Science.gov

Sample records for locomotive operation

  1. Operating a locomotive on liquid methane fuel

    SciTech Connect

    Stolz, J.L. )

    1992-04-01

    This paper reports that several years ago, Burlington Northern Railroad looked into the feasibility of operating a diesel railroad locomotive to also run on compressed natural gas in a dual-fuel mode. Recognizing the large volume of on-board storage required and other limitations of CNG in the application, a program was begun to fuel a locomotive with liquefied natural gas. Because natural gas composition can vary with source and processing, it was considered desirable to use essentially pure liquid methane as the engine fuel. Initial testing results show the locomotive system achieved full diesel-rated power when operating on liquid methane and with equivalent fuel efficiency. Extended testing, including an American Association of Railroad 500-hour durability test, was undertaken to obtain information on engine life, wear rate and lubrication oil life.

  2. 49 CFR 236.505 - Proper operative relation between parts along roadway and parts on locomotive.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Proper operative relation between parts along... § 236.505 Proper operative relation between parts along roadway and parts on locomotive. Proper operative relation between the parts along the roadway and the parts on the locomotive shall obtain...

  3. 49 CFR 210.29 - Operation standards (moving locomotives and rail cars).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cars). 210.29 Section 210.29 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.29 Operation standards (moving locomotives and rail cars). The operation standards for the noise emission levels of moving locomotives, rail cars, or consists...

  4. 49 CFR 210.29 - Operation standards (moving locomotives and rail cars).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cars). 210.29 Section 210.29 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.29 Operation standards (moving locomotives and rail cars). The operation standards for the noise emission levels of moving locomotives, rail cars, or consists...

  5. 49 CFR 210.29 - Operation standards (moving locomotives and rail cars).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cars). 210.29 Section 210.29 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.29 Operation standards (moving locomotives and rail cars). The operation standards for the noise emission levels of moving locomotives, rail cars, or consists...

  6. 49 CFR 210.29 - Operation standards (moving locomotives and rail cars).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cars). 210.29 Section 210.29 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.29 Operation standards (moving locomotives and rail cars). The operation standards for the noise emission levels of moving locomotives, rail cars, or consists...

  7. 49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Operation standards (stationary locomotives at 30 meters). 210.31 Section 210.31 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.31 Operation standards (stationary locomotives at 30 meters). (a)...

  8. 49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Operation standards (stationary locomotives at 30 meters). 210.31 Section 210.31 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.31 Operation standards (stationary locomotives at 30 meters). (a)...

  9. 49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Operation standards (stationary locomotives at 30 meters). 210.31 Section 210.31 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.31 Operation standards (stationary locomotives at 30 meters). (a)...

  10. 49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Operation standards (stationary locomotives at 30 meters). 210.31 Section 210.31 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.31 Operation standards (stationary locomotives at 30 meters). (a)...

  11. 40 CFR 201.11 - Standard for locomotive operation under stationary conditions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... throttle setting except idle, when operated singly and when connected to a load cell, or in excess of 73 dB... the locomotive along a line that is both perpendicular to the centerline of the track and originates..., when operated singly and when connected to a load cell, or in excess of 70 dB at idle when...

  12. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... coupling operations, and retarders shall be performed in accordance with the requirements of 40 CFR part... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement...

  13. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... coupling operations, and retarders shall be performed in accordance with the requirements of 40 CFR part... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement...

  14. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... coupling operations, and retarders shall be performed in accordance with the requirements of 40 CFR part... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement...

  15. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... coupling operations, and retarders shall be performed in accordance with the requirements of 40 CFR part... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement...

  16. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operation standards (switcher locomotives, load cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD NOISE EMISSION...

  17. 49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operation standards (stationary locomotives at 30 meters). 210.31 Section 210.31 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD NOISE EMISSION COMPLIANCE REGULATIONS Inspection and Testing §...

  18. 40 CFR 201.11 - Standard for locomotive operation under stationary conditions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Standard for locomotive operation under stationary conditions. 201.11 Section 201.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS NOISE EMISSION STANDARDS FOR TRANSPORTATION EQUIPMENT; INTERSTATE...

  19. 49 CFR 236.1006 - Equipping locomotives operating in PTC territory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... segment equipped with a PTC system shall be controlled by a locomotive equipped with an onboard PTC... shall include in its PTCIP specific goals for progressive implementation of onboard systems and... operative PTC onboard equipment. The PTCIP shall include a brief but sufficient explanation of how...

  20. 49 CFR 210.29 - Operation standards (moving locomotives and rail cars).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operation standards (moving locomotives and rail cars). 210.29 Section 210.29 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD NOISE EMISSION COMPLIANCE REGULATIONS Inspection and Testing § 210.29...

  1. 49 CFR 236.1006 - Equipping locomotives operating in PTC territory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... segment equipped with a PTC system shall be controlled by a locomotive equipped with an onboard PTC... shall include in its PTCIP specific goals for progressive implementation of onboard systems and... operative PTC onboard equipment. The PTCIP shall include a brief but sufficient explanation of how...

  2. 49 CFR 236.1006 - Equipping locomotives operating in PTC territory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... segment equipped with a PTC system shall be controlled by a locomotive equipped with an onboard PTC... shall include in its PTCIP specific goals for progressive implementation of onboard systems and... operative PTC onboard equipment. The PTCIP shall include a brief but sufficient explanation of how...

  3. 49 CFR 236.1006 - Equipping locomotives operating in PTC territory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... segment equipped with a PTC system shall be controlled by a locomotive equipped with an onboard PTC... shall include in its PTCIP specific goals for progressive implementation of onboard systems and... operative PTC onboard equipment. The PTCIP shall include a brief but sufficient explanation of how...

  4. 49 CFR 236.1006 - Equipping locomotives operating in PTC territory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... segment equipped with a PTC system shall be controlled by a locomotive equipped with an onboard PTC... shall include in its PTCIP specific goals for progressive implementation of onboard systems and... operative PTC onboard equipment. The PTCIP shall include a brief but sufficient explanation of how...

  5. OPERANT CONDITIONING OF A SPINAL REFLEX CAN IMPROVE LOCOMOTION AFTER SPINAL CORD INJURY IN HUMANS

    PubMed Central

    Thompson, Aiko K.; Pomerantz, Ferne; Wolpaw, Jonathan R.

    2013-01-01

    Operant conditioning protocols can modify the activity of specific spinal cord pathways and can thereby affect behaviors that use these pathways. To explore the therapeutic application of these protocols, we studied the impact of down-conditioning the soleus H-reflex in people with impaired locomotion caused by chronic incomplete spinal cord injury. After a baseline period in which soleus H-reflex size was measured and locomotion was assessed, subjects completed either 30 H-reflex down-conditioning sessions (DC subjects) or 30 sessions in which the H-reflex was simply measured (Unconditioned (UC) subjects), and locomotion was reassessed. Over the 30 sessions, the soleus H-reflex decreased in two-thirds of the DC subjects (a success rate similar to that in normal subjects) and remained smaller several months later. In these subjects, locomotion became faster and more symmetrical, and the modulation of EMG activity across the step-cycle increased bilaterally. Furthermore, beginning about halfway through the conditioning sessions, all of these subjects commented spontaneously that they were walking faster and farther in their daily lives, and several noted less clonus, easier stepping, and/or other improvements. The H-reflex did not decrease in the other DC subjects or in any of the UC subjects; and their locomotion did not improve. These results suggest that reflex conditioning protocols can enhance recovery of function after incomplete spinal cord injuries and possibly in other disorders as well. Because they are able to target specific spinal pathways, these protocols could be designed to address each individual’s particular deficits, and might thereby complement other rehabilitation methods. PMID:23392666

  6. 49 CFR 1242.67 - Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Switch crews; controlling operations; yard and...; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power... distribution of freight and passenger yard-switching hours in those yards common to both freight and...

  7. 49 CFR 1242.67 - Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Switch crews; controlling operations; yard and...; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power... distribution of freight and passenger yard-switching hours in those yards common to both freight and...

  8. 49 CFR 1242.67 - Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Switch crews; controlling operations; yard and...; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power... distribution of freight and passenger yard-switching hours in those yards common to both freight and...

  9. 49 CFR 1242.67 - Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Switch crews; controlling operations; yard and...; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power... distribution of freight and passenger yard-switching hours in those yards common to both freight and...

  10. 49 CFR 1242.67 - Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Switch crews; controlling operations; yard and...; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power... distribution of freight and passenger yard-switching hours in those yards common to both freight and...

  11. Feasibility study for SOFC-GT hybrid locomotive power part II. System packaging and operating route simulation

    NASA Astrophysics Data System (ADS)

    Martinez, Andrew S.; Brouwer, Jacob; Samuelsen, G. Scott

    2012-09-01

    This work assesses the feasibility of Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) hybrid power systems for use as the prime mover in freight locomotives. The available space in a diesel engine-powered locomotive is compared to that required for an SOFC-GT system, inclusive of fuel processing systems necessary for the SOFC-GT. The SOFC-GT space requirement is found to be similar to current diesel engines, without consideration of the electrical balance of plant. Preliminary design of the system layout within the locomotive is carried out for illustration. Recent advances in SOFC technology and implications of future improvements are discussed as well. A previously-developed FORTRAN model of an SOFC-GT system is then augmented to simulate the kinematics and power notching of a train and its locomotives. The operation of the SOFC-GT-powered train is investigated along a representative route in Southern California, with simulations presented for diesel reformate as well as natural gas reformate and hydrogen as fuels. Operational parameters and difficulties are explored as are comparisons of expected system performance to modern diesel engines. It is found that even in the diesel case, the SOFC-GT system provides significant savings in fuel and CO2 emissions, making it an attractive option for the rail industry.

  12. Locomotive safety device

    SciTech Connect

    Kleffman, D.R.; Phiffer, L.V.

    1987-01-20

    This patent describes the environment of a longitudinally extending and diesel engine type railroad locomotive classified under a stopped and ''blue flag'' condition, the locomotive having its traction wheels powerable from a high-voltage main-generator. The locomotive is also equipped with a low-voltage auxiliary-generator having electrical circuitry connected to locomotive installed alarm means, to at least one fuel valve for the diesel engine, to locomotive forward-rearward motive directional control, and to locomotive acceleration control. The low-voltage electrical circuitry extends the locomotive longitudinal length and terminates as two endward multi-pins receptacles. The improvement of a locomotive safety device tending to enforce upon would be the locomotive operators ''blue flag'' condition. The locomotive safety device is adapted to removably engaged with a locomotive multipins receptacle and comprises a multi-perforate plug including electrically conductive bushings adapted to be removably inserted into electrically conductive relationship with appropriately selected individual pins of the multi-pins receptacle.

  13. 49 CFR 236.927 - Training specific to locomotive engineers and other operating personnel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... following elements must be addressed: (1) Familiarization with train control equipment onboard the locomotive and the functioning of that equipment as part of the system and in relation to other onboard systems under that person's control; (2) Any actions required of the onboard personnel to enable, or...

  14. 49 CFR 236.1047 - Training specific to locomotive engineers and other operating personnel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Familiarization with train control equipment onboard the locomotive and the functioning of that equipment as part of the system and in relation to other onboard systems under that person's control; (2) Any actions required of the onboard personnel to enable, or enter data to, the system, such as consist data, and...

  15. 49 CFR 236.927 - Training specific to locomotive engineers and other operating personnel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... following elements must be addressed: (1) Familiarization with train control equipment onboard the locomotive and the functioning of that equipment as part of the system and in relation to other onboard systems under that person's control; (2) Any actions required of the onboard personnel to enable, or...

  16. 49 CFR 236.1047 - Training specific to locomotive engineers and other operating personnel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Familiarization with train control equipment onboard the locomotive and the functioning of that equipment as part of the system and in relation to other onboard systems under that person's control; (2) Any actions required of the onboard personnel to enable, or enter data to, the system, such as consist data, and...

  17. 49 CFR 236.1047 - Training specific to locomotive engineers and other operating personnel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Familiarization with train control equipment onboard the locomotive and the functioning of that equipment as part of the system and in relation to other onboard systems under that person's control; (2) Any actions required of the onboard personnel to enable, or enter data to, the system, such as consist data, and...

  18. 49 CFR 236.927 - Training specific to locomotive engineers and other operating personnel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... following elements must be addressed: (1) Familiarization with train control equipment onboard the locomotive and the functioning of that equipment as part of the system and in relation to other onboard systems under that person's control; (2) Any actions required of the onboard personnel to enable, or...

  19. 49 CFR 236.927 - Training specific to locomotive engineers and other operating personnel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... following elements must be addressed: (1) Familiarization with train control equipment onboard the locomotive and the functioning of that equipment as part of the system and in relation to other onboard systems under that person's control; (2) Any actions required of the onboard personnel to enable, or...

  20. 49 CFR 236.1047 - Training specific to locomotive engineers and other operating personnel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Familiarization with train control equipment onboard the locomotive and the functioning of that equipment as part of the system and in relation to other onboard systems under that person's control; (2) Any actions required of the onboard personnel to enable, or enter data to, the system, such as consist data, and...

  1. 49 CFR 236.1047 - Training specific to locomotive engineers and other operating personnel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Familiarization with train control equipment onboard the locomotive and the functioning of that equipment as part of the system and in relation to other onboard systems under that person's control; (2) Any actions required of the onboard personnel to enable, or enter data to, the system, such as consist data, and...

  2. 49 CFR 236.927 - Training specific to locomotive engineers and other operating personnel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... following elements must be addressed: (1) Familiarization with train control equipment onboard the locomotive and the functioning of that equipment as part of the system and in relation to other onboard systems under that person's control; (2) Any actions required of the onboard personnel to enable, or...

  3. Data on the noise vibrations of modern traction locomotives. [auditory effects on diesel engine operators

    NASA Technical Reports Server (NTRS)

    Paslaru, V.; Popescu, A.; Vrasti, R.

    1974-01-01

    A survey is presented of data on noise and vibration sources in modern locomotives and their influence on engine drivers. An attempt is made hierarchize noise and vibration sources in terms of importance and to correlate the noise level with the influence of noise on the engine drivers' organ of hearing. Some possible recommendations are outlined for reducing the level of these noxae in order to improve the acoustic comfort of engine drivers.

  4. 40 CFR 92.707 - Notification to locomotive or locomotive engine owners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defined in 40 CFR part 92. These standards or family emission limits, as defined in 40 CFR part 92 were... performance or operability of the locomotive or locomotive engine. (6) A description of the adverse effects, if any, that such nonconformity would have on the performance or operability of the locomotive...

  5. 40 CFR 92.707 - Notification to locomotive or locomotive engine owners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... defined in 40 CFR part 92. These standards or family emission limits, as defined in 40 CFR part 92 were... performance or operability of the locomotive or locomotive engine. (6) A description of the adverse effects, if any, that such nonconformity would have on the performance or operability of the locomotive...

  6. Torsional locomotion

    PubMed Central

    Bigoni, D.; Dal Corso, F.; Misseroni, D.; Bosi, F.

    2014-01-01

    One edge of an elastic rod is inserted into a friction-less and fitting socket head, whereas the other edge is subjected to a torque, generating a uniform twisting moment. It is theoretically shown and experimentally proved that, although perfectly smooth, the constraint realizes an expulsive axial force on the elastic rod, which amount is independent of the shape of the socket head. The axial force explains why screwdrivers at high torque have the tendency to disengage from screw heads and demonstrates torsional locomotion along a perfectly smooth channel. This new type of locomotion finds direct evidence in the realization of a ‘torsional gun’, capable of transforming torque into propulsive force. PMID:25383038

  7. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  8. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  9. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  10. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  11. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  12. 49 CFR 229.15 - Remote control locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Remote control locomotives. 229.15 Section 229.15 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.15 Remote control locomotives. (a) Design and operation. (1)...

  13. Spinal circuitry of sensorimotor control of locomotion

    PubMed Central

    McCrea, David A

    2001-01-01

    During locomotion many segmental hindlimb reflex pathways serve not only to regulate the excitability of local groups of motoneurones, but also to control the basic operation of the central pattern-generating circuitry responsible for locomotion. This is accomplished through a reorganization of reflexes that includes the suppression of reflex pathways operating at rest and the recruitment during locomotion of previously unrecognized types of spinal interneurones. In addition presynaptic inhibition of transmission from segmental afferents serves to regulate the gain of segmental reflexes and may contribute to the selection of particular reflex pathways during locomotion. The fictive locomotion preparation in adult decerebrate cats has proved to be an important tool in understanding reflex pathway reorganization. Further identification of the spinal interneurones involved in locomotor-dependent reflexes will contribute to our understanding not only of reflex pathway organization but also of the organization of the mammalian central pattern generator. PMID:11351011

  14. Electrokinetic Locomotion

    NASA Astrophysics Data System (ADS)

    Moran, Jeffrey Lawrence

    occurring in the interfacial layer near the particle/solution interface, which play a key role in the locomotion. The model enables one to understand how the rods' motion depends on the properties of their environment, such as hydrogen peroxide concentration, solution electrical conductivity, and solution viscosity. The numerical simulations are complemented with a scaling analysis based on the governing equations, which makes definite, verifiable predictions of these dependences. One of the most important trends that has been observed experimentally is the significant decrease in speed induced by adding sub-millimolar concentrations of inert electrolyte. It is important to understand the physical reasons for the electrolyte-induced speed decrease, in order to know whether it is fundamental to this propulsion mechanism, or if there is some feasible means to circumvent it. Successful completion of this research will result in an improved understanding of the capabilities, as well as the risks and limits of applicability, of the bimetallic nanomotors for applications in nanotechnology and nanomedicine. Potential applications of the rods include the targeted delivery of drugs in the human body, sensing of chemical impurities in drinking water, and as engines to drive fabrication of microscale structures.

  15. Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans.

    PubMed

    Makihara, Yukiko; Segal, Richard L; Wolpaw, Jonathan R; Thompson, Aiko K

    2014-09-15

    In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion. PMID:24944216

  16. Railroad and locomotive technology roadmap.

    SciTech Connect

    Stodolsky, F.; Gaines, L.; Energy Systems

    2003-02-24

    Railroads are important to the U.S. economy. They transport freight efficiently, requiring less energy and emitting fewer pollutants than other modes of surface transportation. While the railroad industry has steadily improved its fuel efficiency--by 16% over the last decade--more can, and needs to, be done. The ability of locomotive manufacturers to conduct research into fuel efficiency and emissions reduction is limited by the small number of locomotives manufactured annually. Each year for the last five years, the two North American locomotive manufacturers--General Electric Transportation Systems and the Electro-Motive Division of General Motors--have together sold about 800 locomotives in the United States. With such a small number of units over which research costs can be spread, outside help is needed to investigate all possible ways to reduce fuel usage and emissions. Because fuel costs represent a significant portion of the total operating costs of a railroad, fuel efficiency has always been an important factor in the design of locomotives and in the operations of a railroad. However, fuel efficiency has recently become even more critical with the introduction of strict emission standards by the U.S. Environmental Protection Agency, to be implemented in stages (Tiers 0, 1, and 2) between 2000 and 2005. Some of the technologies that could be employed to meet the emission standards may negatively affect fuel economy--by as much as 10-15% when emissions are reduced to Tier 1 levels. Lowering fuel economy by that magnitude would have a serious impact on the cost to the consumer of goods shipped by rail, on the competitiveness of the railroad industry, and on this country's dependence on foreign oil. Clearly, a joint government/industry R&D program is needed to help catalyze the development of advanced technologies that will substantially reduce locomotive engine emissions while also improving train system energy efficiency. DOE convened an industry

  17. Job Grading Standard for Locomotive Engineer WG-6004.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard is used to grade the nonsupervisory work of operating all types of locomotives and trains to transport supplies, equipment, conveyances, and personnel. The work involves skill in operating locomotives under various conditions, and knowledge of the layout of a track system and the safety, signalling, and track use requirements or…

  18. Track train dynamics analysis and test program: Locomotive dynamic characterization summary

    NASA Technical Reports Server (NTRS)

    Berry, R. L.

    1982-01-01

    Locomotive mechanical characteristics, track perturbations, and operational characteristics involving experimentally determined suspension system parameters are analyzed. Suspension bearings, shock absorbers, pads, and two- and three- axle trucks are comparatively evaluated with respect to locomotive design.

  19. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  20. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  1. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  2. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  3. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  4. Track train dynamics analysis and test program: Methodology development for the derailment safety analysis of six-axle locomotives

    NASA Technical Reports Server (NTRS)

    Marcotte, P. P.; Mathewson, K. J. R.

    1982-01-01

    The operational safety of six axle locomotives is analyzed. A locomotive model with corresponding data on suspension characteristics, a method of track defect characterization, and a method of characterizing operational safety are used. A user oriented software package was developed as part of the methodology and was used to study the effect (on operational safety) of various locomotive parameters and operational conditions such as speed, tractive effort, and track curvature. The operational safety of three different locomotive designs was investigated.

  5. 49 CFR 229.213 - Locomotive manufacturing information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Locomotive manufacturing information. 229.213 Section 229.213 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Design Requirements § 229.213 Locomotive manufacturing information. (a) Each railroad operating...

  6. 49 CFR 229.213 - Locomotive manufacturing information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Locomotive manufacturing information. 229.213 Section 229.213 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Design Requirements § 229.213 Locomotive manufacturing information. (a) Each railroad operating...

  7. 49 CFR 229.213 - Locomotive manufacturing information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locomotive manufacturing information. 229.213 Section 229.213 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Design Requirements § 229.213 Locomotive manufacturing information. (a) Each railroad operating...

  8. 49 CFR 229.213 - Locomotive manufacturing information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive manufacturing information. 229.213 Section 229.213 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Design Requirements § 229.213 Locomotive manufacturing information. (a) Each railroad operating...

  9. 49 CFR 229.213 - Locomotive manufacturing information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locomotive manufacturing information. 229.213 Section 229.213 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Design Requirements § 229.213 Locomotive manufacturing information. (a) Each railroad operating...

  10. Compensations during Unsteady Locomotion.

    PubMed

    Qiao, Mu; Jindrich, Devin L

    2014-12-01

    Locomotion in a complex environment is often not steady, but the mechanisms used by animals to power and control unsteady locomotion (stability and maneuverability) are not well understood. We use behavioral, morphological, and impulsive perturbations to determine the compensations used during unsteady locomotion. At the level both of the whole-body and of joints, quasi-stiffness models are useful for describing adjustments to the functioning of legs and joints during maneuvers. However, alterations to the mechanics of legs and joints often are distinct for different phases of the step cycle or for specific joints. For example, negotiating steps involves independent changes of leg stiffness during compression and thrust phases of stance. Unsteady locomotion also involves parameters that are not part of the simplest reduced-parameter models of locomotion (e.g., the spring-loaded inverted pendulum) such as moments of the hip joint. Extensive coupling among translational and rotational parameters must be taken into account to stabilize locomotion or maneuver. For example, maneuvers with morphological perturbations (increased rotational inertial turns) involve changes to several aspects of movement, including the initial conditions of rotation and ground-reaction forces. Coupled changes to several parameters may be employed to control maneuvers on a trial-by-trial basis. Compensating for increased rotational inertia of the body during turns is facilitated by the opposing effects of several mechanical and behavioral parameters. However, the specific rules used by animals to control translation and rotation of the body to maintain stability or maneuver have not been fully characterized. We initiated direct-perturbation experiments to investigate the strategies used by humans to maintain stability following center-of-mass (COM) perturbations. When walking, humans showed more resistance to medio-lateral perturbations (lower COM displacement). However, when running, humans

  11. Fuelcell Prototype Locomotive

    SciTech Connect

    David L. Barnes

    2007-09-28

    An international industry-government consortium is developing a fuelcell hybrid switcher locomotive for commercial railway applications and power-to-grid generation applications. The current phase of this on-going project addresses the practicalities of on-board hydrogen storage, fuelcell technology, and hybridity, all with an emphasis on commercially available products. Through practical evaluation using designs from Vehicle Projects’ Fuelcell-Powered Underground Mine Loader Project, the configuration of the fuelcell switcher locomotive changed from using metal-hydride hydrogen storage and a pure fuelcell power plant to using compressed hydrogen storage, a fuelcell-battery hybrid power plant, and fuelcell stack modules from Ballard Power Systems that have been extensively used in the Citaro bus program in Europe. The new overall design will now use a RailPower battery hybrid Green Goat™ as the locomotive platform. Keeping the existing lead-acid batteries, we will replace the 205 kW diesel gen-set with 225 kW of net fuelcell power, remove the diesel fuel tank, and place 14 compressed hydrogen cylinders, capable of storing 70 kg of hydrogen at 350 bar, on the roof. A detailed design with associated CAD models will allow a complete build of the fuelcell-battery hybrid switcher locomotive in the next funded phase.

  12. Compliant Synergies in Locomotion

    NASA Astrophysics Data System (ADS)

    Travers, Matthew; Choset, Howie; Goldman @ Georgia Tech. Physics Department Collaboration

    Biological systems appear to have natural mechanisms that allow them to readily compensate for unexpected environmental variations when compared to their mechanical (i.e., robotic) counterparts. We hypothesize that the basis for this discrepancy is almost innate: what biology appears to be born with, built-in mechanisms for coordinating their many degrees of freedom, we struggle to ``program.'' We therefore look toward biology for inspiration. In particular, we are interested in kinematic synergies, low-dimensional representations that explicitly encode the underlying structure of how systems coordinate their internal degrees of freedom to achieve high-level tasks. In this work, we derive parametric representations of kinematic synergies and present a new compliant locomotion control framework that enables the parameters to be directly controlled in response to external disturbances. We present results of this framework implemented on two separate platforms, a snake-like and hexapod robot. Our results show that, using synergies, the locomotion control of these very different systems can be reduced to simple, extremely capable, and common forms, thus offering new insights into both robotic as well as biological locomotion in complex terrains.

  13. Advanced robot locomotion.

    SciTech Connect

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  14. The role of locomotion in psychological development

    PubMed Central

    Anderson, David I.; Campos, Joseph J.; Witherington, David C.; Dahl, Audun; Rivera, Monica; He, Minxuan; Uchiyama, Ichiro; Barbu-Roth, Marianne

    2013-01-01

    The psychological revolution that follows the onset of independent locomotion in the latter half of the infant's first year provides one of the best illustrations of the intimate connection between action and psychological processes. In this paper, we document some of the dramatic changes in perception-action coupling, spatial cognition, memory, and social and emotional development that follow the acquisition of independent locomotion. We highlight the range of converging research operations that have been used to examine the relation between locomotor experience and psychological development, and we describe recent attempts to uncover the processes that underlie this relation. Finally, we address three important questions about the relation that have received scant attention in the research literature. These questions include: (1) What changes in the brain occur when infants acquire experience with locomotion? (2) What role does locomotion play in the maintenance of psychological function? (3) What implications do motor disabilities have for psychological development? Seeking the answers to these questions can provide rich insights into the relation between action and psychological processes and the general processes that underlie human development. PMID:23888146

  15. Locomotion: dealing with friction.

    PubMed

    Radhakrishnan, V

    1998-05-12

    To move on land, in water, or in the air, even at constant speed and at the same level, always requires an expenditure of energy. The resistance to motion that has to be overcome is of many different kinds depending on size, speed, and the characteristics of the medium, and is a fascinating subject in itself. Even more interesting are nature's stratagems and solutions toward minimizing the effort involved in the locomotion of different types of living creatures, and humans' imitations and inventions in an attempt to do at least as well. PMID:9576902

  16. Locomotion: Dealing with friction

    PubMed Central

    Radhakrishnan, V.

    1998-01-01

    To move on land, in water, or in the air, even at constant speed and at the same level, always requires an expenditure of energy. The resistance to motion that has to be overcome is of many different kinds depending on size, speed, and the characteristics of the medium, and is a fascinating subject in itself. Even more interesting are nature’s stratagems and solutions toward minimizing the effort involved in the locomotion of different types of living creatures, and humans’ imitations and inventions in an attempt to do at least as well. PMID:9576902

  17. Terrestrial locomotion in arachnids.

    PubMed

    Spagna, Joseph C; Peattie, Anne M

    2012-05-01

    In this review, we assess the current state of knowledge on terrestrial locomotion in Arachnida. Arachnids represent a single diverse (>100,000 species) clade containing well-defined subgroups (at both the order and subordinal levels) that vary morphologically around a basic body plan, yet exhibit highly disparate limb usage, running performance, and tarsal attachment mechanisms. Spiders (Araneae), scorpions (Scorpiones), and harvestmen (Opiliones) have received the most attention in the literature, while some orders have never been subject to rigorous mechanical characterization. Most well-characterized taxa move with gaits analogous to the alternating tripod gaits that characterize fast-moving Insecta - alternating tetrapods or alternating tripods (when one pair of legs is lifted from the ground for some other function). However, between taxa, there is considerable variation in the regularity of phasing between legs. Both large and small spiders appear to show a large amount of variation in the distribution of foot-ground contact, even between consecutive step-cycles of a single run. Mechanisms for attachment to vertical surfaces also vary, and may depend on tufts of adhesive hairs, fluid adhesives, silks, or a combination of these. We conclude that Arachnida, particularly with improvements in microelectronic force sensing technology, can serve as a powerful study system for understanding the kinematics, dynamics, and ecological correlates of sprawled-posture locomotion. PMID:22326455

  18. Legless locomotion in lattices

    NASA Astrophysics Data System (ADS)

    Schiebel, Perrin; Dai, Jin; Gong, Chaohui; Serrano, Miguel M.; Mendelson, Joseph R., III; Choset, Howie; Goldman, Daniel I.

    2015-03-01

    By propagating waves from head to tail, limbless organisms like snakes can traverse terrain composed of rocks, foliage, soil and sand. Previous research elucidated how rigid obstacles influence snake locomotion by studying a model terrain-symmetric lattices of pegs placed in hard ground. We want to understand how different substrate-body interaction modes affect performance in desert-adapted snakes during transit of substrates composed of both rigid obstacles and granular media (GM). We tested Chionactis occipitalis, the Mojave shovel-nosed snake, in two laboratory treatments: lattices of 0 . 64 cm diameter obstacles arrayed on both a hard, slick substrate and in a GM of ~ 0 . 3 mm diameter glass particles. For all lattice spacings, d, speed through the hard ground lattices was less than that in GM lattices. However, maximal undulation efficiencies ηu (number of body lengths advanced per undulation cycle) in both treatments were comparable when d was intermediate. For other d, ηu was lower than this maximum in hard ground lattices, while on GM, ηu was insensitive to d. To systematically explore such locomotion, we tested a physical robot model of the snake; performance depended sensitively on base substrate, d and body wave parameters.

  19. Maneuvers during legged locomotion

    NASA Astrophysics Data System (ADS)

    Jindrich, Devin L.; Qiao, Mu

    2009-06-01

    Maneuverability is essential for locomotion. For animals in the environment, maneuverability is directly related to survival. For humans, maneuvers such as turning are associated with increased risk for injury, either directly through tissue loading or indirectly through destabilization. Consequently, understanding the mechanics and motor control of maneuverability is a critical part of locomotion research. We briefly review the literature on maneuvering during locomotion with a focus on turning in bipeds. Walking turns can use one of several different strategies. Anticipation can be important to adjust kinematics and dynamics for smooth and stable maneuvers. During running, turns may be substantially constrained by the requirement for body orientation to match movement direction at the end of a turn. A simple mathematical model based on the requirement for rotation to match direction can describe leg forces used by bipeds (humans and ostriches). During running turns, both humans and ostriches control body rotation by generating fore-aft forces. However, whereas humans must generate large braking forces to prevent body over-rotation, ostriches do not. For ostriches, generating the lateral forces necessary to change movement direction results in appropriate body rotation. Although ostriches required smaller braking forces due in part to increased rotational inertia relative to body mass, other movement parameters also played a role. Turning performance resulted from the coordinated behavior of an integrated biomechanical system. Results from preliminary experiments on horizontal-plane stabilization support the hypothesis that controlling body rotation is an important aspect of stable maneuvers. In humans, body orientation relative to movement direction is rapidly stabilized during running turns within the minimum of two steps theoretically required to complete analogous maneuvers. During straight running and cutting turns, humans exhibit spring-mass behavior in the

  20. Locomotion control of hybrid cockroach robots

    PubMed Central

    Sanchez, Carlos J.; Chiu, Chen-Wei; Zhou, Yan; González, Jorge M.; Vinson, S. Bradleigh; Liang, Hong

    2015-01-01

    Natural systems retain significant advantages over engineered systems in many aspects, including size and versatility. In this research, we develop a hybrid robotic system using American (Periplaneta americana) and discoid (Blaberus discoidalis) cockroaches that uses the natural locomotion and robustness of the insect. A tethered control system was firstly characterized using American cockroaches, wherein implanted electrodes were used to apply an electrical stimulus to the prothoracic ganglia. Using this approach, larger discoid cockroaches were engineered into a remotely controlled hybrid robotic system. Locomotion control was achieved through electrical stimulation of the prothoracic ganglia, via a remotely operated backpack system and implanted electrodes. The backpack consisted of a microcontroller with integrated transceiver protocol, and a rechargeable battery. The hybrid discoid roach was able to walk, and turn in response to an electrical stimulus to its nervous system with high repeatability of 60%. PMID:25740855

  1. Locomotion control of hybrid cockroach robots.

    PubMed

    Sanchez, Carlos J; Chiu, Chen-Wei; Zhou, Yan; González, Jorge M; Vinson, S Bradleigh; Liang, Hong

    2015-04-01

    Natural systems retain significant advantages over engineered systems in many aspects, including size and versatility. In this research, we develop a hybrid robotic system using American (Periplaneta americana) and discoid (Blaberus discoidalis) cockroaches that uses the natural locomotion and robustness of the insect. A tethered control system was firstly characterized using American cockroaches, wherein implanted electrodes were used to apply an electrical stimulus to the prothoracic ganglia. Using this approach, larger discoid cockroaches were engineered into a remotely controlled hybrid robotic system. Locomotion control was achieved through electrical stimulation of the prothoracic ganglia, via a remotely operated backpack system and implanted electrodes. The backpack consisted of a microcontroller with integrated transceiver protocol, and a rechargeable battery. The hybrid discoid roach was able to walk, and turn in response to an electrical stimulus to its nervous system with high repeatability of 60%. PMID:25740855

  2. Scaling macroscopic aquatic locomotion

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Argentina, Mederic; Mahadevan, Lakshminarayanan

    2014-11-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimeters to 30 meters, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα , where Re = UL / ν >> 1 and Sw = ωAL / ν , with α = 4 / 3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  3. Scaling macroscopic aquatic locomotion

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Argentina, Médéric; Mahadevan, L.

    2014-10-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimetres to 30 metres, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα, where Re = UL/ν >> 1 and Sw = ωAL/ν, with α = 4/3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1,000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  4. 76 FR 2199 - Locomotive Safety Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... October 19, 2007 (72 FR 59216). FRA continued to utilize the RSAC process to address additional locomotive... to reach consensus on the issues related to remote control locomotives, cab temperature, and... proposals related to remote control locomotives, alerters, and locomotive cab temperature, issues that...

  5. 77 FR 21311 - Locomotive Safety Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    .... Brakes, General E. Locomotive Cab Temperature F. Headlights G. Alerters H. Locomotive Electronics I... a minimum permissible locomotive cab temperature. FRA also independently developed a proposal for... in the NPRM and retains it in this final rule. Locomotive Cab Temperature In 1998, FRA led an...

  6. Multi-modal locomotion: from animal to application.

    PubMed

    Lock, R J; Burgess, S C; Vaidyanathan, R

    2014-03-01

    The majority of robotic vehicles that can be found today are bound to operations within a single media (i.e. land, air or water). This is very rarely the case when considering locomotive capabilities in natural systems. Utility for small robots often reflects the exact same problem domain as small animals, hence providing numerous avenues for biological inspiration. This paper begins to investigate the various modes of locomotion adopted by different genus groups in multiple media as an initial attempt to determine the compromise in ability adopted by the animals when achieving multi-modal locomotion. A review of current biologically inspired multi-modal robots is also presented. The primary aim of this research is to lay the foundation for a generation of vehicles capable of multi-modal locomotion, allowing ambulatory abilities in more than one media, surpassing current capabilities. By identifying and understanding when natural systems use specific locomotion mechanisms, when they opt for disparate mechanisms for each mode of locomotion rather than using a synergized singular mechanism, and how this affects their capability in each medium, similar combinations can be used as inspiration for future multi-modal biologically inspired robotic platforms. PMID:24343102

  7. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    SciTech Connect

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to

  8. Legless locomotion in lattices

    NASA Astrophysics Data System (ADS)

    Schiebel, Perrin; Goldman, Daniel I.

    2014-11-01

    Little is known about interactions between an animal body and complex terrestrial terrain like sand and boulders during legless, undulatory travel (e.g. snake locomotion). We study the locomotor performance of Mojave shovel-nosed snakes (Chionactisoccipitalis , ~ 35 cm long) using a simplified model of heterogeneous terrain: symmetric lattices of obstacles. To quantify performance we measure mean forward speed and slip angle, βs, defined as the angle between the instantaneous velocity and tangent vectors at each point on the body. We find that below a critical peg density the presence of granular media results in high speed (~ 60 cm/s), low average slip (βs ~6°) snake performance as compared to movement in the same peg densities on hard ground (~ 25 cm/s and βs ~15°). Above this peg density, performance on granular and hard substrates converges. Speed on granular media decreases with increasing peg density to that of the speed on hard ground, while speed on hard ground remains constant. Conversely, βs on hard ground trends toward that on granular media as obstacle density increases.

  9. Coal-fueled diesel locomotive test

    SciTech Connect

    Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

    1993-01-01

    The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

  10. Exposure to noise on board locomotives.

    PubMed

    Seshagiri, Baily

    2003-01-01

    Personal and area noise dosimetry measurements were taken in the cabs of leading and trailing locomotives on 48 trips, under winter and summer conditions, on 9 different routes. The mean equivalent sound level (L(EQ), 3 dB exchange rate, 50 dBA threshold) of the engineers and conductors was 84 dBA during winter and 88 dBA during summer. The corresponding time-weighted average levels (L(TWA), 5 dB exchange rate, 80 dBA threshold) were 80 and 84 dBA respectively. The L(EQ) of 56% of the engineers sampled was > or =85 dBA and of 13% was > or =90 dBA. Plots of L(EQ) time history show that under normal operating conditions L(EQ) reaches its steady-state value in about 3 hours. The mean noise levels in the trailing cabs were lower than the personal exposure levels of the engineers and conductors. The mean L(EQ) on the engineer and conductor sides was 80 dBA during winter, and 85 dBA during summer. Locomotive configuration has a significant effect on the noise levels in the trailing cab. The forward-backward configuration resulted in higher noise levels than the forward-forward configuration. Octave and one-third octave band spectra taken during a variety of locomotive operating conditions are presented. The octave band centered at 31.5 Hz contains nearly 46% of the acoustical energy, and those centered at and below 250 Hz contain nearly 99% of the acoustical energy. Wheel-rail interaction appears to be the predominant source of the low frequency noise. Recommendations for controlling exposure are made. PMID:14521423

  11. Decoding the organization of spinal circuits that control locomotion

    PubMed Central

    Kiehn, Ole

    2016-01-01

    Unravelling the functional operation of neuronal networks and linking cellular activity to specific behavioural outcomes are among the biggest challenges in neuroscience. In this broad field of research, substantial progress has been made in studies of the spinal networks that control locomotion. Through united efforts using electrophysiological and molecular genetic network approaches and behavioural studies in phylogenetically diverse experimental models, the organization of locomotor networks has begun to be decoded. The emergent themes from this research are that the locomotor networks have a modular organization with distinct transmitter and molecular codes and that their organization is reconfigured with changes to the speed of locomotion or changes in gait. PMID:26935168

  12. Local reflexive mechanisms essential for snakes' scaffold-based locomotion.

    PubMed

    Kano, Takeshi; Sato, Takahide; Kobayashi, Ryo; Ishiguro, Akio

    2012-12-01

    Most robots are designed to work in predefined environments, and irregularities that exist in the environment interfere with their operation. For snakes, irregularities play the opposite role: snakes actively utilize terrain irregularities and move by effectively pushing their body against the scaffolds that they encounter. Autonomous decentralized control mechanisms could be the key to understanding this locomotion. We demonstrate through modelling and simulations that only two local reflexive mechanisms, which exploit sensory information about the stretching of muscles and the pressure on the body wall, are crucial for realizing locomotion. This finding will help develop robots that work in undefined environments and shed light on the understanding of the fundamental principles underlying adaptive locomotion in animals. PMID:22918023

  13. 49 CFR 229.129 - Locomotive horn.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive horn. 229.129 Section 229.129 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Cabs and Cab Equipment § 229.129 Locomotive horn. (a) Each...

  14. Current problems: New similiquid lubricant for locomotive gears

    SciTech Connect

    Shibryaev, S.B.; Nesterov, A.V.; Seregina, I.E.

    1995-01-01

    The development of a formula for a new, domestically manufactured, semiliquid lubricant is described. The lubricant is for traction gears of locomotives and motorized cars of multiple-unit trains that will ensure year-round operation. Scientific principles have been used in selecting additives and in increasing the effectiveness of the additives by means of oxygen-containing synthetic oils.

  15. 21st Century Locomotive Technology: 2003 Annual Technical Status Report DOE/AL68284-TSR03

    SciTech Connect

    Lembit Salasoo

    2004-01-09

    The 21st Century Locomotive program objective is to develop 25% more efficient freight locomotives by 2010. Diesel engine-related research addresses advanced fuel injection, electric turbocharger and abradable seals. Assembly of a common rail fuel injection test system is underway, and a CFD combustion model has been validated. An electrically assisted turbocharger has been constructed and operated, meeting the generator mode design rating. System characterization and optimization is ongoing. Candidate abradable seal materials have been identified and test coupons prepared. Locomotive system-related research addresses capturing, storing and utilizing regenerative braking energy in a hybrid locomotive, and fuel optimization control. Hybrid locomotive energy storage requirements have been identified and studies on specific energy storage solutions are in progress. Energy management controls have been defined and testing initiated. Train and track parameter identification necessary for fuel optimization has been demonstrated.

  16. Proprioceptive Actuation Design for Dynamic Legged locomotion

    NASA Astrophysics Data System (ADS)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  17. [Locomotion disturbances in Huntington's disease].

    PubMed

    Delval, A; Krystkowiak, P

    2010-02-01

    In Huntington's disease (HD), perturbed locomotion occurs early in the course of the disease and presents numerous clinical features. The gait disorders in HD might best be defined as a timing disorder; however, hypokinesia (i.e. a decrease in stride length) also plays an important role in disturbed locomotion as HD progresses. Gait impairments are particularly important because they lead to an increased risk of falls. Falls risk factors and consequences depend on the stage of the disease. A satisfactory therapeutic strategy for gait impairments is a serious challenge: the use of a metronome during gait in HD patients does not effectively improve their gait. Attention deficits in HD may be a major determinant of this failure. The effect of antichoreic medications on gait is still controversial because of the absence of specific evaluation of these medications on gait disturbances. PMID:19604530

  18. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    SciTech Connect

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units

  19. Stability of underwater periodic locomotion

    NASA Astrophysics Data System (ADS)

    Jing, Fangxu; Kanso, Eva

    2013-07-01

    Most aquatic vertebrates swim by lateral flapping of their bodies and caudal fins. While much effort has been devoted to understanding the flapping kinematics and its influence on the swimming efficiency, little is known about the stability (or lack of) of periodic swimming. It is believed that stability limits maneuverability and body designs/flapping motions that are adapted for stable swimming are not suitable for high maneuverability and vice versa. In this paper, we consider a simplified model of a planar elliptic body undergoing prescribed periodic heaving and pitching in potential flow. We show that periodic locomotion can be achieved due to the resulting hydrodynamic forces, and its value depends on several parameters including the aspect ratio of the body, the amplitudes and phases of the prescribed flapping.We obtain closedform solutions for the locomotion and efficiency for small flapping amplitudes, and numerical results for finite flapping amplitudes. This efficiency analysis results in optimal parameter values that are in agreement with values reported for some carangiform fish. We then study the stability of the (finite amplitude flapping) periodic locomotion using Floquet theory. We find that stability depends nonlinearly on all parameters. Interesting trends of switching between stable and unstable motions emerge and evolve as we continuously vary the parameter values. This suggests that, for live organisms that control their flapping motion, maneuverability and stability need not be thought of as disjoint properties, rather the organism may manipulate its motion in favor of one or the other depending on the task at hand.

  20. 49 CFR 229.209 - Alternative locomotive crashworthiness designs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Alternative locomotive crashworthiness designs... Locomotive Crashworthiness Design Requirements § 229.209 Alternative locomotive crashworthiness designs. (a... locomotive crashworthiness designs which are not consistent with any FRA-approved locomotive...

  1. Lunar Balance and Locomotion

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2008-01-01

    Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.

  2. Investigation of the impact of locomotive creep control on wear under changing contact conditions

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Liu, Sheng; Daniel, William(Bill) J. T.; Meehan, Paul A.

    2015-05-01

    This paper presents the locomotive traction controller performance with respect to the track wear under different operation conditions. In particular, an investigation into the dynamic response of a locomotive under changing wheel-rail friction conditions is performed with an aim to determine the effect of controller setting on track wear. Simulation using a full-scale longitudinal-vertical locomotive dynamic model shows that the appropriately designed creep threshold, controller, settings can effectively maintain a high tractive effort while avoiding excessive rail damage due to wear, especially during acceleration under low speed.

  3. Cerebellar contribution to feedforward control of locomotion

    PubMed Central

    Pisotta, Iolanda; Molinari, Marco

    2014-01-01

    The cerebellum is an important contributor to feedforward control mechanisms of the central nervous system, and sequencing—the process that allows spatial and temporal relationships between events to be recognized—has been implicated as the fundamental cerebellar mode of operation. By adopting such a mode and because cerebellar activity patterns are sensitive to a variety of sensorimotor-related tasks, the cerebellum is believed to support motor and cognitive functions that are encoded in the frontal and parietal lobes of the cerebral cortex. In this model, the cerebellum is hypothesized to make predictions about the consequences of a motor or cognitive command that originates from the cortex to prepare the entire system to cope with ongoing changes. In this framework, cerebellar predictive mechanisms for locomotion are addressed, focusing on sensorial and motoric sequencing. The hypothesis that sequence recognition is the mechanism by which the cerebellum functions in gait control is presented and discussed. PMID:25009490

  4. Undulatory Locomotion of Magnetic Multilink Nanoswimmers.

    PubMed

    Jang, Bumjin; Gutman, Emiliya; Stucki, Nicolai; Seitz, Benedikt F; Wendel-García, Pedro D; Newton, Taylor; Pokki, Juho; Ergeneman, Olgaç; Pané, Salvador; Or, Yizhar; Nelson, Bradley J

    2015-07-01

    Micro- and nanorobots operating in low Reynolds number fluid environments require specialized swimming strategies for efficient locomotion. Prior research has focused on designs mimicking the rotary corkscrew motion of bacterial flagella or the planar beating motion of eukaryotic flagella. These biologically inspired designs are typically of uniform construction along their flagellar axis. This work demonstrates for the first time planar undulations of composite multilink nanowire-based chains (diameter 200 nm) induced by a planar-oscillating magnetic field. Those chains comprise an elastic eukaryote-like polypyrrole tail and rigid magnetic nickel links connected by flexible polymer bilayer hinges. The multilink design exhibits a high swimming efficiency. Furthermore, the manufacturing process enables tuning the geometrical and material properties to specific applications. PMID:26029795

  5. Cerebellar contribution to feedforward control of locomotion.

    PubMed

    Pisotta, Iolanda; Molinari, Marco

    2014-01-01

    The cerebellum is an important contributor to feedforward control mechanisms of the central nervous system, and sequencing-the process that allows spatial and temporal relationships between events to be recognized-has been implicated as the fundamental cerebellar mode of operation. By adopting such a mode and because cerebellar activity patterns are sensitive to a variety of sensorimotor-related tasks, the cerebellum is believed to support motor and cognitive functions that are encoded in the frontal and parietal lobes of the cerebral cortex. In this model, the cerebellum is hypothesized to make predictions about the consequences of a motor or cognitive command that originates from the cortex to prepare the entire system to cope with ongoing changes. In this framework, cerebellar predictive mechanisms for locomotion are addressed, focusing on sensorial and motoric sequencing. The hypothesis that sequence recognition is the mechanism by which the cerebellum functions in gait control is presented and discussed. PMID:25009490

  6. Kinematic Differences Between Motorized and Nonmotorized Treadmill Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Bentley, Jason R.; Lee, Stuart M. C.; Norcross, Jason; Smith, Cassie; Hagan, R. Donald

    2006-01-01

    There are few scientific publications comparing human locomotion between motorized and nonmotorized treadmills. Lakomy (1987) and Gamble et al (1988) reported that forward lean is greater on a nonmotorized treadmill to aid in the generation of horizontal force necessary for belt propulsion, but there are no data concerning lower limb kinematics. During long-term spaceflight, astronauts use locomotive exercise to mitigate the physiological effects caused by long-term exposure to microgravity. A critical decision for mission planners concerns the requirements for a treadmill to be used during potential trips to the Moon and Mars. Treadmill operation in an un-powered configuration could reduce mission resource demands, but also may impact the efficacy of treadmill exercise countermeasures. To ascertain the most appropriate type of treadmill to be used, it is important to understand biomechanical differences between motorized (M) and nonmotorized (NM) locomotion. The purpose of this evaluation was to test for differences in lower limb kinematics that occur during M and NM treadmill locomotion at two speeds. It was hypothesized that hip and knee joint angle trajectories would differ between the conditions.

  7. 49 CFR 238.209 - Forward end structure of locomotives, including cab cars and MU locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Forward end structure of locomotives, including... SAFETY STANDARDS Specific Requirements for Tier I Passenger Equipment § 238.209 Forward end structure of locomotives, including cab cars and MU locomotives. (a)(1) The skin covering the forward-facing end of...

  8. Biomechanics of locomotion in subgravity.

    PubMed

    Margaria, R

    1973-01-01

    The speed of walking or running on the moon as compared with earth is appreciably reduced, in spite of mechanisms of compensation taking place such a forward leaning of the body and an increase of the horizontal component of the push of the foot on the ground. However on the moon the same speed of locomotion as on earth can be reached by shifting to a different mechanism of locomotion, i. e. progression by jumps, which becomes possible on the moon because of the reduction of the body weight. The energy cost of locomotion is certainly less on the moon than on earth, about 1/6. Were the subject not restrained by the space suit, progression by jumps at 20 km hr-1 on the moon would cost no more than 10 ml kg-1 min-1 of oxygen, the same as walking on earth at 6 km hr-1. Maximal acceleration of the body as in sprinting, or deceleration as in stopping, attains much higher values on earth than on the moon. While sprinting on earth may involve the maximal muscular power, sprinting or progressing at the highest speed on the moon involves only a fraction of the maximal power, mainly because of the reduced maximal frequency of the steps (or jumps). The maximal height of the jump on both feet on the moon could attain 4 m in the unrestricted subject. An analysis is wanted on the restriction of the movements brought about by the space suit and on the energy cost of progression. PMID:12523382

  9. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California

    NASA Astrophysics Data System (ADS)

    Tang, Nicholas W.; Apte, Joshua S.; Martien, Philip T.; Kirchstetter, Thomas W.

    2015-08-01

    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate "head-end" power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  10. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California

    NASA Astrophysics Data System (ADS)

    Tang, N. W.; Kirchstetter, T.; Martien, P. T.; Apte, J.

    2015-12-01

    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate "head-end" power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  11. 49 CFR 212.215 - Locomotive inspector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... applicable sections of the Safety Glazing Standards (49 CFR part 223), Locomotive Safety Standards (49 CFR part 229), Safety Appliance Standards (49 CFR part 231) and Power Brake Standards (49 CFR part 232), to... four years of experience in locomotive construction or maintenance. A bachelor's degree in...

  12. 49 CFR 212.215 - Locomotive inspector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... applicable sections of the Safety Glazing Standards (49 CFR part 223), Locomotive Safety Standards (49 CFR part 229), Safety Appliance Standards (49 CFR part 231) and Power Brake Standards (49 CFR part 232), to... four years of experience in locomotive construction or maintenance. A bachelor's degree in...

  13. 49 CFR 212.215 - Locomotive inspector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... applicable sections of the Safety Glazing Standards (49 CFR part 223), Locomotive Safety Standards (49 CFR part 229), Safety Appliance Standards (49 CFR part 231) and Power Brake Standards (49 CFR part 232), to... four years of experience in locomotive construction or maintenance. A bachelor's degree in...

  14. 49 CFR 212.215 - Locomotive inspector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... applicable sections of the Safety Glazing Standards (49 CFR part 223), Locomotive Safety Standards (49 CFR part 229), Safety Appliance Standards (49 CFR part 231) and Power Brake Standards (49 CFR part 232), to... four years of experience in locomotive construction or maintenance. A bachelor's degree in...

  15. 76 FR 8699 - Locomotive Safety Standards; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... NPRM related to locomotive safety standards. See 76 FR 2200. The NPRM established a public docket to... the proposed rule published January 12, 2011, at 76 FR 2200, remains March 14, 2011. FOR FURTHER... Federal Railroad Administration 49 CFR Parts 229 and 238 RIN 2130-AC16 Locomotive Safety...

  16. 30 CFR 56.6203 - Locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Locomotives. 56.6203 Section 56.6203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Transportation § 56.6203 Locomotives. Explosive material shall not...

  17. 30 CFR 56.6203 - Locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Locomotives. 56.6203 Section 56.6203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Transportation § 56.6203 Locomotives. Explosive material shall not...

  18. 30 CFR 56.6203 - Locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Locomotives. 56.6203 Section 56.6203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Transportation § 56.6203 Locomotives. Explosive material shall not...

  19. 30 CFR 56.6203 - Locomotives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Locomotives. 56.6203 Section 56.6203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Transportation § 56.6203 Locomotives. Explosive material shall not...

  20. 30 CFR 56.6203 - Locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Locomotives. 56.6203 Section 56.6203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Transportation § 56.6203 Locomotives. Explosive material shall not...

  1. Novel locomotion via biological inspiration

    NASA Astrophysics Data System (ADS)

    Quinn, Roger D.; Boxerbaum, Alexander; Palmer, Luther; Chiel, Hillel; Diller, Eric; Hunt, Alexander; Bachmann, Richard

    2011-05-01

    Animal behavioral, physiological and neurobiological studies are providing a wealth of inspirational data for robot design and control. Several very different biologically inspired mobile robots will be reviewed. A robot called DIGbot is being developed that moves independent of the direction of gravity using Distributed Inward Gripping (DIG) as a rapid and robust attachment mechanism observed in climbing animals. DIGbot is an 18 degree of freedom hexapod with onboard power and control systems. Passive compliance in its feet, which is inspired by the flexible tarsus of the cockroach, increases the robustness of the adhesion strategy and enables DIGbot to execute large steps and stationary turns while walking on mesh screens. A Whegs™ robot, inspired by insect locomotion principles, is being developed that can be rapidly reconfigured between tracks and wheel-legs and carry GeoSystems Zipper Mast. The mechanisms that cause it to passively change its gait on irregular terrain have been integrated into its hubs for a compact and modular design. The robot is designed to move smoothly on moderately rugged terrain using its tracks and run on irregular terrain and stairs using its wheel-legs. We are also developing soft bodied robots that use peristalsis, the same method of locomotion earthworms use. We present a technique of using a braided mesh exterior to produce fluid waves of motion along the body of the robot that increase the robot's speed relative to previous designs. The concept is highly scalable, for endoscopes to water, oil or gas line inspection.

  2. Simulation of a Hybrid Locomotion Robot Vehicle

    NASA Astrophysics Data System (ADS)

    Aarnio, P.

    2002-10-01

    This study describes a simulation process of a mobile robot. The focus is in kinematic and dynamic behavior simulations of hybrid locomotion robot vehicles. This research is motivated by the development needs of the WorkPartner field service robot. The whole robot system consists of a mobile platform and a two-hand manipulator. The robot platform, called Hybtor, is a hybrid locomotion robot capable of walking and driving by wheels as well as combining these two locomotion modes. This study describes first the general problems and their solutions in the dynamic simulation of mobile robots. A kinematic and dynamic virtual model of the Hybtor robot was built and simulations were carried out using one commercial simulation tool. Walking, wheel driven and rolking mode locomotion, which is a special hybrid locomotion style, has been simulated and analyzed. Position and force control issues during obstacle overrun and climbing were also studied.

  3. A hybrid active/passive exhaust noise control system for locomotives.

    PubMed

    Remington, Paul J; Knight, J Scott; Hanna, Doug; Rowley, Craig

    2005-01-01

    A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal. PMID:15704399

  4. Locomotive applications of coal-fueled diesel and gas turbine engines

    SciTech Connect

    Braglia, B.L.; Poindexter, C.K. Jr.

    1986-03-01

    The potential now exists for using one of our most abundant energy resources as a locomotive fuel. Coal-fueled diesel and gas turbine locomotives have been shown to provide a significant economic benefit to this nation's railroads, measured in terms of internal rate of return. The performance of coal-fueled locomotives will be competitive with state of the art diesel-electric locomotives and may even offer the opportunity to enhance this performance (high horsepower gas turbines). A change to coal fuels must be accomplished without any accompanying detrimental impact on our environment. The largest changes caused by the reintroduction of coal fuels will occur in the infrastructure of this nation's railroads; coal fueling facilities, fuel tenders, and modified maintenance and operating practices will be required. 5 references, 2 figures, 1 table.

  5. Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives

    PubMed Central

    Wang, Jack M.; Hamner, Samuel R.; Delp, Scott L.; Koltun, Vladlen

    2015-01-01

    We present a technique for automatically synthesizing walking and running controllers for physically-simulated 3D humanoid characters. The sagittal hip, knee, and ankle degrees-of-freedom are actuated using a set of eight Hill-type musculotendon models in each leg, with biologically-motivated control laws. The parameters of these control laws are set by an optimization procedure that satisfies a number of locomotion task terms while minimizing a biological model of metabolic energy expenditure. We show that the use of biologically-based actuators and objectives measurably increases the realism of gaits generated by locomotion controllers that operate without the use of motion capture data, and that metabolic energy expenditure provides a simple and unifying measurement of effort that can be used for both walking and running control optimization. PMID:26251560

  6. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the...

  7. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the...

  8. 49 CFR 229.209 - Alternative locomotive crashworthiness designs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Alternative locomotive crashworthiness designs... Locomotive Crashworthiness Design Requirements § 229.209 Alternative locomotive crashworthiness designs. (a... design standard. (b) Petitions for FRA approval of alternative locomotive crashworthiness designs....

  9. 49 CFR 229.209 - Alternative locomotive crashworthiness designs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Alternative locomotive crashworthiness designs... Locomotive Crashworthiness Design Requirements § 229.209 Alternative locomotive crashworthiness designs. (a... design standard. (b) Petitions for FRA approval of alternative locomotive crashworthiness designs....

  10. 49 CFR 229.209 - Alternative locomotive crashworthiness designs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Alternative locomotive crashworthiness designs... Locomotive Crashworthiness Design Requirements § 229.209 Alternative locomotive crashworthiness designs. (a... design standard. (b) Petitions for FRA approval of alternative locomotive crashworthiness designs....

  11. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  12. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  13. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  14. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  15. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  16. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  17. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  18. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  19. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  20. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  1. 40 CFR 92.214 - Production locomotives and engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Production locomotives and engines. 92... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Certification Provisions § 92.214 Production locomotives and engines. Any manufacturer or remanufacturer obtaining...

  2. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the...

  3. 40 CFR 1033.652 - Special provisions for exported locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Special Compliance Provisions § 1033.652 Special provisions for exported locomotives. (a) Uncertified locomotives. Locomotives covered by an export exemption under 40 CFR 1068.230 may be introduced into U.S. commerce prior to being exported, but may not...

  4. 40 CFR 1033.652 - Special provisions for exported locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Special Compliance Provisions § 1033.652 Special provisions for exported locomotives. (a) Uncertified locomotives. Locomotives covered by an export exemption under 40 CFR 1068.230 may be introduced into U.S. commerce prior to being exported, but may not...

  5. 40 CFR 92.214 - Production locomotives and engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Production locomotives and engines. 92... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Certification Provisions § 92.214 Production locomotives and engines. Any manufacturer or remanufacturer obtaining...

  6. The primate semicircular canal system and locomotion

    PubMed Central

    Spoor, Fred; Garland, Theodore; Krovitz, Gail; Ryan, Timothy M.; Silcox, Mary T.; Walker, Alan

    2007-01-01

    The semicircular canal system of vertebrates helps coordinate body movements, including stabilization of gaze during locomotion. Quantitative phylogenetically informed analysis of the radius of curvature of the three semicircular canals in 91 extant and recently extinct primate species and 119 other mammalian taxa provide support for the hypothesis that canal size varies in relation to the jerkiness of head motion during locomotion. Primate and other mammalian species studied here that are agile and have fast, jerky locomotion have significantly larger canals relative to body mass than those that move more cautiously. PMID:17576932

  7. Characteristics of undulatory locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Pak, On Shun; Elfring, Gwynn J.

    2016-03-01

    Undulatory locomotion is ubiquitous in nature and observed in different media, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Despite the similarity in the undulating pattern, the swimming characteristics depend on the rheological properties of different media. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but recently a resistive force theory in granular media has been proposed and shown useful in studying the locomotion of a sand-swimming lizard. Here we employ the proposed model to investigate the swimming characteristics of a slender filament, of both finite and infinite length, undulating in a granular medium and compare the results with swimming in viscous fluids. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swimmer. We also find that, similar to Lighthill's results using resistive force theory in viscous fluids, the sawtooth swimmer is the optimal waveform for propulsion speed at a given power consumption in granular media. The results complement our understanding of undulatory locomotion and provide insights into the effective design of locomotive systems in granular media.

  8. Characterization of undulatory locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Pak, On Shun; Elfring, Gwynn

    2015-11-01

    Undulatory locomotion is ubiquitous in nature, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but a recently proposed resistive force theory (RFT) in granular media has been shown useful in studying the locomotion of a sand-swimming lizard. Here we employ this model to investigate the swimming characteristics of an undulating slender filament of both finite and infinite length. For infinite swimmers, similar to results in viscous fluids, the sawtooth waveform is found to be optimal for propulsion speed at a given power consumption. We also compare the swimming characteristics of sinusoidal and sawtooth swimmers with swimming in viscous fluids. More complex swimming dynamics emerge when the assumption of an infinite swimmer is removed. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swimmer. The results complement our understanding of undulatory locomotion and provide insights into the effective design of locomotive systems in granular media.

  9. Push-Pull Locomotion for Vehicle Extrication

    NASA Technical Reports Server (NTRS)

    Creager, Colin M.; Johnson, Kyle A.; Plant, Mark; Moreland, Scott J.; Skonieczny, Krzysztof

    2014-01-01

    For applications in which unmanned vehicles must traverse unfamiliar terrain, there often exists the risk of vehicle entrapment. Typically, this risk can be reduced by using feedback from on-board sensors that assess the terrain. This work addressed the situations where a vehicle has already become immobilized or the desired route cannot be traversed using conventional rolling. Specifically, the focus was on using push-pull locomotion in high sinkage granular material. Push-pull locomotion is an alternative mode of travel that generates thrust through articulated motion, using vehicle components as anchors to push or pull against. It has been revealed through previous research that push-pull locomotion has the capacity for generating higher net traction forces than rolling, and a unique optical flow technique indicated that this is the result of a more efficient soil shearing method. It has now been found that pushpull locomotion results in less sinkage, lower travel reduction, and better power efficiency in high sinkage material as compared to rolling. Even when starting from an "entrapped" condition, push-pull locomotion was able to extricate the test vehicle. It is the authors' recommendation that push-pull locomotion be considered as a reliable back-up mode of travel for applications where terrain entrapment is a possibility.

  10. Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study.

    PubMed

    Markin, Sergey N; Lemay, Michel A; Prilutsky, Boris I; Rybak, Ilya A

    2012-04-01

    We compared the activity profiles and synergies of spinal motoneurons recorded during fictive locomotion evoked in immobilized decerebrate cat preparations by midbrain stimulation to the activity profiles and synergies of the corresponding hindlimb muscles obtained during forward level walking in cats. The fictive locomotion data were collected in the Spinal Cord Research Centre, University of Manitoba, and provided by Dr. David McCrea; the real locomotion data were obtained in the laboratories of M. A. Lemay and B. I. Prilutsky. Scatterplot representation and minimum spanning tree clustering algorithm were used to identify the possible motoneuronal and muscle synergies operating during both fictive and real locomotion. We found a close similarity between the activity profiles and synergies of motoneurons innervating one-joint muscles during fictive locomotion and the profiles and synergies of the corresponding muscles during real locomotion. However, the activity patterns of proximal nerves controlling two-joint muscles, such as posterior biceps and semitendinosus (PBSt) and rectus femoris (RF), were not uniform in fictive locomotion preparations and differed from the activity profiles of the corresponding two-joint muscles recorded during forward level walking. Moreover, the activity profiles of these nerves and the corresponding muscles were unique and could not be included in the synergies identified in fictive and real locomotion. We suggest that afferent feedback is involved in the regulation of locomotion via motoneuronal synergies controlled by the spinal central pattern generator (CPG) but may also directly affect the activity of motoneuronal pools serving two-joint muscles (e.g., PBSt and RF). These findings provide important insights into the organization of the spinal CPG in mammals, the motoneuronal and muscle synergies engaged during locomotion, and their afferent control. PMID:22190626

  11. Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study

    PubMed Central

    Markin, Sergey N.; Lemay, Michel A.; Prilutsky, Boris I.

    2012-01-01

    We compared the activity profiles and synergies of spinal motoneurons recorded during fictive locomotion evoked in immobilized decerebrate cat preparations by midbrain stimulation to the activity profiles and synergies of the corresponding hindlimb muscles obtained during forward level walking in cats. The fictive locomotion data were collected in the Spinal Cord Research Centre, University of Manitoba, and provided by Dr. David McCrea; the real locomotion data were obtained in the laboratories of M. A. Lemay and B. I. Prilutsky. Scatterplot representation and minimum spanning tree clustering algorithm were used to identify the possible motoneuronal and muscle synergies operating during both fictive and real locomotion. We found a close similarity between the activity profiles and synergies of motoneurons innervating one-joint muscles during fictive locomotion and the profiles and synergies of the corresponding muscles during real locomotion. However, the activity patterns of proximal nerves controlling two-joint muscles, such as posterior biceps and semitendinosus (PBSt) and rectus femoris (RF), were not uniform in fictive locomotion preparations and differed from the activity profiles of the corresponding two-joint muscles recorded during forward level walking. Moreover, the activity profiles of these nerves and the corresponding muscles were unique and could not be included in the synergies identified in fictive and real locomotion. We suggest that afferent feedback is involved in the regulation of locomotion via motoneuronal synergies controlled by the spinal central pattern generator (CPG) but may also directly affect the activity of motoneuronal pools serving two-joint muscles (e.g., PBSt and RF). These findings provide important insights into the organization of the spinal CPG in mammals, the motoneuronal and muscle synergies engaged during locomotion, and their afferent control. PMID:22190626

  12. Locomotion in a turbulent world

    NASA Astrophysics Data System (ADS)

    Koehl, M.

    2014-11-01

    When organisms swim or crawl in aquatic habitats, the water through which they travel is usually moving. Therefore, an important part of understanding how aquatic organisms locomote is determining how they interact with the fluctuating turbulent water currents through which they move. The research systems we have been using to address this question are microscopic marine animals swimming in turbulent, wavy water flow or crawling on surfaces in spatially-complex habitats exposed to such flow. Using a combination of field studies, wave-flume experiments, experiments in fluidic devices, and mathematical modeling, we have discovered that small organisms swimming or crawling in turbulent flow are not subjected to steady velocities. The shears, accelerations, and odor concentrations encountered by small swimmers and crawlers fluctuate rapidly, with peaks much higher than mean values. Although microscopic organisms swim slowly relative to ambient water flow, their locomotory behavior in response to the rapidly-fluctuating shears and odors they encounter can affect where they are transported by ambient water movement. Furthermore, the ability of small organisms to walk on surfaces without being dislodged by pulses of rapid flow constrains the microhabitats in which they can forage. Supported by NSF Grant #IOS-0842685.

  13. Patterned control of human locomotion.

    PubMed

    Lacquaniti, Francesco; Ivanenko, Yuri P; Zago, Myrka

    2012-05-15

    There is much experimental evidence for the existence of biomechanical constraints which simplify the problem of control of multi-segment movements. In addition, it has been hypothesized that movements are controlled using a small set of basic temporal components or activation patterns, shared by several different muscles and reflecting global kinematic and kinetic goals. Here we review recent studies on human locomotion showing that muscle activity is accounted for by a combination of few basic patterns, each one timed at a different phase of the gait cycle. Similar patterns are involved in walking and running at different speeds, walking forwards or backwards, and walking under different loading conditions. The corresponding weights of distribution to different muscles may change as a function of the condition, allowing highly flexible control. Biomechanical correlates of each activation pattern have been described, leading to the hypothesis that the co-ordination of limb and body segments arises from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle activations need only intervene during limited time epochs to force intrinsic oscillations of the system when energy is lost. PMID:22411012

  14. Bipedal locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel

    Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.

  15. Gravitational Effects upon Locomotion Posture

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Bentley, Jason R.; Edwards, W. Brent; Perusek, Gail P.; Samorezov, Sergey

    2008-01-01

    Researchers use actual microgravity (AM) during parabolic flight and simulated microgravity (SM) obtained with horizontal suspension analogs to better understand the effect of gravity upon gait. In both environments, the gravitational force is replaced by an external load (EL) that returns the subject to the treadmill. However, when compared to normal gravity (N), researchers consistently find reduced ground reaction forces (GRF) and subtle kinematic differences (Schaffner et al., 2005). On the International Space Station, the EL is applied by elastic bungees attached to a waist and shoulder harness. While bungees can provide EL approaching body weight (BW), their force-length characteristics coupled with vertical oscillations of the body during gait result in a variable load. However, during locomotion in N, the EL is consistently equal to 100% body weight. Comparisons between AM and N have shown that during running, GRF are decreased in AM (Schaffner et al, 2005). Kinematic evaluations in the past have focussed on joint range of motion rather than joint posture at specific instances of the gait cycle. The reduced GRF in microgravity may be a result of differing hip, knee, and ankle positions during contact. The purpose of this investigation was to compare joint angles of the lower extremities during walking and running in AM, SM, and N. We hypothesized that in AM and SM, joints would be more flexed at heel strike (HS), mid-stance (MS) and toe-off (TO) than in N.

  16. Multi-limbed locomotion systems for space construction and maintenance

    NASA Technical Reports Server (NTRS)

    Waldron, K. J.; Klein, C. A.

    1987-01-01

    A well developed technology of coordination of multi-limbed locomotory systems is now available. Results from a NASA sponsored study of several years ago are presented. This was a simulation study of a three-limbed locomotion/manipulation system. Each limb had six degrees of freedom and could be used either as a locomotory grasping hand-holds, or as a manipulator. The focus of the study was kinematic coordination algorithms. The presentation will also include very recent results from the Adaptive Suspension Vehicle Project. The Adaptive Suspension Vehicle (ASV) is a legged locomotion system designed for terrestrial use which is capable of operating in completely unstructured terrain in either a teleoperated or operator-on-board mode. Future development may include autonomous operation. The ASV features a very advanced coordination and control system which could readily be adapted to operation in space. An inertial package with a vertical gyro, and rate gyros and accelerometers on three orthogonal axes provides body position information at high bandwidth. This is compared to the operator's commands, injected via a joystick to provide a commanded force system on the vehicle's body. This system is, in turn, decomposed by a coordination algorithm into force commands to those legs which are in contact with the ground.

  17. 40 CFR 92.707 - Notification to locomotive or locomotive engine owners.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defined in 40 CFR part 92. These standards or family emission limits, as defined in 40 CFR part 92 were established to protect the public health or welfare from the dangers of air pollution.” (2) A statement that... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES...

  18. 40 CFR 92.707 - Notification to locomotive or locomotive engine owners.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in 40 CFR part 92. These standards or family emission limits, as defined in 40 CFR part 92 were established to protect the public health or welfare from the dangers of air pollution.” (2) A statement that... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES...

  19. 40 CFR 92.707 - Notification to locomotive or locomotive engine owners.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined in 40 CFR part 92. These standards or family emission limits, as defined in 40 CFR part 92 were established to protect the public health or welfare from the dangers of air pollution.” (2) A statement that... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES...

  20. 49 CFR 238.209 - Forward end structure of locomotives, including cab cars and MU locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... locomotive, including a cab car and an MU locomotive, shall be: (i) Equivalent to a 1/2-inch steel plate with a yield strength of 25,000 pounds-per-square-inch—material of a higher yield strength may be used to decrease the required thickness of the material provided at least an equivalent level of strength...

  1. 49 CFR 238.209 - Forward end structure of locomotives, including cab cars and MU locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... locomotive, including a cab car and an MU locomotive, shall be: (i) Equivalent to a 1/2-inch steel plate with a yield strength of 25,000 pounds-per-square-inch—material of a higher yield strength may be used to decrease the required thickness of the material provided at least an equivalent level of strength...

  2. 49 CFR 238.209 - Forward end structure of locomotives, including cab cars and MU locomotives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... locomotive, including a cab car and an MU locomotive, shall be: (i) Equivalent to a 1/2-inch steel plate with a yield strength of 25,000 pounds-per-square-inch—material of a higher yield strength may be used to decrease the required thickness of the material provided at least an equivalent level of strength...

  3. 49 CFR 238.209 - Forward end structure of locomotives, including cab cars and MU locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Forward end structure of locomotives, including cab cars and MU locomotives. 238.209 Section 238.209 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER EQUIPMENT SAFETY STANDARDS Specific Requirements...

  4. Relationship between osteology and aquatic locomotion in birds: determining modes of locomotion in extinct Ornithurae.

    PubMed

    Hinić-Frlog, S; Motani, R

    2010-02-01

    The evolutionary history of aquatic invasion in birds would be incomplete without incorporation of extinct species. We show that aquatic affinities in fossil birds can be inferred by multivariate analysis of skeletal features and locomotion of 245 species of extant birds. Regularized discriminant analyses revealed that measurements of appendicular skeletons successfully separated diving birds from surface swimmers and flyers, while also discriminating among different underwater modes of swimming. The high accuracy of this method allows detection of skeletal characteristics that are indicative of aquatic locomotion and inference of such locomotion in bird species with insufficient behavioural information. Statistical predictions based on the analyses confirm qualitative assessments for both foot-propelled (Hesperornithiformes) and wing-propelled (Copepteryx) underwater locomotion in fossil birds. This is the first quantitative inference of underwater modes of swimming in fossil birds, enabling future studies of locomotion in extinct birds and evolutionary transitions among locomotor modes in avian lineage. PMID:20021550

  5. Limb and Trunk Mechanisms for Balance Control during Locomotion in Quadrupeds

    PubMed Central

    Musienko, Pavel E.; Deliagina, Tatiana G.; Gerasimenko, Yury P.; Orlovsky, Grigori N.

    2014-01-01

    In quadrupeds, the most critical aspect of postural control during locomotion is lateral stability. However, neural mechanisms underlying lateral stability are poorly understood. Here, we studied lateral stability in decerebrate cats walking on a treadmill with their hindlimbs. Two destabilizing factors were used: a brief lateral push of the cat and a sustained lateral tilt of the treadmill. It was found that the push caused considerable trunk bending and twisting, as well as changes in the stepping pattern, but did not lead to falling. Due to postural reactions, locomotion with normal body configuration was restored in a few steps. It was also found that the decerebrate cat could keep balance during locomotion on the laterally tilted treadmill. This postural adaptation was based on the transformation of the symmetrical locomotor pattern into an asymmetrical one, with different functional lengths of the right and left limbs. Then, we analyzed limb and trunk neural mechanisms contributing to postural control during locomotion. It was found that one of the limb mechanisms operates in the transfer phase and secures a standard (relative to the trunk) position for limb landing. Two other limb mechanisms operate in the stance phase; they counteract distortions of the locomotor pattern by regulating the limb stiffness. The trunk configuration mechanism controls the body shape on the basis of sensory information coming from trunk afferents. We suggest that postural reactions generated by these four mechanisms are integrated, thus forming a response of the whole system to perturbation of balance during locomotion. PMID:24741060

  6. Locomotive micro-implant with active electromagnetic propulsion.

    PubMed

    Pivonka, Daniel; Poon, Ada S Y; Meng, Teresa H

    2009-01-01

    An active locomotive technique requiring only an external power source and a static magnetic field is presented, and its operation is analyzed and simulated. For a modest static MRI magnetic field of 1 T, the results show that a 1-mm cube achieves roughly 3 cm/sec of lateral motion using less than 20.4 microW of power. Current-carrying wires generate the forces, resulting in highly controllable motion. Existing solutions trade off size and power: passive solutions are small but impractical, and mechanical solutions are inefficient and large. The presented solution captures the advantages of both systems, and has much better scalability. PMID:19964695

  7. Evolution of neural controllers for salamanderlike locomotion

    NASA Astrophysics Data System (ADS)

    Ijspeert, Auke J.

    1999-08-01

    This paper presents an experiment in which evolutionary algorithms are used for the development of neural controllers for salamander locomotion. The aim of the experiment is to investigate which kind of neural circuitry can produce the typical swimming and trotting gaits of the salamander, and to develop a synthetic approach to neurobiology by using genetic algorithms as design tool. A 2D bio-mechanical simulation of the salamander's body is developed whose muscle contraction is determined by the locomotion controller simulated as continuous-time neural networks. While the connectivity of the neural circuitry underlying locomotion in the salamander has not been decoded for the moment, the general organization of the designed neural circuits corresponds to that hypothesized by neurobiologist for the real animal. In particular, the locomotion controllers are based on a body central pattern generator (CPG) corresponding to a lamprey-like swimming controller as developed by Ekeberg, and are extended with a limb CPG for controlling the salamander's body. A genetic algorithm is used to instantiate synaptic weights of the connections within the limb CPG and from the limb CPG to the body CPG given a high level description of the desired gaits. A set of biologically plausible controllers are thus developed which can produce a neural activity and locomotion gaits very similar to those observed in the real salamander. By simply varying the external excitation applied to the network, the speed, direction and type of gait can be varied.

  8. Locomotion gaits of a rotating cylinder pair

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.

    2015-11-01

    Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.

  9. Passive appendages aid locomotion through symmetry breaking

    NASA Astrophysics Data System (ADS)

    Bagheri, Shervin; Lacis, Ugis; Mazzino, Andrea; Kellay, Hamid; Brosse, Nicolas; Lundell, Fredrik; Ingremeau, Francois

    2014-11-01

    Plants and animals use plumes, barbs, tails, feathers, hairs, fins, and other types of appendages to aid locomotion. Despite their enormous variation, passive appendages may contribute to locomotion by exploiting the same physical mechanism. We present a new mechanism that applies to body appendages surrounded by a separated flow, which often develops behind moving bodies larger than a few millimeters. We use theory, experiments, and numerical simulations to show that bodies with protrusions turn and drift by exploiting a symmetry-breaking instability similar to the instability of an inverted pendulum. Our model explains why the straight position of an appendage in flowing fluid is unstable and how it stabilizes either to the left or right of the incoming fluid flow direction. The discovery suggests a new mechanism of locomotion that may be relevant for certain organisms; for example, how plumed seeds may drift without wind and how motile animals may passively reorient themselves.

  10. 8. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL LOCOMOTIVE NO. 6734 ON TURNTABLE, adjacent to Erecting Shop and Machine Shop - Juniata Shops, Turntable, South of Sixth Street at Third Avemue, Altoona, Blair County, PA

  11. 5. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL LOCOMOTIVE NO. 6734 ON TURNTABLE, adjacent to Erecting Shop and Machine Shop - Juniata Shops, Turntable, South of Sixth Street at Third Avemue, Altoona, Blair County, PA

  12. 6. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL LOCOMOTIVE NO. 6734 ON TURNTABLE, adjacent to Erecting Shop and Machine Shop - Juniata Shops, Turntable, South of Sixth Street at Third Avemue, Altoona, Blair County, PA

  13. 4. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL LOCOMOTIVE NO. 6734 ON TURNTABLE, adjacent to Erecting Shop and Machine Shop - Juniata Shops, Turntable, South of Sixth Street at Third Avemue, Altoona, Blair County, PA

  14. 7. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL LOCOMOTIVE NO. 6734 ON TURNTABLE, adjacent to Erecting Shop and Machine Shop - Juniata Shops, Turntable, South of Sixth Street at Third Avemue, Altoona, Blair County, PA

  15. 9. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL LOCOMOTIVE NO. 6734 ON TURNTABLE, adjacent to Erecting Shop and Machine Shop - Juniata Shops, Turntable, South of Sixth Street at Third Avemue, Altoona, Blair County, PA

  16. 7. Detail of the Grant Locomotive Works Erecting Shop looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail of the Grant Locomotive Works Erecting Shop looking southwest showing ruined wall and entrance of a single story addition. - Grant Locomotive Works, Market & Spruce Streets, Paterson, Passaic County, NJ

  17. 40 CFR 92.214 - Production locomotives and engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... under this part shall supply to the Administrator, upon his/her request, a reasonable number of... locomotives or locomotive engines that may be supplied to the Administrator is five per model year....

  18. 40 CFR 92.214 - Production locomotives and engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... under this part shall supply to the Administrator, upon his/her request, a reasonable number of... locomotives or locomotive engines that may be supplied to the Administrator is five per model year....

  19. 40 CFR 92.214 - Production locomotives and engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... under this part shall supply to the Administrator, upon his/her request, a reasonable number of... locomotives or locomotive engines that may be supplied to the Administrator is five per model year....

  20. 1. AERIAL VIEW SHOWING ARCHEOLOGICAL EXCAVATIONS OF LOCOMOTIVE PITS IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW SHOWING ARCHEOLOGICAL EXCAVATIONS OF LOCOMOTIVE PITS IN FORMER ERECTING SHOP. MACHINE SHOP IS BUILDING AT RIGHT. - Grant Locomotive Works, Market & Spruce Streets, Paterson, Passaic County, NJ

  1. 2. CLOSE IN AERIAL VIEW OF ARCHEOLOGICAL EXCAVATIONS OF LOCOMOTIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CLOSE IN AERIAL VIEW OF ARCHEOLOGICAL EXCAVATIONS OF LOCOMOTIVE PITS IN FORMER ERECTING SHOP. MACHINE SHOP IS BUILDING AT RIGHT. - Grant Locomotive Works, Market & Spruce Streets, Paterson, Passaic County, NJ

  2. Locomotion of Paramecium in patterned environments

    NASA Astrophysics Data System (ADS)

    Park, Eun-Jik; Eddins, Aja; Kim, Junil; Yang, Sung; Jana, Saikat; Jung, Sunghwan

    2011-10-01

    Ciliary organisms like Paramecium Multimicronucleatum locomote by synchronized beating of cilia that produce metachronal waves over their body. In their natural environments they navigate through a variety of environments especially surfaces with different topology. We study the effects of wavy surfaces patterned on the PDMS channels on the locomotive abilities of Paramecium by characterizing different quantities like velocity amplitude and wavelength of the trajectories traced. We compare this result with the swimming characteristics in straight channels and draw conclusions about the effects of various patterned surfaces.

  3. Large and limbless: the locomotion of snakes

    NASA Astrophysics Data System (ADS)

    Hu, David

    2008-03-01

    In efforts to understand snake locomotion, we consider one of their various gaits. By contracting and extending their bodies unidirectionally like a slinky, large snakes propel themselves in a straight line. In a combined experimental and theoretical investigation, we here report on the dynamics of a boa constrictor alongside the analysis of an n-linked extensible crawler model. Constraints on their locomotion are quantified and discussed, such as the elasticity, frictional anisotropy and abrasive wear of their skin. Also presented are certain snake behaviors that culminate in their tying themselves into knots.

  4. CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits

    PubMed Central

    Böhm, Urs Lucas; Prendergast, Andrew; Djenoune, Lydia; Nunes Figueiredo, Sophie; Gomez, Johanna; Stokes, Caleb; Kaiser, Sonya; Suster, Maximilliano; Kawakami, Koichi; Charpentier, Marine; Concordet, Jean-Paul; Rio, Jean-Paul; Del Bene, Filippo; Wyart, Claire

    2016-01-01

    Throughout vertebrates, cerebrospinal fluid-contacting neurons (CSF-cNs) are ciliated cells surrounding the central canal in the ventral spinal cord. Their contribution to modulate locomotion remains undetermined. Recently, we have shown CSF-cNs modulate locomotion by directly projecting onto the locomotor central pattern generators (CPGs), but the sensory modality these cells convey to spinal circuits and their relevance to innate locomotion remain elusive. Here, we demonstrate in vivo that CSF-cNs form an intraspinal mechanosensory organ that detects spinal bending. By performing calcium imaging in moving animals, we show that CSF-cNs respond to both passive and active bending of the spinal cord. In mutants for the channel Pkd2l1, CSF-cNs lose their response to bending and animals show a selective reduction of tail beat frequency, confirming the central role of this feedback loop for optimizing locomotion. Altogether, our study reveals that CSF-cNs constitute a mechanosensory organ operating during locomotion to modulate spinal CPGs. PMID:26946992

  5. Testosterone attenuates and the selective estrogen receptor modulator, raloxifene, potentiates amphetamine-induced locomotion in male rats.

    PubMed

    Purves-Tyson, Tertia D; Boerrigter, Danny; Allen, Katherine; Zavitsanou, Katerina; Karl, Tim; Djunaidi, Vanezha; Double, Kay L; Desai, Reena; Handelsman, David J; Weickert, Cynthia Shannon

    2015-04-01

    Although sex steroids are known to modulate brain dopamine, it is still unclear how testosterone modifies locomotor behaviour controlled, at least in part, by striatal dopamine in adolescent males. Our previous work suggests that increasing testosterone during adolescence may bias midbrain neurons to synthesise more dopamine. We hypothesised that baseline and amphetamine-induced locomotion would differ in adult males depending on testosterone exposure during adolescence. We hypothesised that concomitant stimulation of estrogen receptor signaling, through a selective estrogen receptor modulator (SERM), raloxifene, can counter testosterone effects on locomotion. Male Sprague-Dawley rats at postnatal day 45 were gonadectomised (G) or sham-operated (S) prior to the typical adolescent testosterone increase. Gonadectomised rats were either given testosterone replacement (T) or blank implants (B) for six weeks and sham-operated (i.e. intact or endogenous testosterone group) were given blank implants. Subgroups of sham-operated, gonadectomised and gonadectomised/testosterone-replaced rats were treated with raloxifene (R, 5mg/kg) or vehicle (V), daily for the final four weeks. There were six groups (SBV, GBV, GTV, SBR, GBR, GTR). Saline and amphetamine-induced (1.25mg/kg) locomotion in the open field was measured at PND85. Gonadectomy increased amphetamine-induced locomotion compared to rats with endogenous or with exogenous testosterone. Raloxifene increased amphetamine-induced locomotion in rats with either endogenous or exogenous testosterone. Amphetamine-induced locomotion was negatively correlated with testosterone and this relationship was abolished by raloxifene. Lack of testosterone during adolescence potentiates and testosterone exposure during adolescence attenuates amphetamine-induced locomotion. Treatment with raloxifene appears to potentiate amphetamine-induced locomotion and to have an opposite effect to that of testosterone in male rats. PMID:25747465

  6. Locomotion via paralyzed leg muscles: feasibility study for a leg-propelled vehicle.

    PubMed

    Glaser, R M; Gruner, J A; Feinberg, S D; Collins, S R

    1983-07-01

    Functional electrical stimulation has been used to restore some degree of controllable movement to paralyzed muscle. The purpose of this study was to demonstrate the feasibility of using electrically stimulated paralyzed leg muscles to propel a wheelchair-type vehicle. For this, a conventional manual wheelchair was modified by the addition of a drive system which permits forward propulsion by reciprocating movements of the legs. A battery-powered electrical stimulator using surface electrodes over the quadriceps muscles controls locomotive characteristics. This vehicle has been successfully operated by paraplegic and quadriplegic test subjects. Advantages of using paralyzed leg muscles for locomotion may include improvement in locomotive capability, circulation in the lower extremities, cardiovascular and respiratory fitness, strength and size of the exercised muscles and bones, and self-image. PMID:6101225

  7. [Changes in the parameters of locomotion following partial extirpation of the motor cortex in white rats].

    PubMed

    Lenkov, D N; Vereshchak, N I

    1989-01-01

    Quantitative locomotion changes have been studied in the norm and in different periods after local ablation of motor projection of hind paw in the right hemisphere of 5-16 weeks white rats. The length and width of step gradually increase with the age, and coefficients of gait asymmetry reflecting individual characteristics, are relatively stable in intact animals. Local decortication is accompanied by significant shifts of all locomotion parameters clearly expressed in the first days after ablation. The most sensitive characteristic of gait anomaly is the standard deviation of half-step. In 5 weeks after ablation a lag is observed of operated rats behind the control ones in all parameters. Load application contributes to revealing of locomotion parameters shifts from the norm in later periods after decortication. In 9 and 11 weeks after surgery, the signs of supercompensation are observed in a number of parameters. PMID:2735116

  8. 49 CFR 229.141 - Body structure, MU locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Body structure, MU locomotives. 229.141 Section... Cab Equipment § 229.141 Body structure, MU locomotives. (a) MU locomotives built new after April 1... body structure designed to meet or exceed the following minimum specifications: (1) The body...

  9. 49 CFR 229.141 - Body structure, MU locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Body structure, MU locomotives. 229.141 Section 229.141 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.141 Body...

  10. 49 CFR 231.29 - Road locomotives with corner stairways.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Road locomotives with corner stairways. 231.29... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.29 Road locomotives with corner stairways. After September 30, 1979, road locomotives with corner stairway openings must...

  11. 49 CFR 231.29 - Road locomotives with corner stairways.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Road locomotives with corner stairways. 231.29... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.29 Road locomotives with corner stairways. After September 30, 1979, road locomotives with corner stairway openings must...

  12. 49 CFR 231.29 - Road locomotives with corner stairways.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Road locomotives with corner stairways. 231.29... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.29 Road locomotives with corner stairways. After September 30, 1979, road locomotives with corner stairway openings must...

  13. 49 CFR 231.29 - Road locomotives with corner stairways.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Road locomotives with corner stairways. 231.29... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.29 Road locomotives with corner stairways. After September 30, 1979, road locomotives with corner stairway openings must...

  14. 49 CFR 231.29 - Road locomotives with corner stairways.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Road locomotives with corner stairways. 231.29... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.29 Road locomotives with corner stairways. After September 30, 1979, road locomotives with corner stairway openings must...

  15. 49 CFR 229.141 - Body structure, MU locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Body structure, MU locomotives. 229.141 Section... Design Requirements § 229.141 Body structure, MU locomotives. (a) MU locomotives built new after April 1... body structure designed to meet or exceed the following minimum specifications: (1) The body...

  16. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  17. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  18. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  19. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  20. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  1. Relation between observed locomotion traits and locomotion score in dairy cows.

    PubMed

    Schlageter-Tello, Andrés; Bokkers, Eddie A M; Groot Koerkamp, Peter W G; Van Hertem, Tom; Viazzi, Stefano; Romanini, Carlos E B; Halachmi, Ilan; Bahr, Claudia; Berckmans, Daniël; Lokhorst, Kees

    2015-12-01

    Lameness is still an important problem in modern dairy farming. Human observation of locomotion, by looking at different traits in one go, is used in practice to assess locomotion. The objectives of this article were to determine which individual locomotion traits are most related to locomotion scores in dairy cows, and whether experienced raters are capable of scoring these individual traits consistently. Locomotion and 5 individual locomotion traits (arched back, asymmetric gait, head bobbing, reluctance to bear weight, and tracking up) were scored independently on a 5-level scale for 58 videos of different cows. Videos were shown to 10 experienced raters in 2 different scoring sessions. Relations between locomotion score and traits were estimated by 3 logistic regression models aiming to calculate the size of the fixed effects on the probability of scoring a cow in 1 of the 5 levels of the scale (model 1) and the probability of classifying a cow as lame (locomotion score ≥3; model 2) or as severely lame (locomotion score ≥4; model 3). Fixed effects were rater, session, traits, and interactions among fixed effects. Odds ratios were calculated to estimate the relative probability to classify a cow as lame when an altered (trait score ≥3) or severely altered trait (trait score ≥4) was present. Overall intrarater and interrater reliability and agreement were calculated as weighted kappa coefficient (κw) and percentage of agreement, respectively. Specific intrarater and interrater agreement for individual levels within a 5-level scale were calculated. All traits were significantly related to the locomotion score when scored with a 5-level scale and when classified as (severely) lame or nonlame. Odds ratios for altered and severely altered traits were 10.8 and 14.5 for reluctance to bear weight, 6.5 and 7.2 for asymmetric gait, and 4.8 and 3.2 for arched back, respectively. Raters showed substantial variation in reliability and agreement values when scoring

  2. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of...

  3. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of...

  4. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of...

  5. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of...

  6. 49 CFR 229.129 - Locomotive horn.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... defectives equal to an AQL of 1% or less, as set forth in 7 CFR part 43. (2) Each locomotive built before... ambient air temperature is between 32 degrees and 104 degrees Fahrenheit inclusively; relative humidity is.... The observer shall not stand between the microphone and the horn. (8) Background noise shall...

  7. 49 CFR 229.129 - Locomotive horn.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... defectives equal to an AQL of 1% or less, as set forth in 7 CFR part 43. (2) Each locomotive built before... ambient air temperature is between 32 degrees and 104 degrees Fahrenheit inclusively; relative humidity is.... The observer shall not stand between the microphone and the horn. (8) Background noise shall...

  8. 49 CFR 229.129 - Locomotive horn.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... defectives equal to an AQL of 1% or less, as set forth in 7 CFR part 43. (2) Each locomotive built before... ambient air temperature is between 32 degrees and 104 degrees Fahrenheit inclusively; relative humidity is.... The observer shall not stand between the microphone and the horn. (8) Background noise shall...

  9. 77 FR 23159 - Locomotive Safety Standards; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... rule related to locomotive safety standards. See 77 FR 21312. The final rule established a public... safety standards and comments on such petitions. That final rule mistakenly lists FR-2009- 0095... is FRA-2009-0094. The final rule issued on April 9, 2012, incorrectly identified docket number...

  10. Interactions between locomotion and ventilation in tetrapods.

    PubMed

    Boggs, Dona F

    2002-10-01

    Interactions between locomotion and ventilation have now been studied in several species of reptiles, birds and mammals, from a variety of perspectives. Among these perspectives are neural interactions of separate but linked central controllers; mechanical impacts of locomotion upon ventilatory pressures and flows; and the extent to which the latter may affect gas exchange and the energetics of exercise. A synchrony, i.e. 1:1 pattern of coordination, is observed in many running mammals once they achieve galloping speeds, as well as in flying bats, some flying birds and hopping marsupials. Other, non-1:1, patterns of coordination are seen in trotting and walking quadrupeds, as well as running bipedal humans and running and flying birds. There is evidence for an energetic advantage to coordination of locomotor and respiratory cycles for flying birds and running mammals. There is evidence for a mechanical constraint upon ventilation by locomotion for some reptiles (e.g. iguana), but not for others (e.g. varanids and crocodilians). In diving birds the impact of wing flapping or foot paddling on differential air sac pressures enhances gas exchange during the breath hold by improving diffusive and convective movement of air sac oxygen to parabronchi. This paper will review the current state of our knowledge of such influences of locomotion upon respiratory system function. PMID:12208300

  11. 49 CFR 229.129 - Locomotive horn.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... defectives equal to an AQL of 1% or less, as set forth in 7 CFR part 43. (2) Each locomotive built before... Electrotechnical Commission (IEC) Standard 61672-1 (2002-05) for a Class 2 instrument. (2) An acoustic calibrator... with the acoustic calibrator immediately before and after compliance tests. Any change in the...

  12. Learning in the Development of Infant Locomotion.

    ERIC Educational Resources Information Center

    Adolph, Karen E.

    1997-01-01

    Examined how infants acquire adaptive locomotion in the novel task of going up and down slopes. Found that infants' judgments became increasingly accurate and exploration became increasingly efficient, with no transfer over the transition from crawling to walking. Infants learned to gauge their abilities on-line as they encountered each hill at…

  13. Evidence for Motor Simulation in Imagined Locomotion

    ERIC Educational Resources Information Center

    Kunz, Benjamin R.; Creem-Regehr, Sarah H.; Thompson, William B.

    2009-01-01

    A series of experiments examined the role of the motor system in imagined movement, finding a strong relationship between imagined walking performance and the biomechanical information available during actual walking. Experiments 1 through 4 established the finding that real and imagined locomotion differ in absolute walking time. We then tested…

  14. Energetics and mechanics for partial gravity locomotion.

    PubMed

    Newman, D J; Alexander, H L; Webbon, B W

    1994-09-01

    The role of gravitational acceleration on human locomotion is not clearly understood. It is hypothesized that the mechanics and energetics of locomotion depend upon the prevailing gravity level. A unique human-rated underwater treadmill and an adjustable ballasting harness were used to stimulate partial gravity environments. This study has two research aspects, biomechanics and energetics. Vertical forces which are exerted by subjects on the treadmill-mounted, split-plate force platform show that peak vertical force and stride frequency significantly decrease (p < 0.05) as the gravity level is reduced, while ground contact time is independent of gravity level. A loping gait is employed over a wide range of speeds (approximately 1.5 m/s to approximately 2.3 m/s) suggesting a change in the mechanics for lunar (1/6 G) and Martian (3/8 G) locomotion. As theory predicts, locomotion energy requirements for partial gravity levels are significantly less than at 1 G (p < 0.05). PMID:7818450

  15. 30 CFR 57.6203 - Locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Locomotives. 57.6203 Section 57.6203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Transportation-Surface and Underground § 57.6203...

  16. 30 CFR 57.6203 - Locomotives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Locomotives. 57.6203 Section 57.6203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Transportation-Surface and Underground § 57.6203...

  17. 30 CFR 57.6203 - Locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Locomotives. 57.6203 Section 57.6203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Transportation-Surface and Underground § 57.6203...

  18. 30 CFR 57.6203 - Locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Locomotives. 57.6203 Section 57.6203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Transportation-Surface and Underground § 57.6203...

  19. 30 CFR 57.6203 - Locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Locomotives. 57.6203 Section 57.6203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Transportation-Surface and Underground § 57.6203...

  20. Lizard locomotion in heterogeneous granular media

    NASA Astrophysics Data System (ADS)

    Schiebel, Perrin; Goldman, Daniel

    2014-03-01

    Locomotion strategies in heterogeneous granular environments (common substrates in deserts), are relatively unexplored. The zebra-tailed lizard (C. draconoides) is a useful model organism for such studies owing to its exceptional ability to navigate a variety of desert habitats at impressive speed (up to 50 body-lengths per second) using both quadrapedal and bidepal gaits. In laboratory experiments, we challenge the lizards to run across a field of boulders (2.54 cm diameter glass spheres or 3.8 cm 3D printed spheres) placed in a lattice pattern and embedded in a loosely packed granular medium of 0.3 mm diameter glass particles. Locomotion kinematics of the lizard are recorded using high speed cameras, with and without the scatterers. The data reveals that unlike the lizard's typical quadrupedal locomotion using a diagonal gait, when scatterers are present the lizard is most successful when using a bipedal gait, with a raised center of mass (CoM). We propose that the kinematics of bipedal running in conjunction with the lizard's long toes and compliant hind foot are the keys to this lizard's successful locomotion in the presence of such obstacles. NSF PoLS

  1. Judgments of Path, Not Heading, Guide Locomotion

    ERIC Educational Resources Information Center

    Wilkie, Richard M.; Wann, John P.

    2006-01-01

    To steer a course through the world, people are almost entirely dependent on visual information, of which a key component is optic flow. In many models of locomotion, heading is described as the fundamental control variable; however, it has also been shown that fixating points along or near one's future path could be the basis of an efficient…

  2. Passive mechanics in jellyfish-like locomotion

    NASA Astrophysics Data System (ADS)

    Wilson, Megan; Eldredge, Jeff

    2008-11-01

    The aim of this work is to identify possible benefits of passive flexibility in biologically-inspired locomotion. Substantial energy savings are likely achieved in natural locomotion by allowing a mix of actively controlled and passively responsive deformation. The jellyfish is a useful target of study, due to its relatively simple structure and the availability of recent kinematics and flow-field measurements. In this investigation, the jellyfish consists of a two-dimensional articulated system of rigid bodies linked by hinges. The kinematics -- expressed via the hinge angles -- are adapted from experimentally measured motion. The free swimming system is explored via high-fidelity numerical simulation with a viscous vortex particle method with coupled body dynamics. The computational tool allows the arbitrary designation of individual hinges as ``active'' or ``passive,'' to introduce a mix of flexibility into the system. In some cases, replacing an active hinge with a passive spring can enhance the mean swimming speed, thus reducing the power requirements of the system. Varying the stiffness and damping coefficients of the spring yield different locomotive results. The numerical solution is used to compute the finite-time Lyapunov exponents (FTLE) throughout the field. The FTLE fields reveal manifolds in the flow that act as transport barriers, uncovering otherwise unseen geometric characteristics of the flow field that add new insight into the locomotion mechanics.

  3. 49 CFR 229.207 - New locomotive crashworthiness design standards and changes to existing FRA-approved locomotive...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-approved locomotive crashworthiness design standards. (a) General. The following procedures govern... approval of a locomotive crashworthiness design standard must be titled “Petition for FRA Approval of a New... petition for approval of a substantive change to an FRA-approved locomotive crashworthiness design...

  4. 49 CFR 1242.60 - Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives (accounts XX-51-67, XX-51-68 and XX-51-69). 1242.60 Section...-Transportation § 1242.60 Locomotive fuel, electric power purchased/produced for motive power and...

  5. 49 CFR 229.207 - New locomotive crashworthiness design standards and changes to existing FRA-approved locomotive...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false New locomotive crashworthiness design standards... Design Requirements § 229.207 New locomotive crashworthiness design standards and changes to existing FRA... consideration and action upon requests for FRA approval of new locomotive crashworthiness design standards...

  6. 49 CFR 1242.60 - Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives (accounts XX-51-67, XX-51-68 and XX-51-69). 1242.60 Section...-Transportation § 1242.60 Locomotive fuel, electric power purchased/produced for motive power and...

  7. Intelligent mobility research for robotic locomotion in complex terrain

    NASA Astrophysics Data System (ADS)

    Trentini, Michael; Beckman, Blake; Digney, Bruce; Vincent, Isabelle; Ricard, Benoit

    2006-05-01

    The objective of the Autonomous Intelligent Systems Section of Defence R&D Canada - Suffield is best described by its mission statement, which is "to augment soldiers and combat systems by developing and demonstrating practical, cost effective, autonomous intelligent systems capable of completing military missions in complex operating environments." The mobility requirement for ground-based mobile systems operating in urban settings must increase significantly if robotic technology is to augment human efforts in these roles and environments. The intelligence required for autonomous systems to operate in complex environments demands advances in many fields of robotics. This has resulted in large bodies of research in areas of perception, world representation, and navigation, but the problem of locomotion in complex terrain has largely been ignored. In order to achieve its objective, the Autonomous Intelligent Systems Section is pursuing research that explores the use of intelligent mobility algorithms designed to improve robot mobility. Intelligent mobility uses sensing, control, and learning algorithms to extract measured variables from the world, control vehicle dynamics, and learn by experience. These algorithms seek to exploit available world representations of the environment and the inherent dexterity of the robot to allow the vehicle to interact with its surroundings and produce locomotion in complex terrain. The primary focus of the paper is to present the intelligent mobility research within the framework of the research methodology, plan and direction defined at Defence R&D Canada - Suffield. It discusses the progress and future direction of intelligent mobility research and presents the research tools, topics, and plans to address this critical research gap. This research will create effective intelligence to improve the mobility of ground-based mobile systems operating in urban settings to assist the Canadian Forces in their future urban operations.

  8. Fuel-free locomotion of Janus motors: magnetically induced thermophoresis.

    PubMed

    Baraban, Larysa; Streubel, Robert; Makarov, Denys; Han, Luyang; Karnaushenko, Dmitriy; Schmidt, Oliver G; Cuniberti, Gianaurelio

    2013-02-26

    We present fuel-free locomotion of magnetic spherical Janus motors driven by magnetically induced thermophoresis--a self-diffusive propulsion of an object in any liquid media due to a local temperature gradient. Within this approach an ac magnetic field is applied to induce thermophoretic motion of the objects via heating a magnetic cap of the particles, while an additional dc magnetic field is used to orient Janus motors and guide their motion on a long time scale. Full control over the motion is achieved due to specific properties of ultrathin 100-nm-thick Permalloy (Py, Fe₁₉Ni₈₁ alloys) magnetic films resulting in a topologically stable magnetic vortex state in the cap structure of Janus motors. Realized here magnetically induced thermophoretic locomotion does not require catalytic chemical reactions that imply toxic reagents. In this respect, we addressed and successfully solved one of the main shortcomings in the field of artificial motors, namely being fully controlled and remain biocompatible. Therefore, our approach is attractive for biotechnological in vitro assays and even in vivo operations, since the functioning of Janus motors offers low toxicity; it is not dependent on the presence of the fuel molecules in solution. Furthermore, the suggested magnetic ac excitation is superior compared to the previously proposed optically induced heating using lasers as it does not require transparent packaging. PMID:23268780

  9. Locomotion and drag in wet and dry granular media

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel; Kuckuk, Robyn; Sharpe, Sarah

    2015-03-01

    Many animals move within substrates such as soil and dry sand; the resistive properties of such granular materials (GM) can depend on water content and compaction, but little is known about how such parameters affect locomotion or the relevant physics of drag and penetration. We developed a system to create homogeneous wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus) a desert-generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (~ 30 seconds) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics (and ``slip'') were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ~ 3 × more resistive than dry GM, suggesting that during burial the lizard operated near its maximum force producing capability and was thus constrained by environmental properties. work supported by NSF PoLS.

  10. The human vestibulo-ocular reflex during linear locomotion

    NASA Technical Reports Server (NTRS)

    Moore, S. T.; Hirasaki, E.; Raphan, T.; Cohen, B.

    2001-01-01

    During locomotion, there is a translation and compensatory rotation of the head in both the vertical and horizontal planes. During moderate to fast walking (100 m/min), vertical head translation occurs at the frequency of stepping (2 Hz) and generates peak linear acceleration of 0.37 g. Lateral head translation occurs at the stride frequency (1 Hz) and generates peak linear acceleration of 0.1 g. Peak head pitch and yaw angular velocities are approximately 17 degrees/s. The frequency and magnitude of these head movements are within the operational range of both the linear and angular vestibulo-ocular reflex (IVOR and aVOR). Vertical eye movements undergo a phase reversal from near to far targets. When viewing a far (>1 m) target, vertical eye velocity is typical of an aVOR response; that is, it is compensatory for head pitch. At close viewing distances (<1 m), vertical eye velocity is in phase with head pitch and is compensatory for vertical head translation, suggesting that the IVOR predominantly generates the eye movement response. Horizontal head movements during locomotion occur at the stride frequency of 1 Hz, where the IVOR gain is low. Horizontal eye movements are compensatory for head yaw at all viewing distances and are likely generated by the aVOR.

  11. 29 CFR 1926.1417 - Operation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1417 Operation...) Swinging locomotive cranes. A locomotive crane must not be swung into a position where railway cars on an... applies to equipment other than tower cranes: (i) Equipment must not be operated without the...

  12. 29 CFR 1926.1417 - Operation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1417 Operation...) Swinging locomotive cranes. A locomotive crane must not be swung into a position where railway cars on an... applies to equipment other than tower cranes: (i) Equipment must not be operated without the...

  13. 29 CFR 1926.1417 - Operation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1417 Operation...) Swinging locomotive cranes. A locomotive crane must not be swung into a position where railway cars on an... applies to equipment other than tower cranes: (i) Equipment must not be operated without the...

  14. 29 CFR 1926.1417 - Operation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1417 Operation...) Swinging locomotive cranes. A locomotive crane must not be swung into a position where railway cars on an... applies to equipment other than tower cranes: (i) Equipment must not be operated without the...

  15. Intermittent locomotion as an optimal control strategy

    PubMed Central

    Paoletti, P.; Mahadevan, L.

    2014-01-01

    Birds, fish and other animals routinely use unsteady effects to save energy by alternating between phases of active propulsion and passive coasting. Here, we construct a minimal model for such behaviour that can be couched as an optimal control problem via an analogy to travelling with a rechargeable battery. An analytical solution of the optimal control problem proves that intermittent locomotion has lower energy requirements relative to steady-state strategies. Additional realistic hypotheses, such as the assumption that metabolic cost at a given power should be minimal (the fixed gear hypothesis), a nonlinear dependence of the energy storage rate on propulsion and/or a preferred average speed, allow us to generalize the model and demonstrate the flexibility of intermittent locomotion with implications for biological and artificial systems. PMID:24711718

  16. Locomotion of chemically powered autonomous nanowire motors

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Li, Longqiu; Li, Tianlong; Zhang, Guangyu; Sun, Qian

    2015-08-01

    Physical insights on the hydrodynamics and locomotion of self-propelled nanowire motor under nonequilibrium steady state are investigated using finite element method in accordance with hybrid molecular dynamics/multiparticle collision dynamics and rigid body dynamics. Nanowire motor is discretized into finite segments, and forces of solvent molecule acting on the motor are assumed to be the sum of forces acting on all segments of the motor. We show that the locomotion of nanowire motor is mainly determined by the imbalance forces acting on the catalytic and noncatalytic segments. The average velocity along the axis increases significantly as a function of time prior to reaching equilibrium. The length of nanowire motor shows negligible effect on the velocity of the motor. Preliminary experimental results are provided to validate the current model.

  17. Kinematic adaptations to tripedal locomotion in dogs.

    PubMed

    Goldner, B; Fuchs, A; Nolte, I; Schilling, N

    2015-05-01

    Limb amputation often represents the only treatment option for canine patients with certain diseases or injuries of the appendicular system. Previous studies have investigated adaptations to tripedal locomotion in dogs but there is a lack of understanding of biomechanical compensatory mechanisms. This study evaluated the kinematic differences between quadrupedal and tripedal locomotion in nine healthy dogs running on a treadmill. The loss of the right pelvic limb was simulated using an Ehmer sling. Kinematic gait analysis included spatio-temporal comparisons of limb, joint and segment angles of the remaining pelvic and both thoracic limbs. The following key parameters were compared between quadrupedal and tripedal conditions: angles at touch-down and lift-off, minimum and maximum joint angles, plus range of motion. Significant differences in angular excursion were identified in several joints of each limb during both stance and swing phases. The most pronounced differences concerned the remaining pelvic limb, followed by the contralateral thoracic limb and, to a lesser degree, the ipsilateral thoracic limb. The thoracic limbs were, in general, more retracted, consistent with pelvic limb unloading and previous observations of bodyweight re-distribution in amputees. Proximal limb segments showed more distinct changes than distal ones. Particularly, the persistently greater anteversion of the pelvis probably affects the axial system. Overall, tripedal locomotion requires concerted kinematic adjustments of both the appendicular and axial systems, and consequently preventive, therapeutic and rehabilitative care of canine amputees should involve the whole musculoskeletal apparatus. PMID:25862392

  18. Disparity and convergence in bipedal archosaur locomotion

    PubMed Central

    Bates, K. T.; Schachner, E. R.

    2012-01-01

    This study aims to investigate functional disparity in the locomotor apparatus of bipedal archosaurs. We use reconstructions of hindlimb myology of extant and extinct archosaurs to generate musculoskeletal biomechanical models to test hypothesized convergence between bipedal crocodile-line archosaurs and dinosaurs. Quantitative comparison of muscle leverage supports the inference that bipedal crocodile-line archosaurs and non-avian theropods had highly convergent hindlimb myology, suggesting similar muscular mechanics and neuromuscular control of locomotion. While these groups independently evolved similar musculoskeletal solutions to the challenges of parasagittally erect bipedalism, differences also clearly exist, particularly the distinct hip and crurotarsal ankle morphology characteristic of many pseudosuchian archosaurs. Furthermore, comparative analyses of muscle design in extant archosaurs reveal that muscular parameters such as size and architecture are more highly adapted or optimized for habitual locomotion than moment arms. The importance of these aspects of muscle design, which are not directly retrievable from fossils, warns against over-extrapolating the functional significance of anatomical convergences. Nevertheless, links identified between posture, muscle moments and neural control in archosaur locomotion suggest that functional interpretations of osteological changes in limb anatomy traditionally linked to postural evolution in Late Triassic archosaurs could be constrained through musculoskeletal modelling. PMID:22112652

  19. Stepper motor drive for on load tapchanger in electric locomotive

    SciTech Connect

    Aruna Kumar, G.V.D.; Kumar, S.; Mishra, P.; Wadhonkar, N.K.

    1995-12-31

    Indian Railways have a fleet of 2,200 electrical locomotives running on 25 KV ac traction. An on-load tap changer is used to select voltage for speed control of dc traction motor. A four stroke reciprocating type air motor is used presently to drive the tap changer (GR). Complex gear and camshaft mechanism is used to move tap changer and to generate various logic signals for safe loco operation. The annual failure rate for tap changer and its drive is of the order of 20%. A microprocessor controlled stepper motor drive has been designed and constructed to drive the on-load tap changer. A current controlled chopper is used to drive the motor and control logic has been generated through an optimum hardware and software combination. The assembly has been tested on a prototype tap changer in the laboratory.

  20. 49 CFR 240.129 - Criteria for monitoring operational performance of certified engineers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... railroad operates with a signal system that must comply with part 236 of this chapter; (ii) Engineer... performance of those it has determined as qualified as a locomotive engineer in either train or locomotive... each engineer shall be monitored each calendar year by a Designated Supervisor of Locomotive...

  1. 49 CFR 240.129 - Criteria for monitoring operational performance of certified engineers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... railroad operates with a signal system that must comply with part 236 of this chapter; (ii) Engineer... performance of those it has determined as qualified as a locomotive engineer in either train or locomotive... each engineer shall be monitored each calendar year by a Designated Supervisor of Locomotive...

  2. Industry review: Locomotive dynamic characterization test-analysis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Data are given relative to tests performed on locomotive components. Dynamic characteristics related to safety are described. Suspension systems, shock absorbers, data processing, bearings, and damping are discussed.

  3. A contribution about ferrofluid based flow manipulation and locomotion systems

    NASA Astrophysics Data System (ADS)

    Zimmermann, K.; Zeidis, I.; Bohm, V.; Popp, J.

    2009-02-01

    With the background of developing apedal bionic inspired locomotion systems for future application fields like autonomous (swarm) robots, medical engineering and inspection systems, this article presents a selection of locomotion systems with bifluidic flow control using ferrofluid. By controlling the change of shape, position and pressure of the ferrofluid in a secondary low viscous fluid by magnetic fields locomotion of objects or the ferrofluid itself can be realised. The locomotion of an object is caused in the first example by a ferrofluid generated flow of the secondary fluid and in the second and third case by the direct alteration of the ferrofluid position.

  4. The Need for Speed in Rodent Locomotion Analyses

    PubMed Central

    Batka, Richard J.; Brown, Todd J.; Mcmillan, Kathryn P.; Meadows, Rena M.; Jones, Kathryn J.; Haulcomb, Melissa M.

    2016-01-01

    Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript, we accomplish three things: (1) review the interaction between speed and locomotion variables in rodent studies, (2) comprehensively analyze the relationship between speed and 162 locomotion variables in a group of 16 wild-type mice using the CatWalk gait analysis system, and (3) develop and test a statistical method in which locomotion variables are analyzed and reported in the context of speed. Notable results include the following: (1) over 90% of variables, reported by CatWalk, were dependent on speed with an average R2 value of 0.624, (2) most variables were related to speed in a nonlinear manner, (3) current methods of controlling for speed are insufficient, and (4) the linear mixed model is an appropriate and effective statistical method for locomotion analyses that is inclusive of speed-dependent relationships. Given the pervasive dependency of locomotion variables on speed, we maintain that valid conclusions from locomotion analyses cannot be made unless they are analyzed and reported within the context of speed. PMID:24890845

  5. Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada

    SciTech Connect

    Jeremy Gwin and Douglas Frenette

    2010-04-08

    This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the

  6. Optimal locomotion of mechanical rectifier systems

    NASA Astrophysics Data System (ADS)

    Blair, Justin T.

    Vehicles utilizing animal locomotion mechanisms may possess increased performance parameters and the ability to overcome more difficult terrain than conventional wheel or propeller driven vehicles. The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This dissertation defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust generation mechanisms. A general model is developed from the Euler-Lagrange equation and simplified by assuming small body oscillations around a given nominal posture. The model reveals that the rectifying dynamics can be captured by a bilinear (but not linear) term of body shape variables. An optimal gait problem is formulated for the bilinear rectifier model as a minimization of a quadratic cost function over the set of periodic functions subject to a constraint on the average locomotion velocity. We prove that a globally optimal solution is given by a harmonic gait that can be found by generalized eigenvalue computation with a line search over cycle frequencies. We verify the solution method through case studies of a two dimensional chain of links for which snake-like undulations and jellyfish-like flapping gaits are found to be optimal, and obtain analytical insights into determinants of optimal gaits from a simple disk-mass rectifier system. Lastly, we develop a dynamic model for batoid swimming featuring a 6 degree-of-freedom main body (position and orientation), with independent wing deformation (described as the motion of many discrete points in the body-fixed coordinate frame), and calculate various gaits. Multiple wing shapes and optimality criteria are considered, such as the maximum thrust to deflection ratio or minimum input power, and the resulting gaits are compared.

  7. Guiding locomotion in complex, dynamic environments.

    PubMed

    Fajen, Brett R

    2013-01-01

    Locomotion in complex, dynamic environments is an integral part of many daily activities, including walking in crowded spaces, driving on busy roadways, and playing sports. Many of the tasks that humans perform in such environments involve interactions with moving objects-that is, they require people to coordinate their own movement with the movements of other objects. A widely adopted framework for research on the detection, avoidance, and interception of moving objects is the bearing angle model, according to which observers move so as to keep the bearing angle of the object constant for interception and varying for obstacle avoidance. The bearing angle model offers a simple, parsimonious account of visual control but has several significant limitations and does not easily scale up to more complex tasks. In this paper, I introduce an alternative account of how humans choose actions and guide locomotion in the presence of moving objects. I show how the new approach addresses the limitations of the bearing angle model and accounts for a variety of behaviors involving moving objects, including (1) choosing whether to pass in front of or behind a moving obstacle, (2) perceiving whether a gap between a pair of moving obstacles is passable, (3) avoiding a collision while passing through single or multiple lanes of traffic, (4) coordinating speed and direction of locomotion during interception, (5) simultaneously intercepting a moving target while avoiding a stationary or moving obstacle, and (6) knowing whether to abandon the chase of a moving target. I also summarize data from recent studies that support the new approach. PMID:23885238

  8. Biomedical perspectives on locomotion in null gravity

    NASA Technical Reports Server (NTRS)

    Cavanagh, Peter R.

    1989-01-01

    A number of important features of various locomotor activities are discussed, and approaches to the study of these activities in the context of space flight are suggested. In particular, the magnitude of peak forces and the rates of change of force during terrestrial cycling, walking, and running are compared. It is shown that subtle changes in the conditions and techniques of locomotion can have a major influence on the biomechanical consequences to the skeleton. The various hypotheses that identify locomotor exercise as a countermeasure to bone demineralization during weightlessness deserve to be tested with some degree of biomechanical rigor. Various approaches for achieving such scrutiny are discussed.

  9. Hamiltonian mechanics and planar fishlike locomotion

    NASA Astrophysics Data System (ADS)

    Kelly, Scott; Xiong, Hailong; Burgoyne, Will

    2007-11-01

    A free deformable body interacting with a system of point vortices in the plane constitutes a Hamiltonian system. A free Joukowski foil with variable camber shedding point vortices in an ideal fluid according to a periodically applied Kutta condition provides a model for fishlike locomotion which bridges the gap between inviscid analytical models that sacrifice realism for tractability and viscous computational models inaccessible to tools from nonlinear control theory. We frame such a model in the context of Hamiltonian mechanics and describe its relevance both to the study of hydrodynamic interactions within schools of fish and to the realization of model-based control laws for biomimetic autonomous robotic vehicles.

  10. Delayed and lasting effects of deep brain stimulation on locomotion in Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Beuter, Anne; Modolo, Julien

    2009-06-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a variety of motor signs affecting gait, postural stability, and tremor. These symptoms can be improved when electrodes are implanted in deep brain structures and electrical stimulation is delivered chronically at high frequency (>100 Hz). Deep brain stimulation (DBS) onset or cessation affects PD signs with different latencies, and the long-term improvements of symptoms affecting the body axis and those affecting the limbs vary in duration. Interestingly, these effects have not been systematically analyzed and modeled. We compare these timing phenomena in relation to one axial (i.e., locomotion) and one distal (i.e., tremor) signs. We suggest that during DBS, these symptoms are improved by different network mechanisms operating at multiple time scales. Locomotion improvement may involve a delayed plastic reorganization, which takes hours to develop, whereas rest tremor is probably alleviated by an almost instantaneous desynchronization of neural activity in subcortical structures. Even if all PD patients develop both distal and axial symptoms sooner or later, current computational models of locomotion and rest tremor are separate. Furthermore, a few computational models of locomotion focus on PD and none exploring the effect of DBS was found in the literature. We, therefore, discuss a model of a neuronal network during DBS, general enough to explore the subcircuits controlling locomotion and rest tremor simultaneously. This model accounts for synchronization and plasticity, two mechanisms that are believed to underlie the two types of symptoms analyzed. We suggest that a hysteretic effect caused by DBS-induced plasticity and synchronization modulation contributes to the different therapeutic latencies observed. Such a comprehensive, generic computational model of DBS effects, incorporating these timing phenomena, should assist in developing a more efficient, faster, durable treatment of

  11. Effects of locomotion mode recognition errors on volitional control of powered above-knee prostheses.

    PubMed

    Zhang, Fan; Liu, Ming; Huang, He

    2015-01-01

    Recent studies have reported various methods that recognize amputees' intent regarding locomotion modes, which is potentially useful for volitional control of powered artificial legs. However, occasional errors in locomotion mode recognition are inevitable. When these intent recognition decisions are used for volitional prosthesis control, the effects of the decision errors on the operation of the prosthesis and user's task performance is unknown. Hence, the goals of this study were to 1) systematically investigate the effects of locomotion mode recognition errors on volitional control of powered prosthetic legs and the user's gait stability, and 2) identify the critical mode recognition errors that impact safe and confident use of powered artificial legs in lower limb amputees. Five able-bodied subjects and two above-knee (AK) amputees were recruited and tested when wearing a powered AK prosthesis. Four types of locomotion mode recognition errors with different duration and at different gait phases were purposely applied to the prosthesis control. The subjects' gait stabilities were subjectively and objectively quantified. The results showed that not all of the mode recognition errors in volitional prosthesis control disturb the subjects' gait stability. The effects of errors on the user's balance depended on 1) the gait phase when the errors happened and 2) the amount of mechanical work change applied on the powered knee caused by the errors. Based on the study results, "critical errors" were defined and suggested as a new index to evaluate locomotion mode recognition algorithms for artificial legs. The outcome of this study might aid the future design of volitionally-controlled powered prosthetic legs that are reliable and safe for practice. PMID:25486645

  12. Subspacing Based on Connected Opening Spaces and for Different Locomotion Types Using Geometric and Graph Based Representation in Multilayered Space-Event Model (mlsem)

    NASA Astrophysics Data System (ADS)

    Khan, A. A.; Kolbe, T. H.

    2013-09-01

    Indoor navigation has to deal with more issues as compared to outdoor navigation. Those issues include but are not limited to; need more level of detail to process enclosing area around navigating subject or object, consideration of the context of navigation (about locomotion type and its operating environment), and dealing with unconstrained indoor space for accurate results. Because of these complex issues, most of the frameworks for indoor navigation support for only one single type of locomotion, i.e. either walking, driving, or flying. And this decision to select a specific type of locomotion results in restricting the use of representation of indoor space for other types of locomotion e.g. graph-based abstraction of indoor space for driving cannot be used for flying. In this work, we addressed the problem of supporting different types of locomotion in indoor space by determining 3D navigable subspace for the given locomotion type based on its physical constraints. While determining 3D subspace, we focused on some issues that include indoor space representation, precision of subspace computation, and "the consideration of the context of navigation" (about indoor space and the locomotion type). To achieve better representation of indoor space, the subspaces are determined based on the connected opening spaces. And for precise subspace computation according to the given locomotion type, we used the geometric methods i.e. configuration space from robotics field. Furthermore, a semantically enriched 3D indoor virtual model in CityGML format and different locomotion types (flying, driving, and walking) containing information (semantics, geometry, and topology) were considered to examine the context of navigation. Last but not least, the subspacing procedure was presented and implemented in a sound mathematical framework i.e. Multilayered Space-Event Model (MLSEM) as proposed by Becker, Nagel, and Kolbe in 2008 and 2009.

  13. Locomotion Induced by Spatial Restriction in Adult Drosophila

    PubMed Central

    Xiao, Chengfeng; Robertson, R. Meldrum

    2015-01-01

    Drosophila adults display an unwillingness to enter confined spaces but the behaviors induced by spatial restriction in Drosophila are largely unknown. We developed a protocol for high-throughput analysis of locomotion and characterized features of locomotion in a restricted space. We observed intense and persistent locomotion of flies in small circular arenas (diameter 1.27 cm), whereas locomotion was greatly reduced in large circular arenas (diameter 3.81 cm). The increased locomotion induced by spatial restriction was seen in male flies but not female flies, indicating sexual dimorphism of the response to spatial restriction. In large arenas, male flies increased locomotion in arenas previously occupied by male but not female individuals. In small arenas, such pre-conditioning had no effect on male flies, which showed intense and persistent locomotion similar to that seen in fresh arenas. During locomotion with spatial restriction, wildtype Canton-S males traveled slower and with less variation in speed than the mutant w1118 carrying a null allele of white gene. In addition, wildtype flies showed a stronger preference for the boundary than the mutant in small arenas. Genetic analysis with a series of crosses revealed that the white gene was not associated with the phenotype of boundary preference in wildtype flies. PMID:26351842

  14. Goal Directed Locomotion and Balance Control in Autistic Children

    ERIC Educational Resources Information Center

    Vernazza-Martin, S.; Martin, N.; Vernazza, A.; Lepellec-Muller, A.; Rufo, M.; Massion, J.; Assaiante, C.

    2005-01-01

    This article focuses on postural anticipation and multi-joint coordination during locomotion in healthy and autistic children. Three questions were addressed: (1) Are gait parameters modified in autistic children? (2) Is equilibrium control affected in autistic children? (3) Is locomotion adjusted to the experimenter-imposed goal? Six healthy…

  15. Looking north toward Locomotive Shop (2 tracks on left), Car ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking north toward Locomotive Shop (2 tracks on left), Car Shop on right, and flat car in foreground. Note locomotive and car tires leaning on stock shed at left - East Broad Top Railroad & Coal Company, State Route 994, West of U.S. Route 522, Rockhill Furnace, Huntingdon County, PA

  16. Economic assessment of coal-burning locomotives: Topical report

    SciTech Connect

    Not Available

    1986-02-01

    The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurry as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.

  17. 40 CFR 1033.230 - Grouping locomotives into engine families.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... families. 1033.230 Section 1033.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.230 Grouping locomotives into engine families. (a) Divide your product line into engine families of...

  18. 40 CFR 1033.230 - Grouping locomotives into engine families.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... families. 1033.230 Section 1033.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.230 Grouping locomotives into engine families. (a) Divide your product line into engine families of...

  19. 40 CFR 1033.230 - Grouping locomotives into engine families.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... families. 1033.230 Section 1033.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.230 Grouping locomotives into engine families. (a) Divide your product line into engine families of...

  20. 40 CFR 1033.230 - Grouping locomotives into engine families.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... families. 1033.230 Section 1033.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.230 Grouping locomotives into engine families. (a) Divide your product line into engine families of...

  1. 49 CFR 232.105 - General requirements for locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reservoir on locomotives and related piping shall be zero, unless the system is capable of maintaining the... equalizing-reservoir leakage can be corrected. On locomotives equipped with electronic brakes, if the system logs or displays a fault related to equalizing reservoir leakage, the train may be moved only to...

  2. 40 CFR Appendix A to Subpart A of... - Switcher Locomotives

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Switcher Locomotives A Appendix A to Subpart A of Part 201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... Provisions Pt. 201, Subpt. A, App. A Appendix A to Subpart A of Part 201—Switcher Locomotives Type...

  3. 40 CFR Appendix A to Subpart A of... - Switcher Locomotives

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Switcher Locomotives A Appendix A to Subpart A of Part 201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... Provisions Pt. 201, Subpt. A, App. A Appendix A to Subpart A of Part 201—Switcher Locomotives Type...

  4. 40 CFR Appendix A to Subpart A of... - Switcher Locomotives

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Switcher Locomotives A Appendix A to Subpart A of Part 201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... Provisions Pt. 201, Subpt. A, App. A Appendix A to Subpart A of Part 201—Switcher Locomotives Type...

  5. 40 CFR Appendix A to Subpart A of... - Switcher Locomotives

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Switcher Locomotives A Appendix A to Subpart A of Part 201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... Provisions Pt. 201, Subpt. A, App. A Appendix A to Subpart A of Part 201—Switcher Locomotives Type...

  6. 40 CFR Appendix A to Subpart A of... - Switcher Locomotives

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Switcher Locomotives A Appendix A to Subpart A of Part 201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... Provisions Pt. 201, Subpt. A, App. A Appendix A to Subpart A of Part 201—Switcher Locomotives Type...

  7. 49 CFR 232.105 - General requirements for locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER NON-PASSENGER... reservoir on locomotives and related piping shall be zero, unless the system is capable of maintaining the... equalizing-reservoir leakage can be corrected. On locomotives equipped with electronic brakes, if the...

  8. 49 CFR 236.509 - Two or more locomotives coupled.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Two or more locomotives coupled. 236.509 Section... Train Stop, Train Control and Cab Signal Systems Standards § 236.509 Two or more locomotives coupled. The automatic train stop, train control or cab signal apparatus shall be arranged so that when two...

  9. 40 CFR 92.104 - Locomotive and engine testing; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... restriction within 1 inch of water of the upper limit of a typical engine as installed with clean air filters... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Locomotive and engine testing....104 Locomotive and engine testing; overview. (a) The test procedures described here...

  10. 40 CFR 92.104 - Locomotive and engine testing; overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... restriction within 1 inch of water of the upper limit of a typical engine as installed with clean air filters... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Locomotive and engine testing....104 Locomotive and engine testing; overview. (a) The test procedures described here...

  11. 77 FR 30047 - Petition for Alternative Locomotive Crashworthiness Design

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Federal Railroad Administration Petition for Alternative Locomotive Crashworthiness Design In accordance... design for an electric locomotive, Model ACS-64, built by Siemens Industry, Inc. This request is made in...-0036. The alternative design incorporates crash energy management features, detailed in the...

  12. 49 CFR 229.13 - Control of locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... coupled in remote or multiple control, the propulsion system, the sanders, and the power brake system of each locomotive shall respond to control from the cab of the controlling locomotive. If a dynamic brake or regenerative brake system is in use, that portion of the system in use shall respond to...

  13. 49 CFR 231.30 - Locomotives used in switching service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... classification of cars according to commodity or destination; assembling of cars for train movements; changing... constitute a road movement. However, this term does not include movement of a train or part of a train within yard limits by the road locomotive and the placement of locomotives or cars in a train or their...

  14. 49 CFR 231.30 - Locomotives used in switching service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... classification of cars according to commodity or destination; assembling of cars for train movements; changing... constitute a road movement. However, this term does not include movement of a train or part of a train within yard limits by the road locomotive and the placement of locomotives or cars in a train or their...

  15. Environmental engineering simplifies subterranean locomotion control

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Monaenkova, Darya; Goodisman, Michael A. D.; Goldman, Daniel I.

    2013-03-01

    We hypothesize that ants engineer habitats which reduce locomotion control requirements. We studied tunnel construction, and locomotion, in fire ants (Solenopsis invicta, body length L = 0 . 35 +/- 0 . 05). In their daily life, ants forage for food above ground and return resources to the nest. This steady-state tunnel traffic enables high-throughput biomechanics studies of tunnel climbing. In a laboratory experiment we challenged fire ants to climb through 8 cm long glass tunnels (D = 0.1 - 0.9 cm) that separated a nest from an open arena with food and water. During ascending and descending climbs we induced falls by a motion-activated rapid, short, downward translation of the tunnels. Normalized tunnel diameter (D / L) determined the ability of ants to rapidly recover from perturbations. Fall arrest probability was unity for small D / L , and zero for large D / L . The transition from successful to unsuccessful arrest occurred at D / L = 1 . 4 +/- 0 . 3 . Through X-Ray computed tomography study we show that the diameter of ant-excavated tunnels is independent of soil-moisture content (studied from 1-20%) and particle size (50-595 μm diameter), and has a mean value of D / L = 1 . 06 +/- 0 . 23 . Thus fire ants construct tunnels of diameter near the onset of fall instability.

  16. Turning and maneuverability during sidewinding locomotion

    NASA Astrophysics Data System (ADS)

    Astley, Henry; Goldman, Daniel; Hu, David

    2014-03-01

    Sidewinding is an unusual form of snake locomotion used to move rapidly on yielding substrates such as desert sands. Posteriorly propagating waves alternate between static contact with the substrate and elevated motion, resulting in a ``stepping'' motion of body segments. Unlike lateral undulation, the direction of travel is not collinear with the axis of the body wave, and posterior body segments do not follow the path of anterior segments. Field observations indicate that sidewinding snakes are highly maneuverable, but the mechanisms by which these snakes change direction during this complex movement are unknown. Motion capture data from three Colorado Desert sidewinder rattlesnakes (Crotalus cerastes laterorepens) shows a variety of turn magnitudes and behaviors. Additionally, sidewinders are capable of ``reversals'' in which the snakes halts forward progress and begins locomotion in the opposite direction without rotation of the body. Because the head is re-oriented with respect to the body during these reversals, the snake is able to reverse direction without rotation yet continue moving in the new direction without impediment to perception or mechanics, a rare level of maneuverability in animals.

  17. Locomotion of a flapping flexible plate

    NASA Astrophysics Data System (ADS)

    Hua, Ru-Nan; Zhu, Luoding; Lu, Xi-Yun

    2013-12-01

    The locomotion of a flapping flexible plate in a viscous incompressible stationary fluid is numerically studied by an immersed boundary-lattice Boltzmann method for the fluid and a finite element method for the plate. When the leading-edge of the flexible plate is forced to heave sinusoidally, the entire plate starts to move freely as a result of the fluid-structure interaction. Mechanisms underlying the dynamics of the plate are elucidated. Three distinct states of the plate motion are identified and can be described as forward, backward, and irregular. Which state to occur depends mainly on the heaving amplitude and the bending rigidity of the plate. In the forward motion regime, analysis of the dynamic behaviors of the flapping flexible plate indicates that a suitable degree of flexibility can improve the propulsive performance. Moreover, there exist two kinds of vortex streets in the downstream of the plate which are normal and deflected wake. Further the forward motion is compared with the flapping-based locomotion of swimming and flying animals. The results obtained in the present study are found to be consistent with the relevant observations and measurements and can provide some physical insights into the understanding of the propulsive mechanisms of swimming and flying animals.

  18. Bipedal and quadrupedal locomotion in chimpanzees.

    PubMed

    Pontzer, Herman; Raichlen, David A; Rodman, Peter S

    2014-01-01

    Chimpanzees (Pan troglodytes) habitually walk both bipedally and quadrupedally, and have been a common point of reference for understanding the evolution of bipedal locomotion in early ape-like hominins. Here we compare the kinematics, kinetics, and energetics of bipedal and quadrupedal walking and running in a sample of five captive chimpanzees. Kinematics were recorded using sagittal-plane digital high-speed video of treadmill trials. Kinetics were recorded via a forceplate. Metabolic energy cost was measured via steady-state oxygen consumption during treadmill trials. Consistent with previous work on chimpanzees and other hominoids, we found that the spatiotemporal characteristics, joint angles, ground reaction forces, and metabolic cost of bipedal and quadrupedal locomotion are similar in chimpanzees. Notable differences include hip and trunk angles, which reflected a more orthograde trunk posture during bipedalism, and mediolateral ground reaction forces, which were larger during bipedal walking. Stride frequencies were also higher (and step lengths shorter) during bipedal trials. Bipedal and quadrupedal walking among chimpanzees was similar to that reported for bonobos, gibbons, and other primates. The similarity in cost between bipedal and quadrupedal trials suggests that the adoption of bipedal walking would have had no effect on walking costs for early ape-like hominins. However, habitual bipedalism may have favored modifications of the hip to allow a more orthograde posture, and of the hind limb abductor mechanisms to efficiently exert mediolateral ground forces. PMID:24315239

  19. A Review of Locomotion Systems for Capsule Endoscopy.

    PubMed

    Liu, Lejie; Towfighian, Shahrzad; Hila, Amine

    2015-01-01

    Wireless capsule endoscopy for gastrointestinal (GI) tract is a modern technology that has the potential to replace conventional endoscopy techniques. Capsule endoscopy is a pill-shaped device embedded with a camera, a coin battery, and a data transfer. Without a locomotion system, this capsule endoscopy can only passively travel inside the GI tract via natural peristalsis, thus causing several disadvantages such as inability to control and stop, and risk of capsule retention. Therefore, a locomotion system needs to be added to optimize the current capsule endoscopy. This review summarizes the state-of-the-art locomotion methods along with the desired locomotion features such as size, speed, power, and temperature and compares the properties of different methods. In addition, properties and motility mechanisms of the GI tract are described. The main purpose of this review is to understand the features of GI tract and diverse locomotion methods in order to create a future capsule endoscopy compatible with GI tract properties. PMID:26292162

  20. Sensory feedback in cockroach locomotion: current knowledge and open questions.

    PubMed

    Ayali, A; Couzin-Fuchs, E; David, I; Gal, O; Holmes, P; Knebel, D

    2015-09-01

    The American cockroach, Periplaneta americana, provides a successful model for the study of legged locomotion. Sensory regulation and the relative importance of sensory feedback vs. central control in animal locomotion are key aspects in our understanding of locomotive behavior. Here we introduce the cockroach model and describe the basic characteristics of the neural generation and control of walking and running in this insect. We further provide a brief overview of some recent studies, including mathematical modeling, which have contributed to our knowledge of sensory control in cockroach locomotion. We focus on two sensory mechanisms and sense organs, those providing information related to loading and unloading of the body and the legs, and leg-movement-related sensory receptors, and present evidence for the instrumental role of these sensory signals in inter-leg locomotion control. We conclude by identifying important open questions and indicate future perspectives. PMID:25432627

  1. Whole-body vibration and ergonomic study of US railroad locomotives

    NASA Astrophysics Data System (ADS)

    Johanning, Eckardt; Landsbergis, Paul; Fischer, Siegfried; Christ, Eberhard; Göres, Benno; Luhrman, Raymond

    2006-12-01

    US locomotive operators have exposure to multi-axis whole-body vibration (WBV) and shocks while seated. This study assessed operator-related and ergonomic seating design factors that may have confounding or mitigating influence on WBV exposure and its effects. Vibration exposure was measured according to international guidelines (ISO 2631-1; 1997); ergonomic work place factors and vibration effects were studied with a cross-sectional survey instrument distributed to a randomly selected group of railroad engineers ( n=2546) and a control group; and during vehicle inspections. The survey response rate was 47% for the RR engineers ( n=1195) and 41% for the controls ( n=323). Results of the mean basic vibration measurements were for the x, y, z-direction and vector sum 0.14, 0.22, 0.28 and 0.49 m/s 2 respectively; almost all crest factors (CF), MTVV and VDV values were above the critical ratios given in ISO 2631-1. The prevalence of serious neck and lower back disorders among locomotive engineers was found to be nearly double that of the sedentary control group without such exposure. Railroad engineers rated their seats mostly unacceptable regarding different adjustment and comfort aspects (3.02-3.51; scale 1=excellent to 4=unacceptable), while the control group rated their chairs more favorably (1.96-3.44). Existing cab and seat design in locomotives can result in prolonged forced awkward spinal posture of the operator combined with WBV exposure. In a logistic regression analysis, time at work being bothered by vibration (h/day) was significantly associated with an increased risk of low back pain, shoulder and neck pain, and sciatic pain among railroad engineers. Customized vibration attenuation seats and improved cab design of the locomotive controls should be further investigated.

  2. Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)

    SciTech Connect

    Whitaker, M.; Heath, G.

    2009-03-01

    With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

  3. Development of an Environment-Aware Locomotion Mode Recognition System for Powered Lower Limb Prostheses.

    PubMed

    Liu, Ming; Wang, Ding; Helen Huang, He

    2016-04-01

    This paper aimed to develop and evaluate an environment-aware locomotion mode recognition system for volitional control of powered artificial legs. A portable terrain recognition (TR) module, consisting of an inertia measurement unit and a laser distance meter, was built to identify the type of terrain in front of the wearer while walking. A decision tree was used to classify the terrain types and provide either coarse or refined information about the walking environment. Then, the obtained environmental information was modeled as a priori probability and was integrated with a neuromuscular-mechanical-fusion-based locomotion mode (LM) recognition system. The designed TR module and environmental-aware LM recognition system was evaluated separately on able-bodied subjects and a transfemoral amputee online. The results showed that the TR module provided high quality environmental information: TR accuracy is above 98% and terrain transitions are detected over 500 ms before the time required to switch the prosthesis control mode. This enabled smooth locomotion mode transitions for the wearers. The obtained environmental information further improved the performance of LM recognition system, regardless of whether coarse or refined information was used. In addition, the environment-aware LM recognition system produced reliable online performance when the TR output was relatively noisy, which indicated the potential of this system to operate in unconstructed environment. This paper demonstrated that environmental information should be considered for operating wearable lower limb robotic devices, such as prosthetics and orthotics. PMID:25879962

  4. Cocaine modulates locomotion behavior in C. elegans.

    PubMed

    Ward, Alex; Walker, Vyvyca J; Feng, Zhaoyang; Xu, X Z Shawn

    2009-01-01

    Cocaine, a potent addictive substance, is an inhibitor of monoamine transporters, including DAT (dopamine transporter), SERT (serotonin transporter) and NET (norepinephrine transporter). Cocaine administration induces complex behavioral alterations in mammals, but the underlying mechanisms are not well understood. Here, we tested the effect of cocaine on C. elegans behavior. We show for the first time that acute cocaine treatment evokes changes in C. elegans locomotor activity. Interestingly, the neurotransmitter serotonin, rather than dopamine, is required for cocaine response in C. elegans. The C. elegans SERT MOD-5 is essential for the effect of cocaine, consistent with the role of cocaine in targeting monoamine transporters. We further show that the behavioral response to cocaine is primarily mediated by the ionotropic serotonin receptor MOD-1. Thus, cocaine modulates locomotion behavior in C. elegans primarily by impinging on its serotoninergic system. PMID:19536276

  5. Locomotion of C elegans in structured environments

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Keaveny, Eric; Shelley, Michael; Zhang, Jun

    2011-11-01

    We have established a combined experimental and numerical platform to study the swimming dynamics of an undulating worm in structured environments (fluid-filled micro-pillar arrays). We have shown that the worm (C. elegans) swims with different velocity and frequency depending on the lattice spacing and our purely mechanistic simulations (elastically linked bead-chain) reproduce the experimental results qualitatively and quantitatively, including ``life-like'' trajectories the worm exhibits. We build upon this platform to investigate more complex environments, such as linear and radial lattices, with gradients in spacing. In addition, we study C. elegans mutants to investigate the role of length of the worm, frequency of undulations, and mechano-sensation on the resultant dynamics. We also examine the worm moving through a lattice with random distribution of obstacles - a model soil-like environment. Our combined experimental and simulations approach allows us to gain insights into the dynamics of locomotion of undulating microorganisms in realistic complex environments.

  6. Locomotion by Tandem and Parallel Wings

    NASA Astrophysics Data System (ADS)

    Tanida, Yoshimichi

    A two-dimensional analysis was carried out on the locomotion by tandem and parallel wings in relation to the free flight of dragonflies and beetles, remarking the mutual interference between fore and hind wings. The results obtained are summarized as follows: In the case of tandem wings, (1)High thrust and propulsive efficiency can be achieved when the forewing oscillates with a definite phase lag behind the hindwing, as in the case of real dragonflies, (2)Somewhat smaller amplitude of hindwing leads to optimum condition for work sharing of two wings, (3)The hard forewing does not serve for the thrust and propulsive efficiency, whereas the hard hindwing does for the augmentation of them; In the case of parallel wings, (4)The hard wing placed near the soft wing acts nearly as an infinite plate, as for the ground effect, increasing both thrust and propulsive efficiency.

  7. Hydrodynamics and control of microbial locomotion

    NASA Astrophysics Data System (ADS)

    Dunkel, Jorn; Kantsler, Vasily; Polin, Marco; Wioland, Hugo; Goldstein, Raymond

    2014-03-01

    Interactions between swimming cells, surfaces and fluid flow are essential to many microbiological processes, from the formation of biofilms to the fertilization of human egg cells. Yet, relatively little remains known quantitatively about the physical mechanisms that govern the response of bacteria, algae and sperm cells to flow velocity gradients and solid surfaces. A better understanding of cell-surface and cell-flow interactions promises new biological insights and may advance microfluidic techniques for controlling microbial and sperm locomotion, with potential applications in diagnostics and therapeutic protein synthesis. Here, we report new experimental measurements that quantify surface interactions of bacteria, unicellular green algae and mammalian spermatozoa. These experiments show that the subtle interplay of hydrodynamics and surface interactions can stabilize collective bacterial motion, that direct ciliary contact interactions dominate surface scattering of eukaryotic biflagellate algae, and that rheotaxis combined with steric surface interactions provides a robust long-range navigation mechanism for sperm cells.

  8. Fish locomotion: recent advances and new directions.

    PubMed

    Lauder, George V

    2015-01-01

    Research on fish locomotion has expanded greatly in recent years as new approaches have been brought to bear on a classical field of study. Detailed analyses of patterns of body and fin motion and the effects of these movements on water flow patterns have helped scientists understand the causes and effects of hydrodynamic patterns produced by swimming fish. Recent developments include the study of the center-of-mass motion of swimming fish and the use of volumetric imaging systems that allow three-dimensional instantaneous snapshots of wake flow patterns. The large numbers of swimming fish in the oceans and the vorticity present in fin and body wakes support the hypothesis that fish contribute significantly to the mixing of ocean waters. New developments in fish robotics have enhanced understanding of the physical principles underlying aquatic propulsion and allowed intriguing biological features, such as the structure of shark skin, to be studied in detail. PMID:25251278

  9. Fish Locomotion: Recent Advances and New Directions

    NASA Astrophysics Data System (ADS)

    Lauder, George V.

    2015-01-01

    Research on fish locomotion has expanded greatly in recent years as new approaches have been brought to bear on a classical field of study. Detailed analyses of patterns of body and fin motion and the effects of these movements on water flow patterns have helped scientists understand the causes and effects of hydrodynamic patterns produced by swimming fish. Recent developments include the study of the center-of-mass motion of swimming fish and the use of volumetric imaging systems that allow three-dimensional instantaneous snapshots of wake flow patterns. The large numbers of swimming fish in the oceans and the vorticity present in fin and body wakes support the hypothesis that fish contribute significantly to the mixing of ocean waters. New developments in fish robotics have enhanced understanding of the physical principles underlying aquatic propulsion and allowed intriguing biological features, such as the structure of shark skin, to be studied in detail.

  10. Biofluiddynamics of balistiform and gymnotiform locomotion: Revisited

    NASA Astrophysics Data System (ADS)

    Sprinkle, Brennan; Bale, Rahul; Singh, Amneet; Chen, Nelson; Maciver, Malcom; Patankar, Neelesh

    2015-11-01

    Gymnotiform and balistiform swimmers are those which have an undulatory fin affixed to a rigid body unlike anguilliforms who undulate their entire body. Is there a mechanical advantage to gymnotiform and balistiform swimming? This question was investigated by Lighthill & Blake in a four paper series Biofluiddynamics of balistiform and gymnotiform locomotion. We revisit this work using fully resolved numerical simulations of the types of swimmers considered by Lighthill & Blake to interrogate the issue of mechanical advantage for rigid body swimmers. In doing so, we find that while there is advantage to rigid body swimming, the mechanism of `momentum enhancement,' proposed by Lighthill and Blake, is not the cause. Further, we use our results and simulations to explain why some gymnotiform and balistiform swimmers have their propulsor attached to their bodies at an angle. This work was supported in part by NSF grants CBET-0828749, CMMI-0941674 and CBET-1066575. Computational resources were provided by Northwestern University High Performance Computing System-Quest.

  11. The Effect of Increasing Mass upon Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Hagan, Donald

    2007-01-01

    The purpose of this investigation was to determine if increasing body mass while maintaining bodyweight would affect ground reaction forces and joint kinetics during walking and running. It was hypothesized that performing gait with increased mass while maintaining body weight would result in greater ground reaction forces, and would affect the net joint torques and work at the ankle, knee and hip when compared to gait with normal mass and bodyweight. Vertical ground reaction force was measured for ten subjects (5M/5F) during walking (1.34 m/s) and running (3.13 m/s) on a treadmill. Subjects completed one minute of locomotion at normal mass and bodyweight and at four added mass (AM) conditions (10%, 20%, 30% and 40% of body mass) in random order. Three-dimensional joint position data were collected via videography. Walking and running were analyzed separately. The addition of mass resulted in several effects. Peak impact forces and loading rates increased during walking, but decreased during running. Peak propulsive forces decreased during walking and did not change during running. Stride time increased and hip extensor angular impulse and positive work increased as mass was added for both styles of locomotion. Work increased at a greater rate during running than walking. The adaptations to additional mass that occur during walking are different than during running. Increasing mass during exercise in microgravity may be beneficial to increasing ground reaction forces during walking and strengthening hip musculature during both walking and running. Future study in true microgravity is required to determine if the adaptations found would be similar in a weightless environment.

  12. Dynamic legged locomotion in robots and animals

    NASA Astrophysics Data System (ADS)

    Raibert, Marc; Playter, Robert; Ringrose, Robert; Bailey, Dave; Leeser, Karl

    1995-01-01

    This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: (1) Is cockroach locomotion dynamic? To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that 'Groucho Running,' a type of dynamic walking, seems feasible at cockroach scale. (2) How do bipeds shift weight between the legs? We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. (3) 3D biped gymnastics: The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. (4) Passively stabilized layout somersault: We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical 'doll' model and computer simulation to illustrate the point. (5) Twisting: Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.

  13. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive...

  14. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive...

  15. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive...

  16. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive...

  17. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive...

  18. [Mild cognitive disorders in railway locomotive crew workers (review of literature)].

    PubMed

    Ozhogina, O A; Zakrevskaya, A A; Serikov, V V

    2016-01-01

    Functional reliability of engine operator and engine operator's assistant is one of the most important factors in railway safety. Ability to railway locomotive operation is determined via suitability criteria of occupationally important qualities of operator and operator's assistant, and of nervous system functional state. Lower reliability manifested in worse functional state of engine operator or in lost occupationally important qualities can be connected with various diseases of which most prevalent are cardiovascular disorders. Transitory brain circulatory disorders can cause cognitive disturbances varying in severity. When mild cognitive disorders, precise diagnosis leads to effective prevention of the diseases development and preserved occupationally important qualities in engine operators. Neuropsychologic methods for mild cognitive disorders help not only to diagnose presence and intensity of cognitive defect, but to suggest a mechanism of its development, that eventually increases efficiency of correction. PMID:27396149

  19. Synaptic representation of locomotion in single cerebellar granule cells

    PubMed Central

    Powell, Kate; Mathy, Alexandre; Duguid, Ian; Häusser, Michael

    2015-01-01

    The cerebellum plays a crucial role in the regulation of locomotion, but how movement is represented at the synaptic level is not known. Here, we use in vivo patch-clamp recordings to show that locomotion can be directly read out from mossy fiber synaptic input and spike output in single granule cells. The increase in granule cell spiking during locomotion is enhanced by glutamate spillover currents recruited during movement. Surprisingly, the entire step sequence can be predicted from input EPSCs and output spikes of a single granule cell, suggesting that a robust gait code is present already at the cerebellar input layer and transmitted via the granule cell pathway to downstream Purkinje cells. Thus, synaptic input delivers remarkably rich information to single neurons during locomotion. DOI: http://dx.doi.org/10.7554/eLife.07290.001 PMID:26083712

  20. EXTERIOR VIEW WITH HEART OF DIXIE MUSEUM'S HISTORIC LOCOMOTIVE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW WITH HEART OF DIXIE MUSEUM'S HISTORIC LOCOMOTIVE IN MUSEUM'S POWELL AVENUE YARD (BOTTOM) AND SOUTHERN RAILWAY BOXCAR ON ACTIVE TRACKAGE (ABOVE). - Heart of Dixie Railroad, Rolling Stock, 1800 Block Powell Avenue, Birmingham, Jefferson County, AL

  1. 10. Locomotive smoke flue coming through Roundhouse roof with gable ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Locomotive smoke flue coming through Roundhouse roof with gable end of Machine Shop in background. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Roundhouse, Site Bounded by West Broad, Jones, West Boundary & Hull, Savannah, Chatham County, GA

  2. "Shower head" water connection for servicing railroad locomotives, perspective view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Shower head" water connection for servicing railroad locomotives, perspective view looking NW across ATSF railyard. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ

  3. Breathing and locomotion: comparative anatomy, morphology and function.

    PubMed

    Klein, Wilfried; Codd, Jonathan R

    2010-08-31

    Using specialized respiratory structures such as gills, lungs and or a tracheal system, animals take up oxygen and release carbon dioxide. The efficiency of gas exchange, however, may be constrained by the morphology of the respiratory organ itself as well as by other aspects of an animal's physiology such as feeding, circulation or locomotion. Herein we discuss some aspects of the functional link between the respiratory and locomotor systems, such as gill morphology of sharks as a factor limiting maximum aerobic scope, respiratory constraints among legless lizards, lung morphology of testudines, trade-offs between locomotion and respiration among birds, reconstruction of the respiratory system of sauropods, respiration of mice during locomotion as well as some aspects of gas exchange among insects. Data covering such a broad spectrum of interactions between the locomotor and respiratory systems shall allow us to place breathing and locomotion into a wider context of evolution of oxygen. PMID:20417316

  4. Performance evaluation of the hydrogen-powered prototype locomotive 'Hydrogen Pioneer'

    NASA Astrophysics Data System (ADS)

    Hoffrichter, Andreas; Fisher, Peter; Tutcher, Jonathan; Hillmansen, Stuart; Roberts, Clive

    2014-03-01

    The narrow-gauge locomotive 'Hydrogen Pioneer', which was developed and constructed at the University of Birmingham, was employed to establish the performance of a hydrogen-hybrid railway traction vehicle. To achieve this several empirical tests were conducted. The locomotive utilises hydrogen gas in a Proton Exchange Membrane Fuel Cell power-plant to supply electricity to the traction motors or charge the on-board lead-acid batteries. First, the resistance to motion of the vehicle was determined, then operating tests were conducted for the speeds 2 km h-1, 6 km h-1, 7 km h-1, and 10 km h-1 on a 30 m straight, level alignment resembling light running. The power-plant and vehicle efficiency as well as the performance of the hybrid system were recorded. The observed overall duty cycle efficiency of the power-plant was from 28% to 40% and peak-power demand, such as during acceleration, was provided by the battery-pack, while average power during the duty cycle was met by the fuel cell stack, as designed. The tests establish the proof-of-concept for a hydrogen-hybrid railway traction vehicle and the results indicate that the traction system can be applied to full-scale locomotives.

  5. Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane.

    PubMed

    So, Hongyun; Pisano, Albert P; Seo, Young Ho

    2014-07-01

    This paper presents a microfluidic pump operated by an asymmetrically deformed membrane, which was inspired by caterpillar locomotion. Almost all mechanical micropumps consist of two major components of fluid halting and fluid pushing parts, whereas the proposed caterpillar locomotion-inspired micropump has only a single, bilaterally symmetric membrane-like teardrop shape. A teardrop-shaped elastomeric membrane was asymmetrically deformed and then consecutively touched down to the bottom of the chamber in response to pneumatic pressure, thus achieving fluid pushing. Consecutive touchdown motions of the teardrop-shaped membrane mimicked the propagation of a caterpillar's hump during its locomotory gait. The initial touchdown motion of the teardrop-shaped membrane at the centroid worked as a valve that blocked the inlet channel, and then, the consecutive touchdown motions pushed fluid in the chamber toward the tail of the chamber connected to the outlet channel. The propagation of the touchdown motion of the teardrop-shaped membrane was investigated using computational analysis as well as experimental studies. This caterpillar locomotion-inspired micropump composed of only a single membrane can provide new opportunities for simple integration of microfluidic systems. PMID:24812661

  6. FIM, a Novel FTIR-Based Imaging Method for High Throughput Locomotion Analysis

    PubMed Central

    Otto, Nils; Löpmeier, Tim; Valkov, Dimitar; Jiang, Xiaoyi; Klämbt, Christian

    2013-01-01

    We designed a novel imaging technique based on frustrated total internal reflection (FTIR) to obtain high resolution and high contrast movies. This FTIR-based Imaging Method (FIM) is suitable for a wide range of biological applications and a wide range of organisms. It operates at all wavelengths permitting the in vivo detection of fluorescent proteins. To demonstrate the benefits of FIM, we analyzed large groups of crawling Drosophila larvae. The number of analyzable locomotion tracks was increased by implementing a new software module capable of preserving larval identity during most collision events. This module is integrated in our new tracking program named FIMTrack which subsequently extracts a number of features required for the analysis of complex locomotion phenotypes. FIM enables high throughput screening for even subtle behavioral phenotypes. We tested this newly developed setup by analyzing locomotion deficits caused by the glial knockdown of several genes. Suppression of kinesin heavy chain (khc) or rab30 function led to contraction pattern or head sweeping defects, which escaped in previous analysis. Thus, FIM permits forward genetic screens aimed to unravel the neural basis of behavior. PMID:23349775

  7. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.

    PubMed

    Manfredi, L; Assaf, T; Mintchev, S; Marrazza, S; Capantini, L; Orofino, S; Ascari, L; Grillner, S; Wallén, P; Ekeberg, O; Stefanini, C; Dario, P

    2013-10-01

    The bioinspired approach has been key in combining the disciplines of robotics with neuroscience in an effective and promising fashion. Indeed, certain aspects in the field of neuroscience, such as goal-directed locomotion and behaviour selection, can be validated through robotic artefacts. In particular, swimming is a functionally important behaviour where neuromuscular structures, neural control architecture and operation can be replicated artificially following models from biology and neuroscience. In this article, we present a biomimetic system inspired by the lamprey, an early vertebrate that locomotes using anguilliform swimming. The artefact possesses extra- and proprioceptive sensory receptors, muscle-like actuation, distributed embedded control and a vision system. Experiments on optimised swimming and on goal-directed locomotion are reported, as well as the assessment of the performance of the system, which shows high energy efficiency and adaptive behaviour. While the focus is on providing a robotic platform for testing biological models, the reported system can also be of major relevance for the development of engineering system applications. PMID:24030051

  8. Trading of locomotive NO{sub x} emissions : a potential success story.

    SciTech Connect

    Gaines, L. L.; Biess, L. J.; Diedrich, G. K.

    2002-04-26

    New US Environmental Protection Agency regulations are forcing locomotive manufacturers and railroads to reduce pollutant emissions from locomotive operation. All new locomotives must meet strict standards when they are built, and existing locomotives must comply when they are rebuilt. Emissions can be reduced either by adjusting combustion parameters, which incurs a fuel penalty, or by turning the diesel engine off when the train is not moving and would otherwise be idling. The latter reduces fuel consumption, but requires installation of a device--such as an auxiliary power unit (APU)--to ensure that the engine can be restarted in cold weather and to supply hotel loads for the crew. Without a financial incentive, capital-short railroads will opt to achieve compliance in the least costly way. However, if they have the option of selling emissions credits from reducing emissions below regulated levels, it would be in their best interest to install additional equipment to minimize emissions. These credits could be purchased by businesses with compliance costs greater than either the cost of the credits or the fines they would have had to pay for non-compliance. The result is a financial benefit for both parties, and a net reduction in emissions, because the seller is emitting below regulated levels, and the buyer is no longer non-compliant. This paper describes a railroad as the potential seller, unable to consummate trades because of uncertainty in the regulatory environment, and estimates financial benefits and reductions in emissions and energy use that could be achieved if the barrier could be removed.

  9. Trading of locomotive NO{sub x} emissions : a potential success story.

    SciTech Connect

    Gaines, L. L.; Biess, L. J.; Diedrich, G. K.

    2002-04-26

    New US Environmental Protection Agency regulations are forcing locomotive manufacturers and railroads to reduce pollutant emissions from locomotive operation. All new locomotives must meet strict standards when they are built, and existing locomotives must comply when they are rebuilt. Emissions can be reduced either by adjusting combustion parameters, which incurs a fuel penalty, or by turning the diesel engine off when the train is not moving and would otherwise be idling. The latter reduces fuel consumption, but requires installation of a device--such as an auxiliary power unit (APU)--to ensure that the engine can be restarted in cold weather and to supply hotel loads for the crew. Without a financial incentive, capital-short railroads will opt to achieve compliance in the least costly way. However, if they have the option of selling emission credits from reducing emissions below regulated levels, it would be in their best interest to install additional equipment to minimize emissions. These credits could be purchased by businesses with compliance costs greater than either the cost of the credits or the fines they would have had to pay for non-compliance. The result is a financial benefit for both parties, and a net reduction in emissions, because the seller is emitting below regulated levels, and the buyer is no longer non-compliant. This paper describes a railroad as the potential seller, unable to consummate trades because of uncertainty in the regulatory environment, and estimates financial benefits and reductions in emissions and energy use that could be achieved if the barrier could be removed.

  10. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  11. EXTERIOR VIEW WITH HISTORIC LOCOMOTIVES, COAL AND PASSENGER CARS INCLUDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW WITH HISTORIC LOCOMOTIVES, COAL AND PASSENGER CARS INCLUDING THE WOODWARD IRON COMPANY NO. 38 LOCOMOTIVE AND TENDER LOCATED IN THE HEART OF DIXIE MUSEUM'S POWELL AVENUE YARD AND SOUTHERN RAILROAD BOXCARS ON ACTIVE TRACKS OF BIRMINGHAM'S RAILROAD RESERVATION. IN BACKGROUND AT RIGHT AND CENTER IS THE BIRMINGHAM CITY CENTER. - Heart of Dixie Railroad, Rolling Stock, 1800 Block Powell Avenue, Birmingham, Jefferson County, AL

  12. The Geometry of Locomotive Behavioral States in C. elegans

    PubMed Central

    Bjorness, Theresa; Greene, Robert; You, Young-Jai

    2013-01-01

    We develop a new hidden Markov model-based method to analyze C elegans locomotive behavior and use this method to quantitatively characterize behavioral states. In agreement with previous work, we find states corresponding to roaming, dwelling, and quiescence. However, we also find evidence for a continuum of intermediate states. We suggest that roaming, dwelling, and quiescence may best be thought of as extremes which, mixed in any proportion, define the locomotive repertoire of C elegans foraging and feeding behavior. PMID:23555813

  13. Operations

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.; Norton, Anderson; Boyce, Steven J.

    2013-01-01

    Previous research has documented schemes and operations that undergird students' understanding of fractions. This prior research was based, in large part, on small-group teaching experiments. However, written assessments are needed in order for teachers and researchers to assess students' ways of operating on a whole-class scale. In this…

  14. The Kinematics of Treadmill Locomotion in Space

    NASA Technical Reports Server (NTRS)

    Thornton, W. E.; Cavanagh, P. R.; Buczek, F. L.; Burgess-Milliron, M. J.; Davis, B. L.

    1997-01-01

    Locomotion on a treadmill in 0 G will probably remain a centerpiece of NASA's exercise countermeasures programme. This form of physical activity has the potential to cause large bone and muscle forces as well as loading during a period of continuous treadmill exercise. A critical concern is the provision of a treadmill which can approximate 1 G performance in space. At this point, no adequate objective measurements of in-flight treadmill kinetics or of the human response to this activity have been made. Interpretation of the results obtained in the present study is limited by the following: (1) bungee tensions were not measured; (2) ground reaction forces were not measured in parallel with the kinematic measurements; and (3) the instrumentation used to film the astronauts could itself have been affected by microgravity. Despite these shortcomings, what is apparent is that exercise during NASA missions STS 7 and STS 8 resulted in leg motions that were similar to those found during 1 G locomotion on an inclined passive treadmill and on an active treadmill at an even steeper grade. In addition, it was apparent that the majority of the loads were transmitted through the forefoot, and one can surmise that this style of running would result in physiologically significant tensions in the calf musculature and resultant ankle compressive loading. Further speculation regarding limb loading is complicated by the fact that varying amounts of force are transmitted through (1) the treadmill handle and (2) bungee cords that act as a tether. New generations of treadmills are being manufactured that could provide I important information for planners of long-duration space missions. If these types of treadmill are flown on future missions, it will be possible to control bungee tensions more precisely, control for grade and speed, and, most importantly, provide data on the rates and magnitudes of limb loading. These data could then be incorporated into biomechanical models of the

  15. Serotonin Influences Locomotion in the Nudibranch Mollusc Melibe leonina

    PubMed Central

    LEWIS, STEFANIE L.; LYONS, DEBORAH E.; MEEKINS, TIFFANIE L.; NEWCOMB, JAMES M.

    2015-01-01

    Serotonin (5-HT) influences locomotion in many animals, from flatworms to mammals. This study examined the effects of 5-HT on locomotion in the nudibranch mollusc Melibe leonina (Gould, 1852). M. leonina exhibits two modes of locomotion, crawling and swimming. Animals were bath-immersed in a range of concentrations of 5-HT or injected with various 5-HT solutions into the hemolymph and then monitored for locomotor activity. In contrast to other gastropods studied, M. leonina showed no significant effect of 5-HT on the distance crawled or the speed of crawling. However, the highest concentration (10−3 mol l−1 for bath immersion and 10−5 mol l−1 for injection) significantly increased the time spent swimming and the swimming speed. The 5-HT receptor antagonist methysergide inhibited the influence of 5-HT on the overall amount of swimming but not on swimming speed. These results suggest that 5-HT influences locomotion at the behavioral level in M. leonina. In conjunction with previous studies on the neural basis of locomotion in M. leonina, these results also suggest that this species is an excellent model system for investigating the 5-HT modulation of locomotion. PMID:21712224

  16. Visuomotor Control of Human Adaptive Locomotion: Understanding the Anticipatory Nature

    PubMed Central

    Higuchi, Takahiro

    2013-01-01

    To maintain balance during locomotion, the central nervous system (CNS) accommodates changes in the constraints of spatial environment (e.g., existence of an obstacle or changes in the surface properties). Locomotion while modifying the basic movement patterns in response to such constraints is referred to as adaptive locomotion. The most powerful means of ensuring balance during adaptive locomotion is to visually perceive the environmental properties at a distance and modify the movement patterns in an anticipatory manner to avoid perturbation altogether. For this reason, visuomotor control of adaptive locomotion is characterized, at least in part, by its anticipatory nature. The purpose of the present article is to review the relevant studies which revealed the anticipatory nature of the visuomotor control of adaptive locomotion. The anticipatory locomotor adjustments for stationary and changeable environment, as well as the spatio-temporal patterns of gaze behavior to support the anticipatory locomotor adjustments are described. Such description will clearly show that anticipatory locomotor adjustments are initiated when an object of interest (e.g., a goal or obstacle) still exists in far space. This review also show that, as a prerequisite of anticipatory locomotor adjustments, environmental properties are accurately perceived from a distance in relation to individual’s action capabilities. PMID:23720647

  17. [Locomotive syndrome and frailty. Osteoporosis as an underlying disorder in the locomotive syndrome].

    PubMed

    Hagino, Hiroshi

    2012-04-01

    Osteoporosis, a disorder related to locomotive syndrome, has been nicknamed "the silent disease" since it has no symptoms until fragility fracture occurs. However, a new fragility fracture cannot only reduce daily activity but can also increase fracture risk resulting in possible repetition of the fracture or other new fractures. As a result, daily living activities requiring mobility are often rapidly reduced and the quality of life can be considerably impaired. There are three strategies for preventing fragility fractures : prevention of falls, anti-osteoporosis treatment and hip protectors. A multidisciplinary approach including these strategies should be emphasized to impede the damaging process involved in fragility fracture. PMID:22460510

  18. Biomechanics of locomotion in Asian elephants.

    PubMed

    Genin, J J; Willems, P A; Cavagna, G A; Lair, R; Heglund, N C

    2010-03-01

    Elephants are the biggest living terrestrial animal, weighing up to five tons and measuring up to three metres at the withers. These exceptional dimensions provide certain advantages (e.g. the mass-specific energetic cost of locomotion is decreased) but also disadvantages (e.g. forces are proportional to body volume while supportive tissue strength depends on their cross-sectional area, which makes elephants relatively more fragile than smaller animals). In order to understand better how body size affects gait mechanics the movement of the centre of mass (COM) of 34 Asian elephants (Elephas maximus) was studied over their entire speed range of 0.4-5.0 m s(-1) with force platforms. The mass-specific mechanical work required to maintain the movements of the COM per unit distance is approximately 0.2 J kg(-1) m(-1) (about 1/3 of the average of other animals ranging in size from a 35 g kangaroo rat to a 70 kg human). At low speeds this work is reduced by a pendulum-like exchange between the kinetic and potential energies of the COM, with a maximum energy exchange of approximately 60% at 1.4 m s(-1). At high speeds, elephants use a bouncing mechanism with little exchange between kinetic and potential energies of the COM, although without an aerial phase. Elephants increase speed while reducing the vertical oscillation of the COM from about 3 cm to 1 cm. PMID:20154184

  19. Vestibular compensation and orientation during locomotion

    NASA Technical Reports Server (NTRS)

    Raphan, T.; Imai, T.; Moore, S. T.; Cohen, B.

    2001-01-01

    Body, head, and eye movements were studied in three dimensions while walking and turning to determine the role of the vestibular system in directing gaze and maintaining spatial orientation. The body, head, and eyes were represented as three-dimensional coordinate frames, and the movement of these frames was related to a trajectory frame that described the motion of the body on a terrestrial plane. The axis-angle of the body, head, and eye rotation were then compared to the axis-angle of the rotation of the gravitoinertial acceleration (GIA). We inferred the role of the vestibular system during locomotion and the contributions of the VCR and VOR by examining the interrelationship between these coordinate frames. Straight walking induced head and eye rotations in a compensatory manner to the linear accelerations, maintaining head pointing and gaze along the direction of forward motion. Turning generated a combination of compensation and orientation responses. The head leads and steers the turn while the eyes compensate to maintain stable horizontal gaze in space. Saccades shift horizontal gaze as the turn is executed. The head pitches, as during straight walking. It also rolls so that the head tends to align with the orientation of the GIA. Head orientation changes anticipate orientation changes of the GIA. Eye orientation follows the changes in GIA orientation so that the net orientation gaze is closer to the orientation of the GIA. The study indicates that the vestibular system utilizes compensatory and orienting mechanisms to stabilize spatial orientation and gaze during walking and turning.

  20. Legged-locomotion on inclined granular media

    NASA Astrophysics Data System (ADS)

    Rieser, Jennifer; Qian, Feifei; Goldman, Daniel

    Animals traverse a wide variety of complex environments, including situations in which the ground beneath them can yield (e.g. dry granular media in desert dunes). Locomotion strategies that are effective on level granular media can fail when traversing a granular slope. Taking inspiration from successful legged-locomotors in sandy, uneven settings, we explore the ability of a small (15 cm long, 100 g), six-c-shaped legged robot to run uphill in a bed of 1-mm-diameter poppy seeds, using an alternating tripod gait. Our fully automated experiments reveal that locomotor performance can depend sensitively on both environmental parameters such as the inclination angle and volume fraction of the substrate, and robot morphology and control parameters like leg shape, step frequency, and the friction between the feet of the robot and the substrate. We assess performance by measuring the average speed of the robot, and we find that the robot tends to perform better at higher step frequency and lower inclination angles, and that average speed decreases more rapidly with increasing angle for higher step frequency.

  1. Water surface locomotion in tropical canopy ants.

    PubMed

    Yanoviak, S P; Frederick, D N

    2014-06-15

    Upon falling onto the water surface, most terrestrial arthropods helplessly struggle and are quickly eaten by aquatic predators. Exceptions to this outcome mostly occur among riparian taxa that escape by walking or swimming at the water surface. Here we document sustained, directional, neustonic locomotion (i.e. surface swimming) in tropical arboreal ants. We dropped 35 species of ants into natural and artificial aquatic settings in Peru and Panama to assess their swimming ability. Ten species showed directed surface swimming at speeds >3 body lengths s(-1), with some swimming at absolute speeds >10 cm s(-1). Ten other species exhibited partial swimming ability characterized by relatively slow but directed movement. The remaining species showed no locomotory control at the surface. The phylogenetic distribution of swimming among ant genera indicates parallel evolution and a trend toward negative association with directed aerial descent behavior. Experiments with workers of Odontomachus bauri showed that they escape from the water by directing their swimming toward dark emergent objects (i.e. skototaxis). Analyses of high-speed video images indicate that Pachycondyla spp. and O. bauri use a modified alternating tripod gait when swimming; they generate thrust at the water surface via synchronized treading and rowing motions of the contralateral fore and mid legs, respectively, while the hind legs provide roll stability. These results expand the list of facultatively neustonic terrestrial taxa to include various species of tropical arboreal ants. PMID:24920838

  2. Visualizing the spinal neuronal dynamics of locomotion

    NASA Astrophysics Data System (ADS)

    Subramanian, Kalpathi R.; Bashor, D. P.; Miller, M. T.; Foster, J. A.

    2004-06-01

    Modern imaging and simulation techniques have enhanced system-level understanding of neural function. In this article, we present an application of interactive visualization to understanding neuronal dynamics causing locomotion of a single hip joint, based on pattern generator output of the spinal cord. Our earlier work visualized cell-level responses of multiple neuronal populations. However, the spatial relationships were abstract, making communication with colleagues difficult. We propose two approaches to overcome this: (1) building a 3D anatomical model of the spinal cord with neurons distributed inside, animated by the simulation and (2) adding limb movements predicted by neuronal activity. The new system was tested using a cat walking central pattern generator driving a pair of opposed spinal motoneuron pools. Output of opposing motoneuron pools was combined into a single metric, called "Net Neural Drive", which generated angular limb movement in proportion to its magnitude. Net neural drive constitutes a new description of limb movement control. The combination of spatial and temporal information in the visualizations elegantly conveys the neural activity of the output elements (motoneurons), as well as the resulting movement. The new system encompasses five biological levels of organization from ion channels to observed behavior. The system is easily scalable, and provides an efficient interactive platform for rapid hypothesis testing.

  3. Nematode locomotion in unconfined and confined fluids

    NASA Astrophysics Data System (ADS)

    Bilbao, Alejandro; Wajnryb, Eligiusz; Vanapalli, Siva A.; Blawzdziewicz, Jerzy

    2013-08-01

    The millimeter-long soil-dwelling nematode Caenorhabditis elegans propels itself by producing undulations that propagate along its body and turns by assuming highly curved shapes. According to our recent study [V. Padmanabhan et al., PLoS ONE 7, e40121 (2012), 10.1371/journal.pone.0040121] all these postures can be accurately described by a piecewise-harmonic-curvature model. We combine this curvature-based description with highly accurate hydrodynamic bead models to evaluate the normalized velocity and turning angles for a worm swimming in an unconfined fluid and in a parallel-wall cell. We find that the worm moves twice as fast and navigates more effectively under a strong confinement, due to the large transverse-to-longitudinal resistance-coefficient ratio resulting from the wall-mediated far-field hydrodynamic coupling between body segments. We also note that the optimal swimming gait is similar to the gait observed for nematodes swimming in high-viscosity fluids. Our bead models allow us to determine the effects of confinement and finite thickness of the body of the nematode on its locomotion. These effects are not accounted for by the classical resistive-force and slender-body theories.

  4. Stokesian locomotion in elastic fluids: Experiments

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto; Lauga, Eric

    2010-11-01

    In many instances of biological relevance, self-propelled cells have to swim through non-Newtonian fluids. In order to provide fundamental understanding on the effect of such non-Newtonian stresses on locomotion, we have studied the motion an oscillating magnetic swimmer immersed in both Newtonian and non-Newtonian liquids at small Reynolds numbers. The swimmer is made with a small rare earth (Neodymium-Iron-Boron) magnetic rod (3 mm) to which a flexible tail was glued. This array was immersed in cylindrical container (50 mm diameter) in which the test fluid was contained. A nearly uniform oscillating magnetic field was created with a Helmholtz coil (R=200mm) and a AC power supply. For the Newtonian case, a 30,000 cSt silicon oil was used. In the non-Newtonian case, a fluid with nearly constant viscosity and large first normal stress difference (highly elastic) was used; this fluid was made with Corn syrup with a small amount of polyacrylamide. The swimming speed was measured, for different amplitudes and frequencies, using a digital image analysis. The objective of the present investigation is to determine whether the elastic effects of the fluid improve or not the swimming performance. Some preliminary results will be presented and discussed.

  5. Stability versus maneuverability in aquatic locomotion.

    PubMed

    Weihs, Daniel

    2002-02-01

    The dictionary definition of stability as "Firmly established, not easily to be changed" immediately indicates the conflict between stability and maneuverability in aquatic locomotion. The present paper addresses several issues resulting from these opposing requirements. Classical stability theory for bodies moving in fluids is based on developments in submarine and airship motions. These have lateral symmetry, in common with most animals. This enables the separation of the equations of motion into two sets of 3 each. The vertical (longitudinal) set, which includes motions in the axial (surge), normal (heave) and pitching directions, can thus be separated from the lateral-horizontal plane which includes yaw, roll and sideslip motions. This has been found useful in the past for longitudinal stability studies based on coasting configurations but is not applicable to the analysis of turning, fast starts and vigorous swimming, where the lateral symmetry of the fish body is broken by bending motions. The present paper will also examine some of the aspects of the stability vs. maneuverability tradeoff for these asymmetric motions. An analysis of the conditions under which the separation of equations of motions into vertical and horizontal planes is justified, and a definition of the equations to be used in cases where this separation is not accurate enough is presented. PMID:21708701

  6. Drosophila melanogaster locomotion in cold thin air.

    PubMed

    Dillon, Michael E; Frazier, Melanie R

    2006-01-01

    The alpine environment is likely to challenge insect locomotion because of low mean temperatures and reduced barometric pressure. In this study, we measured the direct and interactive effects of these factors on walking and flight performance of wild-caught Drosophila melanogaster Meigen. We found that decreased temperature and decreased air pressure both reduced walking speed and flight performance. Flies walked more slowly at 18 degrees C and in the lowest air pressure treatment (34 kPa). This treatment, equivalent in air pressure to the top of Mount Everest, was the only air pressure that significantly reduced fly walking speed. Therefore, walking performance in the wild is likely limited by temperature, but not oxygen availability. In contrast to walking performance, low but ecologically realistic air pressures dramatically reduced overall flight performance. The effects of reduced air pressure on flight performance were more pronounced at colder temperatures. Reduced flight performance in high altitude conditions was primarily driven by an increased reluctance for flies to initiate flight rather than outright failure to fly. Such reluctance to fly in high altitude conditions may in part explain the prevalence of aptery and brachyptery in high altitude insects. The observed interactive effects of temperature and air pressure on flight performance confirm the importance of simultaneously manipulating both of these factors when studying the impact of altitudinal conditions on insect physiology and behavior. PMID:16391358

  7. Intramuscular Pressure Measurement During Locomotion in Humans

    NASA Technical Reports Server (NTRS)

    Ballard, Ricard E.

    1996-01-01

    To assess the usefulness of intramuscular pressure (IMP) measurement for studying muscle function during gait, IMP was recorded in the soleus and tibialis anterior muscles of ten volunteers during, treadmill walking, and running using transducer-tipped catheters. Soleus IMP exhibited single peaks during late-stance phase of walking (181 +/- 69 mmHg, mean +/- S.E.) and running (269 +/- 95 mmHg). Tibialis anterior IMP showed a biphasic response, with the largest peak (90 +/- 15 mmHg during walking and 151 +/- 25 mmHg during running) occurring shortly after heel strike. IMP magnitude increased with gait speed in both muscles. Linear regression of soleus IMP against ankle joint torque obtained by a dynamometer in two subjects produced linear relationships (r = 0.97). Application of these relationships to IMP data yielded estimated peak soleus moment contributions of 0.95-165 Nm/Kg during walking, and 1.43-2.70 Nm/Kg during running. IMP results from local muscle tissue deformations caused by muscle force development and thus, provides a direct, practical index of muscle function during locomotion in humans.

  8. Leg intramuscular pressures during locomotion in humans

    NASA Technical Reports Server (NTRS)

    Ballard, R. E.; Watenpaugh, D. E.; Breit, G. A.; Murthy, G.; Holley, D. C.; Hargens, A. R.

    1998-01-01

    To assess the usefulness of intramuscular pressure (IMP) measurement for studying muscle function during gait, IMP was recorded in the soleus and tibialis anterior muscles of 10 volunteers during treadmill walking and running by using transducer-tipped catheters. Soleus IMP exhibited single peaks during late-stance phase of walking [181 +/- 69 (SE) mmHg] and running (269 +/- 95 mmHg). Tibialis anterior IMP showed a biphasic response, with the largest peak (90 +/- 15 mmHg during walking and 151 +/- 25 mmHg during running) occurring shortly after heel strike. IMP magnitude increased with gait speed in both muscles. Linear regression of soleus IMP against ankle joint torque obtained by a dynamometer produced linear relationships (n = 2, r = 0.97 for both). Application of these relationships to IMP data yielded estimated peak soleus moment contributions of 0.95-1.65 N . m/kg during walking, and 1.43-2.70 N . m/kg during running. Phasic elevations of IMP during exercise are probably generated by local muscle tissue deformations due to muscle force development. Thus profiles of IMP provide a direct, reproducible index of muscle function during locomotion in humans.

  9. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  10. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  11. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  12. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  13. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  14. [Evaluating influence of Captopril therapy on occupational activity of engine operators with hypertension].

    PubMed

    Serikov, V V; Kolyagin, V Ya; Bogdanova, V E

    2016-01-01

    The article covers results of study concerning influence of Captopril (25 mg) therapy on occupational activity of locomotive crew workers in real night travels model on training complex "EP1M locomotive operator cabin". Findings are that single use of Captopril (25 mg) in modelled railway activity enabled to increase reliability of occupational activity, that manifested in lower number of errors in locomotive operators' actions at night, and in psychophysiologic regulation of various psychic acts. PMID:27396147

  15. 49 CFR 229.315 - Operations and maintenance manual.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Operations and maintenance manual. 229.315 Section 229.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Electronics §...

  16. 49 CFR 229.315 - Operations and maintenance manual.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Operations and maintenance manual. 229.315 Section 229.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Electronics §...

  17. 49 CFR 229.315 - Operations and maintenance manual.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Operations and maintenance manual. 229.315 Section 229.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Electronics §...

  18. Regulated and non-regulated emissions from in-use diesel-electric switching locomotives.

    PubMed

    Sawant, Aniket A; Nigam, Abhilash; Miller, J Wayne; Johnson, Kent C; Cocker, David R

    2007-09-01

    Diesel-electric locomotives are vital to the operation of freight railroads in the United States, and emissions from this source category have generated interest in recent years. They are also gaining attention as an important emission source under the larger set of nonroad sources, both from a regulated emissions and health effects standpoint. The present work analyzes regulated (NOx, PM, THC, CO) and non-regulated emissions from three in-use diesel-electric switching locomotives using standardized sampling and analytical techniques. The engines tested in this work were from 1950, 1960, and 1970 and showed a range of NOx and PM emissions. In general, non-regulated gaseous emissions showed a sharp increase as engines shifted from non-idle to idle operating modes. This is interesting from an emissions perspective since activity data shows that these locomotives spend around 60% of their time idling. In terms of polycyclicaromatic hydrocarbon (PAH) contributions, the dominance of naphthalene and its derivatives over the total PAH emissions was apparent, similar to observations for on-road diesel tractors. Among nonnaphthalenic species, itwas observed that lower molecular weight PAHs and n-alkanes dominated their respective compound classes. Regulated emissions from a newer technology engine used in a back-up generator (BUG) application were also compared againstthe present engines; it was determined that use of the newer engine may lower NOx and PM emissions by up to 30%. Another area of interest to regulators is better estimation of the marine engine inventory for port operations. Toward that end, a comparison of emissions from these engines with engine manufacturer data and the newer technology BUG engine was also performed for a marine duty cycle, another application where these engines are used typically with little modifications. PMID:17937284

  19. Cytoskeletal Mechanics Regulating Amoeboid Cell Locomotion

    PubMed Central

    Álvarez-González, Begoña; Meili, Ruedi; Firtel, Richard; Bastounis, Effie; del Álamo, Juan C.; Lasheras, Juan C.

    2014-01-01

    Migrating cells exert traction forces when moving. Amoeboid cell migration is a common type of cell migration that appears in many physiological and pathological processes and is performed by a wide variety of cell types. Understanding the coupling of the biochemistry and mechanics underlying the process of migration has the potential to guide the development of pharmacological treatment or genetic manipulations to treat a wide range of diseases. The measurement of the spatiotemporal evolution of the traction forces that produce the movement is an important aspect for the characterization of the locomotion mechanics. There are several methods to calculate the traction forces exerted by the cells. Currently the most commonly used ones are traction force microscopy methods based on the measurement of the deformation induced by the cells on elastic substrate on which they are moving. Amoeboid cells migrate by implementing a motility cycle based on the sequential repetition of four phases. In this paper we review the role that specific cytoskeletal components play in the regulation of the cell migration mechanics. We investigate the role of specific cytoskeletal components regarding the ability of the cells to perform the motility cycle effectively and the generation of traction forces. The actin nucleation in the leading edge of the cell, carried by the ARP2/3 complex activated through the SCAR/WAVE complex, has shown to be fundamental to the execution of the cyclic movement and to the generation of the traction forces. The protein PIR121, a member of the SCAR/WAVE complex, is essential to the proper regulation of the periodic movement and the protein SCAR, also included in the SCAR/WAVE complex, is necessary for the generation of the traction forces during migration. The protein Myosin II, an important F-actin cross-linker and motor protein, is essential to cytoskeletal contractility and to the generation and proper organization of the traction forces during

  20. Measurement techniques in animal locomotion analysis.

    PubMed

    Schamhardt, H C; van den Bogert, A J; Hartman, W

    1993-01-01

    Animal performance can be determined by subjective observations or objective measurements. Numerical data are only then superior to results of subjective observations when they are the result of measurements carried out to test a well-defined hypothesis or to give the answer to a clear, precisely formulated question. In the analysis of kinematics a careful evaluation of the set-up of the measurement equipment and the resulting accuracy in the data is required. Measurements in three dimensions (3D) are theoretically better than those in 2D. Practically, however, collection, analysis, interpretation and presentation of 3D data are so much more complicated that frequently 2D analysis appears to be more useful. The minimal size of markers necessary to obtain a certain accuracy in kinematic data is usually too big for practical use. Smaller markers impair accuracy. Reduction of measurement noise is obligatory when time derivatives are to be calculated. Skin movement artefacts cannot be removed by data smoothing. Forces occurring between the digits and the ground can be determined using a force plate or an instrumented shoe. A force plate is accurate, but repeated trials are necessary. Using a force shoe each ground contact results in useful data. However, the shoe itself may affect locomotion. Surface strains on long bones can be recorded relatively easily. Determination of loading forces from surface strains is complicated but can be carried out using multiple strain gauges and a post-mortem calibration test. Strain in tendons is difficult to measure due to problems in defining a'zero' or reference length.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8470454

  1. Stabilization of cat paw trajectory during locomotion.

    PubMed

    Klishko, Alexander N; Farrell, Bradley J; Beloozerova, Irina N; Latash, Mark L; Prilutsky, Boris I

    2014-09-15

    We investigated which of cat limb kinematic variables during swing of regular walking and accurate stepping along a horizontal ladder are stabilized by coordinated changes of limb segment angles. Three hypotheses were tested: 1) animals stabilize the entire swing trajectory of specific kinematic variables (performance variables); and 2) the level of trajectory stabilization is similar between regular and ladder walking and 3) is higher for forelimbs compared with hindlimbs. We used the framework of the uncontrolled manifold (UCM) hypothesis to quantify the structure of variance of limb kinematics in the limb segment orientation space across steps. Two components of variance were quantified for each potential performance variable, one of which affected it ("bad variance," variance orthogonal to the UCM, VORT) while the other one did not ("good variance," variance within the UCM, VUCM). The analysis of five candidate performance variables revealed that cats during both locomotor behaviors stabilize 1) paw vertical position during the entire swing (VUCM > VORT, except in mid-hindpaw swing of ladder walking) and 2) horizontal paw position in initial and terminal swing (except for the entire forepaw swing of regular walking). We also found that the limb length was typically stabilized in midswing, whereas limb orientation was not (VUCM ≤ VORT) for both limbs and behaviors during entire swing. We conclude that stabilization of paw position in early and terminal swing enables accurate and stable locomotion, while stabilization of vertical paw position in midswing helps paw clearance. This study is the first to demonstrate the applicability of the UCM-based analysis to nonhuman movement. PMID:24899676

  2. Stabilization of cat paw trajectory during locomotion

    PubMed Central

    Klishko, Alexander N.; Farrell, Bradley J.; Beloozerova, Irina N.; Latash, Mark L.

    2014-01-01

    We investigated which of cat limb kinematic variables during swing of regular walking and accurate stepping along a horizontal ladder are stabilized by coordinated changes of limb segment angles. Three hypotheses were tested: 1) animals stabilize the entire swing trajectory of specific kinematic variables (performance variables); and 2) the level of trajectory stabilization is similar between regular and ladder walking and 3) is higher for forelimbs compared with hindlimbs. We used the framework of the uncontrolled manifold (UCM) hypothesis to quantify the structure of variance of limb kinematics in the limb segment orientation space across steps. Two components of variance were quantified for each potential performance variable, one of which affected it (“bad variance,” variance orthogonal to the UCM, VORT) while the other one did not (“good variance,” variance within the UCM, VUCM). The analysis of five candidate performance variables revealed that cats during both locomotor behaviors stabilize 1) paw vertical position during the entire swing (VUCM > VORT, except in mid-hindpaw swing of ladder walking) and 2) horizontal paw position in initial and terminal swing (except for the entire forepaw swing of regular walking). We also found that the limb length was typically stabilized in midswing, whereas limb orientation was not (VUCM ≤ VORT) for both limbs and behaviors during entire swing. We conclude that stabilization of paw position in early and terminal swing enables accurate and stable locomotion, while stabilization of vertical paw position in midswing helps paw clearance. This study is the first to demonstrate the applicability of the UCM-based analysis to nonhuman movement. PMID:24899676

  3. Forelimb muscle activity during equine locomotion.

    PubMed

    Harrison, Simon M; Whitton, R Chris; King, Melissa; Haussler, Kevin K; Kawcak, Chris E; Stover, Susan M; Pandy, Marcus G

    2012-09-01

    Few quantitative data exist to describe the activity of the distal muscles of the equine forelimb during locomotion, and there is an incomplete understanding of the functional roles of the majority of the forelimb muscles. Based on morphology alone it would appear that the larger proximal muscles perform the majority of work in the forelimb, whereas the smaller distal muscles fulfil supplementary roles such as stabilizing the joints and positioning the limb for impact with the ground. We measured the timing and amplitude of the electromyographic activity of the intrinsic muscles of the forelimb in relation to the phase of gait (stance versus swing) and the torque demand placed on each joint during walking, trotting and cantering. We found that all forelimb muscles, except the extensor carpi radialis (ECR), were activated just prior to hoof-strike and deactivated during stance. Only the ECR was activated during swing. The amplitudes of muscle activation typically increased as gait speed increased. However, the amplitudes of muscle activation were not proportional to the net joint torques, indicating that passive structures may also contribute significantly to torque generation. Our results suggest that the smaller distal muscles help to stabilize the forelimb in early stance, in preparation for the passive structures (tendons and ligaments) to be stretched. The distal forelimb muscles remain active throughout stance only during canter, when the net torques acting about the distal forelimb joints are highest. The larger proximal muscles activate in a complex coordination to position and stabilize the shoulder and elbow joints during ground contact. PMID:22875767

  4. Computer coordination of limb motion for locomotion of a multiple-armed robot for space assembly

    NASA Technical Reports Server (NTRS)

    Klein, C. A.; Patterson, M. R.

    1982-01-01

    Consideration is given to a possible robotic system for the construction of large space structures, which may be described as a multiple general purpose arm manipulator vehicle that can walk over the structure under construction to a given site for further work. A description is presented of the locomotion of such a vehicle, modeling its arms in terms of a currently available industrial manipulator. It is noted that for whatever maximum speed of operation is chosen, rapid changes in robot velocity create situations in which already-selected handholds are no longer practical. A step is added to the 'free gait' walking algorithm in order to solve this problem.

  5. Autonomous locomotion of capsule endoscope in gastrointestinal tract.

    PubMed

    Yang, Sungwook; Park, Kitae; Kim, Jinseok; Kim, Tae Song; Cho, Il-Joo; Yoon, Eui-Sung

    2011-01-01

    Autonomous locomotion in gastrointestinal (GI) tracts is achieved with a paddling-based capsule endoscope. For this, a miniaturized encoder module was developed utilizing a MEMS fabrication technology to monitor the position of paddles. The integrated encoder module yielded the high resolution of 0.0025 mm in the linear motion of the paddles. In addition, a PID control method was implemented on a DSP to control the stroke of the paddles accurately. As a result, the average accuracy and the standard deviation were measured to be 0.037 mm and 0.025 mm by a laser position sensor for the repetitive measurements. The locomotive performance was evaluated via ex-vivo tests according to various strokes in paddling. In an in-vivo experiment with a living pig, the locomotion speed was improved by 58% compared with the previous control method relying on a given timer value for reciprocation of the paddles. Finally, the integrated encoder module and the control system allow consistent paddling during locomotion even under loads in GI tract. It provides the autonomous locomotion without intervention in monitoring and controlling the capsule endoscope. PMID:22255866

  6. Locomotion of neutrally buoyant fish with flexible caudal fin.

    PubMed

    Iosilevskii, Gil

    2016-06-21

    Historically, burst-and-coast locomotion strategies have been given two very different explanations. The first one was based on the assumption that the drag of an actively swimming fish is greater than the drag of the same fish in motionless glide. Fish reduce the cost of locomotion by swimming actively during a part of the swimming interval, and gliding through the remaining part. The second one was based on the assumption that muscles perform efficiently only if their contraction rate exceeds a certain threshold. Fish reduce the cost of locomotion by using an efficient contraction rate during a part of the swimming interval, and gliding through the remaining part. In this paper, we suggest yet a third explanation. It is based on the assumption that propulsion efficiency of a swimmer can increase with thrust. Fish reduce the cost of locomotion by alternating high thrust, and hence more efficient, bursts with passive glides. The paper presents a formal analysis of the respective burst-and-coast strategy, shows that the locomotion efficiency can be practically as high as the propulsion efficiency during burst, and shows that the other two explanations can be considered particular cases of the present one. PMID:27067246

  7. 49 CFR Appendix B to Part 240 - Procedures for Submission and Approval of Locomotive Engineer Qualification Programs

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Locomotive Engineer Qualification Programs B Appendix B to Part 240 Transportation Other Regulations Relating... Submission and Approval of Locomotive Engineer Qualification Programs This appendix establishes procedures... evaluating of persons seeking certification or recertification as a locomotive engineer in accordance...

  8. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion II

    NASA Astrophysics Data System (ADS)

    Lee, Scott

    2015-03-01

    In the second paper1 of this series, the effect of transverse femoral stresses due to locomotion in theropod dinosaurs of different sizes was examined for the case of an unchanging leg geometry. Students are invariably thrilled to learn about theropod dinosaurs, and this activity applies the concepts of torque and stress to the issue of theropod locomotion. In this paper, our model calculation of Ref. 1 is extended to incorporate the fact that larger animals run with straighter legs. As in Ref. 1, students use geometric data for the femora of theropod dinosaurs to analyze their locomotion abilities. This can either be an in-class activity or given as a homework problem. Larger theropods are found to be less athletic in their movements than smaller theropods since the stresses in the femora of large theropods are closer to breaking their legs than smaller theropods.

  9. A PHYSIOLOGIST'S PERSPECTIVE ON ROBOTIC EXOSKELETONS FOR HUMAN LOCOMOTION.

    PubMed

    Ferris, Daniel P; Sawicki, Gregory S; Daley, Monica A

    2007-09-01

    Technological advances in robotic hardware and software have enabled powered exoskeletons to move from science fiction to the real world. The objective of this article is to emphasize two main points for future research. First, the design of future devices could be improved by exploiting biomechanical principles of animal locomotion. Two goals in exoskeleton research could particularly benefit from additional physiological perspective: 1) reduction in the metabolic energy expenditure of the user while wearing the device, and 2) minimization of the power requirements for actuating the exoskeleton. Second, a reciprocal potential exists for robotic exoskeletons to advance our understanding of human locomotor physiology. Experimental data from humans walking and running with robotic exoskeletons could provide important insight into the metabolic cost of locomotion that is impossible to gain with other methods. Given the mutual benefits of collaboration, it is imperative that engineers and physiologists work together in future studies on robotic exoskeletons for human locomotion. PMID:18185840

  10. Quantifying coordination between the head and the trunk during locomotion

    NASA Astrophysics Data System (ADS)

    Mulavara, Ajitkumar P.

    This study developed unique measures of coordination between the head and the trunk during the combined tasks of locomotion and gaze fixation of visual targets. These measures will be used to determine the effects of long-duration space flight on sensorimotor function. This will enable evaluation of the efficacy of countermeasures and postflight rehabilitation programs. Indices were proposed as composite measures reflecting the functional aspects of the control system involved in gaze fixation during locomotion. The stiffness index (Nm/deg) was calculated as the ratio between the change in the magnitude of the net relative moments to the change in magnitude of the relative angular motion. The viscosity index (Nm-sec/deg) was calculated as the ratio between the change in the magnitude of the net relative moments to the change in magnitude of the relative angular velocity. These coordination measures were used to evaluate the normal dynamic pattern of coordination between the head and the trunk with respect to the events occurring in a gait cycle. The indices were evaluated for three discrete speeds of locomotion for the same gaze fixation task and for three discrete gaze fixation tasks at the same speed of locomotion. The indices were found to be repeatable measures reflecting inter-segmental coordination strategies while performing an activity of daily living. These indices showed that the coordination of the head with respect to the trunk was significantly different between the events of heel strike and swing phases during the gait cycle. These indices showed no significant differences between the different gaze fixation tasks. The speed of locomotion had a significant effect on the magnitude of these indices. The results indicate that the CNS dynamically modulates head motion with respect to the trunk dependent on the events occurring during the gait cycle. This modulation is appropriate for stabilizing gaze during locomotion. The results support the hypothesis

  11. Insects Use Two Distinct Classes of Steps during Unrestrained Locomotion

    PubMed Central

    Theunissen, Leslie M.; Dürr, Volker

    2013-01-01

    Background Adaptive, context-dependent control of locomotion requires modulation of centrally generated rhythmic motor patterns through peripheral control loops and postural reflexes. Thus assuming that the modulation of rhythmic motor patterns accounts for much of the behavioural variability observed in legged locomotion, investigating behavioural variability is a key to the understanding of context-dependent control mechanisms in locomotion. To date, the variability of unrestrained locomotion is poorly understood, and virtually nothing is known about the features that characterise the natural statistics of legged locomotion. In this study, we quantify the natural variability of hexapedal walking and climbing in insects, drawing from a database of several thousand steps recorded over two hours of walking time. Results We show that the range of step length used by unrestrained climbing stick insects is large, showing that step length can be changed substantially for adaptive locomotion. Step length distributions were always bimodal, irrespective of leg type and walking condition, suggesting the presence of two distinct classes of steps: short and long steps. Probability density of step length was well-described by a gamma distribution for short steps, and a logistic distribution for long steps. Major coefficients of these distributions remained largely unaffected by walking conditions. Short and long steps differed concerning their spatial occurrence on the walking substrate, their timing within the step sequence, and their prevalent swing direction. Finally, ablation of structures that serve to improve foothold increased the ratio of short to long steps, indicating a corrective function of short steps. Conclusions Statistical and functional differences suggest that short and long steps are physiologically distinct classes of leg movements that likely reflect distinct control mechanisms at work. PMID:24376877

  12. Postural dependence of human locomotion during gait initiation.

    PubMed

    Mille, Marie-Laure; Simoneau, Martin; Rogers, Mark W

    2014-12-15

    The initiation of human walking involves postural motor actions for body orientation and balance stabilization that must be effectively integrated with locomotion to allow safe and efficient transport. Our ability to coordinately adapt these functions to environmental or bodily changes through error-based motor learning is essential to effective performance. Predictive compensations for postural perturbations through anticipatory postural adjustments (APAs) that stabilize mediolateral (ML) standing balance normally precede and accompany stepping. The temporal sequencing between these events may involve neural processes that suppress stepping until the expected stability conditions are achieved. If so, then an unexpected perturbation that disrupts the ML APAs should delay locomotion. This study investigated how the central nervous system (CNS) adapts posture and locomotion to perturbations of ML standing balance. Healthy human adults initiated locomotion while a resistance force was applied at the pelvis to perturb posture. In experiment 1, using random perturbations, step onset timing was delayed relative to the APA onset indicating that locomotion was withheld until expected stability conditions occurred. Furthermore, stepping parameters were adapted with the APAs indicating that motor prediction of the consequences of the postural changes likely modified the step motor command. In experiment 2, repetitive postural perturbations induced sustained locomotor aftereffects in some parameters (i.e., step height), immediate but rapidly readapted aftereffects in others, or had no aftereffects. These results indicated both rapid but transient reactive adaptations in the posture and gait assembly and more durable practice-dependent changes suggesting feedforward adaptation of locomotion in response to the prevailing postural conditions. PMID:25231611

  13. Activity of motor cortex neurons during backward locomotion

    PubMed Central

    Deliagina, T. G.; Orlovsky, G. N.; Karayannidou, A.; Stout, E. E.; Sirota, M. G.; Beloozerova, I. N.

    2011-01-01

    Forward walking (FW) and backward walking (BW) are two important forms of locomotion in quadrupeds. Participation of the motor cortex in the control of FW has been intensively studied, whereas cortical activity during BW has never been investigated. The aim of this study was to analyze locomotion-related activity of the motor cortex during BW and compare it with that during FW. For this purpose, we recorded activity of individual neurons in the cat during BW and FW. We found that the discharge frequency in almost all neurons was modulated in the rhythm of stepping during both FW and BW. However, the modulation patterns during BW and FW were different in 80% of neurons. To determine the source of modulating influences (forelimb controllers vs. hindlimb controllers), the neurons were recorded not only during quadrupedal locomotion but also during bipedal locomotion (with either forelimbs or hindlimbs walking), and their modulation patterns were compared. We found that during BW (like during FW), modulation in some neurons was determined by inputs from limb controllers of only one girdle, whereas the other neurons received inputs from both girdles. The combinations of inputs could depend on the direction of locomotion. Most often (in 51% of forelimb-related neurons and in 34% of the hindlimb-related neurons), the neurons received inputs only from their own girdle when this girdle was leading and from both girdles when this girdle was trailing. This reconfiguration of inputs suggests flexibility of the functional roles of individual cortical neurons during different forms of locomotion. PMID:21430283

  14. [Locomotion and control study on autonomous interventional diagnostic micro-robots].

    PubMed

    Gu, Da-qiang; Zhou, Yong

    2008-09-01

    This paper introduces the locomotion control and the research status of the autonomous interventional diagnostic micro-robots in detail, outlines technical problems and difficulties now existing, and discusses the developing trend of locomotion control. PMID:19119659

  15. The integrated function of muscles and tendons during locomotion.

    PubMed

    Roberts, Thomas J

    2002-12-01

    The mechanical roles of tendon and muscle contractile elements during locomotion are often considered independently, but functionally they are tightly integrated. Tendons can enhance muscle performance for a wide range of locomotor activities because muscle-tendon units shorten and lengthen at velocities that would be mechanically unfavorable for muscle fibers functioning alone. During activities that require little net mechanical power output, such as steady-speed running, tendons reduce muscular work by storing and recovering cyclic changes in the mechanical energy of the body. Tendon stretch and recoil not only reduces muscular work, but also allows muscle fibers to operate nearly isometrically, where, due to the force-velocity relation, skeletal muscle fibers develop high forces. Elastic energy storage and recovery in tendons may also provide a key mechanism to enable individual muscles to alter their mechanical function, from isometric force-producers during steady speed running to actively shortening power-producers during high-power activities like acceleration or uphill running. Evidence from studies of muscle contraction and limb dynamics in turkeys suggests that during running accelerations work is transferred directly from muscle to tendon as tendon stretch early in the step is powered by muscle shortening. The energy stored in the tendon is later released to help power the increase in energy of the body. These tendon length changes redistribute muscle power, enabling contractile elements to shorten at relatively constant velocities and power outputs, independent of the pattern of flexion/extension at a joint. Tendon elastic energy storage and recovery extends the functional range of muscles by uncoupling the pattern of muscle fiber shortening from the pattern of movement of the body. PMID:12485693

  16. Biorobotics: using robots to emulate and investigate agile locomotion.

    PubMed

    Ijspeert, Auke J

    2014-10-10

    The graceful and agile movements of animals are difficult to analyze and emulate because locomotion is the result of a complex interplay of many components: the central and peripheral nervous systems, the musculoskeletal system, and the environment. The goals of biorobotics are to take inspiration from biological principles to design robots that match the agility of animals, and to use robots as scientific tools to investigate animal adaptive behavior. Used as physical models, biorobots contribute to hypothesis testing in fields such as hydrodynamics, biomechanics, neuroscience, and prosthetics. Their use may contribute to the design of prosthetic devices that more closely take human locomotion principles into account. PMID:25301621

  17. Economic aspects of advanced coal-fired gas turbine locomotives

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  18. A rolling locomotion method for untethered magnetic microrobots

    NASA Astrophysics Data System (ADS)

    Hou, Max T.; Shen, Hui-Mei; Jiang, Guan-Lin; Lu, Chiang-Ni; Hsu, I.-Jen; Yeh, J. Andrew

    2010-01-01

    It is a challenge to achieve free and efficient motion of microrobots on arbitrary surfaces. We report a rolling locomotion method for a magnetic microrobot with a rectangular body (300×200×50 μm3); this method is based on an external rotating magnetic field. The magnetic force, accompanied by normal and friction forces, enables the successive rotations of the microrobot. A magnetic field with a rotational speed of 2 rps rolls the microrobot, giving it a translation speed of 1.4 mm/s. With this locomotion ability, microrobots can move along a line or curve and can climb slopes or stairs.

  19. 49 CFR 223.17 - Identification of equipped locomotives, passenger cars and cabooses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cars and cabooses. 223.17 Section 223.17 Transportation Other Regulations Relating to Transportation...-LOCOMOTIVES, PASSENGER CARS AND CABOOSES Specific Requirements § 223.17 Identification of equipped locomotives, passenger cars and cabooses. Each locomotive, passenger car and caboose that is fully equipped with...

  20. 49 CFR 223.17 - Identification of equipped locomotives, passenger cars and cabooses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cars and cabooses. 223.17 Section 223.17 Transportation Other Regulations Relating to Transportation...-LOCOMOTIVES, PASSENGER CARS AND CABOOSES Specific Requirements § 223.17 Identification of equipped locomotives, passenger cars and cabooses. Each locomotive, passenger car and caboose that is fully equipped with...

  1. 49 CFR 223.17 - Identification of equipped locomotives, passenger cars and cabooses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cars and cabooses. 223.17 Section 223.17 Transportation Other Regulations Relating to Transportation...-LOCOMOTIVES, PASSENGER CARS AND CABOOSES Specific Requirements § 223.17 Identification of equipped locomotives, passenger cars and cabooses. Each locomotive, passenger car and caboose that is fully equipped with...

  2. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Emission Related Locomotive and Engine Parameters and Specifications I Appendix I to Part 92 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Pt. 92, App. I Appendix I to...

  3. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  4. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  5. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  6. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  7. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  8. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Movement of non-complying steam locomotives. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a)...

  9. 49 CFR 231.17 - Specifications common to all steam locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Specifications common to all steam locomotives... Specifications common to all steam locomotives. (a) Hand brakes. (1) Hand brakes will not be required on...) Locomotives having headlights which can not be safely and conveniently reached from pilot-beam or steam...

  10. 49 CFR 231.17 - Specifications common to all steam locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Specifications common to all steam locomotives... Specifications common to all steam locomotives. (a) Hand brakes. (1) Hand brakes will not be required on...) Locomotives having headlights which can not be safely and conveniently reached from pilot-beam or steam...

  11. 49 CFR 231.17 - Specifications common to all steam locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Specifications common to all steam locomotives... Specifications common to all steam locomotives. (a) Hand brakes. (1) Hand brakes will not be required on...) Locomotives having headlights which can not be safely and conveniently reached from pilot-beam or steam...

  12. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Movement of non-complying steam locomotives. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a)...

  13. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Movement of non-complying steam locomotives. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a)...

  14. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of non-complying steam locomotives. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a)...

  15. 49 CFR 231.17 - Specifications common to all steam locomotives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Specifications common to all steam locomotives... Specifications common to all steam locomotives. (a) Hand brakes. (1) Hand brakes will not be required on...) Locomotives having headlights which can not be safely and conveniently reached from pilot-beam or steam...

  16. 49 CFR 231.17 - Specifications common to all steam locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Specifications common to all steam locomotives... Specifications common to all steam locomotives. (a) Hand brakes. (1) Hand brakes will not be required on...) Locomotives having headlights which can not be safely and conveniently reached from pilot-beam or steam...

  17. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Movement of non-complying steam locomotives. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a)...

  18. 49 CFR 229.9 - Movement of non-complying locomotives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lite locomotive or a dead locomotive after the carrier has complied with the following: (1) A qualified... lite or dead within a yard, at speeds not in excess of 10 miles per hour, without meeting the... is responsible to insure that the movement may be safely made. (d) A dead locomotive may not...

  19. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Emission Related Locomotive and Engine Parameters and Specifications I Appendix I to Part 92 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Pt. 92, App. I Appendix I to...

  20. 49 CFR 240.105 - Criteria for selection of designated supervisors of locomotive engineers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of locomotive engineers. 240.105 Section 240.105 Transportation Other Regulations Relating to... CERTIFICATION OF LOCOMOTIVE ENGINEERS Component Elements of the Certification Process § 240.105 Criteria for selection of designated supervisors of locomotive engineers. (a) Each railroad's program shall...

  1. 49 CFR 240.105 - Criteria for selection of designated supervisors of locomotive engineers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of locomotive engineers. 240.105 Section 240.105 Transportation Other Regulations Relating to... CERTIFICATION OF LOCOMOTIVE ENGINEERS Component Elements of the Certification Process § 240.105 Criteria for selection of designated supervisors of locomotive engineers. (a) Each railroad's program shall...

  2. 49 CFR 240.105 - Criteria for selection of designated supervisors of locomotive engineers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of locomotive engineers. 240.105 Section 240.105 Transportation Other Regulations Relating to... CERTIFICATION OF LOCOMOTIVE ENGINEERS Component Elements of the Certification Process § 240.105 Criteria for selection of designated supervisors of locomotive engineers. (a) Each railroad's program shall...

  3. 49 CFR 1242.25 - Locomotive servicing facilities (account XX-19-27).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Locomotive servicing facilities (account XX-19-27... Structures § 1242.25 Locomotive servicing facilities (account XX-19-27). Separate common expenses according to distribution of common expenses in the following accounts: Locomotive Fuel (XX-51-67 and...

  4. A dynamical systems analysis of afferent control in a neuromechanical model of locomotion. I. Rhythm generation

    PubMed Central

    Spardy, Lucy E.; Markin, Sergey N.; Shevtsova, Natalia A.; Prilutsky, Boris I.; Rybak, Ilya A.; Rubin, Jonathan E.

    2012-01-01

    Locomotion in mammals is controlled by a spinal central pattern generator (CPG) coupled to a biomechanical limb system, with afferent feedback to the spinal circuits and CPG closing the control loop. We have considered a simplified model of this system, in which the CPG establishes a rhythm when a supra-spinal activating drive is present and afferent signals from a single-joint limb feed back to affect CPG operation. Using dynamical systems methods, in a series of two papers, we analyze the mechanisms by which this model produces oscillations, and the characteristics of these oscillations, in the closed and open loop regimes. In this first paper, we analyze the phase transition mechanisms operating within the CPG and use the results to explain how afferent feedback allows oscillations to occur at a wider range of drive values to the CPG than the range over which oscillations occur in the CPG without feedback and to comment on why stronger feedback leads to faster oscillations. Linking these transitions to structure in the phase plane associated with the limb segment clarifies how increased weights of afferent feedback to the CPG can restore locomotion after removal of supra-spinal drive to simulate spinal cord injury. PMID:22058274

  5. A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: I. Rhythm generation.

    PubMed

    Spardy, Lucy E; Markin, Sergey N; Shevtsova, Natalia A; Prilutsky, Boris I; Rybak, Ilya A; Rubin, Jonathan E

    2011-12-01

    Locomotion in mammals is controlled by a spinal central pattern generator (CPG) coupled to a biomechanical limb system, with afferent feedback to the spinal circuits and CPG closing the control loop. We have considered a simplified model of this system, in which the CPG establishes a rhythm when a supra-spinal activating drive is present and afferent signals from a single-joint limb feed back to affect CPG operation. Using dynamical system methods, in a series of two papers we analyze the mechanisms by which this model produces oscillations, and the characteristics of these oscillations, in the closed- and open-loop regimes. In this first paper, we analyze the phase transition mechanisms operating within the CPG and use the results to explain how afferent feedback allows oscillations to occur at a wider range of drive values to the CPG than the range over which oscillations occur in the CPG without feedback, and then to comment on why stronger feedback leads to faster oscillations. Linking these transitions to structures in the phase plane associated with the limb segment clarifies how increased weights of afferent feedback to the CPG can restore locomotion after removal of supra-spinal drive to simulate spinal cord injury. PMID:22058274

  6. A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: I. Rhythm generation

    NASA Astrophysics Data System (ADS)

    Spardy, Lucy E.; Markin, Sergey N.; Shevtsova, Natalia A.; Prilutsky, Boris I.; Rybak, Ilya A.; Rubin, Jonathan E.

    2011-10-01

    Locomotion in mammals is controlled by a spinal central pattern generator (CPG) coupled to a biomechanical limb system, with afferent feedback to the spinal circuits and CPG closing the control loop. We have considered a simplified model of this system, in which the CPG establishes a rhythm when a supra-spinal activating drive is present and afferent signals from a single-joint limb feed back to affect CPG operation. Using dynamical system methods, in a series of two papers we analyze the mechanisms by which this model produces oscillations, and the characteristics of these oscillations, in the closed- and open-loop regimes. In this first paper, we analyze the phase transition mechanisms operating within the CPG and use the results to explain how afferent feedback allows oscillations to occur at a wider range of drive values to the CPG than the range over which oscillations occur in the CPG without feedback, and then to comment on why stronger feedback leads to faster oscillations. Linking these transitions to structures in the phase plane associated with the limb segment clarifies how increased weights of afferent feedback to the CPG can restore locomotion after removal of supra-spinal drive to simulate spinal cord injury.

  7. Physiologic Responses to Motorized and Non-Motorized Locomotion Utilizing the International Space Station Treadmill

    NASA Technical Reports Server (NTRS)

    Smith, Cassie; Lee, Stuart MC; Laughlin, Mitzi; Loehr, James; Norcross, Jason; DeWitt, John; Hagan, R. D.

    2006-01-01

    Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription. PURPOSE: To quantify heart rate (HR), oxygen consumption (VO2), perceived exertion (RPE), and blood lactate (BLa) during T-M and T-NM locomotion at 2 and 4 mph in normal ambulatory subjects. METHODS: Twenty subjects (10 men, 10 women; 31+/-5 yr, 172+/-10 cm, 68+/-13 kg, mean SD) with a treadmill peakVO2 of 45.5+/-5.4 ml/kg/min (mean+/-SD) exercised on the ground-based ISS treadmill. Following a familiarization session in each mode, subjects completed two data collection sessions, T-M and T-NM in random order, at 2 and 4 mph. Subjects attempted to complete 5 min of exercise at each speed; if they could not maintain the speed, the trial was discontinued. At least 5 minutes of rest separated each speed trial, and at least 48 hrs separated each session. VO2 was measured continuously (metabolic gas analysis), while HR (HR monitor) and RPE (Borg Chart, 6-20 scale) were recorded each min. Not all subjects completed 5 min during each condition, therefore the mean of the min 3 and 4 was taken as representative of steady-state. BLa was measured (finger stick) within 2 min post-exercise. Paired t-tests were used to test for differences (p<0.05) between treadmill modes within the same speed. RESULTS: All twenty subjects completed at least 4 min of exercise during all conditions, except T-NM 4 mph when only 11 subjects completed the minimum exercise duration. VO2, HR, RPE and BLa were significantly higher during T-NM locomotion at both speeds.

  8. Energetics of terrestrial locomotion of the platypus Ornithorhynchus anatinus.

    PubMed

    Fish, F E; Frappell, P B; Baudinette, R V; MacFarlane, P M

    2001-02-01

    The platypus Ornithorhynchus anatinus Shaw displays specializations in its limb structure for swimming that could negatively affect its terrestrial locomotion. Platypuses walked on a treadmill at speeds of 0.19-1.08 m x s(-1). Video recordings were used for gait analysis, and the metabolic rate of terrestrial locomotion was studied by measuring oxygen consumption. Platypuses used walking gaits (duty factor >0.50) with a sprawled stance. To limit any potential interference from the extensive webbing on the forefeet, platypuses walk on their knuckles. Metabolic rate increased linearly over a 2.4-fold range with increasing walking speed in a manner similar to that of terrestrial mammals, but was low as a result of the relatively low standard metabolic rate of this monotreme. The dimensionless cost of transport decreased with increasing speed to a minimum of 0.79. Compared with the cost of transport for swimming, the metabolic cost for terrestrial locomotion was 2.1 times greater. This difference suggests that the platypus may pay a price in terrestrial locomotion by being more aquatically adapted than other semi-aquatic or terrestrial mammals. PMID:11171362

  9. Energetic Extremes in Aquatic Locomotion by Coral Reef Fishes

    PubMed Central

    Fulton, Christopher J.; Johansen, Jacob L.; Steffensen, John F.

    2013-01-01

    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s−1) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed. PMID:23326566

  10. 40 CFR 1033.335 - Remanufactured locomotives: installation audit requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of 40 CFR part 1033. We have not changed production processes or quality-control procedures for... family by that installer. (f) An engine family is determined to have failed an audit, if at any time during the model year, you determine that the three locomotives audited are found to have had...

  11. Finite state model of locomotion for functional electrical stimulation systems.

    PubMed

    Popović, D B

    1993-01-01

    A finite state model of locomotion was developed to simplify a controller design for motor activities of handicapped humans. This paper presents a model developed for real time control of locomotion with functional electrical stimulation (FES) assistive systems. Hierarchical control of locomotion was adopted with three levels: voluntary, coordination and actuator level. This paper deals only with coordination level of control. In our previous studies we demonstrated that a skill-based expert system can be used for coordination level of control in multi-joint FES systems. Basic elements in this skill-based expert system are production rules. Production rules have the form of If-Then conditional expressions. A technique of automatic determination of these conditional expressions is presented in this paper. This technique for automatic synthesis of production rules uses fuzzy logic and artificial neural networks (ANN). The special class of fuzzy logic elements used in this research is called preferential neurons. The preferential neurons were used to estimate the relevance of each of the sensory inputs to the recognition of patterns defined as finite states. The combination of preferential neurons forms a preferential neural network. The preferential neural network belongs to a class of ANNs. The preferential neural network determined the set of finite states convenient for a skill-based expert system for different modalities of locomotion. PMID:8234764

  12. Drosophila melanogaster (fruit fly) locomotion during a sounding rocket flight

    NASA Astrophysics Data System (ADS)

    Miller, Mark S.; Keller, Tony S.

    2008-05-01

    The locomotor activity of young Drosophila melanogaster (fruit fly) was studied during a Nike-Orion sounding rocket flight, which included a short-duration microgravity exposure. An infrared monitoring system was used to determine the activity level, instantaneous velocity, and continuous velocity of 240 (120 male, 120 female) fruit flies. Individual flies were placed in chambers that limit their motion to walking. Chambers were oriented both vertically and horizontally with respect to the rocket's longitudinal axis. Significant changes in Drosophila locomotion patterns were observed throughout the sounding rocket flight, including launch, microgravity exposure, payload re-entry, and after ocean impact. During the microgravity portion of the flight (3.8 min), large increases in all locomotion measurements for both sexes were observed, with some measurements doubling compared to pad (1 G) data. Initial effects of microgravity were probably delayed due to large accelerations from the payload despining immediately before entering microgravity. The results indicate that short-duration microgravity exposure has a large effect on locomotor activity for both males and females, at least for a short period of time. The locomotion increases may explain the increased male aging observed during long-duration exposure to microgravity. Studies focusing on long-duration microgravity exposure are needed to confirm these findings, and the relationship of increased aging and locomotion.

  13. 49 CFR 223.11 - Requirements for existing locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of the Secretary of Transportation, 49 CFR 1.49(m)) ... 49 Transportation 4 2010-10-01 2010-10-01 false Requirements for existing locomotives. 223.11 Section 223.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  14. Fish locomotion: insights from both simple and complex mechanical models

    NASA Astrophysics Data System (ADS)

    Lauder, George

    2015-11-01

    Fishes are well-known for their ability to swim and maneuver effectively in the water, and recent years have seen great progress in understanding the hydrodynamics of aquatic locomotion. But studying freely-swimming fishes is challenging due to difficulties in controlling fish behavior. Mechanical models of aquatic locomotion have many advantages over studying live animals, including the ability to manipulate and control individual structural or kinematic factors, easier measurement of forces and torques, and the ability to abstract complex animal designs into simpler components. Such simplifications, while not without their drawbacks, facilitate interpretation of how individual traits alter swimming performance and the discovery of underlying physical principles. In this presentation I will discuss the use of a variety of mechanical models for fish locomotion, ranging from simple flexing panels to complex biomimetic designs incorporating flexible, actively moved, fin rays on multiple fins. Mechanical devices have provided great insight into the dynamics of aquatic propulsion and, integrated with studies of locomotion in freely-swimming fishes, provide new insights into how fishes move through the water.

  15. 4. 'OLD NUMBER SIX' STEAM LOCOMOTIVE USED BY SEATTLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. 'OLD NUMBER SIX' -- STEAM LOCOMOTIVE USED BY SEATTLE CITY LIGHT ON THEIR RAILROAD FROM MARBLEMOUNT TO DIABLE AND NOW A POPULAR TOURIST ATTRACTION IN NEWHALEM, 1989. - Skagit Power Development, Skagit River & Newhalem Creek Hydroelectric Project, On Skagit River, Newhalem, Whatcom County, WA

  16. Ontogeny of locomotion in mountain gorillas and chimpanzees.

    PubMed

    Doran, D M

    1997-04-01

    The African apes are a group of closely related taxa that differ considerably in body size. In spite of the large body size difference, the African apes are similar in many aspects of their morphology; it has been suggested that most of their differences result from selection for these body size differences (Shea, 1988). The influence of body size on locomotion has been well-documented, but what is less clear, is whether these behavioral differences occur throughout ontogeny because few studies have directly addressed the influence of ontogeny (and changing body size) on locomotion. This study documents the ontogeny of mountain gorilla locomotion and compares it with that of chimpanzees in order to consider how changing body size during ontogeny influences locomotion in the two species. Results indicate that gorilla locomotor development is greatly accelerated compared with chimpanzees, and that much of the interspecific variation in age can be explained by body size. When chimpanzees and gorillas are at similar sizes (although widely disparate ages), they perform very similar locomotor activities. However, it is incorrect to view a gorilla as a faster growing and ultimately larger chimpanzee. Throughout ontogeny, gorillas have broader scapulae and relatively shorter phalanges and metacarpals than chimpanzees (Susman, 1979; Shea, 1981; Jungers & Susman, 1984; Inouye, 1992) which are associated differences in mountain gorilla and chimpanzee suspensory behavior; gorillas never show as high an incidence of suspensory behavior as chimpanzees during ontogeny. PMID:9085185

  17. 21st Century Locomotive Technology: Quarterly Technical Status Report 28

    SciTech Connect

    Lembit Salasoo; Ramu Chandra

    2010-02-19

    Thermal testing of a subscale locomotive sodium battery module was initiated.to validate thermal models. The hybrid trip optimizer problem was formulated. As outcomes of this project, GE has proceeded to commercialize trip optimizer technology, and has initiated work on a state-of-the-art battery manufacturing plant for high energy density, sodium-based batteries.

  18. Gaze Stabilization During Locomotion Requires Full Body Coordination

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Miller, C. A.; Houser, J.; Richards, J. T.; Bloomberg, J. J.

    2001-01-01

    Maintaining gaze stabilization during locomotion places substantial demands on multiple sensorimotor subsystems for precise coordination. Gaze stabilization during locomotion requires eye-head-trunk coordination (Bloomberg, et al., 1997) as well as the regulation of energy flow or shock-wave transmission through the body at high impact phases with the support surface (McDonald, et al., 1997). Allowing these excessive transmissions of energy to reach the head may compromise gaze stability. Impairments in these mechanisms may lead to the oscillopsia and decreased dynamic visual acuity seen in crewmembers returning from short and long duration spaceflight, as well as in patients with vestibular disorders (Hillman, et al., 1999). Thus, we hypothesize that stabilized gaze during locomotion results from full-body coordination of the eye-head-trunk system combined with the lower limb apparatus. The goal of this study was to determine how multiple, interdependent full- body sensorimotor subsystems aiding gaze stabilization during locomotion are functionally coordinated, and how they adaptively respond to spaceffight.

  19. Locomotion pattern and trunk musculoskeletal architecture among Urodela

    PubMed Central

    Omura, Ayano; Ejima, Ken-Ichiro; Honda, Kazuya; Anzai, Wataru; Taguchi, Yuki; Koyabu, Daisuke; Endo, Hideki

    2015-01-01

    We comparatively examined the trunk musculature and prezygapophyseal angle of mid-trunk vertebra in eight urodele species with different locomotive modes (aquatic Siren intermedia, Amphiuma tridactylum, Necturus maculosus and Andrias japonicus; semi-aquatic Cynops pyrrhogaster, Cynops ensicauda; and terrestrial Hynobius nigrescens, Hynobius lichenatus and Ambystoma tigrinum). We found that the more terrestrial species were characterized by larger dorsal and abdominal muscle weight ratios compared with those of the more aquatic species, whereas muscle ratios of the lateral hypaxial musculature were larger in the more aquatic species. The lateral hypaxial muscles were thicker in the more aquatic species, whereas the M. rectus abdominis was more differentiated in the more terrestrial species. Our results suggest that larger lateral hypaxial muscles function for lateral bending during underwater locomotion in aquatic species. Larger dorsalis and abdominal muscles facilitate resistance against sagittal extension of the trunk, stabilization and support of the ventral contour line against gravity in terrestrial species. The more aquatic species possessed a more horizontal prezygapophyseal angle for more flexible lateral locomotion. In contrast, the more terrestrial species have an increasingly vertical prezygapophyseal angle to provide stronger column support against gravity. Thus, we conclude trunk structure in urodeles differs clearly according to their locomotive modes. PMID:25914411

  20. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion II

    ERIC Educational Resources Information Center

    Lee, Scott

    2015-01-01

    In the second paper of this series, the effect of transverse femoral stresses due to locomotion in theropod dinosaurs of different sizes was examined for the case of an unchanging leg geometry. Students are invariably thrilled to learn about theropod dinosaurs, and this activity applies the concepts of torque and stress to the issue of theropod…

  1. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    ERIC Educational Resources Information Center

    Lee, Scott

    2015-01-01

    In our first article on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find…

  2. 29 CFR 1910.180 - Crawler locomotive and truck cranes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Crawler locomotive and truck cranes. 1910.180 Section 1910.180 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Materials Handling and Storage §...

  3. Kinematics of treadmill versus overground locomotion in horses.

    PubMed

    Buchner, H H; Savelberg, H H; Schamhardt, H C; Merkens, H W; Barneveld, A

    1994-05-01

    A kinematic analysis was carried out to compare treadmill and overground locomotion in horses at the trot. Stride variables and limb and trunk movements of 10 Dutch Warmblood horses were measured using the CODA-3 gait analysis system. Overground recordings were made on a rubber ground surface and on an asphalt track. Treadmill recordings were taken after a controlled habituation programme and at the same velocities as measured overground. On asphalt, a shorthened stride duration and a decreased vertical displacement of the withers were found compared with those on rubber ground. On the treadmill, stance duration of the forelimbs was longer than for either overground condition. Correspondingly, the hind limbs were placed earlier than the forelimbs in making diagonal ground contact in overground locomotion, but this changed to preceding forelimbs on the treadmill. Both forelimbs and hind limbs were moved more caudally during the retraction phase on the treadmill, while no differences were found in the protraction angle. The vertical movement of the hooves as well as the withers was smaller on the treadmill than on rubber ground. Treadmill belt velocity decreased by 9% during the stance phase. This is supposed to be an important reason for the differences in biomechanics and kinematics between treadmill and overground locomotion, which must be kept in mind when data obtained during treadmill locomotion have to be extrapolated to overground conditions. PMID:7801509

  4. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.

    PubMed

    Guo, Yanmeng; Wang, Yuping; Zhang, Wei; Meltzer, Shan; Zanini, Damiano; Yu, Yue; Li, Jiefu; Cheng, Tong; Guo, Zhenhao; Wang, Qingxiu; Jacobs, Julie S; Sharma, Yashoda; Eberl, Daniel F; Göpfert, Martin C; Jan, Lily Yeh; Jan, Yuh Nung; Wang, Zuoren

    2016-06-28

    Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC's roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs. PMID:27298354

  5. Online measurement for geometrical parameters of locomotive wheel set

    NASA Astrophysics Data System (ADS)

    Wu, Kaihua; Li, Zhengjie; Ban, Tao

    2009-11-01

    Locomotive is the most important parts of a train. Wheel set is the major running components of a locomotive. Wheel set tread is the contacting part with the rail and tread will be worn down gradually. The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. The measurement of wheel set wear is usually static and by handwork, which limits the accuracy and reliability. An automatic measurement method for geometrical parameters of locomotive wheel set based on optoelectronic technique was proposed. Geometrical parameters include flange thickness, flange height and rim inside distance. Linear structured laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD. Precision hardware time-delay and asynchronous reset pulse generation circuits were designed. The entire time sequence of asynchronous reset was researched. Images were acquired only when wheel sets moved into the designed position. The image acquisition was fulfilled by hardware interrupt mode. The measuring system was installed along the straight railway section. When the locomotive was running in a limited speed, the devices placed alone railway line can measure the geometrical parameters automatically.

  6. 13. VIEW OF RAILROAD EXHIBIT AT EL PORTAL. SHAY LOCOMOTIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF RAILROAD EXHIBIT AT EL PORTAL. SHAY LOCOMOTIVE IS FROM THE HETCH HETCHY RAILROAD. CABOOSE IS FROM THE YOSEMITE VALLEY RAILROAD. FOREST ROAD IN FOREGROUND IS THE ALIGNMENT OF THE YOSEMITE VALLEY RAILROAD. LOOKING W. GIS: N-37 40 27.0 / W-119 47 10.5 - Yosemite National Park Roads & Bridges, Yosemite Village, Mariposa County, CA

  7. Effect of rubber flooring on cow locomotion and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to evaluate the effect of 2 dairy cow housing systems on cow locomotion and expression of genes associated with lameness, during the dry and peri-parturient period. Cows were assigned to free-stall housing with either rubber (RUB; n=13) or concrete (CON; n=14) at the feed-f...

  8. Human locomotion and workload for simulated lunar and Martian environments.

    PubMed

    Newman, D J; Alexander, H L

    1993-08-01

    Human locomotion in simulated lunar and Martian environments is investigated. A unique human-rated underwater treadmill and an adjustable ballasting harness simulate partial gravity in order to better understand how gravity determines the biomechanics and energetics of human locomotion. This study has two research aspects, biomechanics and energetics. The fundamental biomechanics measurements are continuously recorded vertical forces as exerted by subjects of the treadmill which is instrumented with a force platform. Experimental results indicate that peak vertical force and stride frequency decrease as the gravity level is reduced. Foot contact time is independent of gravity level. Oxygen uptake measurements, VO2, constitute the energetics, or workload, data for this study. As theory predicts, locomotion energy requirements for lunar (1/6-g) and Martian (3/8-g) gravity levels are significantly less than at 1-g. The observed variation in workload with gravity level is nonmonotonic, however, in over half the subject population. The hypothesis is offered that energy expenditure increases for lunar, as compared with Martian, locomotion due to the subject "wasting energy" for stability and posture control in simulated lunar gravity. Biomechanics data could influence advanced spacesuit design and planetary habitat design, while workload data will help define oxygen requirements for planetary life support systems. PMID:11541642

  9. 30 CFR 77.1603 - Trains and locomotives; authorized persons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trains and locomotives; authorized persons. 77.1603 Section 77.1603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Loading and Haulage...

  10. 30 CFR 77.1603 - Trains and locomotives; authorized persons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trains and locomotives; authorized persons. 77.1603 Section 77.1603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Loading and Haulage...

  11. 30 CFR 77.1603 - Trains and locomotives; authorized persons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trains and locomotives; authorized persons. 77.1603 Section 77.1603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Loading and Haulage...

  12. 30 CFR 77.1603 - Trains and locomotives; authorized persons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trains and locomotives; authorized persons. 77.1603 Section 77.1603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Loading and Haulage...

  13. 30 CFR 77.1603 - Trains and locomotives; authorized persons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trains and locomotives; authorized persons. 77.1603 Section 77.1603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Loading and Haulage...

  14. Analysis of locomotion scores with altered periparturient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate locomotion scoring as a predictor of lameness in heifers and multiparous cows subjected to periparurient management change. Heifers were either milked 3 wk prior to expected calving or not milked until after calving. The multiparous cows were fed hyper-a...

  15. Using Computational and Mechanical Models to Study Animal Locomotion

    PubMed Central

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  16. Energetic extremes in aquatic locomotion by coral reef fishes.

    PubMed

    Fulton, Christopher J; Johansen, Jacob L; Steffensen, John F

    2013-01-01

    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1)) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed. PMID:23326566

  17. 1. RESTORED GLOVER LOCOMOTIVE #81421 JUST WEST OF MARIETTA SQUARE; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. RESTORED GLOVER LOCOMOTIVE #81421 JUST WEST OF MARIETTA SQUARE; 36 INCH GAUGE 2-6-0, BUILT 1-3-17. RETURNED FOR REPAIR AND RESALE IN 1923, LAST OFFERED FOR SALE IN 1931 FOR $750. - Glover Machine Works, 651 Butler Street, Marietta, Cobb County, GA

  18. Locomotive Crane placing concrete on trestle at coal dock (Pier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Locomotive Crane placing concrete on trestle at coal dock (Pier 01) - looking southeast. Taken Jan 4, 1924. 14th Naval District Photo Collection Item No. 4872-B - U.S. Naval Base, Pearl Harbor, Exterior Cranes, Waterfront Crane Track System, Pearl City, Honolulu County, HI

  19. Locomotion in Stroke Subjects: Interactions between Unaffected and Affected Sides

    ERIC Educational Resources Information Center

    Kloter, Evelyne; Wirz, Markus; Dietz, Volker

    2011-01-01

    The aim of this study was to evaluate the sensorimotor interactions between unaffected and affected sides of post-stroke subjects during locomotion. In healthy subjects, stimulation of the tibial nerve during the mid-stance phase is followed by electromyography responses not only in the ipsilateral tibialis anterior, but also in the proximal arm…

  20. 3. DETAIL OF INVERTED MINE LOCOMOTIVE OR "MOTOR," USED FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF INVERTED MINE LOCOMOTIVE OR "MOTOR," USED FOR SURFACE HAULAGE OF MINE CARS, LOOKING SOUTHWEST; NOTE GEARING - Nuttallburg Mine Complex, Main Mine, North side of New River, 2.7 miles upstream from Fayette Landing, Lookout, Fayette County, WV

  1. 6. VIEW OF BORING MILL. Chuck action of locomotive wheel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BORING MILL. Chuck action of locomotive wheel Wheel weight 1200 pounds, 3'-0' diameter. Table 53' in diameter Wheel is 48'. Largest hole that can be bored is 9-1/2' plus (GE axle is 10'). - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  2. Changes in gravity inhibit lymphocyte locomotion through type I collagen

    NASA Technical Reports Server (NTRS)

    Pellis, N. R.; Goodwin, T. J.; Risin, D.; McIntyre, B. W.; Pizzini, R. P.; Cooper, D.; Baker, T. L.; Spaulding, G. F.

    1997-01-01

    Immunity relies on the circulation of lymphocytes through many different tissues including blood vessels, lymphatic channels, and lymphoid organs. The ability of lymphocytes to traverse the interstitium in both nonlymphoid and lymphoid tissues can be determined in vitro by assaying their capacity to locomote through Type I collagen. In an attempt to characterize potential causes of microgravity-induced immunosuppression, we investigated the effects of simulated microgravity on human lymphocyte function in vitro using a specialized rotating-wall vessel culture system developed at the Johnson Space Center. This very low shear culture system randomizes gravitational vectors and provides an in vitro approximation of microgravity. In the randomized gravity of the rotating-wall vessel culture system, peripheral blood lymphocytes did not locomote through Type I collagen, whereas static cultures supported normal movement. Although cells remained viable during the entire culture period, peripheral blood lymphocytes transferred to unit gravity (static culture) after 6 h in the rotating-wall vessel culture system were slow to recover and locomote into collagen matrix. After 72 h in the rotating-wall vessel culture system and an additional 72 h in static culture, peripheral blood lymphocytes did not recover their ability to locomote. Loss of locomotory activity in rotating-wall vessel cultures appears to be related to changes in the activation state of the lymphocytes and the expression of adhesion molecules. Culture in the rotating-wall vessel system blunted the ability of peripheral blood lymphocytes to respond to polyclonal activation with phytohemagglutinin. Locomotory response remained intact when peripheral blood lymphocytes were activated by anti-CD3 antibody and interleukin-2 prior to introduction into the rotating-wall vessel culture system. Thus, in addition to the systemic stress factors that may affect immunity, isolated lymphocytes respond to gravitational changes

  3. Bird terrestrial locomotion as revealed by 3D kinematics.

    PubMed

    Abourachid, Anick; Hackert, Remi; Herbin, Marc; Libourel, Paul A; Lambert, François; Gioanni, Henri; Provini, Pauline; Blazevic, Pierre; Hugel, Vincent

    2011-12-01

    Most birds use at least two modes of locomotion: flying and walking (terrestrial locomotion). Whereas the wings and tail are used for flying, the legs are mainly used for walking. The role of other body segments remains, however, poorly understood. In this study, we examine the kinematics of the head, the trunk, and the legs during terrestrial locomotion in the quail (Coturnix coturnix). Despite the trunk representing about 70% of the total body mass, its function in locomotion has received little scientific interest to date. This prompted us to focus on its role in terrestrial locomotion. We used high-speed video fluoroscopic recordings of quails walking at voluntary speeds on a trackway. Dorso-ventral and lateral views of the motion of the skeletal elements were recorded successively and reconstructed in three dimensions using a novel method based on the temporal synchronisation of both views. An analysis of the trajectories of the body parts and their coordination showed that the trunk plays an important role during walking. Moreover, two sub-systems participate in the gait kinematics: (i) the integrated 3D motion of the trunk and thighs allows for the adjustment of the path of the centre of mass; (ii) the motion of distal limbs transforms the alternating forward motion of the feet into a continuous forward motion at the knee and thus assures propulsion. Finally, head bobbing appears qualitatively synchronised to the movements of the trunk. An important role for the thigh muscles in generating the 3D motion of the trunk is suggested by an analysis of the pelvic anatomy. PMID:21982408

  4. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test... the provisions of 40 CFR part 1065, subpart F for general pre-test procedures (including engine and... way you choose to warm it up prior to beginning the sample preconditioning specified in 40 CFR...

  5. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test... the provisions of 40 CFR part 1065, subpart F for general pre-test procedures (including engine and... way you choose to warm it up prior to beginning the sample preconditioning specified in 40 CFR...

  6. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test... the provisions of 40 CFR part 1065, subpart F for general pre-test procedures (including engine and... way you choose to warm it up prior to beginning the sample preconditioning specified in 40 CFR...

  7. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test... the provisions of 40 CFR part 1065, subpart F for general pre-test procedures (including engine and... way you choose to warm it up prior to beginning the sample preconditioning specified in 40 CFR...

  8. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test... the provisions of 40 CFR part 1065, subpart F for general pre-test procedures (including engine and... way you choose to warm it up prior to beginning the sample preconditioning specified in 40 CFR...

  9. Dynamics of mallard (Anas platyrynchos) gastrocnemius function during swimming versus terrestrial locomotion.

    PubMed

    Biewener, A A; Corning, W R

    2001-05-01

    that favors muscle work to produce limb movement with little tendon strain. These results are consistent with a higher cost of terrestrial locomotion in ducks compared with other, more cursorial birds that may operate their muscles more economically and achieve greater tendon elastic savings. PMID:11316495

  10. A Locomotion Intent Prediction System Based on Multi-Sensor Fusion

    PubMed Central

    Chen, Baojun; Zheng, Enhao; Wang, Qining

    2014-01-01

    Locomotion intent prediction is essential for the control of powered lower-limb prostheses to realize smooth locomotion transitions. In this research, we develop a multi-sensor fusion based locomotion intent prediction system, which can recognize current locomotion mode and detect locomotion transitions in advance. Seven able-bodied subjects were recruited for this research. Signals from two foot pressure insoles and three inertial measurement units (one on the thigh, one on the shank and the other on the foot) are measured. A two-level recognition strategy is used for the recognition with linear discriminate classifier. Six kinds of locomotion modes and ten kinds of locomotion transitions are tested in this study. Recognition accuracy during steady locomotion periods (i.e., no locomotion transitions) is 99.71% ± 0.05% for seven able-bodied subjects. During locomotion transition periods, all the transitions are correctly detected and most of them can be detected before transiting to new locomotion modes. No significant deterioration in recognition performance is observed in the following five hours after the system is trained, and small number of experiment trials are required to train reliable classifiers. PMID:25014097

  11. Effective Stimulus Parameters for Directed Locomotion in Madagascar Hissing Cockroach Biobot

    PubMed Central

    Erickson, Jonathan C.; Shingiro, Aristide; Bowen, Thomas

    2015-01-01

    Swarms of insects instrumented with wireless electronic backpacks have previously been proposed for potential use in search and rescue operations. Before deploying such biobot swarms, an effective long-term neural-electric stimulus interface must be established, and the locomotion response to various stimuli quantified. To this end, we studied a variety of pulse types (mono- vs. bipolar; voltage- vs. current-controlled) and shapes (amplitude, frequency, duration) to parameters that are most effective for evoking locomotion along a desired path in the Madagascar hissing cockroach (G. portentosa) in response to antennal and cercal stimulation. We identified bipolar, 2 V, 50 Hz, 0.5 s voltage controlled pulses as being optimal for evoking forward motion and turns in the expected contraversive direction without habituation in ≈50% of test subjects, a substantial increase over ≈10% success rates previously reported. Larger amplitudes for voltage (1–4 V) and current (50–150 μA) pulses generally evoked larger forward walking (15.6–25.6 cm; 3.9–5.6 cm/s) but smaller concomitant turning responses (149 to 80.0 deg; 62.8 to 41.2 deg/s). Thus, the radius of curvature of the initial turn-then-run locomotor response (≈10–25 cm) could be controlled in a graded manner by varying the stimulus amplitude. These findings could be used to help optimize stimulus protocols for swarms of cockroach biobots navigating unknown terrain. PMID:26308337

  12. Study of using oxygen-enriched combustion air for locomotive diesel engines

    SciTech Connect

    Poola, R.B.; Sekar, R.; Assanis, D.N.; Cataldi, G.R.

    1996-10-01

    A thermodynamic simulation is used to study effects of O2-enriched intake air on performance and NO emissions of a locomotive diesel engine. Parasitic power of the air separation membrane required to supply the O2-enriched air is also estimated. For a given constraint on peak cylinder pressure, gross and net power output of an engine operating under different levels of O2 enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in 13% increase in net engine power when intake air with 28 vol% O2 is used and fuel injection timing retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can result in only 4% improvement in power. If part of the higher exhaust enthalpies from the O2 enrichment is recovered, the power requirements of the air separator membrane can be met. O2 enrichment with its higher combustion temperatures reduces emissions of particulates and visible smoke but increases NO emissions (by up to 3 times at 26% O2 content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of O2 enrichment for improving the performance of locomotive diesel engines is to be realized.

  13. Effective Stimulus Parameters for Directed Locomotion in Madagascar Hissing Cockroach Biobot.

    PubMed

    Erickson, Jonathan C; Herrera, María; Bustamante, Mauricio; Shingiro, Aristide; Bowen, Thomas

    2015-01-01

    Swarms of insects instrumented with wireless electronic backpacks have previously been proposed for potential use in search and rescue operations. Before deploying such biobot swarms, an effective long-term neural-electric stimulus interface must be established, and the locomotion response to various stimuli quantified. To this end, we studied a variety of pulse types (mono- vs. bipolar; voltage- vs. current-controlled) and shapes (amplitude, frequency, duration) to parameters that are most effective for evoking locomotion along a desired path in the Madagascar hissing cockroach (G. portentosa) in response to antennal and cercal stimulation. We identified bipolar, 2 V, 50 Hz, 0.5 s voltage controlled pulses as being optimal for evoking forward motion and turns in the expected contraversive direction without habituation in ≈50% of test subjects, a substantial increase over ≈10% success rates previously reported. Larger amplitudes for voltage (1-4 V) and current (50-150 μA) pulses generally evoked larger forward walking (15.6-25.6 cm; 3.9-5.6 cm/s) but smaller concomitant turning responses (149 to 80.0 deg; 62.8 to 41.2 deg/s). Thus, the radius of curvature of the initial turn-then-run locomotor response (≈10-25 cm) could be controlled in a graded manner by varying the stimulus amplitude. These findings could be used to help optimize stimulus protocols for swarms of cockroach biobots navigating unknown terrain. PMID:26308337

  14. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD NOISE EMISSION COMPLIANCE...

  15. Descending Command Neurons in the Brainstem that Halt Locomotion.

    PubMed

    Bouvier, Julien; Caggiano, Vittorio; Leiras, Roberto; Caldeira, Vanessa; Bellardita, Carmelo; Balueva, Kira; Fuchs, Andrea; Kiehn, Ole

    2015-11-19

    The episodic nature of locomotion is thought to be controlled by descending inputs from the brainstem. Most studies have largely attributed this control to initiating excitatory signals, but little is known about putative commands that may specifically determine locomotor offset. To link identifiable brainstem populations to a potential locomotor stop signal, we used developmental genetics and considered a discrete neuronal population in the reticular formation: the V2a neurons. We find that those neurons constitute a major excitatory pathway to locomotor areas of the ventral spinal cord. Selective activation of V2a neurons of the rostral medulla stops ongoing locomotor activity, owing to an inhibition of premotor locomotor networks in the spinal cord. Moreover, inactivation of such neurons decreases spontaneous stopping in vivo. Therefore, the V2a "stop neurons" represent a glutamatergic descending pathway that favors immobility and may thus help control the episodic nature of locomotion. PMID:26590422

  16. The coal-fired gas turbine locomotive - A new look

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  17. Spinal corollary discharge modulates motion sensing during vertebrate locomotion

    PubMed Central

    Chagnaud, Boris P.; Banchi, Roberto; Simmers, John; Straka, Hans

    2015-01-01

    During active movements, neural replicas of the underlying motor commands may assist in adapting motion-detecting sensory systems to an animal's own behaviour. The transmission of such motor efference copies to the mechanosensory periphery offers a potential predictive substrate for diminishing sensory responsiveness to self-motion during vertebrate locomotion. Here, using semi-isolated in vitro preparations of larval Xenopus, we demonstrate that shared efferent neural pathways to hair cells of vestibular endorgans and lateral line neuromasts express cyclic impulse bursts during swimming that are directly driven by spinal locomotor circuitry. Despite common efferent innervation and discharge patterns, afferent signal encoding at the two mechanosensory peripheries is influenced differentially by efference copy signals, reflecting the different organization of body/water motion-detecting processes in the vestibular and lateral line systems. The resultant overall gain reduction in sensory signal encoding in both cases, which likely prevents overstimulation, constitutes an adjustment to increased stimulus magnitudes during locomotion. PMID:26337184

  18. Emergence of adaptability to time delay in bipedal locomotion.

    PubMed

    Ohgane, Kunishige; Ei, Shin-Ichiro; Kazutoshi, Kudo; Ohtsuki, Tatsuyuki

    2004-02-01

    Based on neurophysiological evidence, theoretical studies have shown that locomotion is generated by mutual entrainment between the oscillatory activities of central pattern generators (CPGs) and body motion. However, it has also been shown that the time delay in the sensorimotor loop can destabilize mutual entrainment and result in the failure to walk. In this study, a new mechanism called flexible-phase locking is proposed to overcome the time delay. It is realized by employing the Bonhoeffer-Van der Pol formalism - well known as a physiologically faithful neuronal model - for neurons in the CPG. The formalism states that neurons modulate their phase according to the delay so that mutual entrainment is stabilized. Flexible-phase locking derives from the phase dynamics related to an asymptotically stable limit cycle of the neuron. The effectiveness of the mechanism is verified by computer simulations of a bipedal locomotion model. PMID:14999479

  19. Direct measurements of drag forces in C. elegans crawling locomotion.

    PubMed

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S

    2014-10-21

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm's body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode's body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode. PMID:25418179

  20. Theoretical and experimental study on a compliant flipper-leg during terrestrial locomotion.

    PubMed

    Fang, Tao; Zhou, Youcheng; Li, Shikun; Xu, Min; Liang, Haiyi; Li, Weihua; Zhang, Shiwu

    2016-01-01

    An amphibious robot with straight compliant flipper-legs can conquer various amphibious environments. The robot can rotate its flipper-legs and utilize their large deflection to walk on rough terrain, and it can oscillate the straight flipper-legs to propel itself underwater. This paper focuses on the dynamics of the compliant straight flipper-legs during terrestrial locomotion by modeling its deformation dynamically with large deflection theory and simulating it to investigate the parameters of locomotion such as trajectory, velocity, and propulsion. To validate the theoretical model of dynamic locomotion, a single-leg experimental platform is used to explore the flipper-legs in motion with various structural and kinematic parameters. Furthermore, a robotic platform mounting with four compliant flipper-legs is also developed and used to experiment with locomotion. The trajectories of the rotating axle of the compliant flipper-leg during locomotion were approximately coincidental in simulation and in experiments. The speed of locomotion and cost of transport during locomotion were explored and analyzed. The performance of different types of compliant flipper-legs during locomotion shows that varying the degrees of stiffness will have a significant effect on their locomotion. The dynamic model and analysis of the compliant flipper-leg for terrestrial locomotion facilitates the ability of amphibious robots to conquer complex environments. PMID:27530372

  1. Lung ventilation during treadmill locomotion in a semi-aquatic turtle, Trachemys scripta.

    PubMed

    Landberg, Tobias; Mailhot, Jeffrey D; Brainerd, Elizabeth L

    2009-10-01

    It is reasonable to presume that locomotion should have a mechanical effect on breathing in turtles. The turtle shell is rigid, and when the limbs protract and retract, air in the lungs should be displaced. This expectation was met in a previous study of the green sea turtle, Chelonia mydas; breathing completely ceased during terrestrial locomotion (Jackson and Prange, 1979. J Comp Physiol 134:315-319). In contrast, another study found no direct effect of locomotion on ventilation in the terrestrial box turtle, Terrapene carolina (Landberg et al., 2003. J Exp Biol 206:3391-3404). In this study we measured lung ventilation during treadmill locomotion in a semi-aquatic turtle, the red-eared slider, Trachemys scripta. Sliders breathed almost continuously during locomotion and during brief pauses between locomotor bouts. Tidal volume was relatively small (approximately 1 mL) during locomotion and approximately doubled during pauses. Minute ventilation was, however, not significantly smaller during locomotion because breath frequency was higher than that during the pauses. We found no consistent evidence for phase coupling between breathing and locomotion indicating that sliders do not use locomotor movements to drive breathing. We also found no evidence for a buccal-pump mechanism. Sliders, like box turtles, appear to use abdominal musculature to breathe during locomotion. Thus, locomotion affects lung ventilation differently in the three turtle species studied to date: the terrestrial Te. carolina shows no measurable effect of locomotion on ventilation; the semi-aquatic Tr. scripta breathes with smaller tidal volumes during locomotion; and the highly aquatic C. mydas stops breathing completely during terrestrial locomotion. PMID:18623107

  2. A fundamental mechanism of legged locomotion with hip torque and leg damping.

    PubMed

    Shen, Z H; Seipel, J E

    2012-12-01

    New models and theories of legged locomotion are needed to better explain and predict the robustly stable legged locomotion of animals and some bio-inspired robots. In this paper we observe that a hip-torque and leg-damping mechanism is fundamental to many legged robots and some animals and determine its affect on locomotion dynamics. We discuss why this hip-torque-and-leg-damping mechanism is not so easily understood. We investigate how hip-torque and leg-damping affect the stability and robustness of locomotion using a mathematical model: First, we extend the canonical spring-loaded-inverted-pendulum model to include constant hip torque and leg damping proportional to leg length speed. Then, we calculate the stability and robustness of locomotion as a function of increasing levels of torque and damping, starting from zero-the energy conserving and marginally stable special case-to high levels of torque and damping. We find that the stabilizing effects of hip-torque and leg-damping occur in the context of the piecewise-continuous dynamics of legged locomotion, and so linear intuition does not apply. We discover that adding hip torque and leg damping changes the stability of legged locomotion in an unexpected way. When a small amount of torque and damping are added, legged locomotion is initially destabilized. As more torque and damping are added, legged locomotion turns stable and becomes increasingly more stable and more robust the more torque and damping are added. Also, stable locomotion becomes more probable over the biologically-relevant region of the parameter space, indicating greater prediction and explanatory capabilities of the model. These results provide a more clear understanding of the hip-torque-and-leg-damping mechanism of legged locomotion, and extend existing theory of legged locomotion towards a greater understanding of robustly stable locomotion. PMID:22989956

  3. Functions of Intermittent Locomotion in Mustached Tamarins (Saguinus mystax)

    PubMed Central

    Heymann, Eckhard W.

    2010-01-01

    Many animals interrupt their moving with brief pauses, which appear to serve several different functions. We examined the function of such intermittent locomotion in wild living mustached tamarins (Saguinus mystax), small arboreal New World primates that form mixed-species groups with saddleback tamarins (Saguinus fuscicollis). We investigated how different environmental and social factors affect pausing during locomotion and used these data to infer the function of this behavior. As measures of intermittent locomotion, we used percentage of time spent pausing and pause rate. We considered 3 possible functions that are not mutually exclusive: increased endurance, route planning, and antipredator vigilance. Mustached tamarins spent on average (mean ± SE) 55.1 ± 1.0% of time pausing, which makes effective resource exploitation more time consuming and needs to be outweighed by correspondingly large benefits. Percentage of time spent pausing decreased in larger mixed-species groups vs. smaller mixed-species groups and decreased with height and in monkeys carrying infants. It was not affected by sex, age, spatial arrangement, or single-species group size. Pause rate increased in individuals traveling independently compared to those traveling in file, but was not affected by other factors. The group size effect in mixed-species groups lends support to the notion that pausing during locomotion is an antipredator tactic that can be reduced in the increased safety of larger groups, but other results suggest that additional functions, particularly route planning, are also of great importance. Benefits in terms of predator confusion and group movement coordination are also likely to play a role and remain a topic for further research. PMID:20949115

  4. Ground reaction forces during human locomotion on railroad ballast.

    PubMed

    Wade, Chip; Redfern, Mark S

    2007-11-01

    Locomotion over ballast surfaces provides a unique situation for investigating the biomechanics of gait. Although much research has focused on level and sloped walking on a smooth, firm surface in order to understand the common kinematic and kinetic variables associated with human locomotion, the literature currently provides few if any discussions regarding the dynamics of locomotion on surfaces that are either rocky or uneven. The purpose of this study was to investigate a method for using force plates to measure the ground reaction forces (GRFs) during gait on ballast. Ballast is a construction aggregate of unsymmetrical rock used in industry for the purpose of forming track bed on which railway ties are laid or in yards where railroad cars are stored. It is used to facilitate the drainage of water and to create even running surfaces. To construct the experimental ballast surfaces, 31.75 mm (1 1/4 in.) marble ballast at depths of approximately 63.5 mm (2.5 in.) or 101.6 mm (4 in.) were spread over a carpeted vinyl tile walkway specially designed for gait studies. GRF magnitudes and time histories from a force plate were collected under normal smooth surface and under both ballast surface conditions for five subjects. GRF magnitudes and time histories during smooth surface walking were similar to GRF magnitudes and time histories from the two ballast surface conditions. The data presented here demonstrate the feasibility of using a force plate system to expand the scope of biomechanical analyses of locomotion on ballast surfaces. PMID:18089931

  5. Performance analysis of jump-gliding locomotion for miniature robotics.

    PubMed

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-04-01

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs. PMID:25811417

  6. Brief anesthesia, but not voluntary locomotion, significantly alters cortical temperature

    PubMed Central

    Shirey, Michael J.; Kudlik, D'Anne E.; Huo, Bing-Xing; Greene, Stephanie E.; Drew, Patrick J.

    2015-01-01

    Changes in brain temperature can alter electrical properties of neurons and cause changes in behavior. However, it is not well understood how behaviors, like locomotion, or experimental manipulations, like anesthesia, alter brain temperature. We implanted thermocouples in sensorimotor cortex of mice to understand how cortical temperature was affected by locomotion, as well as by brief and prolonged anesthesia. Voluntary locomotion induced small (∼0.1°C) but reliable increases in cortical temperature that could be described using a linear convolution model. In contrast, brief (90-s) exposure to isoflurane anesthesia depressed cortical temperature by ∼2°C, which lasted for up to 30 min after the cessation of anesthesia. Cortical temperature decreases were not accompanied by a concomitant decrease in the γ-band local field potential power, multiunit firing rate, or locomotion behavior, which all returned to baseline within a few minutes after the cessation of anesthesia. In anesthetized animals where core body temperature was kept constant, cortical temperature was still >1°C lower than in the awake animal. Thermocouples implanted in the subcortex showed similar temperature changes under anesthesia, suggesting these responses occur throughout the brain. Two-photon microscopy of individual blood vessel dynamics following brief isoflurane exposure revealed a large increase in vessel diameter that ceased before the brain temperature significantly decreased, indicating cerebral heat loss was not due to increased cerebral blood vessel dilation. These data should be considered in experimental designs recording in anesthetized preparations, computational models relating temperature and neural activity, and awake-behaving methods that require brief anesthesia before experimental procedures. PMID:25972579

  7. A terradynamics of legged locomotion on granular media

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zhang, Tingnan; Goldman, Daniel

    2013-03-01

    The theories of aero and hydrodynamics form the bases for prediction of animal movement and device design in air and water, and allow computation of lift, drag, and thrust forces on wings and fins. While models of terrestrial legged locomotion have focused on interactions with solid ground, many legged animals (and increasingly robots) move on substrates such as sand, gravel, soil, mud, snow, grass, and leaf litter that flow in response to intrusion. However, locomotor-ground interaction models on such flowable ground are often unavailable. Here we develop a resistive force model that predicts forces on arbitrary-shaped legs and bodies moving freely in granular media in the vertical plane. Our resistive force measurements reveal a complex but generic dependence of stresses on an intruder on its depth, orientation, and movement direction in granular media of different particle size, density, friction, and compaction. Our resistive force model and a multi-body simulation predict a small legged robot's locomotion on granular media using various leg shapes and stride frequencies, and give insight into the effects of leg morphology and kinematics on movement on granular media. Our study is an initial but important step in creation of ``terradynamics'' of locomotion on flowable ground.

  8. Kinematics of treadmill locomotion in mice raised in hypergravity.

    PubMed

    Bojados, Mickael; Herbin, Marc; Jamon, Marc

    2013-05-01

    The study compared the motor performance of adult C57Bl/6J mice previously exposed to a 2G gravity environment during different periods of their development. 12 mice were housed in a large diameter centrifuge from the conception to Postnatal day 10 (P10). Another group of 10 mice was centrifuged form P10 to P30, and a third group of 9 mice was centrifuged from conception to P30. Their gait parameters, and kinematics of joint excursions were compared with 11 control mice, at the age of 2 months using a video-radiographic apparatus connected to a motorized treadmill. The mice that returned to Earth gravity level at the age of P10 showed a motor pattern similar to control mice. At variance the two groups that were centrifuged from P10 to P30 showed a different motor pattern with smaller and faster strides to walk at the same velocity as controls. On the other hand all the centrifuged mice showed significant postural changes, particularly with a more extended ankle joint, but the mice centrifuged during the whole experimental period differed even more. Our results showed that the exposure to hypergravity before P10 sufficed to modify the posture, suggesting that postural control starts before the onset of locomotion, whereas the gravity constraint perceived between P10 and P30 conditioned the tuning of quadruped locomotion with long term consequences. These results support the existence of a critical period in the acquisition of locomotion in mice. PMID:23352767

  9. Using a robot to study the evolution of legged locomotion

    NASA Astrophysics Data System (ADS)

    McInroe, Benjamin; Astley, Henry; Goldman, Daniel I.

    2014-03-01

    Throughout history, many organisms have used flipper-like limbs for both aquatic and terrestrial locomotion. Modern examples include mudskippers and sea turtles; extinct examples include walkers such as the early tetrapodIchthyostega. In the transition from an aquatic to a terrestrial environment, early walkers had to adapt to the challenges of locomotion over flowable media like sand and mud. Previously, we discovered that a flipper with an elbow-like joint that could passively flex and extend toward and away from the body aided crawling on dry granular media [Mazouchova et. al. 2013], a result related to the jamming of material behind and beneath the flipper. To gain insight into how an additional degree of freedom of this joint affects flipper-based locomotors, we have built a robotic model with limb-joint morphology inspired by Ichthyostega. We add to our previous limb design a passive degree of freedom that allows for supination/pronation of the flipper about a variable insertion angle. Springs at the joints restore the flippers to equilibrium positions after interaction with the media. We study the crutching locomotion of the robot performing a symmetric gait, varying flipper-joint degrees of freedom and limb cycle frequency. This work was supported by NSF PoLS.

  10. Children's locomotion on slopes given visual, acoustic, and tactile information.

    PubMed

    Alexandre, R; Cordovil, R; Barreiros, J

    2012-08-01

    The effects of visual, acoustic, and tactile information on 5 blind and 5 sighted children's locomotion on slopes (10 degrees, 15 degrees, 20 degrees, 25 degrees, and 30 degrees) were investigated. Children's ages ranged from 5.8 to 7.7 years (M= 6.8, SD= 0.7). The sighted children performed the task of walking up and down different slopes blindfolded and with full vision. Locomotion modes, locomotor skill, gait deviation, and time to complete the task were analyzed. Walking was the preferred locomotion mode up to 20 degrees, but steeper slopes were perceived as "non-walkable." Doubly multivariate MANOVAs revealed an effect of visual information (blindfolded vs full vision) on the sighted children's gait patterns, and a significant interaction between cue condition and group (blind vs blindfolded), underlining a distinct influence of the cues in the gait patterns of the two groups of children. Acoustic and tactile cues were generally more effective for the blind than for the sighted blindfolded children. PMID:23033757

  11. A scattering approach for locomotion on heterogeneous granular media

    NASA Astrophysics Data System (ADS)

    Zhang, Tingnan; Qian, Feifei; Kamor, Adam; Cvitanovic, Predrag; Goldman, Daniel

    2014-03-01

    Locomotion on homogeneous particulate media has been recently studied using biological and robotic experiment and modeled using multi-particle discrete element simulation and empirical resistive force theory. Little is known about how locomotion is affected when environments are composed of particles with a large distribution of sizes. We study in experiment and a reduced order model, locomotion dynamics when particle sizes are widely separated. A hexapedal robot (~15 cm, ~100 g) interacts with a single boulder (whose size is comparable to the robot) during runs on a substrate of homogeneous, loosely packed poppy seeds. We vary the perpendicular distance between the center of the boulder and the trajectory of the robot's center of mass (CoM) before collision (the impact parameter), and measure the post-collision direction. For fixed impact parameter, the CoM deflection sensitively depends on the boulder contact point and leg phase. Counterintuitively, the interactions are largely attractive; the robot turns towards the scattering center. To understand the long-time dynamics, in a reduced-order model, we treat the scattering angle as a function of only the impact parameter with other effects modeled as noise; we thereby extend the study to an infinite field of boulders. This work is supported by DARPA.

  12. Central Pattern Generator for Locomotion: Anatomical, Physiological, and Pathophysiological Considerations

    PubMed Central

    Guertin, Pierre A.

    2013-01-01

    This article provides a perspective on major innovations over the past century in research on the spinal cord and, specifically, on specialized spinal circuits involved in the control of rhythmic locomotor pattern generation and modulation. Pioneers such as Charles Sherrington and Thomas Graham Brown have conducted experiments in the early twentieth century that changed our views of the neural control of locomotion. Their seminal work supported subsequently by several decades of evidence has led to the conclusion that walking, flying, and swimming are largely controlled by a network of spinal neurons generally referred to as the central pattern generator (CPG) for locomotion. It has been subsequently demonstrated across all vertebrate species examined, from lampreys to humans, that this CPG is capable, under some conditions, to self-produce, even in absence of descending or peripheral inputs, basic rhythmic, and coordinated locomotor movements. Recent evidence suggests, in turn, that plasticity changes of some CPG elements may contribute to the development of specific pathophysiological conditions associated with impaired locomotion or spontaneous locomotor-like movements. This article constitutes a comprehensive review summarizing key findings on the CPG as well as on its potential role in Restless Leg Syndrome, Periodic Leg Movement, and Alternating Leg Muscle Activation. Special attention will be paid to the role of the CPG in a recently identified, and uniquely different neurological disorder, called the Uner Tan Syndrome. PMID:23403923

  13. Instability-based mechanism for body undulations in centipede locomotion

    NASA Astrophysics Data System (ADS)

    Aoi, Shinya; Egi, Yoshimasa; Tsuchiya, Kazuo

    2013-01-01

    Centipedes have many body segments and legs and they generate body undulations during terrestrial locomotion. Centipede locomotion has the characteristic that body undulations are absent at low speeds but appear at faster speeds; furthermore, their amplitude and wavelength increase with increasing speed. There are conflicting reports regarding whether the muscles along the body axis resist or support these body undulations and the underlying mechanisms responsible for the body undulations remain largely unclear. In the present study, we investigated centipede locomotion dynamics using computer simulation with a body-mechanical model and experiment with a centipede-like robot and then conducted dynamic analysis with a simple model to clarify the mechanism. The results reveal that body undulations in these models occur due to an instability caused by a supercritical Hopf bifurcation. We subsequently compared these results with data obtained using actual centipedes. The model and actual centipedes exhibit similar dynamic properties, despite centipedes being complex, nonlinear dynamic systems. Based on our findings, we propose a possible passive mechanism for body undulations in centipedes, similar to a follower force or jackknife instability. We also discuss the roles of the muscles along the body axis in generating body undulations in terms of our physical model.

  14. On the feasibility of life-saving locomotive bumpers.

    PubMed

    Paden, Brad E; Kelly, Paraic M; Hines, Jacob A; Bothman, David; Simms, Ciaran

    2016-04-01

    Motivated by the thousands of pedestrians killed each year in train impacts, this paper investigates the life-saving capability of four high-level locomotive bumper concepts. The head motions produced by the four concepts are modeled as one or two square acceleration pulses and are analyzed using the Head Injury Criterion (HIC). Surprisingly, the analyses show that all four concepts can achieve HIC values of less than 200 for an impact with a locomotive traveling at 100 km/h. Two of the concepts eject the pedestrian trackside with at a velocity of roughly 40 km/h and the risk of ground-impact injury is discussed in the context of related automobile accident data. The computed bumper lengths are a fraction of the overall length of a locomotive and are thus feasible for practical implementation. One concept involves an oblique impact and the potential for rotational head injury is analyzed. This basic feasibility research motivates future investigations into the detailed design of bumper shapes, multi-body pedestrian simulations, and finite-element injury models. PMID:26866281

  15. Locomotion training of legged robots using hybrid machine learning techniques

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.

    1995-01-01

    In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible

  16. Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control

    PubMed Central

    Biewener, Andrew A.; Daley, Monica A.

    2009-01-01

    Summary By integrating studies of muscle function with analysis of whole body and limb dynamics, broader appreciation of neuromuscular function can be achieved. Ultimately, such studies need to address non-steady locomotor behaviors relevant to animals in their natural environments. When animals move slowly they likely rely on voluntary coordination of movement involving higher brain centers. However, when moving fast, their movements depend more strongly on responses controlled at more local levels. Our focus here is on control of fast-running locomotion. A key observation emerging from studies of steady level locomotion is that simple spring-mass dynamics, which help to economize energy expenditure, also apply to stabilization of unsteady running. Spring-mass dynamics apply to conditions that involve lateral impulsive perturbations, sudden changes in terrain height, and sudden changes in substrate stiffness or damping. Experimental investigation of unsteady locomotion is challenging, however, due to the variability inherent in such behaviors. Another emerging principle is that initial conditions associated with postural changes following a perturbation define different context-dependent stabilization responses. Distinct stabilization modes following a perturbation likely result from proximo-distal differences in limb muscle architecture, function and control strategy. Proximal muscles may be less sensitive to sudden perturbations and appear to operate, in such circumstances, under feed-forward control. In contrast, multiarticular distal muscles operate, via their tendons, to distribute energy among limb joints in a manner that also depends on the initial conditions of limb contact with the ground. Intrinsic properties of these distal muscle–tendon elements, in combination with limb and body dynamics, appear to provide rapid initial stabilizing mechanisms that are often consistent with spring-mass dynamics. These intrinsic mechanisms likely help to simplify the

  17. Behavioural toxicity assessment of silver ions and nanoparticles on zebrafish using a locomotion profiling approach.

    PubMed

    Ašmonaitė, Giedrė; Boyer, Scott; Souza, Karine Bresolin de; Wassmur, Britt; Sturve, Joachim

    2016-04-01

    Zebrafish (Danio rerio) is not only a widely used species in the Fish Embryo Toxicity (FET) test but also an emerging model in behavioural ecotoxicology. By using automatic behaviour tracking technology, locomotion of developing zebrafish (ZF) larvae can be accurately recorded and potentially used in an ecotoxicological context to detect toxicant-induced behavioural alterations. In this study, we explored if and how quantitative locomotion data can be used for sub-lethal toxicity testing within the FET framework. We exposed ZF embryos to silver ions and nanoparticles, which previously have been reported to cause neurodevelopmental toxicity and behavioural retardation in early-life stages of ZF. Exposure to a broad range of silver (Ag(+) and AgNPs) concentrations was conducted, and developmental toxicity was assessed using FET criteria. For behavioural toxicity assessment, locomotion of exposed ZF eleutheroembryos (120hpf) was quantified according to a customised behavioural assay in an automatic video tracking system. A set of repeated episodes of dark/light stimulation were used to artificially stress ZF and evoke photo-motor responses, which were consequently utilized for locomotion profiling. Our locomotion-based behaviour profiling approach consisted of (1) dose-response ranking for multiple and single locomotion variables; (2) quantitative assessment of locomotion structure; and (3) analysis of ZF responsiveness to darkness stimulation. We documented that both silver forms caused adverse effects on development and inhibited hatchability and, most importantly, altered locomotion. High Ag(+) and AgNPs exposures significantly suppressed locomotion and a clear shift in locomotion towards inactivity was reported. Additionally, we noted that low, environmentally relevant Ag(+) concentrations may cause subordinate locomotive changes (hyperactivity) in developing fish. Overall, it was concluded that our locomotion-based behaviour-testing scheme can be used jointly

  18. Management factors associated with impaired locomotion in dairy cows in England and Wales.

    PubMed

    Barker, Z E; Amory, J R; Wright, J L; Blowey, R W; Green, L E

    2007-07-01

    Forty-nine farms in England and Wales were visited on 4 occasions between February 2003 and March 2004. A total of 21,693 scores of locomotion were assigned to 7,722 cattle. Locomotion was assessed on a 3-point scale by observing the posture of a cow's back while standing and walking (1 = sound, 2 = not sound, 3 = lame). Data on measurable factors potentially associated with locomotion were collected from all farms using direct observations of the farm environment and a comprehensive farmer interview. The mean herd locomotion score was 1.77 +/- 0.02. There was no significant difference in mean herd locomotion scores between 5 herds housed in straw yards (1.72 +/- 0.02) and 44 herds housed in free stalls (1.78 +/- 0.02), possibly because of lack of power. A GLM was produced using data from the 44 herds housed in free stalls, with the mean farm locomotion score of all cows examined on all 4 visits as the outcome variable. Factors associated with an elevated locomotion score were dry cows kept in straw yards compared with free stalls (increase in locomotion score = 0.06 +/- 0.03), pregnant heifers kept with milking cows in winter compared with being kept with dry cows (increase in locomotion score = 0.09 +/- 0.03), aisle widths of < 3 m compared with widths of > or = 3 m (increase in locomotion score = 0.06 +/- 0.02), a curb height of < or = 15 cm compared with a height of > 15 cm (increase in locomotion score = 0.07 +/- 0.03), routine trimming of hooves of all cows by a hoof trimmer or by the farmer compared with no routine hoof trimming (increase in locomotion score = 0.18 +/- 0.04 and 0.13 +/- 0.03 respectively), feeding corn silage to milking cows compared with feeding other forage types (increase in locomotion score = 0.10 +/- 0.03), and the use of automatic scrapers in the free-stall barn compared with tractor scrapers (increase in locomotion score = 0.10 +/- 0.03). These variables were correlated with many other management variables. The use of automatic

  19. Whole-body vibration exposure study in U.S. railroad locomotives--an ergonomic risk assessment.

    PubMed

    Johanning, Eckardt; Fischer, Siegfried; Christ, Eberhard; Göres, Benno; Landsbergis, Paul

    2002-01-01

    Whole-body vibration exposure of locomotive engineers and the vibration attenuation of seats in 22 U.S. locomotives (built between 1959 and 2000) was studied during normal revenue service and following international measurement guidelines. Triaxial vibration measurements (duration mean 155 min, range 84-383 min) on the seat and on the floor were compared. In addition to the basic vibration evaluation (aw rms), the vector sum (av), the maximum transient vibration value (MTVV/aw), the vibration dose value (VDV/(aw T1/4)), and the vibration seat effective transmissibility factor (SEAT) were calculated. The power spectral densities are also reported. The mean basic vibration level (aw rms) was for the fore-aft axis x = 0.18 m/sec2, the lateral axis y = 0.28 m/sec2, and the vertical axis z = 0.32 m/sec2. The mean vector sum was 0.59 m/sec2 (range 0.27 to 1.44). The crest factors were generally at or above 9 in the horizontal and vertical axis. The mean MTVV/aw was 5.3 (x), 5.1 (y), and 4.8 (z), and the VDV/(aw T1/4) values ranged from 1.32 to 2.3 (x-axis), 1.33 to 1.7 (y-axis), and 1.38 to 1.86 (z-axis), generally indicating high levels of shocks. The mean seat transmissibility factor (SEAT) was 1.4 (x) and 1.2 (y) and 1 (z), demonstrating a general ineffectiveness of any of the seat suspension systems. In conclusion, these data indicate that locomotive rides are characterized by relatively high shock content (acceleration peaks) of the vibration signal in all directions. Locomotive vertical and lateral vibrations are similar, which appears to be characteristic for rail vehicles compared with many road/off-road vehicles. Tested locomotive cab seats currently in use (new or old) appear inadequate to reduce potentially harmful vibration and shocks transmitted to the seated operator, and older seats particularly lack basic ergonomic features regarding adjustability and postural support. PMID:12486777

  20. Sexuality of Disabled Athletes Depending on the Form of Locomotion

    PubMed Central

    Plinta, Ryszard; Sobiecka, Joanna; Drosdzol-Cop, Agnieszka; Nowak-Brzezińska, Agnieszka; Skrzypulec-Plinta, Violetta

    2015-01-01

    The main purpose of this study was to determine sexuality of disabled athletes depending on the form of locomotion. The study included 170 disabled athletes, aged between 18 and 45. The entire population was divided into 3 research groups depending on the form of locomotion: moving on wheelchairs (n=52), on crutches (n=29) and unaided (n=89). The research tool was a questionnaire voluntarily and anonymously completed by the respondents of the research groups. The questionnaire was composed of a general part concerning the socio-demographic conditions, medical history, health problems, a part dedicated to physical disability as well as the Polish version of the International Index of Erectile Function (IIEF) and the Female Sexual Function Index (FSFI) evaluating sexual life. STATISTICA 10.0 for Windows was used in the statistical analysis. Subjects moving on crutches were significantly older than ones moving on wheelchairs and unaided (34.41 ±11.00 vs. 30.49 ±10.44 and 27.99 ±10.51 years, respectively) (p=0.018). Clinically significant erectile dysfunctions were most often diagnosed in athletes moving on wheelchairs (70.27%), followed by athletes moving on crutches and moving unaided (60% and 35.42%, respectively; p=0.048). Clinical sexual dysfunctions were diagnosed on a similar level among all female athletes. It was concluded that the form of locomotion may determine sexuality of disabled men. Males on wheelchair revealed the worst sexual functioning. Female athletes moving on wheelchairs, on crutches and moving unaided were comparable in the aspect of their sexual life. PMID:26834876

  1. Comparative energetics of mammalian locomotion: humans are not different.

    PubMed

    Halsey, L G; White, C R

    2012-11-01

    Debates about the evolution of human bipedality sometimes include discussion on the energy costs of terrestrial locomotion of extinct and extant hominins. However, comparative analyses of hominin transport costs conducted to date have been limited and potentially misinforming, in part because they fail to consider phylogenetic history. In the present study, we compare the measured costs of pedestrian locomotion in humans and the estimated costs for Australopithecus afarensis (an early bipedal hominin), to a database of locomotory costs for mammals. Using data for 81 species of mammal, we demonstrate significant phylogenetic signal in both log-transformed body mass (logMass) and log-transformed net cost of transport (logNCOT), but no phylogenetic signal in residuals of the relationship between logNCOT and logMass. We then used this relationship to generate a prediction line for NCOT based on body mass, and compared this prediction with published measured data for NCOT of running and walking in humans, and estimated NCOT of walking in A. afarensis. The cost of human walking was 25% lower than predicted, while the cost of running was 27% higher. The cost of A. afarensis walking was 32% lower than predicted. However, all of these data points fall within the 95% prediction interval for mammals, indicating that they are not significantly lower or higher than predicted for other mammals of similar mass. Moreover, the difference between humans and our closest living relative the common chimpanzee is comparable to differences between other similarly closely related species. We therefore conclude that there is no evidence from metabolic data that humans, or A. afarensis, have/had a reduced energy cost of pedestrian locomotion compared to other mammals in general. PMID:22963931

  2. Emulating constant acceleration locomotion mechanics on a treadmill.

    PubMed

    Farris, Dominic James

    2016-03-21

    Locomotion on an accelerating treadmill belt is not dynamically similar to overground acceleration. The purpose of this study was to test if providing an external force to compensate for inertial forces during locomotion on an accelerating treadmill belt could induce locomotor dynamics similar to real accelerations. Nine males (mean±sd age=26±4 years, mass=81±9kg, height=1.8±0.05m) began walking and transitioned to running on an accelerating instrumented treadmill belt at three accelerations (0.27ms(-2), 0.42ms(-2), 0.76ms(-2)). Half the trials were typical treadmill locomotion (TT) and half were emulated acceleration (EA), where elastic tubing harnessed to the participant provided a horizontal force equal to mass multiplied by acceleration. Net mechanical work (WCOM) and ground reaction force impulses (IGRF) were calculated for individual steps and a linear regression was performed with these experimental measures as independent variables and theoretically derived values of work and impulse as predictor variables. For EA, linear fits were significant for WCOM (y=1.19x+10.5, P<0.001, R(2)=0.41) and IGRF (y=0.95x+8.1, P<0.001, R(2)=0.3). For TT, linear fits were not significant and explained virtually no variance for WCOM (y=0.06x+1.6, P=0.29, R(2)<0.01) and IGRF (y=0.10x+0.4, P=0.06, R(2)=0.01). This suggested that the EA condition was a better representation of real acceleration dynamics than TT. Running steps from EA where work and impulse closely matched theoretical values showed similar adaptations to increasing acceleration as have been previously observed overground (forward reorientation of GRF vector without an increase in magnitude or change in spatio-temporal metrics). PMID:26897649

  3. Climbing, falling, and jamming during ant locomotion in confined environments

    PubMed Central

    Gravish, Nick; Monaenkova, Daria; Goodisman, Michael A. D.; Goldman, Daniel I.

    2013-01-01

    Locomotion emerges from effective interactions of an individual with its environment. Principles of biological terrestrial locomotion have been discovered on unconfined vertical and horizontal substrates. However, a diversity of organisms construct, inhabit, and move within confined spaces. Such animals are faced with locomotor challenges including limited limb range of motion, crowding, and visual sensory deprivation. Little is known about how these organisms accomplish their locomotor tasks, and such environments challenge human-made devices. To gain insight into how animals move within confined spaces, we study the locomotion of the fire ant Solenopsis invicta, which constructs subterranean tunnel networks (nests). Laboratory experiments reveal that ants construct tunnels with diameter, D, comparable to body length, L = 3.5 ± 0.5 mm. Ants can move rapidly (> 9 bodylengths per s) within these environments; their tunnels allow for effective limb, body, and antennae interaction with walls, which facilitate rapid slip-recovery during ascending and descending climbs. To examine the limits of slip-recovery in artificial tunnels, we perform perturbations consisting of rapid downward accelerations of the tunnels, which induce falls. Below a critical tunnel diameter, Ds = 1.31 ± 0.02 L, falls are always arrested through rapid interaction of appendages and antennae with tunnel walls to jam the falls. Ds is comparable to the size of incipient nest tunnels (D = 1.06 ± 0.23 L), supporting our hypothesis that fire ants construct environments that simplify their control task when moving through the nest, likely without need for rapid nervous system intervention. PMID:23690589

  4. Support afferentation in the posture and locomotion control system

    NASA Astrophysics Data System (ADS)

    Grigoriev, Anatoly; Tomilovskaya, Elena; Kozlovskaya, Inesa

    Mechanisms of support afferentation contribution in posture and locomotion control, which were uncertain up to now, became the point of intensive studies recently. This became possible since the space flights era started which created the conditions for simulated microgravity experiments under conditions of dry immersion and bedrest. The results of neurophysiological studies performed under the conditions of supportlessness have shown that decline or elimination of support loads is followed by deep and fast developing alterations in postural tonic system, including development of postural muscle atonia, changes of recruitment order of motoneurons innervating the shin muscles, spinal hyperreflexia development etc. (Kozlovskaya I.B. et al., 1987). It has been also shown that application of artificial support stimulation in the regimen of natural locomotion under these conditions decreases significantly or even eliminates the development of mentioned changes. The results of these studies laid down the basis for a new hypothesis on the trigger role of support afferentation in postural tonic system and its role in organization and control of postural synergies (Grigoriev A.I. et al., 2004). According to this hypothesis the muscle reception is considered to be the leading afferent input in the control of locomotion. However the data of recent studies pointed out strongly to the participation of support afferentation in definition of cognitive strategies and motor programs of locomotor movements (Chernikova L.A. et al., 2013) and, consequently, in the processes of their initiation (Gerasimenko Yu.P. et al., 2012). The cortical locomotor reflex composes apparently the basis of these processes. The receptive field of this reflex is located in the support zones of the soles and the central part is located in the posterior parietal areas (IPL) of brain cortex. The study is supported by RFBR grant N 13-04-12091 OFI-m.

  5. Climbing, falling, and jamming during ant locomotion in confined environments.

    PubMed

    Gravish, Nick; Monaenkova, Daria; Goodisman, Michael A D; Goldman, Daniel I

    2013-06-11

    Locomotion emerges from effective interactions of an individual with its environment. Principles of biological terrestrial locomotion have been discovered on unconfined vertical and horizontal substrates. However, a diversity of organisms construct, inhabit, and move within confined spaces. Such animals are faced with locomotor challenges including limited limb range of motion, crowding, and visual sensory deprivation. Little is known about how these organisms accomplish their locomotor tasks, and such environments challenge human-made devices. To gain insight into how animals move within confined spaces, we study the locomotion of the fire ant Solenopsis invicta, which constructs subterranean tunnel networks (nests). Laboratory experiments reveal that ants construct tunnels with diameter, D, comparable to body length, L = 3.5 ± 0.5 mm. Ants can move rapidly (> 9 bodylengths per s) within these environments; their tunnels allow for effective limb, body, and antennae interaction with walls, which facilitate rapid slip-recovery during ascending and descending climbs. To examine the limits of slip-recovery in artificial tunnels, we perform perturbations consisting of rapid downward accelerations of the tunnels, which induce falls. Below a critical tunnel diameter, Ds = 1.31 ± 0.02 L, falls are always arrested through rapid interaction of appendages and antennae with tunnel walls to jam the falls. Ds is comparable to the size of incipient nest tunnels (D = 1.06 ± 0.23 L), supporting our hypothesis that fire ants construct environments that simplify their control task when moving through the nest, likely without need for rapid nervous system intervention. PMID:23690589

  6. Benefit of "Push-pull" Locomotion for Planetary Rover Mobility

    NASA Technical Reports Server (NTRS)

    Creager, Colin M.; Moreland, Scott Jared; Skonieczny, K.; Johnson, K.; Asnani, V.; Gilligan, R.

    2011-01-01

    As NASAs exploration missions on planetary terrains become more aggressive, a focus on alternative modes of locomotion for rovers is necessary. In addition to climbing steep slopes, the terrain in these extreme environments is often unknown and can be extremely hard to traverse, increasing the likelihood of a vehicle or robot becoming damaged or immobilized. The conventional driving mode in which all wheels are either driven or free-rolling is very efficient on flat hard ground, but does not always provide enough traction to propel the vehicle through soft or steep terrain. This paper presents an alternative mode of travel and investigates the fundamental differences between these locomotion modes. The methods of push-pull locomotion discussed can be used with articulated wheeled vehicles and are identified as walking or inchinginch-worming. In both cases, the braked non-rolling wheels provide increased thrust. An in-depth study of how soil reacts under a rolling wheel vs. a braked wheel was performed by visually observing the motion of particles beneath the surface. This novel technique consists of driving or dragging a wheel in a soil bin against a transparent wall while high resolution, high-rate photographs are taken. Optical flow software was then used to determine shearing patterns in the soil. Different failure modes were observed for the rolling and braked wheel cases. A quantitative comparison of inching vs. conventional driving was also performed on a full-scale vehicle through a series of drawbar pull tests in the Lunar terrain strength simulant, GRC-1. The effect of tire stiffness was also compared; typically compliant tires provide better traction when driving in soft soil, however its been observed that rigid wheels may provide better thrust when non-rolling. Initial tests indicate up to a possible 40 increase in pull force capability at high slip when inching vs. rolling.

  7. Sexuality of Disabled Athletes Depending on the Form of Locomotion.

    PubMed

    Plinta, Ryszard; Sobiecka, Joanna; Drosdzol-Cop, Agnieszka; Nowak-Brzezińska, Agnieszka; Skrzypulec-Plinta, Violetta

    2015-11-22

    The main purpose of this study was to determine sexuality of disabled athletes depending on the form of locomotion. The study included 170 disabled athletes, aged between 18 and 45. The entire population was divided into 3 research groups depending on the form of locomotion: moving on wheelchairs (n=52), on crutches (n=29) and unaided (n=89). The research tool was a questionnaire voluntarily and anonymously completed by the respondents of the research groups. The questionnaire was composed of a general part concerning the socio-demographic conditions, medical history, health problems, a part dedicated to physical disability as well as the Polish version of the International Index of Erectile Function (IIEF) and the Female Sexual Function Index (FSFI) evaluating sexual life. STATISTICA 10.0 for Windows was used in the statistical analysis. Subjects moving on crutches were significantly older than ones moving on wheelchairs and unaided (34.41 ±11.00 vs. 30.49 ±10.44 and 27.99 ±10.51 years, respectively) (p=0.018). Clinically significant erectile dysfunctions were most often diagnosed in athletes moving on wheelchairs (70.27%), followed by athletes moving on crutches and moving unaided (60% and 35.42%, respectively; p=0.048). Clinical sexual dysfunctions were diagnosed on a similar level among all female athletes. It was concluded that the form of locomotion may determine sexuality of disabled men. Males on wheelchair revealed the worst sexual functioning. Female athletes moving on wheelchairs, on crutches and moving unaided were comparable in the aspect of their sexual life. PMID:26834876

  8. Extensor motoneurone properties are altered immediately before and during fictive locomotion in the adult decerebrate rat

    PubMed Central

    MacDonell, C W; Power, K E; Chopek, J W; Gardiner, K R; Gardiner, P F

    2015-01-01

    Key points This is the first report, in adult decerebrate rats, to examine intracellular hindlimb motoneurone properties during quiescence, fictive locomotion and a tonic period immediately before fictive locomotion that is characterized by increased peripheral nerve activity. It is shown for the first time during fictive locomotion that motoneurones become more responsive in the tonic period, suggesting that the motoneurone pool becomes primed before patterned motor output commences. Spike frequency adaptation exists in quiescence and during fictive locomotion during constant excitation with injected current but not during centrally driven fictive locomotion. Motoneurones within the extensor motor pool show changes in excitability even when they are not directly involved in locomotion. The data show increased responsiveness of motoneurones during locomotion via a lowered threshold for spike initiation and decreased rheobase. Abstract This study examined motoneurone properties during fictive locomotion in the adult rat for the first time. Fictive locomotion was induced via electrical stimulation of the mesencephalic locomotor region in decerebrate adult rats under neuromuscular blockade to compare basic and rhythmic motoneurone properties in antidromically identified extensor motoneurones during: (1) quiescence, before and after fictive locomotion; (2) the ‘tonic’ period immediately preceding locomotor-like activity, whereby the amplitude of peripheral flexor (peroneal) and extensor (tibial) nerves are increased but alternation has not yet occurred; and (3) locomotor-like episodes. Locomotion was identified by alternating flexor–extensor nerve activity, where the motoneurone either produced membrane oscillations consistent with a locomotor drive potential (LDP) or did not display membrane oscillation during alternating nerve activity. Cells producing LDPs were referred to as such, while those that did not were referred to as ‘idle’ motoneurones. LDP and

  9. Dynamics of muscle function during locomotion: accommodating variable conditions.

    PubMed

    Biewener, A A; Gillis, G B

    1999-12-01

    Much of what we know about animal locomotion is derived from studies examining animals moving within a single, homogeneous environment, at a steady speed and along a flat grade. As a result, the issue of how musculoskeletal function might shift to accommodate variability within the external environment has remained relatively unexplored. One possibility is that locomotor muscles are differentially recruited depending upon the environment in which the animal is moving. A second possibility is that the same muscles are recruited, but that they are activated in a different manner so that their contractile function differs according to environment. Finally, it is also possible that, in some cases, animals may not need to alter their musculoskeletal function to move under different external conditions. In this case, however, the mechanical behavior appropriate for one environmental condition may constrain locomotor performance in another. To begin to explore the means by which animals accommodate variable conditions in their environment, we present three case studies examining how musculoskeletal systems function to allow locomotion under variable conditions: (1) eels undulating through water and across land, (2) turkeys running on level and inclined surfaces, and (3) ducks using their limbs to walk and to paddle. In all three of these examples, the mechanical behavior of some muscle(s) involved in locomotion are altered, although to different degrees and in different ways. In the running turkeys, the mechanical function of a major ankle extensor muscle shifts from contracting isometrically on a flat surface (producing little work and power), to shortening actively during contraction on an uphill gradient (increasing the amount of work and power generated). In the ducks, the major ankle extensor undergoes the same general pattern of activation and shortening in water and on land, except that the absolute levels of muscle stress and strain and work output are greater

  10. Partly shared spinal cord networks for locomotion and scratching.

    PubMed

    Berkowitz, Ari; Hao, Zhao-Zhe

    2011-12-01

    Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, multiple separate CPGs, or partly overlapping CPGs. Much less is known about how vertebrates generate multiple, rhythmic behaviors involving the same muscles. The spinal cord of limbed vertebrates contains CPGs for locomotion and multiple forms of scratching. We investigated the extent of sharing of CPGs for hind limb locomotion and for scratching. We used the spinal cord of adult red-eared turtles. Animals were immobilized to remove movement-related sensory feedback and were spinally transected to remove input from the brain. We took two approaches. First, we monitored individual spinal cord interneurons (i.e., neurons that are in between sensory neurons and motor neurons) during generation of each kind of rhythmic output of motor neurons (i.e., each motor pattern). Many spinal cord interneurons were rhythmically activated during the motor patterns for forward swimming and all three forms of scratching. Some of these scratch/swim interneurons had physiological and morphological properties consistent with their playing a role in the generation of motor patterns for all of these rhythmic behaviors. Other spinal cord interneurons, however, were rhythmically activated during scratching motor patterns but inhibited during swimming motor patterns. Thus, locomotion and scratching may be generated by partly shared spinal cord CPGs. Second, we delivered swim-evoking and scratch-evoking stimuli simultaneously and monitored the resulting motor patterns. Simultaneous stimulation could cause interactions of scratch inputs with subthreshold swim inputs to produce normal swimming, acceleration

  11. Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Ulrich, Xialing

    Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings of some birds and insects. This doctoral thesis presents the study of sinusoidal locomotion of the nematode C. elegans in experiments and the application of the state-space airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB program has been developed to analyze the video records of C. elegans' movement in different fluids, including Newtonian and non-Newtonian fluids. The experimental and numerical studies of swimming C. elegans has revealed three conclusions. First, though the amplitude and wavelength are varying with time, the motion of swimming C. elegans can still be viewed as sinusoidal locomotion with slips. The average normalized wavelength is a conserved character of the locomotion for both Newtonian and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the moving speed of C. elegans, while fluid elasticity affects the moving speed but not the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of resistive coefficients becomes smaller. Inspired by the motion of C. elegans and other animals performing sinusoidal motion, we investigated the sinusoidal motion of a thin flexible wing in theory. Given the equation of the motion, we have derived the closed forms of propulsive force, lift and other generalized forces applying on the wing. We also calculated the power required to perform the motion, the power lost due to the shed vortices and the propulsive efficiency. These forces and powers are given as functions of reduced frequency k, dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results show that a positive, time-averaged propulsive force is produced for all k>k0=pi/ z. At k=k0, which implies the moment when the moving speed of the wing is the same as the wave speed of its undulation, the motion reaches a steady state with all forces being zero. If there were no

  12. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    NASA Astrophysics Data System (ADS)

    Lee, Scott

    2015-02-01

    In our first article1 on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find that this effect is important for the geometry of the bone. We find that larger theropods (including Tyrannosaurus rex) were less athletic than smaller theropods.

  13. Biomechanical Analysis of Treadmill Locomotion on the International Space Station

    NASA Technical Reports Server (NTRS)

    De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.

    2011-01-01

    Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to

  14. Evolution of Patterning Systems and Circuit Elements for Locomotion

    PubMed Central

    Jung, Heekyung; Dasen, Jeremy S.

    2015-01-01

    Summary Evolutionary modifications in nervous systems enabled organisms to adapt to their specific environments and underlie the remarkable diversity of behaviors expressed by animals. Resolving the pathways that shaped and modified neural circuits during evolution remains a significant challenge. Comparative studies have revealed a surprising conservation in the intrinsic signaling systems involved in early patterning of bilaterian nervous systems, but also raise the question of how neural circuit compositions and architectures evolved within specific animal lineages. In this Review we discuss the mechanisms that contributed to the emergence and diversity of animal nervous systems, focusing on the circuits governing vertebrate locomotion. PMID:25710528

  15. Incorporating compliant elastomers for jumping locomotion in microrobots

    NASA Astrophysics Data System (ADS)

    Gerratt, Aaron P.; Bergbreiter, Sarah

    2013-01-01

    Small insects and other animals use a multitude of materials to realize specific functions, including locomotion. This paper demonstrates application of the first microfabrication process to incorporate high aspect ratio compliant elastomer structures in-plane with traditional silicon microelectromechanical systems (MEMS). By incorporating these new materials, compact energy storage systems based on elastomer springs for small jumping robots have been demonstrated. Results include a 4 mm×4 mm jumping mechanism that has reached heights of 32 cm, × 80 its own height, and an on-chip actuated mechanism that has been used to propel a 1.4 mg projectile over 7 cm.

  16. Locomotion and visually guided behavior in salamander: a neuromechanical study

    NASA Astrophysics Data System (ADS)

    Ijspeert, Auke J.; Arbib, Michael A.

    2000-10-01

    This article investigates the neural mechanisms underlying locomotion and visually-guided behavior in a lower vertebrate: the salamander. We develop connectionist models of the salamander's locomotor circuitry and visual system, and analyze their functioning by embedding them into a biomechanical simulation of the salamander's body. This work is therefore an experiment in computational neuroethology which aims at investigating how behavior results from the coupling of a central nervous system (CNS) and a body, and from the interactions of the CNS-body pair with the environment. We believe that understanding these mechanisms is not only relevant for neurobiology but also for potential applications in robotics.

  17. Ultrasonic manipulation of locomotive microorganisms and evaluation of their activity

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Kitamura, Norio; Terauchi, Masaki

    2002-12-01

    Acoustic manipulation of locomotive microorganisms, i.e., euglena and paramecia, was conducted by using ultrasonic standing waves of ˜3 MHz. Microorganisms were trapped at the intersections of the nodes in the two orthogonal standing waves and were transferred horizontally and vertically by the suitable ultrasonic frequency change. Aggregation of microorganisms was also observed in the process of the cyclic frequency change. The trapping efficiency depended on both ultrasonic power density and the activity of microorganisms. The effects of water temperature and illumination on their activity were evaluated by measuring the ultrasonic trapping efficiency.

  18. Improvement of fuel injection system of locomotive diesel engine.

    PubMed

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office. PMID:25084413

  19. SimUGV: a simulator for analyzing energy dynamics and locomotion for unmanned ground vehicles (UGV)

    NASA Astrophysics Data System (ADS)

    Sinha, Aakash K.; Vashishtha, Jyoti

    2006-05-01

    In the area of research on unmanned ground vehicles (UGV), one major problem is limited operating duration of robotics vehicles due to energy losses. There is a need for systematic analysis of locomotion and energy dynamics, which would enable an efficient design of the vehicle. For this purpose, a multifunction simulator tool is required which can read several input variables that describe the vehicle and compute detailed analysis of its energy dynamics. This research presents a generic locomotion simulator for a UGV (SimUGV). SimUGV's goal is to help vehicle designers develop efficient vehicles by optimizing design variables to minimize the energy losses for the vehicle. SimUGV has a powerful GUI interface which allows users to compare multiple test runs and visualize the data in a variety of ways. To illustrate the capabilities of the simulator, we present a case study conducted on the energy dynamics of a skid steering robotic vehicle. Two major constituent components of energy losses/consumption for a skid steering vehicle are - losses in skid steer turning, and losses in rolling. Using SimUGV, we present a detailed energy loss analysis of the vehicle's different turning modes; elastic mode steering, half-slip steering, skid turns, low radius turns, and zero radius turns. Each of the energy loss components is modeled from physics in terms of the design variables. The effect of design variables on the total energy losses/consumption is then studied using simulated data for different types of surfaces i.e. hard surfaces and muddy surfaces. Finally, we make suggestions about efficient vehicle design choices in terms of the design variables.

  20. Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1

    SciTech Connect

    Poola, R.B.; Sekar, R.R.; Assanis, D.N.

    1996-09-01

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

  1. Are kinematics of the walk related to the locomotion of a warmblood horse at the trot?

    PubMed

    Back, W; Schamhardt, H C; Barneveld, A

    1996-01-01

    In purchase examinations or at studbook selection sales the locomotor apparatus of horses is judged both at walk and trot. To evaluate whether kinematics of the walk are related to the locomotion at the trot, fore and hind limb movements of a group of 24 26-month-old warmbloods were recorded at walk and trot on a treadmill (1.6 and 4 m/s) using a modified CODA-3 gait analysis system. The intralimb coordination patterns at walk and trot were compared, and temporal and spatial variables of these gaits were related. Stride and stance durations (s) were shorter at the trot, while the stance distance (m) and swing duration (s) remained the same. Moreover, the pattern of the joint angle-time curves at walk and trot looked rather similar, though shifted to the left at trot because of the shorter relative stance duration. During the stance phase, the shoulder, stifle and tarsal joints were more flexed throughout, while the carpal and fetlock joints were more maximally extended in the trot than in the walk. In the swing phase, the elbow, carpal, stifle, and tarsal joints were more flexed because of the higher 'operating' speed at the trot compared to the walk. All other kinematic variables at the trot could be predicted from the mean +/- lsd of the values recorded at the walk. Moreover, nearly all kinematic variables at the walk correlated well with those at the trot, while variables indicating gait quality of the walk were similar to the ones identified previously for the trot. In conclusion, kinematics recorded at the walk in a group of horses were similar to and thus predictive for locomotion at the trot providing the decreased stance duration and the increased speed of the trot are taken into consideration. PMID:8933680

  2. Are kinematics of the walk related to the locomotion of a warmblood horse at the trot?

    PubMed

    Back, W; Schamhardt, H C; Barneveld, A

    1996-10-01

    Summary In purchase examinations or at studbook selection sales the locomotor apparatus of horses is judged both at walk and trot. To evaluate whether kinematics of the walk are related to the locomotion at the trot, fore and hind limb movements of a group of 24 26-month-old warmbloods were recorded at walk and trot on a treadmill (1.6 and 4 m/s) using a modified CODA-3 gait analysis system. The intralimb coordination patterns at walk and trot were compared, and temporal and spatial variables of these gaits were related. Stride and stance durations (s) were shorter at the trot, while the stance distance (m) and swing duration (s) remained the same. Moreover, the pattern of the joint angle-time curves at walk and trot looked rather similar, though shifted to the left at trot because of the shorter relative stance duration. During the stance phase, the shoulder, stifle and tarsal joints were more flexed throughout, while the carpal and fetlock joints were more maximally extended in the trot than in the walk. In the swing phase, the elbow, carpal, stifle, and tarsal joints were more flexed because of the higher 'operating' speed at the trot compared to the walk. All other kinematic variables at the trot could be predicted from the mean ± 1sd of the values recorded at the walk. Moreover, nearly all kinematic variables at the walk correlated well with those at the trot, while variables indicating gait quality of the walk were similar to the ones identified previously for the trot. In conclusion, kinematics recorded at the walk in a group of horses were similar to and thus predictive for locomotion at the trot providing the decreased stance duration and the increased speed of the trot are taken into consideration. PMID:22070841

  3. Differential gating of thalamo-cortical signals by reticular nucleus of thalamus during locomotion

    PubMed Central

    Marlinski, Vladimir; Sirota, Mikhail G.; Beloozerova, Irina N.

    2012-01-01

    SUMMARY The thalamic reticular nucleus (RE) provides inhibition to the dorsal thalamus, and forms a crucial interface between thalamo-cortical and cortico-thalamic signals. Whereas there has been significant interest in the role of the RE in organizing thalamo-cortical signaling, information on the activity of the RE in the awake animal is scant. Here we investigated the activity of neurons within the ‘motor’ compartment of the RE in the awake, unrestrained cat during simple locomotion on a flat surface and complex locomotion along a horizontal ladder that required visual control of stepping. The activity of 88% of neurons in this region was modulated during locomotion. Neurons with receptive fields on the shoulder were located dorsally in the nucleus and had regular discharges; during locomotion they had relatively low activity and modest magnitudes of stride-related modulation, and their group activity was distributed over the stride. In contrast, neurons with receptive fields on the wrist/paw were located more ventrally, often discharged sleep-type bursts during locomotion, were very active and profoundly modulated, and their group activity was concentrated in the swing and end of stance. 75% of RE neurons had different activity during the two locomotion tasks. We conclude that during locomotion the RE differentially gates thalamo-cortical signals transmitted during different phases of the stride, in relation to different parts of the limb, and the type of locomotion task. PMID:23136421

  4. The Role of Visual and Nonvisual Information in the Control of Locomotion

    ERIC Educational Resources Information Center

    Wilkie, Richard M.; Wann, John P.

    2005-01-01

    During locomotion, retinal flow, gaze angle, and vestibular information can contribute to one's perception of self-motion. Their respective roles were investigated during active steering: Retinal flow and gaze angle were biased by altering the visual information during computer-simulated locomotion, and vestibular information was controlled…

  5. 49 CFR 223.17 - Identification of equipped locomotives, passenger cars and cabooses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Identification of equipped locomotives, passenger cars and cabooses. 223.17 Section 223.17 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION SAFETY GLAZING STANDARDS-LOCOMOTIVES, PASSENGER CARS AND CABOOSES...

  6. 40 CFR 1033.420 - Maintenance, procurement and testing of in-use locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Maintenance, procurement and testing of in-use locomotives. 1033.420 Section 1033.420 Protection of Environment ENVIRONMENTAL PROTECTION... adjustments. (c) If the locomotive selected for testing is equipped with emission diagnostics meeting...

  7. 49 CFR 230.90 - Draw gear between steam locomotive and tender.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Lost motion between steam locomotives and tenders not equipped with spring buffers shall be kept to a minimum and shall not exceed 1/2 inch. (e) Spring buffers. When spring buffers are used between steam locomotives and tenders the spring shall be applied with not less than 3/4 inch compression, and shall at...

  8. 49 CFR 230.90 - Draw gear between steam locomotive and tender.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Lost motion between steam locomotives and tenders not equipped with spring buffers shall be kept to a minimum and shall not exceed 1/2 inch. (e) Spring buffers. When spring buffers are used between steam locomotives and tenders the spring shall be applied with not less than 3/4 inch compression, and shall at...

  9. Recommended terminology for researchers in locomotion and biomechanics of quadrupedal animals.

    PubMed

    Leach, D

    1993-01-01

    This paper summarizes recommendations for terminology to be used in the description of quadrupedal locomotion and selected aspects of biomechanics. Directional terms and planes of the body (anatomical position, spatial reference systems), joint angulation, conformation, general locomotion terminology, phases of the stride and limb cycle (e.g. step, cadence) and terminology for the description of jumping are described. PMID:8470455

  10. 49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Requirements for External Fuel Tanks on Tier I..., App. D Appendix D to Part 238—Requirements for External Fuel Tanks on Tier I Locomotives The... properties of the locomotive fuel tank to reduce the risk of fuel spillage to acceptable levels...

  11. 49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Requirements for External Fuel Tanks on Tier I..., App. D Appendix D to Part 238—Requirements for External Fuel Tanks on Tier I Locomotives The... properties of the locomotive fuel tank to reduce the risk of fuel spillage to acceptable levels...

  12. 49 CFR 1242.22 - Shop buildings-locomotives (account XX-19-24).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Shop buildings-locomotives (account XX-19-24). 1242.22 Section 1242.22 Transportation Other Regulations Relating to Transportation (Continued) SURFACE... Structures § 1242.22 Shop buildings—locomotives (account XX-19-24). Separate common expenses according...

  13. 49 CFR 1242.22 - Shop buildings-locomotives (account XX-19-24).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Shop buildings-locomotives (account XX-19-24). 1242.22 Section 1242.22 Transportation Other Regulations Relating to Transportation (Continued) SURFACE... Structures § 1242.22 Shop buildings—locomotives (account XX-19-24). Separate common expenses according...

  14. 49 CFR 1242.22 - Shop buildings-locomotives (account XX-19-24).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Shop buildings-locomotives (account XX-19-24). 1242.22 Section 1242.22 Transportation Other Regulations Relating to Transportation (Continued) SURFACE... Structures § 1242.22 Shop buildings—locomotives (account XX-19-24). Separate common expenses according...

  15. 49 CFR 1242.22 - Shop buildings-locomotives (account XX-19-24).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Shop buildings-locomotives (account XX-19-24). 1242.22 Section 1242.22 Transportation Other Regulations Relating to Transportation (Continued) SURFACE... Structures § 1242.22 Shop buildings—locomotives (account XX-19-24). Separate common expenses according...

  16. 49 CFR Appendix E to Part 229 - Performance Criteria for Locomotive Crashworthiness

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Performance Criteria for Locomotive Crashworthiness E Appendix E to Part 229 Transportation Other Regulations Relating to Transportation (Continued..., App. E Appendix E to Part 229—Performance Criteria for Locomotive Crashworthiness This...

  17. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... boilers. 230.20 Section 230.20 Transportation Other Regulations Relating to Transportation (Continued... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... maintained for the life of the boiler. (See appendix B of this part.) (b) Welded and riveted repairs...

  18. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... boilers. 230.20 Section 230.20 Transportation Other Regulations Relating to Transportation (Continued... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... maintained for the life of the boiler. (See appendix B of this part.) (b) Welded and riveted repairs...

  19. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... boilers. 230.20 Section 230.20 Transportation Other Regulations Relating to Transportation (Continued... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... maintained for the life of the boiler. (See appendix B of this part.) (b) Welded and riveted repairs...

  20. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... boilers. 230.20 Section 230.20 Transportation Other Regulations Relating to Transportation (Continued... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... maintained for the life of the boiler. (See appendix B of this part.) (b) Welded and riveted repairs...