress and lower-body negative pressure, and remained at these temperatures until presyncope. The reduction in cutaneous vascular conductance during the final 90 s of lower-body negative pressure, relative to heat-stress baseline, was greatest at the mildly heated site (−10 ± 15% reduction) relative to the moderately heated site (−2 ± 12%; P = 0.05 for the magnitude of the reduction in cutaneous vascular conductance between sites), because vasoconstriction at the moderately heated site was either absent or negligible. In hyperthermic individuals, the extent of cutaneous vasoconstriction during a simulated haemorrhage can be modulated by local skin temperature. In situations where skin temperature is at least 38°C, as is the case in soldiers operating in warm climatic conditions, a haemorrhagic insult is unlikely to be accompanied by cutaneous vasoconstriction. PMID:22903981

  13. European MEMS foundries

    NASA Astrophysics Data System (ADS)

    Salomon, Patric R.

    2003-01-01

    According to the latest release of the NEXUS market study, the market for MEMS or Microsystems Technology (MST) is predicted to grow to $68B by the year 2005, with systems containing these components generating even higher revenues and growth. The latest advances in MST/MEMS technology have enabled the design of a new generation of microsystems that are smaller, cheaper, more reliable, and consume less power. These integrated systems bring together numerous analog/mixed signal microelectronics blocks and MEMS functions on a single chip or on two or more chips assembled within an integrated package. In spite of all these advances in technology and manufacturing, a system manufacturer either faces a substantial up-front R&D investment to create his own infrastructure and expertise, or he can use design and foundry services to get the initial product into the marketplace fast and with an affordable investment. Once he has a viable product, he can still think about his own manufacturing efforts and investments to obtain an optimized high volume manufacturing for the specific product. One of the barriers to successful exploitation of MEMS/MST technology has been the lack of access to industrial foundries capable of producing certified microsystems devices in commercial quantities, including packaging and test. This paper discusses Multi-project wafer (MPW) runs, requirements for foundries and gives some examples of foundry business models. Furthermore, this paper will give an overview on MST/MEMS services that are available in Europe, including pure commercial activities, European project activities (e.g. Europractice), and some academic services.

  14. Characterization of assembled MEMS

    NASA Astrophysics Data System (ADS)

    Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George

    2005-01-01

    Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.

  15. Characterization of assembled MEMS

    NASA Astrophysics Data System (ADS)

    Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George

    2004-12-01

    Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.

  16. Localized electron heating and downstream density rise in expanding helicon plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Barada, Kshitish; Chattopadhyay, Prabal; Ghosh, Joydeep; Bora, Dhiraj

    2015-11-01

    Localized electron heating and downstream density rise have been observed in presence of diverging magnetic fields in a linear expanding helicon plasma system. Axial wave field measurement shows the presence of damped helicon waves with standing wave character folded into it even at low densities (1016 m-3) . Helicon wavelength is just about twice the antenna length and the phase velocity (vp) is almost equal to the speed required for electron impact ionization. Observations advocate the Landau damping heating by the helicon waves, particularly in our low density plasma. Electron heating, confined away from the antenna centre, strongly indicates a source of local power absorption, occurring due to damped helicon waves. Further downstream from the location of electron heating, a density peak is observed. Location of both electron heating and density peaking can be varied by changing the axial magnetic field topology. A comprehensive discussion regarding the cause behind both the localized electron heating and downstream density rise will be discussed in this presentation.

  17. Self-generated Local Heating Induced Nanojoining for Room Temperature Pressureless Flexible Electronic Packaging

    PubMed Central

    Peng, Peng; Hu, Anming; Gerlich, Adrian P.; Liu, Yangai; Zhou, Y. Norman

    2015-01-01

    Metallic bonding at an interface is determined by the application of heat and/or pressure. The means by which these are applied are the most critical for joining nanoscale structures. The present study considers the feasibility of room-temperature pressureless joining of copper wires using water-based silver nanowire paste. A novel mechanism of self-generated local heating within the silver nanowire paste and copper substrate system promotes the joining of silver-to-silver and silver-to-copper without any external energy input. The localized heat energy was delivered in-situ to the interfaces to promote atomic diffusion and metallic bond formation with the bulk component temperature stays near room-temperature. This local heating effect has been detected experimentally and confirmed by calculation. The joints formed at room-temperature without pressure achieve a tensile strength of 5.7 MPa and exhibit ultra-low resistivity in the range of 101.3 nOhm·m. The good conductivity of the joint is attributed to the removal of organic compounds in the paste and metallic bonding of silver-to-copper and silver-to-silver. The water-based silver nanowire paste filler material is successfully applied to various flexible substrates for room temperature bonding. The use of chemically generated local heating may become a potential method for energy in-situ delivery at micro/nanoscale. PMID:25788019

  18. A comparative study of the local heat transfer distributions around various surface mounted obstacles

    NASA Astrophysics Data System (ADS)

    Wyssmann, Robert; Ullmer, Dirk; Terzis, Alexandros; Ott, Peter

    2014-04-01

    In many engineering applications, heat transfer enhancement techniques are of vital importance in order to ensure reliable thermal designs of convective heat transfer applications. This study examines experimentally the heat transfer characteristics on the base plate around various surface mounted obstacles. Local convection coefficients are evaluated in the vicinity of each individual protruding body with great spatial resolution using the transient liquid crystal technique. Five different obstacles of constant height-to-hydraulic diameter ratio (˜1.3) are considered. These include: a cylinder, a square, a triangle, a diamond and a vortex generator of delta wing shape design. The experiments were carried out over a range of freestream Reynolds numbers, based on the hydraulic diameter of each obstacle, varying from 4,000 to 13,000. The results indicate a negligible effect of the flow speed on the heat transfer topological structure and a considerable effect of the obstacle geometry on the level and distribution of heat transfer enhancement.

  19. Local heat/mass transfer distribution around sharp 180 deg turn in a smooth square channel

    NASA Astrophysics Data System (ADS)

    Han, J. C.; Chandra, P. R.; Lau, S. C.

    The naphthalene sublimation technique is used to determine the heat transfer characteristics of turbulent flow in a three-pass square channel whose segments are connected by two sharp 180-deg turns resembling the internal cooling passages of gas turbine blades and vanes. The results obtained show that spanwise-averaged heat transfer initially decreased with increasing distance from the channel entrance, and then sharply increased upon entering the 180-deg turn; the maximum value is attained toward the turn's end. There exist both a low heat transfer region near the inner wall and a region of high heat transfer near the outer wall. For the three Reynolds numbers investigated, local heat transfer coefficients at the 180-deg turn were 2-3 times higher than the fully developed values.

  20. Local entropy generation analysis of a rotary magnetic heat pump regenerator

    SciTech Connect

    Drost, M.K.; White, M.D.

    1990-04-01

    The rotary magnetic heat pump has attractive thermodynamic performance but it is strongly influenced by the effectiveness of the regenerator. This study uses local entropy generation analysis to evaluate the regenerator design and to suggest design improvements. The results show that performance of the proposed design is dominated by heat transfer related entropy generation. This suggests that enhancement concepts that improve heat transfer should be considered, even if the enhancement causes a significant increase in viscous losses (pressure drop). One enhancement technique, the use of flow disrupters, was evaluated and the results showed that flow disrupters can significantly reduce thermodynamic losses.

  1. Local Heat Flux Measurements with Single and Small Multi-element Coaxial Element-Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support NASA's Vision for Space Exploration mission, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines with regeneratively cooled chamber walls, as well as in small thrust chambers with few elements in the injector. In this program, single and three-element injectors were hot-fire tested with liquid oxygen and gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges, Injector configurations were tested with both shear coaxial elements and swirl coaxial elements. Both a straight and a scarfed single element swirl injector were tested. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three coaxial shear and swirl elements. Detailed geometry and test results the for shear coax elements has already been published. Detailed test result for the remaining 6 swirl coax element for the will be published in a future JANNAF presentation to provide well-defined data sets for development and model validation.

  2. Application of Thin-Film Thermocouples to Localized Heat Transfer Measurements

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Bruckner, R. J.; Smith, F. A.

    1995-01-01

    The paper describes a proof-of-concept experiment on thin-film thermocouples used for localized heat transfer measurements applicable to experiments on hot parts of turbine engines. The paper has three main parts. The first part describes the thin-film sensors and manufacturing procedures. Attention is paid to connections between thin-film thermocouples and lead wires, which has been a source of problems in the past. The second part addresses the test arrangement and facility used for the heat transfer measurements modeling the conditions for upcoming warm turbine tests at NASA LeRC. The paper stresses the advantages of a modular approach to the test rig design. Finally, we present the results of bulk and local heat flow rate measurements, as well as overall heat transfer coefficients obtained from measurements in a narrow passage with an aspect ratio of 11.8. The comparison of bulk and local heat flow rates confirms applicability of thin-film thermocouples to upcoming warm turbine tests.

  3. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    PubMed

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc. PMID:26736977

  4. Optical cable fault locating using Brillouin optical time domain reflectometer and cable localized heating method

    NASA Astrophysics Data System (ADS)

    Lu, Y. G.; Zhang, X. P.; Dong, Y. M.; Wang, F.; Liu, Y. H.

    2007-07-01

    A novel optical cable fault location method, which is based on Brillouin optical time domain reflectometer (BOTDR) and cable localized heating, is proposed and demonstrated. In the method, a BOTDR apparatus is used to measure the optical loss and strain distribution along the fiber in an optical cable, and a heating device is used to heat the cable at its certain local site. Actual experimental results make it clear that the proposed method works effectively without complicated calculation. By means of the new method, we have successfully located the optical cable fault in the 60 km optical fiber composite power cable from Shanghai to Shengshi, Zhejiang. A fault location accuracy of 1 meter was achieved. The fault location uncertainty of the new optical cable fault location method is at least one order of magnitude smaller than that of the traditional OTDR method.

  5. Local endwall heat/mass-transfer distributions in pin fin channels

    NASA Astrophysics Data System (ADS)

    Lau, S. C.; Kim, Y. S.; Han, J. C.

    1987-10-01

    Naphthalene sublimination experiments were conducted to study the effects of the pin configuration, the pin length-to-diameter ratio, and the entrance length on local endwall heat/mass transfer in a channel with short pin fins (pin length-to-diameter ratios of 0.5 and 1.0). The detailed distributions of the local endwall heat/mass-transfer coefficient were obtained for staggered and aligned arrays of pin fins, for the spanwise pin spacing-to-diameter ratio of 2.5, and for streamwise pin spacing-to-diameter ratios of 1.25 and 2.5. The Reynolds numbers were kept at about 33,000. Overall- and row-averaged Nusselt numbers compared very well with those from previous heat-transfer studies.

  6. On a heat transfer model for a locally inhomogeneous initial data

    NASA Astrophysics Data System (ADS)

    Kalmenov, Tynysbek Sh.; Arepova, Gaukhar D.

    2016-08-01

    We consider a model case of the problem of heat diffusion in a homogeneous body with a special initial state. The peculiarity of this initial state is its local inhomogeneity. That is, there is a closed domain Ω inside a body, the initial state is constant out of the domain. Mathematical modeling leads to the problem for a homogeneous multi-dimensional diffusion equation. We construct the boundary conditions on the boundary of the domain Ω, which can be characterized as "transparent" boundary conditions. We separately consider a special case - a model of redistribution of heat in a uniform linear rod, the side surface of which is insulated in the absence of (internal and external) sources of heat and of locally inhomogeneous initial state.

  7. Development of a new device to measure local heat exchange by evaporation and convection

    NASA Astrophysics Data System (ADS)

    Kakitsuba, N.; Katsuura, T.

    1992-06-01

    According to the principles of heat and mass transfer, the rate of local heat exchange by convection (C) and local heat loss by evaporation (E) can be estimated if temperature and vapor concentration profiles in the boundary layer are measured. In addition, temperature (Ts) and vapor concentration (rho s) at the surface may be predicted from the measured profiles. On this basis, a new device was developed to measure parabolic profiles by incorporating three relative humidity sensors coupled with thermistors into its probe. It has been evaluated from various tests including human experiments. The results showed that the device, with humidity sensors arranged perpendicular to the surface, could estimate C, E, Ts, and rho s in closer agreement with direct measurements when compared with the conventional gradient method. This confirmed that our method had clear advantages over the conventional gradient method under laminar air flow conditions.

  8. Relations for local radiative heat transfer between rectangular boundaries of an absorbing-emitting medium

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1993-01-01

    An analytical solution was obtained by Siegel (1991, 1992) for local boundary heat fluxes by a radiating medium at uniform temperature in a 2D rectangular region. It is shown here that, after local fluxes from the medium to the walls have been evaluated, it is very easy to compute local fluxes arriving from the adjacent and opposite walls. This extends the previous analysis and provides convenient relations to include radiation from a black boundary, each side of the rectangle being at a different uniform temperature. The final expressions are helpful in performing spectral calculations that must be made for many spectral bands.

  9. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1993

    SciTech Connect

    Dr. Ronald D. Boyd

    2000-07-01

    Subcooled flow boiling in heated coolant channels is an important heat transfer enhancement technique in the development of fusion reactor components, where high heat fluxes must be accommodated. As energy fluxes increase in magnitude, additional emphasis must be devoted to enhancing techniques such as sub cooling and enhanced surfaces. In addition to subcooling, other high heat flux alternatives such as high velocity helium and liquid metal cooling have been considered as serious contenders. Each technique has its advantages and disadvantages [1], which must be weighed as to reliability and reduced cost of fusion reactor components. Previous studies [2] have set the stage for the present work, which will concentrate on fundamental thermal hydraulic issues associated with the h-international Thermonuclear Experimental Reactor (ITER) and the Engineering Design Activity (EDA). This proposed work is intended to increase our understanding of high heat flux removal alternatives as well as our present capabilities by: (1) including single-side heating effects in models for local predictions of heat transfer and critical heat flux; (2) inspection of the US, Japanese, and other possible data sources for single-side heating, with the aim of exploring possible correlations for both CHF and local heat transfer; and (3) assessing the viability of various high heat flux removal techniques. The latter task includes: (a) sub-cooled water flow boiling with enhancements such as twisted tapes, and hypervapotrons, (b) high velocity helium cooling, and (c) other potential techniques such as liquid metal cooling. This assessment will increase our understanding of: (1) hypervapotron heat transfer via fins, flow recirculation, and flow oscillation, and (2) swirl flow. This progress report contains selective examples of ongoing work. Section II contains an extended abstract, which is part of and evolving technical paper on single-side f heating. Section III describes additional details

  10. Designing MEMS for manufacturing

    NASA Astrophysics Data System (ADS)

    Wolter, Alexander; Herrmann, Andreas; Yildiz, Goekhan; Schenk, Harald; Lakner, Hubert

    2004-10-01

    MEMS (micro electro-mechanical systems) are often expected to take a development as microelectronics did in the last 35 years. Several devices are already established in mass markets like acceleration sensors, gyros, pressure sensors, ink jet heads and the DLP micromirror array. On the other hand many companies have stopped their business after the telecom bubble. Others are struggling. Many dreams based on MEMS-devices that were not at all mature and could not be manufactured in high numbers. When a commercial product is the goal, several questions must be answered already in concept phase. The specifications must clearly reflect the requirements of the application. Performance and price must be competitive to any other technology. The relation between fabrication process and design is strong and mutual. The process must create all features of the device and the design must consider the limitations of the process. Only if the design is tolerant against all process variations reproducible performance can be achieved. And only if the design is robust in all process steps the devices can survive. Regarding the time and cost frame it is always preferable to change the layout rather than the process. This article looks at MEMS technology and identifies what has been adopted from CMOS, what is desirable to adopt and what needs new solutions. Examples are given in the fields of design, modeling layout, process, test, and packaging.

  11. Design and Simulation of Optically Actuated Bistable MEMS

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas; Moiseeva, Evgeniya; Harnett, Cindy

    2012-02-01

    In this project, bistable three-dimensional MEMS actuators are designed to be optically switched between stable states for biological research applications. The structure is a strained rectangular frame created with stress-mismatched metal-oxide bilayers. The devices curl into an arc in one of two directions tangent to the substrate, and can switch orientation when regions are selectively heated. The heating is powered by infrared laser, and localized with patterned infrared-resonant gold nanoparticles on critical regions. The enhanced energy absorption on selected areas provides switching control and heightened response to narrow-band infrared light. Coventorware has been used for finite element analysis of the system. The numerical simulations indicate that it has two local minimum states with extremely rapid transition time (<<0.1 s) when the structure is thermally deformed. Actuation at laser power and thermal limits compatible with physiological applications will enable microfluidic pumping elements and fundamental studies of tissue response to three-dimensional mechanical stimuli, artificial-muscle based pumps and other biomedical devices triggered by tissue-permeant infrared light.

  12. Spatial control of chemical processes on nanostructures through nano-localized water heating

    PubMed Central

    Jack, Calum; Karimullah, Affar S.; Tullius, Ryan; Khorashad, Larousse Khosravi; Rodier, Marion; Fitzpatrick, Brian; Barron, Laurence D.; Gadegaard, Nikolaj; Lapthorn, Adrian J.; Rotello, Vincent M.; Cooke, Graeme; Govorov, Alexander O.; Kadodwala, Malcolm

    2016-01-01

    Optimal performance of nanophotonic devices, including sensors and solar cells, requires maximizing the interaction between light and matter. This efficiency is optimized when active moieties are localized in areas where electromagnetic (EM) fields are confined. Confinement of matter in these ‘hotspots' has previously been accomplished through inefficient ‘top-down' methods. Here we report a rapid ‘bottom-up' approach to functionalize selective regions of plasmonic nanostructures that uses nano-localized heating of the surrounding water induced by pulsed laser irradiation. This localized heating is exploited in a chemical protection/deprotection strategy to allow selective regions of a nanostructure to be chemically modified. As an exemplar, we use the strategy to enhance the biosensing capabilities of a chiral plasmonic substrate. This novel spatially selective functionalization strategy provides new opportunities for efficient high-throughput control of chemistry on the nanoscale over macroscopic areas for device fabrication. PMID:26961708

  13. Spatial control of chemical processes on nanostructures through nano-localized water heating.

    PubMed

    Jack, Calum; Karimullah, Affar S; Tullius, Ryan; Khorashad, Larousse Khosravi; Rodier, Marion; Fitzpatrick, Brian; Barron, Laurence D; Gadegaard, Nikolaj; Lapthorn, Adrian J; Rotello, Vincent M; Cooke, Graeme; Govorov, Alexander O; Kadodwala, Malcolm

    2016-01-01

    Optimal performance of nanophotonic devices, including sensors and solar cells, requires maximizing the interaction between light and matter. This efficiency is optimized when active moieties are localized in areas where electromagnetic (EM) fields are confined. Confinement of matter in these 'hotspots' has previously been accomplished through inefficient 'top-down' methods. Here we report a rapid 'bottom-up' approach to functionalize selective regions of plasmonic nanostructures that uses nano-localized heating of the surrounding water induced by pulsed laser irradiation. This localized heating is exploited in a chemical protection/deprotection strategy to allow selective regions of a nanostructure to be chemically modified. As an exemplar, we use the strategy to enhance the biosensing capabilities of a chiral plasmonic substrate. This novel spatially selective functionalization strategy provides new opportunities for efficient high-throughput control of chemistry on the nanoscale over macroscopic areas for device fabrication. PMID:26961708

  14. Spatial control of chemical processes on nanostructures through nano-localized water heating

    NASA Astrophysics Data System (ADS)

    Jack, Calum; Karimullah, Affar S.; Tullius, Ryan; Khorashad, Larousse Khosravi; Rodier, Marion; Fitzpatrick, Brian; Barron, Laurence D.; Gadegaard, Nikolaj; Lapthorn, Adrian J.; Rotello, Vincent M.; Cooke, Graeme; Govorov, Alexander O.; Kadodwala, Malcolm

    2016-03-01

    Optimal performance of nanophotonic devices, including sensors and solar cells, requires maximizing the interaction between light and matter. This efficiency is optimized when active moieties are localized in areas where electromagnetic (EM) fields are confined. Confinement of matter in these `hotspots' has previously been accomplished through inefficient `top-down' methods. Here we report a rapid `bottom-up' approach to functionalize selective regions of plasmonic nanostructures that uses nano-localized heating of the surrounding water induced by pulsed laser irradiation. This localized heating is exploited in a chemical protection/deprotection strategy to allow selective regions of a nanostructure to be chemically modified. As an exemplar, we use the strategy to enhance the biosensing capabilities of a chiral plasmonic substrate. This novel spatially selective functionalization strategy provides new opportunities for efficient high-throughput control of chemistry on the nanoscale over macroscopic areas for device fabrication.

  15. Localized self-heating in large arrays of 1D nanostructures.

    PubMed

    Monereo, O; Illera, S; Varea, A; Schmidt, M; Sauerwald, T; Schütze, A; Cirera, A; Prades, J D

    2016-03-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called "hot-spots". On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures. PMID:26868599

  16. Modelling of shape memory polymer sheets that self-fold in response to localized heating.

    PubMed

    Mailen, Russell W; Liu, Ying; Dickey, Michael D; Zikry, Mohammed; Genzer, Jan

    2015-10-21

    We report a nonlinear finite element analysis (FEA) of the thermo-mechanical shrinking and self-folding behavior of pre-strained polystyrene polymer sheets. Self-folding is useful for actuation, packaging, and remote deployment of flat surfaces that convert to 3D objects in response to a stimulus such as heat. The proposed FEA model accounts for the viscoelastic recovery of pre-strained polystyrene sheets in response to localized heating on the surface of the polymer. Herein, the heat results from the localized absorption of light by ink patterned on the surface of the sheet. This localized delivery of heat results in a temperature gradient through the thickness of the sheet, and thus a gradient of strain recovery, or shrinkage, develops causing the polymer sheet to fold. This process transforms a 2D pattern into a 3D shape through an origami-like behavior. The FEA predictions indicate that shrinking and folding are sensitive to the thermo-mechanical history of the polymer during pre-straining. The model also shows that shrinkage does not vary linearly through the thickness of the polymer during folding due to the accumulation of mass in the hinged region. Counterintuitively, the maximum shrinkage does not occur at the patterned surface. Rather, it occurs considerably below the top surface of the polymer. This investigation provides a fundamental understanding of shrinking, self-folding dynamics, and bending angles, and provides design guidelines for origami shapes and structures. PMID:26324954

  17. NONINVASIVE MEASUREMENT OF LOCAL THERMAL DIFFUSIVITY USING BACKSCATTERED ULTRASOUND AND FOCUSED ULTRASOUND HEATING

    PubMed Central

    Anand, Ajay; Kaczkowski, Peter J.

    2009-01-01

    Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create a brief local temperature rise of no more than 10°C. Beamformed radio-frequency (RF) data are collected during heating and cooling using a clinical ultrasound scanner. Measurements of the time-varying “acoustic strain”, that is, spatiotemporal variations in the RF echo shifts induced by the temperature related sound speed changes, are related to a solution of the heat transfer equation to estimate the thermal diffusivity in the heated zone. Numerical simulations and experiments performed in vitro in tissue mimicking phantoms and excised turkey breast muscle tissue demonstrate agreement between the ultrasound derived thermal diffusivity estimates and independent estimates made by a traditional hot-wire technique. The new noninvasive ultrasonic method has potential applications in thermal therapy planning and monitoring, physiological monitoring and as a means of noninvasive tissue characterization. PMID:18450361

  18. Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating.

    PubMed

    Anand, Ajay; Kaczkowski, Peter J

    2008-09-01

    Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create a brief local temperature rise of no more than 10 degrees C. Beamformed radio-frequency (RF) data are collected during heating and cooling using a clinical ultrasound scanner. Measurements of the time-varying "acoustic strain", that is, spatiotemporal variations in the RF echo shifts induced by the temperature related sound speed changes, are related to a solution of the heat transfer equation to estimate the thermal diffusivity in the heated zone. Numerical simulations and experiments performed in vitro in tissue mimicking phantoms and excised turkey breast muscle tissue demonstrate agreement between the ultrasound derived thermal diffusivity estimates and independent estimates made by a traditional hot-wire technique. The new noninvasive ultrasonic method has potential applications in thermal therapy planning and monitoring, physiological monitoring and as a means of noninvasive tissue characterization. PMID:18450361

  19. Calculations of the time-averaged local heat transfer coefficients in circulating fluidized bed

    SciTech Connect

    Dai, T.H.; Qian, R.Z.; Ai, Y.F.

    1999-04-01

    The great potential to burn a wide variety of fuels and the reduced emission of pollutant gases mainly SO{sub x} and NO{sub x} have inspired the investigators to conduct research at a brisk pace all around the world on circulating fluidized bed (CFB) technology. An accurate understanding of heat transfer to bed walls is required for proper design of CFB boilers. To develop an optimum economic design of the boiler, it is also necessary to know how the heat transfer coefficient depends on different design and operating parameters. It is impossible to do the experiments under all operating conditions. Thus, the mathematical model prediction is a valuable method instead. Based on the cluster renewal theory of heat transfer in circulating fluidized beds, a mathematical model for predicting the time-averaged local bed-to-wall heat transfer coefficients is developed. The effects of the axial distribution of the bed density on the time-average local heat transfer coefficients are taken into account via dividing the bed into a series of sections along its height. The assumptions are made about the formation and falling process of clusters on the wall. The model predictions are in an acceptable agreement with the published data.

  20. Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.

    2015-11-01

    Plasmas in the Pegasus ST are initiated either through standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of impurity ion heating has been observed, with the passively measured impurity Ti as high as 800 eV compared to Ti ~ 60 eV and Te ~ 175 eV during standard inductive current drive discharges. In addition, non-thermal ion velocity distributions are observed and appear to be strongest near the helicity injectors. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n =1 MHD mode. An approximate temporal scaling of the heating with the amplitude of higher frequency magnetic fluctuations has also been observed, with large amounts of power spectral density present at several impurity ion cyclotron frequencies. Recent experiments have focused on investigating the impurity ion heating scaling with the ion charge to mass ratio as well as the reconnecting field strength. The ion charge to mass ratio was modified by observing different impurity charge states in similar LHI plasmas while the reconnecting field strength was modified by changing the amount of injected edge current. Work supported by US DOE grant DE-FG02-96ER54375.

  1. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  2. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  3. Computer-based areal surface temperature and local heat transfer measurements with thermochromic liquid crystals (TLC)

    NASA Astrophysics Data System (ADS)

    Platzer, K.-H.; Hirsch, C.; Metzger, D. E.; Wittig, S.

    1992-05-01

    The experimental technique presented is designed to obtain detailed local heat transfer data on both stationary as well as rotating disk-cavity surfaces applicable to gas turbines. The method employed utilizes thin coatings of thermochromic liquid crystals (TLC) as surface temperature indicators under aerodynamically steady but thermally transient experimental conditions. The color display of the liquid crystals is monitored by a video camera. The video signals are captured in real time by a computer-based color recognition system to extract areal temperature and heat transfer information. Some typical results are presented and compared with literature data to illustrate the potential of the system.

  4. Film evaporation MEMS thruster array for micropropulsion

    NASA Astrophysics Data System (ADS)

    Cofer, Anthony G.

    Current small sat propulsion systems require a substantial mass fraction of the vehicle involving tradeoffs between useful payload mass and maneuverability. This is also an issue with available attitude control systems which are either quickly saturated reaction wheels or movable high drag surfaces with long response times. What is needed is a low mass low power self-contained propulsion unit that can be easily installed and modeled. The proposed Film-Evaporation MEMS Tunable Array (FEMTA), exploits the small scale surface tension effect in conjunction with temperature dependent vapor pressure to realize a thermal valving system. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in the nozzle inducing vacuum boiling which provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. The heat of vaporization is drawn from the bulk fluid and is replaced by either an integrated heater or waste heat from the vehicle. Proof of concept was initially achieved with a macroscale device made possible by using ethylene glycol, which has a low vapor pressure and high surface tension, as the working fluid. Both the thermal valving effect and cooling feature were demonstrated though at reduced performance than would be expected for water. Three generations of prototype FEMTA devices have been fabricated at Birck Nanotechnology Center on 200 and 500 micrometer thick silicon wafers. Preliminary testing on first generation models had tenuously demonstrated behavior consistent with the macroscale tests but there was not enough data for solid confirmation. Some reliability issues had arisen with the integrated heaters which were only partially alleviated in the second generation of FEMTAs. This led to a third generation and two changes in heater material until a chemically resilient material was found. The third generation of microthrusters were tested on the microNewton thrust stand at Purdue

  5. Localized self-heating in large arrays of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Monereo, O.; Illera, S.; Varea, A.; Schmidt, M.; Sauerwald, T.; Schütze, A.; Cirera, A.; Prades, J. D.

    2016-02-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called ``hot-spots''. On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal

  6. MEMS Rate Sensors for Space

    NASA Technical Reports Server (NTRS)

    Gambino, Joel P.

    1999-01-01

    Micromachined Electro Mechanical System Rate sensors offer many advantages that make them attractive for space use. They are smaller, consume less power, and cost less than the systems currently available. MEMS Rate Sensors however, have not been optimized for use on spacecraft. This paper describes an approach to developing MEMS Rate Sensors systems for space use.

  7. Measurements of global and localized ion heating during impulsive reconnection in MST

    NASA Astrophysics Data System (ADS)

    Gangadhara, S.; Craig, D.; Ennis, D. A.; den Hartog, D. J.; Almagri, A. F.; Chapman, B. E.; Fiksel, G.; Prager, S. C.

    2006-10-01

    In the MST reversed field pinch, impulsive reconnection occurs at (a) sawtooth crashes in standard plasmas, in which many large tearing modes are present, and (b) bursts of edge-resonant tearing modes with poloidal mode number m = 0 in enhanced confinement plasmas. In both cases, magnetic energy decreases while ion thermal energy increases. Fast, localized measurements of the impurity ion temperature (Ti) are made using charge exchange recombination spectroscopy. Ion heating is observed to be limited to the outer half of the plasma for an m=0 burst, and is strongest near the m=0 resonant surface. Conversely, ion heating occurs at all radii during a sawtooth crash, as Ti more than doubles over ˜ 100 μs. The results suggest that ions are heated primarily near the reconnection layer, and that global heating during a crash arises from activity at multiple reconnection sites throughout the plasma. Both the heating profile and degree of heating during a crash vary strongly with plasma current, density, the reversal parameter, and ion species. At high plasma current (0.5 MA), the large Ti (> 1 keV on-axis) generated during a crash can be sustained by reduction of magnetic fluctuations using auxiliary current drive. Work supported by U.S.D.O.E. and N.S.F.

  8. Review of polymer MEMS micromachining

    NASA Astrophysics Data System (ADS)

    Kim, Brian J.; Meng, Ellis

    2016-01-01

    The development of polymer micromachining technologies that complement traditional silicon approaches has enabled the broadening of microelectromechanical systems (MEMS) applications. Polymeric materials feature a diverse set of properties not present in traditional microfabrication materials. The investigation and development of these materials have opened the door to alternative and potentially more cost effective manufacturing options to produce highly flexible structures and substrates with tailorable bulk and surface properties. As a broad review of the progress of polymers within MEMS, major and recent developments in polymer micromachining are presented here, including deposition, removal, and release techniques for three widely used MEMS polymer materials, namely SU-8, polyimide, and Parylene C. The application of these techniques to create devices having flexible substrates and novel polymer structural elements for biomedical MEMS (bioMEMS) is also reviewed.

  9. Effects of radiation on MEMS

    NASA Astrophysics Data System (ADS)

    Shea, Herbert R.

    2011-02-01

    The sensitivity of MEMS devices to radiation is reviewed, with an emphasis on radiation levels representative of space missions. While silicon and metals generally do not show mechanical degradation at the radiation levels encountered in most missions, MEMS devices have been reported to fail at doses of as few krad, corresponding to less than one year in most orbits. Radiation sensitivity is linked primarily to the impact on device operation of radiation-induced trapped charge in dielectrics, and thus affects most strongly MEMS devices operating on electrostatic principles. A survey of all published reports of radiation effects on MEMS is presented. The different sensing and actuation physical principles and materials used in MEMS are compared, leading to suggested was to increase radiation tolerance by design, for instance by choice of actuation principle or by electrical shielding of dielectrics.

  10. Scaling of high-field transport and localized heating in graphene transistors.

    PubMed

    Bae, Myung-Ho; Islam, Sharnali; Dorgan, Vincent E; Pop, Eric

    2011-10-25

    We use infrared thermal imaging and electrothermal simulations to find that localized Joule heating in graphene field-effect transistors on SiO(2) is primarily governed by device electrostatics. Hot spots become more localized (i.e., sharper) as the underlying oxide thickness is reduced, such that the average and peak device temperatures scale differently, with significant long-term reliability implications. The average temperature is proportional to oxide thickness, but the peak temperature is minimized at an oxide thickness of ∼90 nm due to competing electrostatic and thermal effects. We also find that careful comparison of high-field transport models with thermal imaging can be used to shed light on velocity saturation effects. The results shed light on optimizing heat dissipation and reliability of graphene devices and interconnects. PMID:21913673

  11. Numerical investigation of thermo-mechanical behaviour of composite under local laser heating

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Ni, Xiaowu; Shen, Zhonghua; Li, Zewen

    2015-10-01

    Thermomechanical behaviour of a glass/epoxy composite plate under local laser irradiation is investigated. Physico-chemical transformations and gas transport in a matrix and fibers are describe by Arrhenius and Darcy's law. The changes of material thermal properties are expressed in terms of the volume fractions of fiber, resin, gas and char. At the same time, we take into account the effects of pore pressure and elevating temperature on thermal stresses and strains. It is established that transverse stress, radius stress and interlayer shear caused by local heating and pore pressure are causes of delamination and cracking of composite plates under laser heating. And interlayer shear can lead failure of composite fast.

  12. Heat shock modulates the subcellular localization, stability, and activity of HIPK2.

    PubMed

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress - such as hypoxia, oxidative stress, or UV damage - is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors. PMID:26972256

  13. Local electron heating in the Io plasma torus associated with Io: the HISAKI observation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, F.; Yoshioka, K.; Kimura, T.; Murakami, G.; Kagitani, M.; Yamazaki, A.; Kasaba, Y.; Sakanoi, T.; Yoshikawa, I.; Nozawa, H.

    2014-12-01

    Io-correlated brightness change in Io plasma torus (IPT) has been discovered by Voyager and show an evidence of local electron heating around Io. However, the amount of observation data is still limited to investigate its detail properties. In addition, the clear Io-correlated change has not been detected by EUVE and Cassini observations. Cause of the Io-correlated effect is still open issue. The HISAKI satellite was launched on Sep. 14, 2013 and started observation of IPT and Jovian aurora for more than two months since the end of Dec. 2013. EUV spectrograph onboard the HISAKI satellite covers wavelength range from 55 to 145 nm, a wide slit which had a field of view of 400 x 140 arc-second was chosen to measure radial distribution and time variation of IPT. Observation of IPT with HISAKI showed clear Io-correlated brightness change since the Voyager observation. The amplitude of the periodic variation associated with Io's orbital period was found. It also showed long-term variation during the HISAKI's observation period. Through the observation period, the amplitude was larger in the short wavelength than in long wavelength. The wavelength dependence suggests significant electron heating and/or hot electron production. The Io phase dependence shows that bright region is located just downstream of Io. These are evidence of local electron heating around/downstream of Io and consistent with the Voyager result. The brightness also depends on system-III longitude and has local maximum around 120 and 300 degrees. Based on an empirical model of IPT, electron density at Io also shows maxima around the same longitudes. This suggests that the electron heating process is related with plasma density at Io. Candidate mechanisms which are responsible for the electron heating will be discussed.

  14. Phonon Heat Conduction In Nanostructures: Ballistic, Coherent, Localized, Hydrodynamic, and Divergent Modes

    NASA Astrophysics Data System (ADS)

    Chen, Gang

    In this talk, we will discuss different modes of heat conduction in nanostructures. Ballistic transport happens when phonon mean free path is longer than the characteristic size of the structure. We will discuss how we compute phonon mean free path distributions based on first-principles and measure the distributions with optical pump-probe techniques by exploring ballistic phonon transport processes. In superlattice structures, ballistic phonon transport across the whole thickness of the superlattices implies phase coherence. We observed this coherent transport in GaAs/AlAs superlattices with fixed periodic thickness and varying number of periods. Simulations show that although high frequency phonons are scattering by roughness, remaining long wavelength phonons maintain their phase and traverse the superlattices ballistically. Accessing the coherent heat conduction regime opens a new venue for phonon engineering. We show further that phonon heat conduction localization happens in GaAs/AlAs superlattice by placing ErAs nanodots at interfaces. This heat-conduction localization phenomenon is confirmed by nonequilibrium atomic Green's function simulation. These ballistic and localization effects can be exploited to improve thermoelectric energy conversion materials via reducing their thermal conductivity. In another opposite, we will discuss phonon hydrodynamic transport mode in graphene via first-principle simulations. In this mode, phonons drift with an average velocity under a temperature gradient, similar to fluid flow in a pipe. Conditions for observing such phonon hydrodynamic modes will be discussed. Finally, we will talk about the one-dimensional nature of heat conduction in polymer chains. Such 1D nature can lead to divergent thermal conductivity. Inspired by simulation, we have experimentally demonstrated high thermal conductivity in ultra-drawn polyethylene nanofibers and sheets. Work supported by DOE Office of Basic Energy Sciences under Award Number: DE

  15. Thermal parameters determination of battery cells by local heat flux measurements

    NASA Astrophysics Data System (ADS)

    Murashko, K. A.; Mityakov, A. V.; Pyrhönen, J.; Mityakov, V. Y.; Sapozhnikov, S. S.

    2014-12-01

    A new approach to define of the thermal parameters, such as heat capacity and through-plane thermal conductivity, of pouch-type cells is introduced. Application of local heat flux measurement with a gradient heat flux sensor (GHFS) allows determination of the cell thermal parameters in different surface points of the cell. The suggested method is not cell destructive as it does not require deep discharge of the cell or application of any charge/discharge cycles during the measurements of the thermal parameters of the cell. The complete procedure is demonstrated on a high-power lithium-ion (Li-ion) pouch cell, and it is verified on a sample with well-known thermal parameters. A comparison of the experimental results with conventional thermal characterization methods shows an acceptably low error. The dependence of the cell thermal parameters on the state of charge (SoC) and measurement points on the surface was studied by the proposed measurement approach.

  16. Implantable polymer/metal thin film structures for the localized treatment of cancer by Joule heating

    NASA Astrophysics Data System (ADS)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole

    2015-04-01

    This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.

  17. Residual Stress Measurements with Laser Speckle Correlation Interferometry and Local Heat Treating

    SciTech Connect

    Pechersky, M.J.; Miller, R.F.; Vikram, C.S.

    1994-01-06

    A new experimental technique has been devised to measure residual stresses in ductile materials with a combination of laser speckle pattern interferometry and spot heating. The speckle pattern interferometer measures in-plane deformations while the heating provides for very localized stress relief. The residual stresses are determined by the amount of strain that is measured subsequent to the heating and cool-down of the region being interrogated. A simple lumped parameter model is presented to provide a description of the method. This description is followed by presentations of the results of finite element analyses and experimental results with uniaxial test specimens. Excellent agreement between the experiments and the computer analyses were obtained.

  18. Local stress and heat flux in atomistic systems involving three-body forces.

    PubMed

    Chen, Youping

    2006-02-01

    Local densities of fundamental physical quantities, including stress and heat flux fields, are formulated for atomistic systems involving three-body forces. The obtained formulas are calculable within an atomistic simulation, in consistent with the conservation equations of thermodynamics of continuum, and can be applied to systems with general two- and three-body interaction forces. It is hoped that this work may correct some misuse of inappropriate formulas of stress and heat flux in the literature, may clarify the definition of site energy of many-body potentials, and may serve as an analytical link between an atomistic model and a continuum theory. Physical meanings of the obtained formulas, their relation with virial theorem and heat theorem, and the applicability are discussed. PMID:16468857

  19. Modeling thermochemical heat storage in porous media with local thermal nonequilibrium - From constitutive theory to application

    NASA Astrophysics Data System (ADS)

    Nagel, T.; Shao, H.; Linder, M.; Wörner, A.; Kolditz, O.

    2013-12-01

    Heat processes in industry and for power generation can be made more cost-efficient and climate friendly by the integration of thermal energy storage devices. Due to high storage densities and superior long term storage characteristics, systems relying on thermochemical reactions are of great interest and often based on porous or granular media. As such, they share characteristic features in terms of mass and heat transport that are strongly coupled by physical and chemical phenomena. We have employed the theory of porous media to establish a model featuring reactive multicomponent compressible fluid mass transport through solid particle bed coupled to local thermal nonequilibrium heat transport. The model development has been based on an extensive evaluation of the Clausius-Duhem inequality to derive thermodynamically consistent constitutive relations for secondary variables as well as direct and indirect coupling terms. The model has then been implemented into the open source scientific simulation code OpenGeoSys using the finite element method. Lab and pilot scale thermochemical heat storage reactors with different reaction systems (oxidation reactions, hydration reactions) have been simulated successfully using axisymmetric geometries. The simulations show the strong coupling of pressure, concentration and temperature fields as well as the gas-solid reactions occurring inside the reactors. The effect of certain process parameters, such as mass flow and particle size, on the occurrence of local thermal nonequilibrium is illustrated. It is shown that the reactors can be used in a number of operating modes such as the extraction or release of heat accompanied by significant temperature drops or raises; the buffering or smoothing of temperature fluctuations at the inlet; the up- or downgrading of heat. The developed model therefore represents a useful tool to understand reactor behavior, optimize operating parameters, estimate thermal and parasitic losses, and

  20. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating

    PubMed Central

    Rickey, Kelly M.; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Wu, Yue; Cheng, Gary J.; Ruan, Xiulin

    2015-01-01

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~105 Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films. PMID:26527570

  1. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating.

    PubMed

    Rickey, Kelly M; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S Venkataprasad; Wu, Yue; Cheng, Gary J; Ruan, Xiulin

    2015-01-01

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~10(5) Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films. PMID:26527570

  2. The local pathology of interstitial edema: surface tension increases hydration potential in heat-damaged skin.

    PubMed

    McGee, Maria P; Morykwas, Michael J; Argenta, Louis C

    2011-01-01

    The local pathogenesis of interstitial edema in burns is incompletely understood. This ex vivo study investigates the forces mediating water-transfer in and out of heat-denatured interstitial matrix. Experimentally, full-thickness dermal samples are heated progressively to disrupt glycosaminoglycans, kill cells, and denature collagen under conditions that prevent water loss/gain; subsequently, a battery of complementary techniques including among others, high-resolution magnetic resonance imaging, equilibrium vapor pressure and osmotic stress are used to compare water-potential parameters of nonheated and heated dermis. The hydration potential (HP) determined by osmotic stress is a measure of the total water-potential defined empirically as the pressure at which no net water influx/efflux into/from the dermis is detected. Results show that after heat denaturation, the HP, the intensity of T2-weighed magnetic resonance images, and the vapor pressure increase indicating higher water activity and necessarily, smaller contributions from colloidosmotic forces to fluid influx in burned relative to healthy dermis. Concomitant increases in HP and in water activity implicate local changes in interfacial and metabolic energy as the source of excess fluid-transfer potential. These ex vivo findings also show that these additional forces contributing to abnormal fluid-transfer in burned skin develop independently of inflammatory and systemic hydrodynamic responses. PMID:21518093

  3. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.

    PubMed

    Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei

    2016-04-28

    Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields. PMID:27067248

  4. A non-local model of fractional heat conduction in rigid bodies

    NASA Astrophysics Data System (ADS)

    Borino, G.; di Paola, M.; Zingales, M.

    2011-03-01

    In recent years several applications of fractional differential calculus have been proposed in physics, chemistry as well as in engineering fields. Fractional order integrals and derivatives extend the well-known definitions of integer-order primitives and derivatives of the ordinary differential calculus to real-order operators. Engineering applications of fractional operators spread from viscoelastic models, stochastic dynamics as well as with thermoelasticity. In this latter field one of the main actractives of fractional operators is their capability to interpolate between the heat flux and its time-rate of change, that is related to the well-known second sound effect. In other recent studies a fractional, non-local thermoelastic model has been proposed as a particular case of the non-local, integral, thermoelasticity introduced at the mid of the seventies. In this study the autors aim to introduce a different non-local model of extended irreverible thermodynamics to account for second sound effect. Long-range heat flux is defined and it involves the integral part of the spatial Marchaud fractional derivatives of the temperature field whereas the second-sound effect is accounted for introducing time-derivative of the heat flux in the transport equation. It is shown that the proposed model does not suffer of the pathological problems of non-homogenoeus boundary conditions. Moreover the proposed model coalesces with the Povstenko fractional models in unbounded domains.

  5. Identifying the Local Surface Urban Heat Island Through the Morphology of the Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Jiong; Zhan, Qingming; Xiao, Yinghui

    2016-06-01

    Current characterization of the Land Surface Temperature (LST) at city scale insufficiently supports efficient mitigations and adaptations of the Surface Urban Heat Island (SUHI) at local scale. This research intends to delineate the LST variation at local scale where mitigations and adaptations are more feasible. At the local scale, the research helps to identify the local SUHI (LSUHI) at different levels. The concept complies with the planning and design conventions that urban problems are treated with respect to hierarchies or priorities. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. The continuous and smooth latent LST is first recovered from the raw images. The Multi-Scale Shape Index (MSSI) is then applied to the latent LST to extract morphological indicators. The local scale variation of the LST is quantified by the indicators such that the LSUHI can be identified morphologically. The results are promising. It can potentially be extended to investigate the temporal dynamics of the LST and LSUHI. This research serves to the application of remote sensing, pattern analysis, urban microclimate study, and urban planning at least at 2 levels: (1) it extends the understanding of the SUHI to the local scale, and (2) the characterization at local scale facilitates problem identification and support mitigations and adaptations more efficiently.

  6. Local infusion of ascorbate augments NO-dependent cutaneous vasodilatation during intense exercise in the heat.

    PubMed

    Meade, Robert D; Fujii, Naoto; Alexander, Lacy M; Paull, Gabrielle; Louie, Jeffrey C; Flouris, Andreas D; Kenny, Glen P

    2015-09-01

    Recent work demonstrates that nitric oxide (NO) contributes to cutaneous vasodilatation during moderate (400 W of metabolic heat production) but not high (700 W of metabolic heat production) intensity exercise bouts performed in the heat (35°C). The present study evaluated whether the impairment in NO-dependent cutaneous vasodilatation was the result of a greater accumulation of reactive oxygen species during high (700 W of metabolic heat production) relative to moderate (500 W of metabolic heat production) intensity exercise. It was shown that local infusion of ascorbate (an anti-oxidant) improves NO-dependent forearm cutaneous vasodilatation during high intensity exercise in the heat. These findings provide novel insight into the physiological mechanisms governing cutaneous blood flow during exercise-induced heat stress and provide direction for future research exploring whether oxidative stress underlies the impairments in heat dissipation that may occur in older adults, as well as in individuals with pathophysiological conditions such as type 2 diabetes. Nitric oxide (NO)-dependent cutaneous vasodilatation is reportedly diminished during exercise performed at a high (700 W) relative to moderate (400 W) rate of metabolic heat production. The present study evaluated whether this impairment results from increased oxidative stress associated with an accumulation of reactive oxygen species (ROS) during high intensity exercise. On two separate days, 11 young (mean ± SD, 24 ± 4 years) males cycled in the heat (35°C) at a moderate (500 W) or high (700 W) rate of metabolic heat production. Each session included two 30 min exercise bouts followed by 20 and 40 min of recovery, respectively. Cutaneous vascular conductance (CVC) was monitored at four forearm skin sites continuously perfused via intradermal microdialysis with: (1) lactated Ringer solution (Control); (2) 10 mm ascorbate (Ascorbate); (3) 10 mm l-NAME; or (4) 10 mm ascorbate + 10 mm l-NAME (Ascorbate + l

  7. Natural convection in horizontal porous layers with localized heating from below

    SciTech Connect

    Prasad, V. ); Kulacki, F.A. )

    1987-08-01

    Convective flow of fluid through saturated porous media heated from below is of considerable interest, and has been extensively studied. Most of these studies are concerned with either infinite horizontal porous layers or rectangular (or cylindrical) porous cavities with adiabatic vertical walls. A related problem of practical importance occurs when only a portion of the bottom surface is heated and the rest of it is either adiabatic or isothermally cooled. This situation is encountered in several geothermal areas which consists of troughs of volcanic debris contained by walls of nonfragmented ignimbrite. Thus, the model region considered is a locally heated long trough of isotropic porous medium confined by impermeable and insulating surroundings. Also, the recent motivation to study this problem has come from the efforts to identify a geologic repository for nuclear waste disposal. The purpose of the present work is to consider the effects of aspect ratio and Rayleigh number on free convection heat transfer from an isothermal heat source centrally located on the bottom surface of a horizontal porous cavity.

  8. Local Heating of Discrete Droplets Using Magnetic Porous Silicon-Based Photonic Crystals

    PubMed Central

    Park, Ji-Ho; Derfus, Austin M.; Segal, Ester; Vecchio, Kenneth S.; Bhatia, Sangeeta N.; Sailor, Michael J.

    2012-01-01

    This paper describes a method for local heating of discrete micro-liter scale liquid droplets. The droplets are covered with magnetic porous Si microparticles, and heating is achieved by application of an external alternating electromagnetic field. The magnetic porous Si microparticles consist of two layers: the top layer contains a photonic code and it is hydrophobic, with surface-grafted dodecyl moieties. The bottom layer consists of a hydrophilic Si oxide host layer that is infused with Fe3O4 nanoparticles. The amphiphilic microparticles spontaneously align at the interface of a water droplet immersed in mineral oil, allowing manipulation of the droplets by application of a magnetic field. Application of an oscillating magnetic field (338 kHz, 18A RMS current in a coil surrounding the experiment) generates heat in the superparamagnetic particles that can raise the temperature of the enclosed water droplet to >80 °C within 5 min. A simple microfluidics application is demonstrated: combining complementary DNA strands contained in separate droplets and then thermally inducing dehybridization of the conjugate. The complementary oligonucleotides were conjugated with the cyanine dye fluorophores Cy3 and Cy5 to quantify the melting/re-binding reaction by fluorescence resonance energy transfer (FRET). The magnetic porous Si microparticles were prepared as photonic crystals, containing spectral codes that allowed the identification of the droplets by reflectivity spectroscopy. The technique demonstrates the feasibility of tagging, manipulating, and heating small volumes of liquids without the use of conventional microfluidic channel and heating systems. PMID:16771508

  9. Simplified model for determining local heat flux boundary conditions for slagging wall

    SciTech Connect

    Bingzhi Li; Anders Brink; Mikko Hupa

    2009-07-15

    In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equation is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.

  10. Heat transfer analysis of catheters used for localized tissue cooling to attenuate reperfusion injury.

    PubMed

    Merrill, Thomas L; Mitchell, Jennifer E; Merrill, Denise R

    2016-08-01

    Recent revascularization success for ischemic stroke patients using stentrievers has created a new opportunity for therapeutic hypothermia. By using short term localized tissue cooling interventional catheters can be used to reduce reperfusion injury and improve neurological outcomes. Using experimental testing and a well-established heat exchanger design approach, the ɛ-NTU method, this paper examines the cooling performance of commercially available catheters as function of four practical parameters: (1) infusion flow rate, (2) catheter location in the body, (3) catheter configuration and design, and (4) cooling approach. While saline batch cooling outperformed closed-loop autologous blood cooling at all equivalent flow rates in terms of lower delivered temperatures and cooling capacity, hemodilution, systemic and local, remains a concern. For clinicians and engineers this paper provides insights for the selection, design, and operation of commercially available catheters used for localized tissue cooling. PMID:27312661

  11. Piezoelectric MEMS for energy harvesting

    NASA Astrophysics Data System (ADS)

    Kanno, Isaku

    2015-12-01

    Recently, piezoelectric MEMS have been intensively investigated to create new functional microdevices, and some of them have already been commercialized such as MEMS gyrosensors or miropumps of inkjet printer head. Piezoelectric energy harvesting is considered to be one of the promising future applications of piezoelectric MEMS. In this report, we introduce the deposition of the piezoelectric PZT thin films as well as lead-free KNN thin films. We fabricated piezoelectric energy harvesters of PZT and KNN thin films deposited on stainless steel cantilevers and compared their power generation performance.

  12. Thermal convection with large viscosity variation in an enclosure with localized heating

    SciTech Connect

    Chu, T.Y.; Hickox, C.E.

    1988-01-01

    The present study is undertaken in order to gain an understanding of convective transport in a magma chamber. We have chosen to represent the chamber by an enclosure with localized heating from below. Results of both laboratory experiments and computer modeling are reported. The experimental apparatus consists of a transparent enclosure with a square planform. An electrically heated strip, with a width equal to one-fourth of the length of a side of the enclosure, is centered on the lower inside surface of the enclosure. For the experiments reported here, the top of the fluid layer is maintained at a constant temperature and the depth of the layer is equal to the width of the heated strip. The large viscosity variation characteristic of magma convection is simulated by using corn syrup as the working fluid. Measured velocity and temperature distribution as well as overall heat transfer rates are presented. The experiment is numerically simulated through use of a finite element computer program. Numerically predicted streamlines, isotherms, and velocity distributions are presented for the transverse vertical midplane of the enclosure. Good agreement is demonstrated between predictions and measurements. 23 refs., 8 figs., 2 tabs.

  13. Thermal convection with large viscosity variation in an enclosure with localized heating

    SciTech Connect

    Chu, T.Y.; Hickox, C.F. )

    1990-05-01

    The present study is undertaken in order to gain an understanding of certain aspects of convective transport in a magma chamber. The authors have chosen to represent the chamber by an enclosure with localized heating from below. Results of both laboratory experiments and computer modeling are reported. The experimental apparatus consists of a transparent enclosure with a square platform. An electrically heated strip, with a width equal to 1/4 of the length of a side of the enclosure, is centered on the lower inside surface of the enclosure. For the experiments reported here, the top of the fluid layer is maintained at a constant temperature and the depth of the layer is equal to the width of the heated strip. The large viscosity variation characteristic of magma convection is simulated by using corn syrup as the working fluid. Measured velocity and temperature distributions as well as overall heat transfer rates are presented. The experiment is numerically simulated through use of a finite element computer program. Numerically predicted steamlines, isotherms, and velocity distributions are presented for the transverse vertical midplane of the enclosure. Good agreement is demonstrated between predictions and measurements.

  14. Analysis and modeling of localized heat generation by tumor-targeted nanoparticles (Monte Carlo methods)

    NASA Astrophysics Data System (ADS)

    Sanattalab, Ehsan; SalmanOgli, Ahmad; Piskin, Erhan

    2016-04-01

    We investigated the tumor-targeted nanoparticles that influence heat generation. We suppose that all nanoparticles are fully functionalized and can find the target using active targeting methods. Unlike the commonly used methods, such as chemotherapy and radiotherapy, the treatment procedure proposed in this study is purely noninvasive, which is considered to be a significant merit. It is found that the localized heat generation due to targeted nanoparticles is significantly higher than other areas. By engineering the optical properties of nanoparticles, including scattering, absorption coefficients, and asymmetry factor (cosine scattering angle), the heat generated in the tumor's area reaches to such critical state that can burn the targeted tumor. The amount of heat generated by inserting smart agents, due to the surface Plasmon resonance, will be remarkably high. The light-matter interactions and trajectory of incident photon upon targeted tissues are simulated by MIE theory and Monte Carlo method, respectively. Monte Carlo method is a statistical one by which we can accurately probe the photon trajectories into a simulation area.

  15. Local heat transfer measurement with liquid crystals on rotating surfaces including non-axisymmetric cases

    NASA Technical Reports Server (NTRS)

    Metzger, D. E.; Kim, Y. K.

    1993-01-01

    An overview and summary of test methods and results are given for the problem of measuring local heat transfer on rotating surfaces that model gas turbine engine disks. Disk cavity situations generically similar to those encountered in the high pressure stage disk cooling are considered, with cooling air supplied both at or near the wheel centerline as well as through single or multiple jets impinging outboard on the wheel near the blade attachment region. In some situations provision has been made for ingestion into the disk-cavity from the gas path region radially outboard of the disk. Local heat transfer rates in all cases are determined from the color display from a thin coating of encapsulated liquid crystals sprayed onto the disk, in conjunction with use of a video camera and computer vision system. For cases with axisymmetric disk surfaces, the coated surfaces are illuminated and viewed continuously, and detailed radial distributions of local Nusselt number are obtained. For non-axisymmetric disk surfaces, such as encountered in the vicinity of bolt heads, the disk is illuminated with stroboscopic light, and a method has been developed and used to synchronize the computer frame grabber with the illumination.

  16. Instabilities of plumes driven by localized heating in a stably stratified ambient

    NASA Astrophysics Data System (ADS)

    Marques, Francisco; Lopez, Juan

    2014-11-01

    Plumes due to localized buoyancy sources are of wide interest due to their prevalence in many geophysical situations. This study investigates the transition from laminar to turbulent dynamics. Several experiments have reported that this transition is sensitive to external perturbations. As such, a well-controlled set-up has been chosen for our numerical study, consisting of a localized heat source at the bottom of an enclosed cylinder whose sidewall is maintained at a fixed temperature which varies linearly up the wall, and there is a localized heat source on the bottom. Restrincting the dynamics to the axisymmetric subspace, the first instability is to a puffing state. However, for smaller Grashof numbers, the plume becomes unstable to 3D perturbations and a swirling plume spontaneously appear. Further bifurcations observed in the rotating frame where the plume is stationary also exibits puffing, suggesting a connection between the unstable axisymmetric solution and the swirling plume. Further bifurcations result in quasiperiodic states with a very low frequency modulation, that eventually become turbulent. Spanish Ministry of Education and Science Grant (with FEDER funds) FIS2013-40880 and U.S. National Science Foundation Grant CBET-1336410

  17. MEMS for Tunable Plasmonic Coupling

    NASA Astrophysics Data System (ADS)

    Stark, Tom; Imboden, Matthias; Kaya, Sabri; Mertiri, Alket; Erramilli, Shyamsunder; Bishop, David

    2015-03-01

    The localized surface plasmon resonance (LSPR) of sub-wavelength holes in metals depends upon the geometry, composition, refractive index, and near field coupling to neighboring particles. Sub-wavelength holes in metals can exhibit extraordinary optical transmission (EOT) at the resonance frequency and, for certain geometries, polarization-dependent transmission. We present a microelectromechanical system, tunable Fabry-Perot etalon. One interface is a suspended gold metamaterial and the other is a gold reflector. The reflectance, measured with a Fourier transform infrared spectrometer, exhibits the convolution of the EOT through the holes and Fabry-Perot resonances. Using MEMS, we modulate the etalon length from 1 to 20 μm, thereby tuning the free spectral range from about 5000 to 250 cm-1 and shifting the reflection minima and maxima across the infrared. When the separation between the metamaterial and gold reflector approaches the decay length of the LSP electric fields, interactions with image currents generated in the gold reflector become significant. By tuning the separation in this regime, we will tune the near field coupling between the LSPR and image currents and tune the LSPR of the system, effectively creating a sensing substrate with a tunable LSPR frequency.

  18. MEMS thermal switch for spacecraft thermal control

    NASA Astrophysics Data System (ADS)

    Beasley, Matthew A.; Firebaugh, Samara L.; Edwards, Richard L.; Keeney, Allen C.; Osiander, Robert

    2004-01-01

    Small satellites with their low thermal capacitance are vulnerable to rapid temperature fluctuations. Therefore, thermal control becomes important, but the limitations on mass and electrical power require new approaches. Possible solutions to actively vary the heat rejection of the satellite in response to variations in the thermal load and environmental condition are the use of a variable emissivity coating (VEC), micro-machined shutters and louvers, or thermal switches. An elegant way the radiate heat is to switch the thermal contact between the emitting surface and the radiator electrostatically. This paper describes the design and fabrication of an active radiator for satellite thermal control based on such a micro electromechanical (MEMS) thermal switch. The switch operates by electrostatically moving a high emissivity surface layer in and out of contact with the radiator. The electromechanical model and material considerations for the thermal design of the MEMS device are discussed. The design utilizes a highly thermal conductive gold membrane supported by low-conductance SU-8 posts. The fabrication process is described. Measured actuation voltages were consistent with the electrostatic model, ranging from 8 to 25 volts.

  19. Low-Temperature Heat Capacity and Localized Vibrational Modes in Natural and Synthetic Tetrahedrites

    SciTech Connect

    Lara-Curzio, Edgar; May, Andrew F; Delaire, Olivier A; McGuire, Michael A; Lu, Xu; Li, Cheng-Yun; Case, Eldon D; Morelli, Donold

    2014-01-01

    The heat capacity of natural (Cu12-x (Fe, Zn, Ag)x(Sb, As)4S13) and synthetic (Cu12-xZnxSb4S13 with x=0, 1, 2) tetrahedrite compounds was measured between 2K and 380K. It was found that the temperature dependence of the heat capacity can be described using a Debye term and three Einstein oscillators with characteristic temperatures that correspond to energies of ~1.0 meV, ~2.8 meV and ~8.4 meV. The existence of localized vibration modes, which are assigned to the displacements of the trigonally coordinated Cu atoms in the structure, is discussed in the context of anharmonicity and its effect on the low lattice thermal conductivity exhibited by these compounds.

  20. Optically transduced MEMS magnetometer

    SciTech Connect

    Nielson, Gregory N; Langlois, Eric

    2014-03-18

    MEMS magnetometers with optically transduced resonator displacement are described herein. Improved sensitivity, crosstalk reduction, and extended dynamic range may be achieved with devices including a deflectable resonator suspended from the support, a first grating extending from the support and disposed over the resonator, a pair of drive electrodes to drive an alternating current through the resonator, and a second grating in the resonator overlapping the first grating to form a multi-layer grating having apertures that vary dimensionally in response to deflection occurring as the resonator mechanically resonates in a plane parallel to the first grating in the presence of a magnetic field as a function of the Lorentz force resulting from the alternating current. A plurality of such multi-layer gratings may be disposed across a length of the resonator to provide greater dynamic range and/or accommodate fabrication tolerances.

  1. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating

    NASA Astrophysics Data System (ADS)

    Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei

    2016-04-01

    Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to

  2. Crack arrest toughness of a heat-affected zone containing local brittle zones

    SciTech Connect

    Malik, L.; Pussegoda, L.N.; Graville, B.A.; Tyson, W.R.

    1996-11-01

    The awareness of the presence of local brittle zones (LBZs) in the heat-affected zone (HAZ) of welds has led to the requirements for minimum initiation toughness for the HAZ for critical applications. A fracture control philosophy that is proposed to be an attractive alternative for heat-affected zones containing LBZs is the prevention of crack propagation rather than of crack initiation. Such an approach would be viable if it could be demonstrated that cracks initiated in the LBZs will be arrested without causing catastrophic failure, notwithstanding the low initiation (CTOD) toughness resulting from the presence of LBZs. Unstable propagation of a crack initiating from an LBZ requires the rupture of tougher microstructural regions surrounding the LBZ in HAZ, and therefore the CTOD value reflecting the presence of LBZ is unlikely to provide a true indication of the potential for fast fracture along the heat-affected zone. Base metal specifications usually ensure that small unstable cracks propagating from the weld zone into the base metal would be arrested. To investigate the likelihood of fast fracture within the HAZ, a test program has been carried out that involved performing compact plane strain and plane stress crack arrest tests on a heat-affected zone that contained LBZs, and thus exhibited unacceptable low CTOD toughness for resistance to brittle fracture initiation. The results indicated that the crack arrest toughness was little influenced by the presence of local brittle zones. Instead, the superior toughness of the larger proportion of finer-grain HAZ surrounding the LBZ present along the crack path has a greater influence on the crack arrest toughness.

  3. Reliability Testing Procedure for MEMS IMUs Applied to Vibrating Environments

    PubMed Central

    De Pasquale, Giorgio; Somà, Aurelio

    2010-01-01

    The diffusion of micro electro-mechanical systems (MEMS) technology applied to navigation systems is rapidly increasing, but currently, there is a lack of knowledge about the reliability of this typology of devices, representing a serious limitation to their use in aerospace vehicles and other fields with medium and high requirements. In this paper, a reliability testing procedure for inertial sensors and inertial measurement units (IMU) based on MEMS for applications in vibrating environments is presented. The sensing performances were evaluated in terms of signal accuracy, systematic errors, and accidental errors; the actual working conditions were simulated by means of an accelerated dynamic excitation. A commercial MEMS-based IMU was analyzed to validate the proposed procedure. The main weaknesses of the system have been localized by providing important information about the relationship between the reliability levels of the system and individual components. PMID:22315550

  4. MEMS: Enabled Drug Delivery Systems.

    PubMed

    Cobo, Angelica; Sheybani, Roya; Meng, Ellis

    2015-05-01

    Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed. PMID:25703045

  5. MemAxes Visualization Software

    Energy Science and Technology Software Center (ESTSC)

    2014-08-28

    Hardware advancements such as Intel's PEBS and AMD's IBS, as well as software developments such as the perf_event API in Linux have made available the acquisition of memory access samples with performance information. MemAxes is a visualization and analysis tool for memory access sample data. By mapping the samples to their associated code, variables, node topology, and application dataset, MemAxes provides intuitive views of the data.

  6. Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation.

    PubMed

    Poirier, Martin P; Gagnon, Daniel; Kenny, Glen P

    2016-08-01

    The purpose of this study was to examine if local changes in sweat rate following 14 days of heat acclimation reflect those that occur at the whole-body level. Both prior to and following a 14-day traditional heat acclimation protocol, 10 males exercised in the heat (35 °C, ∼20% relative humidity) at increasing rates of heat production equal to 300 (Ex1), 350 (Ex2), and 400 (Ex3) W·m(-2). A 10-min recovery period followed Ex1, while a 20-min recovery period separated Ex2 and Ex3. The exercise protocol was performed in a direct calorimeter to measure whole-body sweat rate and, on a separate day, in a thermal chamber to measure local sweat rate (LSR), sweat gland activation (SGA), and sweat gland output (SGO) on the upper back, chest, and mid-anterior forearm. Post-acclimation, whole-body sweat rate was greater during each exercise bout (Ex1: 14.3 ± 0.9; Ex2: 17.3 ± 1.2; Ex3: 19.4 ± 1.3 g·min(-1), all p ≤ 0.05) relative to pre-acclimation (Ex1: 13.1 ± 0.6; Ex2: 15.4 ± 0.8; Ex3: 16.5 ± 1.3 g·min(-1)). In contrast, only LSR on the forearm increased with acclimation, and this increase was only observed during Ex2 (Post: 1.32 ± 0.33 vs. Pre: 1.06 ± 0.22 mg·min(-1)·cm(-2), p = 0.03) and Ex3 (Post: 1.47 ± 0.41 vs. Pre: 1.17 ± 0.23 mg·min(-1)·cm(-2), p = 0.05). The greater forearm LSR post-acclimation was due to an increase in SGO, as no changes in SGA were observed. Overall, these data demonstrate marked regional variability in the effect of heat acclimation on LSR, such that not all local measurements of sweat rate reflect the improvements observed at the whole-body level. PMID:27467216

  7. Preliminary experimental validation of a landmine detection system based on localized heating and sensing

    NASA Astrophysics Data System (ADS)

    Balsi, M.; Corcione, M.; Dell'Omo, P.; Esposito, S.; Magliocchetti, L.

    2008-04-01

    In this paper we present results of experimental validation of a new methodology for anti-personnel mine (APM) detection for humanitarian demining, proposed by the authors and previously validated only by simulation. The technique is based on local heating and sensing by contactless thermometers (pyrometers). A large sand box (2.6m 3) has been realized and fitted with a cart moving on rails and holding instrumentation. Accurate mine surrogates have been hidden in the sand together with confounders. Preliminary measurements are consistent with simulations and prove validity of the approach.

  8. Experiments and simulations of MEMS thermal sensors for wall shear-stress measurements in aerodynamic control applications

    NASA Astrophysics Data System (ADS)

    Lin, Qiao; Jiang, Fukang; Wang, Xuan-Qi; Xu, Yong; Han, Zhigang; Tai, Yu-Chong; Lew, James; Ho, Chih-Ming

    2004-12-01

    MEMS thermal shear-stress sensors exploit heat-transfer effects to measure the shear stress exerted by an air flow on its solid boundary, and have promising applications in aerodynamic control. Classical theory for conventional, macroscale thermal shear-stress sensors states that the rate of heat removed by the flow from the sensor is proportional to the 1/3-power of the shear stress. However, we have observed that this theory is inconsistent with experimental data from MEMS sensors. This paper seeks to develop an understanding of MEMS thermal shear-stress sensors through a study including both experimental and theoretical investigations. We first obtain experimental data that confirm the inadequacy of the classical theory by wind-tunnel testing of prototype MEMS shear-stress sensors with different dimensions and materials. A theoretical analysis is performed to identify that this inadequacy is due to the lack of a thin thermal boundary layer in the fluid flow at the sensor surface, and then a two-dimensional MEMS shear-stress sensor theory is presented. This theory incorporates important heat-transfer effects that are ignored by the classical theory, and consistently explains the experimental data obtained from prototype MEMS sensors. Moreover, the prototype MEMS sensors are studied with three-dimensional simulations, yielding results that quantitatively agree with experimental data. This work demonstrates that classical assumptions made for conventional thermal devices should be carefully examined for miniature MEMS devices.

  9. Analytical determination of local surface heat-transfer coefficients for cooled turbine blades from measured metal temperatures

    NASA Technical Reports Server (NTRS)

    Brown, W Byron; Esgar, Jack B

    1950-01-01

    Analytical methods are presented for the determination of local values of outside and inside heat-transfer coefficients and effective gas temperatures by use of turbine-blade-temperature measurements. The methods are derived for a number of configurations that can be applied to typical cooled-turbine-blade shapes as well as to other types of heat-transfer apparatus.

  10. The role of radiation transport in the thermal response of semitransparent materials to localized laser heating

    SciTech Connect

    Colvin, Jeffrey; Shestakov, Aleksei; Stolken, James; Vignes, Ryan

    2011-03-09

    Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the Pn method with ~500 photon energy bands, and by multi-group radiationdiffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2–12 W of 4.6 or 10.6 µm laser light for 5–10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. Furthermore, we show that, unlike the case for bulk heating, in localized infrared laser heatingradiation transport plays only a very small role in the thermal response of silica.

  11. Monitoring local heating around an interventional MRI antenna with RF radiometry

    PubMed Central

    Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2015-01-01

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  12. Monitoring local heating around an interventional MRI antenna with RF radiometry

    SciTech Connect

    Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2015-03-15

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  13. MEMS for medical technology applications

    NASA Astrophysics Data System (ADS)

    Frisk, Thomas; Roxhed, Niclas; Stemme, Göran

    2007-01-01

    This paper gives an in-depth description of two recent projects at the Royal Institute of Technology (KTH) which utilize MEMS and microsystem technology for realization of components intended for specific applications in medical technology and diagnostic instrumentation. By novel use of the DRIE fabrication technology we have developed side-opened out-of-plane silicon microneedles intended for use in transdermal drug delivery applications. The side opening reduces clogging probability during penetration into the skin and increases the up-take area of the liquid in the tissue. These microneedles offer about 200µm deep and pain-free skin penetration. We have been able to combine the microneedle chip with an electrically and heat controlled liquid actuator device where expandable microspheres are used to push doses of drug liquids into the skin. The entire unit is made of low cost materials in the form of a square one cm-sized patch. Finally, the design, fabrication and evaluation of an integrated miniaturized Quartz Crystal Microbalance (QCM) based "electronic nose" microsystem for detection of narcotics is described. The work integrates a novel environment-to-chip sample interface with the sensor element. The choice of multifunctional materials and the geometric features of a four-component microsystem allow a functional integration of a QCM crystal, electrical contacts, fluidic contacts and a sample interface in a single system with minimal assembly effort, a potential for low-cost manufacturing, and a few orders of magnitude reduced in system size (12*12*4 mm 3) and weight compared to commercially available instruments. The sensor chip was successfully used it for the detection of 200 ng of narcotics sample.

  14. Folded MEMS approach to NMRG

    NASA Astrophysics Data System (ADS)

    Gundeti, Venu Madhav

    Atomic gyroscopes have a potential for good performance advantages and several attempts are being made to miniaturize them. This thesis describes the efforts made in implementing a Folded MEMS based NMRG. The micro implementations of all the essential components for NMRG (Nuclear Magnetic Resonance Gyroscope) are described in detail in regards to their design, fabrication, and characterization. A set of micro-scale Helmholtz coils are described and the homogeneity of the generated magnetic field is analyzed for different designs of heaters. The dielectric mirrors and metallic mirrors are compared in terms of reflectivity and polarization change up on reflection. A pyramid shaped folded backbone structure is designed, fabricated, and assembled along with all the required components. A novel double-folded structure 1/4th the size of original version is fabricated and assembled. Design and modeling details of a 5 layered shield with shielding factor > 106 and total volume of around 90 cc are also presented. A table top setup for characterization of atomic vapor cell is described in detail. A micro vapor cell based Rb magnetometer with a sensitivity of 108 pT/√Hz is demonstrated. The challenges due to DC heating are addressed and mitigated using an AC heater. Several experiments related to measuring the relaxation time of Xe are provided along with results. For Xe131, relaxation times of T1 = 23.78 sec, T2 = 18.06 sec and for Xe129, T1 = 21.65 sec and T2 = 20.45 sec are reported.

  15. Evaluation of viewing-angle effect on determination of local heat transfer coefficients on a curved surface using transient and heated-coating liquid-crystal methods

    NASA Astrophysics Data System (ADS)

    Chan, T. L.

    This paper presents the effect of viewing-angle variations on the accuracy of transient and heated-coating liquid-crystal methods for determining the local heat transfer coefficients on a curved surface. A developed liquid-crystal calibration technique using a true-color image processing system has been used to alleviate the effect of viewing angle on oblique/curved surfaces. The accuracy of heat transfer coefficients improved significantly with careful correction of the viewing-angle effect on the surface geometry. It is crucial to ensure the implementation of the suggested calibration technique to be used in wideband thermochromic liquid-crystal applications on the non-orthogonal surface.

  16. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE PAGESBeta

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetricmore » heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  17. MEMS Reliability Assurance Activities at JPL

    NASA Technical Reports Server (NTRS)

    Kayali, S.; Lawton, R.; Stark, B.

    2000-01-01

    An overview of Microelectromechanical Systems (MEMS) reliability assurance and qualification activities at JPL is presented along with the a discussion of characterization of MEMS structures implemented on single crystal silicon, polycrystalline silicon, CMOS, and LIGA processes. Additionally, common failure modes and mechanisms affecting MEMS structures, including radiation effects, are discussed. Common reliability and qualification practices contained in the MEMS Reliability Assurance Guideline are also presented.

  18. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the

  19. Status of the MEMS industry

    NASA Astrophysics Data System (ADS)

    Eloy, J. C.; Mounier, E.

    2005-01-01

    This paper analyzes the current status of the MEMS industry. After the 2000 and 2001 years with high expectation for MEMS devices for the optical telecommunications, followed by the 2002/2003 downturn leading to the closing of more than 100 MEMS fabs worldwide, this industry has come back to a more normal way of working. There are still 10 to 15 companies worldwide which will certainly end their business within 16 months but the overall activity is more stabilized. MEMS markets will reach 5.4 B$ in 2005, with growth rates which are very different if one compares different market segments. The top 30 MEMS manufacturers have a market share of more than 60% of the total market; the remaining 40% is shared by more than 200 companies. Most of the smallest companies have 2 business models: either small companies developing specific processes, with R&D and small volume production, or systems manufacturers with integrated fabs. These fabs are loaded at less than 40% but considered as an enabler for the system business. Many changes are currently appearing: as contract manufacturers become more credible, system manufacturers are looking to externalise their fabrication processes; fabless companies are also finding companies able to produce at the right cost and quality. The fabless business model is now well structured.

  20. Design and characterization of MEMS interferometric sensing

    NASA Astrophysics Data System (ADS)

    Snyder, R.; Siahmakoun, A.

    2010-02-01

    A MEMS-based interferometric sensor is produced using the multi-user MEMS processing standard (MUMPS) micromirrors, movable by thermal actuation. The interferometer is comprised of gold reflection surfaces, polysilicon thermal actuators, hinges, latches and thin film polarization beam splitters. A polysilicon film of 3.5 microns reflects and transmits incident polarized light from an external laser source coupled to a multi-mode optical fiber. The input beam is shaped to a diameter of 10 to 20 microns for incidence upon the 100 micron mirrors. Losses in the optical path include diffraction effects from etch holes created in the manufacturing process, surface roughness of both gold and polysilicon layers, and misalignment of micro-scale optical components. Numerous optical paths on the chip vary by length, number of reflections, and mirror subsystems employed. Subsystems include thermal actuator batteries producing lateral position displacement, angularly tunable mirrors, double reflection surfaces, and static vertical mirrors. All mirror systems are raised via manual stimulation using two micron, residue-free probe tips and some may be aligned using electrical signals causing resistive heating in thermal actuators. The characterization of thermal actuator batteries includes maximum displacement, deflection, and frequency response that coincides with theoretical thermodynamic simulations using finite-element analysis. Maximum deflection of 35 microns at 400 mW input electrical power is shown for three types of actuator batteries as is deflection dependent frequency response data for electrical input signals up to 10 kHz.

  1. Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink

    NASA Astrophysics Data System (ADS)

    Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.

    2016-06-01

    Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.

  2. Electrostatic MEMS devices with high reliability

    SciTech Connect

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V; Mancini, Derrick C; Gudeman, Chris; Sampath, Suresh; Carlilse, John A; Carpick, Robert W; Hwang, James

    2015-02-24

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  3. MEMS Reliability Assurance Guidelines for Space Applications

    NASA Technical Reports Server (NTRS)

    Stark, Brian (Editor)

    1999-01-01

    This guide is a reference for understanding the various aspects of microelectromechanical systems, or MEMS, with an emphasis on device reliability. Material properties, failure mechanisms, processing techniques, device structures, and packaging techniques common to MEMS are addressed in detail. Design and qualification methodologies provide the reader with the means to develop suitable qualification plans for the insertion of MEMS into the space environment.

  4. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  5. Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks

    SciTech Connect

    Kaye, S.M.

    1985-05-01

    Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood.

  6. Stiff-stilbene photoswitch ruptures bonds not by pulling but by local heating.

    PubMed

    Stauch, Tim; Dreuw, Andreas

    2016-06-21

    The photochemical cis→trans-isomerization of stiff-stilbene (1-(1-indanyliden)indan) was previously used to trigger the ring opening of cyclobutene, i.e. the retro [2+2] cycloaddition leading to butadiene, mechanically. However, the forces generated by stiff-stilbene during photoisomerization are limited, so it is unclear in how far the mechanical properties of stiff-stilbene determine the efficiency of the bond rupture. Here we present a computational study in which we investigate the mechanochemical properties of this reaction. We show that the mechanical work transmitted from stiff-stilbene to cyclobutene is much too low to account for the observed facilitation of the ring opening. Hence, local heating resulting from the absorption of a photon by stiff-stilbene and efficient non-radiative decay are the key elements initiating this reaction. PMID:27228965

  7. Wavelet-analysis of skin temperature oscillations during local heating for revealing endothelial dysfunction.

    PubMed

    Podtaev, Sergey; Stepanov, Rodion; Smirnova, Elena; Loran, Evgenia

    2015-01-01

    Skin microvessels have proven to be a model to investigate the mechanisms of vascular disease; in particular, endothelial dysfunction. To analyze skin blood flow, high-resolution thermometry can be used because low-amplitude skin temperature oscillations are caused by changes in the tone of skin vessels. The aim of our study was to test the possibilities of wavelet analysis of skin temperature (WAST) for the diagnosis of impaired regulation of microvascular tone in patients with type 2 diabetes. A local heating functional test was used for the assessment of microvascular tone regulation. A control group consisted of healthy male and female volunteers (n=5 each), aged 39.1±5.3years. A group of patients with type 2 diabetes comprised thirteen people, seven men and six women, aged 36 to 51years old (43.2±3.4years). The diagnosis of diabetes was made according to the criteria of the World Health Organization (WHO). The mean disease duration was 7.36±0.88years. Skin temperature oscillations, reflecting intrinsic myogenic activity (0.05-0.14Hz), neurogenic factors (0.02-0.05Hz) and endothelial activity (0.0095-0.02Hz) increase greatly during local heating for healthy subjects. In the group of patients with type 2 diabetes, no statistically significant differences in the amplitudes in the endothelial range were observed. Relative changes in the oscillation amplitudes in patients with type 2 diabetes were markedly lower compared to the control group. The latter indicates that the WAST method enables assessment of the state of vascular tone and the effects of mechanisms responsible for regulation of blood flow in the microvasculature. PMID:25446367

  8. Local electron heating in the Io plasma torus associated with Io from HISAKI satellite observation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Fuminori; Kagitani, Masato; Yoshioka, Kazuo; Kimura, Tomoki; Murakami, Go; Yamazaki, Atsushi; Nozawa, Hiromasa; Kasaba, Yasumasa; Sakanoi, Takeshi; Uemizu, Kazunori; Yoshikawa, Ichiro

    2015-12-01

    Io-correlated brightness change in the Io plasma torus (IPT) was discovered by the Voyager spacecraft, showing evidence of local electron heating around Io. However, its detailed properties and the cause of electron heating are still open issues. The extreme ultraviolet spectrograph on board the HISAKI satellite continuously observed the IPT from the end of December 2013 to the middle of January 2014. The variation in the IPT brightness showed that clear periodicity associated with Io's orbital period (42 h) and that the bright region was located downstream of Io. The amplitude of the periodic variation was larger at short wavelengths than at long wavelengths. From spectral analyses, we found that Io-correlated brightening is caused by the increase in the hot electron population in the region downstream of Io. We also found that the brightness depends on the system III longitude and found primary and secondary peaks in the longitude ranges of 100-130° and 250-340°, respectively. Io's orbit crosses the center of the IPT around these longitudes. This longitude dependence suggests that the electron heating process is related to the plasma density around Io. The total radiated power from the IPT in January 2014 was estimated to be 1.4 TW in the wavelength range from 60 to 145 nm. The Io-correlated component produced 10% of this total radiated power. The interaction between Io and the IPT continuously produces a large amount of energy around Io, and 140 GW of that energy is immediately converted to hot electron production in the IPT.

  9. Thomson Scattering Observation of Non-Maxwellian EEDF and the Effect of Local Electron Heating

    NASA Astrophysics Data System (ADS)

    Kono, A.; Funahashi, H.

    2001-10-01

    Laser Thomson scattering measurements were carried out to study electron energy distribution function (EEDF) of inductively coupled plasmas using C_4F_8/Ar and CF_4/Ar mixture gases. The plasma was produced using a one-turn coil antenna immersed in the plasma at a total pressure of 25 mTorr. A specially designed triple-grating spectrometer was used, which produces Thomson spectra on the output focal plane with the interfering Rayleigh and stray components highly suppressed; an ICCD camera operated in the photon-counting mode was used for multichannel detection of the spectrum. At a RF (13.56 MHz) input power of 300 W in the case of pure Ar plasma, EEDF was Maxwellian with an enectron density >10^12 cm-3. Upon mixing of C_4F8 as well as CF_4, decrease in the electron density and upward bend of the plot of the Thomson spectrum (energy vs. logarithmic scattering intensity) at energies around 5 eV was observed. The mechanism for producing this bend was studied via Monte-Carlo particle simulation. The results indicate that electron heating in a uniform electric field does not lead to upward bend; electrons should be heated locally near the antenna surface where the RF electric field is strong and cooled in other part of the plasma by inelastic collisions.

  10. Localization of heat shock protein 110 in canine mammary gland tumors.

    PubMed

    Okada, Satoru; Furuya, Masaru; Takenaka, Shigeo; Fukui, Ayano; Matsubayashi, Makoto; Tani, Hiroyuki; Sasai, Kazumi

    2015-10-15

    Heat shock proteins (HSPs) function as molecular chaperones in the regulation of protein folding, conformation, and assembly; in addition, they also protect cells from protein-protein aggregation resulting from cellular stress. Recently, HSPs were shown to be overexpressed in several human cancer cells compared with normal cells. HSPs are considered to be related to apoptosis-associated proteins, and inhibition of apoptosis promotes tumor growth. Canine mammary gland tumors have received a great deal of attention from researchers due to the many common biological and histological characteristics that they share with human tumors. We previously confirmed that HSP110 is a canine mammary gland tumor antigen and reported that HSP110 mRNA expression significantly increased in tumor tissue. We have now created a functional recombinant canine HSP110 protein and a rabbit anti-HSP110 polyclonal antibody. This recombinant protein can refold heat-denatured firefly luciferase at 42°C. Immunohistochemical analysis showed that HSP110 was mainly localized in the cytoplasm of epithelial and interstitial cells in canine mammary gland tumors. Extensive genomic research has revealed genetic similarities between humans and dogs; comparative oncological studies between these species have made remarkable progress. The results reported here contribute valuable oncological knowledge for the development of novel therapeutic methods in both veterinary science and human medicine. PMID:26292766

  11. Modeling effects of local surface properties on heat flux deposition in the JET divertor

    NASA Astrophysics Data System (ADS)

    Corre, Y.; Hogan, J.; Gauthier, E.; Andrew, P.; Eich, T.; Jachmich, S.; Loarer, T.; Matthews, G.; Monier-Garbet, P.

    2003-10-01

    Understanding heat flux deposition from ELMs is an essential issue for a next step fusion device. A high time resolution infrared system is used in JET to measure the surface temperature distribution and its evolution on the divertor target plates. Previously, an empirical technique was developed, based on a flexible 1D model calculation, to assess possible complications due to surface layer properties, such as poorly adhered a-C:D layers [1]. The model validation used data from JET DOC-L discharges (DOC-L: inner and outer strike points positioned for optimized infrared measurements) with programmed constant L-mode power steps. The effect of layers was identified for the inner tile surface. In this paper we compare the 1D model for surface temperature evolution with results of 3-D modeling with the CASTEM-2000 thermal code, for these DOC-L power step cases. The 1-D values are shown to approach the 3-D results as the model power deposition width increases, showing that there is a absolute 30% accuracy for the 1D model along with a well-supported validation for its use in scaling studies. Additional modeling describing the role of layers and also of small localized heat sinks (dust), as is suggested for similar cases [2], will be presented. [1] Y. Corre et al, EPS 2003, St. Peterburg [2] E. Delchambre et al, J Nucl Mater 2003

  12. Localized heating of nickel nitride/aluminum nitride nanocomposite films for data storage

    SciTech Connect

    Maya, L.; Thundat, T.; Thompson, J.R.; Stevenson, R.J.

    1995-11-13

    Nickel--aluminum nitride films were prepared by reactive sputtering of a nickel aluminide plate in a nitrogen plasma. The initial product is a nanocomposite containing the nickel as the nitride, Ni{sub 3}N, in aluminum nitride. Heating in vacuum to 500 {degree}C causes selective decomposition of the thermally labile nickel nitride leaving the aluminum nitride unaffected. The nickel nanocomposite is of interest for potential applications as recording media, as are other finely divided dispersions of ferromagnetic metals in insulating matrices. The nickel--aluminum nitride nanocomposite shows a moderate coercive field of 35 Oe at 300 K and, in common with ultrafine particles of ferromagnetic materials, shows superparamagnetic behavior. The Ni{sub 3}N/AlN nanocomposite was subjected to localized heating with the focused beam of an argon-ion laser; this created features several microns in width that could be imaged with a magnetic force microscope, thus confirming its potential as a high density data storage medium. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  13. Low-temperature heat capacity and localized vibrational modes in natural and synthetic tetrahedrites

    SciTech Connect

    Lara-Curzio, E. May, A. F.; Delaire, O.; McGuire, M. A.; Lu, X.; Liu, Cheng-Yun; Case, E. D.; Morelli, D. T.

    2014-05-21

    The heat capacity of natural (Cu{sub 12−x} (Fe, Zn, Ag){sub x}(Sb, As){sub 4}S{sub 13}) and synthetic (Cu{sub 12−x}Zn{sub x}Sb{sub 4}S{sub 13} with x = 0, 1, 2) tetrahedrite compounds was measured between 2 K and 380 K. It was found that the temperature dependence of the heat capacity can be described using a Debye term and three Einstein oscillators with characteristic temperatures that correspond to energies of ∼1.0 meV, ∼2.8 meV, and ∼8.4 meV. The existence of localized vibrational modes, which are assigned to the displacements of the trigonally coordinated Cu atoms in the structure, is discussed in the context of anharmonicity and its effect on the low lattice thermal conductivity exhibited by these compounds.

  14. MEMS fluid viscosity sensor.

    PubMed

    Ballato, Arthur

    2010-03-01

    Quartz shear resonators are employed widely as sensors to measure Newtonian viscosities of liquids. Perturbation of the electrical equivalent circuit parameters of the plate resonator by the fluid loading permits calculation of the mass density-shear viscosity product. Use of doubly rotated resonators does permit additional information to be obtained, but in no case can the viscosity and mass density values be separated. In these measurements, the resonator surface is exposed to a measurand bath whose extent greatly exceeds the penetration depth of the evanescent shear mode excited by the active element. Here we briefly review past techniques and current art, and sketch a proposal involving the interesting situation in which the separation between the resonator and a confining wall is less than the penetration depth of the fluid occupying the intervening region. To highlight the salient features of this novel case, the discussion is limited to the very idealized circumstance of a strictly 1-D problem, unencumbered by the vicissitudes inevitably encountered in practice. An appendix mentions some of these functional impedimenta and indicates how deviations from ideality might be approached in engineering embodiments. When the fluid confinement is of the order of the penetration depth, the resonator perturbation becomes a sensitive function of the separation, and it is found that viscosity and density may be separately and uniquely determined. Moreover, extreme miniaturization is a natural consequence because the penetration depth generally is on the order of micrometers for frequencies around 1 MHz at temperatures and pressures ordinarily encountered with gases and liquids. Micro-electro-mechanical (MEMS) versions of viscometers and associated types of fluid sensors are thereby enabled. PMID:20211786

  15. The effect of the moisture content of a local heat source on the blood flow response of the skin.

    PubMed

    Petrofsky, Jerrold Scott; Bains, Gurinder; Raju, Chinna; Lohman, Everett; Berk, Lee; Prowse, Michelle; Gunda, Shashi; Madani, Piyush; Batt, Jennifer

    2009-09-01

    Numerous studies have examined the effect of local and global heating of the body on skin blood flow. However, the effect of the moisture content of the heat source on the skin blood flow response has not been examined. Thirty-three subjects, without diabetes or cardiovascular disease, between the ages of 22 and 32 were examined to determine the relationship between the effects of dry vs. moist heat applied for the same length of time and with the skin clamped at the same skin temperature on the blood flow response of the skin. The skin, heated with an infrared heat lamp (skin temperature monitored with a thermocouple) to 40 degrees C for 15 min, was either kept moist with wet towels or, in a separate experiment, kept dry with Drierite (a desiccant) between the towels to remove any moisture. Before and after heat exposure of the forearm, blood pressure, heart rate, skin moisture content, skin temperature, and skin blood flow were recorded. The results of the experiment showed that there was no change in skin moisture after 15 min exposure to dry heat at 40 degrees C. However, with moist heat, skin moisture increased by 43.7%, a significant increase (P < 0.05). With dry heat, blood flow increased from the resting value by 282.3% whereas with moist heat, blood flow increased by 386% over rest, a significant increase over dry heat (P < 0.05). Thus, with a set increase in skin temperature, moist heat was a better heating modality than dry heat. The reason may be linked to moisture sensitivity in calcium channels in the vascular endothelial cell. PMID:19415313

  16. "Mem's the Word": Examining the Writing of Mem Fox.

    ERIC Educational Resources Information Center

    Gilles, Carol

    2000-01-01

    Focuses on the work of Mem Fox. Explores Fox's life in order to better understand her work; examines books she has written for teachers and for parents; and reviews her children's books, emphasizing children's and teachers comments. Looks at best-loved books, bedtime books, predictable books for early readers, books that play with language, and…

  17. Blow-up problems for the heat equation with a local nonlinear Neumann boundary condition

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhou, Zhengfang

    2016-09-01

    This paper estimates the blow-up time for the heat equation ut = Δu with a local nonlinear Neumann boundary condition: The normal derivative ∂ u / ∂ n =uq on Γ1, one piece of the boundary, while on the rest part of the boundary, ∂ u / ∂ n = 0. The motivation of the study is the partial damage to the insulation on the surface of space shuttles caused by high speed flying subjects. We show the finite time blow-up of the solution and estimate both upper and lower bounds of the blow-up time in terms of the area of Γ1. In many other work, they need the convexity of the domain Ω and only consider the problem with Γ1 = ∂ Ω. In this paper, we remove the convexity condition and only require ∂Ω to be C2. In addition, we deal with the local nonlinearity, namely Γ1 can be just part of ∂Ω.

  18. A computational study of droplet evaporation with fuel vapor jet ejection induced by localized heat sources

    NASA Astrophysics Data System (ADS)

    Sim, Jaeheon; Im, Hong G.; Chung, Suk Ho

    2015-05-01

    Droplet evaporation by a localized heat source under microgravity conditions was numerically investigated in an attempt to understand the mechanism of the fuel vapor jet ejection, which was observed experimentally during the flame spread through a droplet array. An Eulerian-Lagrangian method was implemented with a temperature-dependent surface tension model and a local phase change model in order to effectively capture the interfacial dynamics between liquid droplet and surrounding air. It was found that the surface tension gradient caused by the temperature variation within the droplet creates a thermo-capillary effect, known as the Marangoni effect, creating an internal flow circulation and outer shear flow which drives the fuel vapor into a tail jet. A parametric study demonstrated that the Marangoni effect is indeed significant at realistic droplet combustion conditions, resulting in a higher evaporation constant. A modified Marangoni number was derived in order to represent the surface force characteristics. The results at different pressure conditions indicated that the nonmonotonic response of the evaporation rate to pressure may also be attributed to the Marangoni effect.

  19. Suppression of local heat flux in a turbulent magnetized intracluster medium

    NASA Astrophysics Data System (ADS)

    Komarov, S. V.; Churazov, E. M.; Schekochihin, A. A.; ZuHone, J. A.

    2014-05-01

    X-ray observations of hot gas in galaxy clusters often show steeper temperature gradients across cold fronts - contact discontinuities, driven by the differential gas motions. These sharp (a few kpc wide) surface brightness/temperature discontinuities would be quickly smeared out by the electron thermal conduction in unmagnetized plasma, suggesting significant suppression of the heat flow across the discontinuities. In fact, the character of the gas flow near cold fronts is favourable for suppression of conduction by aligning magnetic field lines along the discontinuities. We argue that a similar mechanism is operating in the bulk of the gas. Generic 3D random isotropic and incompressible motions increase the temperature gradients (in some places) and at the same time suppress the local conduction by aligning the magnetic field lines perpendicular to the local temperature gradient. We show that the suppression of the effective conductivity in the bulk of the gas can be linked to the increase of the frozen magnetic field energy density. On average the rate of decay of the temperature fluctuations d<δT2>/dt decreases as -1/5.

  20. Theoretical analysis of the microwave-drill near-field localized heating effect

    NASA Astrophysics Data System (ADS)

    Jerby, E.; Aktushev, O.; Dikhtyar, V.

    2005-02-01

    The microwave-drill principle [Jerby et al., Science 298, 587 (2002)] is based on a localized hot-spot effect induced by a near-field coaxial applicator. The microwave drill melts the nonmetallic material locally and penetrates mechanically into it to shape the hole. This paper presents a theoretical analysis of the thermal-runaway effect induced in front of the microwave drill. The model couples the Maxwell's and heat equations including the material's temperature-dependent properties. A finite-difference time-domain algorithm is applied in a two-time-scale numerical model. The simulation is demonstrated for mullite, and benchmarked in simplified cases. The results show a temperature rise of ˜103K/s up to 1300K within a hot spot confined to a ˜4-mm width (˜0.1 wavelength). The input-port response to this near-field effect is modeled by equivalent time-varying lumped-circuit elements. Besides the physical insight, this theoretical study provides computational tools for design and analysis of microwave drills and for their real-time monitoring and adaptive impedance matching.

  1. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    NASA Technical Reports Server (NTRS)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  2. Inertial measurement unit using rotatable MEMS sensors

    DOEpatents

    Kohler, Stewart M.; Allen, James J.

    2007-05-01

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  3. Inertial measurement unit using rotatable MEMS sensors

    DOEpatents

    Kohler, Stewart M.; Allen, James J.

    2006-06-27

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator for drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows, for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  4. Detailed measurements of local heat transfer coefficient in the entrance to normal and inclined film cooling holes

    SciTech Connect

    Gillespie, D.R.H.; Byerley, A.R.; Ireland, P.T.; Wang, Z.; Jones, T.V.; Kohler, S.T.

    1996-04-01

    The local heat transfer inside the entrance to large-scale models of film cooling holes has been measured using the transient heat transfer technique. The method employs temperature-sensitive liquid crystals to measure the surface temperature of large-scale perspex models. Full distributions of local Nusselt number were calculated based on the cooling passage centerline gas temperature ahead of the cooling hole. The circumferentially averaged Nusselt number was also calculated based on the local mixed bulk driving gas temperature to aid interpretation of the results, and to broaden the potential application of the data. Data are presented for a single film cooling hole inclined at 90 and 150 deg to the coolant duct wall. Both holes exhibited entry length heat transfer levels that were significantly lower than those predicted by entry length data in the presence of crossflow. The reasons for the comparative reduction are discussed in terms of the interpreted flow field.

  5. The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects.

    PubMed

    Munoz-Menendez, Cristina; Conde-Leboran, Ivan; Baldomir, Daniel; Chubykalo-Fesenko, Oksana; Serantes, David

    2015-11-01

    An efficient and safe hyperthermia cancer treatment requires the accurate control of the heating performance of magnetic nanoparticles, which is directly related to their size. However, in any particle system the existence of some size polydispersity is experimentally unavoidable, which results in a different local heating output and consequently a different hyperthermia performance depending on the size of each particle. With the aim to shed some light on this significant issue, we have used a Monte Carlo technique to study the role of size polydispersity in heat dissipation at both the local (single particle) and global (macroscopic average) levels. We have systematically varied size polydispersity, temperature and interparticle dipolar interaction conditions, and evaluated local heating as a function of these parameters. Our results provide a simple guide on how to choose, for a given polydispersity degree, the more adequate average particle size so that the local variation in the released heat is kept within some limits that correspond to safety boundaries for the average-system hyperthermia performance. All together we believe that our results may help in the design of more effective magnetic hyperthermia applications. PMID:26437746

  6. Processing and characterization of Nickel-base superalloy micro-components and films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Burns, Devin E.

    Microelectromechanical (MEMS) devices are not capable of withstanding harsh operating environments, which may include high temperatures, pressures and corrosive agents. Ni-base superalloys have been used successfully in the hot stages of jet turbine engines despite the presence of these conditions. In my thesis work, I developed two techniques compatible with micro-processing methods to produce Ni-base superalloy micro-components for MEMS applications. The mechanical properties of these materials were accessed at room and elevated temperatures. Microstructural studies were performed, linking microstructural features to mechanical properties. The first technique modified LIGA Ni (LIGA is a German acronym for lithography, electroplating and molding) microtensile specimens using a vapor phase aluminization process. A subsequent homogenization heat treatment produced a two phase Ni-Ni3A1 microstructure characteristic of modern Ni-base superalloys. Al composition was used to tailor both the precipitate size and volume fraction. Aluminized LIGA Ni micro-components exhibited room temperature yield and ultimate strengths 3 to 4 times LIGA Ni micro-components subject to the same heat treatment. The second technique involved sputtering a commercial Ni-base superalloy, Haynes 718, to produce thick sputtered foils (up to 20 gam) on silicon and brass substrates. The as-deposited foils were nanocrystalline solid solutions with chemical compositions similar to the bulk material. Foils subject to ageing heat treatments exhibited unique precipitation mechanisms and good thermal stability. Strengths as high as 750 MPa at 700°C were observed with several percent ductility. This is a significant improvement over state of the art metallic MEMS materials. Furthermore, a new high temperature microtensile testing technique was developed. The technique embeds a displacement based force sensor into the hot zone of a furnace. This arrangement ensures temperature uniformity during testing

  7. W-Coating for MEMS

    SciTech Connect

    Fleming, J.G.; Mani, S.S.; Sniegowski, J.J.

    1999-07-08

    The integration of miniaturized mechanical components has spawned a new technology known as microelectromechanical systems (MEMS). Surface micromachining, defined as the fabrication of micromechanical structures from deposited thin films, is one of the core technological processes underlying MEMS. Surface micromachined structures have a large ratio of surface area to volume which makes them particularly vulnerable to adhesion to the substrate or adjacent structures during release or in use--a problem is called stiction. Since microactuators can have surfaces in normal or sliding contact, function and wear are critical issues for reliable operation of MEMS devices. Surface modifications are needed to reduce adhesion and friction in micromechanical structures. In this paper, we will present a process used to selectively coat MEMS devices with Tungsten using a CVD (Chemical Vapor Deposition) process. We will discuss the effect of wet and vapor phase cleans along with different process variables. Endurance of the W coating is important, especially in applications where wear due to repetitive contacts with the film may occur. Further, tungsten is hard and chemically inert, Tungsten CVD is used in the integrated-circuit industry, which makes this, approach manufacturable.

  8. MEMS AO for Planet Finding

    NASA Technical Reports Server (NTRS)

    Rao, Shanti; Wallace, J. Kent; Shao, Mike; Schmidtlin, Edouard; Levine, B. Martin; Samuele, Rocco; Lane, Benjamin; Chakrabarti, Supriya; Cook, Timothy; Hicks, Brian; Jung, Paul

    2008-01-01

    This slide presentation reviews a method for planet finding using microelectromechanical systems (MEMS) Adaptive Optics (AO). The use of a deformable mirror (DM) is described as a part of the instrument that was designed with a nulling interferometer. The strategy that is used is described in detail.

  9. MEMS reliability: coming of age

    NASA Astrophysics Data System (ADS)

    Douglass, Michael R.

    2008-02-01

    In today's high-volume semiconductor world, one could easily take reliability for granted. As the MOEMS/MEMS industry continues to establish itself as a viable alternative to conventional manufacturing in the macro world, reliability can be of high concern. Currently, there are several emerging market opportunities in which MOEMS/MEMS is gaining a foothold. Markets such as mobile media, consumer electronics, biomedical devices, and homeland security are all showing great interest in microfabricated products. At the same time, these markets are among the most demanding when it comes to reliability assurance. To be successful, each company developing a MOEMS/MEMS device must consider reliability on an equal footing with cost, performance and manufacturability. What can this maturing industry learn from the successful development of DLP technology, air bag accelerometers and inkjet printheads? This paper discusses some basic reliability principles which any MOEMS/MEMS device development must use. Examples from the commercially successful and highly reliable Digital Micromirror Device complement the discussion.

  10. Localized heating of electrons in ionization zones: Going beyond the Penning-Thornton paradigm in magnetron sputtering

    SciTech Connect

    Anders, André

    2014-12-15

    The fundamental question of how energy is supplied to a magnetron discharge is commonly answered by the Penning-Thornton paradigm invoking secondary electrons. Recently, Huo and coworkers (Plasma Sources Sci. Technol. 22, 045005 (2013)) used a global discharge model to show that electron heating in the electric field of the magnetic presheath is dominant over heating by secondary electrons. In this contribution, this concept is applied locally taking into account the electric potential structure of ionization zones. Images of ionization zones can and should be interpreted as diagrams of the localization of high electric potential and related electron energy.