Science.gov

Sample records for locus genetics meets

  1. Genetic analysis of the claret locus of Drosophila melanogaster

    SciTech Connect

    Sequeira, W.; Nelson, C.R.; Szauter, P. )

    1989-11-01

    The claret (ca) locus of Drosophila melanogaster comprises two separately mutable domains, one responsible for eye color and one responsible for proper disjunction of chromosomes in meiosis and early cleavage divisions. Previously isolated alleles are of three types: (1) alleles of the claret (ca) type that affect eye color only, (2) alleles of the claret-nondisjunctional (ca{sup nd}) type that affect eye color and chromosome behavior, and (3) a meiotic mutation, non-claret disjunctional (ncd), that affects chromosome behavior only. In order to investigate the genetic structure of the claret locus, the authors have isolated 19 radiation-induced alleles of claret on the basis of the eye color phenotype. Two of these 19 new alleles are of the ca{sup nd} type, while 17 are of the ca type, demonstrating that the two domains do not often act as a single target for mutagenesis. This suggests that the two separately mutable functions are likely to be encoded by separate or overlapping genes rather than by a single gene. One of the new alleles of the ca{sup nd} type is a chromosome rearrangement with a breakpoint at the position of the claret locus. If this breakpoint is the cause of the mutant phenotype and there are no other mutations associated with the rearrangement, the two functions must be encoded by overlapping genes.

  2. Genetic mapping of a locus predisposing to human colorectal cancer

    SciTech Connect

    Peltomaeki, P.; Aaltonen, L.A.; Pylkkaenen, L.; Chappelle, A. de la ); Sistonen, P. Finnish Red Cross Blood Transfusion Service, Helsinki ); Mecklin, J.P. ); Haervinen, H. ); Green, J.S. ); Jass, J.R. ); Weber, J.L. ); Leach, F.S.; Petersen, G.M.; Hamilton, S.R.; Vogelstein, B. Johns Hopkins Hospital, Baltimore, MD )

    1993-05-07

    Genetic linkage analysis was used to determine whether a specific chromosomal locus could be implicated in families with a history of early onset cancer but with no other unique features. Close linkage of disease to anonymous microsatellite markers on chromosome 2 was demonstrated in two large kindreds. The pairwise lod scores for linkage to marker D2S123 in these kindreds were 6.39 and 1.45 at zero recombination, and multipoint linkage with flanking markers resulted in lod scores of 6.47 and 6.01. These results prove the existence of a genetically determined predisposition to colorectal cancer that has important ramifications for understanding and preventing this disease. 13 refs., 1 fig., 1 tab.

  3. Two-trait-locus linkage analysis: A powerful strategy for mapping complex genetic traits

    SciTech Connect

    Schork, N.J.; Boehnke, M. ); Terwilliger, J.D.; Ott, J. )

    1993-11-01

    Nearly all diseases mapped to date follow clear Mendelian, single-locus segregation patterns. In contrast, many common familial diseases such as diabetes, psoriasis, several forms of cancer, and schizophrenia are familial and appear to have a genetic component but do not exhibit simple Mendelian transmission. More complex models are required to explain the genetics of these important diseases. In this paper, the authors explore two-trait-locus, two-marker-locus linkage analysis in which two trait loci are mapped simultaneously to separate genetic markers. The authors compare the utility of this approach to standard one-trait-locus, one-marker-locus linkage analysis with and without allowance for heterogeneity. The authors also compare the utility of the two-trait-locus, two-marker-locus analysis to two-trait-locus, one-marker-locus linkage analysis. For common diseases, pedigrees are often bilineal, with disease genes entering via two or more unrelated pedigree members. Since such pedigrees often are avoided in linkage studies, the authors also investigate the relative information content of unilineal and bilineal pedigrees. For the dominant-or-recessive and threshold models that the authors consider, the authors find that two-trait-locus, two-marker-locus linkage analysis can provide substantially more linkage information, as measured by expected maximum lod score, than standard one-trait-locus, one-marker-locus methods, even allowing for heterogeneity, while, for a dominant-or-dominant generating model, one-locus models that allow for heterogeneity extract essentially as much information as the two-trait-locus methods. For these three models, the authors also find that bilineal pedigrees provide sufficient linkage information to warrant their inclusion in such studies. The authors discuss strategies for assessing the significance of the two linkages assumed in two-trait-locus, two-marker-locus models. 37 refs., 1 fig., 4 tabs.

  4. Genetic Locus for Streptolysin S Production by Group A Streptococcus

    PubMed Central

    Nizet, Victor; Beall, Bernard; Bast, Darrin J.; Datta, Vivekananda; Kilburn, Laurie; Low, Donald E.; De Azavedo, Joyce C. S.

    2000-01-01

    Group A streptococcus (GAS) is an important human pathogen that causes pharyngitis and invasive infections, including necrotizing fasciitis. Streptolysin S (SLS) is the cytolytic factor that creates the zone of beta-hemolysis surrounding GAS colonies grown on blood agar. We recently reported the discovery of a potential genetic determinant involved in SLS production, sagA, encoding a small peptide of 53 amino acids (S. D. Betschel, S. M. Borgia, N. L. Barg, D. E. Low, and J. C. De Azavedo, Infect. Immun. 66:1671–1679, 1998). Using transposon mutagenesis, chromosomal walking steps, and data from the GAS genome sequencing project (www.genome.ou.edu/strep.html), we have now identified a contiguous nine-gene locus (sagA to sagI) involved in SLS production. The sag locus is conserved among GAS strains regardless of M protein type. Targeted plasmid integrational mutagenesis of each gene in the sag operon resulted in an SLS-negative phenotype. Targeted integrations (i) upstream of the sagA promoter and (ii) downstream of a terminator sequence after sagI did not affect SLS production, establishing the functional boundaries of the operon. A rho-independent terminator sequence between sagA and sagB appears to regulate the amount of sagA transcript produced versus transcript for the entire operon. Reintroduction of the nine-gene sag locus on a plasmid vector restored SLS activity to the nonhemolytic sagA knockout mutant. Finally, heterologous expression of the intact sag operon conferred the SLS beta-hemolytic phenotype to the nonhemolytic Lactococcus lactis. We conclude that gene products of the GAS sag operon are both necessary and sufficient for SLS production. Sequence homologies of sag operon gene products suggest that SLS is related to the bacteriocin family of microbial toxins. PMID:10858242

  5. Evidence for a third genetic locus for autosomal dominant polycystic kidney disease

    SciTech Connect

    Daoust, M.C.; Bichet, D.G.; Reynolds, D.M.

    1995-02-10

    Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disease with loci on chromosomes 16p and 4q. It has a moderately high spontaneous mutation rate, although the relative frequency of such mutations at each gene locus is unknown. In studying genetic heterogeneity in the French-Canadian population, we identified a family in which a classical clinical presentation of ADPKD resulted from a mutation at a locus genetically distinct from either of the previously described loci for this disease. This suggests the existence of a third genetic locus for ADPKD. 21 refs., 1 fig., 1 tab.

  6. Molecular genetic analysis of the Phaseolus vulgaris P locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common bean market classes are distinguished by their many seed colors, patterns, and size. At least 23 genes, acting independently or in an epistatic manner, affect the seed coat color and pattern. The P locus which is described as the “ground factor” by Emerson, has multiple alleles and controls a...

  7. Genetic heterogeneity in benign familial neonatal convulsions: Identification of a new locus on chromosome 8q

    SciTech Connect

    Lewis, T.B.; Leach, R.J.; O'Connell, P.; Ryan, S.G. ); Ward, K. )

    1993-09-01

    The syndrome of benign familial neonatal convulsions (BFNC) is a rare autosomal dominant disorder characterized by unprovoked seizures in the first weeks of life. One locus for BFNC has been mapped to chromosome 20 in several pedigrees, but the authors have excluded linkage to chromosome 20 in one large kindred. In order to identify this novel BFNC locus, dinucleotide repeat markers distributed throughout the genome were used to screen this family. Maximum pairwise LOD scores of 4.43 were obtained with markers D8S284 and D8S256 on chromosome 8q. Multipoint analysis placed the BFNC locus in the interval spanned by D8S198-D8S274. This study establishes the presence of a new BFNC locus and confirms genetic heterogeneity of this disorder. 26 refs., 3 figs., 1 tab.

  8. Genetic and environmental influences on the relationship between flow proneness, locus of control and behavioral inhibition.

    PubMed

    Mosing, Miriam A; Pedersen, Nancy L; Cesarini, David; Johannesson, Magnus; Magnusson, Patrik K E; Nakamura, Jeanne; Madison, Guy; Ullén, Fredrik

    2012-01-01

    Flow is a psychological state of high but subjectively effortless attention that typically occurs during active performance of challenging tasks and is accompanied by a sense of automaticity, high control, low self-awareness, and enjoyment. Flow proneness is associated with traits and behaviors related to low neuroticism such as emotional stability, conscientiousness, active coping, self-esteem and life satisfaction. Little is known about the genetic architecture of flow proneness, behavioral inhibition and locus of control--traits also associated with neuroticism--and their interrelation. Here, we hypothesized that individuals low in behavioral inhibition and with an internal locus of control would be more likely to experience flow and explored the genetic and environmental architecture of the relationship between the three variables. Behavioral inhibition and locus of control was measured in a large population sample of 3,375 full twin pairs and 4,527 single twins, about 26% of whom also scored the flow proneness questionnaire. Findings revealed significant but relatively low correlations between the three traits and moderate heritability estimates of .41, .45, and .30 for flow proneness, behavioral inhibition, and locus of control, respectively, with some indication of non-additive genetic influences. For behavioral inhibition we found significant sex differences in heritability, with females showing a higher estimate including significant non-additive genetic influences, while in males the entire heritability was due to additive genetic variance. We also found a mainly genetically mediated relationship between the three traits, suggesting that individuals who are genetically predisposed to experience flow, show less behavioral inhibition (less anxious) and feel that they are in control of their own destiny (internal locus of control). We discuss that some of the genes underlying this relationship may include those influencing the function of dopaminergic neural

  9. Genetic and Environmental Influences on the Relationship between Flow Proneness, Locus of Control and Behavioral Inhibition

    PubMed Central

    Mosing, Miriam A.; Pedersen, Nancy L.; Cesarini, David; Johannesson, Magnus; Magnusson, Patrik K. E.; Nakamura, Jeanne; Madison, Guy; Ullén, Fredrik

    2012-01-01

    Flow is a psychological state of high but subjectively effortless attention that typically occurs during active performance of challenging tasks and is accompanied by a sense of automaticity, high control, low self-awareness, and enjoyment. Flow proneness is associated with traits and behaviors related to low neuroticism such as emotional stability, conscientiousness, active coping, self-esteem and life satisfaction. Little is known about the genetic architecture of flow proneness, behavioral inhibition and locus of control – traits also associated with neuroticism – and their interrelation. Here, we hypothesized that individuals low in behavioral inhibition and with an internal locus of control would be more likely to experience flow and explored the genetic and environmental architecture of the relationship between the three variables. Behavioral inhibition and locus of control was measured in a large population sample of 3,375 full twin pairs and 4,527 single twins, about 26% of whom also scored the flow proneness questionnaire. Findings revealed significant but relatively low correlations between the three traits and moderate heritability estimates of .41, .45, and .30 for flow proneness, behavioral inhibition, and locus of control, respectively, with some indication of non-additive genetic influences. For behavioral inhibition we found significant sex differences in heritability, with females showing a higher estimate including significant non-additive genetic influences, while in males the entire heritability was due to additive genetic variance. We also found a mainly genetically mediated relationship between the three traits, suggesting that individuals who are genetically predisposed to experience flow, show less behavioral inhibition (less anxious) and feel that they are in control of their own destiny (internal locus of control). We discuss that some of the genes underlying this relationship may include those influencing the function of dopaminergic

  10. [Genetic study of the Penta E locus and identification of rare alleles].

    PubMed

    Lai, Li; Shen, Xiaoli; Han, Lili; Chen, Dian; Hu, Jie

    2015-10-01

    OBJECTIVE To study the genetic polymorphisms of Penta E locus in Fujian Han population. METHODS Polymorphisms of the Penta E locus in 851 unrelated individuals were analyzed using polymerase chain reaction-short tandem repeat (PCR-STR). The mutation rate of rare alleles was analyzed in 494 paternity identification cases (in a total of 674 meiosis). RESULTS Twenty-six alleles were identified for the Penta E locus, with their frequencies ranging from 0.0006 to 0.1528. There were 7 rare alleles, among which Penta E-28.4 ([AAAGA]29) was identified for the first time. Genetic parameters of the Penta E locus in Fujian Han population were obtained, including PIC= 0.91, PE= 0.817, PD= 0.986, and mutation rate= 0.0015. CONCLUSION The Penta E locus is highly polymorphic and has a low mutation rate in Fujian Han population. It also has a good prospect in genetics applications. DNA sequencing is a good method for identifying rare alleles. PMID:26418985

  11. Extensive genetic diversity and low linkage disequilibrium within the COMT locus in maize exotic populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Caffeic acid 3-O-methytransferase (COMT) gene is a prime candidate for cell wall digestibility improvement based on the characterization of brown midrib-3 mutants. We compared the genetic diversity and linkage disequilibrium at COMT locus between populations sampled within the Germplasm Enhance...

  12. High Genetic Variability of the agr Locus in Staphylococcus Species

    PubMed Central

    Dufour, Philippe; Jarraud, Sophie; Vandenesch, Francois; Greenland, Timothy; Novick, Richard P.; Bes, Michele; Etienne, Jerome; Lina, Gerard

    2002-01-01

    The agr quorum-sensing and signal transduction system was initially described in Staphylococcus aureus, where four distinct allelic variants have been sequenced. Western blotting suggests the presence of homologous loci in many other staphylococci, and this has been confirmed for S. epidermidis and S. lugdunensis. In this study we isolated agr-like loci from a range of staphylococci by using PCR amplification from primers common to the six published agr sequences and bracketing the most variable region, associated with quorum-sensing specificity. Positive amplifications were obtained from 14 of 34 staphylococcal species or subspecies tested. Sequences of the amplicons identified 24 distinct variants which exhibited extensive sequence divergence with only 10% of the nucleotides absolutely conserved on multiple alignment. This variability involved all three open reading frames involved in quorum sensing and signal transduction. However, these variants retained several protein signatures, including the conserved cysteine residue of the autoinducing peptide, with the exception of S. intermedius of pigeon origin, which contained a serine in place of cysteine at this position. We discuss hypotheses on the mode of action and the molecular evolution of the agr locus based on comparisons between the newly determined sequences. PMID:11807079

  13. Multi-locus models of genetic risk of disease

    PubMed Central

    2010-01-01

    Background Evidence for genetic contribution to complex diseases is described by recurrence risks to relatives of diseased individuals. Genome-wide association studies allow a description of the genetics of the same diseases in terms of risk loci, their effects and allele frequencies. To reconcile the two descriptions requires a model of how risks from individual loci combine to determine an individual's overall risk. Methods We derive predictions of risk to relatives from risks at individual loci under a number of models and compare them with published data on disease risk. Results The model in which risks are multiplicative on the risk scale implies equality between the recurrence risk to monozygotic twins and the square of the recurrence risk to sibs, a relationship often not observed, especially for low prevalence diseases. We show that this theoretical equality is achieved by allowing impossible probabilities of disease. Other models, in which probabilities of disease are constrained to a maximum of one, generate results more consistent with empirical estimates for a range of diseases. Conclusions The unconstrained multiplicative model, often used in theoretical studies because of its mathematical tractability, is not a realistic model. We find three models, the constrained multiplicative, Odds (or Logit) and Probit (or liability threshold) models, all fit the data on risk to relatives. Currently, in practice it would be difficult to differentiate between these models, but this may become possible if genetic variants that explain the majority of the genetic variance are identified. PMID:20181060

  14. What to Expect When Meeting with a Genetic Counselor

    MedlinePlus

    ... PDF What to Expect When Meeting With a Genetic Counselor Approved by the Cancer.Net Editorial Board , ... prevention, and treatment options and provide support. A genetic counselor’s training and certification A genetic counselor is ...

  15. Functional and genetic analysis of haplotypic sequence variation at the nicastrin genomic locus

    PubMed Central

    Hamilton, Gillian; Killick, Richard; Lambert, Jean-Charles; Amouyel, Philippe; Carrasquillo, Minerva M.; Pankratz, V. Shane; Graff-Radford, Neill R.; Dickson, Dennis W.; Petersen, Ronald C.; Younkin, Steven G.; Powell, John F.; Wade-Martins, Richard

    2013-01-01

    Nicastrin (NCSTN) is a component of the γ-secretase complex and therefore potentially a candidate risk gene for Alzheimer's disease. Here, we have developed a novel functional genomics methodology to express common locus haplotypes to assess functional differences. DNA recombination was used to engineer 5 bacterial artificial chromosomes (BACs) to each express a different haplotype of the NCSTN locus. Each NCSTN-BAC was delivered to knockout nicastrin (Ncstn−/−) cells and clonal NCSTN-BAC+/Ncstn−/− cell lines were created for functional analyses. We showed that all NCSTN-BAC haplotypes expressed nicastrin protein and rescued γ-secretase activity and amyloid beta (Aβ) production in NCSTN-BAC+/Ncstn−/− lines. We then showed that genetic variation at the NCSTN locus affected alternative splicing in human postmortem brain tissue. However, there was no robust functional difference between clonal cell lines rescued by each of the 5 different haplotypes. Finally, there was no statistically significant association of NCSTN with disease risk in the 4 cohorts. We therefore conclude that it is unlikely that common variation at the NCSTN locus is a risk factor for Alzheimer's disease. PMID:22405046

  16. Genetic Control Of Natural Killing and In Vivo Tumor Elimination by the Chok Locus

    PubMed Central

    Idris, Azza H.; Iizuka, Koho; Smith, Hamish R.C.; Scalzo, Anthony A.; Yokoyama, Wayne M.

    1998-01-01

    The molecular mechanisms underlying target recognition during natural killing are not well understood. One approach to dissect the complexities of natural killer (NK) cell recognition is through exploitation of genetic differences among inbred mouse strains. In this study, we determined that interleukin 2–activated BALB/c-derived NK cells could not lyse Chinese hamster ovary (CHO) cells as efficiently as C57BL/6-derived NK cells, despite equivalent capacity to kill other targets. This strain-determined difference was also exhibited by freshly isolated NK cells, and was determined to be independent of host major histocompatibility haplotype. Furthermore, CHO killing did not correlate with expression of NK1.1 or 2B4 activation molecules. Genetic mapping studies revealed linkage between the locus influencing CHO killing, termed Chok, and loci encoded within the NK gene complex (NKC), suggesting that Chok encodes an NK cell receptor specific for CHO cells. In vivo assays recapitulated the in vitro data, and both studies determined that Chok regulates an NK perforin–dependent cytotoxic process. These results may have implications for the role of NK cells in xenograft rejection. Our genetic analysis suggests Chok is a single locus that affects NK cell–mediated cytotoxicity similar to other NKC loci that also regulate the complex activity of NK cells. PMID:9858511

  17. Genetic mapping of microsatellite markers around the arcelin bruchid resistance locus in common bean.

    PubMed

    Blair, Matthew W; Muñoz, Claritza; Buendía, Héctor F; Flower, José; Bueno, Juan M; Cardona, César

    2010-07-01

    The deployment in common beans (Phaseolus vulgaris L.) of arcelin-based bruchid resistance could help reduce post-harvest storage losses to the Mexican bean weevil [(Zabrotes subfasciatus (Boheman)]. Arcelin is a member of the arcelin-phytohemagglutinin-alpha-amylase inhibitor (APA) family of seed proteins, which has been extensively studied but not widely used in bean breeding programs. The purpose of this study was to evaluate microsatellite markers for genetic analysis of arcelin-based bruchid resistance and to determine the orientation of markers and the rate of recombination around the APA locus. A total of 10 previously developed microsatellites and 22 newly developed markers based on a sequenced BAC from the APA locus were screened for polymorphism and of these 15 were mapped with an F(2) population of 157 individuals resulting from a susceptible x resistant cross of SEQ1006 x RAZ106 that segregated for both the arcelin 1 allele and resistance to the bruchid, Z. subfasciatus. Microsatellites derived from APA gene sequences were linked within 0.8 cM of each other and were placed relative to the rest of the b04 linkage group. In a comparison of genetic to physical distance on the BAC sequence, recombination was found to be moderate with a ratio of 125 kb/cM, but repressed within the APA locus itself. Several markers were predicted to be very effective for genetic studies or marker-assisted selection, based on their significant associations with bruchid resistance and on low adult insect emergence and positions flanking the arcelin and phytohemagglutinin genes. PMID:20358173

  18. Multilocus patterns of genetic variation across Cryptosporidium species suggest balancing selection at the gp60 locus.

    PubMed

    Abal-Fabeiro, J L; Maside, X; Bello, X; Llovo, J; Bartolomé, C

    2013-09-01

    Cryptosporidium is an apicomplexan protozoan that lives in most vertebrates, including humans. Its gp60 gene is functionally involved in its attachment to host cells, and its high level of genetic variation has made it the reference marker for sample typing in epidemiological studies. To understand the origin of such high diversity and to determine the extent to which this classification applies to the rest of the genome, we analysed the patterns of variation at gp60 and nine other nuclear loci in isolates of three Cryptosporidium species. Most loci showed low genetic polymorphism (πS <1%) and similar levels of between-species divergence. Contrastingly, gp60 exhibited very different characteristics: (i) it was nearly ten times more variable than the other loci; (ii) it displayed a significant excess of polymorphisms relative to between-species differences in a maximum-likelihood Hudson-Kreitman-Aguadé test; (iii) gp60 subtypes turned out to be much older than the species they were found in; and (iv) showed a significant excess of polymorphic variants shared across species from random expectations. These observations suggest that this locus evolves under balancing selection and specifically under negative frequency-dependent selection (FDS). Interestingly, genetic variation at the other loci clusters very well within the groups of isolates defined by gp60 subtypes, which may provide new tools to understand the genome-wide patterns of genetic variation of the parasite in the wild. These results suggest that gp60 plays an active and essential role in the life cycle of the parasite and that genetic variation at this locus might be essential for the parasite's long-term success. PMID:23915002

  19. Genetic overlap between Alzheimer's disease and Parkinson's disease at the MAPT locus.

    PubMed

    Desikan, R S; Schork, A J; Wang, Y; Witoelar, A; Sharma, M; McEvoy, L K; Holland, D; Brewer, J B; Chen, C-H; Thompson, W K; Harold, D; Williams, J; Owen, M J; O'Donovan, M C; Pericak-Vance, M A; Mayeux, R; Haines, J L; Farrer, L A; Schellenberg, G D; Heutink, P; Singleton, A B; Brice, A; Wood, N W; Hardy, J; Martinez, M; Choi, S H; DeStefano, A; Ikram, M A; Bis, J C; Smith, A; Fitzpatrick, A L; Launer, L; van Duijn, C; Seshadri, S; Ulstein, I D; Aarsland, D; Fladby, T; Djurovic, S; Hyman, B T; Snaedal, J; Stefansson, H; Stefansson, K; Gasser, T; Andreassen, O A; Dale, A M

    2015-12-01

    We investigated the genetic overlap between Alzheimer's disease (AD) and Parkinson's disease (PD). Using summary statistics (P-values) from large recent genome-wide association studies (GWAS) (total n=89 904 individuals), we sought to identify single nucleotide polymorphisms (SNPs) associating with both AD and PD. We found and replicated association of both AD and PD with the A allele of rs393152 within the extended MAPT region on chromosome 17 (meta analysis P-value across five independent AD cohorts=1.65 × 10(-7)). In independent datasets, we found a dose-dependent effect of the A allele of rs393152 on intra-cerebral MAPT transcript levels and volume loss within the entorhinal cortex and hippocampus. Our findings identify the tau-associated MAPT locus as a site of genetic overlap between AD and PD, and extending prior work, we show that the MAPT region increases risk of Alzheimer's neurodegeneration. PMID:25687773

  20. Genetic overlap between Alzheimer’s disease and Parkinson’s disease at the MAPT locus

    PubMed Central

    Desikan, Rahul S.; Schork, Andrew J.; Wang, Yunpeng; Witoelar, Aree; Sharma, Manu; McEvoy, Linda K.; Holland, Dominic; Brewer, James B.; Chen, Chi-Hua; Thompson, Wesley K.; Harold, Denise; Williams, Julie; Owen, Michael J.; O’Donovan, Michael C.; Pericak-Vance, Margaret A.; Mayeux, Richard; Haines, Jonathan L.; Farrer, Lindsay A.; Schellenberg, Gerard D.; Heutink, Peter; Singleton, Andrew B.; Brice, Alexis; Wood, Nicolas W.; Hardy, John; Martinez, Maria; Choi, Seung Hoi; DeStefano, Anita; Ikram, M. Arfan; Bis, Joshua C.; Smith, Albert; Fitzpatrick, Annette L.; Launer, Lenore; van Duijn, Cornelia; Seshadri, Sudha; Ulstein, Ingun Dina; Aarsland, Dag; Fladby, Tormod; Djurovic, Srdjan; Hyman, Bradley T.; Snaedal, Jon; Stefansson, Hreinn; Stefansson, Kari; Gasser, Thomas; Andreassen, Ole A.; Dale, Anders M.

    2015-01-01

    We investigated genetic overlap between Alzheimer’s disease (AD) and Parkinson’s disease (PD). Using summary statistics (p-values) from large recent genomewide association studies (GWAS) (total n = 89,904 individuals), we sought to identify single nucleotide polymorphisms (SNPs) associating with both AD and PD. We found and replicated association of both AD and PD with the A allele of rs393152 within the extended MAPT region on chromosome 17 (meta analysis p-value across 5 independent AD cohorts = 1.65 × 10−7). In independent datasets, we found a dose-dependent effect of the A allele of rs393152 on intra-cerebral MAPT transcript levels and volume loss within the entorhinal cortex and hippocampus. Our findings identify the tau-associated MAPT locus as a site of genetic overlap between AD and PD and extending prior work, we show that the MAPT region increases risk of Alzheimer’s neurodegeneration. PMID:25687773

  1. The effect of adaptive mutagenesis on genetic variation at a linked, neutral locus

    SciTech Connect

    Colby, C.; Williams, S.M.

    1995-07-01

    Based on recent studies in single-celled organisms, it has been argued that a fitness benefit associated with a mutation will increase the probability of that mutation occurring. This increase is independent of mutation rates at other loci and is called adaptive mutagenesis. We modeled the effect of adaptive mutagenesis on populations of haploid organisms with adaptive mutation rates ranging from 0 to 1 x 10{sup -5}. Allele frequencies at the selected locus and a neutral linked locus were tracked. We also observed the amount of linkage disequilibrium during the selective sweep and the final heterozygosity after the sweep. The presence of adaptive mutagenesis increases the number of genetic backgrounds carrying the new fitter allele, making the outcomes more representative of the population before the selection. Therefore, more neutral genetic variation is preserved in simulations with adaptive mutagenesis than in those without it due to hitchhiking. Since adaptive mutagensis is time-dependent, it can generate mutants when other mechanisms of mutation cannot. In addition, adaptive mutagenesis has the potential to confound both phylogeny construction and the detection of natural selection from patterns of nucleotide variation. 27 refs., 4 figs.

  2. Refinement of the spinal muscular atrophy locus by genetic and physical mapping

    SciTech Connect

    Wang, C.H.; Kleyn, P.W.; Vitale, E.; Ross, B.M.; Xu, J.; Carter, T.A.; Brzustowicz, L.M.; Obici, S.; Lien, L.; Selig, S.

    1995-01-01

    We report the mapping and characterization of 12 microsatellite markers including 11 novel markers. All markers were generated from overlapping YAC clones that span the spinal muscular atrophy (SMA) locus. PCR amplification of 32 overlapping YAC clones show that 9 of the new markers (those set in italics) map to the interval between the two previous closest flanking markers (D5S629 and D5S557):cen - D5S6 - D5S125 - D5S435 - D5S1407 - D5S629 - D5S1410 - D5S1411/D5S1412 - D5S1413 - D5S1414 - D5Z8 - D5Z9 - CATT1 - D5Z10/D5Z6 - D5S557 - D5S1408 - D5S1409 - D5S637 - D5S351 - MAP1B - tel. Four of these new markers detect multiple loci in and out of the SMA gene region. Genetic analysis of recombinant SMA families indicates that D5S1413 is a new proximal flanking locus for the SMA gene. Interestingly, among the 40 physically mapped loci, the 14 multilocus markers map contiguously to a genomic region that overlaps, and perhaps helps define, the minimum genetic region encompassing the SMA gene(s). 24 refs., 5 figs., 1 tab.

  3. Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer

    PubMed Central

    O’Mara, Tracy A; Glubb, Dylan M; Painter, Jodie N; Cheng, Timothy; Dennis, Joe; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Ashton, Katie; Proietto, Tony; Otton, Geoffrey; Shah, Mitul; Ahmed, Shahana; Healey, Catherine S; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dürst, Matthias; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Lambrechts, Diether; Depreeuw, Jeroen; Annibali, Daniela; Amant, Frederic; Zhao, Hui; Goode, Ellen L; Dowdy, Sean C; Fridley, Brooke L; Winham, Stacey J; Salvesen, Helga B; Njølstad, Tormund S; Trovik, Jone; Werner, Henrica MJ; Tham, Emma; Liu, Tao; Mints, Miriam; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Pharoah, Paul D P; Dunning, Alison M; Tomlinson, Ian; Easton, Douglas F; Thompson, Deborah J; Spurdle, Amanda B

    2015-01-01

    Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC), particularly for cancers of endometrioid histology. The physiological function of estrogen is primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several studies have investigated whether variation at the ESR1 locus is associated with risk of EC, with conflicting results. We performed comprehensive fine-mapping analyses of 3,633 genotyped and imputed single nucleotide polymorphisms (SNPs) in 6,607 EC cases and 37,925 controls. There was evidence of an EC risk signal located at a potential alternative promoter of the ESR1 gene (lead SNP rs79575945, P = 1.86 × 10−5), which was stronger for cancers of endometrioid subtype (P = 3.76 × 10−6). Bioinformatic analysis suggests that this risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs located at this locus have been associated with risk for breast cancer, also a hormonally driven cancer, this study adds weight to the rationale for performing informed candidate fine-scale genetic studies across cancer types. PMID:26330482

  4. Global genetic architecture of an erythroid quantitative trait locus, HMIP-2.

    PubMed

    Menzel, Stephan; Rooks, Helen; Zelenika, Diana; Mtatiro, Siana N; Gnanakulasekaran, Akshala; Drasar, Emma; Cox, Sharon; Liu, Li; Masood, Mariam; Silver, Nicholas; Garner, Chad; Vasavda, Nisha; Howard, Jo; Makani, Julie; Adekile, Adekunle; Pace, Betty; Spector, Tim; Farrall, Martin; Lathrop, Mark; Thein, Swee Lay

    2014-11-01

    HMIP-2 is a human quantitative trait locus affecting peripheral numbers, size and hemoglobin composition of red blood cells, with a marked effect on the persistence of the fetal form of hemoglobin, HbF, in adults. The locus consists of multiple common variants in an enhancer region for MYB (chr 6q23.3), which encodes the hematopoietic transcription factor cMYB. Studying a European population cohort and four African-descended groups of patients with sickle cell anemia, we found that all share a set of two spatially separate HbF-promoting alleles at HMIP-2, termed "A" and "B." These typically occurred together ("A-B") on European chromosomes, but existed on separate homologous chromosomes in Africans. Using haplotype signatures for "A" and "B," we interrogated public population datasets. Haplotypes carrying only "A" or "B" were typical for populations in Sub-Saharan Africa. The "A-B" combination was frequent in European, Asian, and Amerindian populations. Both alleles were infrequent in tropical regions, possibly undergoing negative selection by geographical factors, as has been reported for malaria with other hematological traits. We propose that the ascertainment of worldwide distribution patterns for common, HbF-promoting alleles can aid their further genetic characterization, including the investigation of gene-environment interaction during human migration and adaptation. PMID:25069958

  5. Genetic analysis of a Treponema phagedenis locus encoding antigenic lipoproteins with potential for antigenic variation.

    PubMed

    Mushtaq, Mamoona; Bongcam-Rudloff, Erik; Loftsdottir, Heidur; Pringle, Märit; Segerman, Bo; Zuerner, Richard; Rosander, Anna

    2016-06-30

    Digital dermatitis (DD) is a painful and debilitating claw disease in cattle. Spirochetes of the genus Treponema are found in high numbers in the lesions and are likely to be involved in the pathogenesis. The occurrence of Treponema phagedenis in DD lesions, especially near the interface of healthy and diseased tissue, suggests that this species contributes to the development and/or progression of the lesions. In this study we characterized a genetic locus in T. phagedenis that contains coding regions for three antigenic proteins, PrrA, VpsA, and VpsB. Comparative analysis of homologous loci from fifteen strains suggests that prrA may be transposed into or out of this locus. Alterations in the copy number of TA repeats within the putative promoter region may regulate VpsA/B expression. The vpsA and prrA genes occur in allelic variants in different T. phagedenis isolates and may provide one explanation for the antigenic variation observed in T. phagedenis DD isolates. PMID:27259832

  6. Global Genetic Architecture of an Erythroid Quantitative Trait Locus, HMIP-2

    PubMed Central

    Menzel, Stephan; Rooks, Helen; Zelenika, Diana; Mtatiro, Siana N; Gnanakulasekaran, Akshala; Drasar, Emma; Cox, Sharon; Liu, Li; Masood, Mariam; Silver, Nicholas; Garner, Chad; Vasavda, Nisha; Howard, Jo; Makani, Julie; Adekile, Adekunle; Pace, Betty; Spector, Tim; Farrall, Martin; Lathrop, Mark; Thein, Swee Lay

    2014-01-01

    HMIP-2 is a human quantitative trait locus affecting peripheral numbers, size and hemoglobin composition of red blood cells, with a marked effect on the persistence of the fetal form of hemoglobin, HbF, in adults. The locus consists of multiple common variants in an enhancer region for MYB (chr 6q23.3), which encodes the hematopoietic transcription factor cMYB. Studying a European population cohort and four African-descended groups of patients with sickle cell anemia, we found that all share a set of two spatially separate HbF-promoting alleles at HMIP-2, termed “A” and “B.” These typically occurred together (“A–B”) on European chromosomes, but existed on separate homologous chromosomes in Africans. Using haplotype signatures for “A” and “B,” we interrogated public population datasets. Haplotypes carrying only “A” or “B” were typical for populations in Sub-Saharan Africa. The “A–B” combination was frequent in European, Asian, and Amerindian populations. Both alleles were infrequent in tropical regions, possibly undergoing negative selection by geographical factors, as has been reported for malaria with other hematological traits. We propose that the ascertainment of worldwide distribution patterns for common, HbF-promoting alleles can aid their further genetic characterization, including the investigation of gene–environment interaction during human migration and adaptation. PMID:25069958

  7. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) populations.

    PubMed Central

    Kohn, Michael H; Pelz, Hans-Joachim; Wayne, Robert K

    2003-01-01

    Populations may diverge at fitness-related genes as a result of adaptation to local conditions. The ability to detect this divergence by marker-based genomic scans depends on the relative magnitudes of selection, recombination, and migration. We survey rat (Rattus norvegicus) populations to assess the effect that local selection with anticoagulant rodenticides has had on microsatellite marker variation and differentiation at the warfarin resistance gene (Rw) relative to the effect on the genomic background. Initially, using a small sample of 16 rats, we demonstrate tight linkage of microsatellite D1Rat219 to Rw by association mapping of genotypes expressing an anticoagulant-rodenticide-insensitive vitamin K 2,3-epoxide reductase (VKOR). Then, using allele frequencies at D1Rat219, we show that predicted and observed resistance levels in 27 populations correspond, suggesting intense and recent selection for resistance. A contrast of F(ST) values between D1Rat219 and the genomic background revealed that rodenticide selection has overwhelmed drift-mediated population structure only at Rw. A case-controlled design distinguished these locus-specific effects of selection at Rw from background levels of differentiation more effectively than a population-controlled approach. Our results support the notion that an analysis of locus-specific population genetic structure may assist the discovery and mapping of novel candidate loci that are the object of selection or may provide supporting evidence for previously identified loci. PMID:12871915

  8. Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer.

    PubMed

    O'Mara, Tracy A; Glubb, Dylan M; Painter, Jodie N; Cheng, Timothy; Dennis, Joe; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Ashton, Katie; Proietto, Tony; Otton, Geoffrey; Shah, Mitul; Ahmed, Shahana; Healey, Catherine S; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dürst, Matthias; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Lambrechts, Diether; Depreeuw, Jeroen; Annibali, Daniela; Amant, Frederic; Zhao, Hui; Goode, Ellen L; Dowdy, Sean C; Fridley, Brooke L; Winham, Stacey J; Salvesen, Helga B; Njølstad, Tormund S; Trovik, Jone; Werner, Henrica M J; Tham, Emma; Liu, Tao; Mints, Miriam; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Pharoah, Paul D P; Dunning, Alison M; Tomlinson, Ian; Easton, Douglas F; Thompson, Deborah J; Spurdle, Amanda B

    2015-10-01

    Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC), particularly for cancers of endometrioid histology. The physiological function of estrogen is primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several studies have investigated whether variation at the ESR1 locus is associated with risk of EC, with conflicting results. We performed comprehensive fine-mapping analyses of 3633 genotyped and imputed single nucleotide polymorphisms (SNPs) in 6607 EC cases and 37 925 controls. There was evidence of an EC risk signal located at a potential alternative promoter of the ESR1 gene (lead SNP rs79575945, P=1.86×10(-5)), which was stronger for cancers of endometrioid subtype (P=3.76×10(-6)). Bioinformatic analysis suggests that this risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs located at this locus have been associated with risk for breast cancer, also a hormonally driven cancer, this study adds weight to the rationale for performing informed candidate fine-scale genetic studies across cancer types. PMID:26330482

  9. The Locus Lookup Tool at MaizeGDB: Identification of Genomic Regions in Maize by Integrating Sequence Information with Physical and Genetic Maps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to automatically integrate sequence information with physical and genetic maps are scarce. The Locus Lookup Tool enables researchers to define windows of genomic sequence likely to contain loci of interest where only genetic or physical mapping associations are reported. Using the Locus Look...

  10. Genetic and sequence organization of the mcrBC locus of Escherichia coli K-12.

    PubMed Central

    Dila, D; Sutherland, E; Moran, L; Slatko, B; Raleigh, E A

    1990-01-01

    The mcrB (rglB) locus of Escherichia coli K-12 mediates sequence-specific restriction of cytosine-modified DNA. Genetic and sequence analysis shows that the locus actually comprises two genes, mcrB and mcrC. We show here that in vivo, McrC modifies the specificity of McrB restriction by expanding the range of modified sequences restricted. That is, the sequences sensitive to McrB(+)-dependent restriction can be divided into two sets: some modified sequences containing 5-methylcytosine are restricted by McrB+ cells even when McrC-, but most such sequences are restricted in vivo only by McrB+ McrC+ cells. The sequences restricted only by McrB+C+ include T-even bacteriophage containing 5-hydroxymethylcytosine (restriction of this phage is the RglB+ phenotype), some sequences containing N4-methylcytosine, and some sequences containing 5-methylcytosine. The sequence codes for two polypeptides of 54 (McrB) and 42 (McrC) kilodaltons, whereas in vitro translation yields four products, of approximately 29 and approximately 49 (McrB) and of approximately 38 and approximately 40 (McrC) kilodaltons. The McrB polypeptide sequence contains a potential GTP-binding motif, so this protein presumably binds the nucleotide cofactor. The deduced McrC polypeptide is somewhat basic and may bind to DNA, consistent with its genetic activity as a modulator of the specificity of McrB. At the nucleotide sequence level, the G+C content of mcrBC is very low for E. coli, suggesting that the genes may have been acquired recently during the evolution of the species. Images PMID:2203735

  11. Genetic Map-Based Location of the Red Clover (Trifolium pratense L.) Gametophytic Self-incompatibility Locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover is a hermaphadidic allogamous diploid (2n = 2x = 14) with a homomorphic gametophytic self-incompatibility (GSI) system red clover (Trifolium pratense L.). Red clover GSI has long been studied and it is thought that the genetic control of GSI constitutes a single locus. Although GSI gene...

  12. Extensive genetic diversity and low linkage disequilibrium within the COMT locus in Germplasm Enhancement of Maize populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Caffeic acid 3-O-methytransferase (COMT) gene is a prime candidate for cell wall digestibility improvement based on the characterization of brown midrib-3 mutants. We compared the genetic diversity and linkage disequilibrium at COMT locus between populations sampled within the Germplasm Enhance...

  13. Evidence for weak genetic recombination at the PTP2 locus of Nosema ceranae.

    PubMed

    Gómez-Moracho, Tamara; Bartolomé, Carolina; Martín-Hernández, Raquel; Higes, Mariano; Maside, Xulio

    2015-04-01

    The microsporidian Nosema ceranae is an emergent pathogen that threatens the health of honeybees and other pollinators all over the world. Its recent rapid spread across a wide variety of host species and environments demonstrated an enhanced ability of adaptation, which seems to contradict the lack of evidence for genetic recombination and the absence of a sexual stage in its life cycle. Here we retrieved fresh data of the patterns of genetic variation at the PTP2 locus in naturally infected Apis mellifera colonies, by means of single genome amplification. This technique, designed to prevent the formation of chimeric haplotypes during polymerase chain reaction (PCR), provides more reliable estimates of the diversity levels and haplotype structure than standard PCR-cloning methods. Our results are consistent with low but significant rates of recombination in the history of the haplotypes detected: estimates of the population recombination rate are of the order of 30 and support recent evidence for unexpectedly high levels of variation of the parasites within honeybee colonies. These observations suggest the existence of a diploid stage at some point in the life cycle of this parasite and are relevant for our understanding of the dynamics of its expanding population. PMID:25052231

  14. The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence.

    PubMed Central

    Sulavik, M C; Dazer, M; Miller, P F

    1997-01-01

    The marRAB operon is a regulatory locus that controls multiple drug resistance in Escherichia coli. marA encodes a positive regulator of the antibiotic resistance response, acting by altering the expression of unlinked genes. marR encodes a repressor of marRAB transcription and controls the production of MarA in response to environmental signals. A molecular and genetic study of the homologous operon in Salmonella typhimurium was undertaken, and the role of marA in virulence in a murine model was assessed. Expression of E. coli marA (marAEC) present on a multicopy plasmid in S. typhimurium resulted in a multiple antibiotic resistance (Mar) phenotype, suggesting that a similar regulon exists in this organism. A genomic plasmid library containing S. typhimurium chromosomal sequences was introduced into an E. coli strain that was deleted for the mar locus and contained a single-copy marR'-'lacZ translational fusion. Plasmid clones that contained both S. typhimurium marR (marRSt) and marA (marASt) genes were identified as those that were capable of repressing expression of the fusion and which resulted in a Mar phenotype. The predicted amino acid sequences of MarRSt, MarASt, and MarBSt were 91, 86, and 42% identical, respectively, to the same genes from E. coli, while the operator/promoter region of the operon was 86% identical to the same 98-nucleotide-upstream region in E. coli. The marRAB transcriptional start sites for both organisms were determined by primer extension, and a marRABSt transcript of approximately 1.1 kb was identified by Northern blot analysis. Its accumulation was shown to be inducible by sodium salicylate. Open reading frames flanking the marRAB operon were also conserved. An S. typhimurium marA disruption strain was constructed by an allelic exchange method and compared to the wild-type strain for virulence in a murine BALB/c infection model. No effect on virulence was noted. The endogenous S. typhimurium plasmid that is associated with virulence

  15. Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping

    PubMed Central

    2012-01-01

    Background Proanthocyanidins (PAs), or condensed tannins, are flavonoid polymers, widespread throughout the plant kingdom, which provide protection against herbivores while conferring organoleptic and nutritive values to plant-derived foods, such as wine. However, the genetic basis of qualitative and quantitative PA composition variation is still poorly understood. To elucidate the genetic architecture of the complex grape PA composition, we first carried out quantitative trait locus (QTL) analysis on a 191-individual pseudo-F1 progeny. Three categories of PA variables were assessed: total content, percentages of constitutive subunits and composite ratio variables. For nine functional candidate genes, among which eight co-located with QTLs, we performed association analyses using a diversity panel of 141 grapevine cultivars in order to identify causal SNPs. Results Multiple QTL analysis revealed a total of 103 and 43 QTLs, respectively for seed and skin PA variables. Loci were mainly of additive effect while some loci were primarily of dominant effect. Results also showed a large involvement of pairwise epistatic interactions in shaping PA composition. QTLs for PA variables in skin and seeds differed in number, position, involvement of epistatic interaction and allelic effect, thus revealing different genetic determinisms for grape PA composition in seeds and skin. Association results were consistent with QTL analyses in most cases: four out of nine tested candidate genes (VvLAR1, VvMYBPA2, VvCHI1, VvMYBPA1) showed at least one significant association with PA variables, especially VvLAR1 revealed as of great interest for further functional investigation. Some SNP-phenotype associations were observed only in the diversity panel. Conclusions This study presents the first QTL analysis on grape berry PA composition with a comparison between skin and seeds, together with an association study. Our results suggest a complex genetic control for PA traits and different

  16. Philosophy of race meets population genetics.

    PubMed

    Spencer, Quayshawn

    2015-08-01

    In this paper, I respond to four common semantic and metaphysical objections that philosophers of race have launched at scholars who interpret recent human genetic clustering results in population genetics as evidence for biological racial realism. I call these objections 'the discreteness objection', 'the visibility objection', 'the very important objection', and 'the objectively real objection.' After motivating each objection, I show that each one stems from implausible philosophical assumptions about the relevant meaning of 'race' or the nature of biological racial realism. In order to be constructive, I end by offering some advice for how we can productively critique attempts to defend biological racial realism based on recent human genetic clustering results. I also offer a clarification of the relevant human-population genetic research. PMID:25963045

  17. Evaluation of genetic association of the INK4 locus with primary open angle glaucoma in East Indian population.

    PubMed

    Vishal, Mansi; Sharma, Anchal; Kaurani, Lalit; Chakraborty, Subhadip; Ray, Jharna; Sen, Abhijit; Mukhopadhyay, Arijit; Ray, Kunal

    2014-01-01

    INK4 locus at chromosome 9p21 has been reported to be associated with primary open angle glaucoma (POAG) and its subtypes along with the associated optic disc parameters across the populations of European, Japanese and African ancestries. The locus encodes three tumor suppressor genes namely CDKN2A, ARF, CDKN2B and a long non-coding RNA CDKN2B-AS1 (also known as ANRIL). Here, we report association study of 34 SNPs from INK4 locus with POAG in a population of Indo-European ancestry from the eastern part of India (350 patients and 354 controls). With 81% power to detect genetic association we observed only nominal association of rs1011970 (uncorrected p = 0.048) with POAG and rs10120688 (uncorrected p = 0.048) in patients without a high intra-ocular pressure (IOP<21 mm of Hg) compared to controls. This study, in contrast to the previous reports, suggests lack of significant genetic association of INK4 locus with POAG in East Indian population which needs to be replicated in larger studies in diverse world populations. PMID:24875940

  18. A Genetic and Mosaic Analysis of a Locus Involved in the Anesthesia Response of Drosophila Melanogaster

    PubMed Central

    Mir, B.; Iyer, S.; Ramaswami, M.; Krishnan, K. S.

    1997-01-01

    We describe a genetic and behavioral analysis of several alleles of har38, a mutant with altered sensitivity to the general anesthetic halothane. We obtained a P-element-induced allele of har38 and generated several excision alleles by remobilizing the P element. The mutants narrow abdomen (na) and har85 are confirmed to be allelic to har38. Besides a decreased sensitivity to halothane, all mutant alleles of this locus cause a characteristic walking behavior in the absence of anesthetics. We have quantified this behavior using a geotaxis apparatus. Responses of the mutant alleles to different inhalational anesthetics were tested. The results strongly favor a multipathway model for the onset of anesthesia. Mosaic flies were tested for their response to halothane and checked for their abnormal walking behavior. The analysis suggests that both the behaviors are exhibited only by such mosaics as have the entire head of mutant origin. It is likely that this focus represents an element of a common pathway in the anesthetic response to several inhalational anesthetics but not all. This result is the first demonstration of regional specificity in the CNS of any animal for general anesthetic action. PMID:9335606

  19. Genetic changes at the transferrin locus in the red-backed vole (Clethrionomys gapperi)

    SciTech Connect

    Mihok, S.; Fuller, W.A.; Canham, R.P.; McPhee, E.C.

    1983-01-01

    Genetic changes at the transferrin locus in Clethrionomys gapperi were intermittently monitored in a subarctic population from 1966 to 1978. Over this 13-year period, only minor fluctuations in gene frequency were observed. Gene frequency of Tf/sup J/ increased over winter during declines from high nonbreeding density in autumn. This phenomenon may have been responsible for a general negative correlation between the frequency of Tf/sup J/ and population density. Outside of winter, no frequency changes were detected within trappable age-classes of voles from relatively discrete seasonal generations. Excess of Tf/sup M/J/ heterozygotes occurred in three of four samples of young voles that matured in the year of their birth. A similar heterozygote excess occurred in one of six samples of overwintered voles taken in a year characterized by a high rate of population growth. These results suggest that selection may occur during ecologically different conditions of high density or population growth. A heterozygote advantage in early-season cohorts may account for the maintenance of transferrin polymorphism. This hypothesis requires further data on the breeding structure and early life history of voles.

  20. A multi-stage association study identifies a breast cancer genetic locus at NCOA7

    PubMed Central

    Higginbotham, Kathryn S. P.; Breyer, Joan P.; Bradley, Kevin M.; Schuyler, Peggy A.; Plummer, W. Dale; Freudenthal, Marcia E.; Trentham-Dietz, Amy; Newcomb, Polly A.; Sanders, Melinda E.; Page, David L.; Parl, Fritz F.; Egan, Kathleen M.; Dupont, William D.; Smith, Jeffrey R.

    2011-01-01

    Estrogen metabolism and growth factor signaling pathway genes play key roles in breast cancer development. We evaluated associations between breast cancer and tagging SNPs of 107 candidate genes of these pathways using single allele- and haplotype-based tests. We first sought concordance of associations between two study populations: the Nashville Breast Cohort (510 cases, 988 controls), and the Cancer Genetic Markers of Susceptibility breast cancer study (1,145 cases, 1,142 controls). Findings across the two study populations were concordant at tagging SNPs of six genes, and at previously published SNPs of FGFR2. We sought further replication of results for EGFR, NCOA7, and FGFR2 in the independent Collaborative Breast Cancer Study (1,552 cases, 1,185 controls). Associations at NCOA7 and FGFR2 replicated across all three studies. The association at NCOA7 on 6q22.32, detected by a haplotype spanning the initial protein-coding exon (5′ - rs9375411, rs11967627, rs549438, rs529858, rs490361, rs17708107 - 3′), has not been previously reported. The haplotype had a significant inverse association with breast cancer in each study (ORHet 0.69 (NBC), 0.76 (CGEMS), 0.79 (CBCS)), and a meta-analysis ORHet of 0.75 (95% CI 0.65-0.87, P = 1.4 × 10-4) in the combined study populations. The haplotype frequency was 0.07 among cases, and 0.09 among controls; homozygotes were infrequent and each ORHom was not significant. NCOA7 encodes a nuclear receptor co-activator that interacts with estrogen receptor α to modulate its activity. These observations provide consistent evidence that genetic variants at the NCOA7 locus may confer a reduced risk of breast cancer. PMID:21610108

  1. A multistage association study identifies a breast cancer genetic locus at NCOA7.

    PubMed

    Higginbotham, Kathryn S P; Breyer, Joan P; Bradley, Kevin M; Schuyler, Peggy A; Plummer, W Dale; Freudenthal, Marcia E; Trentham-Dietz, Amy; Newcomb, Polly A; Sanders, Melinda E; Page, David L; Parl, Fritz F; Egan, Kathleen M; Dupont, William D; Smith, Jeffrey R

    2011-06-01

    Estrogen metabolism and growth factor signaling pathway genes play key roles in breast cancer development. We evaluated associations between breast cancer and tagging single-nucleotide polymorphisms (SNP) of 107 candidate genes of these pathways using single allele- and haplotype-based tests. We first sought concordance of associations between two study populations: the Nashville Breast Cohort (NBC; 510 cases, 988 controls), and the Cancer Genetic Markers of Susceptibility (CGEMS) breast cancer study (1,145 cases, 1,142 controls). Findings across the two study populations were concordant at tagging SNPs of six genes, and at previously published SNPs of FGFR2. We sought further replication of results for EGFR, NCOA7, and FGFR2 in the independent Collaborative Breast Cancer Study (CBCS; 1,552 cases, 1,185 controls). Associations at NCOA7 and FGFR2 replicated across all three studies. The association at NCOA7 on 6q22.32, detected by a haplotype spanning the initial protein-coding exon (5'-rs9375411, rs11967627, rs549438, rs529858, rs490361, rs17708107-3'), has not been previously reported. The haplotype had a significant inverse association with breast cancer in each study [OR(Het): 0.69 (NBC), 0.76 (CGEMS), 0.79 (CBCS)], and a meta-analysis OR(Het) of 0.75 (95% CI, 0.65-0.87, P = 1.4 × 10(-4)) in the combined study populations. The haplotype frequency was 0.07 among cases, and 0.09 among controls; homozygotes were infrequent and each OR(Hom) was not significant. NCOA7 encodes a nuclear receptor coactivator that interacts with estrogen receptor α to modulate its activity. These observations provide consistent evidence that genetic variants at the NCOA7 locus may confer a reduced risk of breast cancer. PMID:21610108

  2. Molecular genetic analysis of the cytochrome P450-debrisoquine hydroxylase locus and association with cancer susceptibility.

    PubMed Central

    Smith, C A; Moss, J E; Gough, A C; Spurr, N K; Wolf, C R

    1992-01-01

    The cytochrome P450-dependent monooxygenases play a central role in the metabolism of chemical carcinogens. The action of these enzymes can lead to either carcinogen detoxication or activation. Differences in P450 expression in animal models give rise to large differences in susceptibility to chemical carcinogens, so genetic polymorphisms in P450 expression may be expected to be an important factor in individual human susceptibility to cancer. Of particular interest is the genetic polymorphism at the cytochrome P450-debrisoquine/sparteine hydroxylase locus (CYP2D6). Although this is a minor liver P450, its polymorphic expression is associated with the abnormal metabolism of at least 30 therapeutic drugs, including beta-blockers and tricyclic antidepressants. Conflicting reports have been made on the association of this polymorphism with cancer susceptibility. This disagreement may be attributable to limitations of the phenotyping assay used to identify affected individuals (poor metabolizers, PMs). In order to clarify these anomalies, we have developed a simple DNA-based assay with which we can identify the majority of PMs. The assay is centered around the primary gene defect responsible for the polymorphism, a G to A transition at the junction of intron 3/exon 4 which results in a frame-shift in the resultant mRNA. The frequency of this mutation is 70-80% in PMs. We have studied the frequency of mutated alleles in a control population and in a wide range of cancer patients. No association between this polymorphism and lung cancer susceptibility was observed; however, in other populations of cancer patients some very interesting shifts were found in the proportion of PMs and heterozygotes from that in the normal population. PMID:1486838

  3. Personality traits associated with genetic counselor compassion fatigue: the roles of dispositional optimism and locus of control.

    PubMed

    Injeyan, Marie C; Shuman, Cheryl; Shugar, Andrea; Chitayat, David; Atenafu, Eshetu G; Kaiser, Amy

    2011-10-01

    Compassion fatigue (CMF) arises as a consequence of secondary exposure to distress and can be elevated in some health practitioners. Locus of control and dispositional optimism are aspects of personality known to influence coping style. To investigate whether these personality traits influence CMF risk, we surveyed 355 genetic counselors about their CMF, locus of control orientation, and degree of dispositional optimism. Approximately half of respondents reported they experience CMF; 26.6% had considered leaving their job due to CMF symptoms. Mixed-method analyses revealed that genetic counselors having an external locus of control and low optimism were at highest risk for CMF. Those at highest risk experienced moderate-to-high burnout, low-to-moderate compassion satisfaction, and tended to rely on religion/spirituality when coping with stress. CMF risk was not influenced by years in practice, number of genetic counselor colleagues in the workplace, or completion of graduate training in this area. Recommendations for practice and education are outlined. PMID:21701957

  4. Fine-Mapping and Phenotypic Analysis of the Ity3 Salmonella Susceptibility Locus Identify a Complex Genetic Structure

    PubMed Central

    Khan, Rabia T.; Yuki, Kyoko E.; Malo, Danielle

    2014-01-01

    Experimental animal models of Salmonella infections have been widely used to identify genes important in the host immune response to infection. Using an F2 cross between the classical inbred strain C57BL/6J and the wild derived strain MOLF/Ei, we have previously identified Ity3 (Immunity to Typhimurium locus 3) as a locus contributing to the early susceptibility of MOLF/Ei mice to infection with Salmonella Typhimurium. We have also established a congenic strain (B6.MOLF-Ity/Ity3) with the MOLF/Ei Ity3 donor segment on a C57BL/6J background. The current study was designed to fine map and characterize functionally the Ity3 locus. We generated 12 recombinant sub-congenic strains that were characterized for susceptibility to infection, bacterial load in target organs, cytokine profile and anti-microbial mechanisms. These analyses showed that the impact of the Ity3 locus on survival and bacterial burden was stronger in male mice compared to female mice. Fine mapping of Ity3 indicated that two subloci contribute collectively to the susceptibility of B6.MOLF-Ity/Ity3 congenic mice to Salmonella infection. The Ity3.1 sublocus controls NADPH oxidase activity and is characterized by decreased ROS production, reduced inflammatory cytokine response and increased bacterial burden, thereby supporting a role for Ncf2 (neutrophil cytosolic factor 2 a subunit of NADPH oxidase) as the gene underlying this sublocus. The Ity3.2 sub-locus is characterized by a hyperresponsive inflammatory cytokine phenotype after exposure to Salmonella. Overall, this research provides support to the combined action of hormonal influences and complex genetic factors within the Ity3 locus in the innate immune response to Salmonella infection in wild-derived MOLF/Ei mice. PMID:24505352

  5. Genetic analyses of the major and minor locus groups of bacterial wilt resistance in tobacco using a diallel cross design.

    PubMed

    Qian, Y L; Chen, J; Dong, J J; Wu, Z C; Liu, Y H; Xue, B Y; Shao, F W; Sun, X Y

    2016-01-01

    Tobacco germplasm samples with various levels of resistance to bacterial wilt were selected to construct F1 combinations of parental inbred lines and orthogonal diallel crosses using samples collected in 2009 (15 germplasms), 2010 (15 germplasms), and 2011 (16 germplasms). A total of 1/2P (P + 1) experimental materials were used for analysis. Based on the analyses of major and minor locus groups, genetic effects on the incidence rate and index of bacterial wilt in tobacco were investigated on the 15th and 25th day during the early stage. Significant effects were observed in major locus groups, but not in minor locus groups. Specifically, adjacent major locus groups (J1 = 13,056 and J1 = 13,055; J1 = 14,080 and J1 = 14,079) were detected in both the first and second analyses with considerable effects. Based on the additive effects of minor locus groups on the rate and index of bacterial wilt, the effects on the incidence rates of Yunyan 85, DB101, and RG11 as well as the effects on the disease index of the latter two germplasms reached the maximum. This was consistent with the disease resistance indicators of these tobacco varieties in the field (corresponding broad heritability >20%). Genetic homozygous dominant loci (+ +) increased the rate of bacterial wilt (susceptible), whereas homozygous recessive loci (- -) reduced the index of bacterial wilt (resistant) with considerable additive effects and low dominant effects, suggesting that the inheritance of the bacterial wilt rate and index in tobacco mainly relies on additive inheritance. PMID:26909932

  6. Genetic variation at the delta-sarcoglycan (SGCD) locus elevates heritable sympathetic nerve activity in human twin pairs.

    PubMed

    Hightower, C Makena; Zhang, Kuixing; Miramontes-González, José P; Rao, Fangwen; Wei, Zhiyun; Schork, Andrew J; Nievergelt, Caroline M; Biswas, Nilima; Mahata, Manjula; Elkelis, Nina; Taupenot, Laurent; Stridsberg, Mats; Ziegler, Michael G; O'Connor, Daniel T

    2013-12-01

    The Syrian Cardiomyopathic Hamster (BIO-14.6/53.58 strains) model of cardiac failure, resulting from naturally occurring deletion at the SGCD (delta-sarcoglycan) locus, displays widespread disturbances in catecholamine metabolism. Rare Mendelian myopathy disorders of human SGCD occur, although common naturally occurring SGCD genetic variation has not been evaluated for effects on human norepinephrine (NE) secretion. This study investigated the effect of SGCD genetic variation on control of NE secretion in healthy twin pairs. Genetic associations profiled SNPs across the SGCD locus. Trait heritability (h(2)) and genetic covariance (pleiotropy; shared h(2)) were evaluated. Sympathochromaffin exocytosis in vivo was probed in plasma by both catecholamines and Chromogranin B (CHGB). Plasma NE is substantially heritable (p = 3.19E-16, at 65.2 ± 5.0% of trait variance), sharing significant (p < 0.05) genetic determination with circulating and urinary catecholamines, CHGB, eGFR, and several cardio-metabolic traits. Participants with higher pNE showed significant (p < 0.05) differences in several traits, including increased BP and hypertension risk factors. Peak SGCD variant rs1835919 predicted elevated systemic vascular compliance, without changes in specifically myocardial traits. We used a chimeric-regulated secretory pathway photoprotein (CHGA-EAP) to evaluate the effect of SGCD on the exocytotic pathway in transfected PC12 cells; in transfected cells, expression of SGCD augmented CHGA trafficking into the exocytotic regulated secretory pathway. Thus, our investigation determined human NE secretion to be a highly heritable trait, influenced by common genetic variation within the SGCD locus. Circulating NE aggregates with BP and hypertension risk factors. In addition, coordinate NE and CHGB elevation by rs1835919 implicates exocytosis as the mechanism of release. PMID:23786442

  7. Genetic variation at the delta-sarcoglycan (SGCD) locus elevates heritable sympathetic nerve activity in human twin pairs

    PubMed Central

    Hightower, C. Makena; Zhang, Kuixing; Miramontes-González, José Pablo; Rao, Fangwen; Wei, Zhiyun; Schork, Andrew J.; Nievergelt, Caroline M.; Biswas, Nilima; Mahata, Manjula; Elkelis, Nina; Taupenot, Laurent; Stridsberg, Mats; Ziegler, Michael G.; O'Connor, Daniel T.

    2013-01-01

    The Syrian Cardiomyopathic Hamster (BIO-14.6/53.58 strains) model of cardiac failure, resulting from naturally occurring deletion at the SGCD (delta-sarcoglycan) locus, displays widespread disturbances in catecholamine metabolism. Rare Mendelian myopathy disorders of human SGCD occur, though common naturally occurring SGCD genetic variation has not been evaluated for effects on human norepinephrine (NE) secretion. This study investigated the effect of SGCD genetic variation on control of NE secretion in healthy twin pairs. Genetic associations profiled SNPs across the SGCD locus. Trait heritability (h2) and genetic covariance (pleiotropy; shared h2) were evaluated. Sympathochromaffin exocytosis in vivo was probed in plasma by both catecholamines and CHGB. Plasma NE is substantially heritable (P=3.19E-16, at 65.2±5.0% of trait variance), sharing significant (P<0.05) genetic determination with circulating and urinary catecholamines, CHGB, eGFR and several cardio-metabolic traits. Participants with higher pNE showed significant (P<0.05) differences in several traits, including increased BP and hypertension risk factors. Peak SGCD variant rs1835919 predicted elevated systemic vascular compliance, without changes in specifically myocardial traits. We used a chimeric regulated secretory pathway photoprotein (CHGA-EAP) to evaluate the effect of SGCD on the exocytotic pathway in transfected PC12 cells; in transfected cells, expression of SGCD augmented CHGA trafficking into the exocytotic regulated secretory pathway. Thus our investigation determined human NE secretion to be a highly heritable trait, influenced by common genetic variation within the SGCD locus. Circulating NE aggregates with BP and hypertension risk factors. Additionally, coordinate NE and CHGB elevation by rs1835919 implicates exocytosis as the mechanism of release. PMID:23786442

  8. The X-linked F cell production locus: Genetic mapping and role in fetal hemoglobin production

    SciTech Connect

    Chang, Y.C.; Smith, K.D.; Moore, R.D.

    1994-09-01

    Postnatal fetal hemoglobin (Hb F) production is confined to a subset of erythocytes termed F-cells. There is a 10-20 fold variation in F-cell production in sickle cell disease (SCD) and normal individuals. Most of the variation in F-cell production has been attributed to a diallelic (High, Low) X-linked gene, the F-cell production (FCP) locus that we recently mapped to Xp22.2-22.3 (LOD=4.56, theta=0.04). Using multiple regression analysis in 262 Jamaican SCD patients we determined the relative contribution of the FCP locus and other variables previously associated with variation in Hb F level (gender, age, beta-globin haplotypes, number of alpha-globin genes and the FCP locus phenotypes). When the FCP locus is in the regression model, the FCP locus alone accounts for approximately 40% of the variation in Hb F level while the contribution of age, alpha-globin gene number, and beta-globin haplotypes was insignificant. When individuals with High FCP allele are removed from the analysis, the beta globin haplotype now contribute to >10% of the Hb F variation. We conclude that the X-linked FCP locus is the major determinant of all known variables in Hb F production. Using 4 highly polymorphic dinucleotide repeat markers that we identified from cosmids in Xp22.2-22.3, have localized the FCP locus to a 1 Mb minimal candidate region between DXS143 and DXS410.

  9. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes.

    PubMed

    Larsbrink, Johan; Rogers, Theresa E; Hemsworth, Glyn R; McKee, Lauren S; Tauzin, Alexandra S; Spadiut, Oliver; Klinter, Stefan; Pudlo, Nicholas A; Urs, Karthik; Koropatkin, Nicole M; Creagh, A Louise; Haynes, Charles A; Kelly, Amelia G; Cederholm, Stefan Nilsson; Davies, Gideon J; Martens, Eric C; Brumer, Harry

    2014-02-27

    A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health. PMID:24463512

  10. HOS1, a genetic locus involved in cold-responsive gene expression in arabidopsis.

    PubMed Central

    Ishitani, M; Xiong, L; Lee, H; Stevenson, B; Zhu, J K

    1998-01-01

    Low-temperature stress induces the expression of a variety of genes in plants. However, the signal transduction pathway(s) that activates gene expression under cold stress is poorly understood. Mutants defective in cold signaling should facilitate molecular analysis of plant responses to low temperature and eventually lead to the identification and cloning of a cold stress receptor(s) and intracellular signaling components. In this study, we characterize a plant mutant affected in its response to low temperatures. The Arabidopsis hos1-1 mutation identified by luciferase imaging causes superinduction of cold-responsive genes, such as RD29A, COR47, COR15A, KIN1, and ADH. Although these genes are also induced by abscisic acid, high salt, or polyethylene glycol in addition to cold, the hos1-1 mutation only enhances their expression under cold stress. Genetic analysis revealed that hos1-1 is a single recessive mutation in a nuclear gene. Our studies using the firefly luciferase reporter gene under the control of the cold-responsive RD29A promoter have indicated that cold-responsive genes can be induced by temperatures as high as 19 degrees C in hos1-1 plants. In contrast, wild-type plants do not express the luciferase reporter at 10 degrees C or higher. Compared with the wild type, hos1-1 plants are l ess cold hardy. Nonetheless, after 2 days of cold acclimation, hos1-1 plants acquired the same degree of freezing tolerance as did the wild type. The hos1-1 plants flowered earlier than did the wild-type plants and appeared constitutively vernalized. Taken together, our findings show that the HOS1 locus is an important negative regulator of cold signal transduction in plant cells and that it plays critical roles in controlling gene expression under cold stress, freezing tolerance, and flowering time. PMID:9668134

  11. Analysis of intragenic recombination at wx in rice: correlation between the molecular and genetic maps within the locus.

    PubMed

    Inukai, T; Sako, A; Hirano, H Y; Sano, Y

    2000-08-01

    In plant genomes as well as other eukaryotic genomes, meiotic recombination does not occur uniformly. At the level of the gene, high recombination frequencies are often observed within genetic loci in maize, but this feature of intragenic recombination is not seen at the csr1 locus in Arabidopsis. These observations suggest that meiotic recombination in plant genomes varies considerably among species. In the present study we investigated meiotic recombination at the wx locus in rice. The mutation sites of wx mutants induced by ethyl methanesulfonate (EMS) treatment or gamma-ray irradiation and a spontaneous wx mutant were physically characterized, and the genetic distances between those wx mutation sites were estimated by pollen analysis. Based on these results, the recombination frequency at the wx locus in rice was estimated as 27.3 kb/cM, which was about 10 times higher than the average for the genome, suggesting that there was a radically different rate of meiotic recombination for intra- and intergenic regions in the rice genome. PMID:10984169

  12. Mutations at the Smo Genetic Locus Affect the Shape of Diverse Cell Types in the Rice Blast Fungus

    PubMed Central

    Hamer, J. E.; Valent, B.; Chumley, F. G.

    1989-01-01

    Teflon film surfaces are highly conducive to the formation of infection structures (appressoria) in the plant pathogenic fungus, Magnaporthe grisea. We have utilized Teflon films to screen and select for mutants of M. grisea that are defective in appressorium formation. This approach and several others yielded a group of 14 mutants with a similar phenotype. All the mutant strains make abnormally shaped conidia and appressoria. When two mutant strains are crossed, abnormally shaped asci are formed. Ascus shape is normal when a mutant strain is crossed with a wild-type strain. Despite dramatic alterations in cell shape these strains otherwise grow, form conidia, undergo meiosis, and infect plants normally. This mutant phenotype, which we have termed Smo(-), for abnormal spore morphology, segregates in simple Mendelian fashion in crosses with wild-type strains. Some ascospore lethality is associated with smo mutations. In genetic crosses between mutants, smo mutations fail to recombine and do not demonstrate complementation of the abnormal ascus shape phenotype. We conclude that the smo mutations are alleles of a single genetic locus and are recessive with regard to the the ascus shape defect. Mutations at the SMO locus also permit germinating M. grisea conidia to differentiate appressoria on surfaces that are not normally conducive to infection structure formation. A number of spontaneous smo mutations have been recovered. The frequent occurrence of this mutation suggests that the SMO locus may be highly mutable. PMID:17246498

  13. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens.

    PubMed Central

    McDaniel, T K; Jarvis, K G; Donnenberg, M S; Kaper, J B

    1995-01-01

    Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli O157:H7 are intestinal pathogens that profoundly damage the microvilli and subapical cytoskeleton of epithelial cells. Here we report finding in EPEC a 35-kbp locus containing several regions implicated in formation of these lesions. DNA probes throughout this locus hybridize to E. coli O157:H7 and other pathogens of three genera that cause similar lesions but do not hybridize to avirulent members of the same species. The EPEC locus and a different virulence locus of uropathogenic E. coli insert into the E. coli chromosome at the identical site and share highly similar sequences near the point of insertion. Images Fig. 1 Fig. 3 PMID:7878036

  14. Lack of a genetic association between the TNXB locus and schizophrenia in a Chinese population.

    PubMed

    Liu, Lin-Lin; Wei, Jun; Zhang, Xuan; Li, Xiu-Yi; Shen, Yan; Liu, Shu-Zheng; Ju, Gui-Zhi; Shi, Jie-Ping; Yu, Ya-Qin; Xu, Qi; Hemmings, Gwynneth P

    2004-01-23

    A recent study demonstrated that the tenascin X (TNXB) gene was associated with schizophrenia in a British population. To replicate the initial finding, we analysed two positive single nucleotide polymorphisms (SNPs), rs1009382 and rs204887 present at the TNXB locus, in a Chinese population by using PCR-based restriction fragment length polymorphism analysis. We recruited a total of 136 family trios consisting of fathers, mothers and affected offspring with schizophrenia. The transmission disequilibrium test did not show allelic association between these two SNPs and schizophrenia, and the rs1009382-rs204887 haplotypes were not associated with the illness either. The present results suggest that the TNXB locus does not appear to be associated with schizophrenia in the Chinese population. Because the TNXB gene is less than 100 kb away from the NOTCH4 locus that was also reported to be associated with schizophrenia, allelic and locus heterogeneity could be possible reasons for the failure to replicate the TNXB finding. PMID:14729256

  15. Genetic homogeneity of Pelizaeus-Merzbacher disease: Tight linkage to the proteolipoprotein locus in 16 affected families

    SciTech Connect

    Boespflug-Tanguy, O.; Mimault, C.; Cavagna, A.; Giraud, G.; Dastugue, B.; Melki, J.; Dinh, D.P.; Dautigny, A.

    1994-09-01

    Among the numerous leukodystrophies that have an early onset and no biochemical markers, Pelizaeus-Merzbacher disease (PMD) is one that can be identified using strict clinical criteria and demonstrating an abnormal formation of myelin that is restricted to the CNS in electrophysiological studies and brain magnetic resonance imaging (MRI). In PMD, 12 different base substitutions and one total deletion of the genomic region containing the PLP gene have been reported, but, despite extensive analysis, PLP exon mutations have been found in only 10%-25% of the families analyzed. To test the genetic homogeneity of this disease, the authors have carried out linkage analysis with polymorphic markers of the PLP genomic region in 16 families selected on strict diagnostic criteria of PMD. They observed a tight linkage of the PMD locus with markers of the PLP gene (cDNA PLP, exon IV polymorphism) and of the Xq22 region (DXS17, DXS94, and DXS287), whereas the markers located more proximally (DXYS1X and DXS3) or distally (DXS11) were not linked to the PMD locus. Multipoint analysis gave a maximal location score for the PMD locus (13.98) and the PLP gene (8.32) in the same interval between DXS94 and DXS287, suggesting that in all families PMD is linked to the PLP locus. Mutations of the extraexonic PLP gene sequences or of another unknown close gene could be involved in PMD. In an attempt to identify molecular defects of this genomic region that are responsible for PMD, these results meant that RFLP analysis could be used to improve genetic counseling for the numerous affected families in which a PLP exon mutation could not be demonstrated. 39 refs., 2 figs., 2 tabs.

  16. Genetic and physical maps around the sex-determining M-locus of the dioecious plant asparagus.

    PubMed

    Telgmann-Rauber, Alexa; Jamsari, Ari; Kinney, Michael S; Pires, J Chris; Jung, Christian

    2007-09-01

    Asparagus officinalis L. is a dioecious plant. A region called the M-locus located on a pair of homomorphic sex chromosomes controls the sexual dimorphism in asparagus. The aim of this work was to clone the region determining sex in asparagus from its position in the genome. The structure of the region encompassing M should be investigated and compared to the sex-determining regions in other dioecious model species. To establish an improved basis for physical mapping, a high-resolution genetic map was enriched with AFLP markers closely linked to the target locus by carrying out a bulked segregant analysis. By screening a BAC library with AFLP- and STS-markers followed by chromosome walking, a physical map with eight contigs could be established. However, the gaps between the contigs could not be closed due to a plethora of repetitive elements. Surprisingly, two of the contigs on one side of the M-locus did not overlap although they have been established with two markers, which mapped in a distance as low as 0.25 cM flanking the sex locus. Thus, the clustering of the markers indicates a reduced recombination frequency within the M-region. On the opposite side of the M-locus, a contig was mapped in a distance of 0.38 cM. Four closely linked BAC clones were partially sequenced and 64 putative ORFs were identified. Interestingly, only 25% of the ORFs showed sequence similarity to known proteins and ESTs. In addition, an accumulation of repetitive sequences and a low gene density was revealed in the sex-determining region of asparagus. Molecular cytogenetic and sequence analysis of BACs flanking the M-locus indicate that the BACs contain highly repetitive sequences that localize to centromeric and pericentromeric locations on all asparagus chromosomes, which hindered the localization of the M-locus to the single pair of sex chromosomes. We speculate that dioecious Silene, papaya and Asparagus species may represent three stages in the evolution of XX, XY sex

  17. Genetic instability in Drosophila melanogaster: evidence for regulation, excision and transposition at the white locus.

    PubMed

    Rasmuson, B; Montell, I; Rasmuson, A; Svahlin, H; Westerberg, B M

    1980-01-01

    An unstable long tandem duplication which includes the white locus twice, marked with wsp in the left and w17g in the right locus, when kept in males has been found to produce red-eyed sons which have lost the long duplication and with it the wsp and w17g mutants. Such exceptions were produced also when w17g had been exchanged for wa. Stocks originating from these exceptions are unstable, producing: 1) zeste males, also unstable, 2) w- deletions, stable, 3) transpositions of the white locus to sites in other chromosomes. The instability is interpreted as the effect of an IS element, within or adjacent to the white locus, which is supposed to retain a duplication of the proximal zeste interacting part of this locus. According to the orientation of the IS element the duplicated part can be active or inactive, giving a zeste or red eye phenotype. The frequency of exceptional offspring after X-ray treatment of the red and zeste unstable stocks have been compared to stable stocks with corresponding genotypes. PMID:6247608

  18. Multi-locus DNA sequencing of Toxoplasma gondii isolated from Brazilian pigs identifies genetically divergent strains

    PubMed Central

    Frazão-Teixeira, E.; Sundar, N.; Dubey, J. P.; Grigg, M. E.; de Oliveira, F. C. R.

    2010-01-01

    Five Toxoplasma gondii isolates (TgPgBr1–5) were isolated from hearts and brains of pigs freshly purchased at the market of Campos dos Goytacazes, Northern Rio de Janeiro State, Brazil. Four of the five isolates were highly pathogenic in mice. Four genotypes were identified. Multi-locus PCR-DNA sequencing showed that each strain possessed a unique combination of archetypal and novel alleles not previously described in South America. The data suggest that different strains circulate in pigs destined for human consumption from those previously isolated from cats and chickens in Brazil. Further, multi-locus PCR-RFLP analyses failed to accurately genotype the Brazilian isolates due to the high presence of atypical alleles. This is the first report of multi-locus DNA sequencing of T. gondii isolates in pigs from Brazil. PMID:21051148

  19. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease.

    PubMed

    Fisher, Sheila A; Tremelling, Mark; Anderson, Carl A; Gwilliam, Rhian; Bumpstead, Suzannah; Prescott, Natalie J; Nimmo, Elaine R; Massey, Dunecan; Berzuini, Carlo; Johnson, Christopher; Barrett, Jeffrey C; Cummings, Fraser R; Drummond, Hazel; Lees, Charlie W; Onnie, Clive M; Hanson, Catherine E; Blaszczyk, Katarzyna; Inouye, Mike; Ewels, Philip; Ravindrarajah, Radhi; Keniry, Andrew; Hunt, Sarah; Carter, Martyn; Watkins, Nick; Ouwehand, Willem; Lewis, Cathryn M; Cardon, Lon; Lobo, Alan; Forbes, Alastair; Sanderson, Jeremy; Jewell, Derek P; Mansfield, John C; Deloukas, Panos; Mathew, Christopher G; Parkes, Miles; Satsangi, Jack

    2008-06-01

    We report results of a nonsynonymous SNP scan for ulcerative colitis and identify a previously unknown susceptibility locus at ECM1. We also show that several risk loci are common to ulcerative colitis and Crohn's disease (IL23R, IL12B, HLA, NKX2-3 and MST1), whereas autophagy genes ATG16L1 and IRGM, along with NOD2 (also known as CARD15), are specific for Crohn's disease. These data provide the first detailed illustration of the genetic relationship between these common inflammatory bowel diseases. PMID:18438406

  20. A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY

    EPA Science Inventory

    In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

  1. High-density genetic maps for loci involved in nuclear male sterility (NMS1) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L., Asteraceae).

    PubMed

    Gonthier, Lucy; Blassiau, Christelle; Mörchen, Monika; Cadalen, Thierry; Poiret, Matthieu; Hendriks, Theo; Quillet, Marie-Christine

    2013-08-01

    High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1' individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1' mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1' individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus. PMID:23689744

  2. Multi-locus DNA sequencing of Toxoplasma gondii isolated from Brazilian pigs identifies genetically divergent strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five Toxoplasma gondii isolates (TgPgBr1-5) were isolated from hearts and brains of pigs freshly purchased at the market of Campos dos Goytacazes, Northern Rio de Janeiro State, Brazil. Four of the five isolates were highly pathogenic in mice. Four genotypes were identified. Multi-locus DNA sequenci...

  3. Genetic and molecular characterization of the I locus of Phaseolus vulgaris.

    PubMed

    Vallejos, C Eduardo; Astua-Monge, Gustavo; Jones, Valerie; Plyler, Tammy R; Sakiyama, Ney S; Mackenzie, Sally A

    2006-02-01

    The I locus of the common bean, Phaseolus vulgaris, controls the development of four different phenotypes in response to inoculation with Bean common mosaic virus, Bean common mosaic necrosis virus, several other related potyviruses, and one comovirus. We have generated a high-resolution linkage map around this locus and have aligned it with a physical map constructed with BAC clones. These clones were obtained from a library of the cultivar "Sprite," which carries the dominant allele at the I locus. We have identified a large cluster of TIR-NBS-LRR sequences associated within this locus, which extends over a distance >425 kb. Bean cultivars from the Andean or Mesoamerican gene pool that contain the dominant allele share the same haplotypes as revealed by gel blot hybridizations with a TIR probe. In contrast, beans with a recessive allele display simpler and variable haplotypes. A survey of wild accessions from Argentina to Mexico showed that this multigene family has expanded significantly during evolution and domestication. RNA gel blot analysis indicated that the TIR family of genes plays a role in the response to inoculations with BCMV or BCMNV. PMID:16322513

  4. The 12p13.33/RAD52 Locus and Genetic Susceptibility to Squamous Cell Cancers of Upper Aerodigestive Tract

    PubMed Central

    Delahaye-Sourdeix, Manon; Oliver, Javier; Timofeeva, Maria N.; Gaborieau, Valérie; Johansson, Mattias; Chabrier, Amélie; Wozniak, Magdalena B.; Brenner, Darren R.; Vallée, Maxime P.; Anantharaman, Devasena; Lagiou, Pagona; Holcátová, Ivana; Richiardi, Lorenzo; Kjaerheim, Kristina; Agudo, Antonio; Castellsagué, Xavier; Macfarlane, Tatiana V.; Barzan, Luigi; Canova, Cristina; Thakker, Nalin S.; Conway, David I.; Znaor, Ariana; Healy, Claire M.; Ahrens, Wolfgang; Zaridze, David; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Fabianova, Eleonora; Mates, Ioan Nicolae; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Curado, Maria Paula; Koifman, Sergio; Menezes, Ana; Wünsch-Filho, Victor; Eluf-Neto, José; Boffetta, Paolo; Garrote, Leticia Fernández; Serraino, Diego; Lener, Marcin; Jaworowska, Ewa; Lubiński, Jan; Boccia, Stefania; Rajkumar, Thangarajan; Samant, Tanuja A.; Mahimkar, Manoj B.; Matsuo, Keitaro; Franceschi, Silvia; Byrnes, Graham; Brennan, Paul; McKay, James D.

    2015-01-01

    Genetic variants located within the 12p13.33/RAD52 locus have been associated with lung squamous cell carcinoma (LUSC). Here, within 5,947 UADT cancers and 7,789 controls from 9 different studies, we found rs10849605, a common intronic variant in RAD52, to be also associated with upper aerodigestive tract (UADT) squamous cell carcinoma cases (OR = 1.09, 95% CI: 1.04–1.15, p = 6x10−4). We additionally identified rs10849605 as a RAD52 cis-eQTL inUADT(p = 1x10−3) and LUSC (p = 9x10−4) tumours, with the UADT/LUSC risk allele correlated with increased RAD52 expression levels. The 12p13.33 locus, encompassing rs10849605/RAD52, was identified as a significant somatic focal copy number amplification in UADT(n = 374, q-value = 0.075) and LUSC (n = 464, q-value = 0.007) tumors and correlated with higher RAD52 tumor expression levels (p = 6x10−48 and p = 3x10−29 in UADT and LUSC, respectively). In combination, these results implicate increased RAD52 expression in both genetic susceptibility and tumorigenesis of UADT and LUSC tumors. PMID:25793373

  5. Hereditary persistence of fetal hemoglobin, beta thalassemia, and the hemoglobin delta-beta locus: further family data and genetic interpretations.

    PubMed Central

    Bethlenfalvay, N C; Motulsky, A G; Ringelhann, B; Lehmann, H; Humbert, J R; Konotey-Ahulu, F I

    1975-01-01

    Three Negro kindreds with hereditary persistence of fetal hemoglobin (HPFH) alone and in combination with various other hemoglobin abnormalities including beta thalassemia are presented. Among 11 offspring of two women heterozygous for both HPFH and the delta chain mutation Hb B2, five inherited the HPFH gene and six inherited the Hb B2 gene. In another kindred, a man inferred to be heterozygous for both HPFH and Hb C had six children; three offsprivg obtained the Hb C gene and three the HPFH gene. Similarly, a woman heterozygous for both Hb S and HPFH transmitted the Hb S gene to one of her two children and the HPFH gene to the other. Thus among 19 offspring, no crossovers between the HPFH locus or the Hb delta-beta locus were observed. These and earlier data are compatible with deletion of the Hb beta and delta loci as the primary event to explain the genetic origin of HPFH. Genetic considerations indicate that the finding of a single person with a hematologically normal phenotype among offspring of heterozygotes for both the African type of HPFH and a Hb beta or Hb delta structural abnormality would invalidate the deletion model. Images Fig. 2 PMID:1124762

  6. The 12p13.33/RAD52 locus and genetic susceptibility to squamous cell cancers of upper aerodigestive tract.

    PubMed

    Delahaye-Sourdeix, Manon; Oliver, Javier; Timofeeva, Maria N; Gaborieau, Valérie; Johansson, Mattias; Chabrier, Amélie; Wozniak, Magdalena B; Brenner, Darren R; Vallée, Maxime P; Anantharaman, Devasena; Lagiou, Pagona; Holcátová, Ivana; Richiardi, Lorenzo; Kjaerheim, Kristina; Agudo, Antonio; Castellsagué, Xavier; Macfarlane, Tatiana V; Barzan, Luigi; Canova, Cristina; Thakker, Nalin S; Conway, David I; Znaor, Ariana; Healy, Claire M; Ahrens, Wolfgang; Zaridze, David; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Fabianova, Eleonora; Mates, Ioan Nicolae; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Curado, Maria Paula; Koifman, Sergio; Menezes, Ana; Wünsch-Filho, Victor; Eluf-Neto, José; Boffetta, Paolo; Garrote, Leticia Fernández; Serraino, Diego; Lener, Marcin; Jaworowska, Ewa; Lubiński, Jan; Boccia, Stefania; Rajkumar, Thangarajan; Samant, Tanuja A; Mahimkar, Manoj B; Matsuo, Keitaro; Franceschi, Silvia; Byrnes, Graham; Brennan, Paul; McKay, James D

    2015-01-01

    Genetic variants located within the 12p13.33/RAD52 locus have been associated with lung squamous cell carcinoma (LUSC). Here, within 5,947 UADT cancers and 7,789 controls from 9 different studies, we found rs10849605, a common intronic variant in RAD52, to be also associated with upper aerodigestive tract (UADT) squamous cell carcinoma cases (OR = 1.09, 95% CI: 1.04-1.15, p = 6x10(-4)). We additionally identified rs10849605 as a RAD52 cis-eQTL inUADT(p = 1x10(-3)) and LUSC (p = 9x10(-4)) tumours, with the UADT/LUSC risk allele correlated with increased RAD52 expression levels. The 12p13.33 locus, encompassing rs10849605/RAD52, was identified as a significant somatic focal copy number amplification in UADT(n = 374, q-value = 0.075) and LUSC (n = 464, q-value = 0.007) tumors and correlated with higher RAD52 tumor expression levels (p = 6x10(-48) and p = 3x10(-29) in UADT and LUSC, respectively). In combination, these results implicate increased RAD52 expression in both genetic susceptibility and tumorigenesis of UADT and LUSC tumors. PMID:25793373

  7. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc)

    PubMed Central

    Zhang, Jie; Zhang, Qixiang; Cheng, Tangren; Yang, Weiru; Pan, Huitang; Zhong, Junjun; Huang, Long; Liu, Enze

    2015-01-01

    High-density genetic map is a valuable tool for fine mapping locus controlling a specific trait especially for perennial woody plants. In this study, we firstly constructed a high-density genetic map of mei (Prunus mume) using SLAF markers, developed by specific locus amplified fragment sequencing (SLAF-seq). The linkage map contains 8,007 markers, with a mean marker distance of 0.195 cM, making it the densest genetic map for the genus Prunus. Though weeping trees are used worldwide as landscape plants, little is known about weeping controlling gene(s) (Pl). To test the utility of the high-density genetic map, we did fine-scale mapping of this important ornamental trait. In total, three statistic methods were performed progressively based on the result of inheritance analysis. Quantitative trait loci (QTL) analysis initially revealed that a locus on linkage group 7 was strongly responsible for weeping trait. Mutmap-like strategy and extreme linkage analysis were then applied to fine map this locus within 1.14 cM. Bioinformatics analysis of the locus identified some candidate genes. The successful localization of weeping trait strongly indicates that the high-density map constructed using SLAF markers is a worthy reference for mapping important traits for woody plants. PMID:25776277

  8. Genetic Analysis Reveals Different Functions for the Products of the Thyroid Hormone Receptor α Locus

    PubMed Central

    Gauthier, Karine; Plateroti, Michelina; Harvey, Clare B.; Williams, Graham R.; Weiss, Roy E.; Refetoff, Samuel; Willott, James F.; Sundin, Victoria; Roux, Jean-Paul; Malaval, Luc; Hara, Masahiro; Samarut, Jacques; Chassande, Olivier

    2001-01-01

    Thyroid hormone receptors are encoded by the TRα (NR1A1) and TRβ (NR1A2) loci. These genes are transcribed into multiple variants whose functions are unclear. Analysis by gene inactivation in mice has provided new insights into the functional complexity of these products. Different strategies designed to modify the TRα locus have led to strikingly different phenotypes. In order to analyze the molecular basis for these alterations, we generated mice devoid of all known isoforms produced from the TRα locus (TRα0/0). These mice are viable and exhibit reduced linear growth, bone maturation delay, moderate hypothermia, and reduced thickness of the intestinal mucosa. Compounding TRα0 and TRβ− mutations produces viable TRα0/0β−/− mice, which display a more severe linear growth reduction and a more profound hypothermia as well as impaired hearing. A striking phenotypic difference is observed between TRα0/0 and the previously described TRα−/− mice, which retain truncated TRΔα isoforms arising from a newly described promoter in intron 7. The lethality and severe impairment of the intestinal maturation in TRα−/− mice are rescued in TRα0/0 animals. We demonstrate that the TRΔα protein isoforms, which are natural products of the TRα locus, are the key determinants of these phenotypical differences. These data reveal the functional importance of the non-T3-binding variants encoded by the TRα locus in vertebrate postnatal development and homeostasis. PMID:11416150

  9. Genetic and molecular characterization of the maize rp3 rust resistance locus.

    PubMed Central

    Webb, Craig A; Richter, Todd E; Collins, Nicholas C; Nicolas, Marie; Trick, Harold N; Pryor, Tony; Hulbert, Scot H

    2002-01-01

    In maize, the Rp3 gene confers resistance to common rust caused by Puccinia sorghi. Flanking marker analysis of rust-susceptible rp3 variants suggested that most of them arose via unequal crossing over, indicating that rp3 is a complex locus like rp1. The PIC13 probe identifies a nucleotide binding site-leucine-rich repeat (NBS-LRR) gene family that maps to the complex. Rp3 variants show losses of PIC13 family members relative to the resistant parents when probed with PIC13, indicating that the Rp3 gene is a member of this family. Gel blots and sequence analysis suggest that at least 9 family members are at the locus in most Rp3-carrying lines and that at least 5 of these are transcribed in the Rp3-A haplotype. The coding regions of 14 family members, isolated from three different Rp3-carrying haplotypes, had DNA sequence identities from 93 to 99%. Partial sequencing of clones of a BAC contig spanning the rp3 locus in the maize inbred line B73 identified five different PIC13 paralogues in a region of approximately 140 kb. PMID:12242248

  10. Genetic and molecular characterization of the maize rp3 rust resistance locus.

    PubMed

    Webb, Craig A; Richter, Todd E; Collins, Nicholas C; Nicolas, Marie; Trick, Harold N; Pryor, Tony; Hulbert, Scot H

    2002-09-01

    In maize, the Rp3 gene confers resistance to common rust caused by Puccinia sorghi. Flanking marker analysis of rust-susceptible rp3 variants suggested that most of them arose via unequal crossing over, indicating that rp3 is a complex locus like rp1. The PIC13 probe identifies a nucleotide binding site-leucine-rich repeat (NBS-LRR) gene family that maps to the complex. Rp3 variants show losses of PIC13 family members relative to the resistant parents when probed with PIC13, indicating that the Rp3 gene is a member of this family. Gel blots and sequence analysis suggest that at least 9 family members are at the locus in most Rp3-carrying lines and that at least 5 of these are transcribed in the Rp3-A haplotype. The coding regions of 14 family members, isolated from three different Rp3-carrying haplotypes, had DNA sequence identities from 93 to 99%. Partial sequencing of clones of a BAC contig spanning the rp3 locus in the maize inbred line B73 identified five different PIC13 paralogues in a region of approximately 140 kb. PMID:12242248

  11. Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus

    PubMed Central

    2010-01-01

    Background Domestication and breeding involve the selection of particular phenotypes, limiting the genomic diversity of the population and creating a bottleneck. These effects can be precisely estimated when the location of domestication is established. Few analyses have focused on understanding the genetic consequences of domestication and breeding in fruit trees. In this study, we aimed to analyse genetic structure and changes in the diversity in sweet cherry Prunus avium L. Results Three subgroups were detected in sweet cherry, with one group of landraces genetically very close to the analysed wild cherry population. A limited number of SSR markers displayed deviations from the frequencies expected under neutrality. After the removal of these markers from the analysis, a very limited bottleneck was detected between wild cherries and sweet cherry landraces, with a much more pronounced bottleneck between sweet cherry landraces and modern sweet cherry varieties. The loss of diversity between wild cherries and sweet cherry landraces at the S-locus was more significant than that for microsatellites. Particularly high levels of differentiation were observed for some S-alleles. Conclusions Several domestication events may have happened in sweet cherry or/and intense gene flow from local wild cherry was probably maintained along the evolutionary history of the species. A marked bottleneck due to breeding was detected, with all markers, in the modern sweet cherry gene pool. The microsatellites did not detect the bottleneck due to domestication in the analysed sample. The vegetative propagation specific to some fruit trees may account for the differences in diversity observed at the S-locus. Our study provides insights into domestication events of cherry, however, requires confirmation on a larger sampling scheme for both sweet cherry landraces and wild cherry. PMID:20727153

  12. Genetic and Genomic Dissection of the Cochliobolus heterostrophus Tox1 Locus Controlling Biosynthesis of the Polyketide Virulence Factor T-toxin

    SciTech Connect

    Turgeon, Barbara G.; Baker, Scott E.

    2007-04-27

    Fungal pathogenesis to plants is an intricate developmental process requiring biological components found in most fungi, as well as factors that are unique to fungal taxa that participate in particular fungus–plant interactions. The host-selective polyketide toxin known as T-toxin produced by Cochliobolus heterostrophus race T, a highly virulent pathogen of maize, is an intriguing example of the latter type of virulence determinant. The Tox1 locus, which controls biosynthesis of T-toxin, originally defined as a single genetic locus, it is, in fact, two exceedingly complex loci on two chromosomes that are reciprocally translocated with respect to their counterparts in weakly pathogenic race O. Race O lacks the Tox1 locus and does not produce T-toxin. Highly virulent race T was first recognized when it caused an epidemic of Southern Corn Leaf Blight, which devastated the US corn crop in 1970. The evolutionary origin of the Tox1 locus remains unknown.

  13. Assessment of population genetic structure in the arbovirus vector midge, Culicoides brevitarsis (Diptera: Ceratopogonidae), using multi-locus DNA microsatellites.

    PubMed

    Onyango, Maria G; Beebe, Nigel W; Gopurenko, David; Bellis, Glenn; Nicholas, Adrian; Ogugo, Moses; Djikeng, Appolinaire; Kemp, Steve; Walker, Peter J; Duchemin, Jean-Bernard

    2015-01-01

    Bluetongue virus (BTV) is a major pathogen of ruminants that is transmitted by biting midges (Culicoides spp.). Australian BTV serotypes have origins in Asia and are distributed across the continent into two distinct episystems, one in the north and another in the east. Culicoides brevitarsis is the major vector of BTV in Australia and is distributed across the entire geographic range of the virus. Here, we describe the isolation and use of DNA microsatellites and gauge their ability to determine population genetic connectivity of C. brevitarsis within Australia and with countries to the north. Eleven DNA microsatellite markers were isolated using a novel genomic enrichment method and identified as useful for genetic analyses of sampled populations in Australia, northern Papua New Guinea (PNG) and Timor-Leste. Significant (P < 0.05) population genetic subdivision was observed between all paired regions, though the highest levels of genetic sub-division involved pair-wise tests with PNG (PNG vs. Australia (FST = 0.120) and PNG vs. Timor-Leste (FST = 0.095)). Analysis of multi-locus allelic distributions using STRUCTURE identified a most probable two-cluster population model, which separated PNG specimens from a cluster containing specimens from Timor-Leste and Australia. The source of incursions of this species in Australia is more likely to be Timor-Leste than PNG. Future incursions of BTV positive C. brevitarsis into Australia may be genetically identified to their source populations using these microsatellite loci. The vector's panmictic genetic structure within Australia cannot explain the differential geographic distribution of BTV serotypes. PMID:26408175

  14. The Multi-allelic Genetic Architecture of a Variance-Heterogeneity Locus for Molybdenum Concentration in Leaves Acts as a Source of Unexplained Additive Genetic Variance

    PubMed Central

    Forsberg, Simon K. G.; Andreatta, Matthew E.; Huang, Xin-Yuan; Danku, John; Salt, David E.; Carlborg, Örjan

    2015-01-01

    Genome-wide association (GWA) analyses have generally been used to detect individual loci contributing to the phenotypic diversity in a population by the effects of these loci on the trait mean. More rarely, loci have also been detected based on variance differences between genotypes. Several hypotheses have been proposed to explain the possible genetic mechanisms leading to such variance signals. However, little is known about what causes these signals, or whether this genetic variance-heterogeneity reflects mechanisms of importance in natural populations. Previously, we identified a variance-heterogeneity GWA (vGWA) signal for leaf molybdenum concentrations in Arabidopsis thaliana. Here, fine-mapping of this association reveals that the vGWA emerges from the effects of three independent genetic polymorphisms that all are in strong LD with the markers displaying the genetic variance-heterogeneity. By revealing the genetic architecture underlying this vGWA signal, we uncovered the molecular source of a significant amount of hidden additive genetic variation or “missing heritability”. Two of the three polymorphisms underlying the genetic variance-heterogeneity are promoter variants for Molybdate transporter 1 (MOT1), and the third a variant located ~25 kb downstream of this gene. A fourth independent association was also detected ~600 kb upstream of MOT1. Use of a T-DNA knockout allele highlights Copper Transporter 6; COPT6 (AT2G26975) as a strong candidate gene for this association. Our results show that an extended LD across a complex locus including multiple functional alleles can lead to a variance-heterogeneity between genotypes in natural populations. Further, they provide novel insights into the genetic regulation of ion homeostasis in A. thaliana, and empirically confirm that variance-heterogeneity based GWA methods are a valuable tool to detect novel associations of biological importance in natural populations. PMID:26599497

  15. Genetic instability of the lozenge locus in Drosophila melanogaster: Characterization of the lz{sup 75V} allele

    SciTech Connect

    Voloshina, M.A.; Golubovskii, M.D.

    1995-12-01

    Genetic properties of lz{sup 75V}, an unstable allele of the lozenge locus, are described. The lz{sup 75V} allele appeared in progeny of a male from a Far East natural population of Drosophila melanogaster. Mutation of this allele produces a broad spectrum of mutant derivatives with phenotypes varying from normal to extreme. The arising alleles can be stable or unstable. Some lz{sup 75V} derivatives continuously preserve their spontaneous mutability in laboratory conditions, whereas other alleles of the same family show progressive stabilization at the intralocus or intrachromosome level. Instability of the lz{sup 75V}-bearing X chromosome is locus-specific: only the lozenge gene mutates with high frequency, while visible mutations at other loci rarely occur. As shown previously, the lz{sup 75V} allele appears to be caused by a P-element insertion. The appearance of spontaneous instability is discussed with regard to the general problem of transposition regulation in mobile elements. Different systems of hybrid dysgenesis, and, in particular, P elements are assumed to play an important role in induction of unstable mutations in nature. 24 refs., 5 tabs.

  16. Use of genetic and physical mapping to locate the spinal muscular atrophy locus between two new highly polymorphic DNA markers

    SciTech Connect

    Clermont, O.; Burlet, P.; Burglen, L.; Lefebvre, S.; Pascal, F.; McPherson, J.; Wasmuth, J.J.; Cohen, D.; Le Paslier, D.; Weissenbach, J.

    1994-04-01

    The gene for autosomal recessive forms of spinal muscular atrophy (SMA) has recently been mapped to chromosome 5q13, within a 4-cM region between the blocks D5S465/D5S125 and MAP-1B/D5S112. The authors identified two new highly polymorphic microsatellite DNA markers - namely, AFM265wf5 (D5S629) and AFM281yh9 (D5S637) - which are the closest markers to the SMA locus. Multilocus analysis by the location-score method was used to establish the best estimate of the SMA gene location. The data suggest that the most likely location for SMA is between locus D5S629 and the block D5S637/D5S351/MAP-1B/D5S112/D5S357. Genetic analysis of inbred SMA families, based on homozygosity by descent and physical mapping using meta-YACs, gave additional information for the loci order as follows: cen-D5S6-D5S125/D5S465-D5S435-D5S629-SMA-D5S637-D5S351-MAP-1B/D5S112-D5S357-D5S39-tel. These data give the direction for bidirectional walking in order to clone this interval and isolate the SMA gene. 16 refs., 4 figs., 2 tabs.

  17. Quantitative Trait Locus and Genetical Genomics Analysis Identifies Putatively Causal Genes for Fecundity and Brooding in the Chicken.

    PubMed

    Johnsson, Martin; Jonsson, Kenneth B; Andersson, Leif; Jensen, Per; Wright, Dominic

    2016-02-01

    Life history traits such as fecundity are important to evolution because they make up components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits. We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between egg loci and expression loci, and trait-gene expression correlations identify 29 candidates from bone and five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes for egg traits in the chicken that may have been affected by regulatory variants under chicken domestication. These represent, to the best of our knowledge, some of the first candidate genes identified by genome-wide mapping for life history traits in an avian species. PMID:26637433

  18. Quantitative Trait Locus and Genetical Genomics Analysis Identifies Putatively Causal Genes for Fecundity and Brooding in the Chicken

    PubMed Central

    Johnsson, Martin; Jonsson, Kenneth B.; Andersson, Leif; Jensen, Per; Wright, Dominic

    2015-01-01

    Life history traits such as fecundity are important to evolution because they make up components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits. We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between egg loci and expression loci, and trait–gene expression correlations identify 29 candidates from bone and five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes for egg traits in the chicken that may have been affected by regulatory variants under chicken domestication. These represent, to the best of our knowledge, some of the first candidate genes identified by genome-wide mapping for life history traits in an avian species. PMID:26637433

  19. Genetic and Quantitative Trait Locus Analysis for Bio-Oil Compounds after Fast Pyrolysis in Maize Cobs.

    PubMed

    Jeffrey, Brandon; Kuzhiyil, Najeeb; de Leon, Natalia; Lübberstedt, Thomas

    2016-01-01

    Fast pyrolysis has been identified as one of the biorenewable conversion platforms that could be a part of an alternative energy future, but it has not yet received the same attention as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the intermated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339 markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using composite interval mapping with significance thresholds established by 1000 permutations at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from 1.7 to 5.8%, indicating a complex quantitative inheritance of these traits. PMID:26745365

  20. Genetic and Quantitative Trait Locus Analysis for Bio-Oil Compounds after Fast Pyrolysis in Maize Cobs

    PubMed Central

    Jeffrey, Brandon; Kuzhiyil, Najeeb; de Leon, Natalia; Lübberstedt, Thomas

    2016-01-01

    Fast pyrolysis has been identified as one of the biorenewable conversion platforms that could be a part of an alternative energy future, but it has not yet received the same attention as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the intermated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339 markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using composite interval mapping with significance thresholds established by 1000 permutations at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from 1.7 to 5.8%, indicating a complex quantitative inheritance of these traits. PMID:26745365

  1. Construction of a genetic map based on high-throughput SNP genotyping and genetic mapping of a TuMV resistance locus in Brassica rapa.

    PubMed

    Chung, Hee; Jeong, Young-Min; Mun, Jeong-Hwan; Lee, Soo-Seong; Chung, Won-Hyong; Yu, Hee-Ju

    2014-04-01

    Brassica rapa is a member of the Brassicaceae family and includes vegetables and oil crops that are cultivated worldwide. The introduction of durable resistance against turnip mosaic virus (TuMV) into agronomically important cultivars has been a significant challenge for genetic and horticultural breeding studies of B. rapa. Based on our previous genome-wide analysis of DNA polymorphisms between the TuMV-resistant doubled haploid (DH) line VC40 and the TuMV-susceptible DH line SR5, we constructed a core genetic map of the VCS-13M DH population, which is composed of 83 individuals derived from microspore cultures of a F1 cross between VC40 and SR5, by analyzing the segregation of 314 sequence-characterized genetic markers. The genetic markers correspond to 221 SNPs and 31 InDels of genes as well as 62 SSRs, covering 1,115.9 cM with an average distance of 3.6 cM between the adjacent marker loci. The alignment and orientation of the constructed map showed good agreement with the draft genome sequence of Chiifu, thus providing an efficient strategy to map genic sequences. Using the genetic map, a novel dominant TuMV resistance locus (TuMV-R) in the VCS-13M DH population was identified as a 0.34 Mb region in the short arm of chromosome A6 in which four CC-NBS-LRR resistance genes and two pathogenesis-related-1 genes reside. The genetic map developed in this study can play an important role in the genetic study of TuMV resistance and the molecular breeding of B. rapa. PMID:24326528

  2. The evolution of a genetic locus encoding small serine proteinase inhibitors ⋆

    PubMed Central

    Clauss, Adam; Lilja, Hans; Lundwall, Åke

    2007-01-01

    We previously identified a locus on human chromosome 20 that encompasses 14 genes of postulated WFDC-type proteinase inhibitors with a potential role in innate immunity. In an extended study, homologous loci are here described on mouse chromosome 2, rat chromosome 3, and dog chromosome 24. As in humans, the murine and canine loci are divided into two sub-loci separated by 0.2 Mb. The majority of genes are conserved in all species, but there are also species-specific gains and losses of genes, e.g., several duplications have yielded four SLPI genes in the rat and, most surprisingly, there is no murine elafin gene. Two human pseudogenes were identified due to the discovery of functional rodent genes. The conservation of different WFDC domains varies considerably, and it is hypothesized that this reflects a dual role of WFDC inhibitors in natural immunity, which is directed both against microbes and proinflammatory cells. PMID:15950183

  3. Genetic linkage studies in familial partial epilepsy: Exclusion of the human chromosome regions syntenic to the El-1 mouse locus

    SciTech Connect

    Lopes-Cendes, I.; Mulley, J.C.; Andermann, E.

    1994-09-01

    Recently, six families with a familial form of partial epilepsy were described. All pedigrees showed autosomal dominant inheritance with incomplete penetrance. Affected individuals present with predominantly nocturnal seizures with frontal lobe semiology. In 1959, a genetic mouse model for partial epilepsy, the El mouse, was reported. In the El mouse, a major seizure susceptibility gene, El-1, segregates in an autosomal dominant fashion and has been localized to a region distal to the centromere of mouse chromosome 9. Comparative genetic maps between man and mouse have been used for prediction of localization of several human disease genes. Because the region of mouse chromosome 9 that is the most likely to contain the El-1 locus is syntenic to regions on human chromosomes 3q21-p22, 3q21-q23.3, 6q12 and 15q24, we adopted the candidate gene approach as an initial linkage strategy. Twenty-two polymorphic microsatellite markers covering these regions were used for genotyping individuals in the three larger families ascertained, two of which are Australian and one French-Canadian. Negative two-point lod scores were obtained separately for each family. The analysis of all three families combined significantly excludes the candidate regions on chromosomes 3, 6 and 15.

  4. Genetic map of randomly amplified DNA polymorphisms closely linked to the mating type locus of tetrahymenta thermophila

    SciTech Connect

    Lynch, T.J.; Brickner, J.; Orias, E.; Nakano, K.J.

    1995-12-01

    We have used the PCR-based randomly amplified polymorphic DNA (RAPD) method to efficiently identify and map DNA polymorphisms in the ciliated protozoan Tetrahymena thermophila. The polymorphisms segregate as Mendelian genetic markers. A targeted screen, using DNA from pooled meiotic segregants, yielded the polymorphisms most closely linked to the mat locus. A total of 10 polymorphisms linked to the mat-Pmr segment of the left arm of micronuclear chromosome 2 have been identified. This constitutes the largest linkage group described in T. thermophila. We also provide here the first crude estimate of the frequency of meiotic recombination in the mat region, 20 kb/cM. This frequency is much higher than that observed in most other eukaryotes. Special features of Tetrahymena genetics enhanced the power of the RAPD method: the ability to obtain in a single step meiotic segregants that are whole-genome homozygotes and the availability of nullisomic strains permitting quick deletion mapping of polymorphisms to micronuclear chromosomes or chromosomes segments. The RAPD method appears to provide a practical and relatively inexpensive approach to the construction of a high-resolution map of the Tetrahymena genome. 39 refs., 5 figs., 4 tabs.

  5. Coamplification of Myc/Pvt1 and homozygous deletion of Nlrp1 locus are frequent genetics changes in mouse osteosarcoma.

    PubMed

    Rao, Pulivarthi H; Zhao, Shuying; Zhao, Yi-Jue; Yu, Alexander; Rainusso, Nino; Trucco, Matteo; Allen-Rhoades, Wendy; Satterfield, Laura; Fuja, Daniel; Borra, Vishnupriya J; Man, Tsz-Kwong; Donehower, Lawrence A; Yustein, Jason T

    2015-12-01

    Osteosarcomas (OSs) are characterized by high levels of genomic instability (GI). To gain insights into the GI and its contribution toward understanding the genetic basis of OS, we characterized 19 primary and 13 metastatic mouse tumors in a genetically engineered novel mouse model of OS by a combination of genomic techniques. Through the bone-specific deletion of the wild-type Trp53 locus or activation of a metastatic-promoting missense R172Hp53 allele, C57BL/6 mice developed either localized or metastatic OS. Subsequent tumors were isolated and primary cultures created from primary bone and/or distal metastatic lesions, for example, lung and liver. These tumors exhibited high levels of GI with complex chromosomal rearrangements, amplifications, and deletions comparable to human OS. The combined genomic approaches identified frequent amplification of chromosome 15D1 and loss of 11B4 by CGH and/or SKY. Both 15D1 and 11B4 have homology with frequently altered chromosomal bands 8q24 and 17p13 in human OS, respectively. Subsequent array CGH, FISH, and qRT-PCR analysis identified coamplification and overexpression of Myc/Pvt1 transcripts from the 15D1 amplicon and loss and decreased expression of the Nlrp1b from 11B4. The Nlrp1 gene is the key mediator of apoptosis and interacts strongly with caspase 2. PMID:26355645

  6. Genetic consequences of postglacial range expansion in two codistributed rodents (genus Dipodomys) depend on ecology and genetic locus.

    PubMed

    Jezkova, Tereza; Riddle, Brett R; Card, Daren C; Schield, Drew R; Eckstut, Mallory E; Castoe, Todd A

    2015-01-01

    How does range expansion affect genetic diversity in species with different ecologies, and do different types of genetic markers lead to different conclusions? We addressed these questions by assessing the genetic consequences of postglacial range expansion using mitochondrial DNA (mtDNA) and nuclear restriction site-associated DNA (RAD) sequencing in two congeneric and codistributed rodents with different ecological characteristics: the desert kangaroo rat (Dipodomys deserti), a sand specialist, and the Merriam's kangaroo rat (Dipodomys merriami), a substrate generalist. For each species, we compared genetic variation between populations that retained stable distributions throughout glacial periods and those inferred to have expanded since the last glacial maximum. Our results suggest that expanded populations of both species experienced a loss of private mtDNA haplotypes and differentiation among populations, as well as a loss of nuclear single-nucleotide polymorphism (SNP) private alleles and polymorphic loci. However, only D. deserti experienced a loss of nucleotide diversity (both mtDNA and nuclear) and nuclear heterozygosity. For all indices of diversity and differentiation that showed reduced values in the expanded areas, D. deserti populations experienced a greater degree of loss than did D. merriami populations. Additionally, patterns of loss in genetic diversity in expanded populations were substantially less extreme (by two orders of magnitude in some cases) for nuclear SNPs in both species compared to that observed for mitochondrial data. Our results demonstrate that ecological characteristics may play a role in determining genetic variation associated with range expansions, yet mtDNA diversity loss is not necessarily accompanied by a matched magnitude of loss in nuclear diversity. PMID:25413968

  7. Two Genetically and Molecularly Distinct Functions Involved in Early Neurogenesis Reside within the Enhancer of Split Locus of Drosophila Melanogaster

    PubMed Central

    Delidakis, C.; Preiss, A.; Hartley, D. A.; Artavanis-Tsakonas, S.

    1991-01-01

    Molecular correlation of the genetic aspects of the function of the neurogenic gene Enhancer of split [E(spl)] has previously been hampered by the densely transcribed nature of the chromosomal region within which it resides. We present data indicating that two distinct molecular species contribute to E(spl) function. Analysis of new E(spl) alleles has allowed us to define two complementing functions within the locus. Subsequent phenotypic analysis of different E(spl) deficiencies combined with P element-transformed constructs has demonstrated that these two functions correspond to: (1) a family of helix-loop-helix (HLH) protein-encoding genes and (2) the single copy gene E(spl) m9/10, whose product shares homology with G-protein β subunits. The zygotically active E(spl) HLH genes can, at least partially, substitute for one another's functions and their total copy number determines the activity of the locus. E(spl) m9/10 acts synergistically with the E(spl) HLH genes and other neurogenic genes in the process of neurogenesis. The maternal component of E(spl) m9/10 has the most pronounced effect in neurogenesis, while its zygotic component is predominantly required during postembryonic development. The lethality of trans-heterozygotes of null E(spl) deficiency alleles with a strong Delta point mutation is a result of the concomitant reduction in activity of both E(spl) HLH and m9/10 functions. Immunocytochemical localization of the E(spl) m9/10 protein has revealed that it is a ubiquitously distributed nuclear component in embryonic, larval and imaginal tissues. PMID:1752423

  8. Fast-forward genetics by radiation hybrids to saturate the locus regulating nuclear-cytoplasmic compatibility in Triticum.

    PubMed

    Bassi, Filippo M; Ghavami, Farhad; Hayden, Matthew J; Wang, Yi; Forrest, Kerrie L; Kong, Stephan; Dizon, Rhoderissa; Michalak de Jimenez, Monika K; Meinhardt, Steven W; Mergoum, Mohamed; Gu, Yong Q; Kianian, Shahryar F

    2016-08-01

    The nuclear-encoded species cytoplasm specific (scs) genes control nuclear-cytoplasmic compatibility in wheat (genus Triticum). Alloplasmic cells, which have nucleus and cytoplasm derived from different species, produce vigorous and vital organisms only when the correct version of scs is present in their nucleus. In this study, bulks of in vivo radiation hybrids segregating for the scs phenotype have been genotyped by sequencing with over 1.9 million markers. The high marker saturation obtained for a critical region of chromosome 1D allowed identification of 3318 reads that mapped in close proximity of the scs. A novel in silico approach was deployed to extend these short reads to sequences of up to 70 Kb in length and identify candidate open reading frames (ORFs). Markers were developed to anchor the short contigs containing ORFs to a radiation hybrid map of 650 individuals with resolution of 288 Kb. The region containing the scs locus was narrowed to a single Bacterial Artificial Chromosome (BAC) contig of Aegilops tauschii. Its sequencing and assembly by nano-mapping allowed rapid identification of a rhomboid gene as the only ORF existing within the refined scs locus. Resequencing of this gene from multiple germplasm sources identified a single nucleotide mutation, which gives rise to a functional amino acid change. Gene expression characterization revealed that an active copy of this rhomboid exists on all homoeologous chromosomes of wheat, and depending on the specific cytoplasm each copy is preferentially expressed. Therefore, a new methodology was applied to unique genetic stocks to rapidly identify a strong candidate gene for the control of nuclear-cytoplasmic compatibility in wheat. PMID:26915753

  9. SPA1: a new genetic locus involved in phytochrome A-specific signal transduction.

    PubMed Central

    Hoecker, U; Xu, Y; Quail, P H

    1998-01-01

    To identify mutants potentially defective in signaling intermediates specific to phytochrome A (phyA), we screened for extragenic mutations that suppress the morphological phenotype exhibited by a weak phyA mutant (phyA-105) of Arabidopsis. A new recessive mutant, designated spa1 (for suppressor of phyA-105), was isolated and mapped to the bottom of chromosome 2. spa1 phyA-105 double mutants exhibit restoration of several responses to limiting fluence rates of continuous far-red light that are absent in the parental phyA-105 mutant, such as deetiolation, anthocyanin accumulation, and a far-red light-induced inability of seedlings to green upon subsequent transfer to continuous white light. spa1 mutations do not cause a phenotype in darkness, indicating that the suppression phenotype is light dependent. Enhanced photoresponsiveness was observed in spa1 seedlings in a wild-type PHYA background as well as in the mutant phyA-105 background but not in a mutant phyA null background. These results indicate that phyA is necessary in a non-allele-specific fashion for the expression of the spa1 mutant phenotype and that phyB to phyE are not sufficient for this effect. Taken together, the data suggest that spa1 mutations specifically amplify phyA signaling and therefore that the SPA1 locus encodes a component that acts negatively early in the phyA-specific signaling pathway. PMID:9477570

  10. A new genetic locus controlling growth and proliferation in Drosophila melanogaster.

    PubMed Central

    Raisin, Sophie; Pantalacci, Sophie; Breittmayer, Jean-Philippe; Léopold, Pierre

    2003-01-01

    Multicellular organisms grow through both proliferation and growth of their individual cells. We have conducted a P-element-based misexpression screen for genes whose upregulation alters wing disc growth during development. One particular group of four P elements, all inserted at cytological location 61C7-8, exhibited specific overgrowth upon misexpression in proliferating imaginal tissues. Clonal analysis revealed that upon misexpression, cell number was increased but cell size was not affected, indicating that cell growth and proliferation were induced in a coordinate manner. Loss of function at the locus produced small flies with reduced cell number, consistent with the presence of a gene encoding a positive growth regulator. We characterized a new transcription unit initiating in a region adjacent to the P insertions, which generated a complex series of polyadenylated transcripts. Although these RNAs were induced in response to misexpression, none was sufficient by itself to recapitulate overgrowth when overexpressed. This suggested either that a particular combination of these transcripts was necessary or that other sequences are involved. PMID:12871911

  11. Genetic Evidence That the Ovo Locus Is Involved in Drosophila Germ Line Sex Determination

    PubMed Central

    Oliver, B.; Pauli, D.; Mahowald, A. P.

    1990-01-01

    Zygotically contributed ovo gene product is required for the survival of female germ cells in Drosophila melanogaster. Trans-allelic combinations of weak and dominant ovo mutations (ovo(D)) result in viable germ cells that appear to be partially transformed from female to male sexual identity. The ovo(D2) mutation is partially suppressed by many Sex-lethal alleles that affect the soma, while those that affect only the germ line fail to interact with ovo(D2). One of two loss-of-function ovo alleles is suppressed by a loss-of-function Sex-lethal allele. Because ovo mutations are germ line dependent, it is likely that ovo is suppressed by way of communication between the somatic and germ lines. A loss-of-function allele of ovo is epistatic to germ line dependent mutations in Sex-lethal. The germ line dependent sex determination mutation, sans fille, and ovo(D) mutations show a dominant synergistic interaction resulting in partial transformation of germ line sexual identity. The ovo locus appears to be involved in germ line sex determination and is linked in some manner to sex determination in the soma. PMID:2116356

  12. Genetic Polymorphism of agr Locus and Antibiotic Resistance of Staphylococcus aureus at two hospitals in Pakistan

    PubMed Central

    Khan, Sadia; Rasheed, Faisal; Zahra, Rabaab

    2014-01-01

    Objective: The accessory gene regulator (agr) locus in Staphylococcus aureus (S. aureus) is a global regulator of quorum sensing and controls the production of virulence factors. This study was carried out to investigate the agr specific groups both in methicillin resistant and sensitive Staphylococcus aureus (MRSA and MSSA) and their relation with antibiotic resistance. Methods: A total of 90 clinical S. aureus isolates were studied from two tertiary care hospitals. The isolates were identified by standard biochemical tests. Methicillin resistance was confirmed by oxacillin and cefoxitin resistance. Multiplex PCR was used to determine the agr groups. Results: MRSA prevalence was found to be 53.3%.The agr groups’ distribution in MRSA was as follows: 22 (45.8%) belonged to group I, 14 (29.1%) belonged to group III and 2 (4.1%) belonged to group II. agrIV was not detected in MRSA. For 17 isolates, the agr group was not detected.agr III isolates showed higher antibiotic resistance than agrI isolates except in case of oxacillin and linezolid. Conclusions: Strict infection control policy and antibiotic guidelines should be adopted to control the problem of MRSA. Higher prevalence of agr I and agr III shows that they are dominant agr groups of our area. PMID:24639855

  13. Genetic analysis of a novel plasmid encoded durancin locus in Enterococcus durans 41D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterococcus durans is commonly found in the intestinal tract in humans and animals and several strains are known to produce bacteriocins. Durancin GL, a novel bacteriocin of Enterococcus durans 41D with antilisterial activity was isolated from artisanal cheese samples and its genetic determinants ...

  14. Genetic Diversity and Population Structure of Leishmania infantum from Southeastern France: Evaluation Using Multi-Locus Microsatellite Typing

    PubMed Central

    Pomares, Christelle; Marty, Pierre; Bañuls, Anne Laure; Lemichez, Emmanuel; Pratlong, Francine; Faucher, Benoît; Jeddi, Fakhri; Moore, Sandy; Michel, Grégory; Aluru, Srikanth; Piarroux, Renaud; Hide, Mallorie

    2016-01-01

    In the south of France, Leishmania infantum is responsible for numerous cases of canine leishmaniasis (CanL), sporadic cases of human visceral leishmaniasis (VL) and rare cases of cutaneous and muco-cutaneous leishmaniasis (CL and MCL, respectively). Several endemic areas have been clearly identified in the south of France including the Pyrénées-Orientales, Cévennes (CE), Provence (P), Alpes-Maritimes (AM) and Corsica (CO). Within these endemic areas, the two cities of Nice (AM) and Marseille (P), which are located 150 km apart, and their surroundings, concentrate the greatest number of French autochthonous leishmaniasis cases. In this study, 270 L. infantum isolates from an extended time period (1978–2011) from four endemic areas, AM, P, CE and CO, were assessed using Multi-Locus Microsatellite Typing (MLMT). MLMT revealed a total of 121 different genotypes with 91 unique genotypes and 30 repeated genotypes. Substantial genetic diversity was found with a strong genetic differentiation between the Leishmania populations from AM and P. However, exchanges were observed between these two endemic areas in which it seems that strains spread from AM to P. The genetic differentiations in these areas suggest strong epidemiological structuring. A model-based analysis using STRUCTURE revealed two main populations: population A (consisting of samples primarily from the P and AM endemic areas with MON-1 and non-MON-1 strains) and population B consisting of only MON-1 strains essentially from the AM endemic area. For four patients, we observed several isolates from different biological samples which provided insight into disease relapse and re-infection. These findings shed light on the transmission dynamics of parasites in humans. However, further data are required to confirm this hypothesis based on a limited sample set. This study represents the most extensive population analysis of L. infantum strains using MLMT conducted in France. PMID:26808522

  15. Multi-Locus Phylogeographic and Population Genetic Analysis of Anolis carolinensis: Historical Demography of a Genomic Model Species

    PubMed Central

    Tollis, Marc; Ausubel, Gavriel; Ghimire, Dhruba; Boissinot, Stéphane

    2012-01-01

    The green anole (Anolis carolinensis) has been widely used as an animal model in physiology and neurobiology but has recently emerged as an important genomic model. The recent sequencing of its genome has shed new light on the evolution of vertebrate genomes and on the process that govern species diversification. Surprisingly, the patterns of genetic diversity within natural populations of this widespread and abundant North American lizard remain relatively unknown. In the present study, we use 10 novel nuclear DNA sequence loci (N = 62 to 152) and one mitochondrial locus (N = 226) to delimit green anole populations and infer their historical demography. We uncovered four evolutionarily distinct and geographically restricted lineages of green anoles using phylogenetics, Bayesian clustering, and genetic distance methods. Molecular dating indicates that these lineages last shared a common ancestor ∼2 million years ago. Summary statistics and analysis of the frequency distributions of DNA polymorphisms strongly suggest range-wide expansions in population size. Using Bayesian Skyline Plots, we inferred the timing of population size expansions, which differ across lineages, and found evidence for a relatively recent and rapid westward expansion of green anoles across the Gulf Coastal Plain during the mid-Pleistocene. One surprising result is that the distribution of genetic diversity is not consistent with a latitudinal shift caused by climatic oscillations as is observed for many co-distributed taxa. This suggests that the most recent Pleistocene glacial cycles had a limited impact on the geographic distribution of the green anole at the northern limits of its range. PMID:22685573

  16. Predisposition to Childhood Otitis Media and Genetic Polymorphisms within the Toll-Like Receptor 4 (TLR4) Locus

    PubMed Central

    Kentala, Erna; Hammarén-Malmi, Sari; Bhutta, Mahmood F.; MacArthur, Carol J.; Wilmot, Beth; Casselbrant, Margaretha; Conley, Yvette P.; Weeks, Daniel E.; Mandel, Ellen M.; Vaarala, Outi; Kallio, Anna; Melin, Merit; Nieminen, Janne K.; Leinonen, Eira; Kere, Juha; Mattila, Petri S.

    2015-01-01

    Background Predisposition to childhood otitis media (OM) has a strong genetic component, with polymorphisms in innate immunity genes suspected to contribute to risk. Studies on several genes have been conducted, but most associations have failed to replicate in independent cohorts. Methods We investigated 53 gene polymorphisms in a Finnish cohort of 624 cases and 778 controls. A positive association signal was followed up in a tagging approach and tested in an independent Finnish cohort of 205 cases, in a British cohort of 1269 trios, as well as in two cohorts from the United States (US); one with 403 families and the other with 100 cases and 104 controls. Results In the initial Finnish cohort, the SNP rs5030717 in the TLR4 gene region showed significant association (OR 1.33, P = .003) to OM. Tagging SNP analysis of the gene found rs1329060 (OR 1.33, P = .002) and rs1329057 (OR 1.29, P = .003) also to be associated. In the more severe phenotype the association was stronger. This finding was supported by an independent Finnish case cohort, but the associations failed to replicate in the British and US cohorts. In studies on TLR4 signaling in 20 study subjects, the three-marker risk haplotype correlated with a decreased TNFα secretion in myeloid dendritic cells. Conclusions The TLR4 gene locus, regulating the innate immune response, influences the genetic predisposition to childhood OM in a subpopulation of patients. Environmental factors likely modulate the genetic components contributing to the risk of OM. PMID:26177520

  17. Genetic and physical mapping at the limb-girdle muscular dystrophy locus (LGMD2B) on chromosome 2p

    SciTech Connect

    Bashir, R.; Keers, S.; Strachan, T.

    1996-04-01

    The limb-girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of disorders, different forms of which have been mapped to at least six distinct genetic loci. We have mapped to at least six distinct genetic loci. We have mapped an autosomal recessive form of LGMD (LGMD2B) to chromosome 2p13. Two other conditions have been shown to map to this region or to the homologous region in mouse: a gene for a form of autosomal recessive distal muscular dystrophy, Miyoshi myopathy, shows linkage to the same markers on chromosome 2p as LGMD2B, and an autosomal recessive mouse mutation mnd2, in which there is rapidly progressive paralysis and muscle atrophy, has been mapped to mouse chromosome 6 to a region showing conserved synteny with human chromosome 2p12-p13. We have assembled a 6-cM YAC contig spanning the LGMD2B locus and have mapped seven genes and 13 anonymous polymorphic microsatellites to it. Using haplotype analysis in the linked families, we have narrowed our region of interest to a 0-cM interval between D2S2113 and D2S145, which does not overlap with the critical region for mnd2 in mouse. Use of these most closely linked markers will help to determine the relationship between LGMD2B and Miyoshi myopathy. YACs selected from our contig will be the starting point for the cloning of the LGMD2B gene and thereby establish the biological basis for this form of muscular dystrophy and its relationship with the other limb-girdle muscular dystrophies. 26 refs., 6 figs.

  18. Multi-locus phylogeographic and population genetic analysis of Anolis carolinensis: historical demography of a genomic model species.

    PubMed

    Tollis, Marc; Ausubel, Gavriel; Ghimire, Dhruba; Boissinot, Stéphane

    2012-01-01

    The green anole (Anolis carolinensis) has been widely used as an animal model in physiology and neurobiology but has recently emerged as an important genomic model. The recent sequencing of its genome has shed new light on the evolution of vertebrate genomes and on the process that govern species diversification. Surprisingly, the patterns of genetic diversity within natural populations of this widespread and abundant North American lizard remain relatively unknown. In the present study, we use 10 novel nuclear DNA sequence loci (N = 62 to 152) and one mitochondrial locus (N = 226) to delimit green anole populations and infer their historical demography. We uncovered four evolutionarily distinct and geographically restricted lineages of green anoles using phylogenetics, bayesian clustering, and genetic distance methods. Molecular dating indicates that these lineages last shared a common ancestor ∼2 million years ago. Summary statistics and analysis of the frequency distributions of DNA polymorphisms strongly suggest range-wide expansions in population size. Using Bayesian Skyline Plots, we inferred the timing of population size expansions, which differ across lineages, and found evidence for a relatively recent and rapid westward expansion of green anoles across the Gulf Coastal Plain during the mid-Pleistocene. One surprising result is that the distribution of genetic diversity is not consistent with a latitudinal shift caused by climatic oscillations as is observed for many co-distributed taxa. This suggests that the most recent Pleistocene glacial cycles had a limited impact on the geographic distribution of the green anole at the northern limits of its range. PMID:22685573

  19. Genetic Diversity and Population Structure of Leishmania infantum from Southeastern France: Evaluation Using Multi-Locus Microsatellite Typing.

    PubMed

    Pomares, Christelle; Marty, Pierre; Bañuls, Anne Laure; Lemichez, Emmanuel; Pratlong, Francine; Faucher, Benoît; Jeddi, Fakhri; Moore, Sandy; Michel, Grégory; Aluru, Srikanth; Piarroux, Renaud; Hide, Mallorie

    2016-01-01

    In the south of France, Leishmania infantum is responsible for numerous cases of canine leishmaniasis (CanL), sporadic cases of human visceral leishmaniasis (VL) and rare cases of cutaneous and muco-cutaneous leishmaniasis (CL and MCL, respectively). Several endemic areas have been clearly identified in the south of France including the Pyrénées-Orientales, Cévennes (CE), Provence (P), Alpes-Maritimes (AM) and Corsica (CO). Within these endemic areas, the two cities of Nice (AM) and Marseille (P), which are located 150 km apart, and their surroundings, concentrate the greatest number of French autochthonous leishmaniasis cases. In this study, 270 L. infantum isolates from an extended time period (1978-2011) from four endemic areas, AM, P, CE and CO, were assessed using Multi-Locus Microsatellite Typing (MLMT). MLMT revealed a total of 121 different genotypes with 91 unique genotypes and 30 repeated genotypes. Substantial genetic diversity was found with a strong genetic differentiation between the Leishmania populations from AM and P. However, exchanges were observed between these two endemic areas in which it seems that strains spread from AM to P. The genetic differentiations in these areas suggest strong epidemiological structuring. A model-based analysis using STRUCTURE revealed two main populations: population A (consisting of samples primarily from the P and AM endemic areas with MON-1 and non-MON-1 strains) and population B consisting of only MON-1 strains essentially from the AM endemic area. For four patients, we observed several isolates from different biological samples which provided insight into disease relapse and re-infection. These findings shed light on the transmission dynamics of parasites in humans. However, further data are required to confirm this hypothesis based on a limited sample set. This study represents the most extensive population analysis of L. infantum strains using MLMT conducted in France. PMID:26808522

  20. Molecular Genetic Characterization of Six Recessive Viable Alleles of the Mouse Agouti Locus

    PubMed Central

    Hustad, C. M.; Perry, W. L.; Siracusa, L. D.; Rasberry, C.; Cobb, L.; Cattanach, B. M.; Kovatch, R.; Copeland, N. G.; Jenkins, N. A.

    1995-01-01

    The agouti locus on mouse chromosome 2 encodes a secreted cysteine-rich protein of 131 amino acids that acts as a molecular switch to instruct the melanocyte to make either yellow pigment (phaeomelanin) or black pigment (eumelanin). Mutations that up-regulate agouti expression are dominant to those causing decreased expression and result in yellow coat color. Other associated effects are obesity, diabetes, and increased susceptibility to tumors. To try to define important functional domains of the agouti protein, we have analyzed the molecular defects present in a series of recessive viable agouti mutations. In total, six alleles (a(mJ), a(u), a(da), a(16H), a(18H), a(e)) were examined at both the RNA and DNA level. Two of the alleles, a(16H) and a(e), result from mutations in the agouti coding region. Four alleles (a(mJ), a(u), a(18H), and a(da)) appear to represent regulatory mutations that down-regulate agouti expression. Interestingly, one of these mutations, a(18H), also appears to cause an immunological defect in the homozygous condition. This immunological defect is somewhat analogous to that observed in motheaten (me) mutant mice. Short and long-range restriction enzyme analyses of homozygous a(18H) DNA are consistent with the hypothesis that a(18H) results from a paracentric inversion where one end of the inversion maps in the 5' regulatory region of agouti and the other end in or near a gene that is required for normal immunological function. Cloning the breakpoints of this putative inversion should allow us to identify the gene that confers this interesting immunological disorder. PMID:7635290

  1. Using multi-locus allelic sequence data to estimate genetic divergence among four Lilium (Liliaceae) cultivars.

    PubMed

    Shahin, Arwa; Smulders, Marinus J M; van Tuyl, Jaap M; Arens, Paul; Bakker, Freek T

    2014-01-01

    Next Generation Sequencing (NGS) may enable estimating relationships among genotypes using allelic variation of multiple nuclear genes simultaneously. We explored the potential and caveats of this strategy in four genetically distant Lilium cultivars to estimate their genetic divergence from transcriptome sequences using three approaches: POFAD (Phylogeny of Organisms from Allelic Data, uses allelic information of sequence data), RAxML (Randomized Accelerated Maximum Likelihood, tree building based on concatenated consensus sequences) and Consensus Network (constructing a network summarizing among gene tree conflicts). Twenty six gene contigs were chosen based on the presence of orthologous sequences in all cultivars, seven of which also had an orthologous sequence in Tulipa, used as out-group. The three approaches generated the same topology. Although the resolution offered by these approaches is high, in this case there was no extra benefit in using allelic information. We conclude that these 26 genes can be widely applied to construct a species tree for the genus Lilium. PMID:25368628

  2. Association Between Genetic Variants on Chromosome 15q25 Locus and Objective Measures of Tobacco Exposure

    PubMed Central

    Timofeeva, Maria N.; Morris, Richard W.; Prieto-Merino, David; Sattar, Naveed; Brennan, Paul; Johnstone, Elaine C.; Relton, Caroline; Johnson, Paul C. D.; Walther, Donna; Whincup, Peter H.; Casas, Juan P.; Uhl, George R.; Vineis, Paolo; Padmanabhan, Sandosh; Jefferis, Barbara J.; Amuzu, Antoinette; Riboli, Elio; Upton, Mark N.; Aveyard, Paul; Ebrahim, Shah; Hingorani, Aroon D.; Watt, Graham; Palmer, Tom M.; Timpson, Nicholas J.; Davey Smith, George

    2012-01-01

    Background Two single-nucleotide polymorphisms, rs1051730 and rs16969968, located within the nicotinic acetylcholine receptor gene cluster on chromosome 15q25 locus, are associated with heaviness of smoking, risk for lung cancer, and other smoking-related health outcomes. Previous studies have typically relied on self-reported smoking behavior, which may not fully capture interindividual variation in tobacco exposure. Methods We investigated the association of rs1051730 and rs16969968 genotype (referred to as rs1051730–rs16969968, because these are in perfect linkage disequilibrium and interchangeable) with both self-reported daily cigarette consumption and biochemically measured plasma or serum cotinine levels among cigarette smokers. Summary estimates and descriptive statistical data for 12 364 subjects were obtained from six independent studies, and 2932 smokers were included in the analyses. Linear regression was used to calculate the per-allele association of rs1051730–rs16969968 genotype with cigarette consumption and cotinine levels in current smokers for each study. Meta-analysis of per-allele associations was conducted using a random effects method. The likely resulting association between genotype and lung cancer risk was assessed using published data on the association between cotinine levels and lung cancer risk. All statistical tests were two-sided. Results Pooled per-allele associations showed that current smokers with one or two copies of the rs1051730–rs16969968 risk allele had increased self-reported cigarette consumption (mean increase in unadjusted number of cigarettes per day per allele = 1.0 cigarette, 95% confidence interval [CI] = 0.57 to 1.43 cigarettes, P = 5.22 × 10−6) and cotinine levels (mean increase in unadjusted cotinine levels per allele = 138.72 nmol/L, 95% CI = 97.91 to 179.53 nmol/L, P = 2.71 × 10−11). The increase in cotinine levels indicated an increased risk of lung cancer with each additional copy of the rs

  3. Genetic Heterogeneity in the rRNA Gene Locus of Trichophyton tonsurans

    PubMed Central

    Gaedigk, Andrea; Gaedigk, Roger; Abdel-Rahman, Susan M.

    2003-01-01

    Trichophyton tonsurans is the major pediatric pathogen in tinea capitis, causing disparate disease presentations. Little is known about genetic variation, which may ultimately be linked to divergent disease status. This investigation was aimed at identifying genetic variants of T. tonsurans by methods that can facilitate strain discrimination in population-based studies. Ninety-two isolates were acquired from six U.S. microbiology laboratories, and genomic DNA was isolated from mature colonies. The nontranscribed spacer (NTS) was amplified by PCR, and products from isolates with various amplicon sizes were fully sequenced. Nested amplification, targeting a variable internal repeat (VIR) region, allowed assignment of variant type by fragment size. Subvariant type was assigned by a combination of PCR-restriction fragment length polymorphism-based assays. Five variants differing in size (348 to 700 bp) and sequence were identified within the VIR region comprised of several large repeats (104, 140, and 194 bp) arranged in tandem. Seven single-nucleotide polymorphisms (SNPs) were detected across the NTS, with five occurring in the constant regions flanking the VIR region and two occurring in the VIR region. Additionally, a 10-bp insertion and a 14-bp deletion were identified upstream of the VIR region. The combination of SNPs revealed seven haplotype patterns which were stable upon serial passage over 1 year. No sequence variations were identified within the internal transcribed spacer regions. Unique NTS sequences were utilized to develop a duplex PCR assay that discriminated T. tonsurans from other dermatophytes. Of the 92 isolates evaluated, this genotyping scheme distinguished 12 distinct strains, providing evidence of genetic heterogeneity in T. tonsurans. PMID:14662928

  4. Link functions in multi-locus genetic models: implications for testing, prediction, and interpretation.

    PubMed

    Clayton, David

    2012-05-01

    "Complex" diseases are, by definition, influenced by multiple causes, both genetic and environmental, and statistical work on the joint action of multiple risk factors has, for more than 40 years, been dominated by the generalized linear model (GLM). In genetics, models for dichotomous traits have traditionally been approached via the model of an underlying, normally distributed, liability. This corresponds to the GLM with binomial errors and a probit link function. Elsewhere in epidemiology, however, the logistic regression model, a GLM with logit link function, has been the tool of choice, largely because of its convenient properties in case-control studies. The choice of link function has usually been dictated by mathematical convenience, but it has some important implications in (a) the choice of association test statistic in the presence of existing strong risk factors, (b) the ability to predict disease from genotype given its heritability, and (c) the definition, and interpretation of epistasis (or epistacy). These issues are reviewed, and a new association test proposed. PMID:22508388

  5. Multi-locus genetic risk score predicts risk for Crohn’s disease in Slovenian population

    PubMed Central

    Zupančič, Katarina; Skok, Kristijan; Repnik, Katja; Weersma, Rinse K; Potočnik, Uroš; Skok, Pavel

    2016-01-01

    AIM: To develop a risk model for Crohn’s disease (CD) based on homogeneous population. METHODS: In our study were included 160 CD patients and 209 healthy individuals from Slovenia. The association study was performed for 112 single nucleotide polymorphisms (SNPs). We generated genetic risk scores (GRS) based on the number of risk alleles using weighted additive model. Discriminatory accuracy was measured by area under ROC curve (AUC). For risk evaluation, we divided individuals according to positive and negative likelihood ratios (LR) of a test, with LR > 5 for high risk group and LR < 0.20 for low risk group. RESULTS: The highest accuracy, AUC of 0.78 was achieved with GRS combining 33 SNPs with optimal sensitivity and specificity of 75.0% and 72.7%, respectively. Individuals with the highest risk (GRS > 5.54) showed significantly increased odds of developing CD (OR = 26.65, 95%CI: 11.25-63.15) compared to the individuals with the lowest risk (GRS < 4.57) which is a considerably greater risk captured than in one SNP with the highest effect size (OR = 3.24). When more than 33 SNPs were included in GRS, discriminatory ability was not improved significantly; AUC of all 74 SNPs was 0.76. CONCLUSION: The authors proved the possibility of building accurate genetic risk score based on 33 risk variants on Slovenian CD patients which may serve as a screening tool in the targeted population. PMID:27076762

  6. The macromelanophore locus and the melanoma oncogene Xmrk are separate genetic entities in the genome of Xiphophorus.

    PubMed

    Weis, S; Schartl, M

    1998-08-01

    Fish of the genus Xiphophorus are polymorphic for black pigmentation patterns. Certain intra- or interspecific hybrids exhibit enhanced expression of these patterns, leading in many cases to malignant melanoma. Because no recombination was ever observed between the pattern information and the genetic predisposition to develop melanoma after hybridization, a "tumor gene" (Tu) was postulated that encodes both phenotypes. A dominant oncogene, ONC-Xmrk, was then found to be necessary and sufficient for the transforming function of Tu. Here we present molecular evidence that ONC-Xmrk and the pigment pattern information are encoded by separate, although intimately linked loci. No ONC-Xmrk gene was present in the 15 Xiphophorus strains investigated which exhibit no black pigmentation pattern. Five different patterns from Xiphophorus maculatus, X. evelynae, X. milleri, X. cortezi, and X. montezumae were associated with ONC-Xmrk and were melanomagenic, while fish of X. helleri, X. variatus, X. nezahualcoyotl, and X. montezumae with five other patterns had no ONC-Xmrk and consequently did not produce hybrid melanoma. These data provide evidence that ONC-Xmrk is sufficient for tumorigenesis in Xiphophorus hybrids, and that a separate, pigment pattern-encoding locus is closely linked to it. PMID:9691046

  7. The macromelanophore locus and the melanoma oncogene Xmrk are separate genetic entities in the genome of Xiphophorus.

    PubMed Central

    Weis, S; Schartl, M

    1998-01-01

    Fish of the genus Xiphophorus are polymorphic for black pigmentation patterns. Certain intra- or interspecific hybrids exhibit enhanced expression of these patterns, leading in many cases to malignant melanoma. Because no recombination was ever observed between the pattern information and the genetic predisposition to develop melanoma after hybridization, a "tumor gene" (Tu) was postulated that encodes both phenotypes. A dominant oncogene, ONC-Xmrk, was then found to be necessary and sufficient for the transforming function of Tu. Here we present molecular evidence that ONC-Xmrk and the pigment pattern information are encoded by separate, although intimately linked loci. No ONC-Xmrk gene was present in the 15 Xiphophorus strains investigated which exhibit no black pigmentation pattern. Five different patterns from Xiphophorus maculatus, X. evelynae, X. milleri, X. cortezi, and X. montezumae were associated with ONC-Xmrk and were melanomagenic, while fish of X. helleri, X. variatus, X. nezahualcoyotl, and X. montezumae with five other patterns had no ONC-Xmrk and consequently did not produce hybrid melanoma. These data provide evidence that ONC-Xmrk is sufficient for tumorigenesis in Xiphophorus hybrids, and that a separate, pigment pattern-encoding locus is closely linked to it. PMID:9691046

  8. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus

    PubMed Central

    Bhullar, Navreet K.; Street, Kenneth; Mackay, Michael; Yahiaoui, Nabila; Keller, Beat

    2009-01-01

    The continuous improvement of crop plants is essential for agriculture in the coming decades and relies on the use of genetic variability through breeding. However, domestication and modern breeding have reduced diversity in the crop germplasm. Global gene banks conserve diversity, but these resources remain underexplored owing to a lack of efficient strategies to isolate important alleles. Here we describe a large-scale allele-mining project at the molecular level. We first selected a set of 1,320 bread wheat landraces from a database of 16,089 accessions, using the focused identification of germplasm strategy. On the basis of a hierarchical selection procedure on this set, we then isolated 7 resistance alleles of the powdery mildew resistance gene Pm3, doubling the known functional allelic diversity at this locus. This targeted approach for molecular utilization of gene bank accessions reveals landraces as a rich resource of new functional alleles. This strategy can be implemented for other studies on the molecular diversity of agriculturally important genes, as well as for molecular breeding. PMID:19470492

  9. A single genetic locus in the phytopathogen Pantoea stewartii enables gut colonization and pathogenicity in an insect host.

    PubMed

    Stavrinides, John; No, Alexander; Ochman, Howard

    2010-01-01

    Aphids are typically exposed to a variety of epiphytic and phytopathogenic bacteria, many of which have entomopathogenic potential. Here we describe the interaction between Pantoea stewartii ssp. stewartii DC283 (DC283), an enteric phytopathogen and causal agent of Stewart's wilt, and the pea aphid, Acyrthosiphon pisum. When ingested by aphids, DC283 establishes and aggregates in the crop and gut, preventing honeydew flow and excretion, resulting in aphid death in 72 h. A mutagenesis screen identified a single locus, termed ucp1 (youcannot pass), whose disruption abolishes aphid pathogenicity. Moreover, the expression of ucp1 in Escherichia coli is sufficient to mediate the hindgut aggregation phenotype by this normally avirulent species. Ucp1 is related to six other proteins in the DC283 genome, each having a common N-terminal region and a divergent C-terminus, but only ucp1 has a role in pathogenicity. Based on predicted motifs and secondary structure, Ucp1 is a membrane-bound protein that functions in bacterial adhesion and promotes the formation of aggregates that are lethal to the insect host. These results illustrate that the enteric plant pathogenic bacteria have the capacity to exploit alternative non-plant hosts, and retain genetic determinants for colonizing the gut. PMID:19788413

  10. Genetic and developmental study of a complex locus in the house mouse. Final report, 1976-1983

    SciTech Connect

    Bennett, D.

    1983-01-01

    More than 50 T/t-complex and other mouse chromosome 17 variants have been maintained and used for genetic study. Congenic strains of t-mutants on C3H, 129/TER and LT/sv backgrounds have been constructed. We have continued experiments to extract and analyze t-haplotypes from wild populations of mice, and to define and man other chromosome 17 genes. Most recently we have carried out experiments to map the lethal factors within t-haplotypes relative to one another, utilizing recombination that we have found to occur freely between two different complementing t-haplotypes. These experiments not only defined different t-lethal mutations as non-allelic but showed that several are in very close physical association with the H-2 locus, which is itself transposed or inverted to an anomalous position in t-haplotypes. This information led to restriction enzyme mapping that showed the molecular structure of all t-haplotypes to be much more similar to one another than wild type chromosomes are to one another. Future experiments will include chromosomal walking with cloned DNA from t-haplotypes to further define their structure.

  11. Genetic evidence for a product of the Fv-1 locus that transfers resistance to mouse leukemia viruses.

    PubMed Central

    Tennant, R W; Schluter, B; Myer, F E; Otten, J A; Yang, W K; Brown, A

    1976-01-01

    Extracts of mouse cells have been shown to transfer to N- or B-trophic host range types of mouse leukemia viruses. The genetic specificity of the inhibition was tested in two ways: (i) by correlating the Fv-1 genotype of a number of mouse strains with the restriction-transferring activity of extracts of the respective embryo cell cultures, and (ii) by correlating the Fv-1 genotype of BLC3F2 (C57BL/6 female [Fv-1bb] by C3H male [Fv-1nn] parental strains) mouse embryos, which segregate the Fv-1 alleles in a 12:1 ratio, with the inhibitor activity of extracts of the cells from each embryo. Five independent matings, totaling 45 individual embryos, were tested. Each embryo was cultured, and the Fv-1 genotype was determined independently by titration of N- and B-tropic viruses; the extracts of replicate secondary cultures were tested for their effect on infection of permissive cells by N- and B-tropic viruses. The specific-restriction-transferring activity of the embryos was found to segregate with the appropriate Fv-1 genotype. These res-lts confirm the suggestion that the inhibitor of the leukemia virus host range types in the cellular extracts is a product of the Fv-1 locus. PMID:186636

  12. Genetic mapping of Eutr1, a locus controlling E2-induced pyometritis in the Brown Norway rat, to RNO5.

    PubMed

    Gould, Karen A; Pandey, Jyotsna; Lachel, Cynthia M; Murrin, Clare R; Flood, Lisa A; Pennington, Karen L; Schaffer, Beverly S; Tochacek, Martin; McComb, Rodney D; Meza, Jane L; Wendell, Douglas L; Shull, James D

    2005-11-01

    In certain rat strains, chronic estrogen administration can lead to pyometritis, an inflammation of the uterus accompanied by infection and the accumulation of intraluminal pus. In this article, we report that the Brown Norway (BN) rat is highly susceptible to pyometritis induced by 17beta-estradiol (E2). The susceptibility of the BN rat to E2-induced pyometritis appears to segregate as a recessive trait in crosses to the resistant August x Copenhagen Irish (ACI) strain. In a (BN x ACI)F(2) population, we find strong evidence for a major genetic determinant of susceptibility to E2-induced pyometritis on rat chromosome 5 (RNO5). Our data are most consistent with a model in which the BN allele of this locus, designated Eutr1 (Estrogen-induced uterine response 1), acts in an incompletely dominant manner to control E2-induced pyometritis. Furthermore, we have confirmed the contribution of Eutr1 to E2-induced uterine pyometritis using an RNO5 congenic rat strain. In addition to Eutr1, we obtained evidence suggestive of linkage for five additional loci on RNO2, 4, 11, 17, and X that control susceptibility to E2-induced pyometritis in the (BN x ACI)F(2) population. PMID:16284801

  13. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus.

    PubMed

    Bhullar, Navreet K; Street, Kenneth; Mackay, Michael; Yahiaoui, Nabila; Keller, Beat

    2009-06-01

    The continuous improvement of crop plants is essential for agriculture in the coming decades and relies on the use of genetic variability through breeding. However, domestication and modern breeding have reduced diversity in the crop germplasm. Global gene banks conserve diversity, but these resources remain underexplored owing to a lack of efficient strategies to isolate important alleles. Here we describe a large-scale allele-mining project at the molecular level. We first selected a set of 1,320 bread wheat landraces from a database of 16,089 accessions, using the focused identification of germplasm strategy. On the basis of a hierarchical selection procedure on this set, we then isolated 7 resistance alleles of the powdery mildew resistance gene Pm3, doubling the known functional allelic diversity at this locus. This targeted approach for molecular utilization of gene bank accessions reveals landraces as a rich resource of new functional alleles. This strategy can be implemented for other studies on the molecular diversity of agriculturally important genes, as well as for molecular breeding. PMID:19470492

  14. Molecular bases of genetic diversity and evolution of the immunoglobulin heavy chain variable region (IGHV) gene locus in leporids

    PubMed Central

    Pinheiro, Ana; Lanning, Dennis; Alves, Paulo C.; Mage, Rose G.; Knight, Katherine L.; van der Loo, Wessel; Esteves, Pedro J.

    2012-01-01

    The rabbit has long been a model for studies of the immune system. Work using rabbits contributed both to the battle against infectious diseases such as rabies and syphilis, and to our knowledge of antibodies' structure, function, and regulated expression. With the description of rabbit Ig allotypes, the discovery of different gene segments encoding immunoglobulins became possible. This challenged the “one gene-one protein” dogma. The observation that rabbit allotypic specificities of the variable regions were present on IgM and IgG molecules also led to the hypothesis of Ig class switching. Rabbit allotypes contributed to the documentation of phenomena such as allelic exclusion and imbalance in production of allelic gene products. During the last 30 years, the rabbit Ig allotypes revealed a number of unique features, setting them apart from mice, humans and other mammals. Here, we review the most relevant findings concerning the rabbit IGHV. Among these are the preferential usage of one VH gene in VDJ rearrangements, the existence of trans-species polymorphism in the IGHV locus revealed by serology and confirmed by sequencing IGHV genes in Lepus, the unusually large genetic distances between allelic lineages and the fact that the antibody repertoire is diversified in this species only after birth. The Whole Genome Sequence of rabbit, plus re-sequencing of additional strains and related genera, will allow further evolutionary investigations of antibody variation. Continued research will help define the roles that genetic, allelic and population diversity at antibody loci may play in host-parasite interactions. PMID:21594770

  15. Occurrence and genetic characterization of Giardia duodenalis from captive nonhuman primates by multi-locus sequence analysis.

    PubMed

    Martínez-Díaz, Rafael Alberto; Sansano-Maestre, José; Martínez-Herrero, María Del Carmen; Ponce-Gordo, Francisco; Gómez-Muñoz, María Teresa

    2011-09-01

    Giardia is the most common enteric protozoan that can be pathogenic to both humans and animals. Transmission can be direct through the faecal-oral route, or through ingestion of contaminated water or food. Genetic characterization of Giardia duodenalis isolates has demonstrated the existence of seven groups (assemblages A to G) which differ in their host distribution. Assemblages A and B are present in humans and other primates, dogs, cats, rodents, and other species of wild mammals, but the role of the different host animals in the epidemiology of human infection remains unclear. With this preliminary data, we can infer that nonhuman primates (NHP) might be a potential reservoir for zoonotic transmission. This research paper discusses the presence of Giardia in nonhuman primates housed in two Spanish zoological gardens (located in Valencia and Madrid). Twenty faecal samples obtained from 16 different species of NHP were studied; 70% were positives to Giardia, and genetic analyses were performed by sequencing of four genes (SSrRNA, glutamate dehydrogenase, triose phosphate isomerase, and beta-giardin). The assemblage A was the most frequent (63.4%) in the species studied. A sequence from a red ruffed lemur (corresponding to genotype AI) was obtained, and this is the first reported sequence of a gdh gene obtained from this species. The multi-locus sequence analysis was also performed on the samples positive to nested PCR belonging to assemblage B. After amplification using the GDHeF, GDHiF, and GDHiR gdh primers; AL3543, AL3546, AL3544, and AL3545 tpi primers; G7, G759, GBF, and GBR bg primers, amplicons of 432, 500, and 511 bp respectively were obtained. Amplification products were sequenced and the sequence and phylogenetic analyses showed that genotype IV like was the most frequent in the samples belonging to this assemblage. PMID:21327988

  16. The genetic basis of Muir-Torre syndrome includes the hMLH1 locus

    SciTech Connect

    Bapat, B.; Xia, L.; Mitri, A.

    1996-09-01

    Muir-Torre syndrome (MTS) (McKusick 158320) is an autosomal dominant disorder characterized by the development of sebaceous gland tumors and skin cancers, including keratoacanthomas and basal cell carcinomas. Affected family members may manifest a wide spectrum of internal malignancies, which include colorectal, endometrial, urologic, and upper gastrointestinal neoplasms. Sebaceous gland tumors, which are rare in the general population, are considered to be the hallmark of MTS and may arise prior to the development of other visceral cancers. Despite the high incidence of synchronous and metachronous tumors, prognosis is often favorable. Hereditary nonpolyposis colorectal cancer (HNPCC) is one of the most common autosomal dominantly inherited colorectal cancer susceptibility syndromes. In some HNPCC families, extracolonic tumors of the endometrium, ovary, small bowel, and renal and biliary tract occur at an increased frequency. On the basis of similarities in clinical symptoms of MTS and HNPCC, it is proposed that these two syndromes may have a common genetic basis. 24 refs., 2 figs.

  17. Genetic diversity of the Plasmodium vivax merozoite surface protein-5 locus from diverse geographic origins.

    PubMed

    Putaporntip, Chaturong; Udomsangpetch, Rachanee; Pattanawong, Urassaya; Cui, Liwang; Jongwutiwes, Somchai

    2010-05-15

    Plasmodium vivax merozoite surface protein-5 (PvMsp-5), a potential vaccine candidate, is encoded by a two-exon single copy gene. We have conducted a comprehensive analysis of PvMsp-5 by sequencing the entire gene of four parasite populations from northwestern Thailand (n=73), southern Thailand (n=53), Indonesia (n=25) and Brazil (n=24), and five isolates from other endemic areas. Results reveal that exon I exhibits a significantly higher level of nucleotide diversity at both synonymous and nonsynonymous sites than exon II (p<0.01). Neutrality tests based on both intraspecific and interspecific nucleotide polymorphism have detected a signature of positive selection in exon I of all populations while substitutions in exon II mainly followed neutral expectation except that three residues in exon II of northwestern Thailand population appear to be positively selected using the Bayes Empirical Bayes method. Short imperfect repeats were identified in exon I at an equivalent region to its orthologue in P. knowlesi, supporting their close genetic relatedness. Significant levels of population subdivision were detected among most populations including those between northwestern and southern Thailand (p<10(-5)), implying absent or minimal gene flow between these populations. Importantly, evidences for intragenic recombination in PvMsp-5 were found in most populations except that from southern Thailand in which haplotype diversity and nucleotide diversity were exceptionally low. Results from Fu and Li's D*, F* and D and F tests suggested that PvMsp-5 of most P. vivax populations have been maintained by balancing selection whereas southern Thailand population could have gone through recent bottleneck events. These findings are concordant with a substantial reduction in the number of P. vivax cases in southern Thailand during the past decade, followed by a very recent population expansion. Therefore, spatio-temporal monitoring of parasite population genetics provides important

  18. Moroccan Leishmania infantum: Genetic Diversity and Population Structure as Revealed by Multi-Locus Microsatellite Typing

    PubMed Central

    Lemrani, Meryem; Mouna, Idrissi; Mohammed, Hida; Mostafa, Sabri; Rhajaoui, Mohamed; Hamarsheh, Omar; Schönian, Gabriele

    2013-01-01

    Leishmania infantum causes Visceral and cutaneous leishmaniasis in northern Morocco. It predominantly affects children under 5 years with incidence of 150 cases/year. Genetic variability and population structure have been investigated for 33 strains isolated from infected dogs and humans in Morocco. A multilocus microsatellite typing (MLMT) approach was used in which a MLMtype based on size variation in 14 independent microsatellite markers was compiled for each strain. MLMT profiles of 10 Tunisian, 10 Algerian and 21 European strains which belonged to zymodeme MON-1 and non-MON-1 according to multilocus enzyme electrophoresis (MLEE) were included for comparison. A Bayesian model-based approach and phylogenetic analysis inferred two L.infantum sub-populations; Sub-population A consists of 13 Moroccan strains grouped with all European strains of MON-1 type; and sub-population B consists of 15 Moroccan strains grouped with the Tunisian and Algerian MON-1 strains. Theses sub-populations were significantly different from each other and from the Tunisian, Algerian and European non MON-1 strains which constructed one separate population. The presence of these two sub-populations co-existing in Moroccan endemics suggests multiple introduction of L. infantum from/to Morocco; (1) Introduction from/to the neighboring North African countries, (2) Introduction from/to the Europe. These scenarios are supported by the presence of sub-population B and sub-population A respectively. Gene flow was noticed between sub-populations A and B. Five strains showed mixed A/B genotypes indicating possible recombination between the two populations. MLMT has proven to be a powerful tool for eco-epidemiological and population genetic investigations of Leishmania. PMID:24147078

  19. Generation of a Multi-Locus Chicken Introgression Line to Study the Effects of Genetic Interactions on Metabolic Phenotypes in Chickens

    PubMed Central

    Ek, Weronica; Marklund, Stefan; Ragavendran, Ashok; Siegel, Paul; Muir, William; Carlborg, Örjan

    2012-01-01

    Most biological traits are regulated by a complex interplay between genetic and environmental factors. By intercrossing divergent lines, it is possible to identify individual and interacting QTL involved in the genetic architecture of these traits. When the loci have been mapped, alternative strategies are needed for fine-mapping and studying the individual and interactive effects of the QTL in detail. We have previously identified, replicated, and fine mapped a four-locus QTL network that determines nearly half of the eightfold difference in body weight at 56 days of age between two divergently selected chicken lines. Here, we describe, to our knowledge, the first generation of a three-locus QTL introgression line in chickens. Recurrent marker-assisted backcrossing was used to simultaneously transfer QTL alleles from the low-weight selected line into the high-weight selected line. Three generations of backcrossing and one generation of intercrossing resulted in an introgression line where all three introgressed QTL and several unlinked and linked control-loci were segregating at nearly expected allele frequencies. We show how intensive selection can be applied using artificial insemination to rapidly generate a multi-locus introgression line and provide recommendations for future breeding of introgression lines. This confirmed introgression line will facilitate later detailed studies of the effects of genetic interactions on complex traits in this population, including growth, and body-composition traits. PMID:22403584

  20. Genetic Characterization of the Bifidobacterium breve UCC 2003 hrcA Locus

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Bernini, Valentina; Del Casale, Antonio; Dellaglio, Franco; Neviani, Erasmo; Fitzgerald, Gerald F.; van Sinderen, Douwe

    2005-01-01

    The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes and transcriptional regulators, including the DnaJ and the HrcA proteins. Genome analysis of Bifidobacterium breve UCC 2003 revealed a second copy of a dnaJ gene, named dnaJ2, which is flanked by the hrcA gene in a genetic constellation that appears to be unique to the actinobacteria. Phylogenetic analysis using 53 bacterial dnaJ sequences, including both dnaJ1 and dnaJ2 sequences, suggests that these genes have followed a different evolutionary development. Furthermore, the B. breve UCC 2003 dnaJ2 gene seems to be regulated in a manner that is different from that of the previously characterized dnaJ1 gene. The dnaJ2 gene, which was shown to be part of a 2.3-kb bicistronic operon with hrcA, was induced by osmotic shock but not significantly by heat stress. This induction pattern is unlike those of other characterized dnaJ genes and may be indicative of a unique stress adaptation strategy by this commensal microorganism. PMID:16332909

  1. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus.

    PubMed Central

    Neilan, B A; Jacobs, D; Goodman, A E

    1995-01-01

    Cyanobacteria are a highly diverse group in relation to form, function, and habitat. Current cyanobacterial systematics relies on the observation of minor and plastic morphological characters. Accurate and reliable delineation of toxic and bloom-forming strains of cyanobacteria has not been possible by traditional methods. We have designed general primers to the phycocyanin operon (cpc gene) and developed a PCR which allows the amplification of a region of this gene, including a variable intergenic spacer sequence. Because of the specificity of this PCR for cyanobacterial isolates, the assay is appropriate for the rapid and reliable identification of strains in freshwater samples. Successive restriction endonuclease digestion of this amplification product, with a total of nine enzymes, yielded many identifying DNA profiles specific to the various taxonomic levels of cyanobacteria. The restriction enzyme profiles for MspI, RsaI, and TaqI were conserved for strains within each of the eight genera (40 strains) studied and clearly discriminated among these genera. Intrageneric delineation of strains was revealed by the enzymes AluI, CfoI, and HaeIII for members of the genus Microcystis, while strains of genus Anabaena were differentiated by the digestion patterns provided by AluI, CfoI, and ScrFI. Phenetic and cladistic analyses of the data were used to infer the genetic relatedness and evolution of toxic and bloom-forming cyanobacteria. PMID:8526499

  2. Genetic diversity at the Dhn3 locus in Turkish Hordeum spontaneum populations with comparative structural analyses

    PubMed Central

    Uçarlı, Cüneyt; McGuffin, Liam J.; Çaputlu, Süleyman; Aravena, Andres; Gürel, Filiz

    2016-01-01

    We analysed Hordeum spontaneum accessions from 21 different locations to understand the genetic diversity of HsDhn3 alleles and effects of single base mutations on the intrinsically disordered structure of the resulting polypeptide (HsDHN3). HsDHN3 was found to be YSK2-type with a low-frequency 6-aa deletion in the beginning of Exon 1. There is relatively high diversity in the intron region of HsDhn3 compared to the two exon regions. We have found subtle differences in K segments led to changes in amino acids chemical properties. Predictions for protein interaction profiles suggest the presence of a protein-binding site in HsDHN3 that coincides with the K1 segment. Comparison of DHN3 to closely related cereals showed that all of them contain a nuclear localization signal sequence flanking to the K1 segment and a novel conserved region located between the S and K1 segments [E(D/T)DGMGGR]. We found that H. vulgare, H. spontaneum, and Triticum urartu DHN3s have a greater number of phosphorylation sites for protein kinase C than other cereal species, which may be related to stress adaptation. Our results show that the nature and extent of mutations in the conserved segments of K1 and K2 are likely to be key factors in protection of cells. PMID:26869072

  3. Genome-Wide Association Study Identifies GPC5 as a Novel Genetic Locus Protective against Sudden Cardiac Arrest

    PubMed Central

    Post, Wendy; Jui, Jonathan; Hilton, Gina; O'Connor, Ashley; Prineas, Ronald J.; Boerwinkle, Eric; Psaty, Bruce M.; Tomaselli, Gordon F.; Rea, Thomas; Sotoodehnia, Nona; Siscovick, David S.; Burke, Gregory L.; Marban, Eduardo; Spooner, Peter M.

    2010-01-01

    Background Existing studies indicate a significant genetic component for sudden cardiac arrest (SCA) and genome-wide association studies (GWAS) provide an unbiased approach for identification of novel genes. We performed a GWAS to identify genetic determinants of SCA. Methodology/Principal Findings We used a case-control design within the ongoing Oregon Sudden Unexpected Death Study (Oregon-SUDS). Cases (n = 424) were SCAs with coronary artery disease (CAD) among residents of Portland, OR (2002–07, population ∼1,000,000) and controls (n = 226) were residents with CAD, but no history of SCA. All subjects were of White-European ancestry and GWAS was performed using Affymetrix 500K/5.0 and 6.0 arrays. High signal markers were genotyped in SCA cases (n = 521) identified from the Atherosclerosis Risk in Communities Study (ARIC) and the Cardiovascular Health Study (CHS) (combined n = 19,611). No SNPs reached genome-wide significance (p<5×10−8). SNPs at 6 loci were prioritized for follow-up primarily based on significance of p<10−4 and proximity to a known gene (CSMD2, GPR37L1, LIN9, B4GALNT3, GPC5, and ZNF592). The minor allele of GPC5 (GLYPICAN 5, rs3864180) was associated with a lower risk of SCA in Oregon-SUDS, an effect that was also observed in ARIC/CHS whites (p<0.05) and blacks (p<0.04). In a combined Cox proportional hazards model analysis that adjusted for race, the minor allele exhibited a hazard ratio of 0.85 (95% CI 0.74 to 0.98; p<0.01). Conclusions/Significance A novel genetic locus for SCA, GPC5, was identified from Oregon-SUDS and successfully validated in the ARIC and CHS cohorts. Three other members of the Glypican family have been previously implicated in human disease, including cardiac conditions. The mechanism of this specific association requires further study. PMID:20360844

  4. 75 FR 52949 - Notice of Meeting: Secretary's Advisory Committee on Genetics, Health, and Society

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Genetics, Health, and Society Pursuant to Public Law 92-463, notice is hereby given of the twenty-third meeting of the Secretary's Advisory Committee on Genetics, Health, and Society (SACGHS), U.S. Public... cast. The main agenda item will be a review of the revised draft report on genetics education...

  5. 75 FR 21295 - Notice of Meeting: Secretary's Advisory Committee on Genetics, Health, and Society

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... HUMAN SERVICES Office of the Secretary Notice of Meeting: Secretary's Advisory Committee on Genetics... the Secretary's Advisory Committee on Genetics, Health, and Society (SACGHS), U.S. Public Health... wishing to provide public comment on any issue related to genetics, health and society. Please note...

  6. 75 FR 52949 - Notice of Meeting: Secretary's Advisory Committee on Genetics, Health, and Society

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... HUMAN SERVICES Office of the Secretary Notice of Meeting: Secretary's Advisory Committee on Genetics... the Secretary's Advisory Committee on Genetics, Health, and Society (SACGHS), U.S. Public Health... cast. The main agenda item will be a review of the revised draft report on genetics education...

  7. 75 FR 21002 - Notice of Meeting: Secretary's Advisory Committee on Genetics, Health, and Society

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... Genetics, Health, and Society Pursuant to Public Law 92-463, notice is hereby given of the twenty-second meeting of the Secretary's Advisory Committee on Genetics, Health, and Society (SACGHS), U.S. Public... wishing to provide public comment on any issue related to genetics, health and society. Please note...

  8. Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus.

    PubMed

    Sun, H; Shi, W

    2001-08-01

    Under starvation conditions, Myxococcus xanthus undergoes a complex developmental process which includes cellular aggregation and sporulation. A transposon insertion mutant (the Tn5-Omega280 mutant) with defects in both aggregation and sporulation was analyzed in this study. The Tn5-Omega280 mutant was found to have a disrupted NtrC-like response regulator designated Myxococcus regulatory protein B (mrpB). Further sequencing analyses revealed a histidine kinase homolog (mrpA) immediately upstream of mrpB and a cyclic AMP receptor protein-like transcriptional regulator (mrpC) downstream of mrpB. In-frame deletion analyses revealed that both the mrpB and mrpC genes were required for cellular aggregation and sporulation but that only mrpA was required for sporulation only. Site-specific mutagenesis of the putative phosphorylation site of MrpB, D58, showed that a D58A mutation caused defects in both aggregation and sporulation but that a D58E mutation resulted in only a sporulation defect. Further genetic and molecular analyses with reporter genes and reverse transcription-PCR indicated that mrpA and mrpB are cotranscribed but that mrpC is transcribed independently and that all of these genes are developmentally regulated. In addition, MrpB is essential for transcription of mrpC and MrpC regulates its own transcription. These data indicate that Mrp proteins are important components required for M. xanthus development. The complicated interaction between Mrp proteins may play an important role in regulating developmental gene expression in M. xanthus. PMID:11466282

  9. Evidence that the Saethre-Chotzen syndrome locus lies between D7S664 and D7S507, by genetic analysis and detection of a microdeletion in a patient

    SciTech Connect

    Lewanda, A.F.; Jerald, H.; Taylor, E.; Jabs, E.W.; Green, E.D.; Weissenbach, J.; Summar, M.L.; Phillips, J.A. III; Cohen, M.; Feingold, M.

    1994-12-01

    The locus for Saethre-Chotzen syndrome, a common autosomal dominant disorder of craniosynostosis and digital anomalies, was previously mapped to chromosome 7p between D7S513 and D7S516. We used linkage and haplotype analyses to narrow the disease locus to an 8-cM region between D7S664 and D7S507. The tightest linkage was to locus D7S664 (Z = 7.16, {theta} = .00). chromosomes from a Saethre-Chotzen syndrome patient with t(2;7) (p23;p22) were used for in situ hybridization with YAC clones containing D7S664 and D7S507. The D7S664 locus was found to lie distal to the 7p22 breakpoint, and the D7S507 locus was deleted from the translocation chromosomes. These genetic and physical mapping data independently show that the disease locus resides in this interval.

  10. Layered genetic control of DNA methylation and gene expression: a locus of multiple sclerosis in healthy individuals.

    PubMed

    Shin, Jean; Bourdon, Celine; Bernard, Manon; Wilson, Michael D; Reischl, Eva; Waldenberger, Melanie; Ruggeri, Barbara; Schumann, Gunter; Desrivieres, Sylvane; Leemans, Alexander; Abrahamowicz, Michal; Leonard, Gabriel; Richer, Louis; Bouchard, Luigi; Gaudet, Daniel; Paus, Tomas; Pausova, Zdenka

    2015-10-15

    DNA methylation may contribute to the etiology of complex genetic disorders through its impact on genome integrity and gene expression; it is modulated by DNA-sequence variants, named methylation quantitative trait loci (meQTLs). Most meQTLs influence methylation of a few CpG dinucleotides within short genomic regions (<3 kb). Here, we identified a layered genetic control of DNA methylation at numerous CpGs across a long 300 kb genomic region. This control involved a single long-range meQTL and multiple local meQTLs. The long-range meQTL explained up to 75% of variance in methylation of CpGs located over extended areas of the 300 kb region. The meQTL was identified in four samples (P = 2.8 × 10(-17), 3.1 × 10(-31), 4.0 × 10(-71) and 5.2 × 10(-199)), comprising a total of 2796 individuals. The long-range meQTL was strongly associated not only with DNA methylation but also with mRNA expression of several genes within the 300 kb region (P = 7.1 × 10(-18)-1.0 × 10(-123)). The associations of the meQTL with gene expression became attenuated when adjusted for DNA methylation (causal inference test: P = 2.4 × 10(-13)-7.1 × 10(-20)), indicating coordinated regulation of DNA methylation and gene expression. Further, the long-range meQTL was found to be in linkage disequilibrium with the most replicated locus of multiple sclerosis, a disease affecting primarily the brain white matter. In middle-aged adults free of the disease, we observed that the risk allele was associated with subtle structural properties of the brain white matter found in multiple sclerosis (P = 0.02). In summary, we identified a long-range meQTL that controls methylation and expression of several genes and may be involved in increasing brain vulnerability to multiple sclerosis. PMID:26220975

  11. Genetic variation at the MHC DRB1 locus is similar across Gunnison's prairie dog (Cynomys gunnisoni) colonies regardless of plague history

    USGS Publications Warehouse

    Cobble, Kacy R.; Califf, Katy J.; Stone, Nathan E.; Shuey, Megan M.; Birdsell, Dawn; Colman, Rebecca E.; Schupp, James M.; Aziz, Maliha; Van Andel, Roger; Rocke, Tonie E.; Wagner, David M.; Busch, Joseph D.

    2016-01-01

    Yersinia pestis was introduced to North America around 1900 and leads to nearly 100% mortality in prairie dog (Cynomys spp.) colonies during epizootic events, which suggests this pathogen may exert a strong selective force. We characterized genetic diversity at an MHC class II locus (DRB1) in Gunnison's prairie dog (C. gunnisoni) and quantified population genetic structure at the DRB1versus 12 microsatellite loci in three large Arizona colonies. Two colonies, Seligman (SE) and Espee Ranch (ES), have experienced multiple plague-related die-offs in recent years, whereas plague has never been documented at Aubrey Valley (AV). We found fairly low allelic diversity at the DRB1 locus, with one allele (DRB1*01) at high frequency (0.67–0.87) in all colonies. Two otherDRB1 alleles appear to be trans-species polymorphisms shared with the black-tailed prairie dog (C. ludovicianus), indicating that these alleles have been maintained across evolutionary time frames. Estimates of genetic differentiation were generally lower at the MHC locus (FST = 0.033) than at microsatellite markers (FST = 0.098). The reduced differentiation at DRB1 may indicate that selection has been important for shaping variation at MHC loci, regardless of the presence or absence of plague in recent decades. However, genetic drift has probably also influenced theDRB1 locus because its level of differentiation was not different from that of microsatellites in anFST outlier analysis. We then compared specific MHC alleles to plague survivorship in 60C. gunnisoni that had been experimentally infected with Y. pestis. We found that survival was greater in individuals that carried at least one copy of the most common allele (DRB1*01) compared to those that did not (60% vs. 20%). Although the sample sizes of these two groups were unbalanced, this result suggests the possibility that this MHC class II locus, or a nearby linked gene, could play a role in plague survival.

  12. Genetic variation at the MHC DRB1 locus is similar across Gunnison's prairie dog (Cynomys gunnisoni) colonies regardless of plague history.

    PubMed

    Cobble, Kacy R; Califf, Katy J; Stone, Nathan E; Shuey, Megan M; Birdsell, Dawn N; Colman, Rebecca E; Schupp, James M; Aziz, Maliha; Van Andel, Roger; Rocke, Tonie E; Wagner, David M; Busch, Joseph D

    2016-04-01

    Yersinia pestis was introduced to North America around 1900 and leads to nearly 100% mortality in prairie dog (Cynomys spp.) colonies during epizootic events, which suggests this pathogen may exert a strong selective force. We characterized genetic diversity at an MHC class II locus (DRB1) in Gunnison's prairie dog (C. gunnisoni) and quantified population genetic structure at the DRB1 versus 12 microsatellite loci in three large Arizona colonies. Two colonies, Seligman (SE) and Espee Ranch (ES), have experienced multiple plague-related die-offs in recent years, whereas plague has never been documented at Aubrey Valley (AV). We found fairly low allelic diversity at the DRB1 locus, with one allele (DRB1*01) at high frequency (0.67-0.87) in all colonies. Two other DRB1 alleles appear to be trans-species polymorphisms shared with the black-tailed prairie dog (C. ludovicianus), indicating that these alleles have been maintained across evolutionary time frames. Estimates of genetic differentiation were generally lower at the MHC locus (F ST = 0.033) than at microsatellite markers (F ST = 0.098). The reduced differentiation at DRB1 may indicate that selection has been important for shaping variation at MHC loci, regardless of the presence or absence of plague in recent decades. However, genetic drift has probably also influenced the DRB1 locus because its level of differentiation was not different from that of microsatellites in an F ST outlier analysis. We then compared specific MHC alleles to plague survivorship in 60 C. gunnisoni that had been experimentally infected with Y. pestis. We found that survival was greater in individuals that carried at least one copy of the most common allele (DRB1*01) compared to those that did not (60% vs. 20%). Although the sample sizes of these two groups were unbalanced, this result suggests the possibility that this MHC class II locus, or a nearby linked gene, could play a role in plague survival. PMID:27066243

  13. Large-Scale SNP Discovery and Genotyping for Constructing a High-Density Genetic Map of Tea Plant Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq).

    PubMed

    Ma, Jian-Qiang; Huang, Long; Ma, Chun-Lei; Jin, Ji-Qiang; Li, Chun-Fang; Wang, Rong-Kai; Zheng, Hong-Kun; Yao, Ming-Zhe; Chen, Liang

    2015-01-01

    Genetic maps are important tools in plant genomics and breeding. The present study reports the large-scale discovery of single nucleotide polymorphisms (SNPs) for genetic map construction in tea plant. We developed a total of 6,042 valid SNP markers using specific-locus amplified fragment sequencing (SLAF-seq), and subsequently mapped them into the previous framework map. The final map contained 6,448 molecular markers, distributing on fifteen linkage groups corresponding to the number of tea plant chromosomes. The total map length was 3,965 cM, with an average inter-locus distance of 1.0 cM. This map is the first SNP-based reference map of tea plant, as well as the most saturated one developed to date. The SNP markers and map resources generated in this study provide a wealth of genetic information that can serve as a foundation for downstream genetic analyses, such as the fine mapping of quantitative trait loci (QTL), map-based cloning, marker-assisted selection, and anchoring of scaffolds to facilitate the process of whole genome sequencing projects for tea plant. PMID:26035838

  14. High-density genetic and physical mapping of DNA markers near the X-linked Alport syndrome locus: definition and use of flanking polymorphic markers.

    PubMed

    Barker, D F; Fain, P R; Goldgar, D E; Dietz-Band, J N; Turco, A E; Kashtan, C E; Gregory, M C; Tryggvason, K; Skolnick, M H; Atkin, C L

    1991-12-01

    To refine the genetic and physical mapping of the locus for Alport syndrome (ATS), 22 X-chromosome restriction fragment length polymorphism (RFLP) markers that fall between Xq21.3 and Xq25 were tested for genetic linkage with the disease and also mapped with respect to a series of physical breakpoints in this region. The location of the COL4A5 gene, which has recently been shown to be mutated in at least some families with Alport syndrome, was determined with respect to the same physical breakpoints. Two large Utah kindreds were included in the genetic studies, kindreds P and C, with 125 and 63 potentially informative meioses, respectively. Both kindreds have essentially identical nephritis; however, kindred P has sensorineural hearing loss associated with the nephritis, while kindred C does not. A mutation in COL4A5 has been demonstrated for kindred P, but no change in this gene has yet been detected for kindred C. Twelve informative probes did not recombine with the disease locus in either kindred (theta = 0.0, with combined lod scores for the two kindreds ranging from 7.7 to 30.0). The closest markers that could be demonstrated to flank the disease locus were the same for each kindred and thus the locations of the mutations causing the two disease phenotypes are not distinguishable at the current level of genetic resolution. The flanking markers are also useful for the resolution of questionable diagnoses and allow accurate estimates for these families of the rate of sporadic hematuria in noncarrier females (7%) and the penetrance of hematuria for carrier females (93%). PMID:1684566

  15. Environmental and genetic interactions reveal FLOWERING LOCUS C as a modulator of the natural variation for the plasticity of flowering in Arabidopsis.

    PubMed

    Méndez-Vigo, Belén; Savic, Marija; Ausín, Israel; Ramiro, Mercedes; Martín, Beatriz; Picó, F Xavier; Alonso-Blanco, Carlos

    2016-02-01

    The timing of flowering initiation depends strongly on the environment, a property termed as the plasticity of flowering. Such plasticity determines the adaptive potential of plants because it provides phenotypic buffer against environmental changes, and its natural variation contributes to evolutionary adaptation. We addressed the genetic mechanisms of the natural variation for this plasticity in Arabidopsis thaliana by analysing a population of recombinant inbred lines derived from Don-0 and Ler accessions collected from distinct climates. Quantitative trait locus (QTL) mapping in four environmental conditions differing in photoperiod, vernalization treatment and ambient temperature detected the folllowing: (i) FLOWERING LOCUS C (FLC) as a large effect QTL affecting flowering time differentially in all environments; (ii) numerous QTL displaying smaller effects specifically in some conditions; and (iii) significant genetic interactions between FLC and other loci. Hence, the variation for the plasticity of flowering is determined by a combination of environmentally sensitive and specific QTL, and epistasis. Analysis of FLC from Don identified a new and more active allele likely caused by a cis-regulatory deletion covering the non-coding RNA COLDAIR. Further characterization of four FLC natural alleles showed different environmental and genetic interactions. Thus, FLC appears as a major modulator of the natural variation for the plasticity of flowering to multiple environmental factors. PMID:26173848

  16. Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: Archaeological and ecological implications

    PubMed Central

    Piperno, Dolores R.; Holst, Irene; Wessel-Beaver, Linda; Andres, Thomas C.

    2002-01-01

    Many angiosperms, both monocotyledons and dicotyledons, heavily impregnate their vegetative and reproductive organs with solid particles of silicon dioxide (SiO2) known as opaline phytoliths. The underlying mechanisms accounting for the formation of phytoliths in plants are poorly understood, however. Using wild and domesticated species in the genus Cucurbita along with their F1 and F2 progeny, we have demonstrated that the production of large diagnostic phytoliths in fruit rinds exhibits a one-to-one correspondence to the lignification of these structures. We propose that phytolith formation in Cucurbita fruits is primarily determined by a dominant genetic locus, called hard rind (Hr), previously shown to code for lignin deposition. If true, this evidence represents a demonstration of genetic control over phytolith production in a dicotyledon and provides considerable support to hypotheses that silica phytoliths constitute another important system of mechanical defense in plants. Our research also identifies Hr as another single locus controlling more than one important phenotypic difference between wild and domesticated plants, and establishes rind tissue cell structure and hardness under the effects of Hr as an important determinant of phytolith morphology. When recovered from pre-Columbian archaeological sites, Cucurbita phytoliths represent genetically controlled fossil markers of exploitation and domestication in this important economic genus. PMID:12149443

  17. Reverse Genetics of Drosophila RNA Polymerase II: Identification and Characterization of Rpii140, the Genomic Locus for the Second-Largest Subunit

    PubMed Central

    Hamilton, B. J.; Mortin, M. A.; Greenleaf, A. L.

    1993-01-01

    We have used a reverse genetics approach to isolate genes encoding two subunits of Drosophila melanogaster RNA polymerase II. RpII18 encodes the 18-kDa subunit and maps cytogenetically to polytene band region 83A. RpII140 encodes the 140-kDa subunit and maps to polytene band region 88A10:B1,2. Focusing on RpII140, we used in situ hybridization to map this gene to a small subinterval defined by the endpoints of a series of deficiencies impinging on the 88A/B region and showed that it does not represent a previously known genetic locus. Two recently defined complementation groups, A5 and Z6, reside in the same subinterval and thus were candidates for the RpII140 locus. Phenotypes of A5 mutants suggested that they affect RNA polymerase II, in that the lethal phase and the interaction with developmental loci such as Ubx resemble those of mutants in the gene for the largest subunit, RpII215. Indeed, we have achieved complete genetic rescue of representative recessive lethal mutations of A5 with a P-element construct containing a 9.1-kb genomic DNA fragment carrying RpII140. Interestingly, the initial construct also rescued lethal alleles in the neighboring complementation group, Z6, revealing that the 9.1-kb insert carries two genes. Deleting coding region sequences of RpII140, however, yielded a transformation vector that failed to rescue A5 alleles but continued to rescue Z6 alleles. These results strongly support the conclusion that the A5 complementation group is equivalent to the genomic RpII140 locus. PMID:8325487

  18. Positional cloning of the nude locus: Genetic, physical, and transcription maps of the region and mutations in the mouse and rat

    SciTech Connect

    Segre, J.A.; Lander, E.S. |; Taylor, B.A.

    1995-08-10

    Mutations in the nude locus in mice and rats produce the pleiotropic phenotype of hairlessness and athymia, resulting in severely compromised immune system. To identify the causative gene, we utilized modern tools and techniques of positional cloning. Specifically, spanning the region in which the nude locus resides, we constructed a genetic map of polymorphic markers, a physical map of yeast artificial chromosomes and bacteriophage P1 clones, and a transcription map of genes obtained by direct cDNA selection and exon trapping. We identified seven novel transcripts with similarity to genes from Drosophila, Caenorhabditis elegans, rat or human and three previously identified mouse genes. Based on our transcription mapping results, we present a novel approach to estimate that the nude locus resides in a region approximately threefold enriched for genes. We confirm a recently published report that the nude phenotype is caused by mutations in a gene encoding a novel winged helix or fork head domain transcription factor, whn. We report as well as the mutations in the rat rnu allele and the complete coding sequence of the rat whn mRNA. 42 refs., 4 figs., 1 tab.

  19. Locus BoLA-DRB3 is just an ordinary site of the polygene when explaining genetic variance of somatic cell count and milk yield.

    PubMed

    Oprzadek, Jolanta; Sender, Grazyna; Pawlik, Adrianna; Lukaszewicz, Marek

    2015-11-01

    The study aimed at clarifying the problem of the hitherto contradictory results regarding usefulness of BoLA-DRB3 locus as a marker in selection against mastitis and for milk yield. Treating the BoLA-DRB3 locus effect as random was proposed in place of considering it fixed. Somatic cell counts and milk yields recorded monthly on a test day (22,424) of 619 Polish Holstein cows genotyped for BoLA-DRB3 were analysed with an animal model including a random effect for genotype at this locus. The BoLA-DRB3 alleles were defined as restriction patterns obtained with three endonucleases. Two alternative BoLA-DRB3 additive genotype (co)variance structures were constructed for 161 genotypes recorded. One was based on the allelic similarity of the genotypes resulting in element values of 0 (no common allele), 0.5 (one allele in common), and 1 (diagonal). The other considered restriction site similarity (up to 3 in 1 allele) giving element values of 0 (no common restriction sites) and then increasingly in steps of 1/6 up to 6/6 (diagonal), where the numerator represents the number of common sites between genotypes. The DRB3 variance component for the natural logarithm of somatic cell count did not exceed 0.006 of the polygenic additive component or 0.003 for milk yield. Hence, unless we fail to detect the causative site or to properly define traits being the projection of a site, the effect of the genotype at the BoLA-DRB3 locus does not explain variation in somatic cell count and milk yield at a degree expected of a genetic marker. PMID:26333653

  20. Genetic variation at the PCSK9 locus, low density lipoproteins, response to pravastatin and coronary heart disease: results from PROSPER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caucasian carriers of the T allele at R46L in the proprotein convertase subtilisin/kexin type 9 (PCSK9) locus have been reported to have 15% lower low-density lipoprotein (LDL) cholesterol (C) levels and 47% lower coronary heart disease (CHD) risk. Our objective was to examine two PCSK9 single nucle...

  1. Postprandial Triglyceride Metabolism is Modified by the Presence of Genetic Variation at the Perilipin (PLIN) Locus in Two Caucasian Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Several perilipin (PLIN) polymorphic sites have 1 been studied for their potential use as markers for obesity and the metabolic syndrome. Objective: to examine whether the presence of several polymorphisms at the perilipin (PLIN) locus (PLIN1: 6209T>C, PLIN4:11482G>A, PLIN5: 13041A>G, an...

  2. Glossogeny and phylogeny: cultural evolution meets genetic evolution.

    PubMed

    Fitch, W Tecumseh

    2008-08-01

    Evolutionary theorists since Darwin have been interested in the parallels and interactions between biological and cultural evolution. Recent applications of empirical techniques originally developed to analyze molecular genetic data to linguistic data offer new insights into the historical evolution of language, revealing fascinating parallels between language change and biological evolution. This work offers considerable potential toward unified theories of genetic and cultural change. PMID:18585817

  3. Population genetics of the vitamin D binding protein (GC) subtypes in the Asian-Pacific area: description of new alleles at the GC locus.

    PubMed

    Kamboh, M I; Ranford, P R; Kirk, R L

    1984-01-01

    Isoelectric focussing (IEF) in thin layer polyacrylamide gels pH range 4-6.5 has been used to analyse the GC phenotypes of 4233 individuals from 28 different population groups in the Asian, Pacific, and Australian area. Because this technique reveals subtypes of the common GC*1 allele, there is almost a two-fold increase in the mean heterozygosity at the GC locus using IEF compared with conventional electrophoresis. The highest frequency (above 50%) of the GC*1S allele was encountered in Indian populations, reflecting genetic affinities with Europeans. By comparison, east and south east Asians are unique offing maximum values of the GC*1F allele (50%). With the exception of a few Pacific populations which show similar frequencies to east Asians, all other groups in the Pacific area, including Australia, have values of GC*1F similar to GC*1S ranging from 27% to 40%. The GC*2 frequency in most populations varies from 20% to 30%. However, some Polynesian groups have values up to 40% and Australian Aborigines less than 10%. Among other alleles, GC*1A1 is found to be widely distributed among Australian Aborigines and Melanesians and occurs sporadically in Polynesians, Micronesians, and in the Lesser Sunda Islands. Four new alleles, GC*1C24, GC*1C35 Aborigine, GC*1A21, and GC*1A22 are described. The gene frequency data at the GC locus has been used to calculate Nei genetic distances between the populations studied. PMID:6541632

  4. High-resolution genetic localization of a modifying locus affecting disease severity in the juvenile cystic kidneys (jck) mouse model of polycystic kidney disease.

    PubMed

    Beier, David R

    2016-06-01

    We have previously demonstrated that a locus on proximal Chr 4 modifies disease severity in the juvenile cystic kidney (jck) mouse, a model of polycystic kidney disease (PKD) that carries a mutation of the Nek8 serine-threonine kinase. In this study, we used QTL analysis of independently constructed B6.D2 congenic lines to confirm this and showed that this locus has a highly significant effect. We constructed sub-congenic lines to more specifically localize the modifier and have determined it resides in a 3.2 Mb interval containing 28 genes. These include Invs and Anks6, which are both excellent candidates for the modifier as mutations in these genes result in PKD and both genes are known to genetically and physically interact with Nek8. However, examination of strain-specific DNA sequence and kidney expression did not reveal clear differences that might implicate either gene as a modifier of PKD severity. The fact that our high-resolution analysis did not yield an unambiguous result highlights the challenge of establishing the causality of strain-specific variants as genetic modifiers, and suggests that alternative strategies be considered. PMID:27114383

  5. Identification of Genetic Loci Affecting the Severity of Symptoms of Hirschsprung Disease in Rats Carrying Ednrbsl Mutations by Quantitative Trait Locus Analysis

    PubMed Central

    Torigoe, Daisuke; Lei, Chuzhao; Lan, Xianyong; Chen, Hong; Sasaki, Nobuya; Wang, Jinxi; Agui, Takashi

    2015-01-01

    Hirschsprung’s disease (HSCR) is a congenital disease in neonates characterized by the absence of the enteric ganglia in a variable length of the distal colon. This disease results from multiple genetic interactions that modulate the ability of enteric neural crest cells to populate developing gut. We previously reported that three rat strains with different backgrounds (susceptible AGH-Ednrbsl/sl, resistant F344-Ednrbsl/sl, and LEH-Ednrbsl/sl) but the same null mutation of Ednrb show varying severity degrees of aganglionosis. This finding suggests that strain-specific genetic factors affect the severity of HSCR. Consistent with this finding, a quantitative trait locus (QTL) for the severity of HSCR on chromosome (Chr) 2 was identified using an F2 intercross between AGH and F344 strains. In the present study, we performed QTL analysis using an F2 intercross between the susceptible AGH and resistant LEH strains to identify the modifier/resistant loci for HSCR in Ednrb-deficient rats. A significant locus affecting the severity of HSCR was also detected within the Chr 2 region. These findings strongly suggest that a modifier gene of aganglionosis exists on Chr 2. In addition, two potentially causative SNPs (or mutations) were detected upstream of a known HSCR susceptibility gene, Gdnf. These SNPs were possibly responsible for the varied length of gut affected by aganglionosis. PMID:25790447

  6. Construction of a High-Density Genetic Map Based on Large-Scale Marker Development in Mango Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq)

    PubMed Central

    Luo, Chun; Shu, Bo; Yao, Quangsheng; Wu, Hongxia; Xu, Wentian; Wang, Songbiao

    2016-01-01

    Genetic maps are particularly important and valuable tools for quantitative trait locus (QTL) mapping and marker assisted selection (MAS) of plant with desirable traits. In this study, 173 F1 plants from a cross between Mangifera indica L. “Jin-Hwang” and M. indica L. “Irwin” and their parent plants were subjected to high-throughput sequencing and specific-locus amplified fragment (SLAF) library construction. After preprocessing, 66.02 Gb of raw data containing 330.64 M reads were obtained. A total of 318,414 SLAFs were detected, of which 156,368 were polymorphic. Finally, 6594 SLAFs were organized into a linkage map consisting of 20 linkage groups (LGs). The total length of the map was 3148.28 cM and the average distance between adjacent markers was 0.48 cM. This map could be considered, to our knowledge, the first high-density genetic map of mango, and might form the basis for fine QTL mapping and MAS of mango. PMID:27625670

  7. Construction of a High-Density Genetic Map Based on Large-Scale Marker Development in Mango Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq).

    PubMed

    Luo, Chun; Shu, Bo; Yao, Quangsheng; Wu, Hongxia; Xu, Wentian; Wang, Songbiao

    2016-01-01

    Genetic maps are particularly important and valuable tools for quantitative trait locus (QTL) mapping and marker assisted selection (MAS) of plant with desirable traits. In this study, 173 F1 plants from a cross between Mangifera indica L. "Jin-Hwang" and M. indica L. "Irwin" and their parent plants were subjected to high-throughput sequencing and specific-locus amplified fragment (SLAF) library construction. After preprocessing, 66.02 Gb of raw data containing 330.64 M reads were obtained. A total of 318,414 SLAFs were detected, of which 156,368 were polymorphic. Finally, 6594 SLAFs were organized into a linkage map consisting of 20 linkage groups (LGs). The total length of the map was 3148.28 cM and the average distance between adjacent markers was 0.48 cM. This map could be considered, to our knowledge, the first high-density genetic map of mango, and might form the basis for fine QTL mapping and MAS of mango. PMID:27625670

  8. Quantitative genetic study of maximal electroshock seizure threshold in mice: evidence for a major seizure susceptibility locus on distal chromosome 1.

    PubMed

    Ferraro, T N; Golden, G T; Smith, G G; Longman, R L; Snyder, R L; DeMuth, D; Szpilzak, I; Mulholland, N; Eng, E; Lohoff, F W; Buono, R J; Berrettini, W H

    2001-07-01

    We conducted a quantitative trait locus (QTL) mapping study to dissect the multifactorial nature of maximal electroshock seizure threshold (MEST) in C57BL/6 (B6) and DBA/2 (D2) mice. MEST determination involved a standard paradigm in which 8- to 12-week-old mice received one shock per day with a daily incremental increase in electrical current until a maximal seizure (tonic hindlimb extension) was induced. Mean MEST values in parental strains were separated by over five standard deviation units, with D2 mice showing lower values than B6 mice. The distribution of MEST values in B6xD2 F2 intercrossed mice spanned the entire phenotypic range defined by parental strains. Statistical mapping yielded significant evidence for QTLs on chromosomes 1, 2, 5, and 15, which together explained over 60% of the phenotypic variance in the model. The chromosome 1 QTL represents a locus of major effect, accounting for about one-third of the genetic variance. Experiments involving a congenic strain (B6.D2-Mtv7(a)/Ty) enabled more precise mapping of the chromosome 1 QTL and indicate that it lies in the genetic interval between markers D1Mit145 and D1Mit17. These results support the hypothesis that the distal portion of chromosome 1 harbors a gene(s) that has a fundamental role in regulating seizure susceptibility. PMID:11472065

  9. Genetic stability of Brucella abortus S19 and RB51 vaccine strains by multiple locus variable number tandem repeat analysis (MLVA16).

    PubMed

    Dorneles, Elaine Maria Seles; de Faria, Ana Paula Paiva; Pauletti, Rebeca Barbosa; Santana, Jordana Almeida; Caldeira, George Afonso Vítor; Heinemann, Marcos Bryan; Titze-de-Almeida, Ricardo; Lage, Andrey Pereira

    2013-10-01

    The aims of the present study were (i) to assess the in vitro genetic stability of S19 and RB51 Brucella abortus vaccines strains and (ii) to evaluate the ability of multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) as a tool to be used in the quality control of live vaccines against brucellosis. Sixty-three batches of commercial S19 (n=53) and RB51 (n=10) vaccines, produced between 2006 and 2009, were used in this study. S19 and RB51 vaccines were obtained from, respectively, seven and two different manufacturers. Ten in vitro serial passages were performed on reference strains and on selected batches of commercial vaccines. All batches, reference strains and strains of serial passages were typed by the MLVA16. The results demonstrated that B. abortus S19 and RB51 vaccine strains are genetically stable and very homogeneous in their respective groups. Anyway, batches of S19 from one manufacturer and batches of RB51 from another presented genotypes distincts from the reference vaccine strains. In both cases, differences were found on locus Bruce07, which had addition of one repeat unit in the case of S19 batches and the deletion of one repeat unit in the case of RB51 batches. In summary, MLVA16 proved to be a molecular tool capable of discriminating small genomic variations and should be included in in vitro official tests. PMID:23933375

  10. Genome-Wide Single-Nucleotide Polymorphisms Discovery and High-Density Genetic Map Construction in Cauliflower Using Specific-Locus Amplified Fragment Sequencing

    PubMed Central

    Zhao, Zhenqing; Gu, Honghui; Sheng, Xiaoguang; Yu, Huifang; Wang, Jiansheng; Huang, Long; Wang, Dan

    2016-01-01

    Molecular markers and genetic maps play an important role in plant genomics and breeding studies. Cauliflower is an important and distinctive vegetable; however, very few molecular resources have been reported for this species. In this study, a novel, specific-locus amplified fragment (SLAF) sequencing strategy was employed for large-scale single nucleotide polymorphism (SNP) discovery and high-density genetic map construction in a double-haploid, segregating population of cauliflower. A total of 12.47 Gb raw data containing 77.92 M pair-end reads were obtained after processing and 6815 polymorphic SLAFs between the two parents were detected. The average sequencing depths reached 52.66-fold for the female parent and 49.35-fold for the male parent. Subsequently, these polymorphic SLAFs were used to genotype the population and further filtered based on several criteria to construct a genetic linkage map of cauliflower. Finally, 1776 high-quality SLAF markers, including 2741 SNPs, constituted the linkage map with average data integrity of 95.68%. The final map spanned a total genetic length of 890.01 cM with an average marker interval of 0.50 cM, and covered 364.9 Mb of the reference genome. The markers and genetic map developed in this study could provide an important foundation not only for comparative genomics studies within Brassica oleracea species but also for quantitative trait loci identification and molecular breeding of cauliflower. PMID:27047515

  11. Movable genetic elements: detection of changes in maize DNA at the Shrunken locus due to the intervention of Ds elements

    SciTech Connect

    Burr, B.; Burr, F.A.

    1980-05-28

    This report describes our initial attempts at the molecular characterization of a maize controlling element. We have prepared a cDNA probe and used it to detect changes at a locus where Ds elements are found. Evidence of their presence are indicated by changes in the restriction patterns, but there is as yet no information on the physical nature of the controlling elements nor on the kinds of rearrangements they cause.

  12. Movable Genetic Elements: Detection of Changes in Maize DNA at the Shrunken Locus Due to the Intervention of Ds Elements

    DOE R&D Accomplishments Database

    Burr, B.; Burr, F.A.

    1980-05-28

    This report describes our initial attempts at the molecular characterization of a maize controlling element. We have prepared a cDNA probe and used it to detect changes at a locus where Ds elements are found. Evidence of their presence are indicated by changes in the restriction patterns, but there is as yet no information on the physical nature of the controlling elements nor on the kinds of rearrangements they cause.

  13. A triallelic genetic male sterility locus in Brassica napus: an integrative strategy for its physical mapping and possible local chromosome evolution around it

    PubMed Central

    Lu, Wei; Liu, Jun; Xin, Qiang; Wan, Lili; Hong, Dengfeng; Yang, Guangsheng

    2013-01-01

    Background and Aims Spontaneous male sterility is an advantageous trait for both constructing efficient pollination control systems and for understanding the developmental process of the male reproductive unit in many crops. A triallelic genetic male-sterile locus (BnMs5) has been identified in Brassica napus; however, its complicated genome structure has greatly hampered the isolation of this locus. The aim of this study was to physically map BnMs5 through an integrated map-based cloning strategy and analyse the local chromosomal evolution around BnMs5. Methods A large F2 population was used to integrate the existing genetic maps around BnMs5. A map-based cloning strategy in combination with comparative mapping among B. napus, Arabidopsis, Brassica rapa and Brassica oleracea was employed to facilitate the identification of a target bacterial artificial chromosome (BAC) clone covering the BnMs5 locus. The genomic sequences from the Brassica species were analysed to reveal the regional chromosomal evolution around BnMs5. Key Results BnMs5 was finally delimited to a 0·3-cM genetic fragment from an integrated local genetic map, and was anchored on the B. napus A8 chromosome. Screening of a B. napus BAC clone library and identification of the positive clones validated that JBnB034L06 was the target BAC clone. The closest flanking markers restrict BnMs5 to a 21-kb region on JBnB034L06 containing six predicted functional genes. Good collinearity relationship around BnMs5 between several Brassica species was observed, while violent chromosomal evolutionary events including insertions/deletions, duplications and single nucleotide mutations were also found to have extensively occurred during their divergence. Conclusions This work represents major progress towards the molecular cloning of BnMs5, as well as presenting a powerful, integrative method to mapping loci in plants with complex genomic architecture, such as the amphidiploid B. napus. PMID:23243189

  14. High-resolution genetic mapping of the sucrose octaacetate taste aversion (Soa) locus on mouse Chromosome 6

    PubMed Central

    Bachmanov, Alexander A.; Li, Xia; Li, Shanru; Neira, Mauricio; Beauchamp, Gary K.; Azen, Edwin A.

    2013-01-01

    An acetylated sugar, sucrose octaacetate (SOA), tastes bitter to humans and has an aversive taste to at least some mice and other animals. In mice, taste aversion to SOA depends on allelic variation of a single locus, Soa. Three Soa alleles determine ‘taster’ (Soaa), ‘nontaster’ (Soab), and ‘demitaster’ (Soac) phenotypes of taste sensitivity to SOA. Although Soa has been mapped to distal Chromosome (Chr) 6, the limits of the Soa region have not been defined. In this study, mice from congenic strains SW.B6-Soab, B6.SW-Soaa, and C3.SW-Soaa/c and from an outbred CFW strain were genotyped with polymorphic markers on Chr 6. In the congenic strains, the limits of introgressed donor fragments were determined. In the outbred mice, linkage disequilibrium and haplotype analyses were conducted. Positions of the markers were further resolved by using radiation hybrid mapping. The results show that the Soa locus is contained in a ~1-cM (3.3–4.9 Mb) region including the Prp locus. PMID:11641717

  15. Domestication-related genetic effects on social behavior in chickens - effects of genotype at a major growth quantitative trait locus.

    PubMed

    Wirén, A; Gunnarsson, U; Andersson, L; Jensen, P

    2009-06-01

    Domestication is an evolutionary process in which animals become adapted to a life in close proximity to humans. There are typically specific selection pressures associated with this, including living in larger social groups than their wild ancestors. We hypothesized that the genotype at a major growth QTL could affect aspects of social behavior in chickens as well. We performed social behavior tests in red junglefowl (RJF) and White Leghorn (WL) chickens and in chickens from a selected advanced intercross line (SAIL) between RJF and WL, selected for different genotypes at a microsatellite marker locus within the QTL region. Four-week-old pure WL inspected strangers significantly more than pure RJF. Male 4-wk-old SAIL birds, homozygous for the WL allele at the marker locus, differed from those with RJF alleles in a similar way as the pure WL differed from RJF. Furthermore, 155- to 170-d-old male SAIL birds homozygous for the WL allele at the marker locus were less aggressive to unfamiliar conspecifics in a dominance test. The results suggest that domestication has caused changes in social behavior, which, in males, may partly depend on variations in the genotype at the growth QTL where the avian homolog of the arginine vasopressin receptor 1a (AVPR1a) is located. This gene is therefore one of several putative candidate genes for future research. PMID:19439625

  16. Association Genetics of Populus trichocarpa or Resequencing in Populus: Towards Genome Wide Association Genetics (2011 JGI User Meeting)

    SciTech Connect

    Tuskan, Gerry

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gerry Tuskan of Oak Ridge National Laboratory on "Resequencing in Populus: Towards Genome Wide Association Genetics" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  17. Association Genetics of Populus trichocarpa or Resequencing in Populus: Towards Genome Wide Association Genetics (2011 JGI User Meeting)

    ScienceCinema

    Tuskan, Gerry

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gerry Tuskan of Oak Ridge National Laboratory on "Resequencing in Populus: Towards Genome Wide Association Genetics" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  18. A Phenomic Scan of the Norfolk Island Genetic Isolate Identifies a Major Pleiotropic Effect Locus Associated with Metabolic and Renal Disorder Markers

    PubMed Central

    Benton, Miles C.; Lea, Rodney A.; Macartney-Coxson, Donia; Hanna, Michelle; Eccles, David A.; Carless, Melanie A.; Chambers, Geoffrey K.; Bellis, Claire; Goring, Harald H.; Curran, Joanne E.; Harper, Jacquie L.; Gibson, Gregory; Blangero, John; Griffiths, Lyn R.

    2015-01-01

    Multiphenotype genome-wide association studies (GWAS) may reveal pleiotropic genes, which would remain undetected using single phenotype analyses. Analysis of large pedigrees offers the added advantage of more accurately assessing trait heritability, which can help prioritise genetically influenced phenotypes for GWAS analysis. In this study we performed a principal component analysis (PCA), heritability (h2) estimation and pedigree-based GWAS of 37 cardiovascular disease -related phenotypes in 330 related individuals forming a large pedigree from the Norfolk Island genetic isolate. PCA revealed 13 components explaining >75% of the total variance. Nine components yielded statistically significant h2 values ranging from 0.22 to 0.54 (P<0.05). The most heritable component was loaded with 7 phenotypic measures reflecting metabolic and renal dysfunction. A GWAS of this composite phenotype revealed statistically significant associations for 3 adjacent SNPs on chromosome 1p22.2 (P<1x10-8). These SNPs form a 42kb haplotype block and explain 11% of the genetic variance for this renal function phenotype. Replication analysis of the tagging SNP (rs1396315) in an independent US cohort supports the association (P = 0.000011). Blood transcript analysis showed 35 genes were associated with rs1396315 (P<0.05). Gene set enrichment analysis of these genes revealed the most enriched pathway was purine metabolism (P = 0.0015). Overall, our findings provide convincing evidence for a major pleiotropic effect locus on chromosome 1p22.2 influencing risk of renal dysfunction via purine metabolism pathways in the Norfolk Island population. Further studies are now warranted to interrogate the functional relevance of this locus in terms of renal pathology and cardiovascular disease risk. PMID:26474483

  19. Genetic linkage mapping for a susceptibility locus to bipolar illness: Chromosomes 2, 3, 4, 7, 9, 10p, 11p, 22, and Xpter

    SciTech Connect

    Detera-Wadleigh, S.D.; Hseih, W.T.; Goldin, L.R.

    1994-09-15

    We are conducting a genome search for a predisposing locus to bipolar (manic-depressive) illness by genotyping 21 moderate-sized pedigrees. We report linkage data derived from screening marker loci on chromosomes 2, 3, 4, 7, 9, 10p, 11p, 22, and the pseudoautosomal region at Xpter. To analyze for linkage, two-point marker to illness lod scores were calculated under a dominant model with either 85% or 50% maximum penetrance and a recessive model with 85% maximum penetrance, and two affection status models. Under the dominant high penetrance model the cumulative lod scores in the pedigree series were less than -2 at {theta} = 0.01 in 134 of 142 loci examined, indicating that if the disease is genetically homogeneous, linkage could be excluded in these marker regions. Similar results were obtained using the other genetic models. Heterogeneity analysis was conducted when indicated, but no evidence for linkage was found. In the course of mapping we found a positive total lod score greater than +3 at the D7S78 locus at {theta} = 0.01 under a dominant, 50% penetrance model. The lod scores for additional markers within the D7S78 region failed to support the initial finding, implying that this was a spurious positive. Analysis with affected pedigree member method for COL1A2 and D7S78 showed no significance for linkage, but for PLANH1, at the weighting functions f(p)=1 and f(p)=1/sqrt(p), borderline P values of 0.036 and 0.047 were obtained. We also detected new polymorphisms at the mineralo-corticoid receptor (MLR) and calmodulin II (CALMII) genes. These genes were genetically mapped and under affection status model 2 and a dominant, high penetrance mode of transmission the lod scores of {le}2 at {theta} = 0.01 were found. 39 refs., 2 figs., 12 tabs.

  20. Tilapia sex determination: Where temperature and genetics meet.

    PubMed

    Baroiller, J F; D'Cotta, H; Bezault, E; Wessels, S; Hoerstgen-Schwark, G

    2009-05-01

    This review deals with the complex sex determining system of Nile tilapia, Oreochromis niloticus, governed by the interactions between a genetic determination and the influence of temperature, shown in both domestic and wild populations. Naturally sex reversed individuals are strongly suggested in two wild populations. This can be due to the masculinising temperatures which some fry encounter during their sex differentiation period when they colonise shallow waters, and/or to the influence of minor genetic factors. Differences regarding a) thermal responsiveness of sex ratios between and within Nile tilapia populations, b) maternal and paternal effects on temperature dependent sex ratios and c) nearly identical results in offspring of repeated matings, demonstrate that thermosensitivity is under genetic control. Selection experiments to increase the thermosensitivity revealed high responses in the high and low sensitive lines. The high-line showed approximately 90% males after 2 generations of selection whereas the weakly sensitive line had 54% males. This is the first evidence that a surplus of males in temperature treated groups can be selected as a quantitative trait. Expression profiles of several genes (Cyp19a, Foxl2, Amh, Sox9a,b) from the gonad and brain were analysed to define temperature action on the sex determining/differentiating cascade in tilapia. The coexistence of GSD and TSD is discussed. PMID:19101647

  1. Genetic and physical mapping of the Treacher Collins syndrome locus with respect to loci in the chromosome 5q3 region

    SciTech Connect

    Jabs, E.W.; Li, Xiang; Coss, C.; Taylor, E. ); Lovett, M. ); Yamaoka, L.H.; Speer, M.C. ); Cadle, R.; Hall, B. ); Brown, K. )

    1993-10-01

    Treacher Collins syndrome is an autosomal dominant, craniofacial developmental disorder, and its locus (TCOF1) has been mapped to chromosome 5q3. To refine the location of the gene within this region, linkage analysis was performed among the TCOF1 locus and 12 loci (IL9, FGFA, GRL, D5S207, D5S210, D5S376, CSF1R, SPARC, D5S119, D5S209, D5S527, FGFR4) in 13 Treacher Collins syndrome families. The highest maximum lod score was obtained between loci TCOF1 and D5S210 (Z = 10.52; [theta] = 0.02 [+-] 0.07). The best order, IL9-GRL-D5S207/D5S210-CSF1R-SPARC-D5S119, and genetic distances among these loci were determined in the 40 CEPH families by multipoint linkage analysis. YAC clones were used to establish the order of loci, centromere-5[prime]GRL3[prime]-D5S207-D5S210-D5S376-CSF1R-SPARC-D5S119-telomere. By combining known physical mapping data with ours, the order of chromosome 5q3 markers is centomere-IL9-FGFA-5[prime]GRL3[prime]-D5s207-D5S210-D5S376-CSF1R-SPARC-D5S119-D5S209-FGFR4-telomere. Based on this order, haplotype analysis suggests that the TCOF1 locus resides distal CSF1R and proximal to SPARC within a region less than 1 Mb in size. 29 refs., 2 figs., 2 tabs.

  2. Multi-locus genotyping reveals absence of genetic structure in field populations of the brown ear tick (Rhipicephalus appendiculatus) in Kenya.

    PubMed

    Kanduma, Esther G; Mwacharo, Joram M; Mwaura, Stephen; Njuguna, Joyce N; Nzuki, Inosters; Kinyanjui, Peter W; Githaka, Naftaly; Heyne, Heloise; Hanotte, Olivier; Skilton, Robert A; Bishop, Richard P

    2016-02-01

    Rhipicephalus appendiculatus is an important tick vector of several pathogens and parasitizes domestic and wild animals across eastern and southern Africa. However, its inherent genetic variation and population structure is poorly understood. To investigate whether mammalian host species, geographic separation and resulting reproductive isolation, or a combination of these, define the genetic structure of R. appendiculatus, we analyzed multi-locus genotype data from 392 individuals from 10 geographic locations in Kenya generated in an earlier study. These ticks were associated with three types of mammalian host situations; (1) cattle grazing systems, (2) cattle and wildlife co-grazing systems (3) wildlife grazing systems without livestock. We also analyzed data from 460 individuals from 10 populations maintained as closed laboratory stocks and 117 individuals from five other species in the genus Rhipicephalus. The pattern of genotypes observed indicated low levels of genetic differentiation between the ten field populations (FST=0.014±0.002) and a lack of genetic divergence corresponding to the degree of separation of the geographic sampling locations. There was also no clear association of particular tick genotypes with specific host species. This is consistent with tick dispersal over large geographic ranges and lack of host specificity. In contrast, the 10 laboratory populations (FST=0.248±0.015) and the five other species of Rhipicephalus (FST=0.368±0.032) were strongly differentiated into distinct genetic groups. Some laboratory bred populations diverged markedly from their field counterparts in spite of originally being sampled from the same geographic locations. Our results demonstrate a lack of defined population genetic differentiation in field populations of the generalist R. appendiculatus in Kenya, which may be a result of the frequent anthropogenic movement of livestock and mobility of its several wildlife hosts between different locations. PMID

  3. A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli.

    PubMed Central

    Gupta, S D; Wu, H C; Rick, P D

    1997-01-01

    Three distinct clones from a Salmonella typhimurium genomic library were identified which suppressed the copper-sensitive (Cu(s)) phenotype of cutF mutants of Escherichia coli. One of these clones, pCUTFS2, also increased the copper tolerance of cutA, -C, and -E mutants, as well as that of a lipoprotein diacylglyceryl transferase (lgt) mutant of E. coli. Characterization of pCUTFS2 revealed that the genes responsible for suppression of copper sensitivity (scs) reside on a 4.36-kb DNA fragment located near 25.4 min on the S. typhimurium genome. Sequence analysis of this fragment revealed four open reading frames (ORF120, ORF627, ORF207, and ORF168) that were organized into two operons. One operon consisted of a single gene, scsA (ORF120), whereas the other operon contained the genes scsB (ORF627), scsC (ORF207), and scsD (ORF168). Comparison of the deduced amino acid sequences of the predicted gene products showed that ScsB, ScsC, and ScsD have significant homology to thiol-disulfide interchange proteins (CutA2, DipZ, CycZ, and DsbD) from E. coli and Haemophilus influenzae, to an outer membrane protein (Com1) from Coxiella burnetii, and to thioredoxin and thioredoxin-like proteins, respectively. The two operons were subcloned on compatible plasmids, and complementation analyses indicated that all four proteins are required for the increased copper tolerance of E. coli mutants. In addition, the scs locus also restored lipoprotein modification in lgt mutants of E. coli. Sequence analyses of the S. typhimurium scs genes and adjacent DNAs revealed that the scs locus is flanked by genes with high homology to the cbpA (predicted curved DNA-binding protein) and agp (acid glucose phosphatase) genes of E. coli located at 22.90 min (1,062.07 kb) and 22.95 min (1,064.8 kb) of the E. coli chromosome, respectively. However, examination of the E. coli chromosome revealed that these genes are absent at this locus and no evidence has thus been obtained for the occurrence of the scs

  4. Localization of a locus for juvenile myoclonic epilepsy on chromosome 6p11-21.2 and evidence for genetic heterogeneity

    SciTech Connect

    Liu, A.W.; Delgado-Escueta, A.V. |; Alonso, V.M.E.

    1994-09-01

    Juvenile myoclonic epilepsy (JME) is a common form of primary idiopathic generalized epilepsy characterized by myoclonias, tonic-clonic or clonic tonic-clonic convulsions and absences. Ictal electroencephalograms (EEGs) show high amplitude multispikes folowed by slow waves and interictal EEGs manifest 3.5-6 Hz diffuse multispike wave complexes. JME affected about 7-10% of patients with epilepsies and its onset peaks between 13-15 years of age. We recently mapped a JME locus on chromosome 6p21.1-6p11 by linkage analysis of one relatively large JME family from Los Angeles and Belize. Assuming autosomal dominant inheritance with 70% penetrance, pairwise analyses tightly linked JME to D6S257 (Z = 3.67), D6S428 (Z = 3.08) and D6S272 (Z = 3.56) at {theta} = 0, m = f. Recombination and multipoints linkage analysis also suggested a locus is between markers D6S257 and D6S272. We then screened three relatively larger Mexican JME pedigrees with D6S257, D6S272, D6S282, TNF, D6S276, D6S273, D6S105 and F13A1 on chromosome 6p. Assuming autosomal dominant inheritance with incomplete penetrance, linkage to chromosome 6p DNA markers are excluded. Our findings underline the genetic heterogeneity of juvenile myoclonic epilepsy.

  5. Sequencing of the human IG light chain loci from a hydatidiform mole BAC library reveals locus-specific signatures of genetic diversity.

    PubMed

    Watson, C T; Steinberg, K M; Graves, T A; Warren, R L; Malig, M; Schein, J; Wilson, R K; Holt, R A; Eichler, E E; Breden, F

    2015-01-01

    Germline variation at immunoglobulin (IG) loci is critical for pathogen-mediated immunity, but establishing complete haplotype sequences in these regions has been problematic because of complex sequence architecture and diploid source DNA. We sequenced BAC clones from the effectively haploid human hydatidiform mole cell line, CHM1htert, across the light chain IG loci, kappa (IGK) and lambda (IGL), creating single haplotype representations of these regions. The IGL haplotype generated here is 1.25 Mb of contiguous sequence, including four novel IGLV alleles, one novel IGLC allele, and an 11.9-kb insertion. The CH17 IGK haplotype consists of two 644 kb proximal and 466 kb distal contigs separated by a large gap of unknown size; these assemblies added 49 kb of unique sequence extending into this gap. Our analysis also resulted in the characterization of seven novel IGKV alleles and a 16.7-kb region exhibiting signatures of interlocus sequence exchange between distal and proximal IGKV gene clusters. Genetic diversity in IGK/IGL was compared with that of the IG heavy chain (IGH) locus within the same haploid genome, revealing threefold (IGK) and sixfold (IGL) higher diversity in the IGH locus, potentially associated with increased levels of segmental duplication and the telomeric location of IGH. PMID:25338678

  6. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci

    PubMed Central

    2013-01-01

    Background Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. Results From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Conclusions Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon

  7. Genetic mapping of human heart-skeletal muscle adenine nucleotide translocator and its relationship to the facioscapulohumeral muscular dystrophy locus

    SciTech Connect

    Haraguchi, Y.; Chung, A.B.; Torroni, A.; Stepien, G.; Shoffner, J.M.; Costigan, D.A.; Polak, M.; Wasmuth, J.J.; Altherr, M.R.; Winokur, S.T.

    1993-05-01

    The mitochondrial heart-skeletal muscle adenine nucleotide translocator (ANT1) was regionally mapped to 4q35-qter using somatic cell hybrids containing deleted chromosome 4. The regional location was further refined through family studies using ANT1 intron and promoter nucleotide polymorphisms recognized by the restriction endonucleases MboII, NdeI, and HaeIII. Two alleles were found, each at a frequency of 0.5. The ANT1 locus was found to be closely linked to D4S139, D4S171, and the dominant skeletal muscle disease locus facioscapulohumeral muscular dystrophy (FSHD). A crossover that separated D4S171 and ANT1 from D4S139 was found. Since previous studies have established the chromosome 4 map order as centromere-D4S171-D4S139-FSHD, it was concluded that ANT1 is located on the side of D4S139, that is opposite from FSHD. This conclusion was confirmed by sequencing the exons and analyzing the transcripts of ANT1 from several FSHD patients and finding no evidence of aberration. 35 refs., 5 figs., 1 tab.

  8. Fine genetic mapping of the Batten disease locus (CLN3) by haplotype analysis and demonstration of allelic association with chromosome 16p microsatellite loci

    SciTech Connect

    Mitchison, H.M.; McKay, T.R.; Thompson, A.D.; Mulley, J.C.; Kozman, H.M.; Richards, R.I.; Callen, D.F.; Stallings, R.L.; Doggett, N.A.; Attwood, J.

    1993-05-01

    Batten disease, juvenile onset neuronal ceroid lipofuscinosis, is an autosomal recessive neurodegenerative disorder characterized by accumulation of autofluorescent lipopigment in neurons and other cell types. The disease locus (CLN3) has previously been assigned to chromosome 16p. The genetic localization of CLN3 has been refined by analyzing 70 families using a high-resolution map of 15 marker loci encompassing the CLN3 region on 16p. Crossovers in three maternal meioses allowed localization of CLN3 to the interval between D16S297 and D16S57. Within that interval alleles at three highly polymorphic dinucleotide repeat loci (D16S288, D16S298, D16S299) were found to be in strong linkage disequilibrium with CLN3. Analysis of haplotypes suggests that a majority of CLN3 chromosomes have arisen from a single founder mutation. 15 refs., 2 figs., 5 tabs.

  9. Next Generation Genetic Mapping of the Ligon-lintless-2 (Li2) Locus in Upland Cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencing offers new ways to identify the genetic mechanisms that underlie mutant phenotypes. The release of a reference diploid Gossypium raimondii (D5) genome and bioinformatics tools to sort tetraploid reads into subgenomes has brought cotton genetic mapping into the genomics er...

  10. Genetics and Epigenetics of the Skin Meet Deep Sequence

    PubMed Central

    Cheng, Jeffrey B.; Cho, Raymond J.

    2014-01-01

    Rapid advances in next-generation sequencing technology are revolutionizing approaches to genomic and epigenomic studies of skin. Deep sequencing of cutaneous malignancies reveals heavily mutagenized genomes with large numbers of low-prevalence mutations and multiple resistance mechanisms to targeted therapies. Next-generation sequencing approaches have already paid rich dividends in identifying the genetic causes of dermatologic disease, both in heritable mutations and the somatic aberrations that underlie cutaneous mosaicism. Although epigenetic alterations clearly influence tumorigenesis, pluripotent stem cell biology, and epidermal cell lineage decisions, labor and cost-intensive approaches long delayed a genome-scale perspective. New insights into epigenomic mechanisms in skin disease should arise from the accelerating assessment of histone modification, DNA methylation, and related gene expression signatures. PMID:22237701

  11. Qualitative analysis of mouse specific-locus mutations: information on genetic organization, gene expression, and the chromosomal nature of induced lesions

    SciTech Connect

    Russell, L.B.

    1982-01-01

    Analysis of mouse specific-locus (SL) mutations at three loci has identified over 33 distinct complementation groups - most of which are probably overlapping deficiencies - and 13 to 14 new functional units. The complementation maps that have been generated for the d-se and c regions include numerous vital functions; however, some of the genes in these regions are non-vital. At such loci, hypomorphic mutants must represent intragenic alterations, and some viable nulls could conceivably be intragenic lesions also. Analysis of SL mutations has provided information on genetic expression. Homozygous deficiencies can be completely viable or can kill at any one of a range of developmental stages. Heterozygonus deficiencies of up to 6 cM or more in genetic length have been recovered and propagated. The time of death of homozygous and the degree of inviability of heterozygous deficiencies are related more to specific content of the missing segment than to its length. Combinations of deficiencies with x-autosome translocations that inactivate the homologous region in a mosaic fashion have shown that organismic lethals are not necessarily cell lethal. The spectrum of mutations induced depends on the nature of the mutagen and the type of germ cell exposed. Radiation of spermatogonia produces intragenic as well as null mutations. Spontaneous mutations have an admixture of types not present in populations of mutations induced in germ cells, and this raises doubts concerning the accuracy of doubling-dose calculations in genetic risk estimation. The analysis of SL mutations has yielded genetic tools for the construction of detailed gene-dosage series, cis-trans comparisons, the mapping of known genes and identification of new genes, genetic rescue of various types, and the identification and isolation of DNA sequences. (ERB)

  12. Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew.

    PubMed

    Blasi, Paule; Blanc, Sophie; Wiedemann-Merdinoglu, Sabine; Prado, Emilce; Rühl, Ernst H; Mestre, Pere; Merdinoglu, Didier

    2011-06-01

    Downy mildew, caused by the oomycete Plasmopara viticola, is one of the major threats to grapevine. All traditional cultivars of grapevine (Vitis vinifera) are susceptible to downy mildew, the control of which requires regular application of fungicides. In contrast, many sources of resistance to P. viticola have been described in the Vitis wild species, among which is V. amurensis Rupr. (Vitaceae), a species originating from East Asia. A genetic linkage map of V. amurensis, based on 122 simple sequence repeat and 6 resistance gene analogue markers, was established using S1 progeny. This map covers 975 cM on 19 linkage groups, which represent 82% of the physical coverage of the V. vinifera reference genetic map. To measure the general level of resistance, the sporulation of P. viticola and the necrosis produced in response to infection, five quantitative and semi-quantitative parameters were scored 6 days post-inoculation on the S1 progeny. A quantitative trait locus (QTL) analysis allowed us to identify on linkage group 14 a major QTL controlling the resistance to downy mildew found in V. amurensis, which explained up to 86.3% of the total phenotypic variance. This QTL was named 'Resistance to Plasmopara viticola 8' (Rpv8). PMID:21404060

  13. A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew.

    PubMed

    Blanc, Sophie; Wiedemann-Merdinoglu, Sabine; Dumas, Vincent; Mestre, Pere; Merdinoglu, Didier

    2012-12-01

    Muscadinia rotundifolia, a species closely related to cultivated grapevine Vitis vinifera, is a major source of resistance to grapevine downy and powdery mildew, two major threats to cultivated traditional cultivars of V. vinifera respectively caused by the oomycete Plasmopara viticola and the ascomycete Erisyphe necator. The aim of the present work was to develop a reference genetic linkage map based on simple sequence repeat (SSR) markers for M. rotundifolia. This map was created using S1 M. rotundifolia cv. Regale progeny, and covers 948 cM on 20 linkage groups, which corresponds to the expected chromosome number for muscadine. The comparison of the genetic maps of V. vinifera and M. rotundifolia revealed a high macrosynteny between the genomes of both species. The S1 progeny was used to assess the general level of resistance of M. rotundifolia to P. viticola and E. necator, by scoring different parameters of pathogen development. A quantitative trait locus (QTL) analysis allowed us to highlight a major QTL on linkage group 14 controlling resistance to powdery mildew, which explained up to 58 % of the total phenotypic variance. This QTL was named 'Resistance to Erysiphe Necator 5' (Ren5). A microscopic evaluation E. necator mycelium development on resistant and susceptible genotypes of the S1 progeny showed that Ren5 exerts its action after the formation of the first appressorium, and acts by delaying, and then stopping, mycelium development. PMID:22865124

  14. Genetic variant in TP63 on locus 3q28 is associated with risk of lung adenocarcinoma among never-smoking females in Asia

    PubMed Central

    Wang, Wen-Chang; Hong, Yun-Chul; Wang, Jiu-Cun; Chen, Kexin; Chang, I-Shou; Chen, Chien-Jen; Lu, Daru; Yin, Zhihua; Wu, Chen; Zheng, Wei; Qian, Biyun; Park, Jae Yong; Kim, Yeul Hong; Chatterjee, Nilanjan; Chen, Ying; Chang, Gee-Chen; Hsiao, Chin-Fu; Yeager, Meredith; Tsai, Ying-Huang; Wei, Hu; Kim, Young Tae; Wu, Wei; Zhao, Zhenhong; Chow, Wong-Ho; Zhu, Xiaoling; Lo, Yen-Li; Sung, Sook Whan; Chen, Kuan-Yu; Yuenger, Jeff; Kim, Joo Hyun; Huang, Liming; Chen, Ying-Hsiang; Gao, Yu-Tang; Kim, Jin Hee; Huang, Ming-Shyan; Jung, Tae Hoon; Caporaso, Neil; Zhao, Xueying; Huan, Zhang; Yu, Dianke; Kim, Chang Ho; Su, Wu-Chou; Shu, Xiao-Ou; Kim, In-San; Bassig, Bryan; Chen, Yuh-Min; Cha, Sung Ick; Tan, Wen; Chen, Hongyan; Yang, Tsung-Ying; Sung, Jae Sook; Wang, Chih-Liang; Li, Xuelian; Park, Kyong Hwa; Yu, Chong-Jen; Ryu, Jeong-Seon; Xiang, Yongbing; Hutchinson, Amy; Kim, Jun Suk; Cai, Qiuyin; Landi, Maria Teresa; Lee, Kyoung-Mu; Hung, Jen-Yu; Park, Ju-Yeon; Tucker, Margaret; Lin, Chien-Chung; Ren, Yangwu; Perng, Reury-Perng; Chen, Chih-Yi; Jin, Li; Chen, Kun-Chieh; Li, Yao-Jen; Chiu, Yu-Fang; Tsai, Fang-Yu; Yang, Pan-Chyr; Fraumeni, Joseph F.; Seow, Adeline; Lin, Dongxin; Zhou, Baosen; Chanock, Stephen; Hsiung, Chao Agnes; Rothman, Nathaniel; Lan, Qing

    2013-01-01

    A recent genome-wide association study (GWAS) of subjects from Japan and South Korea reported a novel association between the TP63 locus on chromosome 3q28 and risk of lung adenocarcinoma (p = 7.3 × 10−12); however, this association did not achieve genome-wide significance (p < 10−7) among never-smoking males or females. To determine if this association with lung cancer risk is independent of tobacco use, we genotyped the TP63 SNPs reported by the previous GWAS (rs10937405 and rs4488809) in 3,467 never-smoking female lung cancer cases and 3,787 never-smoking female controls from 10 studies conducted in Taiwan, Mainland China, South Korea, and Singapore. Genetic variation in rs10937405 was associated with risk of lung adenocarcinoma [n = 2,529 cases; p = 7.1 × 10−8; allelic risk = 0.80, 95% confidence interval (CI) = 0.74–0.87]. There was also evidence of association with squamous cell carcinoma of the lung (n = 302 cases; p = 0.037; allelic risk = 0.82, 95% CI = 0.67–0.99). Our findings provide strong evidence that genetic variation in TP63 is associated with the risk of lung adenocarcinoma among Asian females in the absence of tobacco smoking. PMID:22367405

  15. A genetic map of chromosome 20q12-q13. 1: Multiple highly polymorphic microsatellite and RFLP markers linked to the maturity-onset diabetes of the Young (MODY) locus

    SciTech Connect

    Rothschild, C.B.; Akots, G.; Hayworth, R.; Pettenati, M.J.; Rao, P.N.; Wood, P. ); Stolz, F.M.; Hansmann, I. ); Serino, K.; Keith, T.P. ); Fajans, S.S. )

    1993-01-01

    Multiple highly polymorphic markers have been used to construct a genetic map of the q12-q13.1 region of chromosome 20 and to map the location of the maturity-onset diabetes of the young (MODY) locus. The genetic map encompasses 23 cM and includes 11 loci with PIC values >.50, seven of which have PICs >.70. New dinucleotide repeat polymorphisms associated with the D20S17, PPGB, and ADA loci have been identified and mapped. The dinucleotide repeat polymorphisms have increased the PIC of the ADA locus to .89 and, with an additional RFLP at the D20S17 locus, the PIC of the D20S17 locus to .88. The order of the D20S17 and ADA loci determined genetically (cen-ADA-D20S17-qter) was confirmed by multicolor fluorescence in situ hybridization. The previously unmapped PPGB marker is closely linked to D20S17, with a two-point lod score of 50.53 at [cflx [theta

  16. DEVELOPMENT OF EPIC GENETIC MARKERS AND THE UTILITY OF A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL APPROACH TO EXAMINING PATTERNS OF GENETIC DIVERSITY

    EPA Science Inventory

    Use of population genetic measures for assessing the structure of natural populations and the condition of biological resources has increased steadily since the 1970's. Traditionally, genetic diversity within and among geographic areas is assessed based on a one-time sampling of...

  17. High-resolution genetic linkage mapping, high-temperature tolerance and growth-related quantitative trait locus (QTL) identification in Marsupenaeus japonicus.

    PubMed

    Lu, Xia; Luan, Sheng; Hu, Long Yang; Mao, Yong; Tao, Ye; Zhong, Sheng Ping; Kong, Jie

    2016-06-01

    The Kuruma prawn, Marsupenaeus japonicus, is one of the most promising marine invertebrates in the industry in Asia, Europe and Australia. However, the increasing global temperatures result in considerable economic losses in M. japonicus farming. In the present study, to select genetically improved animals for the sustainable development of the Kuruma prawn industry, a high-resolution genetic linkage map and quantitative trait locus (QTL) identification were performed using the RAD technology. The maternal map contained 5849 SNP markers and spanned 3127.23 cM, with an average marker interval of 0.535 cM. Instead, the paternal map contained 3927 SNP markers and spanned 3326.19 cM, with an average marker interval of 0.847 cM. The consensus map contained 9289 SNP markers and spanned 3610.90 cM, with an average marker interval of 0.388 cM and coverage of 99.06 % of the genome. The markers were grouped into 41 linkage groups in the maps. Significantly, negative correlation was detected between high-temperature tolerance (UTT) and body weight (BW). The QTL mapping revealed 129 significant QTL loci for UTT and four significant QTL loci for BW at the genome-wide significance threshold. Among these QTLs, 129 overlapped with linked SNPs, and the remaining four were located in regions between contiguous SNPs. They explained the total phenotypic variance ranging from 8.9 to 12.4 %. Because of a significantly negative correlation between growth and high-temperature tolerance, we demonstrate that this high-resolution linkage map and QTLs would be useful for further marker-assisted selection in the genetic improvement of M. japonicus. PMID:26965508

  18. Genetic dissection of the pre-eclampsia susceptibility locus on chromosome 2q22 reveals shared novel risk factors for cardiovascular disease.

    PubMed

    Johnson, Matthew P; Brennecke, Shaun P; East, Christine E; Dyer, Thomas D; Roten, Linda T; Proffitt, J Michael; Melton, Phillip E; Fenstad, Mona H; Aalto-Viljakainen, Tia; Mäkikallio, Kaarin; Heinonen, Seppo; Kajantie, Eero; Kere, Juha; Laivuori, Hannele; Austgulen, Rigmor; Blangero, John; Moses, Eric K

    2013-07-01

    Pre-eclampsia is an idiopathic pregnancy disorder promoting morbidity and mortality to both mother and child. Delivery of the fetus is the only means to resolve severe symptoms. Women with pre-eclamptic pregnancies demonstrate increased risk for later life cardiovascular disease (CVD) and good evidence suggests these two syndromes share several risk factors and pathophysiological mechanisms. To elucidate the genetic architecture of pre-eclampsia we have dissected our chromosome 2q22 susceptibility locus in an extended Australian and New Zealand familial cohort. Positional candidate genes were prioritized for exon-centric sequencing using bioinformatics, SNPing, transcriptional profiling and QTL-walking. In total, we interrogated 1598 variants from 52 genes. Four independent SNP associations satisfied our gene-centric multiple testing correction criteria: a missense LCT SNP (rs2322659, P = 0.0027), a synonymous LRP1B SNP (rs35821928, P = 0.0001), an UTR-3 RND3 SNP (rs115015150, P = 0.0024) and a missense GCA SNP (rs17783344, P = 0.0020). We replicated the LCT SNP association (P = 0.02) and observed a borderline association for the GCA SNP (P = 0.07) in an independent Australian case-control population. The LRP1B and RND3 SNP associations were not replicated in this same Australian singleton cohort. Moreover, these four SNP associations could not be replicated in two additional case-control populations from Norway and Finland. These four SNPs, however, exhibit pleiotropic effects with several quantitative CVD-related traits. Our results underscore the genetic complexity of pre-eclampsia and present novel empirical evidence of possible shared genetic mechanisms underlying both pre-eclampsia and other CVD-related risk factors. PMID:23420841

  19. Genetic Diversity of the Indian Populations of 'Candidatus Liberibacter asiaticus' Based on the Tandem Repeat Variability in a Genomic Locus.

    PubMed

    Ghosh, Dilip Kumar; Bhose, Sumit; Motghare, Manali; Warghane, Ashish; Mukherjee, Krishanu; Ghosh, Dipak Kumar; Sharma, Ashwani Kumar; Ladaniya, Milind Shivratan; Gowda, Siddarame

    2015-08-01

    Citrus huanglongbing (HLB, citrus greening disease) is an extremely destructive disease affecting citrus and causes severe economic loss to the crop yield worldwide. The disease is caused by a phloem-limited, noncultured, gram-negative bacteria Candidatus Liberibacter spp., the widely present and most destructive species being 'Candidatus Liberibacter asiaticus'. Although the disease has been reported from almost all citrus growing regions of India, knowledge on the molecular variability of the pathogen 'Ca. L. asiaticus' populations from different geographical regions and cultivars is limited. In the present study, variability of the Indian 'Ca. L. asiaticus' based on the tandem repeats at the genomic locus CLIBASIA_01645 was characterized and categorized into four classes based on the tandem repeat number (TRN); Class I (TRN≤5), Class II (TRN>5≤10), Class III (TRN>10≤15), and Class IV (TRN>15). The study revealed that the Indian population of 'Ca. L. asiaticus' is more diverse than reported for Florida and Guangdong populations, which showed less diversity. While Florida and Guangdong populations were dominated by a TRN5 and TRN7 genotype, respectively, the Indian 'Ca. L. asiaticus' populations with TRN copy numbers 9, 10, 11, 12, and 13 were widely distributed throughout the country. Additionally, TRN2 and TRN17 genotypes were also observed among the Indian 'Ca. L. asiaticus' populations. The predominant 'Ca. L. asiaticus' genotypes from the northeastern region of India were TRN6 and TRN7 (53.12%) and surprisingly similar to neighboring South China populations. Preliminary results showed absence of preference of citrus cultivars to any specific 'Ca. L. asiaticus' genotype. PMID:25760522

  20. Construction of a High-Density Genetic Map and Quantitative Trait Locus Mapping in the Sea Cucumber Apostichopus japonicus.

    PubMed

    Tian, Meilin; Li, Yangping; Jing, Jing; Mu, Chuang; Du, Huixia; Dou, Jinzhuang; Mao, Junxia; Li, Xue; Jiao, Wenqian; Wang, Yangfan; Hu, Xiaoli; Wang, Shi; Wang, Ruijia; Bao, Zhenmin

    2015-01-01

    Genetic linkage maps are critical and indispensable tools in a wide range of genetic and genomic research. With the advancement of genotyping-by-sequencing (GBS) methods, the construction of a high-density and high-resolution linkage maps has become achievable in marine organisms lacking sufficient genomic resources, such as echinoderms. In this study, high-density, high-resolution genetic map was constructed for a sea cucumber species, Apostichopus japonicus, utilizing the 2b-restriction site-associated DNA (2b-RAD) method. A total of 7839 markers were anchored to the linkage map with the map coverage of 99.57%, to our knowledge, this is the highest marker density among echinoderm species. QTL mapping and association analysis consistently captured one growth-related QTL located in a 5 cM region of linkage group (LG) 5. An annotated candidate gene, retinoblastoma-binding protein 5 (RbBP5), which has been reported to be an important regulator of cell proliferation, was recognized in the QTL region. This linkage map represents a powerful tool for research involving both fine-scale QTL mapping and marker assisted selection (MAS), and will facilitate chromosome assignment and improve the whole-genome assembly of sea cucumber in the future. PMID:26439740

  1. Assessment of Genetic Diversity of Zoonotic Brucella spp. Recovered from Livestock in Egypt Using Multiple Locus VNTR Analysis

    PubMed Central

    Menshawy, Ahmed M. S.; Perez-Sancho, Marta; Garcia-Seco, Teresa; Hosein, Hosein I.; García, Nerea; Martinez, Irene; Sayour, Ashraf E.; Goyache, Joaquín; Azzam, Ragab A. A.; Dominguez, Lucas

    2014-01-01

    Brucellosis is endemic in most parts of Egypt, where it is caused mainly by Brucella melitensis biovar 3, and affects cattle and small ruminants in spite of ongoing efforts devoted to its control. Knowledge of the predominant Brucella species/strains circulating in a region is a prerequisite of a brucellosis control strategy. For this reason a study aiming at the evaluation of the phenotypic and genetic heterogeneity of a panel of 17 Brucella spp. isolates recovered from domestic ruminants (cattle, buffalo, sheep, and goat) from four governorates during a period of five years (2002–2007) was carried out using microbiological tests and molecular biology techniques (PCR, MLVA-15, and sequencing). Thirteen strains were identified as B. melitensis biovar 3 while all phenotypic and genetic techniques classified the remaining isolates as B. abortus (n = 2) and B. suis biovar 1 (n = 2). MLVA-15 yielded a high discriminatory power (h = 0.801), indicating a high genetic diversity among the B. melitensis strains circulating among domestic ruminants in Egypt. This is the first report of the isolation of B. suis from cattle in Egypt which, coupled with the finding of B. abortus, suggests a potential role of livestock as reservoirs of several zoonotic Brucella species in the region. PMID:24511531

  2. Genetic and physical location of the Escherichia coli rap locus, which is essential for growth of bacteriophage lambda.

    PubMed Central

    Guarneros, G; Machado, G; Guzmán, P; Garay, E

    1987-01-01

    The Escherichia coli rap mutant does not support the growth of bacteriophage lambda (D. Henderson and J. Weil, Virology 71:546-559, 1976). We located the rap site at 26 min in the E. coli genetic map and determined the gene order fadR-rap-supF-trp from our transduction experiments. Plasmid pHO1 harbors a 5.6-kilobase-pair segment of the E. coli chromosome which contains the pth gene (B. Hove-Jensen, Mol. Gen. Genet. 201:269-276, 1985). This plasmid complemented rap bacteria, suggesting that it carries the dominant allele rap+. Subcloning experiments reduced the rap-complementing segment to 1.5 kilobase pairs. This segment still contained pth; thus, both loci are tightly linked. The lit mutations that inhibit phage T4 growth in E. coli are located nearby at 25 min (W. Cooley, K. Sirotkin, R. Green, and L. Snyder, J. Bacteriol. 140:83-91, 1979). We showed that rap and lit mutations are phenotypically and genetically different. PMID:2822668

  3. Construction of a High-Density Genetic Map and Quantitative Trait Locus Mapping in the Sea Cucumber Apostichopus japonicus

    PubMed Central

    Tian, Meilin; Li, Yangping; Jing, Jing; Mu, Chuang; Du, Huixia; Dou, Jinzhuang; Mao, Junxia; Li, Xue; Jiao, Wenqian; Wang, Yangfan; Hu, Xiaoli; Wang, Shi; Wang, Ruijia; Bao, Zhenmin

    2015-01-01

    Genetic linkage maps are critical and indispensable tools in a wide range of genetic and genomic research. With the advancement of genotyping-by-sequencing (GBS) methods, the construction of a high-density and high-resolution linkage maps has become achievable in marine organisms lacking sufficient genomic resources, such as echinoderms. In this study, high-density, high-resolution genetic map was constructed for a sea cucumber species, Apostichopus japonicus, utilizing the 2b-restriction site-associated DNA (2b-RAD) method. A total of 7839 markers were anchored to the linkage map with the map coverage of 99.57%, to our knowledge, this is the highest marker density among echinoderm species. QTL mapping and association analysis consistently captured one growth-related QTL located in a 5 cM region of linkage group (LG) 5. An annotated candidate gene, retinoblastoma-binding protein 5 (RbBP5), which has been reported to be an important regulator of cell proliferation, was recognized in the QTL region. This linkage map represents a powerful tool for research involving both fine-scale QTL mapping and marker assisted selection (MAS), and will facilitate chromosome assignment and improve the whole-genome assembly of sea cucumber in the future. PMID:26439740

  4. High-Resolution Mapping of a Genetic Locus Regulating Preferential Carbohydrate Intake, Total Kilocalories, and Food Volume on Mouse Chromosome 17

    PubMed Central

    Gularte-Mérida, Rodrigo; DiCarlo, Lisa M.; Robertson, Ginger; Simon, Jacob; Johnson, William D.; Kappen, Claudia; Medrano, Juan F.; Richards, Brenda K.

    2014-01-01

    The specific genes regulating the quantitative variation in macronutrient preference and food intake are virtually unknown. We fine mapped a previously identified mouse chromosome 17 region harboring quantitative trait loci (QTL) with large effects on preferential macronutrient intake-carbohydrate (Mnic1), total kilcalories (Kcal2), and total food volume (Tfv1) using interval-specific strains. These loci were isolated in the [C57BL/6J.CAST/EiJ-17.1-(D17Mit19-D17Mit50); B6.CAST-17.1] strain, possessing a ∼40.1 Mb region of CAST DNA on the B6 genome. In a macronutrient selection paradigm, the B6.CAST-17.1 subcongenic mice eat 30% more calories from the carbohydrate-rich diet, ∼10% more total calories, and ∼9% more total food volume per body weight. In the current study, a cross between carbohydrate-preferring B6.CAST-17.1 and fat-preferring, inbred B6 mice was used to generate a subcongenic-derived F2 mapping population; genotypes were determined using a high-density, custom SNP panel. Genetic linkage analysis substantially reduced the 95% confidence interval for Mnic1 (encompassing Kcal2 and Tfv1) from 40.1 to 29.5 Mb and more precisely established its boundaries. Notably, no genetic linkage for self-selected fat intake was detected, underscoring the carbohydrate-specific effect of this locus. A second key finding was the separation of two energy balance QTLs: Mnic1/Kcal2/Tfv1 for food intake and a newly discovered locus regulating short term body weight gain. The Mnic1/Kcal2/Tfv1 QTL was further de-limited to 19.0 Mb, based on the absence of nutrient intake phenotypes in subcongenic HQ17IIa mice. Analyses of available sequence data and gene ontologies, along with comprehensive expression profiling in the hypothalamus of non-recombinant, cast/cast and b6/b6 F2 controls, focused our attention on candidates within the QTL interval. Zfp811, Zfp870, and Btnl6 showed differential expression and also contain stop codons, but have no known biology related to food

  5. The First High-Density Genetic Map Construction in Tree Peony (Paeonia Sect. Moutan) using Genotyping by Specific-Locus Amplified Fragment Sequencing.

    PubMed

    Cai, Changfu; Cheng, Fang-Yun; Wu, Jing; Zhong, Yuan; Liu, Gaixiu

    2015-01-01

    Genetic linkage maps, permitting the elucidation of genome structure, are one of most powerful genomic tools to accelerate marker-assisted breeding. However, due to a lack of sufficient user-friendly molecular markers, no genetic linkage map has been developed for tree peonies (Paeonia Sect. Moutan), a group of important horticultural plants worldwide. Specific-locus amplified fragment sequencing (SLAF-seq) is a recent molecular marker development technology that enable the large-scale discovery and genotyping of sequence-based marker in genome-wide. In this study, we performed SLAF sequencing of an F1 population, derived from the cross P. ostti 'FenDanBai' × P. × suffruticosa 'HongQiao', to identify sufficient high-quality markers for the construction of high-density genetic linkage map in tree peonies. After SLAF sequencing, a total of 78 Gb sequencing data and 285,403,225 pair-end reads were generated. We detected 309,198 high-quality SLAFs from these data, of which 85,124 (27.5%) were polymorphic. Subsequently, 3518 of the polymorphic markers, which were successfully encoded in to Mendelian segregation types, and were in conformity with the criteria of high-quality markers, were defined as effective markers and used for genetic linkage mapping. Finally, we constructed an integrated genetic map, which comprised 1189 markers on the five linkage groups, and spanned 920.699 centiMorgans (cM) with an average inter-marker distance of 0.774 cM. There were 1115 'SNP-only' markers, 18 'InDel-only' markers, and 56 'SNP&InDel' markers on the map. Among these markers, 450 (37.85%) showed significant segregation distortion (P < 0.05). In conclusion, this investigation reported the first large-scale marker development and high-density linkage map construction for tree peony. The results of this study will serve as a solid foundation not only for marker-assisted breeding, but also for genome sequence assembly for tree peony. PMID:26010095

  6. The First High-Density Genetic Map Construction in Tree Peony (Paeonia Sect. Moutan) using Genotyping by Specific-Locus Amplified Fragment Sequencing

    PubMed Central

    Cai, Changfu; Cheng, Fang-Yun; Wu, Jing; Zhong, Yuan; Liu, Gaixiu

    2015-01-01

    Genetic linkage maps, permitting the elucidation of genome structure, are one of most powerful genomic tools to accelerate marker-assisted breeding. However, due to a lack of sufficient user-friendly molecular markers, no genetic linkage map has been developed for tree peonies (Paeonia Sect. Moutan), a group of important horticultural plants worldwide. Specific-locus amplified fragment sequencing (SLAF-seq) is a recent molecular marker development technology that enable the large-scale discovery and genotyping of sequence-based marker in genome-wide. In this study, we performed SLAF sequencing of an F1 population, derived from the cross P. ostti ‘FenDanBai’ × P. × suffruticosa ‘HongQiao’, to identify sufficient high-quality markers for the construction of high-density genetic linkage map in tree peonies. After SLAF sequencing, a total of 78 Gb sequencing data and 285,403,225 pair-end reads were generated. We detected 309,198 high-quality SLAFs from these data, of which 85,124 (27.5%) were polymorphic. Subsequently, 3518 of the polymorphic markers, which were successfully encoded in to Mendelian segregation types, and were in conformity with the criteria of high-quality markers, were defined as effective markers and used for genetic linkage mapping. Finally, we constructed an integrated genetic map, which comprised 1189 markers on the five linkage groups, and spanned 920.699 centiMorgans (cM) with an average inter-marker distance of 0.774 cM. There were 1115 ‘SNP-only’ markers, 18 ‘InDel-only’ markers, and 56 ‘SNP&InDel’ markers on the map. Among these markers, 450 (37.85%) showed significant segregation distortion (P < 0.05). In conclusion, this investigation reported the first large-scale marker development and high-density linkage map construction for tree peony. The results of this study will serve as a solid foundation not only for marker-assisted breeding, but also for genome sequence assembly for tree peony. PMID:26010095

  7. Molecular Genetics of the Drosophila Melanogaster Ovo Locus, a Gene Required for Sex Determination of Germline Cells

    PubMed Central

    Garfinkel, M. D.; Lohe, A. R.; Mahowald, A. P.

    1992-01-01

    The Drosophila melanogaster ovo gene is required for survival and differentiation of female germline cells, apparently playing a role in germline sex determination. We recovered 60 kb of genomic DNA from its genetic location at 4E1,2 on the X chromosome. A transcription unit coding for an apparently female-specific germline-dependent 5-kb poly(A)(+) RNA size class is located substantially in a 7-kb region, within which three DNA-detectable lesions for mutations that inactivate the ovo function are located at two sites &4 kb apart. The breakpoint of a deficiency that removes the neighboring lethal complementation group shavenbaby (svb) but leaves the ovo function intact maps &5 kb to the molecular left of the leftmost ovo mutant site. A class of mutations that inactivates both the svb function and the ovo function affects genomic DNA between the two ovo sites. Sequences required for the two genetic functions are partly overlapping. In spite of this overlap, P element-mediated gene transfer of a 10-kb genomic DNA segment containing the 5-kb poly(A)(+) RNA transcription unit rescues the female sterility phenotypes of ovo mutations, but not the svb lethality. PMID:1349870

  8. A Genetic Analysis of the Stoned Locus and Its Interaction with Dunce, Shibire and Suppressor of Stoned Variants of Drosophila Melanogaster

    PubMed Central

    Petrovich, T. Z.; Merakovsky, J.; Kelly, L. E.

    1993-01-01

    The genetic complementation patterns of both behavioral and lethal alleles at the stoned locus have been characterized. Mosaic analysis of a stoned lethal allele suggests that stoned functions either in the nervous system or in both the nervous system and musculature, but is not required for gross neural development. The behavioral alleles stn(ts) and stn(C), appear to be defective in a diametrically opposite sense, show interallelic complementation, and indicate distinct roles for the stoned gene product in the visual system and in motor coordination. A number of other neurological mutations have been investigated for their possible interaction with the viable stoned alleles. Mutations at two loci, dunce and shibire, act synergistically with the stn(ts) mutations to cause lethality, but fail to interact with stn(C). A third variant (Suppressor of stoned) has been identified which can suppress the debilitation associated with the stn(ts) mutations. These data, together with a previously identified interaction between the stn(ts) and tan mutants, indicate a central role for the stoned gene product in neuronal function, and suggests that the stoned gene product interacts, either directly or indirectly, with the neural cAMP second messenger system, with the synaptic membrane recycling pathway via dynamin, and with biogenic amine metabolism. PMID:8462853

  9. Intron-length polymorphism at the actin gene locus mac-1: a genetic marker for population studies in the marine mussels Mytilus galloprovincialis Lmk. and M. edulis L.

    PubMed

    Ohresser, M; Borsa, P; Delsert, C

    1997-06-01

    A novel intron-length polymorphism at the actin gene locus mac-1 is here reported and used as a genetic marker for population studies in mussels of the genus Mytilus. Two closely related genes subsequently identified as alleles, mac-1a1 and mac-1b1, from a genomic library of M. galloprovincialis were partially cloned and sequenced. They mainly differed from each other by a 65-bp insertion within their first intron. Polymerase chain reaction (PCR) primers were designed outside the insertion. The PCR analysis of 166 individual mussels from M. galloprovincialis and M. edulis populations revealed three size-classes of alleles or allelomorphs, two of which were of the expected sizes for mac1a1 and mac-1b1. One allelomorph was absent from M. edulis samples, although it was present at substantial frequencies in M. galloprovincialis populations. The frequencies of the two other allelomorphs significantly differed between M. galloprovincialis and M. edulis populations. The comparison of six mac-1 intron sequences over 277 bp showed at once that allelomorphs encompassed alleles differing from one another by substantial numbers of mutations, and that identical alleles were present in both M. galloprovincialis and M. edulis individuals, a probable result of the recent introgression between the two species. PMID:9200839

  10. A High-Density Genetic Map with Array-Based Markers Facilitates Structural and Quantitative Trait Locus Analyses of the Common Wheat Genome

    PubMed Central

    Iehisa, Julio Cesar Masaru; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Okamoto, Yuki; Nasuda, Shuhei; Takumi, Shigeo

    2014-01-01

    The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map. PMID:24972598

  11. Increased support for linkage of a novel locus on chromosome 5q13 for essential hypertension in the British Genetics of Hypertension Study.

    PubMed

    Munroe, Patricia B; Wallace, Chris; Xue, Ming-Zhan; Marçano, Ana Carolina B; Dobson, Richard J; Onipinla, Abiodun K; Burke, Beverley; Gungadoo, Johannie; Newhouse, Stephen J; Pembroke, Janine; Brown, Morris; Dominiczak, Anna F; Samani, Nilesh J; Lathrop, Mark; Connell, John; Webster, John; Clayton, David; Farrall, Martin; Mein, Charles A; Caulfield, Mark

    2006-07-01

    Human hypertension arises from a combination of genetic factors and lifestyle influences. With cardiovascular disease set to become the number 1 cause of death worldwide, it is important to understand the etiologic mechanisms for hypertension, because these might provide new routes to improved treatment. The British Genetics of Hypertension Study has recently published a primary genome screen that identified 4 chromosomal regions of interest. We have now genotyped additional markers to confirm the most promising regions for follow-up studies. Thirty-four additional microsatellites were genotyped in our severely hypertensive affected sibling pair resource (now 1635 families with 2142 affected sibling pairs), leading to a substantial increase in information content in the regions of interest. We found increased support for linkage of chromosome 5q13 to human hypertension (multipoint logarithm of odds=2.50) with 3 adjacent markers yielding single point logarithm of odds scores of 3.22, 2.84, and 2.51. The placement of additional markers on 2q, 6q, and 9q diminished support for linkage in these regions. However, the addition of new data and families identified novel regions of interest on chromosomes 1q and 11q. The 3 positive markers in the chromosome 5 region were also genotyped in 712 distinct parent-offspring trios with the same severe phenotype to replicate linkage and association. Borderline support for replication was found (P=0.07). We found increased evidence for linkage and borderline-significant evidence for association for a hypertension susceptibility locus on chromosome 5q13 that is worthy of detailed fine mapping and assessment of candidate genes. PMID:16754790

  12. Post-Zygotic and Inter-Individual Structural Genetic Variation in a Presumptive Enhancer Element of the Locus between the IL10Rβ and IFNAR1 Genes

    PubMed Central

    Prakash, Kancherla Reddy; Przerada, Szymon; Paprocka, Hanna; Zywicka, Anna; Westerman, Maxwell P.; Pedersen, Nancy L.; O'Hanlon, Terrance P.; Rider, Lisa G.; Miller, Frederick W.; Srutek, Ewa; Jankowski, Michal; Zegarski, Wojciech; Piotrowski, Arkadiusz; Absher, Devin; Dumanski, Jan P.

    2013-01-01

    Although historically considered as junk-DNA, tandemly repeated sequence motifs can affect human phenotype. For example, variable number tandem repeats (VNTR) with embedded enhancers have been shown to regulate gene transcription. The post-zygotic variation is the presence of genetically distinct populations of cells in an individual derived from a single zygote, and this is an understudied aspect of genome biology. We report somatically variable VNTR with sequence properties of an enhancer, located upstream of IFNAR1. Initially, SNP genotyping of 63 monozygotic twin pairs and multiple tissues from 21 breast cancer patients suggested a frequent post-zygotic mosaicism. The VNTR displayed a repeated 32 bp core motif in the center of the repeat, which was flanked by similar variable motifs. A total of 14 alleles were characterized based on combinations of segments, which showed post-zygotic and inter-individual variation, with up to 6 alleles in a single subject. Somatic variation occurred in ∼24% of cases. In this hypervariable region, we found a clustering of transcription factor binding sites with strongest sequence similarity to mouse Foxg1 transcription factor binding motif. This study describes a VNTR with sequence properties of an enhancer that displays post-zygotic and inter-individual genetic variation. This element is within a locus containing four related cytokine receptors: IFNAR2, IL10Rβ, IFNAR1 and IFNGR2, and we hypothesize that it might function in transcriptional regulation of several genes in this cluster. Our findings add another level of complexity to the variation among VNTR-based enhancers. Further work may unveil the normal function of this VNTR in transcriptional control and its possible involvement in diseases connected with these receptors, such as autoimmune conditions and cancer. PMID:24023707

  13. Genetic stability of Brucella abortus isolates from an outbreak by multiple-locus variable-number tandem repeat analysis (MLVA16)

    PubMed Central

    2014-01-01

    Background Brucellosis caused by Brucella abortus is one of the most important zoonoses in the world. Multiple-locus variable-number tandem repeat analysis (MLVA16) has been shown be a useful tool to epidemiological traceback studies in B. abortus infection. Thus, the present study aimed (i) to evaluate the genetic diversity of B. abortus isolates from a brucellosis outbreak, and (ii) to investigate the in vivo stability of the MLVA16 markers. Results Three-hundred and seventy-five clinical samples, including 275 vaginal swabs and 100 milk samples, were cultured from a brucellosis outbreak in a cattle herd, which adopted RB51 vaccination and test-and-slaughter policies. Thirty-seven B. abortus isolates were obtained, eight from milk and twenty-nine from post-partum/abortion vaginal swabs, which were submitted to biotyping and genotyping by MLVA16. Twelve B. abortus isolates obtained from vaginal swabs were identified as RB51. Twenty four isolates, seven obtained from milk samples and seventeen from vaginal swabs, were identified as B. abortus biovar 3, while one isolate from vaginal swabs was identified as B. abortus biovar 1. Three distinct genotypes were observed during the brucellosis outbreak: RB observed in all isolates identified as RB51; W observed in all B. abortus biovar 3 isolates; and Z observed in the single B. abortus biovar 1 isolate. Epidemiological and molecular data show that the B. abortus biovar 1 genotype Z strain is not related to the B. abortus biovar 3 genotype W isolates, and represents a new introduction B. abortus during the outbreak. Conclusions The results of the present study on typing of multiple clinical B. abortus isolates from the same outbreak over a sixteen month period indicate the in vivo stability of MLVA16 markers, a low genetic diversity among B. abortus isolates and the usefulness of MLVA16 for epidemiological studies of bovine brucellosis. PMID:25015840

  14. Extending RAD tag analysis to microbial ecology: a comparison between MultiLocus Sequence Typing and 2b-RAD to investigate Listeria monocytogenes genetic structure.

    PubMed

    Pauletto, Marianna; Carraro, Lisa; Babbucci, Massimiliano; Lucchini, Rosaria; Bargelloni, Luca; Cardazzo, Barbara

    2016-05-01

    The advent of next-generation sequencing (NGS) has dramatically changed bacterial typing technologies, increasing our ability to differentiate bacterial isolates. Despite it is now possible to sequence a bacterial genome in a few days and at reasonable costs, most genetic analyses do not require whole-genome sequencing, which also remains impractical for large population samples due to the cost of individual library preparation and bioinformatics. More traditional sequencing approaches, however, such as MultiLocus Sequence Typing (mlst) are quite laborious and time-consuming, especially for large-scale analyses. In this study, a genotyping approach based on restriction site-associated (RAD) tag sequencing, 2b-RAD, was applied to characterize Listeria monocytogenes strains. To verify the feasibility of the method, an in silico analysis was performed on 30 available complete genomes. For the same set of strains, in silico mlst analysis was conducted as well. Subsequently, 2b-RAD and mlst analyses were experimentally carried out on 58 isolates collected from food samples or food-processing sites. The obtained results demonstrate that 2b-RAD predicts mlst types and often provides more detailed information on population structure than mlst. Moreover, the majority of variants differentiating identical sequence type isolates mapped against accessory fragments, thus providing additional information to characterize strains. Although mlst still represents a reliable typing method, large-scale studies on molecular epidemiology and public health, as well as bacterial phylogenetics, population genetics and biosafety could benefit of a low cost and fast turnaround time approach such as the 2b-RAD analysis proposed here. PMID:26613186

  15. Next-Generation Genetics in Plants: Evolutionary Trade-off, Immunity and Speciation (2010 JGI User Meeting)

    SciTech Connect

    Wiegel, Detlef

    2010-03-25

    Detlef Wiegel from the Max Planck Institute for Developmental Biology on "Next-generation genetics in plants: Evolutionary tradeoffs, immunity and speciation" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  16. Next-Generation Genetics in Plants: Evolutionary Trade-off, Immunity and Speciation (2010 JGI User Meeting)

    ScienceCinema

    Wiegel, Detlef

    2011-04-25

    Detlef Wiegel from the Max Planck Institute for Developmental Biology on "Next-generation genetics in plants: Evolutionary tradeoffs, immunity and speciation" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  17. A Genome-Wide Association Study Uncovers a Genetic Locus Associated with Thoracic-to-Hip Ratio in Koreans

    PubMed Central

    Cha, Seongwon; Park, Ah Yeon; Kang, Changsoo

    2015-01-01

    The thoracic-to-hip circumference ratio (THR) is an anthropometric marker recently described as a predictor of type 2 diabetes. In this study, we performed a genome-wide association study (GWAS) followed by confirmatory analyses to identify genetic markers associated with THR. A total of 7,240 Korean subjects (4,988 for the discovery stage and 2,252 for the confirmatory analyses) were recruited for this study, and genome-wide single nucleotide polymorphism (SNP) genotyping of the initial 4,988 individuals was performed using Affymetrix Human SNP array 5.0. Linear regression analysis was then performed to adjust for the effects of age, sex, and current diabetes medication status on the THR of the study subjects. In the initial discovery stage, there was a statistically nominal association between minor alleles of SNP markers on chromosomes 4, 8, 10, and 12, and THR changes (p < 5.0 × 10−6). The subsequent confirmatory analyses of these markers, however, only detected a significant association between two SNPs in the HECTD4 gene and decreased THRs. Notably, this association was detected in male (rs11066280: p = 1.14 × 10−2; rs2074356: p = 1.10 × 10−2), but not in female subjects. Meanwhile, the combined results from the two analyses (initial and confirmatory) indicated that minor alleles of these two intronic variants exhibited a significant genome-wide association with decreased THR in the male subjects (n = 3,155; rs11066280: effect size = −0.008624, p = 6.19 × 10−9; rs2074356: effect size = −0.008762, p = 1.89 × 10−8). Furthermore, minor alleles of these two SNPs exhibited protective effects on patients’ risks for developing type 2 diabetes. In conclusion, we have identified two genetic variations in HECTD4 that are associated with THR, particularly in men. PMID:26675016

  18. Genetic and molecular characterization of submergence response identifies Subtol6 as a major submergence tolerance locus in maize.

    PubMed

    Campbell, Malachy T; Proctor, Christopher A; Dou, Yongchao; Schmitz, Aaron J; Phansak, Piyaporn; Kruger, Greg R; Zhang, Chi; Walia, Harkamal

    2015-01-01

    Maize is highly sensitive to short term flooding and submergence. Early season flooding reduces germination, survival and growth rate of maize seedlings. We aimed to discover genetic variation for submergence tolerance in maize and elucidate the genetic basis of submergence tolerance through transcriptional profiling and linkage analysis of contrasting genotypes. A diverse set of maize nested association mapping (NAM) founder lines were screened, and two highly tolerant (Mo18W and M162W) and sensitive (B97 and B73) genotypes were identified. Tolerant lines exhibited delayed senescence and lower oxidative stress levels compared to sensitive lines. Transcriptome analysis was performed on these inbreds to provide genome level insights into the molecular responses to submergence. Tolerant lines had higher transcript abundance of several fermentation-related genes and an unannotated Pyrophosphate-Dependent Fructose-6-Phosphate 1-Phosphotransferase gene during submergence. A coexpression network enriched for CBF (C-REPEAT/DRE BINDING FACTOR: C-REPEAT/DRE BINDING FACTOR) genes, was induced by submergence in all four inbreds, but was more activated in the tolerant Mo18W. A recombinant inbred line (RIL) population derived from Mo18W and B73 was screened for submergence tolerance. A major QTL named Subtol6 was mapped to chromosome 6 that explains 22% of the phenotypic variation within the RIL population. We identified two candidate genes (HEMOGLOBIN2 and RAV1) underlying Subtol6 based on contrasting expression patterns observed in B73 and Mo18W. Sources of tolerance identified in this study (Subtol6) can be useful to increase survival rate during flooding events that are predicted to increase in frequency with climate change. PMID:25806518

  19. Assignment of a locus (GLC3A) for primary congenital glaucoma (Buphthalmos) to 2p21 and evidence for genetic heterogeneity

    SciTech Connect

    Sarfarazi, M.; Akarsu, A.N.; Hossain, A.

    1995-11-20

    Primary congenital glaucoma (GLC3) is an inherited eye disorder that accounts for 0.01-0.04% of total blindness. Although a large number of chromosomal abnormalities have already been reported in patients with congenital glaucoma, the precise location and pathogenesis of this condition remain elusive. By using a group of 17 GLC3 families and a combination of both candidate regional and general positional mapping strategies, we have mapped a locus for GLC3 to the short arm of chromosome 2. Eleven families showed no recombination with 3 tightly linked markers of D2S177 (Z = 9.40), D2S1346 (Z = 8.83), and D2S1348 (Z = 8.90) with a combined haplotype lod score of 11.50. Haplotype and multipoint linkage analyses of 14 DNA markers from 2p indicated that the disease gene is located in the 2p21 region and is flanked by DNA markers D2S1788/D2S1325 ({theta} = 0.03; Z = 5.42) and D2S1356 ({theta} = 0.05; Z = 4.69). Inspection of haplotype and heterogeneity analysis confirmed that 6 families are not linked to the 2p21 region, thus providing the first proof of genetic heterogeneity for this phenotype. We therefore designated the locus on 2p21 GLC3A and positioned it in the overall linkage map of Tel-D2S405-D2S367-(D2S1788/D2S1325)-[(GLC 3A,D2S177)/(D2S1346/D2S1348)]-D2S1356-D2S119-D2S1761-D2S1248-D2S1352-D2S406-D2S441-Cen. Of the seven genes mapping to the 2p21 region, CAD, CALM2, and LHCGR are centromeric to D2S119 and can be excluded as a candidate for GLC3A, but mutations in PRK-R, TIK, SOS1, or SPTBN1 may still be accountable for this phenotype. As human 2p21 shows homology with mouse chromosomes 11 and 17, the homolog of GLC3A is expected to reside on one of these two chromosomes. 36 refs., 3 figs., 5 tabs.

  20. The effects of locus number, genetic divergence, and genotyping error on the utility of dominant markers for hybrid identification

    PubMed Central

    Sovic, Michael G; Kubatko, Laura S; Fuerst, Paul A

    2014-01-01

    In surveys of hybrid zones, dominant genetic markers are often used to identify individuals of hybrid origin and assign these individuals to one of several potential hybrid classes. Quantitative analyses that address the statistical power of dominant markers in such inference are scarce. In this study, dominant genotype data were simulated to evaluate the effects of, first, the number of loci analyzed, second, the magnitude of differentiation between the markers scored in the groups that are hybridizing, and third, the level of genotyping error associated with the data when assigning individuals to various parental and hybrid categories. The overall performance of the assignment methods was relatively modest at the lowest level of divergence examined (Fst ˜ 0.4), but improved substantially at higher levels of differentiation (Fst ˜ 0.67 or 0.8). The effect of genotyping error was dependent on the level of divergence between parental taxa, with larger divergences tempering the effects of genotyping error. These results highlight the importance of considering the effects of each of the variables when assigning individuals to various parental and hybrid categories, and can help guide decisions regarding the number of loci employed in future hybridization studies to achieve the power and level of resolution desired. PMID:24634730

  1. Genetic changes during laboratory propagation: copy number At the reticulocyte-binding protein 1 locus of Plasmodium falciparum.

    PubMed

    Nair, Shalini; Nkhoma, Standwell; Nosten, François; Mayxay, Mayfong; French, Neil; Whitworth, Jim; Anderson, Tim

    2010-08-01

    Comparative genomic hybridization studies have revealed elevated copy number (CN) at the reticulocyte-binding protein 1 gene (PfRh1) in fast growing lab-adapted parasites, while genetic manipulation demonstrates a causal link between cell invasion and PfRh1 CN. We therefore examined PfRh1 copy number variation (CNV) in 202 single clone parasite isolates from four countries to quantify the extent of CNV within natural populations. Surprisingly, we found that no natural parasite infections showed elevated CN. In contrast, 4/28 independent laboratory reference strains show elevated CN. One possibility is that amplification of PfRh1 (or neighboring loci) is selected during laboratory culture. In the case of FCR3 group of parasites, clone trees show that PfRh1 amplification arose in laboratory lines following establishment in culture. These data show that CNV at PfRh1 is rare or non-existent in natural populations, but can arise during laboratory propagation. We conclude that PfRh1 CNV is not an important determinant of gene expression, cell invasion or growth rate in natural parasite populations. PMID:20363264

  2. 76 FR 6623 - Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Molecular and Clinical Genetics Panel of the Medical Devices... (FDA). The meeting will be open to the public. Name of Committee: Molecular and Clinical Genetics...

  3. Population genetic and phylogenetic evidence for positive selection on regulatory mutations at the factor VII locus in humans.

    PubMed

    Hahn, Matthew W; Rockman, Matthew V; Soranzo, Nicole; Goldstein, David B; Wray, Gregory A

    2004-06-01

    The abundance of cis-regulatory polymorphisms in humans suggests that many may have been important in human evolution, but evidence for their role is relatively rare. Four common polymorphisms in the 5' promoter region of factor VII (F7), a coagulation factor, have been shown to affect its transcription and protein abundance both in vitro and in vivo. Three of these polymorphisms have low-frequency alleles that decrease expression of F7 and may provide protection against myocardial infarction (heart attacks). The fourth polymorphism has a minor allele that increases the level of transcription. To look for evidence of natural selection on the cis-regulatory variants flanking F7, we genotyped three of the polymorphisms in six Old World populations for which we also have data from a group of putatively neutral SNPs. Our population genetic analysis shows evidence for selection within humans; surprisingly, the strongest evidence is due to a large increase in frequency of the high-expression variant in Singaporean Chinese. Further characterization of a Japanese population shows that at least part of the increase in frequency of the high-expression allele is found in other East Asian populations. In addition, to examine interspecific patterns of selection we sequenced the homologous 5' noncoding region in chimpanzees, bonobos, a gorilla, an orangutan, and a baboon. Analysis of these data reveals an excess of fixed differences within transcription factor binding sites along the human lineage. Our results thus further support the hypothesis that regulatory mutations have been important in human evolution. PMID:15238535

  4. Integrated Genetic and Epigenetic Analysis Identifies Haplotype-Specific Methylation in the FTO Type 2 Diabetes and Obesity Susceptibility Locus

    PubMed Central

    Wilson, Gareth A.; Rakyan, Vardhman K.; Teschendorff, Andrew E.; Akan, Pelin; Stupka, Elia; Down, Thomas A.; Prokopenko, Inga; Morison, Ian M.; Mill, Jonathan; Pidsley, Ruth; Deloukas, Panos; Frayling, Timothy M.; Hattersley, Andrew T.; McCarthy, Mark I.; Beck, Stephan; Hitman, Graham A.

    2010-01-01

    Recent multi-dimensional approaches to the study of complex disease have revealed powerful insights into how genetic and epigenetic factors may underlie their aetiopathogenesis. We examined genotype-epigenotype interactions in the context of Type 2 Diabetes (T2D), focussing on known regions of genomic susceptibility. We assayed DNA methylation in 60 females, stratified according to disease susceptibility haplotype using previously identified association loci. CpG methylation was assessed using methylated DNA immunoprecipitation on a targeted array (MeDIP-chip) and absolute methylation values were estimated using a Bayesian algorithm (BATMAN). Absolute methylation levels were quantified across LD blocks, and we identified increased DNA methylation on the FTO obesity susceptibility haplotype, tagged by the rs8050136 risk allele A (p = 9.40×10−4, permutation p = 1.0×10−3). Further analysis across the 46 kb LD block using sliding windows localised the most significant difference to be within a 7.7 kb region (p = 1.13×10−7). Sequence level analysis, followed by pyrosequencing validation, revealed that the methylation difference was driven by the co-ordinated phase of CpG-creating SNPs across the risk haplotype. This 7.7 kb region of haplotype-specific methylation (HSM), encapsulates a Highly Conserved Non-Coding Element (HCNE) that has previously been validated as a long-range enhancer, supported by the histone H3K4me1 enhancer signature. This study demonstrates that integration of Genome-Wide Association (GWA) SNP and epigenomic DNA methylation data can identify potential novel genotype-epigenotype interactions within disease-associated loci, thus providing a novel route to aid unravelling common complex diseases. PMID:21124985

  5. Further evidence for a locus for autosomal dominant juvenile glaucoma on chromosome 1q and evidence for genetic heterogeneity

    SciTech Connect

    Wiggs, J.; Paglinauan, C.; Stawski, S.

    1994-09-01

    Glaucoma is a term used to describe a group of disorders which have in common a characteristic degeneration of the optic nerve associated with typical visual field defects and usually associated with elevated intraocular pressure. Two percent of white Americans and 6-10% of black Americans are affected by the disease. Compelling data indicate that susceptibility to many types of glaucoma is inherited. Hereditary juvenile glaucoma is one form of glaucoma that develops in children and is inherited as an autosomal dominant trait with high penetrance. Using a single large Caucasian pedigree affected with autosomal dominant juvenile glaucoma, Sheffield discovered positive linkage to a group of markers that map to a 30 cM region on the long arm of chromosome 1 (1q21-q31). We have subsequently identified three unrelated Caucasian pedigrees affected with autosomal dominant juvenile glaucoma that also demonstrate linkage to this region on chromosome 1, with the highest combined lod score of 5.12 at theta = .05 for marker D1S218. The identification of critical recombinant individuals in our three pedigrees has allowed us to further localize the disease gene to a 12 cM region between markers D1S242 and D1S431. In addition, we have identified several pedigrees which do not demonstrate linkage to chromosome 1q, including a black family affected with autosomal dominant juvenile glaucoma that is indistinguishable clinically from the disorder affecting the caucasian pedigrees and three pedigrees affected with pigmentary dispersion syndrome, a form of glaucoma that also affects the juvenile population and is also inherited as an autosomal dominant trait. These findings provide evidence for genetic heterogeneity in juvenile glaucoma.

  6. p53 Codon 72 Genetic Polymorphism in Asthmatic Children: Evidence of Interaction With Acid Phosphatase Locus 1.

    PubMed

    Saccucci, Patrizia; Verrotti, Alberto; Giannini, Cosimo; Verini, Marcello; Chiarelli, Francesco; Neri, Anna; Magrini, Andrea

    2014-05-01

    Several lines of evidence are implicating an increased persistence of apoptotic cells in patients with asthma. This is largely due to a combination of inhibition, or defects in the apoptotic process and/or impaired apoptotic cell removal mechanisms. Among apoptosis-inducing genes, an important role is played by p53. In the present study, we have investigated the possible relationship between p53 codon 72 polymorphism and asthma and the interaction with ACP1, a genetic polymorphism involved in the susceptibility to allergic asthma. We studied 125 asthmatic children and 123 healthy subjects from the Caucasian population of Central Italy. p53 codon 72 and ACP1 polymorphisms were evaluated using a restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) method. There is a statistically significant association between p53 codon 72 polymorphism and allergic asthma: Arg/Arg genotype is more represented in asthmatic patients than in controls (P=0.018). This association, however, is present in subjects with low ACP1 activity A/A and A/B only (P=0.023). The proportion of children with A/A and A/B genotype carrying Arg/Arg genotype is significantly high in asthmatic children than in controls (OR=1.941; 95% C.I. 1.042-3.628). Our finding could have important clinical implications since the subjects with A/A and A/B genotypes of ACP1 carrying Arg/Arg genotype are more susceptible to allergic asthma than Pro/Pro genotype. PMID:24843801

  7. Repeat-mediated genetic and epigenetic changes at the FMR1 locus in the Fragile X-related disorders

    PubMed Central

    Usdin, Karen; Hayward, Bruce E.; Kumari, Daman; Lokanga, Rachel A.; Sciascia, Nicholas; Zhao, Xiao-Nan

    2014-01-01

    The Fragile X-related disorders are a group of genetic conditions that include the neurodegenerative disorder, Fragile X-associated tremor/ataxia syndrome (FXTAS), the fertility disorder, Fragile X-associated primary ovarian insufficiency (FXPOI) and the intellectual disability, Fragile X syndrome (FXS). The pathology in all these diseases is related to the number of CGG/CCG-repeats in the 5′ UTR of the Fragile X mental retardation 1 (FMR1) gene. The repeats are prone to continuous expansion and the increase in repeat number has paradoxical effects on gene expression increasing transcription on mid-sized alleles and decreasing it on longer ones. In some cases the repeats can simultaneously both increase FMR1 mRNA production and decrease the levels of the FMR1 gene product, Fragile X mental retardation 1 protein (FMRP). Since FXTAS and FXPOI result from the deleterious consequences of the expression of elevated levels of FMR1 mRNA and FXS is caused by an FMRP deficiency, the clinical picture is turning out to be more complex than once appreciated. Added complications result from the fact that increasing repeat numbers make the alleles somatically unstable. Thus many individuals have a complex mixture of different sized alleles in different cells. Furthermore, it has become apparent that the eponymous fragile site, once thought to be no more than a useful diagnostic criterion, may have clinical consequences for females who inherit chromosomes that express this site. This review will cover what is currently known about the mechanisms responsible for repeat instability, for the repeat-mediated epigenetic changes that affect expression of the FMR1 gene, and for chromosome fragility. It will also touch on what current and future options are for ameliorating some of these effects. PMID:25101111

  8. Genetic analysis of strawberry fruit aroma and identification of O-methyltransferase FaOMT as the locus controlling natural variation in mesifurane content.

    PubMed

    Zorrilla-Fontanesi, Yasmín; Rambla, José-Luis; Cabeza, Amalia; Medina, Juan J; Sánchez-Sevilla, José F; Valpuesta, Victoriano; Botella, Miguel A; Granell, Antonio; Amaya, Iraida

    2012-06-01

    Improvement of strawberry (Fragaria × ananassa) fruit flavor is an important goal in breeding programs. To investigate genetic factors controlling this complex trait, a strawberry mapping population derived from genotype '1392', selected for its superior flavor, and '232' was profiled for volatile compounds over 4 years by headspace solid phase microextraction coupled to gas chromatography and mass spectrometry. More than 300 volatile compounds were detected, of which 87 were identified by comparison of mass spectrum and retention time to those of pure standards. Parental line '1392' displayed higher volatile levels than '232', and these and many other compounds with similar levels in both parents segregated in the progeny. Cluster analysis grouped the volatiles into distinct chemically related families and revealed a complex metabolic network underlying volatile production in strawberry fruit. Quantitative trait loci (QTL) detection was carried out over 3 years based on a double pseudo-testcross strategy. Seventy QTLs covering 48 different volatiles were detected, with several of them being stable over time and mapped as major QTLs. Loci controlling γ-decalactone and mesifurane content were mapped as qualitative traits. Using a candidate gene approach we have assigned genes that are likely responsible for several of the QTLs. As a proof of concept we show that one homoeolog of the O-methyltransferase gene (FaOMT) is the locus responsible for the natural variation of mesifurane content. Sequence analysis identified 30 bp in the promoter of this FaOMT homoeolog containing putative binding sites for basic/helix-loop-helix, MYB, and BZIP transcription factors. This polymorphism fully cosegregates with both the presence of mesifurane and the high expression of FaOMT during ripening. PMID:22474217

  9. Genetic, comparative genomic, and expression analyses of the Mc1r locus in the polychromatic Midas cichlid fish (Teleostei, Cichlidae Amphilophus sp.) species group.

    PubMed

    Henning, Frederico; Renz, Adina Josepha; Fukamachi, Shoji; Meyer, Axel

    2010-05-01

    Natural populations of the Midas cichlid species in several different crater lakes in Nicaragua exhibit a conspicuous color polymorphism. Most individuals are dark and the remaining have a gold coloration. The color morphs mate assortatively and sympatric population differentiation has been shown based on neutral molecular data. We investigated the color polymorphism using segregation analysis and a candidate gene approach. The segregation patterns observed in a mapping cross between a gold and a dark individual were consistent with a single dominant gene as a cause of the gold phenotype. This suggests that a simple genetic architecture underlies some of the speciation events in the Midas cichlids. We compared the expression levels of several candidate color genes Mc1r, Ednrb1, Slc45a2, and Tfap1a between the color morphs. Mc1r was found to be up regulated in the gold morph. Given its widespread association in color evolution and role on melanin synthesis, the Mc1r locus was further investigated using sequences derived from a genomic library. Comparative analysis revealed conserved synteny in relation to the majority of teleosts and highlighted several previously unidentified conserved non-coding elements (CNEs) in the upstream and downstream regions in the vicinity of Mc1r. The identification of the CNEs regions allowed the comparison of sequences from gold and dark specimens of natural populations. No polymorphisms were found between in the population sample and Mc1r showed no linkage to the gold phenotype in the mapping cross, demonstrating that it is not causally related to the color polymorphism in the Midas cichlid. PMID:20449580

  10. NOD congenic strain analysis of autoimmune diabetes reveals genetic complexity of the Idd18 locus and identifies Vav3 as a candidate gene

    PubMed Central

    Fraser, Heather I.; Dendrou, Calliope A.; Healy, Barry; Rainbow, Daniel B.; Howlett, Sarah; Smink, Luc J.; Gregory, Simon; Steward, Charles A.; Todd, John A.; Peterson, Laurence B.; Wicker, Linda S.

    2010-01-01

    We have used the public sequencing and annotation of the mouse genome to delimit the previously resolved type 1 diabetes (T1D) Idd18 interval to a region on chromosome 3 that includes the immunologically relevant candidate gene, Vav3. To test the candidacy of Vav3, we developed a novel congenic strain which enabled the resolution of Idd18 to a 604 kb interval, designated Idd18.1, which contains only two annotated genes: the complete sequence of Vav3, and the last exon of the gene encoding NETRIN G1, Ntng1. Targeted sequencing of Idd18.1 in the NOD mouse strain revealed that allelic variation between NOD and C57BL/6J (B6) occurs in non-coding regions with 138 single nucleotide polymorphisms (SNPs) concentrated in the introns between exons 20 and 27, and immediately after the 3′ UTR. We observed differential expression of VAV3 RNA transcripts in thymocytes when comparing congenic mouse strains with B6 or NOD alleles at Idd18.1. The T1D protection associated with B6 alleles of Idd18.1/Vav3 requires the presence of B6 protective alleles at Idd3, which are correlated with increased IL-2 production and regulatory T cell function. In the absence of B6 protective alleles at Idd3, we detected a second T1D protective B6 locus, Idd18.3, which is closely linked to, but distinct from, Idd18.1. Therefore, genetic mapping, sequencing, and gene expression evidence indicate that alteration of VAV3 expression is an etiological factor in the development of autoimmune beta-cell destruction in NOD mice. This study also demonstrates that a congenic strain mapping approach can isolate closely linked susceptibility genes. PMID:20363978

  11. Genetic and Informatic Analyses Implicate Kif12 as a Candidate Gene within the Mpkd2 Locus That Modulates Renal Cystic Disease Severity in the Cys1cpk Mouse

    PubMed Central

    Mrug, Michal; Zhou, Juling; Yang, Chaozhe; Aronow, Bruce J.; Cui, Xiangqin; Schoeb, Trenton R.; Siegal, Gene P.; Yoder, Bradley K; Guay-Woodford, Lisa M.

    2015-01-01

    We have previously mapped the interval on Chromosome 4 for a major polycystic kidney disease modifier (Mpkd) of the B6(Cg)-Cys1cpk/J mouse model of recessive polycystic kidney disease (PKD). Informatic analyses predicted that this interval contains at least three individual renal cystic disease severity-modulating loci (Mpkd1-3). In the current study, we provide further validation of these predicted effects using a congenic mouse line carrying the entire CAST/EiJ (CAST)-derived Mpkd1-3 interval on the C57BL/6J background. We have also generated a derivative congenic line with a refined CAST-derived Mpkd1-2 interval and demonstrated its dominantly-acting disease-modulating effects (e.g., 4.2-fold increase in total cyst area; p<0.001). The relative strength of these effects allowed the use of recombinants from these crosses to fine map the Mpkd2 effects to a <14 Mbp interval that contains 92 RefSeq sequences. One of them corresponds to the previously described positional Mpkd2 candidate gene, Kif12. Among the positional Mpkd2 candidates, only expression of Kif12 correlates strongly with the expression pattern of Cys1 across multiple anatomical nephron structures and developmental time points. Also, we demonstrate that Kif12 encodes a primary cilium-associated protein. Together, these data provide genetic and informatic validation of the predicted renal cystic disease-modulating effects of Mpkd1-3 loci and implicate Kif12 as the candidate locus for Mpkd2. PMID:26295839

  12. The grain Hardness locus characterized in a diverse wheat panel (Triticum aestivum L.) adapted to the central part of the Fertile Crescent: genetic diversity, haplotype structure, and phylogeny.

    PubMed

    Shaaf, Salar; Sharma, Rajiv; Baloch, Faheem Shehzad; Badaeva, Ekaterina D; Knüpffer, Helmut; Kilian, Benjamin; Özkan, Hakan

    2016-06-01

    Wheat belongs to the most important crops domesticated in the Fertile Crescent. In this region, fortunately, locally adapted wheat landraces are still present in farmers' fields. This material might be of immense value for future breeding programs. However, especially wheat germplasm adapted to the central part of the Fertile Crescent has been poorly characterized for allelic variation at key loci of agricultural importance. Grain hardness is an important trait influencing milling and baking quality of wheat. This trait is mainly determined by three tightly linked genes, namely, Puroindoline a (Pina), Puroindoline b (Pinb), and Grain softness protein-1 (Gsp-1), at the Hardness (Ha-D) locus on chromosome 5DS. To investigate genetic diversity and haplotype structure, we resequenced 96 diverse wheat lines at Pina-D1, Pinb-D1, Gsp-A1, Gsp-B1, and Gsp-D1. Three types of null alleles were identified using diagnostic primers: the first type was a multiple deletion of Pina-D1, Pinb-D1, and Gsp-D1 (Pina-D1k), the second was a Pina-D1 deletion (Pina-D1b); and the third type was a deletion of Gsp-D1, representing a novel null allele designated here as Gsp-D1k. Sequence analysis resulted in four allelic variants at Pinb-D1 and five at Gsp-A1, among them Gsp-A1-V was novel. Pina-D1, Gsp-B1 and Gsp-D1 sequences were monomorphic. Haplotype and phylogenetic analysis suggested that (1) bread wheat inherited its 5DS telomeric region probably from wild diploid Ae. tauschii subsp. tauschii found within an area from Transcaucasia to Caspian Iran; and that (2) the Ha-A and Ha-B homoeoloci were most closely related to sequences of wild tetraploid T. dicocco ides. This study provides a good overview of available genetic diversity at Pina-D1, Pinb-D1, and Gsp-1, which can be exploited to extend the range of grain texture traits in wheat. PMID:26898967

  13. Meeting Report: International Symposium on the Genetics of Aging and Life History II

    PubMed Central

    Lee, Seung‐Jae V.; Nam, Hong Gil

    2015-01-01

    The second International Symposium on the Genetics of Aging and Life History was held at the campus of Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea, from May 14 to 16, 2014. Many leading scientists in the field of aging research from all over the world contributed to the symposium by attending and presenting their recent work and thoughts. The aim of the symposium was to stimulate international collaborations and interactions among scientists who work on the biology of aging. In the symposium, the most recent and exciting work on aging research was presented, covering a wide range of topics, including the genetics of aging, age‐associated diseases, and cellular senescence. The work was conducted in various organisms, including C. elegans, mice, plants, and humans. Topics covered in the symposium stimulated discussion of novel directions for future research on aging. The meeting ended with a commitment for the third International Symposium on the Genetics of Aging and Life History, which will be held in 2016. PMID:26115541

  14. Meeting Report: International Symposium on the Genetics of Aging and Life History II.

    PubMed

    Artan, Murat; Hwang, Ara B; Lee, Seung V; Nam, Hong Gil

    2015-06-01

    The second International Symposium on the Genetics of Aging and Life History was held at the campus of Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea, from May 14 to 16, 2014. Many leading scientists in the field of aging research from all over the world contributed to the symposium by attending and presenting their recent work and thoughts. The aim of the symposium was to stimulate international collaborations and interactions among scientists who work on the biology of aging. In the symposium, the most recent and exciting work on aging research was presented, covering a wide range of topics, including the genetics of aging, age-associated diseases, and cellular senescence. The work was conducted in various organisms, includingC. elegans, mice, plants, and humans. Topics covered in the symposium stimulated discussion of novel directions for future research on aging. The meeting ended with a commitment for the third International Symposium on the Genetics of Aging and Life History, which will be held in 2016. PMID:26115541

  15. Phenotyping of individual pancreatic islets locates genetic defects in stimulus secretion coupling to Niddm1i within the major diabetes locus in GK rats.

    PubMed

    Lin, J M; Ortsäter, H; Fakhrai-Rad, H; Galli, J; Luthman, H; Bergsten, P

    2001-12-01

    The major diabetes quantitative trait locus (Niddm1), which segregates in crosses between GK rats affected with spontaneous type 2-like diabetes and normoglycemic F344 rats, encodes at least two different diabetes susceptibility genes. Congenic strains for the two subloci (Niddm1f and Niddm1i) have been generated by transfer of GK alleles onto the genome of F344 rats. Whereas the Niddm1f phenotype implicated insulin resistance, the Niddm1i phenotype displayed diabetes related to insulin deficiency. Individual islets from 16-week-old congenic rats were characterized for insulin release and oxygen tension (pO(2)). In the presence of 3 mmol/l glucose, insulin release from Niddm1f and Niddm1i islets was approximately 5 pmol. g(-1). s(-1) and pO(2) was 120 mmHg. Similar recordings were obtained from GK and F344 islets. When glucose was raised to 11 mmol/l, insulin release increased significantly in Niddm1f and F344 islets but was essentially unchanged in islets from GK and Niddm1i. The high glucose concentration lowered pO(2) to the same extent in islets from all strains. Addition of 1 mmol/l tolbutamide to the perifusion medium further increased pulsatile insulin release threefold in all islets. The pulse frequency was approximately 0.4 min(-1). alpha-Ketoisocaproate (11 mmol/l) alone increased pulsatile insulin release eightfold in islets from Niddm1f, Niddm1i, and control F344 rats but had no effect on insulin release from GK islets. These secretory patterns in response to alpha-ketoisocaproate were paralleled by reduction of pO(2) in Niddm1f, Niddm1i, and control F344 islets and no change of pO(2) in GK islets. The results demonstrate that Niddm1i carries alleles of gene(s) that reduce glucose-induced insulin release and that are amenable to molecular identification by genetic fine mapping. PMID:11723056

  16. Spatial Variation in Genetic Diversity and Natural Selection on the Thrombospondin-Related Adhesive Protein Locus of Plasmodium vivax (PvTRAP)

    PubMed Central

    Kosuwin, Rattiporn; Putaporntip, Chaturong; Tachibana, Hiroshi; Jongwutiwes, Somchai

    2014-01-01

    Thrombospondin-related adhesive protein (TRAP) of malaria parasites is essential for sporozoite motility and invasions into mosquito’s salivary gland and vertebrate’s hepatocyte; thereby, it is a promising target for pre-erythrocytic vaccine. TRAP of Plasmodium vivax (PvTRAP) exhibits sequence heterogeneity among isolates, an issue relevant to vaccine development. To gain insights into variation in the complete PvTRAP sequences of parasites in Thailand, 114 vivax malaria patients were recruited in 2006–2007 from 4 major endemic provinces bordering Myanmar (Tak in the northwest, n = 30 and Prachuap Khirikhan in the southwest, n = 25), Cambodia (Chanthaburi in the east, n = 29) and Malaysia (Yala and Narathiwat in the south, n = 30). In total, 26 amino acid substitutions were detected and 9 of which were novel, resulting in 44 distinct haplotypes. Haplotype and nucleotide diversities were lowest in southern P. vivax population while higher levels of diversities were observed in other populations. Evidences of positive selection on PvTRAP were demonstrated in domains II and IV and purifying selection in domains I, II and VI. Genetic differentiation was significant between each population except that between populations bordering Myanmar where transmigration was common. Regression analysis of pairwise linearized Fst and geographic distance suggests that P. vivax populations in Thailand have been isolated by distance. Sequence diversity of PvTRAP seems to be temporally stable over one decade in Tak province based on comparison of isolates collected in 1996 (n = 36) and 2006–2007. Besides natural selection, evidences of intragenic recombination have been supported in this study that could maintain and further generate diversity in this locus. It remains to be investigated whether amino acid substitutions in PvTRAP could influence host immune responses although several predicted variant T cell epitopes drastically altered the epitope scores

  17. Host Genetic Control of the Microbiome in Humans and Maise or Relating Host Genetic Variation to the Microbiome (2011 JGI User Meeting)

    ScienceCinema

    Ley, Ruth [Cornell University

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Ruth Ley of Cornell University gives a presentation on "Relating Host Genetic Variation to the Microbiome" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.

  18. Host Genetic Control of the Microbiome in Humans and Maise or Relating Host Genetic Variation to the Microbiome (2011 JGI User Meeting)

    SciTech Connect

    Ley, Ruth

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Ruth Ley of Cornell University gives a presentation on "Relating Host Genetic Variation to the Microbiome" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.

  19. Genetic variation of single nucleotide polymorphisms identified at the mating type locus correlates with form-specific disease phenotype in the barley net blotch fungus Pyrenophora teres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mating-type (MAT) locus-specific single nucleotide polymorphisms (SNPs) have been shown to be sufficient for conventional PCR-based differentiation of Pyrenophora teres f. teres (Ptt) and P. teres f. maculata (Ptm), the cause of the net and spot form, respectively, of barley net blotch (Lu et al. 20...

  20. Genetic variation at the tumour virus B locus in commercial and laboratory chicken populations assessed by a medium-throughput or a high-throughput assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tumor virus B (TVB) locus transcribes three major alleles, TVB*S1, TVB*S3, and TVB*R. TVB*S1 encodes a cellular receptor mediating infection by three subgroups of avian leukosis virus (B, D, and E). TVB*S3 encodes a receptor for two subgroups (B and D), and TVB*R encodes a dysfunctional receptor...

  1. Genetic Variation at Exon 2 of the MHC Class II DQB Locus in Blue Whale (Balaenoptera musculus) from the Gulf of California.

    PubMed

    Moreno-Santillán, Diana D; Lacey, Eileen A; Gendron, Diane; Ortega, Jorge

    2016-01-01

    The genes of the Major Histocompatibility Complex (MHC) play an important role in the vertebrate immune response and are among the most polymorphic genes known in vertebrates. In some marine mammals, MHC genes have been shown to be characterized by low levels of polymorphism compared to terrestrial taxa; this reduction in variation is often explained as a result of lower pathogen pressures in marine habitats. To determine if this same reduction in variation applies to the migratory population of blue whales (Balaenoptera musculus) that occurs in the Gulf of California, we genotyped a 172 bp fragment of exon 2 of the MHC Class II DQB locus for 80 members of this population. Twenty-two putatively functional DQB allotypes were identified, all of which were homologous with DQB sequences from other cetacean species. Up to 5 putative alleles per individual were identified, suggesting that gene duplication has occurred at this locus. Rates of non-synonymous to synonymous substitutions (ω) and maximum likelihood analyses of models of nucleotide variation provided potential evidence of ongoing positive selection at this exon. Phylogenetic analyses of DQB alleles from B. musculus and 16 other species of cetaceans revealed trans-specific conservation of MHC variants, suggesting that selection has acted on this locus over prolonged periods of time. Collectively our findings reveal that immunogenic variation in blue whales is comparable to that in terrestrial mammals, thereby providing no evidence that marine taxa are subject to reduced pathogen-induced selective pressures. PMID:26761201

  2. Genetic Variation at Exon 2 of the MHC Class II DQB Locus in Blue Whale (Balaenoptera musculus) from the Gulf of California

    PubMed Central

    Moreno-Santillán, Diana D.; Lacey, Eileen A.; Gendron, Diane; Ortega, Jorge

    2016-01-01

    The genes of the Major Histocompatibility Complex (MHC) play an important role in the vertebrate immune response and are among the most polymorphic genes known in vertebrates. In some marine mammals, MHC genes have been shown to be characterized by low levels of polymorphism compared to terrestrial taxa; this reduction in variation is often explained as a result of lower pathogen pressures in marine habitats. To determine if this same reduction in variation applies to the migratory population of blue whales (Balaenoptera musculus) that occurs in the Gulf of California, we genotyped a 172 bp fragment of exon 2 of the MHC Class II DQB locus for 80 members of this population. Twenty-two putatively functional DQB allotypes were identified, all of which were homologous with DQB sequences from other cetacean species. Up to 5 putative alleles per individual were identified, suggesting that gene duplication has occurred at this locus. Rates of non-synonymous to synonymous substitutions (ω) and maximum likelihood analyses of models of nucleotide variation provided potential evidence of ongoing positive selection at this exon. Phylogenetic analyses of DQB alleles from B. musculus and 16 other species of cetaceans revealed trans-specific conservation of MHC variants, suggesting that selection has acted on this locus over prolonged periods of time. Collectively our findings reveal that immunogenic variation in blue whales is comparable to that in terrestrial mammals, thereby providing no evidence that marine taxa are subject to reduced pathogen-induced selective pressures. PMID:26761201

  3. The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Toward a Therapeutic Approach

    PubMed Central

    Korf, Bruce; Ahmadian, Reza; Allanson, Judith; Aoki, Yoko; Bakker, Annette; Wright, Emma Burkitt; Denger, Brian; Elgersma, Ype; Gelb, Bruce D.; Gripp, Karen W.; Kerr, Bronwyn; Kontaridis, Maria; Lazaro, Conxi; Linardic, Corinne; Lozano, Reymundo; MacRae, Calum A.; Messiaen, Ludwine; Mulero-Navarro, Sonia; Neel, Benjamin; Plotkin, Scott; Rauen, Katherine A.; Roberts, Amy; Silva, Alcino J.; Sittampalam, Sitta G.; Zhang, Chao; Schoyer, Lisa

    2015-01-01

    “The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach” was held at the Renaissance Orlando at SeaWorld Hotel (August 2–4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regarding their hopes and expectations for therapeutic advances. In keeping with the theme on therapeutic development, the sessions followed a progression from description of the phenotype and definition of therapeutic endpoints, to definition of genomic changes, to identification of therapeutic targets in the RAS/MAPK pathway, to preclinical drug development and testing, to clinical trials. These proceedings will review the major points of discussion. PMID:25900621

  4. The third international meeting on genetic disorders in the RAS/MAPK pathway: towards a therapeutic approach.

    PubMed

    Korf, Bruce; Ahmadian, Reza; Allanson, Judith; Aoki, Yoko; Bakker, Annette; Wright, Emma Burkitt; Denger, Brian; Elgersma, Ype; Gelb, Bruce D; Gripp, Karen W; Kerr, Bronwyn; Kontaridis, Maria; Lazaro, Conxi; Linardic, Corinne; Lozano, Reymundo; MacRae, Calum A; Messiaen, Ludwine; Mulero-Navarro, Sonia; Neel, Benjamin; Plotkin, Scott; Rauen, Katherine A; Roberts, Amy; Silva, Alcino J; Sittampalam, Sitta G; Zhang, Chao; Schoyer, Lisa

    2015-08-01

    "The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach" was held at the Renaissance Orlando at SeaWorld Hotel (August 2-4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regarding their hopes and expectations for therapeutic advances. In keeping with the theme on therapeutic development, the sessions followed a progression from description of the phenotype and definition of therapeutic endpoints, to definition of genomic changes, to identification of therapeutic targets in the RAS/MAPK pathway, to preclinical drug development and testing, to clinical trials. These proceedings will review the major points of discussion. PMID:25900621

  5. A combined functional and structural genomics approach identified an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic locus in cotton (Gossypium hirsutum L.)

    PubMed Central

    2011-01-01

    Background Cotton fiber length is an important quality attribute to the textile industry and longer fibers can be more efficiently spun into yarns to produce superior fabrics. There is typically a negative correlation between yield and fiber quality traits such as length. An understanding of the regulatory mechanisms controlling fiber length can potentially provide a valuable tool for cotton breeders to improve fiber length while maintaining high yields. The cotton (Gossypium hirsutum L.) fiber mutation Ligon lintless-2 is controlled by a single dominant gene (Li2) that results in significantly shorter fibers than a wild-type. In a near-isogenic state with a wild-type cotton line, Li2 is a model system with which to study fiber elongation. Results Two near-isogenic lines of Ligon lintless-2 (Li2) cotton, one mutant and one wild-type, were developed through five generations of backcrosses (BC5). An F2 population was developed from a cross between the two Li2 near-isogenic lines and used to develop a linkage map of the Li2 locus on chromosome 18. Five simple sequence repeat (SSR) markers were closely mapped around the Li2 locus region with two of the markers flanking the Li2 locus at 0.87 and 0.52 centimorgan. No apparent differences in fiber initiation and early fiber elongation were observed between the mutant ovules and the wild-type ones. Gene expression profiling using microarrays suggested roles of reactive oxygen species (ROS) homeostasis and cytokinin regulation in the Li2 mutant phenotype. Microarray gene expression data led to successful identification of an EST-SSR marker (NAU3991) that displayed complete linkage to the Li2 locus. Conclusions In the field of cotton genomics, we report the first successful conversion of gene expression data into an SSR marker that is associated with a genomic region harboring a gene responsible for a fiber trait. The EST-derived SSR marker NAU3991 displayed complete linkage to the Li2 locus on chromosome 18 and resided in a

  6. Pathways and barriers to genetic testing and screening: Molecular genetics meets the high-risk family. Final report

    SciTech Connect

    Duster, T.

    1998-11-01

    The proliferation of genetic screening and testing is requiring increasing numbers of Americans to integrate genetic knowledge and interventions into their family life and personal experience. This study examines the social processes that occur as families at risk for two of the most common autosomal recessive diseases, sickle cell disease (SC) and cystic fibrosis (CF), encounter genetic testing. Each of these diseases is found primarily in a different ethnic/racial group (CF in Americans of North European descent and SC in Americans of West African descent). This has permitted them to have a certain additional lens on the role of culture in integrating genetic testing into family life and reproductive planning. A third type of genetic disorder, the thalassemias was added to the sample in order to extent the comparative frame and to include other ethnic and racial groups.

  7. Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine.

    PubMed

    Feechan, Angela; Anderson, Claire; Torregrosa, Laurent; Jermakow, Angelica; Mestre, Pere; Wiedemann-Merdinoglu, Sabine; Merdinoglu, Didier; Walker, Amanda R; Cadle-Davidson, Lance; Reisch, Bruce; Aubourg, Sebastien; Bentahar, Nadia; Shrestha, Bipna; Bouquet, Alain; Adam-Blondon, Anne-Françoise; Thomas, Mark R; Dry, Ian B

    2013-11-01

    The most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality. The wild North American grapevine species Muscadinia rotundifolia was recognized as early as 1889 to be resistant to both powdery and downy mildew. We have now mapped resistance to these two mildew pathogens in M. rotundifolia to a single locus on chromosome 12 that contains a family of seven TIR-NB-LRR genes. We further demonstrate that two highly homologous (86% amino acid identity) members of this gene family confer strong resistance to these unrelated pathogens following genetic transformation into susceptible Vitis vinifera winegrape cultivars. These two genes, designated resistance to Uncinula necator (MrRUN1) and resistance to Plasmopara viticola (MrRPV1) are the first resistance genes to be cloned from a grapevine species. Both MrRUN1 and MrRPV1 were found to confer resistance to multiple powdery and downy mildew isolates from France, North America and Australia; however, a single powdery mildew isolate collected from the south-eastern region of North America, to which M. rotundifolia is native, was capable of breaking MrRUN1-mediated resistance. Comparisons of gene organization and coding sequences between M. rotundifolia and the cultivated grapevine V. vinifera at the MrRUN1/MrRPV1 locus revealed a high level of synteny, suggesting that the TIR-NB-LRR genes at this locus share a common ancestor. PMID:24033846

  8. Genetic recombination at the human RH locus: A family study of the red-cell Evans phenotype reveals a transfer of exons 2-6 from the RHD to the RHCE gene

    SciTech Connect

    Huang, C.H.; Chen, Y.; Reid, M.; Ghosh, S.

    1996-10-01

    The human RH locus appears to consist of two structural genes, D and CE, which map on the short arm p34-36 of chromosome 1 and specify a most complex system of blood-group genetic polymorphisms. Here we describe a family study of the Evans (also known as {open_quotes}D..{open_quotes}) phenotype, a codominant trait associated with both qualitative and quantitative changes in D-antigen expression. A cataract-causing mutation was also inherited in this family and was apparently cotransmitted with Evans, suggesting a chromosomal linkage of these two otherwise unrelated traits. Southern blot analysis and allele-specific PCR showed the linkage of Evans with a SphI RFLP marker and the presence of a hybrid gene in the RH locus. To delineate the pattern of gene expression, the composition and structure of Rh-polypeptide transcripts were characterized by reverse transcriptase-PCR and nucleotide sequencing. This resulted in the identification of a novel Rh transcript expressed only in the Evans-positive erythroid cells. Sequence analysis showed that the transcript maintained a normal open reading frame but occurred as a CE-D-CE composite in which exons 2-6 of the CE gene were replaced by the homologous counterpart of the D gene. This hybrid gene was predicted to encode a CE-D-CE fusion protein whose surface expression correlates with the Evans phenotype. The mode and consequence of such a recombination event suggest the occurrence, in the RH locus, of a segmental DNA transfer via the mechanism of gene conversion. 31 refs., 6 figs., 1 tab.

  9. The CLDN5 locus may be involved in the vulnerability to schizophrenia.

    PubMed

    Sun, Z-Y; Wei, J; Xie, L; Shen, Y; Liu, S-Z; Ju, G-Z; Shi, J-P; Yu, Y-Q; Zhang, X; Xu, Q; Hemmings, G P

    2004-09-01

    The present study was designed to detect three single nucleotide polymorphisms (SNPs) located on 22q11 that was thought as being of particularly importance for genetic research into schizophrenia. We recruited a total of 176 Chinese family trios of Han descent, consisting of mothers, fathers and affected offspring with schizophrenia for the genetic analysis. The transmission disequilibrium test (TDT) showed that of three SNPs, rs10314 in the 3'-untranslated region of the CLDN5 locus was associated with schizophrenia (chi(2) = 4.75, P = 0.029). The other two SNPs, rs1548359 present in the CDC45L locus centromeric of rs10314 and rs739371 in the 5'-flanking region of the CLDN5 locus, did not show such an association. The global chi-square (chi(2)) test showed that the 3-SNP haplotype system was not associated with schizophrenia although the 1-df test for individual haplotypes showed that the rs1548359(C)-rs10314(G)-rs739371(C) haplotype was excessively non-transmitted (chi(2) = 5.32, P = 0.02). Because the claudin proteins are a major component for barrier-forming tight junctions that could play a crucial role in response to changing natural, physiological and pathological conditions, the CLDN5 association with schizophrenia may be an important clue leading to look into a meeting point of genetic and environmental factors. PMID:15363474

  10. Genetic Characterization of Resistance to Wheat Stem Rust Race TTKSK in Landrace and Wild Barley Accessions Identifies the rpg4/Rpg5 Locus.

    PubMed

    Mamo, Bullo Erena; Smith, Kevin P; Brueggeman, Robert S; Steffenson, Brian J

    2015-01-01

    Race TTKSK of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici) threatens the production of wheat and barley worldwide because of its broad-spectrum virulence on many widely grown cultivars. Sources of resistance against race TTKSK were recently identified in several barley landraces (Hordeum vulgare subsp. vulgare) and wild barley accessions (H. vulgare subsp. spontaneum). The objectives of this study were to characterize the inheritance of resistance to wheat stem rust race TTKSK in four barley landraces (Hv501, Hv545, Hv602, and Hv612) and two wild barley (WBDC213 and WBDC345) accessions, map the resistance genes, and determine the allelic relationships among the genes in these accessions and the previously described rpg4/Rpg5 locus. Resistant accessions were crossed with the susceptible cv. Steptoe and resulting F3 populations were evaluated for resistance to race TTKSK at the seedling stage. Segregation of F3 families in populations involving the resistance sources of Hv501, Hv545, Hv612, WBDC213, and WBDC345 fit a 1:2:1 ratio for homozygous resistant (HR)/segregating (SEG)/homozygous susceptible (HS) progenies (with χ2=2.27 to 5.87 and P=0.053 to 0.321), indicating that a single gene confers resistance to race TTKSK. Segregation of F3 families in cross Steptoe/Hv602 did not fit a 1:2:1 ratio (HR/SEG/HS of 20:47:43 with χ2=11.95 and P=0.003), indicating that more than one gene is involved in imparting resistance to race TTKSK. Bulked segregant analysis using >1,500 single-nucleotide polymorphism markers positioned a resistance locus in all six populations on chromosome 5HL in very close proximity to the known location of the rpg4/Rpg5 complex locus. Allelism tests were conducted by making crosses among resistant accessions Hv501, Hv545, and Hv612 and also Q21861 with the rpg4/Rpg5 complex. No segregation was observed in F2 families inoculated with race TTKSK, demonstrating that all Hv lines carry the same allele for resistance and that it

  11. Genetic diversity of Sclerotinia trifoliorum infecting chickpea based on mycelial compatibility grouping, rDNA introns and multi-locus haplotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia trifoliorum is recently reported as a new pathogen of chickpea in North America. The diversity and genetic structure of this heterothallic fungus is poorly understood. This study was designed to investigate the genetic structure and diversity of the pathogen. A collection of 133 isolates...

  12. Physical structure of an endopolygalacturonase locus in peach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The melting flesh trait and the freestone trait are genetically linked to the same single locus in peach. Several studies have associated an endopolygalacturonase gene with this locus, either a deletion of endopolygalacturonase associated with the non-melting/clingstone phenotype or changes in the ...

  13. Chimerization at the AQP2-AQP3 locus is the genetic basis of melarsoprol-pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates.

    PubMed

    Graf, Fabrice E; Baker, Nicola; Munday, Jane C; de Koning, Harry P; Horn, David; Mäser, Pascal

    2015-08-01

    Aquaglyceroporin-2 is a known determinant of melarsoprol-pentamidine cross-resistance in Trypanosoma brucei brucei laboratory strains. Recently, chimerization at the AQP2-AQP3 tandem locus was described from melarsoprol-pentamidine cross-resistant Trypanosoma brucei gambiense isolates from sleeping sickness patients in the Democratic Republic of the Congo. Here, we demonstrate that reintroduction of wild-type AQP2 into one of these isolates fully restores drug susceptibility while expression of the chimeric AQP2/3 gene in aqp2-aqp3 null T. b. brucei does not. This proves that AQP2-AQP3 chimerization is the cause of melarsoprol-pentamidine cross-resistance in the T. b. gambiense isolates. PMID:26042196

  14. Genetic Control of a Central Pattern Generator: Rhythmic Oromotor Movement in Mice Is Controlled by a Major Locus near Atp1a2

    PubMed Central

    Boughter, John D.; Mulligan, Megan K.; St. John, Steven J.; Tokita, Kenichi; Lu, Lu; Heck, Detlef H.; Williams, Robert W.

    2012-01-01

    Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable difference in rates (h2≥0.62) and a corresponding 20% difference in interlick interval (mean ± SEM = 116.3±1 vs 95.4±1.1 ms). We systematically quantified motor output in these strains, their F1 hybrids, and a set of 64 BXD progeny strains. The mean primary interlick interval (MPI) varied continuously among progeny strains. We detected a significant quantitative trait locus (QTL) for a CPG controlling lick rate on Chr 1 (Lick1), and a suggestive locus on Chr 10 (Lick10). Linkage was verified by testing of B6.D2-1D congenic stock in which a segment of Chr 1 of the D2 strain was introgressed onto the B6 parent. The Lick1 interval on distal Chr 1 contains several strong candidate genes. One of these is a sodium/potassium pump subunit (Atp1a2) with widespread expression in astrocytes, as well as in a restricted population of neurons. Both this subunit and the entire Na+/K+-ATPase molecule have been implicated in rhythmogenesis for respiration and locomotion. Sequence variants in or near Apt1a2 strongly modulate expression of the cognate mRNA in multiple brain regions. This gene region has recently been sequenced exhaustively and we have cataloged over 300 non-coding and synonymous mutations segregating among BXD strains, one or more of which is likely to contribute to differences in central pattern generator tempo. PMID:22675444

  15. Genetics and Molecular Mapping of Black Rot Resistance Locus Xca1bc on Chromosome B-7 in Ethiopian Mustard (Brassica carinata A. Braun).

    PubMed

    Sharma, Brij Bihari; Kalia, Pritam; Yadava, Devendra Kumar; Singh, Dinesh; Sharma, Tilak Raj

    2016-01-01

    Black rot caused by Xanthomonas campestris pv. campestris (Pam.) Dowson is the most destructive disease of cauliflower causing huge loss to the farmers throughout the world. Since there are limited sources of resistance to black rot in B. oleracea (C genome Brassica), exploration of A and B genomes of Brassica was planned as these were thought to be potential reservoirs of black rot resistance gene(s). In our search for new gene(s) for black rot resistance, F2 mapping population was developed in Brassica carinata (BBCC) by crossing NPC-17, a susceptible genotype with NPC-9, a resistant genotype. Out of 364 Intron length polymorphic markers and microsatellite primers used in this study, 41 distinguished the parental lines. However, resistant and susceptible bulks could be distinguished by three markers At1g70610, SSR Na14-G02 and At1g71865 which were used for genotyping of F2 mapping population. These markers were placed along the resistance gene, according to order, covering a distance of 36.30 cM. Intron length polymorphic markers At1g70610 and At1g71865 were found to be linked to black rot resistance locus (Xca1bc) at 6.2 and 12.8 cM distance, respectively. This is the first report of identification of markers linked to Xca1bc locus in Brassica carinata on B-7 linkage group. Intron length polymorphic markers provided a novel and attractive option for marker assisted selection due to high cross transferability and cost effectiveness for marker assisted alien gene introgression into cauliflower. PMID:27023128

  16. Genetics and Molecular Mapping of Black Rot Resistance Locus Xca1bc on Chromosome B-7 in Ethiopian Mustard (Brassica carinata A. Braun)

    PubMed Central

    Sharma, Brij Bihari; Kalia, Pritam; Yadava, Devendra Kumar; Singh, Dinesh; Sharma, Tilak Raj

    2016-01-01

    Black rot caused by Xanthomonas campestris pv. campestris (Pam.) Dowson is the most destructive disease of cauliflower causing huge loss to the farmers throughout the world. Since there are limited sources of resistance to black rot in B. oleracea (C genome Brassica), exploration of A and B genomes of Brassica was planned as these were thought to be potential reservoirs of black rot resistance gene(s). In our search for new gene(s) for black rot resistance, F2 mapping population was developed in Brassica carinata (BBCC) by crossing NPC-17, a susceptible genotype with NPC-9, a resistant genotype. Out of 364 Intron length polymorphic markers and microsatellite primers used in this study, 41 distinguished the parental lines. However, resistant and susceptible bulks could be distinguished by three markers At1g70610, SSR Na14-G02 and At1g71865 which were used for genotyping of F2 mapping population. These markers were placed along the resistance gene, according to order, covering a distance of 36.30 cM. Intron length polymorphic markers At1g70610 and At1g71865 were found to be linked to black rot resistance locus (Xca1bc) at 6.2 and 12.8 cM distance, respectively. This is the first report of identification of markers linked to Xca1bc locus in Brassica carinata on B-7 linkage group. Intron length polymorphic markers provided a novel and attractive option for marker assisted selection due to high cross transferability and cost effectiveness for marker assisted alien gene introgression into cauliflower. PMID:27023128

  17. Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Hazen, Sam

    2013-03-01

    Sam Hazen of the University of Massachusetts on "Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  18. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction.

    PubMed

    Yang, Wei; Ng, Fu Liang; Chan, Kenneth; Pu, Xiangyuan; Poston, Robin N; Ren, Meixia; An, Weiwei; Zhang, Ruoxin; Wu, Jingchun; Yan, Shunying; Situ, Haiteng; He, Xinjie; Chen, Yequn; Tan, Xuerui; Xiao, Qingzhong; Tucker, Arthur T; Caulfield, Mark J; Ye, Shu

    2016-07-01

    Genome-wide association studies have revealed an association between coronary heart disease (CHD) and genetic variation on chromosome 13q34, with the lead single nucleotide polymorphism rs4773144 residing in the COL4A2 gene in this genomic region. We investigated the functional effects of this genetic variant. Analyses of primary cultures of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) from different individuals showed a difference between rs4773144 genotypes in COL4A2 and COL4A1 expression levels, being lowest in the G/G genotype, intermediate in A/G and highest in A/A. Chromatin immunoprecipitation followed by allelic imbalance assays of primary cultures of SMCs and ECs that were of the A/G genotype revealed that the G allele had lower transcriptional activity than the A allele. Electrophoretic mobility shift assays and luciferase reporter gene assays showed that a short DNA sequence encompassing the rs4773144 site interacted with a nuclear protein, with lower efficiency for the G allele, and that the G allele sequence had lower activity in driving reporter gene expression. Analyses of cultured SMCs from different individuals demonstrated that cells of the G/G genotype had higher apoptosis rates. Immunohistochemical and histological examinations of ex vivo atherosclerotic coronary arteries from different individuals disclosed that atherosclerotic plaques with the G/G genotype had lower collagen IV abundance and thinner fibrous cap, a hallmark of unstable, rupture-prone plaques. A study of a cohort of patients with angiographically documented coronary artery disease showed that patients of the G/G genotype had higher rates of myocardial infarction, a phenotype often caused by plaque rupture. These results indicate that the CHD-related genetic variant at the COL4A2 locus affects COL4A2/COL4A1 expression, SMC survival, and atherosclerotic plaque stability, providing a mechanistic explanation for the association between the genetic variant and CHD

  19. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction

    PubMed Central

    Pu, Xiangyuan; Ren, Meixia; An, Weiwei; Zhang, Ruoxin; Yan, Shunying; Situ, Haiteng; He, Xinjie; Chen, Yequn; Tan, Xuerui; Xiao, Qingzhong; Tucker, Arthur T.; Caulfield, Mark J.; Ye, Shu

    2016-01-01

    Genome-wide association studies have revealed an association between coronary heart disease (CHD) and genetic variation on chromosome 13q34, with the lead single nucleotide polymorphism rs4773144 residing in the COL4A2 gene in this genomic region. We investigated the functional effects of this genetic variant. Analyses of primary cultures of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) from different individuals showed a difference between rs4773144 genotypes in COL4A2 and COL4A1 expression levels, being lowest in the G/G genotype, intermediate in A/G and highest in A/A. Chromatin immunoprecipitation followed by allelic imbalance assays of primary cultures of SMCs and ECs that were of the A/G genotype revealed that the G allele had lower transcriptional activity than the A allele. Electrophoretic mobility shift assays and luciferase reporter gene assays showed that a short DNA sequence encompassing the rs4773144 site interacted with a nuclear protein, with lower efficiency for the G allele, and that the G allele sequence had lower activity in driving reporter gene expression. Analyses of cultured SMCs from different individuals demonstrated that cells of the G/G genotype had higher apoptosis rates. Immunohistochemical and histological examinations of ex vivo atherosclerotic coronary arteries from different individuals disclosed that atherosclerotic plaques with the G/G genotype had lower collagen IV abundance and thinner fibrous cap, a hallmark of unstable, rupture-prone plaques. A study of a cohort of patients with angiographically documented coronary artery disease showed that patients of the G/G genotype had higher rates of myocardial infarction, a phenotype often caused by plaque rupture. These results indicate that the CHD-related genetic variant at the COL4A2 locus affects COL4A2/COL4A1 expression, SMC survival, and atherosclerotic plaque stability, providing a mechanistic explanation for the association between the genetic variant and CHD

  20. DNA Meets DSM: The Growing Importance of Genetic Syndromes in Dual Diagnosis.

    ERIC Educational Resources Information Center

    Dykens, Elisabeth M.

    1996-01-01

    This article notes a current de-emphasis on genetic syndromes in published articles concerning mental retardation despite major deoxyribonucleic acid (DNA) advances in determining mental retardation causes. The article calls for incorporation of these genetic advances into behavioral research of mental retardation, especially as reflected in the…

  1. Genetic relatedness of Clostridium difficile isolates from various origins determined by triple-locus sequence analysis based on toxin regulatory genes tcdC, tcdR, and cdtR.

    PubMed

    Bouvet, Philippe J M; Popoff, Michel R

    2008-11-01

    A triple-locus nucleotide sequence analysis based on toxin regulatory genes tcdC, tcdR and cdtR was initiated to assess the sequence variability of these genes among Clostridium difficile isolates and to study the genetic relatedness between isolates. A preliminary investigation of the variability of the tcdC gene was done with 57 clinical and veterinary isolates. Twenty-three isolates representing nine main clusters were selected for tcdC, tcdR, and cdtR analysis. The numbers of alleles found for tcdC, tcdR and cdtR were nine, six, and five, respectively. All strains possessed the cdtR gene except toxin A-negative toxin B-positive variants. All but one binary toxin CDT-positive isolate harbored a deletion (>1 bp) in the tcdC gene. The combined analyses of the three genes allowed us to distinguish five lineages correlated with the different types of deletion in tcdC, i.e., 18 bp (associated or not with a deletion at position 117), 36 bp, 39 bp, and 54 bp, and with the wild-type tcdC (no deletion). The tcdR and tcdC genes, though located within the same pathogenicity locus, were found to have evolved separately. Coevolution of the three genes was noted only with strains harboring a 39-bp or a 54-bp deletion in tcdC that formed two homogeneous, separate divergent clusters. Our study supported the existence of the known clones (PCR ribotype 027 isolates and toxin A-negative toxin B-positive C. difficile variants) and evidence for clonality of isolates with a 39-bp deletion (toxinotype V, PCR ribotype 078) that are frequently isolated worldwide from human infections and from food animals. PMID:18832125

  2. Genetic Diversity of Neisseria meningitidis Serogroup C ST-4821 in China Based on Multiple-Locus Variable Number Tandem Repeat Analysis

    PubMed Central

    Shan, Xiaoying; Zhang, Ji; Zhou, Haijian; Zhu, Bingqing; Xu, Li; Shao, Zhujun; Jiang, Baofa

    2014-01-01

    Neisseria meningitidis sequence type (ST)-4821 was first reported in China in 2003, and a new hyper-virulent lineage has been designated as the ST-4821 complex. A large number of N. meningitidis ST-4821 strains have been identified in China since 2003; however, the microevolution characteristics of this complex are unclear. Different combinations of variable number of tandem repeats (VNTR) loci were used in multiple-locus VNTR analysis (MLVA) to analyze 118 N. meningitidis serogroup C ST-4821 strains isolated from seventeen provinces between 2003 and 2012. Additionally, MLVA with five VNTR loci was performed due to its high discriminatory power. One hundred and eighteen isolates were found to comprise 112 subtypes based on MLVA, and 16 outbreak-associated strains were clustered into one group. These data indicate a high level of diversity for N. meningitidis ST-4821 due to microevolution in the last decade. In addition, the results revealed high similarity between isolates from the same geographic origins, which is helpful when monitoring the spread of N. meningitidis serogroup C ST-4821 and will provide valuable information for the control and prevention of bacterial meningitis in China. PMID:25375168

  3. Genetic variation in lipoprotein (a) levels in families enriched for coronary artery disease is determined almost entirely by the apolipoprotein (a) gene locus

    SciTech Connect

    DeMeester, C.A.; Lusis, A.J.; Bu, X.; Gray, R.J.; Rotter, J.I.

    1995-01-01

    Lipoprotein (a) (Lp[a]) is a cholesterol-rich lipoprotein resembling LDL but also containing a large polypeptide designated apolipoprotein (a) (apo[a]). Its levels are highly variable among individuals and, in a number of studies, are strongly correlated with the risk of coronary artery disease (CAD). In an effort to determine which genes control Lp(a) levels, we have studied 25 multiplex families (comprising 298 members) enriched for CAD. The apo(a) gene was genotyped among the families, using a highly informative pulse-field gel electrophoresis procedure. In addition, polymorphisms of the gene for the other major protein of Lp(a), apolipoprotein B (apoB), were examined. Quantitative sib-pair linkage analysis indicates that apo(a) is the major gene controlling Lp(a) levels in this CAD population (P = .001; 99 sib pairs), whereas the apoB gene demonstrated no significant quantitative linkage effect. We estimate that the apo(a) locus accounts for {le}98% of variance of Lp(a) serum levels. Approximately 43% of this variation is explained by size polymorphisms within the apo(a) gene. These results indicate that the apo(a) gene is the major determinant of Lp(a) serum levels not only in the general population but also in a high-risk CAD population. 59 refs., 4 figs., 3 tabs.

  4. A new model for disruption of the ornithine decarboxylase gene, SPE1, in Saccharomyces cerevisiae exhibits growth arrest and genetic instability at the MAT locus.

    PubMed Central

    Schwartz, B; Hittelman, A; Daneshvar, L; Basu, H S; Marton, L J; Feuerstein, B G

    1995-01-01

    Ornithine decarboxylase (ODC) is a rate-determining enzyme of the polyamine-biosynthetic pathway. We sought to produce cells with impaired ODC function in order to study the biological functions of polyamines. Saccharomyces cerevisiae strains were obtained by one-step gene replacement of a 900 bp fragment of the yeast ODC gene (SPE1) with the yeast URA3 gene. Spores derived from SPE1/spe1 cells germinated at reduced efficiency relative to SPE1/SPE1. Sustained growth of spe1 haploid mutants in polyamine-free medium led to intracellular polyamine depletion, reduction in budding index, G1 arrest and cessation of growth, and cells that were large and misshapen. All of these effects were completely reversed by adding polyamines to the medium, even after 5 days of polyamine starvation. A diploid yeast strain bearing two copies of disrupted spe1 lost heterozygosity at the mating-type locus more often when grown in the absence of polyamines than when grown in their presence, indicating that polyamine deficiency leads to either chromosome loss or to mitotic recombination. Images Figure 3 Figure 10 PMID:7492339

  5. Genetic mapping of a locus for multiple ephiphyseal dysplasia (EDM2) to a region of chromosome 1 containing a type IX collagen gene

    SciTech Connect

    Briggs, M.D.; Choi, HiChang; Warman, M.L.; Loughlin, J.A.; Wordsworth, P.; Sykes, B.C.; Irven, C.M.M.; Smith, M.; Wynne-Davies, R.; Lipson, M.H.

    1994-10-01

    Multiple epiphyseal dysplasia (MED) is a dominantly inherited chondrodysplasia characterized by mild short stature and early-onset osteoarthrosis. Some forms of MED clinically resemble another chondrodysplasia phenotype, the mild form of pseudoachondroplasia (PSACH). On the basis of their clinical similarities as well as similar ultra-structural and biochemical features in cartilage from some patients, it has been proposed that MED and PSACH belong to a single bone-dysplasia family. Recently, both mild and severe PSACH as well as a form of MED have been linked to the same interval on chromosome 19, suggesting that they may be allelic disorders. Linkage studies with the chromosome 19 markers were carried out in a large family with MED and excluded the previously identified interval. Using this family, we have identified a MED locus on the short arm of chromosome 1, in a region containing the gene (COL9A2) that encodes the {alpha}2 chain of type IX collagen, a structural component of the cartilage extracellular matrix. 39 refs., 3 figs., 3 tabs.

  6. Identification of the genetic locus for the structural gene and a new regulatory gene for the synthesis of repressible alkaline phosphatase in Saccharomyces cerevisiae

    SciTech Connect

    Kaneko, Y.; Toh-e, A.; Oshima, Y.

    1982-02-01

    Two lines of evidence showed that the PHO8 gene encodes the structure of repressible, nonspecific alkaline phosphatase in Saccharomyces cerevisiae: (I) the enzyme produced by a temperature-sensitive pho8 mutant at the permissive temperature (25/sup 0/C) was more thermolabile than that of the wild-type strain, and (II) the PHO8 gene showed a gene dosage effect on the enzyme activity. The pho8 locus has been mapped on chromosome IV, 8 centimorgans distal to rna3. A new mutant carrying the pho9 gene was isolated which lacks repressible alkaline phosphatase, but has the normal phenotype for the synthesis of repressible acid phosphatase. The pho9 gene segregated independently of all known pho-regulatory genes and did not show the gene dosage effect on repressible alkaline phosphatase activity. The pho9/pho9 diploid hardly sporulated and showed no commitment to intragenic recombination when it was inoculated on sporulation medium. Hence the pho9 mutant has a phenotype similar to the pep4 mutant, which was isolated as a pleiotropic mutant with reduced levels of proteinases A and B carboxypeptidase Y. An allelism test indicated that pho9 and pep4 are allelic.

  7. Single-locus EST-SSR markers for characterization of population genetic diversity and structure across ploidy levels in switchgrass (Panicum virgatum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass is a promising bioenergy crop native to North America. Population genetic diversity was characterized in 12 cultivars that included upland and lowland ecotypes encompassing variation in ploidy levels, geographical origins, and breeding history using 21 EST-SSR marker loci that showed sin...

  8. Molecular analysis of the bacteriocin-encoding plasmid pDGL1 from Enterococcus durans and genetic characterization of the durancin locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterococci constitute a significant component of lactic acid bacteria normally present in the intestinal microflora and include strains that produce bacteriocins. The genetic determinants for durancin GL in Enterococcus durans 41D were identified on the 8,347 bp plasmid pDGL1 by plasmid curing exp...

  9. Genetic variation at the SLCO1B1 gene locus and low density lipoprotein cholesterol lowering response to pravastatin in the elderly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our goal was to determine whether genetic variation at genes affecting statin metabolism or targets of statin therapy would influence low density lipoprotein (LDL) cholesterol lowering with pravastatin, baseline heart disease, or cardiac endpoints on trial. We examined associations of single nucleot...

  10. GENETIC VARIATION AT AN IMMUNE SYSTEM LOCUS PROVIDES BOTH A GENERALIZED AND SPECIFIC STRESS INDICATOR: EFFECTS OF PERSISTENT, BIOACCUMULATIVE AND TOXIC CONTAIMINANT EXPOSURES ON AN ESTUARINE FISH POPULATION

    EPA Science Inventory

    The major histocompatibility complex (MHC) is a group of linked genes that mediates the adaptive immune response in vertebrates. Studies using mammals and birds have shown that environmental stressors can directly and indirectly produce genetic changes at MHC loci that can affect...