Sample records for loft fuel design

  1. Preliminary posttest analysis of LOFT loss-of-coolant experiment L2-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.R.; Grush, W.H.; Keeler, C.D.

    A preliminary posttest analysis of Loss-of-Coolant Experiment (LOCE) L2-2, which was conducted in the Loss-of-Fluid Test (LOFT) facility, was performed to gain an understanding of the cause of the disparity between predicted and measured fuel rod cladding temperature responses in the LOFT core. LOCE L2-2 is the first experiment in the LOFT Power Ascension Series L2 (first series of LOFT nuclear experiments), which was designed to investigate the response of the LOFT nuclear core to the blowdown, refill, and reflood transients during LOCEs conducted at gradually increasing power levels. LOCE L2-2 was conducted at 50% power (25 MW, 26.38 kW/m).more » Results show that a core-wide rewet occurred early in the transient (during blowdown starting at about 7 s after rupture) which was not calculated in the pretest prediction analysis. This early core-wide rewet resulted in the peak fuel rod cladding temperatures being lower (by a mean value of 166/sup 0/K for 24 thermocouples) than had been calculated. This preliminary posttest analysis was concerned solely with determining why the early core-wide rewet was not predicted by the RELAP4/MOD6 pretest analysis and be no means is it a complete posttest analysis of LOCE L2-2 results. However, during this analysis, several errors made in the prettest analysis were found, and their impact on the predicted results is assessed. Three factors were postulated to have caused the disparity between predicted and measured fuel rod cladding temperatures for LOCE L2-2: (a) the initial fuel rod stored energy, (b) the heat transfer surface, and (c) the hydraulics calculation. These factors were examined and are discussed in this report. It was determined that core hydraulics, as influenced by the calculation of broken loop cold leg break flow, was the major factor causing the disparity.« less

  2. The LOFT ground segment

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Antonelli, A.; Argan, A.; Barret, D.; Binko, Pavel; Brandt, S.; Cavazzuti, E.; Courvoisier, T.; den Herder, J. W.; Feroci, M.; Ferrigno, C.; Giommi, P.; Götz, D.; Guy, L.; Hernanz, M.; in't Zand, J. J. M.; Klochkov, D.; Kuulkers, Erik; Motch, C.; Lumb, D.; Papitto, A.; Pittori, Carlotta; Rohlfs, R.; Santangelo, A.; Schmid, C.; Schwope, A. D.; Smith, P. J.; Webb, N. A.; Wilms, J.; Zane, S.

    2014-07-01

    LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book1. We describe the expected GS contributions from ESA and the LOFT consortium. A review is provided of the planned LOFT data products and the details of the data flow, archiving and distribution. Despite LOFT was not selected for launch within the M3 call, its long assessment phase ( >2 years) led to a very solid mission design and an efficient planning of its ground operations.

  3. Baseline design of the filters for the LAD detector on board LOFT

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Winter, B.; Coker, J.; Feroci, M.; Kennedy, T.; Walton, D.; Zane, S.

    2014-07-01

    The Large Observatory for X-ray Timing (LOFT) was one of the M3 missions selected for the phase A study in the ESA's Cosmic Vision program. LOFT is designed to perform high-time-resolution X-ray observations of black holes and neutron stars. The main instrument on the LOFT payload is the Large Area Detector (LAD), a collimated experiment with a nominal effective area of ~10 m2 @ 8 keV, and a spectral resolution of ~240 eV in the energy band 2-30 keV. These performances are achieved covering a large collecting area with more than 2000 large-area Silicon Drift Detectors (SDDs) each one coupled to a collimator based on lead-glass micro-channel plates. In order to reduce the thermal load onto the detectors, which are open to Sky, and to protect them from out of band radiation, optical-thermal filter will be mounted in front of the SDDs. Different options have been considered for the LAD filters for best compromise between high quantum efficiency and high mechanical robustness. We present the baseline design of the optical-thermal filters, show the nominal performances, and present preliminary test results performed during the phase A study.

  4. View south of sail loft mid loft area. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south of sail loft - mid- loft area. Note inflatable boats undergoing pressure testing. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA

  5. Core power and decay time limits for a disabled LOFT ECCS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, S.A.

    1978-01-09

    An analysis was done to determine at what LOFT total core power (nuclear plus decay power) the ECCS could be inoperable. The criteria used for the analysis was that the maximum fuel clad temperature should not exceed 1650/sup 0/F given a loss of coolant. Calculations for natural convection cooling of the fuel by air with an inlet temperature of 580/sup 0/F determined that the limiting core power is 25 kW (discounted by 15 percent to 20 percent for potential uncertainties). Shutdown times are listed for when the LOFT ECCS can be safely bypassed or disabled.

  6. Delta Airlines LOFT training

    NASA Technical Reports Server (NTRS)

    Whitehead, J.

    1981-01-01

    A LOFT program was developed as part of the DC-9 training program which serves as a prototype for much of Delta's other aircraft training programs. The LOFT used differs little from the ideology presented in the Advisory Circular. Difficulty and experienced concerns regarding the effectiveness of LOFT as a complete training vehicle are explored.

  7. LOFT. "Exploded view" of loft containment building (TAN650), including control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. "Exploded view" of loft containment building (TAN-650), including control building (TAN-630). EG&G. February 1979. INEEL index code no. 036-010-65-220-209565 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. CALIBRATION OF INSTRUMENTS FOR RADIATION MEASUREMENTS FROM LOFTED VEHICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, W.O.

    1962-05-01

    The designs and developments accomplished by the Air Proving Ground Certer in support of Project TRUMP are considered. Project TRUMP pertains to the design and developmert of methods for measuring radiation from lofted vehicles. Several methods of simulating the space environment, for purposes of ground calibration of instruments to be lofted, are proposed. A mathematical approach, similar to that used by early Smithsonian solar constant seekers, is presented. (auth)

  9. Core-power and decay-time limits for disabled automatic-actuation of LOFT ECCS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, G.H.

    1978-06-05

    The Emergency Core Cooling System (ECCS) for the LOFT reactor may need to be disabled for modifications or repairs of hardware or instrumentation or for component testing during periods when the reactor system is hot and pressurized, or it may be desirable to enable the ECCS to be disabled without the necessity of cooling down and depressurizing the reactor. LTR 113-47 has shown that the LOFT ECCS can be safely bypassed or disabled when the total core power does not exceed 25 kW. A modified policy involves disabling the automatic actuation of the LOFT ECCS, but still retaining the manualmore » activation capability. Disabling of the automatic actuation can be safely utilized, without subjecting the fuel cladding to unacceptable temperatures, when the LOFT power decays to 70 kW; this power level permits a maximum delay of 20 minutes following a LOCA for the manual actuation of ECCS.« less

  10. United Airlines LOFT training

    NASA Technical Reports Server (NTRS)

    Cavanagh, D.; Traub, B.

    1981-01-01

    Line oriented training is used in a broader, more generic sense that as a specific program under FAR 12.1409 and AC 120-35. A company policy was adopted more than twenty years ago requiring that all pilot checks and recurrent training be conducted with a full crew occupying the seats they occupy on the line. Permission was obtained to reschedule the hours for recurrent proficiency training to include one and one-half hours of LOFT flight. The number of emergencies and abnormal procedures which could be undertaken were considered and the introduction of an a occasional incapacitation revealed which person is the most difficult to replace on the widebodies. By using the LOFT concept, every training period can be structured like a typical line flight. The use of LOFT in simulator syllabus development and problems that need to be refined are discussed.

  11. Eastern Airlines LOFT program

    NASA Technical Reports Server (NTRS)

    Beach, B. E.

    1981-01-01

    Beginning with scenario design and development issues, Eastern Airlines committed itself to the full four-hour LOFT training format without the additional time for specific maneuvers. Abnormals and emergency conditions, pacing, and quiet periods are included in the scenarios which are written for the instructor to follow verbatim. Simulator capabilities, performance assessment; training vs. checking; crew composition and scheduling; satisfactory completion; the use of video performance printouts; the number of instructors; instructor training and standardization; and initial, transition, and upgrade training are discussed.

  12. Core-power and decay-time limits for disabled automatic-actuation of LOFT ECCS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, G.H.

    1978-11-22

    The Emergency Core Cooling System (ECCS) for the LOFT reactor may need to be disabled for modifications or repairs of hardware or instrumentation or for component testing during periods when the reactor system is hot and pressurized, or it may be desirable to enable the ECCS to be disabled without the necessity of cooling down and depressurizing the reactor. A policy involves disabling the automatic-actuation of the LOFT ECCS, but still retaining the manual actuation capability. Disabling of the automatic actuation can be safely utilized, without subjecting the fuel cladding to unacceptable temperatures, when the LOFT power decays to 33more » kW; this power level permits a maximum delay of 20 minutes following a LOCA for the manual actuation of ECCS. For the operating power of the L2-2 Experiment, the required decay-periods (with operating periods of 40 and 2000 hours) are about 21 and 389 hours, respectively. With operating periods of 40 and 2000 hours at Core-I full power, the required decay-periods are about 42 and 973 hours, respectively. After these decay periods the automatic actuation of the LOFT ECCS can be disabled assuming a maximum delay of 20 minutes following a LOCA for the manual actuation of ECCS. The automatic and manual lineup of the ECCS may be waived if decay power is less than 11 kW.« less

  13. Design of combinatorial libraries for the exploration of virtual hits from fragment space searches with LoFT.

    PubMed

    Lessel, Uta; Wellenzohn, Bernd; Fischer, J Robert; Rarey, Matthias

    2012-02-27

    A case study is presented illustrating the design of a focused CDK2 library. The scaffold of the library was detected by a feature trees search in a fragment space based on reactions from combinatorial chemistry. For the design the software LoFT (Library optimizer using Feature Trees) was used. The special feature called FTMatch was applied to restrict the parts of the queries where the reagents are permitted to match. This way a 3D scoring function could be simulated. Results were compared with alternative designs by GOLD docking and ROCS 3D alignments.

  14. What makes a good LOFT scenario? Issues in advancing current knowledge of scenario design. [Line Oriented Flight Training

    NASA Technical Reports Server (NTRS)

    Gregorich, Steven E.

    1991-01-01

    An effort is made to ascertain which combinations of technical demands and crew coordination should be incorporated in training scenarios in order to maximize the effectiveness of training for crew members. Such high-fidelity simulation, which has come to be known as 'line-oriented flight training' or LOFT, involves the practice of both technical and crew coordination skills in a realistic setting, in conjunction with periodic reviews of performance via videotaped feedback. Attention is given to the integration of appropriate information, the measurement of objective task demands, the character of information from LOFT students, and the leeway allowed LOFT instructors.

  15. The Large Observatory For X-ray Timing (LOFT): The ESA Mission and Proposed US Contributions

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Feroci, M.; den Herder, J.; Bozzo, E.; Chakrabarty, D.; Wilson, C.; Consortium, LOFT; US-LOFT Collaboration

    2013-04-01

    High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m2-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer fundamental questions about matter under extreme conditions. The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionize the study of collapsed objects in our Galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of over 10 m2 (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits in a conventional platform and medium-class launcher. With this large area and a spectral resolution of <260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength. A second instrument onboard LOFT, the Wide Field Monitor (WFM), will discover and localize X-ray transients and impulsive events and monitor spectral state changes with unprecedented sensitivity and coverage. Through the LOFT Burst Alert System (LBAS), locations and times of impulsive events discovered by the WFM will be relayed to the ground within about 30 seconds. In this talk, we will present an overview of the design and status of the LOFT mission and describe the proposed US contributions currently under evaluation by NASA. NRL participation in LOFT is funded by NASA.

  16. Be/X-Ray Pulsar Binary Science with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  17. Proposed US Contributions to LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen

    2013-01-01

    Proposed US Enhancements include:Tantalum X -ray collimator, Additional ground station, Large Observatory for X-Ray Timing (LOFT) instrument team participation, US science support center & data archive, and Science enabled by US hardware. High-Z material with excellent stopping power. Fabricated using a combination of laser micromachining and chemical etching. Known technology capable of producing high-aspect ratio holes and large open fractions. Reduces LOFT LAD background by a factor of 3. Telemetry formats for LOFT based upon RXTE/EDS experience. Ground system software and strategies for WFM based upon RXTE/ASM automated pipeline software. MSFC engineering trade studies supporting the Ta collimator. Burst alert triggers based upon Fermi/GBM and HETE-2. Science Enhancements Enabled by US Hardware include: Tantalum collimator: Reduces background by factor of 3. Improves sensitivity to faint sources such as AGN. Eliminates contamination by bright/variable sources. outside the LAD field of view. US Ground Station: Enables continuous telemetry of all events from the WFM. Allows LAD to observe very bright >500 mCrab sources with full event resolution.

  18. Flame retardant antibacterial cotton high-loft nonwoven fabrics

    USDA-ARS?s Scientific Manuscript database

    Flame retardant treated gray cotton fibers were blended with antibacterial treated gray cotton fibers and polyester/polyester sheath/core bicomponent fibers to form high-loft fabrics. The high flame retardancy (FR) and antibacterial property of these high lofts were evaluated by limiting oxygen inde...

  19. The WFM Instrument of the LOFT mission

    NASA Astrophysics Data System (ADS)

    Gálvez, J. L.; Hernanz, M.; Álvarez, L.; LOFT/WFM Team

    2013-05-01

    LOFT, the Large Observatory For X-ray Timing, was selected by ESA in 2011 as one of the four M3 (medium class) missions concepts of the Cosmic Vision programme that will compete for a launch opportunity at the start of the 2020s. LOFT includes two instruments: the Large Area Detector (LAD), a ˜10 m^2 collimated X-ray detector in the 2-50 keV range (up to 80 keV in extended mode), and the Wide Field Monitor (WFM), a coded-mask wide field X-ray monitor based on silicon radiation detectors. We, the Institute of Space Sciences (CSIC-IEEC) in Barcelona, are deeply involved in the LOFT mission, sharing the leadership of the WFM instrument with DTU Space in Denmark. We are responsible of the mechanics of the WFM, including the structural and thermal design. The WFM baseline is a set of 4 units (each unit corresponds to 2 co-aligned cameras) arranged in arch, covering a field of view at zero response of 180°× 90°, and one more unit pointing to the anti-sun direction. The structure of each camera lies on its own coded mask of Tungsten, 150 μm thick, a collimator and the detector plane (20 cm below the mask) providing a fine (arc minutes) angular resolution. The camera detector plane (182 cm^2) will operate at -20°C in order to achieve an energy resolution FWHM of less than 500 eV in the 2-50 keV energy range. The WFM has the main scope of catching good triggering sources to be pointed with the LAD. Its large field of view will permit to observe in the same energy range of the LAD about 50% of the sky at once. The WFM is designed also to catch transient/bursting events down to a few mCrab fluxes and will provide for them data with fine spectral and timing resolution (up to 10 μsec).

  20. LOFT data acquisition and visual display system (DAVDS) presentation program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, M.G.; Miyasaki, F.S.

    1976-03-01

    The Data Acquisition and Visual Display System (DAVDS) at the Loss-of-Fluid Test Facility (LOFT) has 742 data channel recording capability of which 576 are recorded digitally. The purpose of this computer program is to graphically present the data acquired and/or processed by the LOFT DAVDS. This program takes specially created plot data buffers of up to 1024 words and generates time history plots on the system electrostatic printer-plotter. The data can be extracted from two system input devices: Magnetic disk or digital magnetic tape. Versatility has been designed in the program by providing the user three methods of scaling plots:more » Automatic, control record, and manual. Time required to produce a plot on the system electrostatic printer-plotter varies from 30 to 90 seconds depending on the options selected. The basic computer and program details are described.« less

  1. Atmospheric Propagation Modeling Indicates Homing Pigeons use Loft-Specific Infrasonic 'Map' Cues

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.; Baker, L. M.; Spritzer, J. M.; McKenna, M. H.

    2011-12-01

    Pigeons (Columba livia) released at distant sites commonly depart in directions significantly off the actual homeward bearing. Such site-dependent deviations, or biases, for birds from a given loft are generally stable over time, but can also change from hour to hour, day to day, and year to year. At some release sites, birds consistently vanish in random directions and have longer flight times and lower return rates. Release sites characterized by frequent disorientation are not uncommon for pigeon lofts in both Europe and the USA. One such site is the Jersey Hill fire tower in upstate New York located ~120 km W of the Cornell loft in Ithaca. Cornell birds released at Jersey Hill between 1968 and 1987 almost always vanished randomly, although birds from other lofts had little difficulty orienting there. The results for one day, however, stand out: on August 13, 1969, Cornell birds released at Jersey Hill vanished consistently to the NE (r = 0.921; n=7) and returned home after normal flight times. Cornell pigeons released the next day again showed 'normal' behavior for the site and departed randomly. If, in fact, the birds are using acoustic cues to navigate, the long-term acoustic 'dead' zone we propose for Jersey Hill, due to prevailing atmospheric conditions, indicates that the cues are coming from a single, relatively restricted area, most likely surrounding the home loft. We have modeled the transmission of infrasonic waves, presumably coupled to the atmosphere from ocean-generated microseisms (0.14 Hz), between the Cornell loft and a number of release sites using HARPA (Hamiltonian Acoustic Ray-tracing Program for the Atmosphere) and rawinsonde data collected near Albany and Buffalo, NY. The HARPA modeling shows that acoustic signals from the Cornell loft reached Jersey Hill only on a few release days with unusual atmospheric conditions, including August 13, and were launched at angles less than ~2° above horizontal, most likely from steep-sided terrain in

  2. RIGGERS LOFT/PAINT SHOP/SHEET METAL SHOP, VIEW TO SOUTHEAST. THE PAINT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RIGGERS LOFT/PAINT SHOP/SHEET METAL SHOP, VIEW TO SOUTHEAST. THE PAINT SHOP WAS LOCATED IN THE CLOSEST CORNER OF THE BUILDING. THE SHEET METAL SHOP WAS LOCATED IN THE CORNER OF THE BUILDING ON THE RIGHT. THE RIGGERS LOFT WAS LOCATED IN THE PORTION OF THE BUILDING OUT OF VIEW TO THE LEFT - Rosie the Riveter National Historical Park, Riggers Loft/Paint Shop/Sheet Metal Shop, 1322 Canal Boulevard, Richmond, Contra Costa County, CA

  3. Monitoring the Crab Nebula with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2012-01-01

    From 2008-2010, the Crab Nebula was found to decline by 7% in the 15-50 keV band, consistently in Fermi GBM, INTEGRAL IBIS, SPI, and JEMX, RXTE PCA, and Swift BAT. From 2001-2010, the 15-50 keV flux from the Crab Nebula typically varied by about 3.5% per year. Analysis of RXTE PCA data suggests possible spectral variations correlated with the flux variations. I will present estimates of the LOFT sensitivity to these variations. Prior to 2001 and since 2010, the observed flux variations have been much smaller. Monitoring the Crab with the LOFT WFM and LAD will provide precise measurements of flux variations in the Crab Nebula if it undergoes a similarly active episode.

  4. Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2011-01-01

    Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.

  5. LOFT. Containment and service building (TAN650). Roof plan and details. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650). Roof plan and details. Kaiser engineers 6413-11-STEP/LOFT-650-A-8. Date: October 1964. INEEL index code no. 036-650-00-486-122220 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  6. Status of the assessment phase of the ESA M3 mission candidate LOFT

    NASA Astrophysics Data System (ADS)

    Corral van Damme, Carlos; Ayre, Mark; Lumb, David; Short, Alexander D.; Rando, Nicola

    2012-09-01

    LOFT (Large Observatory For x-ray Timing) is one of four candidates for the M3 slot (launch in 2024, with the option of a launch in 2022) of ESAs Cosmic Vision 2015 - 2025 Plan, and as such it is currently undergoing an initial assessment phase lasting one year. The objective of the assessment phase is to provide the information required to enable the down selection process, in particular: the space segment definition for meeting the assigned science objectives; consideration of and initial definition of the implementation schedule; an estimate of the mission Cost at Completion (CaC); an evaluation of the technology readiness evaluation and risk assessment. The assessment phase is divided into two interleaved components: (i) A payload assessment study, performed by teams funded by member states, which is primarily intended for design, definition and programmatic/cost evaluation of the payload, and (ii) A system industrial study, which has essentially the same objectives for the space segment of the mission. This paper provides an overview of the status of the LOFT assessment phase, both for payload and platform. The initial focus is on the payload design status, providing the reader with an understanding of the main features of the design. Then the space segment assessment study status is presented, with an overview of the principal challenges presented by the LOFT payload and mission requirements, and a presentation of the expected solutions. Overall the mission is expected to enable cutting-edge science, is technically feasible, and should remain within the required CaC for an M3 candidate.

  7. LOFT. Containment and service building (TAN650). Room number schedule, sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650). Room number schedule, sheet 2 of 2. Kaiser engineers 6413-11-STEP/LOFT-650-A-XX. Date: October 1969. INEEL index code no. 036-650-00-486-122228 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. LOFT. Containment and service building (TAN650). Sections H, K, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650). Sections H, K, and L; details of pre-amp tower. Kaiser engineers 6413-11-STEP/LOFT-650-A-14. Date: January 1966. INEEL index code no. 036-650-00-486-122226 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  9. LOFT. Containment and service building (TAN650) basement floor plan. Basement ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650) basement floor plan. Basement airlock, shielded roadway, service areas, connection to control building. Kaiser engineers 6413-11-STEP/LOFT-650-A-1. Date: October 1964. INEEL index code no. 036-650-00-416-122213 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  10. Group 2: Real time LOFT operations

    NASA Technical Reports Server (NTRS)

    Cavanagh, D.

    1981-01-01

    All LOFT scenarios should be constructed so as to provide the highest degree of realism that is economically, technically, and operationally feasible. The more realistic the situation, the faster the crew will adjust their thinking and provide reactions which would be typical of a line-flight orientation. The goal is to produce crew performance which would be typical of a crew on an actual line flight, given the same set of circumstances that were developed during the scenario. The briefing which is provided to the crew before entering the simulator for LOFT, the trip papers, the communications throughout the flight, the role played by the instructor, and so on, are important factors, crucial to the establishment and maintenance of a high degree of realism. Crews should have all manuals and other required equipment for a normal line-flight.

  11. LOFT, TAN650. Service building preamp tower, top three floors. Floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT, TAN-650. Service building pre-amp tower, top three floors. Floor plan, cable mazes, duct labyrinth. Borated water tank enclosure on roof. Kaiser engineers 6413-11-STEP/LOFT-650-A-3. Date: October 1964. INEEL index code no. 036-650-00-486-122215 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. Large Observatory for X-ray Timing (LOFT-P): A Probe-Class Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Chakrabarty, D.; Feroci, M.; Jenke, Peter; Griffith, C.; Zane, S.; Winter, B.; Brandt, S.; Hernamdez, M.; hide

    2016-01-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (less than $1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESA's M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broadband spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. Many of LOFTP's targets are bright, rapidly varying sources, so these measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P was presented as an example mission to the head of NASA's Astrophysics Division, to demonstrate the strong community support for creation of a probe-class, for missions costing between $500M and $1B. We submitted a white paper4 in response to NASA PhysPAG's call for white papers: Probe-class Mission Concepts, describing LOFT-P science and a simple extrapolation from the ESA study costs. The next step for probe-class missions will be input into the NASA Astrophysics Decadal Survey to encourage the creation of a probe-class opportunity. We report on a 2016 study by MSFC's Advanced Concepts Office of LOFT-P, a US-led probe-class LOFT concept.

  13. LOFT, TAN650. Camera facing southeast. From left to right: stack ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT, TAN-650. Camera facing southeast. From left to right: stack in distance, pre-amp wing, dome, north side of loft "service building." Note poured concrete wall of pre-amp wing on lower section; pumice block above. Date: May 2004. INEEL negative no. HD-39-19-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  14. LOFT. Containment and service building (TAN650) ground floor plan. Penetrations ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650) ground floor plan. Penetrations in dome wall. Shielded personnel maze at airlock door. Reactor chamber floor hatches and holddowns. Rails in concrete floor. Kaiser engineers 6413-11-STEP/LOFT-650-A-2. Date: October 1964. INEEL index code no. 036-650-00-486-122214 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  15. LOFT. Containment and service building (TAN650). Room number and function ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650). Room number and function of each room. Identifies type of floor, paint, walls, ceiling, doors. This is sheet 1 of a 2-page drawing. Kaiser engineers 6413-11-STEP/LOFT-650-XX. Date: October 1965. INEEL index code no. 036-650-00-486-122228 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  16. LOFT complex, camera facing west. Mobile entry (TAN624) is position ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT complex, camera facing west. Mobile entry (TAN-624) is position next to containment building (TAN-650). Shielded roadway entrance in view just below and to right of stack. Borated water tank has been covered with weather shelter and is no longer visible. ANP hangar (TAN-629) in view beyond LOFT. Date: 1974. INEEL negative no. 74-4191 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  17. Principles of operation and data reduction techniques for the loft drag disc turbine transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, S.

    An analysis of the single- and two-phase flow data applicable to the loss-of-fluid test (LOFT) is presented for the LOFT drag turbine transducer. Analytical models which were employed to correlate the experimental data are presented.

  18. LOFT. Containment and service building (TAN650). South elevation, details, section. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650). South elevation, details, section. Shows part of duct enclosure, railroad door opening, roof ventilators, shielded personnel entrance, and change room. Section F shows view from west looking toward shielding around airlock door on main floor. Kaiser engineers 6413-11-STEP/LOFT-650-A-9. Date: October 1964. INEEL index code no. 036-650-00-486-122221 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  19. LOFT. Mobile test building (TAN624) is recycled from ANP program ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Mobile test building (TAN-624) is recycled from ANP program for placement before LOFT containment building door. It has not yet been connected to containment building. Note borated water tank at right of dome. Narrow, vertical structure at right of door is shroud is shroud for air exhaust duct. Filter vaults lie between duct shroud and stack. Camera facing westerly. Date: 1974. INEEL negative no. 74-1072 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  20. Antibacterial flame retardant cotton high loft nonwovens

    USDA-ARS?s Scientific Manuscript database

    Renewable resources for raw materials and biodegradability of the product at the end of the useful life is entailing a shift from petroleum-based synthetics to agro based natural fibers such as cotton, especially for producing high specific volume high loft nonwovens. Cotton is highly flammable and ...

  1. LOFT. Containment and service building (TAN650). Section through north/south axis. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650). Section through north/south axis. Shows basement and four additional levels of pre-amp tower, shielded roadway, chambers below reactor floor, railroad door, sumps, shielding. Section C shows basement sumps and chambers below reactor floor. Kaiser engineers 6413-11-STEP/LOFT-650-A-5. Date: October 1964. INEEL index code no. 036-650-00-486-122217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. LOFT. Containment and service building (TAN650). Section through east/west axis ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650). Section through east/west axis of building as viewed from the south. Shows basement and grade levels of containment building, connection to control room on west side, air filter vaults, and duct enclosure for air exhaust system. Kaiser engineers 6413-11-STEP/LOFT-650-A-4. Date: October 1964. INEEL index code no. 036-650-00-486-122216 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. LOFT. Containment and service building (TAN650). Section through east/west axis ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650). Section through east/west axis of building as viewed from the north. Shows steel ladder to top of dome, gable roof of borated water tank enclosure, pumice block siding of pre-amp tower, metal siding of duct enclosure. Kaiser engineers 6413-11-STEP/LOFT-650-A-6. Date: October 1964. INEEL index code no. 036-650-00-486-122218 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. Facilitation techniques as predictors of crew participation in LOFT debriefings

    NASA Technical Reports Server (NTRS)

    McDonnell, L. K.

    1996-01-01

    Based on theories of adult learning and airline industry guidelines for Crew Resource Management (CRM), the stated objective during Line Oriented Flight Training (LOFT) debriefings is for instructor pilots (IP's) to facilitate crew self-analysis of performance. This study reviews 19 LOFT debriefings from two major U.S. airlines to examine the relationship between IP efforts at facilitation and associated characteristics of crew participation. A subjective rating scale called the Debriefing Assessment Battery was developed and utilized to evaluate the effectiveness of IP facilitation and the quality of crew participation. The results indicate that IP content, encouragement, and questioning techniques are highly and significantly correlated with, and can therefore predict, the degree and depth of crew participation.

  5. Instability study for LOFT for L2-1, L2-2, and L2-3 pretest steady-state operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, S.A.

    The results are presented of a thermal-hydrodynamic flow instability study of the LOFT reactor for the L2-1, L2-2, and L2-3 pretest steady-state operating conditions. Comparison is made between the LOFT reactor and a typical PWR, and the effects on stability of differences in operating parameters and geometry are discussed. Results indicate that the LOFT reactor will be thermal-hydrodynamically stable for nominal and worst case operating conditions. The study supports the LOFT Experimental Safety Analyses for the L2-1, L2-2, and L2-3 tests.

  6. View northeast of mould loft and plating cutting shop in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast of mould loft and plating cutting shop in structural assembly shop (building no. 541) - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structural Assembly Shop, League Island, Philadelphia, Philadelphia County, PA

  7. 12. Interior view from sanctuary showing choir loft, vestibule, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view from sanctuary showing choir loft, vestibule, and chapel entrance, facing south - Mountain Home Air Force Base, Base Chapel, 350 Willow Street, Cantonment Area, Mountain Home, Elmore County, ID

  8. 14. FACILITY IDENTIFICATION STENCILED ON ROOF BEAM, 'RIGGING LOFT' PORTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. FACILITY IDENTIFICATION STENCILED ON ROOF BEAM, 'RIGGING LOFT' PORTION OF BUILDING 4. - Chollas Heights Naval Radio Transmitting Facility, Public Works Shop, 6410 Zero Road, San Diego, San Diego County, CA

  9. Atmospheric propagation modeling indicates homing pigeons use loft-specific infrasonic 'map' cues.

    PubMed

    Hagstrum, Jonathan T

    2013-02-15

    Results from an acoustic ray-tracing program using daily meteorological profiles are presented to explain 'release-site biases' for homing pigeons at three experimental sites in upstate New York where W. T. Keeton and his co-workers at Cornell University conducted extensive releases between 1968 and 1987 in their investigations of the avian navigational 'map'. The sites are the Jersey Hill and Castor Hill fire towers, and another near Weedsport, where control pigeons from the Cornell loft vanished in random directions, in directions consistently >50 deg clockwise and in directions ∼15 deg clockwise from the homeward bearing, respectively. Because Cornell pigeons were disoriented at Jersey Hill whereas birds from other lofts were not, it is inferred that Jersey Hill lies within an acoustic 'shadow' zone relative to infrasonic signals originating from the Cornell loft's vicinity. Such signals could arise from ground-to-air coupling of near-continuous microseisms, or from scattering of direct microbaroms off terrain features, both of which are initially generated by wave-wave interactions in the deep ocean. HARPA runs show that little or no infrasound from the loft area arrived at Jersey Hill on days when Cornell pigeons were disoriented there, and that homeward infrasonic signals could have arrived at all three sites from directions consistent with pigeon departure bearings, especially on days when these bearings were unusual. The general stability of release-site biases might be due to influences of terrain on transmission of the homeward signals under prevailing weather patterns, whereas short-term changes in biases might be caused by rapid shifts in atmospheric conditions.

  10. 35. CHARGING DOOR OF CUPOLA FORM LOFT, WITH FORKS FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. CHARGING DOOR OF CUPOLA FORM LOFT, WITH FORKS FOR FEEDING COKE, FOUNDRY BELOW-LOOKING NORTH. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  11. 17. Truss suspended column, industrial loft building, looking at southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Truss suspended column, industrial loft building, looking at southeast corner. Note open floor plan as a result of the floor beams being suspended from above. - Dry Dock Engine Works, 1801 Atwater Street, Detroit, MI

  12. 16. Exterior of assembly building (mold loft #2) used for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Exterior of assembly building (mold loft #2) used for runabout production, constructed CA. 1932. Most of the production run boats were assembled here. - Barbour Boat Works, Tryon Palace Drive, New Bern, Craven County, NC

  13. 12. Interior view of main cabin showing stairs to loft ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view of main cabin showing stairs to loft area, note construction of balcony and roof - Dean E. Call Property, Big Springs Summer Home Area, Lot 5, Block D, Island Park, Fremont County, ID

  14. Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco; Alvarez, Laura; Baysinger, Michael; Becker, Chris; Bozzo, Enrico; Brandt, Soren; Carson, Billy; Chapman, Jack; Dominguez, Alexandra; Fabisinski, Leo; Gangl, Bert; Garcia, Jay; Griffith, Christopher; Hernanz, Margarita; Hickman, Robert; Hopkins, Randall; Hui, Michelle; Ingram, Luster; Jenke, Peter; Korpela, Seppo; Maccarone, Tom; Michalska, Malgorzata; Pohl, Martin; Santangelo, Andrea; Schanne, Stephane; Schnell, Andrew; Stella, Luigi; van der Klis, Michiel; Watts, Anna; Winter, Berend; Zane, Silvia

    2016-07-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (<$1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESAs M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broad-band spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, > 10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multimessenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters*, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE ( 2000 refereed publications). We

  15. 17. Detail view of the southern half of the loft ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Detail view of the southern half of the loft in the west side of the barn, looking toward the barrels and center post - Chellberg Farm, Barn, 900 North Mineral Springs Road, Porter, Porter County, IN

  16. Neutron Star Spin Measurements and Dense Matter with LOFT

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2011-01-01

    Observations over the last decade with RXTE have begun to reveal the X-ray binary progenitors of the fastest spinning neutron stars presently known. Detection and study of the spin rates of binary neutron stars has important implications for constraining the nature of dense matter present in neutron star interiors, as both the maximum spin rate and mass for neutron stars is set by the equation of state. Precision pulse timing of accreting neutron star binaries can enable mass constraints. Particularly promIsing is the combination of the pulse and eclipse timing, as for example, in systems like Swift 11749.4-2807. With its greater sensitivity, LOFT will enable deeper searches for the spin periods of the neutron stars, both during persistent outburst intervals and thermonuclear X-ray bursts, and enable more precise modeling of detected pulsations. I will explore the anticipated impact of LOFT on spin measurements and its potential for constraining dense matter in neutron stars

  17. The LOFT Mission Concept - A Status Update

    NASA Technical Reports Server (NTRS)

    Feroci, M.; Bozzo, E.; Brandt, S.; Hernanz, M.; van Der Klis, M.; Liu , L. -P.; Orleanski, P.; Pohl, M.; Santangelo, A.; Schanne, S.; hide

    2016-01-01

    The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, is greater than 8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.

  18. 32. SAR1, VIEW FROM STABLE LOFT. SCE negative no. 10319, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. SAR-1, VIEW FROM STABLE LOFT. SCE negative no. 10319, November 1, 1923. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  19. Lessons from cross-fleet/cross-airline observations - Evaluating the impact of CRM/LOFT training

    NASA Technical Reports Server (NTRS)

    Butler, Roy E.

    1991-01-01

    A review is presented of the crew resource management/line oriented flight training (CRM/LOFT) program to help determine the level of standardization across fleets and airlines in the critical area of evaluating crew behavior and performance. One of the goals of the project is to verify that check airmen and LOFT instructors within organizations are evaluating CRM issues consistently and that differences observed between fleets are not a function of idiosyncracies on the part of observers. Attention is given to the research tools for crew evaluation.

  20. 20. Interior of assembly building (mold loft #2) used for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Interior of assembly building (mold loft #2) used for runabout production-woodworking shop. Note counter-weighted vertical sliding doors along wall to left to move materials and boats to other room. - Barbour Boat Works, Tryon Palace Drive, New Bern, Craven County, NC

  1. Posttest RELAP4 analysis of LOFT experiment L1-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grush, W.H.; Holmstrom, H.L.O.

    Results of posttest analysis of LOFT loss-of-coolant experiment L1-4 with the RELAP4 code are presented. The results are compared with the pretest prediction and the test data. Differences between the RELAP4 model used for this analysis and that used for the pretest prediction are in the areas of initial conditions, nodalization, emergency core cooling system, broken loop hot leg, and steam generator secondary. In general, these changes made only minor improvement in the comparison of the analytical results to the data. Also presented are the results of a limited study of LOFT downcomer modeling which compared the performance of themore » conventional single downcomer model with that of the new split downcomer model. A RELAP4 sensitivity calculation with artificially elevated emergency core coolant temperature was performed to highlight the need for an ECC mixing model in RELAP4.« less

  2. Fuel characteristics pertinent to the design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  3. 44. TANK LOFT: PLANS, ELEVATIONS AND DETAILS, Y&D No. 107722 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. TANK LOFT: PLANS, ELEVATIONS AND DETAILS, Y&D No. 107722 Scales as indicated; July 2, 1929 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  4. Burst Oscillation Probes of Neutron Stars and Nuclear Burning with LOFT

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2012-01-01

    X-ray brightness oscillations during thermonuclear X-ray bursts--burst oscillations--have provided a new probe of neutron star spins as well as of the dependent nuclear burning processes. The frequency drift and amplitude evolution of the oscillations observed during bursts can in principle place constraints on the physics of thermonuclear flame spreading and the dynamics of the burning atmosphere. I use simulations appropriate to LOFT to explore the precision with which the time dependence of the oscillation frequency can be inferred. This can test, for example, different models for the frequency drift, such as up-lift versus geostrophic drift. I also explore the precision with which asymptotic frequencies can be constrained in order to estimate the capability for LOFT to detect the Doppler shifts induced by orbital motion of the neutron star from a sample of bursts at different orbital phases.

  5. 51. LOFT. HEATING. PLANS, ELEVATIONS 7 DETAILS, Y&D No. 107729 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. LOFT. HEATING. PLANS, ELEVATIONS 7 DETAILS, Y&D No. 107729 Scales 3/16', 1/4', 1/2', and 1'; July 2, 1929 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  6. Orbital Observations of Dust Lofted by Daytime Convective Turbulence

    NASA Astrophysics Data System (ADS)

    Fenton, Lori; Reiss, Dennis; Lemmon, Mark; Marticorena, Béatrice; Lewis, Stephen; Cantor, Bruce

    2016-11-01

    Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called "dust devils". On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet's atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth.

  7. Regional Simulations of Stratospheric Lofting of Smoke Plumes

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Fromm, M.; Robock, A.

    2006-12-01

    The lifetime and spatial distribution of sooty aerosols from multiple fires that would cause major climate impact were debated in studies of climatic and environmental consequences of a nuclear war in the 1980s. The Kuwait oil fires in 1991 did not show a cumulative effect of multiple smoke plumes on large-scale circulation systems and smoke was mainly dispersed in the middle troposphere. However, recent observations show that smoke from large forest fires can be directly injected into the lower stratosphere by strong pyro-convective storms. Smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the same heating and lofting effect that was simulated in large-scale nuclear winter simulations with interactive aerosols. However nuclear winter simulations were conducted using climate models with grid spacing of more than 100 km, which do not account for the fine-scale dynamic processes. Therefore in this study we conduct fine-scale regional simulations of the aerosol plume using the Regional Atmospheric Modeling System (RAMS) mesoscale model which was modified to account for radiatively interactive tracers. To resolve fine-scale dynamic processes we use horizontal grid spacing of 25 km and 60 vertical layers, and initiate simulations with the NCEP reanalysis fields. We find that dense aerosol layers could be lofted from 1 to a few km per day, but this critically depends on the optical depth of aerosol layer, single scatter albedo, and how fast the plume is being diluted. Kuwaiti plumes from different small-area fires reached only 5-6 km altitude and were probably diffused and diluted in the lower and middle troposphere. A plume of 100 km spatial scale initially developed in the upper troposphere tends to penetrate into the stratosphere. Short-term cloud resolving simulations of such a plume show that aerosol heating intensifies small-scale motions that tend to mix smoke polluted air into the lower stratosphere. Regional

  8. Fuel system design concepts for broad property fuels

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.

    1984-01-01

    The results of a study assessing the impact of using jet fuel with relaxed specification properties on an aircraft fuel system are given. The study objectives were to identify credible values for specific fuel properties which might be relaxed, to evolve advanced fuel system designs for airframe and engines which would permit use of the specified relaxed properties fuels, and to evaluate performance of the candidate advanced fuel systems and the relaxed property fuels in a typical transport aircraft. The study used, as a baseline, the fuel system incorporated in the Lockheed Tristar. This aircraft is powered by three RB.211-524 Rolls-Royce engines and incorporates a Pratt and Whitney ST6C-421 auxiliary power unit for engine starting and inflight emergency electrical power. The fuel property limits examined are compared with commercial Jet A kerosene and the NASA RFP fuel properties. A screening of these properties established that a higher freezing point and a lower thermal stability would impact fuel system design more significantly than any of the other property changes. Three candidate fuel systems which combine the ability to operate with fuels having both a high freeze point and a low thermal stability are described. All candidates employ bleed air to melt fuel freeze-out prior to starting the APU or an inoperable engine. The effects of incorporating these systems on aircraft weight and engine specific fuel consumption are given.

  9. 45. STEEL FRAMING FOR LOFT, Y&D No. 107723 Scales 1/2' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. STEEL FRAMING FOR LOFT, Y&D No. 107723 Scales 1/2' and 1-1/2' = 1'; July 2, 1929 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  10. Recent developments in BWR fuel design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, S.P.; Noble, L.D.; Wood, J.E.

    1991-11-01

    Substantial increases in the cost effectiveness and performance capability of boiling water reactor (BWR) fuel designs have been implemented in the past 5 to 7 yr. This increase has been driven by (a) utility desires to lower fuel and operating costs and (b) design innovations that have lowered enrichment requirements, improved thermal-hydraulic performance, and increased discharge exposure. Higher discharge exposures reduce disposal costs for European and Asian utilities and enable US utilities to lengthen operating cycles. A typical BWR reload fuel bundle fabricated today has 25% higher {sup 235}U enrichment and a factor of 2 higher gadolinium loading than onemore » made several years ago. Today's BWR fuel bundles also contain more unheated water reduces the axial water density variation, lowers the void coefficient, and enhances the neutron efficiency of the bundle, reducing both the gadolinium poison and the enrichment requirements. In addition to these general trends, the following unique design innovations have further enhanced the fuel cost efficiency and performance characteristics of BWR fuel: ferrule spacer, part length rods, interactive channel, and bundle enhanced spectral shift. GE's fuel designs offer the flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility and fuel cycle economics.« less

  11. LOFT. Interior, control room in control building (TAN630). Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Interior, control room in control building (TAN-630). Camera facing north. Sign says "This control console is partially active. Do not operate any switch handle without authorization." Date: May 2004. INEEL negative no. HD-39-14-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. LOFT. Interior view of entry (TAN624) rollup door. Camera is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Interior view of entry (TAN-624) rollup door. Camera is inside entry building facing south. Rollup door was a modification of the original ANP door arrangement. Date: March 2004. INEEL negative no. HD-39-5-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  13. Baloon-lofted pollutant sampling of open burning and open detonation: abstract

    EPA Science Inventory

    The U.S. EPA has developed a balloon-lofted, ~10 kg instrument pack for sampling open burning (OB) and open detonation (OD) events for pollutants. The instrument pack, termed the “Flyer,” and its accompanying maneuverable balloon system, are intended to sample OB/OD plumes to de...

  14. LOFT. Reactor arrives at containment building (TAN650), now being pushed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Reactor arrives at containment building (TAN-650), now being pushed by locomotive. Camera facing northerly. Note "Hello Dolly" and "PWR MTA No. 1" (pressurized water reactor mobile test assembly) signs. Date: 1973. INEEL negative no. 73-3710 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  15. MEASUREMENT OF MOTION CORRECTED WIND VELOCITY USING AN AEROSTAT LOFTED SONIC ANEMOMETER

    EPA Science Inventory

    An aerostat-lofted, sonic anemometer was used to determine instantaneous 3 dimensional wind velocities at altitudes relevant to fire plume dispersion modeling. An integrated GPS, inertial measurement unit, and attitude heading and reference system corrected the wind data for th...

  16. LOFT. Construction view of tunnel during 1957 to compare with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Construction view of tunnel during 1957 to compare with HAER photo ID-33-E-358 above. Tunnel sections were pre-cast, then joined together. Photographer described this as :Personnel and service tunnel running east-west in test building of the FET." Date: December 19, 1957. Photographer: Jack L. Anderson. INEEL negative no. 57-6206 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  17. LOFT complex in 1975 awaits renewed mission. Aerial view. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT complex in 1975 awaits renewed mission. Aerial view. Camera facing southwesterly. Left to right: stack, entry building (TAN-624), door shroud, duct shroud and filter hatches, dome (painted white), pre-amp building, equipment and piping building, shielded control room (TAN-630), airplane hangar (TAN-629). Date: 1975. INEEL negative no. 75-3690 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. Homing Pigeons Respond to Time-Compensated Solar Cues Even in Sight of the Loft

    PubMed Central

    Armstrong, Chris; Wilkinson, Helen; Meade, Jessica; Biro, Dora; Freeman, Robin; Guilford, Tim

    2013-01-01

    The sun has long been thought to guide bird navigation as the second step in a two-stage process, in which determining position using a map is followed by course setting using a compass, both over unfamiliar and familiar terrain. The animal’s endogenous clock time-compensates the solar compass for the sun’s apparent movement throughout the day, and this allows predictable deflections in orientation to test for the compass’ influence using clock-shift manipulations. To examine the influence of the solar compass during a highly familiar navigational task, 24 clock-shifted homing pigeons were precision-tracked from a release site close to and in sight of their final goal, the colony loft. The resulting trajectories displayed significant partial deflection from the loft direction as predicted by either fast or slow clock-shift treatments. The partial deflection was also found to be stable along the entire trajectory indicating regular updating of orientation via input from the solar compass throughout the final approach flight to the loft. Our results demonstrate that time-compensated solar cues are deeply embedded in the way birds orient during homing flight, are accessed throughout the journey and on a remarkably fine-grained scale, and may be combined effectively simultaneously with direct guidance from familiar landmarks, even when birds are flying towards a directly visible goal. PMID:23717401

  19. LOFT. Containment building entry, an adapted use of TAN624, which ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment building entry, an adapted use of TAN-624, which originated as the mobile test building for the ANP program. Camera facing north. Note four-rail track entered building stack at right of view. Date: March 2004. INEEL negative no. HD-39-4-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  20. LOFT. Containment building (TAN650) detail. Camera facing east. Service building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment building (TAN-650) detail. Camera facing east. Service building corner is at left of view above personnel access. Round feature at left of dome is tank that will contain borated water. Metal stack at right of view. Date: 1973. INEEL negative no. 73-1085 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. LOFT. Reactor apparatus leaves A&M building (TAN607). Shielded locomotive has ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Reactor apparatus leaves A&M building (TAN-607). Shielded locomotive has aerojet logo, which replaced old general electric logo, pulls reactor from assembly shop on dolly. Camera facing easterly. Date: 1973. INEEL negative no. 73-3700 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. LOFT complex, aerial view taken on same on same day ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT complex, aerial view taken on same on same day as HAER photo ID-33-E-376. Camera facing south. Note curve of rail track toward hot shop (TAN-607). Earth shielding on control building (TAN-630) is partly removed, showing edge of concrete structure. Great southern butte on horizon. Date: 1975. INEEL negative no. 75-3693 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. Fuel cell design and assembly

    DOEpatents

    Myerhoff, Alfred

    1984-01-01

    The present invention is directed to a novel bipolar cooling plate, fuel cell design and method of assembly of fuel cells. The bipolar cooling plate used in the fuel cell design and method of assembly has discrete opposite edge and means carried by the plate defining a plurality of channels extending along the surface of the plate toward the opposite edges. At least one edge of the channels terminates short of the edge of the plate defining a recess for receiving a fastener.

  4. LOFT. Interior view of entry to reactor building, TAN650. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Interior view of entry to reactor building, TAN-650. Camera is inside entry (TAN-624) and facing north. At far end of domed chamber are penetrations in wall for electrical and other connections. Reactor and other equipment has been removed. Date: March 2004. INEEL negative no. HD-39-5-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  5. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  6. Atmospheric propagation modeling indicates homing pigeons use loft-specific infrasonic ‘map’ cues

    USGS Publications Warehouse

    Hagstrum, Jonathan T.

    2013-01-01

    Results from an acoustic ray-tracing program using daily meteorological profiles are presented to explain ‘release-site biases’ for homing pigeons at three experimental sites in upstate New York where W. T. Keeton and his co-workers at Cornell University conducted extensive releases between 1968 and 1987 in their investigations of the avian navigational ‘map’. The sites are the Jersey Hill and Castor Hill fire towers, and another near Weedsport, where control pigeons from the Cornell loft vanished in random directions, in directions consistently >50 deg clockwise and in directions ∼15 deg clockwise from the homeward bearing, respectively. Because Cornell pigeons were disoriented at Jersey Hill whereas birds from other lofts were not, it is inferred that Jersey Hill lies within an acoustic ‘shadow’ zone relative to infrasonic signals originating from the Cornell loft’s vicinity. Such signals could arise from ground-to-air coupling of near-continuous microseisms, or from scattering of direct microbaroms off terrain features, both of which are initially generated by wave–wave interactions in the deep ocean. HARPA runs show that little or no infrasound from the loft area arrived at Jersey Hill on days when Cornell pigeons were disoriented there, and that homeward infrasonic signals could have arrived at all three sites from directions consistent with pigeon departure bearings, especially on days when these bearings were unusual. The general stability of release-site biases might be due to influences of terrain on transmission of the homeward signals under prevailing weather patterns, whereas short-term changes in biases might be caused by rapid shifts in atmospheric conditions.

  7. The SIRIUS mixed analog-digital ASIC developed for the LOFT LAD and WFM instruments

    NASA Astrophysics Data System (ADS)

    Cros, A.; Rambaud, D.; Moutaye, E.; Ravera, L.; Barret, D.; Caïs, P.; Clédassou, R.; Bodin, P.; Seyler, J. Y.; Bonzo, A.; Feroci, M.; Labanti, C.; Evangelista, Y.; Favre, Y.

    2014-07-01

    We report on the development and characterization of the low-noise, low power, mixed analog-digital SIRIUS ASICs for both the LAD and WFM X-ray instruments of LOFT. The ASICs we developed are reading out large area silicon drift detectors (SDD). Stringent requirements in terms of noise (ENC of 17 e- to achieve an energy resolution on the LAD of 200 eV FWHM at 6 keV) and power consumption (650 μW per channel) were basis for the ASICs design. These SIRIUS ASICs are developed to match SDD detectors characteristics: 16 channels ASICs adapted for the LAD (970 microns pitch) and 64 channels for the WFM (145 microns pitch) will be fabricated. The ASICs were developed with the 180nm mixed technology of TSMC.

  8. Aerostat-lofted instrument and sampling method for determination of emissions from open area sources

    EPA Science Inventory

    An aerostat-borne instrument and sampling method was developed to characterize air samples from area sources, such as emissions from open burning. The 10 kg battery-powered instrument system, termed "the Flyer," is lofted with a helium-filled aerostat of 4 m nominal diameter and ...

  9. Development of probabilistic design method for annular fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozawa, Takayuki

    2007-07-01

    The increase of linear power and burn-up during the reactor operation is considered as one measure to ensure the utility of fast reactors in the future; for this the application of annular oxide fuels is under consideration. The annular fuel design code CEPTAR was developed in the Japan Atomic Energy Agency (JAEA) and verified by using many irradiation experiences with oxide fuels. In addition, the probabilistic fuel design code BORNFREE was also developed to provide a safe and reasonable fuel design and to evaluate the design margins quantitatively. This study aimed at the development of a probabilistic design method formore » annular oxide fuels; this was implemented in the developed BORNFREE-CEPTAR code, and the code was used to make a probabilistic evaluation with regard to the permissive linear power. (author)« less

  10. Recent GE BWR fuel experience and design evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, J.E.; Potts, G.A.; Proebstle, R.A.

    1992-01-01

    Reliable fuel operation is essential to the safe, reliable, and economic power production by today's commercial nuclear reactors. GE Nuclear Energy is committed to maximize fuel reliability through the progressive development of improved fuel design features and dedication to provide the maximum quality of the design features and dedication to provide the maximum quality of the design, fabrication, and operation of GE BWR fuel. Over the last 35 years, GE has designed, fabricated, and placed in operation over 82,000 BWR fuel bundles containing over 5 million fuel rods. This experience includes successful commercial reactor operation of fuel assemblies to greatermore » than 45000 MWd/MTU bundle average exposure. This paper reports that this extensive experience base has enabled clear identification and characterization of the active failure mechanisms. With this failure mechanism characterization, mitigating actions have been developed and implemented by GE to provide the highest reliability BWR fuel bundles possible.« less

  11. LOFT. Reactor support apparatus inside containment building (TAN650). Camera is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Reactor support apparatus inside containment building (TAN-650). Camera is on crane rail level and facing northerly. View shows top two banks of round conduit openings on wall for electrical and other connections to control room. Ladders and platforms provide access to reactor instrumentation. Note hatch in floor and drain at edge of floor near wall. Date: 1974. INEEL negative no. 74-219 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  13. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  14. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  15. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  16. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, Anthony P.; Stachowski, Russell E.

    1995-01-01

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

  17. LOFT. Containment building (TAN650) with fourrail tracks in place. Stack ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment building (TAN-650) with four-rail tracks in place. Stack has been erected. Curved shroud over doorway and to the right is weather protection for railroad door seen in HAER photo ID-33-E-367. Motor-operated door rolls on wheels to open and close. Service portions of containment building can be seen at rear of dome on left and right. Camera facing north. Date: 1973. INEEL negative no. 73-1600 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, A.P.; Stachowski, R.E.

    1995-08-08

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

  19. Nonlinear observer designs for fuel cell power systems

    NASA Astrophysics Data System (ADS)

    Gorgun, Haluk

    A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS

  20. LOFT/FET complex. Construction view of abutment footings for arches of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT/FET complex. Construction view of abutment footings for arches of hangar (TAN-629). Tunnels between basement of hangar and control building (TAN-630) had to fit between arches. (Note concrete work taking place at hole at lower edge of view. This photo may document unexpected bubble in underlying lava rock. It was dumped full of concrete and a footing made. Source: Interview with John DeClue). Date: December 19, 1957. Photographer: Jack L. Anderson. INEEL negative no. 57-6203 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. Basic elements of light water reactor fuel rod design. [FUELROD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisman, J.; Eckart, R.

    1981-06-01

    Basic design techniques and equations are presented to allow students to understand and perform preliminary fuel design for normal reactor conditions. Each of the important design considerations is presented and discussed in detail. These include the interaction between fuel pellets and cladding and the changes in fuel and cladding that occur during the operating lifetime of the fuel. A simple, student-oriented, fuel rod design computer program, called FUELROD, is described. The FUELROD program models the in-pile pellet cladding interaction and allows a realistic exploration of the effect of various design parameters. By use of FUELROD, the student can gain anmore » appreciation of the fuel rod design process. 34 refs.« less

  2. Group 1: Scenario design and development issues

    NASA Technical Reports Server (NTRS)

    Sherwin, P.

    1981-01-01

    All LOFT scenarios and flight segments should be designed on the basis of a detailed statement of specific objectives. These objectives must state what kind of situation is to be addressed and why. The origin, routing, and destination of a particular scenario should be dictated by the specific objectives for that scenario or leg. Other factors to be considered are the desired weather, climate, etc. Simulator visual system, as well as other capabilities and limitations must be considered at a very early stage of scenario design. The simulator navigation area must be apropriate and must coincide with current Jeppeson charts. Much of the realism of LOFT is destroyed if the crew is unable to use current manuals and other materials.

  3. PEM Fuel Cells Redesign Using Biomimetic and TRIZ Design Methodologies

    NASA Astrophysics Data System (ADS)

    Fung, Keith Kin Kei

    Two formal design methodologies, biomimetic design and the Theory of Inventive Problem Solving, TRIZ, were applied to the redesign of a Proton Exchange Membrane (PEM) fuel cell. Proof of concept prototyping was performed on two of the concepts for water management. The liquid water collection with strategically placed wicks concept demonstrated the potential benefits for a fuel cell. Conversely, the periodic flow direction reversal concepts might cause a potential reduction water removal from a fuel cell. The causes of this water removal reduction remain unclear. In additional, three of the concepts generated with biomimetic design were further studied and demonstrated to stimulate more creative ideas in the thermal and water management of fuel cells. The biomimetic design and the TRIZ methodologies were successfully applied to fuel cells and provided different perspectives to the redesign of fuel cells. The methodologies should continue to be used to improve fuel cells.

  4. Carbide fuel pin and capsule design for irradiations at thermionic temperatures

    NASA Technical Reports Server (NTRS)

    Siegel, B. L.; Slaby, J. G.; Mattson, W. F.; Dilanni, D. C.

    1973-01-01

    The design of a capsule assembly to evaluate tungsten-emitter - carbide-fuel combinations for thermionic fuel elements is presented. An inpile fuel pin evaluation program concerned with clad temperture, neutron spectrum, carbide fuel composition, fuel geometry,fuel density, and clad thickness is discussed. The capsule design was a compromise involving considerations between heat transfer, instrumentation, materials compatibility, and test location. Heat-transfer calculations were instrumental in determining the method of support of the fuel pin to minimize axial temperature variations. The capsule design was easily fabricable and utilized existing state-of-the-art experience from previous programs.

  5. Fuel characteristics pertinent to the design of aircraft fuel systems, Supplement I : additional information on MIL-F-7914(AER) grade JP-5 fuel and several fuel oils

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, Robert R

    1953-01-01

    Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.

  6. Effects of fuel nozzle design on performance of an experimental annular combustor using natural gas fuel

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Schultz, D. F.

    1972-01-01

    Tests of various fuel nozzles were conducted with natural gas fuel in a full-annulus combustor. The nozzles were designed to provide either axial, angled, or radial fuel injection. Each fuel nozzle was evaluated by measuring combustion efficiency at relatively severe combustor operating conditions. Combustor blowout and altitude ignition tests were also used to evaluate nozzle designs. Results indicate that angled injection gave higher combustion efficiency, less tendency toward combustion instability, and altitude relight characteristics equal to or superior to those of the other fuel nozzles that were tested.

  7. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renfro, David G; Chandler, David; Cook, David Howard

    2014-11-01

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully convertedmore » using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the complex aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The

  8. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renfro, David; Chandler, David; Cook, David

    2014-10-30

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted usingmore » the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline

  9. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes these overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  10. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes thses overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  11. Posttest analysis of LOFT LOCE L2-3 using the ESA RELAP4 blowdown model. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perryman, J.L.; Samuels, T.K.; Cooper, C.H.

    A posttest analysis of the blowdown portion of Loss-of-Coolant Experiment (LOCE) L2-3, which was conducted in the Loss-of-Fluid Test (LOFT) facility, was performed using the experiment safety analysis (ESA) RELAP4/MOD5 computer model. Measured experimental parameters were compared with the calculations in order to assess the conservatisms in the ESA RELAP4/MOD5 model.

  12. Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon

    NASA Astrophysics Data System (ADS)

    Hermalyn, B.; Schultz, P. H.

    2011-12-01

    Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging

  13. The Conceptual Design for a Fuel Assembly of a New Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, J-S.; Cho, Y-G.; Yoon, D-B.

    2004-10-06

    A new Research Reactor (ARR) has been under design by KAERI since 2002. In this work, as a first step for the design of the fuel assembly of the ARR, the conceptual design has been carried out. The vibration characteristics of the tubular fuel model and the locking performance of the preliminary designed locking devices were investigated. In order to investigate the effects of the stiffener on the vibration characteristics of the tubular fuel, a modal analysis was performed for the finite element models of the tubular fuels with stiffeners and without stiffeners. The analysis results show that the vibrationmore » characteristics of the tubular fuel with stiffeners are better than those of the tubular fuel without stiffeners. To investigate the locking performance of the preliminary designed locking devices for the fuel assembly of the ARR, the elements of the locking devices were fabricated. Then the torsional resistance, fixing status and vibration characteristics of the locking devices were tested. The test results show that using the locking device with fins on the bottom guide can prevent the torsional motion of the fuel assembly, and that additional springs or guides on the top of the fuel assembly are needed to suppress the lateral motion of the fuel assembly. Based on the modal analysis and experimental results, the fuel assembly and locking devices of the ARR were designed and its prototype was fabricated. The locking performance, pressure drop characteristics and vibration characteristics of the newly designed fuel assembly will be tested in the near future.« less

  14. Structural design considerations for micromachined solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Srikar, V. T.; Turner, Kevin T.; Andrew Ie, Tze Yung; Spearing, S. Mark

    Micromachined solid-oxide fuel cells (μSOFCs) are among a class of devices being investigated for portable power generation. Optimization of the performance and reliability of such devices requires robust, scale-dependent, design methodologies. In this first analysis, we consider the structural design of planar, electrolyte-supported, μSOFCs from the viewpoints of electrochemical performance, mechanical stability and reliability, and thermal behavior. The effect of electrolyte thickness on fuel cell performance is evaluated using a simple analytical model. Design diagrams that account explicitly for thermal and intrinsic residual stresses are presented to identify geometries that are resistant to fracture and buckling. Analysis of energy loss due to in-plane heat conduction highlights the importance of efficient thermal isolation in microscale fuel cell design.

  15. Aircraft-Fuel-Tank Design for Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Reynolds, T W

    1955-01-01

    Some of the considerations involved in the design of aircraft fuel tanks for liquid hydrogen are discussed herein. Several of the physical properties of metals and thermal insulators in the temperature range from ambient to liquid-hydrogen temperatures are assembled. Calculations based on these properties indicate that it is possible to build a large-size liquid-hydrogen fuel tank which (1) will weigh less then 15 percent of the fuel weight, (2) will have a hydrogen vaporization rate less than 30 percent of the cruise fuel-flow rate, and (3) can be held in a stand-by condition and readied for flight in a short time.

  16. Design and Performance of LPG Fuel Mixer for Dual Fuel Diesel Engine

    NASA Astrophysics Data System (ADS)

    Desrial; Saputro, W.; Garcia, P. P.

    2018-05-01

    Small horizontal diesel engines are commonly used for agricultural machinery, however, availability of diesel fuel become one of big problems especially in remote area. Conversely, in line with government policy for conversion of kerosene into LPG for cooking, then LPG become more popular and available even in remote area. Therefore, LPG is potential fuel to replace the shortage of diesel fuel for operating diesel engine in remote area. The purpose of this study was to design mixing device for using dual fuel i.e. LPG and diesel fuel and evaluate its performance accordingly. Simulation by using CFD was done in order to analyze mixture characteristics of LPG in air intake manifold. The performance test was done by varying the amount of LPG injected in intake air at 20%, 25%, 30%, 35%, until 40%, respectively. Result of CFD contour simulation showed the best combination when mixing 30% LPG into the intake air. Performance test of this research revealed that mixing LPG in air intake can reduce the diesel fuel consumption about 0.7 l/hour (without load) and 1.14 l/hour (with load). Diesel engine revolution increases almost 300 rpm faster than when using diesel fuel only. Based on economic analysis, using the fuel combination (diesel fuel – LPG) is not recommended in the area near SPBU where the price of diesel fuel is standard. However, using the fuel combination LPG-diesel fuel is highly recommended in the remote areas in Indonesia where price of diesel fuel is comparatively expensive which will provide cheaper total fuel cost for diesel engine operation.

  17. Light Water Breeder Reactor fuel rod design and performance characteristics (LWBR Development Program)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, W.R.; Giovengo, J.F.

    1987-10-01

    Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percentmore » of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.« less

  18. Designing the microturbine engine for waste-derived fuels.

    PubMed

    Seljak, Tine; Katrašnik, Tomaž

    2016-01-01

    Presented paper deals with adaptation procedure of a microturbine (MGT) for exploitation of refuse derived fuels (RDF). RDF often possess significantly different properties than conventional fuels and usually require at least some adaptations of internal combustion systems to obtain full functionality. With the methodology, developed in the paper it is possible to evaluate the extent of required adaptations by performing a thorough analysis of fuel combustion properties in a dedicated experimental rig suitable for testing of wide-variety of waste and biomass derived fuels. In the first part key turbine components are analyzed followed by cause and effect analysis of interaction between different fuel properties and design parameters of the components. The data are then used to build a dedicated test system where two fuels with diametric physical and chemical properties are tested - liquefied biomass waste (LW) and waste tire pyrolysis oil (TPO). The analysis suggests that exploitation of LW requires higher complexity of target MGT system as stable combustion can be achieved only with regenerative thermodynamic cycle, high fuel preheat temperatures and optimized fuel injection nozzle. Contrary, TPO requires less complex MGT design and sufficient operational stability is achieved already with simple cycle MGT and conventional fuel system. The presented approach of testing can significantly reduce the extent and cost of required adaptations of commercial system as pre-selection procedure of suitable MGT is done in developed test system. The obtained data can at the same time serve as an input for fine-tuning the processes for RDF production. Copyright © 2015. Published by Elsevier Ltd.

  19. LH2 fuel tank design for SSTO

    NASA Technical Reports Server (NTRS)

    Wright, Geoff

    1994-01-01

    This report will discuss the design of a liquid hydrogen fuel tank constructed from composite materials. The focus of this report is to recommend a design for a fuel tank which will be able to withstand all static and dynamic forces during manned flight. Areas of study for the design include material selection, material structural analysis, heat transfer, thermal expansion, and liquid hydrogen diffusion. A structural analysis FORTRAN program was developed for analyzing the buckling and yield characteristics of the tank. A thermal analysis Excel spreadsheet was created to determine a specific material thickness which will minimize heat transfer through the wall of the tank. The total mass of the tank was determined by the combination of both structural and thermal analyses. The report concludes with the recommendation of a layered material tank construction. The designed system will include exterior insulation, combination of metal and organize composite matrices and honeycomb.

  20. LOFT Debriefings: An Analysis of Instructor Techniques and Crew Participation

    NASA Technical Reports Server (NTRS)

    Dismukes, R. Key; Jobe, Kimberly K.; McDonnell, Lori K.

    1997-01-01

    This study analyzes techniques instructors use to facilitate crew analysis and evaluation of their Line-Oriented Flight Training (LOFT) performance. A rating instrument called the Debriefing Assessment Battery (DAB) was developed which enables raters to reliably assess instructor facilitation techniques and characterize crew participation. Thirty-six debriefing sessions conducted at five U.S. airlines were analyzed to determine the nature of instructor facilitation and crew participation. Ratings obtained using the DAB corresponded closely with descriptive measures of instructor and crew performance. The data provide empirical evidence that facilitation can be an effective tool for increasing the depth of crew participation and self-analysis of CRM performance. Instructor facilitation skill varied dramatically, suggesting a need for more concrete hands-on training in facilitation techniques. Crews were responsive but fell short of actively leading their own debriefings. Ways to improve debriefing effectiveness are suggested.

  1. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period January 1, 2001-March 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) finalized the engineering of the Willow Island cofiring project, completed the fuel characterizations for both the Willow Island and Albright Generating Station projects, and initiated construction of both projects. Allegheny and its contractor, Foster Wheeler, selected appropriate fuel blends and issued purchase orders for all processing and mechanical equipment to be installed at both sites. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The third quarter of the project involved completing the detailedmore » designs for the Willow Island Designer Fuel project. It also included complete characterization of the coal and biomass fuels being burned, focusing upon the following characteristics: proximate and ultimate analysis; higher heating value; carbon 13 nuclear magnetic resonance testing for aromaticity, number of aromatic carbons per cluster, and the structural characteristics of oxygen in the fuel; drop tube reactor testing for high temperature devolatilization kinetics and generation of fuel chars; thermogravimetric analyses (TGA) for char oxidation kinetics; and related testing. The construction at both sites commenced during this quarter, and was largely completed at the Albright Generating Station site.« less

  2. Solid oxide fuel cell simulation and design optimization with numerical adjoint techniques

    NASA Astrophysics Data System (ADS)

    Elliott, Louie C.

    This dissertation reports on the application of numerical optimization techniques as applied to fuel cell simulation and design. Due to the "multi-physics" inherent in a fuel cell, which results in a highly coupled and non-linear behavior, an experimental program to analyze and improve the performance of fuel cells is extremely difficult. This program applies new optimization techniques with computational methods from the field of aerospace engineering to the fuel cell design problem. After an overview of fuel cell history, importance, and classification, a mathematical model of solid oxide fuel cells (SOFC) is presented. The governing equations are discretized and solved with computational fluid dynamics (CFD) techniques including unstructured meshes, non-linear solution methods, numerical derivatives with complex variables, and sensitivity analysis with adjoint methods. Following the validation of the fuel cell model in 2-D and 3-D, the results of the sensitivity analysis are presented. The sensitivity derivative for a cost function with respect to a design variable is found with three increasingly sophisticated techniques: finite difference, direct differentiation, and adjoint. A design cycle is performed using a simple optimization method to improve the value of the implemented cost function. The results from this program could improve fuel cell performance and lessen the world's dependence on fossil fuels.

  3. Summary of LCRE fuel element design including supporting experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Declassified 18 Sep 1973. The design basis of the LCRE fuel pin is presented. The fuel pin consists of a Cb-1 Zr alloy cladding tube 0.305 inch diameter, 0.015 inch wall thickness and 35.96 inches long. The active fuel section is 13.5 inches long, with top and bottom reflector rods each 6.9 inches long and with a 4 inch gas accumulation space at each end. The cladding is designed as a pressure vessel to contain the gases released from the fuel and end refiector materials, which results in an internal gas pressure buildup in the pins during reactor operation. (23more » referencea) (auth)« less

  4. Hydrogen for the subsonic transport. [aircraft design and fuel requirements

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.; Snow, D. B.

    1975-01-01

    Relations between air travel and fuel requirements are examined. Alternate fuels considered in connection with problems related to a diminishing supply of petroleum include synthetic jet fuel, methane, and hydrogen. A cruise flight of a subsonic aircraft on a hydrogen-fueled jet engine was demonstrated in 1957. However, more development work is required to provide a sound engineering base for a complete air transportation system using hydrogen as fuel. Aircraft designs for alternate fuels are discussed, giving attention to hydrogen-related technology already available and new developments which are needed.

  5. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    NASA Astrophysics Data System (ADS)

    Powers, Jeffrey J.

    2011-12-01

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated

  6. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, Jeffrey James

    2011-11-30

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importancemore » of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It

  7. Effects of fuel-injector design on ultra-lean combustion performance

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Emissions data were obtained for six fuel injector configurations tested with ultra lean combustion. Fuel injectors included three multiple source designs and three configurations using a single air assist injector. Only the multiple source fuel injectors provided acceptable emissions. Values of 16g CO/kg fuel, 1.9g HC/kg fuel, and 19.g NO2/kg fuel were obtained for the combustion temperature range of 1450 to 1700 K for both a high blockage 19 source injector and a low blockage 41 source injector. It was shown that high fuel injector pressure drop may not be required to achieve low emissions performance at high inlet air temperature when the fuel is well dispersed in the airstream.

  8. Fuel ethanol production: process design trends and integration opportunities.

    PubMed

    Cardona, Carlos A; Sánchez, Oscar J

    2007-09-01

    Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. In this work, the key role that process design plays during the development of cost-effective technologies is recognized through the analysis of major trends in process synthesis, modeling, simulation and optimization related to ethanol production. Main directions in techno-economical evaluation of fuel ethanol processes are described as well as some prospecting configurations. The most promising alternatives for compensating ethanol production costs by the generation of valuable co-products are analyzed. Opportunities for integration of fuel ethanol production processes and their implications are underlined. Main ways of process intensification through reaction-reaction, reaction-separation and separation-separation processes are analyzed in the case of bioethanol production. Some examples of energy integration during ethanol production are also highlighted. Finally, some concluding considerations on current and future research tendencies in fuel ethanol production regarding process design and integration are presented.

  9. Design of a fuel element for a lead-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Sobolev, V.; Malambu, E.; Abderrahim, H. Aït

    2009-03-01

    The options of a lead-cooled fast reactor (LFR) of the fourth generation (GEN-IV) reactor with the electric power of 600 MW are investigated in the ELSY Project. The fuel selection, design and optimization are important steps of the project. Three types of fuel are considered as candidates: highly enriched Pu-U mixed oxide (MOX) fuel for the first core, the MOX containing between 2.5% and 5.0% of the minor actinides (MA) for next core and Pu-U-MA nitride fuel as an advanced option. Reference fuel rods with claddings made of T91 ferrite-martensitic steel and two alternative fuel assembly designs (one uses a closed hexagonal wrapper and the other is an open square variant without wrapper) have been assessed. This study focuses on the core variant with the closed hexagonal fuel assemblies. Based on the neutronic parameters provided by Monte-Carlo modeling with MCNP5 and ALEPH codes, simulations have been carried out to assess the long-term thermal-mechanical behaviour of the hottest fuel rods. A modified version of the fuel performance code FEMAXI-SCK-1, adapted for fast neutron spectrum, new fuels, cladding materials and coolant, was utilized for these calculations. The obtained results show that the fuel rods can withstand more than four effective full power years under the normal operation conditions without pellet-cladding mechanical interaction (PCMI). In a variant with solid fuel pellets, a mild PCMI can appear during the fifth year, however, it remains at an acceptable level up to the end of operation when the peak fuel pellet burnup ∼80 MW d kg-1 of heavy metal (HM) and the maximum clad damage of about 82 displacements per atom (dpa) are reached. Annular pellets permit to delay PCMI for about 1 year. Based on the results of this simulation, further steps are envisioned for the optimization of the fuel rod design, aiming at achieving the fuel burnup of 100 MW d kg-1 of HM.

  10. Posttest REALP4 analysis of LOFT experiment L1-3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.R.; Holmstrom, H.L.O.

    This report presents selected results of posttest RELAP4 modeling of LOFT loss-of-coolant experiment L1-3A, a double-ended isothermal cold leg break with lower plenum emergency core coolant injection. Comparisons are presented between the pretest prediction, the posttest analysis, and the experimental data. It is concluded that pressurizer modeling is important for accurately predicting system behavior during the initial portion of saturated blowdown. Using measured initial conditions rather than nominal specified initial conditions did not influence the system model results significantly. Using finer nodalization in the reactor vessel improved the prediction of the system pressure history by minimizing steam condensation effects. Unequalmore » steam condensation between the downcomer and core volumes appear to cause the manometer oscillations observed in both the pretest and posttest RELAP4 analysis.« less

  11. Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication

    NASA Technical Reports Server (NTRS)

    Mireles, O. R.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.

  12. System design of a large fuel cell hybrid locomotive

    NASA Astrophysics Data System (ADS)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  13. MOX fuel assembly design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, A.P.; Crowther, R.L. Jr.

    1992-02-18

    This patent describes improvement in a boiling water reactor core having a plurality of vertically upstanding fuel bundles; each fuel bundle containing longitudinally extending sealed rods with fissile material therein; the improvement comprises the fissile material including a mixture of uranium and recovered plutonium in rods of the fuel bundle at locations other than the corners of the fuel bundle; and, neutron absorbing material being located in rods of the fuel bundle at rod locations adjacent the corners of the fuel bundles whereby the neutron absorbing material has decreased shielding from the plutonium and maximum exposure to thermal neutrons formore » shaping the cold reactivity shutdown zone in the fuel bundle.« less

  14. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  15. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertyurek, Ugur; Gauld, Ian C.

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less

  16. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    DOE PAGES

    Mertyurek, Ugur; Gauld, Ian C.

    2015-12-24

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less

  17. Design of fuel cell powered data centers for sufficient reliability and availability

    NASA Astrophysics Data System (ADS)

    Ritchie, Alexa J.; Brouwer, Jacob

    2018-04-01

    It is challenging to design a sufficiently reliable fuel cell electrical system for use in data centers, which require 99.9999% uptime. Such a system could lower emissions and increase data center efficiency, but the reliability and availability of such a system must be analyzed and understood. Currently, extensive backup equipment is used to ensure electricity availability. The proposed design alternative uses multiple fuel cell systems each supporting a small number of servers to eliminate backup power equipment provided the fuel cell design has sufficient reliability and availability. Potential system designs are explored for the entire data center and for individual fuel cells. Reliability block diagram analysis of the fuel cell systems was accomplished to understand the reliability of the systems without repair or redundant technologies. From this analysis, it was apparent that redundant components would be necessary. A program was written in MATLAB to show that the desired system reliability could be achieved by a combination of parallel components, regardless of the number of additional components needed. Having shown that the desired reliability was achievable through some combination of components, a dynamic programming analysis was undertaken to assess the ideal allocation of parallel components.

  18. Novel design for transparent high-pressure fuel injector nozzles.

    PubMed

    Falgout, Z; Linne, M

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  19. Major design issues of molten carbonate fuel cell power generation unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to complymore » with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.« less

  20. Diversifying biological fuel cell designs by use of nanoporous filters.

    PubMed

    Biffinger, Justin C; Ray, Ricky; Little, Brenda; Ringeisen, Bradley R

    2007-02-15

    The use of proton exchange membranes (PEMs) in biological fuel cells limits the diversity of novel designs for increasing output power or enabling autonomous function in unique environments. Here we show that selected nanoporous polymer filters (nylon, cellulose, or polycarbonate) can be used effectively in place of PEMs in a miniature microbial fuel cell (mini-MFC, device cross-section 2 cm2), generating a power density of 16 W/m3 with an uncoated graphite felt oxygen reduction reaction (ORR) cathode. The incorporation of polycarbonate or nylon membranes into biological fuel cell designs produced comparable power and durability to Nafion-117 membranes. Also, high power densities for novel larger (5 cm3 anode volume, 0.6 W/m3) and smaller (0.025 cm3 projected geometric volume, average power density 10 W/m3) chamberless and pumpless microbial fuel cells were observed. As an additional benefit, the nanoporous membranes isolated the anode from invading natural bacteria, increasing the potential applications for MFCs beyond aquatic sediment environments. This work is a practical solution for decreasing the cost of biological fuel cells while incorporating new features for powering long-term autonomous devices.

  1. Design of an integrated fuel processor for residential PEMFCs applications

    NASA Astrophysics Data System (ADS)

    Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai

    KIER has been developing a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. For the effective design of a compact hydrogen production system, each unit process for steam reforming and water gas shift, has a steam generator and internal heat exchangers which are thermally and physically integrated into a single packaged hardware system. The newly designed fuel processor (prototype II) showed a thermal efficiency of 78% as a HHV basis with methane conversion of 89%. The preferential oxidation unit with two staged cascade reactors, reduces, the CO concentration to below 10 ppm without complicated temperature control hardware, which is the prerequisite CO limit for the PEMFC stack. After we achieve the initial performance of the fuel processor, partial load operation was carried out to test the performance and reliability of the fuel processor at various loads. The stability of the fuel processor was also demonstrated for three successive days with a stable composition of product gas and thermal efficiency. The CO concentration remained below 10 ppm during the test period and confirmed the stable performance of the two-stage PrOx reactors.

  2. SPOUTED BED DESIGN CONSIDERATIONS FOR COATED NUCLEAR FUEL PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Douglas W.

    High Temperature Gas Cooled Reactors (HTGRs) are fueled with tristructural isotropic (TRISO) coated nuclear fuel particles embedded in a carbon-graphite fuel body. TRISO coatings consist of four layers of pyrolytic carbon and silicon carbide that are deposited on uranium ceramic fuel kernels (350µm – 500µm diameters) in a concatenated series of batch depositions. Each layer has dedicated functions such that the finished fuel particle has its own integral containment to minimize and control the release of fission products into the fuel body and reactor core. The TRISO coatings are the primary containment structure in the HTGR reactor and must havemore » very high uniformity and integrity. To ensure high quality TRISO coatings, the four layers are deposited by chemical vapor deposition (CVD) using high purity precursors and are applied in a concatenated succession of batch operations before the finished product is unloaded from the coating furnace. These depositions take place at temperatures ranging from 1230°C to 1550°C and use three different gas compositions, while the fuel particle diameters double, their density drops from 11.1 g/cm3 to 3.0 g/cm3, and the bed volume increases more than 8-fold. All this is accomplished without the aid of sight ports or internal instrumentation that could cause chemical contamination within the layers or mechanical damage to thin layers in the early stages of each layer deposition. The converging section of the furnace retort was specifically designed to prevent bed stagnation that would lead to unacceptably high defect fractions and facilitate bed circulation to avoid large variability in coating layer dimensions and properties. The gas injection nozzle was designed to protect precursor gases from becoming overheated prior to injection, to induce bed spouting and preclude bed stagnation in the bottom of the retort. Furthermore, the retort and injection nozzle designs minimize buildup of pyrocarbon and silicon carbide on

  3. Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications

    NASA Astrophysics Data System (ADS)

    Braun, Robert Joseph

    The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell

  4. A Theoretical Solid Oxide Fuel Cell Model for Systems Controls and Stability Design

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Brinson, Thomas; Credle, Sydni

    2008-01-01

    As the aviation industry moves toward higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The hybrid solid oxide fuel cell system combines the fuel cell with a micro-turbine to obtain up to 70% cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multidiscipline system and the design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and a distribution system, and the fuel cell and micro-turbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. The novelty in this paper is that, first, the case is made why a high fidelity fuel cell mode is needed for systems control and stability designs. Second, a novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.

  5. Direct methanol fuel cells: A database-driven design procedure

    NASA Astrophysics Data System (ADS)

    Flipsen, S. F. J.; Spitas, C.

    2011-10-01

    To test the feasibility of DMFC systems in preliminary stages of the design process the design engineer can make use of heuristic models identifying the opportunity of DMFC systems in a specific application. In general these models are to generic and have a low accuracy. To improve the accuracy a second-order model is proposed in this paper. The second-order model consists of an evolutionary algorithm written in Mathematica, which selects a component-set satisfying the fuel-cell systems' performance requirements, places the components in 3D space and optimizes for volume. The results are presented as a 3D draft proposal together with a feasibility metric. To test the algorithm the design of DMFC system applied in the MP3 player is evaluated. The results show that volume and costs are an issue for the feasibility of the fuel-cell power-system applied in the MP3 player. The generated designs and the algorithm are evaluated and recommendations are given.

  6. Design and Analysis of Thorium-fueled Reduced Moderation Boiling Water Reactors

    NASA Astrophysics Data System (ADS)

    Gorman, Phillip Michael

    The Resource-renewable Boiling Water Reactors (RBWRs) are a set of light water reactors (LWRs) proposed by Hitachi which use a triangular lattice and high void fraction to incinerate fuel with an epithermal spectrum, which is highly atypical of LWRs. The RBWRs operate on a closed fuel cycle, which is impossible with a typical thermal spectrum reactor, in order to accomplish missions normally reserved for sodium fast reactors (SFRs)--either fuel self-sufficiency or waste incineration. The RBWRs also axially segregate the fuel into alternating fissile "seed" regions and fertile "blanket" regions in order to enhance breeding and leakage probability upon coolant voiding. This dissertation focuses on thorium design variants of the RBWR: the self-sufficient RBWR-SS and the RBWR-TR, which consumes reprocessed transuranic (TRU) waste from PWR used nuclear fuel. These designs were based off of the Hitachi-designed RBWR-AC and the RBWR-TB2, respectively, which use depleted uranium (DU) as the primary fertile fuel. The DU-fueled RBWRs use a pair of axially segregated seed sections in order to achieve a negative void coefficient; however, several concerns were raised with this multi-seed approach, including difficulty with controlling the reactor and unacceptably high axial power peaking. Since thorium-uranium fuel tends to have much more negative void feedback than uranium-plutonium fuels, the thorium RBWRs were designed to use a single elongated seed to avoid these issues. A series of parametric studies were performed in order to find the design space for the thorium RBWRs, and optimize the designs while meeting the required safety constraints. The RBWR-SS was optimized to maximize the discharge burnup, while the RBWR-TR was optimized to maximize the TRU transmutation rate. These parametric studies were performed on an assembly level model using the MocDown simulator, which calculates an equilibrium fuel composition with a specified reprocessing scheme. A full core model was

  7. LMFBR fuel assembly design for HCDA fuel dispersal

    DOEpatents

    Lacko, Robert E.; Tilbrook, Roger W.

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  8. Guidelines for Line-Oriented Flight Training, Volume 1

    NASA Technical Reports Server (NTRS)

    Lauber, J. K.; Foushee, H. C.

    1981-01-01

    Line-Oriented Flight Training (LOFT) is a developing training technology which synthesizes high-fidelity aircraft simulation and high-fidelity line-operations simulation to provide realistic, dynamic pilot training in a simulated line environment. LOFT is an augmentation of existing pilot training which concentrates upon command, leadership, and resource management skills. This report, based on an NASA/Industry workshop held in January, 1981, is designed to serve as a handbook for LOFT users. In addition to providing background information, guidelines are presented for designing LOFT scenarios, conducting real-time LOFT operations, pilot debriefing, and instructor qualification and training. The final chapter addressed other uses of LOFT and line-operations (or full-mission) simulation.

  9. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzedmore » advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.« less

  10. Feasibility and Design Implications of Fuel Cell Power for Sealift Ships

    DTIC Science & Technology

    2010-01-01

    Feasibility and Design Implications of Fuel Cell Power for Sealift Ships Jing Suna, John Stebeb, and Colen Kennellb a Department of Naval...studies published so far have focused on ship service power or on propulsion power for small vessels with moderate power requirements. Using a ... a large military cargo ship. A notional solid oxide fuel cell (SOFC) module is proposed and the implications of the technology on fuel savings and

  11. A Theoretical Solid Oxide Fuel Cell Model for System Controls and Stability Design

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Brinson, Thomas; Credle, Sydni; Xu, Ming

    2006-01-01

    As the aviation industry moves towards higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The Hybrid Solid Oxide Fuel Cell system combines the fuel cell with a microturbine to obtain up to 70 percent cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multi-discipline system, and design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and distribution system and the fuel cell and microturbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. A novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled, but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.

  12. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA)more » of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement

  13. Scramjet fuel injector design parameters and considerations: Development of a two-dimensional tangential fuel injector with constant pressure at the flame

    NASA Technical Reports Server (NTRS)

    Agnone, A. M.

    1972-01-01

    The factors affecting a tangential fuel injector design for scramjet operation are reviewed and their effect on the efficiency of the supersonic combustion process is evaluated using both experimental data and theoretical predictions. A description of the physical problem of supersonic combustion and method of analysis is followed by a presentation and evaluation of some standard and exotic types of fuel injectors. Engineering fuel injector design criteria and hydrogen ignition schemes are presented along with a cursory review of available experimental data. A two-dimensional tangential fuel injector design is developed using analyses as a guide in evaluating the effects on the combustion process of various initial and boundary conditions including splitter plate thickness, injector wall temperature, pressure gradients, etc. The fuel injector wall geometry is shaped so as to maintain approximately constant pressure at the flame as required by a cycle analysis. A viscous characteristics program which accounts for lateral as well as axial pressure variations due to the mixing and combustion process is used in determining the wall geometry.

  14. Clean Air Program : Design Guidelines for Bus Transit Systems Using Alcohol Fuel (Methanol and Ethanol) as an Alternative Fuel

    DOT National Transportation Integrated Search

    1996-08-01

    Although there are over one thousand transit buses in revenue service in the U.S. that are powered by alternative fuels, there are no comprehensive guidelines for the safe design and operation of alternative fuel facilities and vehicles for transit s...

  15. An Innovative Accident Tolerant LWR Fuel Rod Design Based on Uranium-Molybdenum Metal Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Robert O.; Bennett, Wendy D.; Henager, Charles H.

    2016-09-12

    The US Department of Energy is developing a uranium-molybdenum metal alloy Enhanced Accident Tolerant Fuel concept for Light Water Reactor applications that provides improved fuel performance during normal operation, anticipated operational occurrences, and postulated accidents. The high initial uranium atom density, the high thermal conductivity, and a low heat capacity permit a U-Mo-based fuel assembly to meet important design and safety requirements. These attributes also result in a fuel design that can satisfy increased fuel utilization demands and allow for improved accident tolerance in LWRs. This paper summarizes the results obtained from the on-going activities to; 1) evaluate the impactmore » of the U-10wt%Mo thermal properties on operational and accident safety margins, 2) produce a triple extrusion of stainless steel cladding/niobium liner/U-10Mo fuel rod specimen and 3) test the high temperature water corrosion of rodlet samples containing a drilled hole in the cladding. Characterization of the cladding and liner thickness uniformity, microstructural features of the U-Mo gamma phase, and the metallurgical bond between the component materials will be presented. The results from corrosion testing will be discussed which yield insights into the resistance to attack by water ingress during high temperature water exposure for the triple extruded samples containing a drilled hole. These preliminary evaluations find that the U-10Mo fuel design concept has many beneficial features that can meet or improve conventional LWR fuel performance requirements under normal operation, AOOs, and postulated accidents. The viability of a deployable U-Mo fuel design hinges on demonstrating that fabrication processes and alloying additions can produce acceptable irradiation stability during normal operation and accident conditions and controlled metal-water reaction rates in the unlikely event of a cladding perforation. In the area of enhanced accident tolerance, a key

  16. Dry transfer system for spent fuel: Project report, A system designed to achieve the dry transfer of bare spent fuel between two casks. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, D.M.; Guerra, G.; Neider, T.

    1995-12-01

    This report describes the system developed by EPRI/DOE for the dry transfer of spent fuel assemblies outside the reactor spent fuel pool. The system is designed to allow spent fuel assemblies to be removed from a spent fuel pool in a small cask, transported to the transfer facility, and transferred to a larger cask, either for off-site transportation or on-site storage. With design modifications, this design is capable of transferring single spent fuel assemblies from dry storage casks to transportation casks or visa versa. One incentive for the development of this design is that utilities with limited lifting capacity ormore » other physical or regulatory constraints are limited in their ability to utilize the current, more efficient transportation and storage cask designs. In addition, DOE, in planning to develop and implement the multi-purpose canister (MPC) system for the Civilian Radioactive Waste Management System, included the concept of an on-site dry transfer system to support the implementation of the MPC system at reactors with limitations that preclude the handling of the MPC system transfer casks. This Dry Transfer System can also be used at reactors wi decommissioned spent fuel pools and fuel in dry storage in non-MPC systems to transfer fuel into transportation casks. It can also be used at off-reactor site interim storage facilities for the same purpose.« less

  17. Rotor Re-Design for the SSME Fuel Flowmeter

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan

    1999-01-01

    The present report describes the process of redesigning a new rotor for the SSME Fuel Flowmeter. The new design addresses the specific requirement of a lower rotor speed which would allow the SSME operation at 1 15% rated power level without reaching a blade excitation by the wakes behind the hexagonal flow straightener upstream at frequencies close to the blade natural frequency. A series of calculations combining fleet flowmeters test data, airfoil fluid dynamics and CFD simulations of flow patterns behind the flowmeter's hexagonal straightener has led to a blade twist design alpha = alpha (radius) targeting a kf constant of 0.8256. The kf constant relates the fuel volume flow to the flowmeter rotor speed, for this particular value 17685 GPM at 3650 RPM. Based on this angle distribution, two actual blade designs were developed. A first design using the same blade airfoil as the original design targeted the new kf value only. A second design using a variable blade chord length and airfoil relative thickness targeted simultaneously the new kf value and an optimum blade design destined to provide smooth and stable operation and a significant increase in the blade natural frequency associated with the first bending mode, such that a comfortable margin could be obtained at 115% RPL. The second design is a result of a concurrent engineering process, during which several iterations were made in order to achieve a targeted blade natural frequency associated with the first bending mode of 1300 Hz. Water flow tests preliminary results indicate a kf value of 0.8179 for the f-irst design, which is within 1% of the target value. The second design rotor shows a natural frequency associated with the first bending mode of 1308 Hz, and a water-flow calibration constant of kf 0.8169.

  18. Effect of fuel zoning and fuel nozzle design on pollution emissions at ground idle conditions for a double-annular ram-induction combustor

    NASA Technical Reports Server (NTRS)

    Clements, T. R.

    1973-01-01

    An exhaust emission survey was conducted on a double-annular ram induction combustor at simulated ground idle conditions. The combustor was designed for a large augmented turbofan engine capable of sustained flight speeds up to Mach 3.0. The emission levels of total hydrocarbon (THC), carbon monoxide, carbon dioxide, and nitric oxide were measured. The effects of fuel zoning, fuel nozzle design, and operating conditions (inlet temperature and reference Mach number) on the level of these emissions were determined. At an overall combustor fuel/air ratio of 0.007, fuel zoning reduced THC emissions by a factor of 5 to 1. The reduction in THC emissions is attributed to the increase in local fuel/air ratio provided by the fuel zoning. An alternative method of increasing fuel/air ratio would be to operate with larger-than-normal compressor overboard bleed; however, analysis on this method indicated an increase in idle fuel consumption of 20 percent. The use of air-atomizing nozzles reduced the THC emissions by 2 to 1.

  19. Modeling Methodologies for Design and Control of Solid Oxide Fuel Cell APUs

    NASA Astrophysics Data System (ADS)

    Pianese, C.; Sorrentino, M.

    2009-08-01

    Among the existing fuel cell technologies, Solid Oxide Fuel Cells (SOFC) are particularly suitable for both stationary and mobile applications, due to their high energy conversion efficiencies, modularity, high fuel flexibility, low emissions and noise. Moreover, the high working temperatures enable their use for efficient cogeneration applications. SOFCs are entering in a pre-industrial era and a strong interest for designing tools has growth in the last years. Optimal system configuration, components sizing, control and diagnostic system design require computational tools that meet the conflicting needs of accuracy, affordable computational time, limited experimental efforts and flexibility. The paper gives an overview on control-oriented modeling of SOFC at both single cell and stack level. Such an approach provides useful simulation tools for designing and controlling SOFC-APUs destined to a wide application area, ranging from automotive to marine and airplane APUs.

  20. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  1. Design and development of the Waukesha Custom Engine Control Air/Fuel Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, D.W.

    1996-12-31

    The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less

  2. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Moffitt, Blake Almy

    Unmanned Aerial Vehicles (UAVs) are the most dynamic growth sector of the aerospace industry today. The need to provide persistent intelligence, surveillance, and reconnaissance for military operations is driving the planned acquisition of over 5,000 UAVs over the next five years. The most pressing need is for quiet, small UAVs with endurance beyond what is capable with advanced batteries or small internal combustion propulsion systems. Fuel cell systems demonstrate high efficiency, high specific energy, low noise, low temperature operation, modularity, and rapid refuelability making them a promising enabler of the small, quiet, and persistent UAVs that military planners are seeking. Despite the perceived benefits, the actual near-term performance of fuel cell powered UAVs is unknown. Until the auto industry began spending billions of dollars in research, fuel cell systems were too heavy for useful flight applications. However, the last decade has seen rapid development with fuel cell gravimetric and volumetric power density nearly doubling every 2--3 years. As a result, a few design studies and demonstrator aircraft have appeared, but overall the design methodology and vehicles are still in their infancy. The design of fuel cell aircraft poses many challenges. Fuel cells differ fundamentally from combustion based propulsion in how they generate power and interact with other aircraft subsystems. As a result, traditional multidisciplinary analysis (MDA) codes are inappropriate. Building new MDAs is difficult since fuel cells are rapidly changing in design, and various competitive architectures exist for balance of plant, hydrogen storage, and all electric aircraft subsystems. In addition, fuel cell design and performance data is closely protected which makes validation difficult and uncertainty significant. Finally, low specific power and high volumes compared to traditional combustion based propulsion result in more highly constrained design spaces that are

  3. DESIGN CRITERIA FOR FUEL DISSOLUTION SYSTEMS AND ASSOCIATED SERVICE FACILITIES. PLANT MODIFICATIONS FOR REPROCESSING NON-PRODUCTION REACTOR FUELS. PROJECT CGC-830

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierman, S.R.; Graf, W.A.; Kass, M.

    1960-07-29

    Design panameters are presented for phases of the facility to reprocess low-enrichment fuels from nonproduction reactors. Included are plant flowsheets and equipment layouts for fuel element dissolution, centrifugation, solution adjustment, and waste handling. Also included are the basic design criteria for the supporting facilities which service these phases and all other facilites located in the vicinity of the selected building (Bldg. 221-U). (J.R.D.)

  4. Cooling System Design for PEM Fuel Cell Powered Air Vehicles

    DTIC Science & Technology

    2010-06-18

    Research Laboratory (NRL) has developed a proton exchange membrane fuel cell ( PEMFC ) powered unmanned air vehicle (UAV) called the Ion Tiger. The Ion Tiger...to design a cooling system for the Ion Tiger and investigate cooling approaches that may be suitable for future PEMFC powered air vehicles. The...modifications) to other PEMFC systems utilizing a CHE for cooling. 18-06-2010 Memorandum Report Unmanned Air Vehicle UAV Fuel cell PEM Cooling Radiator January

  5. The interaction between design and occupier behaviour in the safety of new homes.

    PubMed

    McDermott, Hilary; Haslam, Roger; Gibb, Alistair

    2007-03-01

    The design of new homes includes many safety features intended to protect occupiers from injury or ill health within the home, however the effectiveness of these primary intervention measures is likely to be affected by user behaviour. This study examined the interaction between user activity and dwelling design and how this might affect health and safety. It aimed to identify how people use features within new homes and how this may limit the protection afforded by building design, codes and regulations. Forty, home-based, semi-structured, in-depth interviews and home inspections were conducted with individuals recently inhabiting a new home. A range of behaviours were reported in relation to building features including fire doors, pipes and cables, and loft access, which may lead to increased risk of injury or ill-health. For example, occupiers described interfering with the self-closing mechanisms on fire doors and drilling into walls without considering the location of services. They also reported knowingly engaging in unsafe behaviour when accessing the loft, increasing their risk of falls. The accounts suggest that designers and builders need to give greater consideration to how occupier behaviour interacts with building features so that improvements in both design and occupier education can lead to improved health and safety.

  6. Spent nuclear fuel canister storage building conceptual design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, C.E.

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  7. Review of the TREAT Conversion Conceptual Design and Fuel Qualification Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, David

    The U.S. Department of Energy (DOE) is preparing to re establish the capability to conduct transient testing of nuclear fuels at the Idaho National Laboratory (INL) Transient Reactor Test (TREAT) facility. The original TREAT core went critical in February 1959 and operated for more than 6,000 reactor startups before plant operations were suspended in 1994. DOE is now planning to restart the reactor using the plant's original high-enriched uranium (HEU) fuel. At the same time, the National Nuclear Security Administration (NNSA) Office of Material Management and Minimization Reactor Conversion Program is supporting analyses and fuel fabrication studies that will allowmore » for reactor conversion to low-enriched uranium (LEU) fuel (i.e., fuel with less than 20% by weight 235U content) after plant restart. The TREAT Conversion Program's objectives are to perform the design work necessary to generate an LEU replacement core, to restore the capability to fabricate TREAT fuel element assemblies, and to implement the physical and operational changes required to convert the TREAT facility to use LEU fuel.« less

  8. Design of metallic bipolar plates for PEM fuel cells.

    DOT National Transportation Integrated Search

    2012-01-01

    This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...

  9. Thermal Design for Extra-Terrestrial Regenerative Fuel Cell System

    NASA Technical Reports Server (NTRS)

    Gilligan, R.; Guzik, M.; Jakupca, I.; Bennett, W.; Smith, P.; Fincannon, J.

    2017-01-01

    The Advanced Exploration Systems (AES) Advanced Modular Power Systems (AMPS) Project is investigating different power systems for various lunar and Martian mission concepts. The AMPS Fuel Cell (FC) team has created two system-level models to evaluate the performance of regenerative fuel cell (RFC) systems employing different fuel cell chemistries. Proton Exchange Membrane fuel cells PEMFCs contain a polymer electrolyte membrane that separates the hydrogen and oxygen cavities and conducts hydrogen cations (protons) across the cell. Solid Oxide fuel cells (SOFCs) operate at high temperatures, using a zirconia-based solid ceramic electrolyte to conduct oxygen anions across the cell. The purpose of the modeling effort is to down select one fuel cell chemistry for a more detailed design effort. Figures of merit include the system mass, volume, round trip efficiency, and electrolyzer charge power required. PEMFCs operate at around 60 C versus SOFCs which operate at temperatures greater than 700 C. Due to the drastically different operating temperatures of the two chemistries the thermal control systems (TCS) differ. The PEM TCS is less complex and is characterized by a single pump cooling loop that uses deionized water coolant and rejects heat generated by the system to the environment via a radiator. The solid oxide TCS has its own unique challenges including the requirement to reject high quality heat and to condense the steam produced in the reaction. This paper discusses the modeling of thermal control systems for an extraterrestrial RFC that utilizes either a PEM or solid oxide fuel cell.

  10. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development

    NASA Astrophysics Data System (ADS)

    Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.

    All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.

  11. A statistical approach to nuclear fuel design and performance

    NASA Astrophysics Data System (ADS)

    Cunning, Travis Andrew

    As CANDU fuel failures can have significant economic and operational consequences on the Canadian nuclear power industry, it is essential that factors impacting fuel performance are adequately understood. Current industrial practice relies on deterministic safety analysis and the highly conservative "limit of operating envelope" approach, where all parameters are assumed to be at their limits simultaneously. This results in a conservative prediction of event consequences with little consideration given to the high quality and precision of current manufacturing processes. This study employs a novel approach to the prediction of CANDU fuel reliability. Probability distributions are fitted to actual fuel manufacturing datasets provided by Cameco Fuel Manufacturing, Inc. They are used to form input for two industry-standard fuel performance codes: ELESTRES for the steady-state case and ELOCA for the transient case---a hypothesized 80% reactor outlet header break loss of coolant accident. Using a Monte Carlo technique for input generation, 105 independent trials are conducted and probability distributions are fitted to key model output quantities. Comparing model output against recognized industrial acceptance criteria, no fuel failures are predicted for either case. Output distributions are well removed from failure limit values, implying that margin exists in current fuel manufacturing and design. To validate the results and attempt to reduce the simulation burden of the methodology, two dimensional reduction methods are assessed. Using just 36 trials, both methods are able to produce output distributions that agree strongly with those obtained via the brute-force Monte Carlo method, often to a relative discrepancy of less than 0.3% when predicting the first statistical moment, and a relative discrepancy of less than 5% when predicting the second statistical moment. In terms of global sensitivity, pellet density proves to have the greatest impact on fuel performance

  12. Use of freeze-casting in advanced burner reactor fuel design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R.

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by thatmore » fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  13. Extinction-to-Backscatter Ratios of Lofted Aerosol Layers Observed During the First Three Months of CALIPSO Measurements

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Vaughan, Mark A.; Liu, Zhaoyan; Hu, Yongxiang; Reagan, John A.; Winker, David M.

    2007-01-01

    Case studies from the first three months of the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) measurements of lofted aerosol layers are analyzed using transmittance [Young, 1995] and two-wavelength algorithms [Vaughan et al., 2004] to determine the aerosol extinction-to-backscatter ratios at 532 and 1064 nm. The transmittance method requires clear air below the layer so that the transmittance through the layer can be determined. Suitable scenes are selected from the browse images and clear air below features is identified by low 532 nm backscatter signal and confirmed by low depolarization and color ratios. The transmittance and two-wavelength techniques are applied to a number of lofted layers and the extinction-to-backscatter ratios are compared with values obtained from the CALIPSO aerosol models [Omar et al., 2004]. The results obtained from these studies are used to adjust the aerosol models and develop observations based extinction-to-backscatter ratio look-up tables and phase functions. Values obtained by these techniques are compared to Sa determinations using other independent methods with a goal of developing probability distribution functions of aerosol type-specific extinction to backscatter ratios. In particular, the results are compared to values determined directly by the High Spectral Resolution Lidar (HSRL) during the CALIPSO CloudSat Validation Experiments (CCVEX) and Sa determined by the application of the two-wavelength lidar Constrained Ratio Aerosol Model-fit (CRAM) retrieval approach [Cattrall et al., 2005; Reagan et al., 2004] to the HSRL data. The results are also compared to values derived using the empirical relationship between the multiple-scattering fraction and the linear depolarization ratio by using Monte Carlo simulations of water clouds [Hu et al., 2006].

  14. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demuth, Scott Francis; Sprinkle, James K.

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout ofmore » Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.« less

  15. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth

  16. Design, fabrication, and testing of an external fuel (UO2), full-length thermionic converter

    NASA Technical Reports Server (NTRS)

    Schock, A.; Raab, B.

    1971-01-01

    The development of a full-length external-fuel thermionic converter for in-pile testing is described. The development program includes out-of-pile performance testing of the fully fueled-converter, using RF-induction heating, before its installation in the in-pile test capsule. The external-fuel converter is cylindrical in shape, and consists of an inner, centrally cooled collector, and an outer emitter surrounded by nuclear fuel. The term full-length denotes that the converter is long enough to extend over the full height of the reactor core. Thus, the converter is not a scaled-down test device, but a full-scale fuel element of the thermionic reactor. The external-fuel converter concept permits a number of different design options, particularly with respect to the fuel composition and shape, and the collector cooling arrangement. The converter described was developed for the Jet Propulsion Laboratory, and is based on their concept for a thermionic reactor with uninsulated collector cooling as previously described. The converter is double-ended, with through-flow cooling, and with ceramic seals and emitter and collector power take-offs at both ends. The design uses a revolver-shaped tungsten emitter body, with the central emitter hole surrounded by six peripheral fuel holes loaded with cylindrical UO2 pellets.

  17. Square lattice honeycomb tri-carbide fuels for 50 to 250 KN variable thrust NTP design

    NASA Astrophysics Data System (ADS)

    Anghaie, Samim; Knight, Travis; Gouw, Reza; Furman, Eric

    2001-02-01

    Ultrahigh temperature solid solution of tri-carbide fuels are used to design an ultracompact nuclear thermal rocket generating 950 seconds of specific impulse with scalable thrust level in range of 50 to 250 kilo Newtons. Solid solutions of tri-carbide nuclear fuels such as uranium-zirconium-niobium carbide. UZrNbC, are processed to contain certain mixing ratio between uranium carbide and two stabilizing carbides. Zirconium or niobium in the tri-carbide could be replaced by tantalum or hafnium to provide higher chemical stability in hot hydrogen environment or to provide different nuclear design characteristics. Recent studies have demonstrated the chemical compatibility of tri-carbide fuels with hydrogen propellant for a few to tens of hours of operation at temperatures ranging from 2800 K to 3300 K, respectively. Fuel elements are fabricated from thin tri-carbide wafers that are grooved and locked into a square-lattice honeycomb (SLHC) shape. The hockey puck shaped SLHC fuel elements are stacked up in a grooved graphite tube to form a SLHC fuel assembly. A total of 18 fuel assemblies are arranged circumferentially to form two concentric rings of fuel assemblies with zirconium hydride filling the space between assemblies. For 50 to 250 kilo Newtons thrust operations, the reactor diameter and length including reflectors are 57 cm and 60 cm, respectively. Results of the nuclear design and thermal fluid analyses of the SLHC nuclear thermal propulsion system are presented. .

  18. Low-Cost Jet Fuel Starter Design Study

    DTIC Science & Technology

    1974-12-02

    2G 27 3^ 38 & 39 60 vi WflU I LIST OF TABLES (continued) TABLE NO, 7 D-l I>-2 TITLE PAGE NO, Sea Level Design Point Component...Improvements 60 Turbojet Performance Summary D-3 Turbofan Performance Summary D-5 vii 1 SECTION INTRODUCTION The purpose of this study was to define...temperature difference between the top and bot- tom of the starter, does not begin to have an effect until after 60 seconds from shutdown. The Jet fuel

  19. Fuel Cell Car Design Project for Freshman Engineering Courses

    ERIC Educational Resources Information Center

    Duke, Steve R.; Davis, Virginia A.

    2014-01-01

    In the Samuel Ginn College of Engineering at Auburn University, we have integrated a semester long design project based on a toy fuel cell car into our freshman "Introduction to Chemical Engineering Class." The project provides the students a basic foundation in chemical reactions, energy, and dimensional analysis that facilitates…

  20. The J-2X Fuel Turbopump - Design, Development, and Test

    NASA Technical Reports Server (NTRS)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  1. Design and evaluation of Continuous Descent Approach as a fuel-saving procedure

    NASA Astrophysics Data System (ADS)

    Jin, Li

    Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen), is a fuel economical procedure, but requires increased separation to accommodate spacing uncertainties among arriving aircraft. Such negative impact is often overlooked when benefits are estimated. Although a considerable number of researches have been devoted to the estimation of potential fuel saving of CDA, few have attempted to explain the fuel saving observed in field tests from an analytical point of view. This research gives insights into the reasons why CDA saves fuel, and a number of design guidelines for CDA procedures are derived. The analytical relationship between speed, altitude, and time-cumulative fuel consumption is derived based on Base of Aircraft Data (BADA) Total Energy Model. Theoretical analysis implies that speed profile has an impact as substantial as, if not more than, vertical profile on the fuel consumption in the terminal area. In addition, CDA is not intrinsically a fuel-saving procedure: whether CDA saves fuel or not is contingent upon whether the speed profile is properly designed or not. Based on this model, the potential fuel savings due to CDA at San Francisco International Airport were estimated, and the accuracy of this estimation is analyzed. Possible uncertainties in this fuel estimation primarily resulted from the modeled CDA procedure and the inaccuracy of BADA. This thesis also investigates the fuel savings due to CDAs under high traffic conditions, counting not only the savings benefiting from optimal vertical profiles but also the extra fuel burn resulting from the increased separations. The simulated CDAs traffic is based on radar track data, and deconflicted by a scheduling algorithm that targets minimized delays. The delays are absorbed by speed change and path stretching, accounting for the air traffic controls that are entailed by CDAs. The fuel burn statistics calculated based on the BADA

  2. Solid polymer electrolyte (SPE) fuel cell technology program, phase 1/1A. [design and fabrication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte fuel cell was studied for the purpose of improving the characteristics of the technology. Several facets were evaluated, namely: (1) reduced fuel cell costs; (2) reduced fuel cell weight; (3) improved fuel cell efficiency; and (4) increased systems compatibility. Demonstrated advances were incorporated into a full scale hardware design. A single cell unit was fabricated. A substantial degree of success was demonstrated.

  3. Conceptual Mean-Line Design of Single and Twin-Shaft Oxy-Fuel Gas Turbine in a Semiclosed Oxy-Fuel Combustion Combined Cycle.

    PubMed

    Sammak, Majed; Thorbergsson, Egill; Grönstedt, Tomas; Genrup, Magnus

    2013-08-01

    The aim of this study was to compare single- and twin-shaft oxy-fuel gas turbines in a semiclosed oxy-fuel combustion combined cycle (SCOC-CC). This paper discussed the turbomachinery preliminary mean-line design of oxy-fuel compressor and turbine. The conceptual turbine design was performed using the axial through-flow code luax-t, developed at Lund University. A tool for conceptual design of axial compressors developed at Chalmers University was used for the design of the compressor. The modeled SCOC-CC gave a net electrical efficiency of 46% and a net power of 106 MW. The production of 95% pure oxygen and the compression of CO 2 reduced the gross efficiency of the SCOC-CC by 10 and 2 percentage points, respectively. The designed oxy-fuel gas turbine had a power of 86 MW. The rotational speed of the single-shaft gas turbine was set to 5200 rpm. The designed turbine had four stages, while the compressor had 18 stages. The turbine exit Mach number was calculated to be 0.6 and the calculated value of AN 2 was 40 · 10 6 rpm 2 m 2 . The total calculated cooling mass flow was 25% of the compressor mass flow, or 47 kg/s. The relative tip Mach number of the compressor at the first rotor stage was 1.15. The rotational speed of the twin-shaft gas generator was set to 7200 rpm, while that of the power turbine was set to 4800 rpm. A twin-shaft turbine was designed with five turbine stages to maintain the exit Mach number around 0.5. The twin-shaft turbine required a lower exit Mach number to maintain reasonable diffuser performance. The compressor turbine was designed with two stages while the power turbine had three stages. The study showed that a four-stage twin-shaft turbine produced a high exit Mach number. The calculated value of AN 2 was 38 · 10 6 rpm 2 m 2 . The total calculated cooling mass flow was 23% of the compressor mass flow, or 44 kg/s. The compressor was designed with 14 stages. The preliminary design parameters of the turbine and

  4. Between-cycle laser system for depressurization and resealing of modified design nuclear fuel assemblies

    DOEpatents

    Bradley, John G.

    1982-01-01

    A laser beam is used to puncture fuel cladding for release of contained pressurized fission gas from plenum sections or irradiated fuel pins. Exhausted fission gases are collected and trapped for safe disposal. The laser beam, adjusted to welding mode, is subsequently used to reseal the puncture holes. The fuel assembly is returned to additional irradiation or, if at end of reactivity lifetime, is routed to reprocess. The fuel assembly design provides graded cladding lengths, by rows or arrays, such that the cladding of each component fuel element of the assembly is accessible to laser beam reception.

  5. The use of experimental design to find the operating maximum power point of PEM fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria

    2015-03-10

    Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.

  6. Design of a miniature hydrogen fueled gas turbine engine

    NASA Technical Reports Server (NTRS)

    Burnett, M.; Lopiccolo, R. C.; Simonson, M. R.; Serovy, G. K.; Okiishi, T. H.; Miller, M. J.; Sisto, F.

    1973-01-01

    The design, development, and delivery of a miniature hydrogen-fueled gas turbine engine are discussed. The engine was to be sized to approximate a scaled-down lift engine such as the teledyne CAE model 376. As a result, the engine design emerged as a 445N(100 lb.)-thrust engine flowing 0.86 kg (1.9 lbs.) air/sec. A 4-stage compressor was designed at a 4.0 to 1 pressure ratio for the above conditions. The compressor tip diameter was 9.14 cm (3.60 in.). To improve overall engine performance, another compressor with a 4.75 to 1 pressure ratio at the same tip diameter was designed. A matching turbine for each compressor was also designed. The turbine tip diameter was 10.16 cm (4.0 in.). A combustion chamber was designed, built, and tested for this engine. A preliminary design of the mechanical rotating parts also was completed and is discussed. Three exhaust nozzle designs are presented.

  7. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.

    2011-07-01

    Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.

  8. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  9. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, Patrick; Leachman, Jacob

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms.more » A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.« less

  10. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Adam, Patrick; Leachman, Jacob

    2014-01-01

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  11. Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao

    2016-10-01

    Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.

  12. Fuels research: Fuel thermal stability overview

    NASA Technical Reports Server (NTRS)

    Cohen, S. M.

    1980-01-01

    Alternative fuels or crude supplies are examined with respect to satisfying aviation fuel needs for the next 50 years. The thermal stability of potential future fuels is discussed and the effects of these characteristics on aircraft fuel systems are examined. Advanced fuel system technology and design guidelines for future fuels with lower thermal stability are reported.

  13. Fuel cycle cost reduction through Westinghouse fuel design and core management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, F.J.; Scherpereel, L.R.

    1985-11-01

    This paper describes advances in Westinghouse nuclear fuel and their impact on fuel cycle cost. Recent fabrication development has been aimed at maintaining high integrity, increased operating flexibility, longer operating cycles, and improved core margins. Development efforts at Westinghouse toward meeting these directions have culminated in VANTAGE 5 fuel. The current trend toward longer operating cycles provides a further driving force to minimize the resulting inherent increase in fuel cycle costs by further increases in region discharge burnup. Westinghouse studies indicate the capability of currently offered products to meet cycle lengths up to 24 months.

  14. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  15. Design report small-scale fuel alcohol plant. Volume 2: Detailed construction information

    NASA Astrophysics Data System (ADS)

    1980-12-01

    The objectives are to provide potential alcohol producers with a reference design and provide a complete, demonstrated design of a small scale fuel alcohol plant. The plant has the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention.

  16. The LOFT perspective on neutron star thermonuclear bursts: White paper in support of the mission concept of the large observatory for X-ray timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    in't Zand, J. J.M.; Malone, Christopher M.; Altamirano, D.

    2015-01-14

    The Large Area Detector (LAD) on the Large Observatory For X-ray Timing ( LOFT ), with a 8.5 m 2 photon- collecting area in the 2–30 keV bandpass at CCD-class spectral resolving power (λ/Δλ = 10 – 100), is designed for optimum performance on bright X-ray sources. Thus, it is well-suited to study thermonuclear X-ray bursts from Galactic neutron stars. These bursts will typically yield 2 x 10 5 photon detections per second in the LAD, which is at least 15 times more than with any other instrument past, current or anticipated. The Wide Field Monitor (WFM) foreseen for LOFTmore » uniquely combines 2–50 keV imaging with large (30%) prompt sky coverage. This will enable the detection of tens of thousands of thermonuclear X-ray bursts during a 3-yr mission, including tens of superbursts. Both numbers are similar or more than the current database gathered in 50 years of X-ray astronomy.« less

  17. Fuel Cell Power Plant Initiative. Volume 2; Preliminary Design of a Fixed-Base LFP/SOFC Power System

    NASA Technical Reports Server (NTRS)

    Veyo, S.E.

    1997-01-01

    This report documents the preliminary design for a military fixed-base power system of 3 MWe nominal capacity using Westinghouse's tubular Solid Oxide Fuel Cell [SOFC] and Haldor Topsoe's logistic fuels processor [LFP]. The LFP provides to the fuel cell a methane rich sulfur free fuel stream derived from either DF-2 diesel fuel, or JP-8 turbine fuel. Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate heat engine or dynamo. The SOFC is distinguished from other fuel cell types by its solid state ceramic structure and its high operating temperature, nominally 1000'C. The SOFC pioneered by Westinghouse has a tubular geometry closed at one end. A power generation stack is formed by aggregating many cells in an ordered array. The Westinghouse stack design is distinguished from other fuel cell stacks by the complete absence of high integrity seals between cell elements, cells, and between stack and manifolds. Further, the reformer for natural gas [predominantly methane] and the stack are thermally and hydraulically integrated with no requirement for process water. The technical viability of combining the tubular SOFC and a logistic fuels processor was demonstrated at 27 kWe scale in a test program sponsored by the Advanced Research Projects Agency [ARPA) and carried out at the Southern California Edison's [SCE] Highgrove generating station near San Bernardino, California in 1994/95. The LFP was a breadboard design supplied by Haldor Topsoe, Inc. under subcontract to Westinghouse. The test program was completely successful. The LFP fueled the SOFC for 766 hours on JP-8 and 1555 hours of DF-2. In addition, the fuel cell operated for 3261 hours on pipeline natural gas. Over the 5582 hours of operation, the SOFC generated 118 MVVH of electricity with no perceptible degradation in performance. The LFP processed military

  18. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, J; Abbott, R; Fratoni, M

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine designmore » with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.« less

  19. Design of a Fuel Processor System for Generating Hydrogen for Automotive Applications

    ERIC Educational Resources Information Center

    Kolavennu, Panini K.; Telotte, John C.; Palanki, Srinivas

    2006-01-01

    The objective of this paper is to design a train of tubular reactors that use a methane feed to produce hydrogen of the desired purity so that it can be utilized by a fuel cell for automotive applications. Reaction engineering principles, which are typically covered at the undergraduate level, are utilized to design this reactor train. It is shown…

  20. FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT

    EPA Science Inventory

    The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....

  1. Soot and liquid-phase fuel distributions in a newly designed optically accessible DI diesel engine

    NASA Astrophysics Data System (ADS)

    Dec, J. E.; Espey, C.

    1993-10-01

    Two-dimensional (2-D) laser-sheet imaging has been used to examine the soot and liquid-phase fuel distributions in a newly designed, optically accessible, direct-injection diesel engine of the heavy-duty size class. The design of this engine preserves the intake port geometry and basic dimensions of a Cummins N-series production engine. It also includes several unique features to provide considerable optical access. Liquid-phase fuel and soot distribution studies were conducted at a medium speed (1,200 rpm) using a Cummins closed-nozzle fuel injector. The scattering was used to obtain planar images of the liquid-phase fuel distribution. These images show that the leading edge of the liquid-phase portion of the fuel jet reaches a maximum length of 24 mm, which is about half the combustion bowl radius for this engine. Beyond this point virtually all the fuel has vaporized. Soot distribution measurements were made at a high load condition using three imaging diagnostics: natural flame luminosity, 2-D laser-induced incandescence, and 2-D elastic scattering. This investigation showed that the soot distribution in the combusting fuel jet develops through three stages. First, just after the onset of luminous combustion, soot particles are small and nearly uniformly distributed throughout the luminous region of the fuel jet. Second, after about 2 crank angle degrees a pattern develops of a higher soot concentration of larger sized particles in the head vortex region of the jet and a lower soot concentration of smaller sized particles upstream toward the injector. Third, after fuel injection ends, both the soot concentration and soot particle size increase rapidly in the upstream portion of the fuel jet.

  2. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    NASA Astrophysics Data System (ADS)

    Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.

  3. Rational Design and Facile Synthesis of Boranophosphate Ionic Liquids as Hypergolic Rocket Fuels.

    PubMed

    Liu, Tianlin; Qi, Xiujuan; Wang, Binshen; Jin, Yunhe; Yan, Chao; Wang, Yi; Zhang, Qinghua

    2018-05-14

    The design and synthesis of new hypergolic ionic liquids (HILs) as replacements for toxic hydrazine derivatives have been the focus of current academic research in the field of liquid bipropellant fuels. In most cases, however, the requirements of excellent ignition performances, good hydrolytic stabilities, and low synthetic costs are often contradictory, which makes the development of high-performance HILs an enormous challenge. Here, we show how a fuel-rich boranophosphate ion was rationally designed and used to synthesize a series of high-performance HILs with excellent comprehensive properties. In the design strategy, we introduced the {BH 3 } moiety into the boranophosphate ion for improving the self-ignition property, whereas the complexation of boron and phosphite was used to improve the hydrolytic activity of the borohydride species. As a result, these boranophosphate HILs exhibited wide liquid operating ranges (>220 °C), high densities (1.00-1.10 g cm -3 ), good hydrolytic stabilities, and short ignition delay times (2.3-9.7 milliseconds) with white fuming nitric acid (WFNA) as the oxidizer. More importantly, these boranophosphate HILs could be readily prepared in high yields from commercial phosphite esters, avoiding complex and time-consuming synthetic routes. This work offers an effective strategy of designing boranophosphate HILs towards safer and greener hypergolic fuels for liquid bipropellant applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production.

    PubMed

    Lindblad, Peter; Lindberg, Pia; Oliveira, Paulo; Stensjö, Karin; Heidorn, Thorsten

    2012-01-01

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.

  5. SSME Alternate Turbopump Development Program: Design verification specification for high-pressure fuel turbopump

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design and verification requirements are defined which are appropriate to hardware at the detail, subassembly, component, and engine levels and to correlate these requirements to the development demonstrations which provides verification that design objectives are achieved. The high pressure fuel turbopump requirements verification matrix provides correlation between design requirements and the tests required to verify that the requirement have been met.

  6. Regenerative Performance of the NASA Symmetrical Solid Oxide Fuel Cell Design

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Setlock, John A.; Farmer, Serene C.; Eckel, Andy J.

    2009-01-01

    The NASA Glenn Research Center is developing both a novel cell design (BSC) and a novel ceramic fabrication technique to produce fuel cells predicted to exceed a specific power density of 1.0 kW/kg. The NASA Glenn cell design has taken a completely different approach among planar designs by removing the metal interconnect and returning to the use of a thin, doped LaCrO3 interconnect. The cell is structurally symmetrical. Both electrodes support the thin electrolyte and contain micro-channels for gas flow-- a geometry referred to as a bi-electrode supported cell or BSC. The cell characteristics have been demonstrated under both SOFC and SOE conditions. Electrolysis tests verify that this cell design operates at very high electrochemical voltage efficiencies (EVE) and high H2O conversion percentages, even at the low flow rates predicted for closed loop systems encountered in unmanned aerial vehicle (UAV) applications. For UAVs the volume, weight and the efficiency are critical as they determine the size of the water tank, the solar panel size, and other system requirements. For UAVs, regenerative solid oxide fuel cell stacks (RSOFC) use solar panels during daylight to generate power for electrolysis and then operate in fuel cell mode during the night to power the UAV and electronics. Recent studies, performed by NASA for a more electric commercial aircraft, evaluated SOFCs for auxiliary power units (APUs). System studies were also conducted for regenerative RSOFC systems. One common requirement for aerospace SOFCs and RSOFCs, determined independently in each application study, was the need for high specific power density and volume density, on the order of 1.0 kW/kg and greater than 1.0 kW/L. Until recently the best reported performance for SOFCs was 0.2 kW/kg or less for stacks. NASA Glenn is working to prototype the light weight, low volume BSC design for such high specific power aerospace applications.

  7. An assessment of alternative fuel cell designs for residential and commercial cogeneration

    NASA Technical Reports Server (NTRS)

    Wakefield, R. A.

    1980-01-01

    A comparative assessment of three fuel cell systems for application in different buildings and geographic locations is presented. The study was performed at the NASA Lewis Center and comprised the fuel cell design, performance in different conditions, and the economic parameters. Applications in multifamily housing, stores and hospitals were considered, with a load of 10kW-1 MW. Designs were traced through system sizing, simulation/evaluation, and reliability analysis, and a computer simulation based on a fourth-order representation of a generalized system was performed. The cells were all phosphoric acid type cells, and were found to be incompatible with gas/electric systems and more favorable economically than the gas/electric systems in hospital uses. The methodology used provided an optimized energy-use pattern and minimized back-up system turn-on.

  8. Hybrid Solid Oxide Fuel Cell/Gas Turbine System Design for High Altitude Long Endurance Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Himansu, Ananda; Freeh, Joshua E.; Steffen, Christopher J., Jr.; Tornabene, Robert T.; Wang, Xiao-Yen J.

    2006-01-01

    A system level analysis, inclusive of mass, is carried out for a cryogenic hydrogen fueled hybrid solid oxide fuel cell and bottoming gas turbine (SOFC/GT) power system. The system is designed to provide primary or secondary electrical power for an unmanned aerial vehicle (UAV) over a high altitude, long endurance mission. The net power level and altitude are parametrically varied to examine their effect on total system mass. Some of the more important technology parameters, including turbomachinery efficiencies and the SOFC area specific resistance, are also studied for their effect on total system mass. Finally, two different solid oxide cell designs are compared to show the importance of the individual solid oxide cell design on the overall system. We show that for long mission durations of 10 days or more, the fuel mass savings resulting from the high efficiency of a SOFC/GT system more than offset the larger powerplant mass resulting from the low specific power of the SOFC/GT system. These missions therefore favor high efficiency, low power density systems, characteristics typical of fuel cell systems in general.

  9. Direct carbon fuel cell and stack designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorte, Raymond J.; Oh, Tae-Sik

    Disclosed are novel configurations of Direct Carbon Fuel Cells (DCFCs), which optionally comprise a liquid anode. The liquid anode comprises a molten salt/metal, preferably Sb, and a fuel, which has significant elemental carbon content (coal, bio-mass, etc.). The supply of fuel is continuously replenished in the anode. In addition, a stack configuration is suggested where combining a large number of planar or tubular fuel elements.

  10. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  11. Ubiquitous Supercritical Wing Design Cuts Billions in Fuel Costs

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A Langley Research Center engineer’s work in the 1960s and ’70s to develop a wing with better performance near the speed of sound resulted in a significant increase in subsonic efficiency. The design was shared with industry. Today, Renton, Washington-based Boeing Commercial Airplanes, as well as most other plane manufacturers, apply it to all their aircraft, saving the airline industry billions of dollars in fuel every year.

  12. Design and Implementation of a Characterization Test Rig for Evaluating High Bandwidth Liquid Fuel Flow Modulators

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; Chang, Clarence T.; DeLaat, John C.; Vrnak, Daniel R.

    2010-01-01

    A test rig was designed and developed at the NASA Glenn Research Center (GRC) for the purpose of characterizing high bandwidth liquid fuel flow modulator candidates to determine their suitability for combustion instability control research. The test rig is capable of testing flow modulators at up to 600 psia supply pressure and flows of up to 2 gpm. The rig is designed to provide a quiescent flow into the test section in order to isolate the dynamic flow modulations produced by the test article. Both the fuel injector orifice downstream of the test article and the combustor are emulated. The effect of fuel delivery line lengths on modulator dynamic performance can be observed and modified to replicate actual fuel delivery systems. For simplicity, water is currently used as the working fluid, although future plans are to use jet fuel. The rig is instrumented for dynamic pressures and flows and a high-speed data system is used for dynamic data acquisition. Preliminary results have been obtained for one candidate flow modulator.

  13. Modeling and optimization of a typical fuel cell-heat engine hybrid system and its parametric design criteria

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Chen, Jincan

    A theoretical modeling approach is presented, which describes the behavior of a typical fuel cell-heat engine hybrid system in steady-state operating condition based on an existing solid oxide fuel cell model, to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat-leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. Expressions for the power output and efficiency of the hybrid system are derived and the performance characteristics of the system are presented and discussed in detail. The effects of the design parameters and operating conditions on the system performance are studied numerically. It is found that there exist certain optimum criteria for some important parameters. The results obtained here may provide a theoretical basis for both the optimal design and operation of real fuel cell-heat engine hybrid systems. This new approach can be easily extended to other fuel cell hybrid systems to develop irreversible models suitable for the investigation and optimization of similar energy conversion settings and electrochemistry systems.

  14. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trianti, Nuri, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Su'ud, Zaki, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Arif, Idam, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id

    2014-09-30

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tightmore » concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.« less

  15. Bayesian modelling of household solid fuel use: insights towards designing effective interventions to promote fuel switching in Africa.

    PubMed

    Rehfuess, Eva A; Briggs, David J; Joffe, Mike; Best, Nicky

    2010-10-01

    Indoor air pollution from solid fuel use is a significant risk factor for acute lower respiratory infections among children in sub-Saharan Africa. Interventions that promote a switch to modern fuels hold a large health promise, but their effective design and implementation require an understanding of the web of upstream and proximal determinants of household fuel use. Using Demographic and Health Survey data for Benin, Kenya and Ethiopia together with Bayesian hierarchical and spatial modelling, this paper quantifies the impact of household-level factors on cooking fuel choice, assesses variation between communities and districts and discusses the likely nature of contextual effects. Household- and area-level characteristics appear to interact as determinants of cooking fuel choice. In all three countries, wealth and the educational attainment of women and men emerge as important; the nature of area-level factors varies between countries. In Benin, a two-level model with spatial community random effects best explains the data, pointing to an environmental explanation. In Ethiopia and Kenya, a three-level model with unstructured community and district random effects is selected, implying relatively autonomous economic and social areas. Area-level heterogeneity, indicated by large median odds ratios, appears to be responsible for a greater share of variation in the data than household-level factors. This may be an indication that fuel choice is to a considerable extent supply-driven rather than demand-driven. Consequently, interventions to promote fuel switching will carefully need to assess supply-side limitations and devise appropriate policy and programmatic approaches to overcome them. To our knowledge, this paper represents the first attempt to model the determinants of solid fuel use, highlighting socio-economic differences between households and, notably, the dramatic influence of contextual effects. It illustrates the potential that multilevel and spatial

  16. Aerodynamic design optimization of a fuel efficient high-performance, single-engine, business airplane

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1980-01-01

    A design study has been conducted to optimize a single-engine airplane for a high-performance cruise mission. The mission analyzed included a cruise speed of about 300 knots, a cruise range of about 1300 nautical miles, and a six-passenger payload (5340 N (1200 lb)). The purpose of the study is to investigate the combinations of wing design, engine, and operating altitude required for the mission. The results show that these mission performance characteristics can be achieved with fuel efficiencies competitive with present-day high-performance, single- and twin-engine, business airplanes. It is noted that relaxation of the present Federal Aviation Regulation, Part 23, stall-speed requirement for single-engine airplanes facilitates the optimization of the airplane for fuel efficiency.

  17. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  18. Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for Improved Exoelectrogen Attachment and Electron Transfer

    DTIC Science & Technology

    2015-12-21

    SECURITY CLASSIFICATION OF: The overall goal of this project is to determine how electrode surface chemistry can be rationally designed to decrease...2015 Approved for Public Release; Distribution Unlimited Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for...ABSTRACT Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for Improved Exoelectrogen Attachment and Electron Transfer

  19. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Pavel V. Tsvetkov

    2009-05-20

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologicmore » repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.« less

  20. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period October 1, 2000 - December 31, 2000, Allegheny Energy Supply Co., LLC (Allegheny) executed a Cooperative Agreement with the National Energy Technology Laboratory to implement a major cofiring demonstration at the Willow Island Generating Station Boiler No.2. Willow Island Boiler No.2 is a cyclone boiler. Allegheny also will demonstrate separate injection cofiring at the Albright Generating Station Boiler No.3, a tangentially fired boiler. The Allegheny team includes Foster Wheeler as its primary subcontractor. Additional subcontractors are Cofiring Alternatives and N.S. Harding and Associates. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrationsmore » at Willow Island and Albright Generating Stations. The second quarter of the project involved completing the designs for each location. Further, geotechnical investigations proceeded at each site. Preparations were made to perform demolition on two small buildings at the Willow Island site. Fuels strategies were initiated for each site. Test planning commenced for each site. A groundbreaking ceremony was held at the Willow Island site on October 18, with Governor C. Underwood being the featured speaker.« less

  1. Design of electrolyzer for carbon dioxide conversion to fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Rosen, Jonathan S.

    The stabilization of global atmospheric CO2 levels requires a transition towards a renewable energy based economy as well as methods for handling current CO2 output from fossil fuels. Challenges with renewable energy intermittency have thus far limited the use of these alternative energy sources to only a fraction of the current energy portfolio. To enable more widespread use of renewable energy systems, methods of large scale energy storage must be developed to store excess renewable energy when demand is low and allow for combined use of energy storage and renewable systems when demand is high. To date, no one technique has demonstrated energy storage methods on the gigawatt scale needed for integration with renewable sources; therefore the development of suitable energy storage technologies, such as CO2 electrolysis to fuels is needed. In this work, research efforts have focused on two major thrusts related to electrochemical methods of CO 2 conversion to fuels. The first thrust focuses on the synthesis and design of highly efficient anode and cathode catalysts with emphasis on understanding structure-property relationships. A second thrust focuses on the design of novel electrochemical devices for CO2 conversion and integration of synthesized materials into flow cell systems. On the anode side, the synthesis of highly active catalysts using abundant transition metals is crucial to reducing capital costs and enabling widespread use of electrochemical CO2 conversion devices. Highly active mesoporous Co3O4 and metal-substituted Co3O4 water oxidation catalysts were designed to investigate the role of the spinel structure on water oxidation activity. Further analysis of metal substituted samples reveal the importance of the octahedral sites in the spinel structure, which was later used to design an Mg-Co3O4 sample with improved water oxidation activity. The design of efficient cathode materials which can selectivity reduce CO2 to fuels and chemicals is critical to

  2. A Structured Reasoning Space for Design of Complex, Socio-Technical Systems

    DTIC Science & Technology

    2006-10-01

    gather during midmorning at an identified location. The human intelligence sources indicate that the meeting will commence at 10 a.m. and finish ...refueling station. 21 Typ-s of .uppr-s1on capawility Soppe.oion lob. (.-a .h~po d" Coton ) Olotano.. O otk-lo n k brWg..t.. Tbo AabNity rl.o1 Loft...designer or analyst could use the reasoning space to consider whether current and alternative configurations can result in the plan being finished within

  3. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    NASA Astrophysics Data System (ADS)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  4. Design of experiments with four-factors for a PEM fuel cell optimization

    NASA Astrophysics Data System (ADS)

    Olteanu, V.; Pǎtularu, L.; Popescu, C. L.; Popescu, M. O.; Crǎciunescu, A.

    2017-07-01

    Nowadays, many research efforts are allocated for the development of fuel cells, since they constitute a carbon-free electrical energy generator which can be used for stationary, mobile and portable applications. The maximum value of the delivered power of a fuel cell depends on many factors as: the height of plates' channels, the stoichiometry level of the air flow, the air pressure for the cathode, and of the actual operating electric current density. In this paper, two levels, full four-factors factorial experiment has been designed in order to obtain the appropriate response surface which approximates the maximum delivered power dependence of the above-mentioned factors. The optimum set of the fuel-cell factors which determine the maximum value of the delivered power was determined and a comparison between simulated and measured optimal Power versus Current Density characteristics is given.

  5. Microbial fuel cells: recent developments in design and materials

    NASA Astrophysics Data System (ADS)

    Bhargavi, G.; Venu, V.; Renganathan, S.

    2018-03-01

    Microbial Fuel Cells (MFCs) are the promising devices which can produce electricity by anaerobic fermentation of organic / inorganic matter from easily metabolized biomass to complex wastewater using microbes as biocatalysts. MFC technology has been found as a potential technology for electricity generation and concomitant wastewater treatment. However, the high cost of the components and low efficiency are barricading the commercialization of MFC when compared with other energy generating systems. The performance of an MFC is largely relying on the reactor design and electrode materials. On the way to improve the efficiency of an MFC, tremendous exercises have been carried out to explore new electrode materials and reactor designs in recent decades. The current review is excogitated to amass the progress in design and electrode materials, which could bolster further investigations on MFCs to improve their performance, mitigate the cost and successful implementation of technology in field applications as well.

  6. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, F.; Kim, T.; Grandy, C.

    2012-07-30

    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium ismore » more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to

  7. Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.

    1984-01-01

    Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.

  8. Simulating forest fuel and fire risk dynamics across landscapes--LANDIS fuel module design

    Treesearch

    Hong S. He; Bo Z. Shang; Thomas R. Crow; Eric J. Gustafson; Stephen R. Shifley

    2004-01-01

    Understanding fuel dynamics over large spatial (103-106 ha) and temporal scales (101-103 years) is important in comprehensive wildfire management. We present a modeling approach to simulate fuel and fire risk dynamics as well as impacts of alternative fuel treatments. The...

  9. The Design of Connection Solid Oxide Fuel Cell (SOFC) Integrated Grid with Three-Phase Inverter

    NASA Astrophysics Data System (ADS)

    Darjat; Sulistyo; Triwiyatno, Aris; Thalib, Humaid

    2018-03-01

    Fuel cell technology is a relatively new energy-saving technology that has the potential to replace conventional energy technologies. Among the different types of generation technologies, fuel cells is the generation technologies considered as a potential source of power generation because it is flexible and can be placed anywhere based distribution system. Modeling of SOFC is done by using Nernst equation. The output power of the fuel cell can be controlled by controlling the flow rate of the fuels used in the process. Three-phase PWM inverter is used to get the form of three-phase voltage which same with the grid. In this paper, the planning and design of the SOFC are connected to the grid.

  10. STATUS OF TRISO FUEL IRRADIATIONS IN THE ADVANCED TEST REACTOR SUPPORTING HIGH-TEMPERATURE GAS-COOLED REACTOR DESIGNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Michael; Petti, D. A.; Palmer, Joe

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experimentsmore » are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the

  11. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    DOE PAGES

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; ...

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less

  12. Analysis and design of insulation systems for LH2-fueled aircraft

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R., Jr.

    1979-01-01

    An analytical program was conducted to evaluate the performance of 15 potential insulations for the fuel tanks of a subsonic LH2-fueled transport aircraft intended for airline service in the 1990-1995 time period. As a result, two candidate insulation systems are proposed for subsonic transport aircraft applications. Both candidates are judged to be the optimum available and should meet the design requirements. However, because of the long-life cyclic nature of the application and the cost sensitivity of airline operations, an experimental tank/insulation development or proof-of-concept program is recommended. This program should be carried out with a nearly full-scale system which would be subjected to the cyclic thermal and mechanical inputs anticipated in aircraft service.

  13. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of anymore » cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs.« less

  14. MBM fuel feeding system design and evaluation for FBG pilot plant.

    PubMed

    Campbell, William A; Fonstad, Terry; Pugsley, Todd; Gerspacher, Regan

    2012-06-01

    A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designed for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection nozzle reduced the output irregularity further to 13%, with an air supply of 50 slpm as the minimum air supply to drive this injector. After commissioning of this final system to the FBG reactor, the injection nozzle was found to plug with char however, and was subsequently removed from the system. Final operation of the reactor continues satisfactorily with the two screw conveyors operating at matching pressure with the fluidized bed, with the output rate of the system estimated based on system characteristic equations, and confirmed by static weight measurements made before

  15. Novel microbial fuel cell design to operate with different wastewaters simultaneously.

    PubMed

    Mathuriya, Abhilasha Singh

    2016-04-01

    A novel single cathode chamber and multiple anode chamber microbial fuel cell design (MAC-MFC) was developed by incorporating multiple anode chambers into a single unit and its performance was checked. During 60 days of operation, performance of MAC-MFC was assessed and compared with standard single anode/cathode chamber microbial fuel cell (SC-MFC). The tests showed that MAC-MFC generated stable and higher power outputs compared with SC-MFC and each anode chamber contributed efficiently. Further, MAC-MFCs were incorporated with different wastewaters in different anode chambers and their behavior in MFC performance was observed. MAC-MFC efficiently treated multiple wastewaters simultaneously at low cost and small space, which claims its candidature for future possible scale-up applications. Copyright © 2015. Published by Elsevier B.V.

  16. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth

  17. Challenge to Aviation: Hatching a Leaner Pterosauer. [Improving Commercial Aircraft Design for Greater Fuel Efficiency

    NASA Technical Reports Server (NTRS)

    Moss, F. E.

    1975-01-01

    Modifications in commercial aircraft design, particularly the development of lighter aircraft, are discussed as effective means of reducing aviation fuel consumption. The modifications outlined include: (1) use of the supercritical wing; (2) generation of the winglet; (3) production and flight testing of composite materials; and, (4) implementation of fly-by-wire control systems. Attention is also given to engineering laminar air flow control, improving cargo payloads, and adapting hydrogen fuels for aircraft use.

  18. Evaluation of FFTF fuel pin design procedure vis-a-vis steady state irradiation performance in EBR II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, R.J.

    1976-11-01

    The FFTF fuel pin design analysis is shown to be conservative through comparison with pin irradiation experience in EBR-II. This comparison shows that the actual lifetimes of EBR-II fuel pins are either greater than 80,000 MWd/MTM or greater than the calculated allowable lifetimes based on thermal creep strain.

  19. Tradable credits system design and cost savings for a national low carbon fuel standard for road transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, Jonathan; Leiby, Paul N.

    2012-06-11

    This research examines the economic implications of different designs for a national low carbon fuel standard (NLCFS) for the road transportation sector. A NLCFS based on the average Carbon Intensity (CI) of all fuels sold in the gasoline and diesel markets will generate an incentive for fuel suppliers to reduce the measured CI of their petroleum fuels. The economic impacts of a NLCFS are fundamentally determined by: the availability of low carbon fuels; the compliance path; the reference level CI of the fuel baseline; and the degree of flexibility in the credit system. To quantitatively examine the implications of amore » NLCFS, we created the Transportation Regulation and Credit Trading (TRACT) Model. With TRACT, we model a NLCFS credit trading system among profit maximizing fuel suppliers for light- and heavy-duty vehicle fuel use for the United States from 2012 - 2030. Given the wide range of cost and availability of biofuels, we find that credit trading across gasoline and diesel fuel markets combined with credit banking can significantly reduce compliance costs and stabilize credit prices. We make policy recommendations on how to combine a NLCFS with other existing regulations for transportation fuels.« less

  20. Design and operation of interconnectors for solid oxide fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Winkler, W.; Koeppen, J.

    Highly efficient combined cycles with solid oxide fuel cell (SOFC) need an integrated heat exchanger in the stack to reach efficiencies of about 80%. The stack costs must be lower than 1000 DM/kW. A newly developed welded metallic (Haynes HA 230) interconnector with a free stretching planar SOFC and an integrated heat exchanger was tested in thermal cycling operation. The design allowed a cycling of the SOFC without mechanical damage of the electrolyte in several tests. However, more tests and a further design optimization will be necessary. These results could indicate that commercial high-temperature alloys can be used as interconnector material in order to fullfil the cost requirements.

  1. MBM fuel feeding system design and evaluation for FBG pilot plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, William A., E-mail: bill.campbell@usask.ca; Fonstad, Terry; Pugsley, Todd

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer A 1-5 g/s fuel feeding system for pilot scale FBG was designed, built and tested. Black-Right-Pointing-Pointer Multiple conveying stages improve pressure balancing, flow control and stability. Black-Right-Pointing-Pointer Secondary conveyor stage reduced output irregularity from 47% to 15%. Black-Right-Pointing-Pointer Pneumatic air sparging effective in dealing with poor flow ability of MBM powder. Black-Right-Pointing-Pointer Pneumatic injection port plugs with char at gasification temperature of 850 Degree-Sign C. - Abstract: A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designedmore » for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50 mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection

  2. FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Abbott, W.E.; Balent, R.

    1958-09-16

    A fuel element design to facilitate breeding reactor fuel is described. The fuel element is comprised of a coatainer, a central core of fertile material in the container, a first bonding material surrounding the core, a sheet of fissionable material immediately surrounding the first bonding material, and a second bonding material surrounding the fissionable material and being in coniact with said container.

  3. Conceptual Biorefinery Design and Research Targeted for 2022: Hydrothermal Liquefacation Processing of Wet Waste to Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Zhu, Yunhua; Bearden, Mark D.

    The Department of Energy Bioenergy Technologies Office (BETO) invests in research and development of new pathways for commercially viable conversion of biomass into drop-in ready transportation fuels, fuel blendstocks and products. The primary emphasis has been on terrestrial and algae feedstocks, but more recently BETO has begun to explore the potential of wet wastes for biofuel production, with focus on wastewater residuals, manure, food waste, and fats, oils and grease. A recent resource analysis estimates that 77 million dry tons per year of these wastes are generated annually, 65% of which are underutilized for any beneficial purpose. Approximately 14 millionmore » dry tons of the total resource is wastewater residuals (sludge and biosolids) generated at the nation’s wastewater treatment plants (WWTPs). Conversion of this resource into transportation fuels could significantly contribute to the creation of a new domestic bioenergy and bioproduct industry, while providing an economically and environmentally sustainable alternative for current waste disposal practices. Hydrothermal liquefaction (HTL) is a process that uses hot, pressurized water in the condensed phase to convert biomass to a thermally stable oil product, also known as “biocrude”, which can then be thermo-catalytically upgraded to hydrocarbon fuel blendstocks. HTL is conceptually simple, has a high carbon efficiency, and can be applied to a wide range of wet feedstocks at similar processing conditions. The purpose of this report is to document the conceptual design, economics and supporting data for a sludge-to-fuel pathway via HTL and biocrude upgrading. The configuration includes a HTL plant that is co-located with a WWTP and a larger scale biocrude upgrading plant for production of hydrocarbon fuel blendstocks. Experimental data from bench scale testing of a 1:1 mixture of primary:secondary sludges are used to establish the economic and technical assumptions for the analysis. The design

  4. Thorium fueled reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  5. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    NASA Astrophysics Data System (ADS)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  6. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    NASA Astrophysics Data System (ADS)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  7. Design Considerations of ISTAR Hydrocarbon Fueled Combustor Operating in Air Augmented Rocket, Ramjet and Scramjet Modes

    NASA Technical Reports Server (NTRS)

    Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.

    2003-01-01

    The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system that produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.

  8. Design Considerations of Istar Hydrocarbon Fueled Combustor Operating in Air Augmented Rocket, Ramjet and Scramjet Modes

    NASA Technical Reports Server (NTRS)

    Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.

    2002-01-01

    The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system thai: produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.

  9. Electrode design for direct-methane micro-tubular solid oxide fuel cell (MT-SOFC)

    NASA Astrophysics Data System (ADS)

    Rabuni, Mohamad Fairus; Li, Tao; Punmeechao, Puvich; Li, Kang

    2018-04-01

    Herein, a micro-structured electrode design has been developed via a modified phase-inversion method. A thin electrolyte integrated with a highly porous anode scaffold has been fabricated in a single-step process and developed into a complete fuel cell for direct methane (CH4) utilisation. A continuous and well-dispersed layer of copper-ceria (Cu-CeO2) was incorporated inside the micro-channels of the anode scaffold. A complete cell was investigated for direct CH4 utilisation. The well-organised micro-channels and nano-structured Cu-CeO2 anode contributed to an increase in electrochemical reaction sites that promoted charge-transfer as well as facilitating gaseous fuel distribution, resulting in outstanding performances. Excellent electrochemical performances have been achieved in both hydrogen (H2) and CH4 operation. The power density of 0.16 Wcm-2 at 750 °C with dry CH4 as fuel is one of the highest ever reported values for similar anode materials.

  10. Synthetic biology: tools to design microbes for the production of chemicals and fuels.

    PubMed

    Seo, Sang Woo; Yang, Jina; Min, Byung Eun; Jang, Sungho; Lim, Jae Hyung; Lim, Hyun Gyu; Kim, Seong Cheol; Kim, Se Yeon; Jeong, Jun Hong; Jung, Gyoo Yeol

    2013-11-01

    The engineering of biological systems to achieve specific purposes requires design tools that function in a predictable and quantitative manner. Recent advances in the field of synthetic biology, particularly in the programmable control of gene expression at multiple levels of regulation, have increased our ability to efficiently design and optimize biological systems to perform designed tasks. Furthermore, implementation of these designs in biological systems highlights the potential of using these tools to build microbial cell factories for the production of chemicals and fuels. In this paper, we review current developments in the design of tools for controlling gene expression at transcriptional, post-transcriptional and post-translational levels, and consider potential applications of these tools. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...

  12. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...

  13. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...

  14. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...

  15. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...

  16. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badwan, Faris M.; Demuth, Scott F

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is amore » fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design

  17. Heterogeneous sodium fast reactor designed for transmuting minor actinide waste isotopes into plutonium fuel

    NASA Astrophysics Data System (ADS)

    Bays, Samuel Eugene

    2008-10-01

    In the past several years there has been a renewed interest in sodium fast reactor (SFR) technology for the purpose of destroying transuranic waste (TRU) produced by light water reactors (LWR). The utility of SFRs as waste burners is due to the fact that higher neutron energies allow all of the actinides, including the minor actinides (MA), to contribute to fission. It is well understood that many of the design issues of LWR spent nuclear fuel (SNF) disposal in a geologic repository are linked to MAs. Because the probability of fission for essentially all the "non-fissile" MAs is nearly zero at low neutron energies, these isotopes act as a neutron capture sink in most thermal reactor systems. Furthermore, because most of the isotopes produced by these capture reactions are also non-fissile, they too are neutron sinks in most thermal reactor systems. Conversely, with high neutron energies, the MAs can produce neutrons by fast fission. Additionally, capture reactions transmute the MAs into mostly plutonium isotopes, which can fission more readily at any energy. The transmutation of non-fissile into fissile atoms is the premise of the plutonium breeder reactor. In a breeder reactor, not only does the non-fissile "fertile" U-238 atom contribute fast fission neutrons, but also transmutes into fissile Pu-239. The fissile value of the plutonium produced by MA transmutation can only be realized in fast neutron spectra. This is due to the fact that the predominate isotope produced by MA transmutation, Pu-238, is itself not fissile. However, the Pu-238 fission cross section is significantly larger than the original transmutation parent, predominately: Np-237 and Am-241, in the fast energy range. Also, Pu-238's fission cross section and fission-to-capture ratio is almost as high as that of fissile Pu-239 in the fast neutron spectrum. It is also important to note that a neutron absorption in Pu-238, that does not cause fission, will instead produce fissile Pu-239. Given this

  18. Investigation of Engineering and Design Considerations in Selecting Conveyors for Densified Refuse-Derived Fuel (dRDF) and dRDF: Coal Mixtures.

    DTIC Science & Technology

    1981-08-01

    or discharge paths of material over the end pulley of a conveyor are important to the proper design and function of discharge chutes , wear plates or...8217 ’iESL-TR-81-58 INVESTIGATION OF ENGINEERING AND DESIGN CONSIDERATIONS IN SELECTING CONVEYORS FOR DENSIFIED REFUSE-DERIVED FUEL (dRDF) AND dRDF: COAL...Engineering and Design Final Report Considerations in Selecting Conveyors for JUN 1980 - SEP 1981 Densified Refuse-Derived Fuel (dRDF) and 6. PERFORMING ORG

  19. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.; Miller, W.F.

    2013-07-01

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that statesmore » will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.« less

  20. Design of Long-Endurance Unmanned Airplanes Incorporating Solar and Fuel Cell Propulsion

    NASA Technical Reports Server (NTRS)

    Youngblood, James W.; Talay, Theodore A.; Pegg, Robert J.

    1984-01-01

    Preliminary performance analysis and conceptual design are described for a class of unmanned airplanes possessing multi-day endurance capability. A mixed-mode electric power system incorporates solar cells for daytime energy production and a non-regenerative H2-02 fuel cell to supply energy for night flight. The power system provides energy for all onboard systems, including propulsion., payload, and avionics. Excess solar energy is available during significant portions of the day, and may be used for climbing, maneuvering, or payload functions. By jettisoning fuel cell reactant product (water) during flight, vehicle endurance may be increased under certain conditions. Empirical structure sizing algorithms are combined with low-Reynolds number aerodynamics algorithms to estimate airplane size and geometry to meet prescribed mission requirements. Initial calculations for summertime, high-altitude flight (above 40,000 ft (12 km)) at moderate latitude (31 deg N) indicate that mission endurance of several days may be possible for configurations having wing loadings on the order of 0.9 to 1.3 lb/ft(exp 2). These aircraft tend to be somewhat smaller than solar-powered aircraft previously conceived for multi-month endurance utilizing regenerative fuel cell systems for night flight.

  1. Nuclear fuel performance: Trends, remedies and challenges

    NASA Astrophysics Data System (ADS)

    Rusch, C. A.

    2008-12-01

    It is unacceptable to have nuclear power plants unavailable or power restricted due to fuel reliability issues. 'Fuel reliability' has a much broader definition than just maintaining mechanical integrity and being leaker free - fuel must fully meet the specifications, impose no adverse impacts on plant operation and safety, and maintain quantifiable margins within design and operational envelopes. The fuel performance trends over the last decade are discussed and the significant contributors to reduced reliability experienced with commercial PWR and BWR designs are identified and discussed including grid-to-rod fretting and debris fretting in PWR designs and accelerated corrosion, debris fretting and pellet-cladding interaction in BWR designs. In many of these cases, the impacts have included not only fuel failures but also plant operating restrictions, forced shutdowns, and/or enhanced licensing authority oversight. Design and operational remedies are noted. The more demanding operating regimes and the constant quest to improve fuel performance require enhancements to current designs and/or new design features. Fuel users must continue to and enhance interaction with fuel suppliers in such areas as oversight of supplier design functions, lead test assembly irradiation programs and quality assurance oversight and surveillance. With the implementation of new designs and/or features, such fuel user initiatives can help to minimize the potential for performance problems.

  2. Fuel Cell/Reformers Technology Development

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  3. Fuel system technology overview

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1980-01-01

    Fuel system research and technology studies are being conducted to investigate the correlations and interactions of aircraft fuel system design and environment with applicable characteristics of the fuel. Topics include: (1) analysis of in-flight fuel temperatures; (2) fuel systems for high freezing point fuels; (3) experimental study of low temperature pumpability; (4) full scale fuel tank simulation; and (5) rapid freezing point measurement.

  4. Alternate-fueled transport aircraft possibilities

    NASA Technical Reports Server (NTRS)

    Aiken, W. S.

    1977-01-01

    The paper is organized to describe: (1) NASA's cryogenically fueled aircraft program; (2) LH2 subsonic and supersonic transport design possibilities (3) the fuel system and ground side problems associated with LH2 distribution; (4) a comparison of LCH4 with LH2; (5) the design possibilities for LCH4 fueled aircraft; and (6) a summary of where NASA's cryogenically fueled programs are headed.

  5. Fuel property effects on Navy aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  6. Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, Bojan; Maldonado, Ivan

    2016-04-14

    The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate (“plank”) fuel. Proposal to FY12 NEUP entitled “Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors” was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed onmore » December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project’s success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.« less

  7. Fuel processing for PEM fuel cells: transport and kinetic issues of system design

    NASA Astrophysics Data System (ADS)

    Zalc, J. M.; Löffler, D. G.

    In light of the distribution and storage issues associated with hydrogen, efficient on-board fuel processing will be a significant factor in the implementation of PEM fuel cells for automotive applications. Here, we apply basic chemical engineering principles to gain insight into the factors that limit performance in each component of a fuel processor. A system consisting of a plate reactor steam reformer, water-gas shift unit, and preferential oxidation reactor is used as a case study. It is found that for a steam reformer based on catalyst-coated foils, mass transfer from the bulk gas to the catalyst surface is the limiting process. The water-gas shift reactor is expected to be the largest component of the fuel processor and is limited by intrinsic catalyst activity, while a successful preferential oxidation unit depends on strict temperature control in order to minimize parasitic hydrogen oxidation. This stepwise approach of sequentially eliminating rate-limiting processes can be used to identify possible means of performance enhancement in a broad range of applications.

  8. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.« less

  9. Design, fabrication, and operation of capsules for the irradiation testing of candidate advanced space reactor fuel pins

    NASA Technical Reports Server (NTRS)

    Thoms, K. R.

    1975-01-01

    Fuel irradiation experiments were designed, built, and operated to test uranium mononitride (UN) fuel clad in tungsten-lined T-111 and uranium dioxide fuel clad in both tungsten-lined T-111 and tungsten-lined Nb-1% Zr. A total of nine fuel pins was irradiated at average cladding temperatures ranging from 931 to 1015 C. The UN experiments, capsules UN-4 and -5, operated for 10,480 and 10,037 hr, respectively, at an average linear heat generation rate of 10 kW/ft. The UO2 experiment, capsule UN-6, operated for 8333 hr at an average linear heat generation rate of approximately 5 kW/ft. Following irradiation, the nine fuel pins were removed from their capsules, externally examined, and sent to the NASA Plum Brook Facility for more detailed postirradiation examination. During visual examination, it was discovered that the cladding of the fuel pin containing dense UN in each of capsules UN-4 and -5 had failed, exposing the UN fuel to the NaK in which the pins were submerged and permitting the release of fission gas from the failed pins. A rough analysis of the fission gas seen in samples of the gas in the fuel pin region indicated fission gas release-to-birth rates from these fuel pins in the range of .00001.

  10. Initial Design and Construction of a Mobil Regenerative Fuel Cell System

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Maloney, Thomas; Hoberecht, Mark (Technical Monitor)

    2003-01-01

    The design and initial construction of a mobile regenerative power system is described. The main components of the power system consists of a photovoltaic array, regenerative fuel cell and electrolyzer. The system is mounted on a modified landscape trailer and is completely self contained. An operational analysis is also presented that shows predicted performance for the system at various times of the year. The operational analysis consists of performing an energy balance on the system based on array output and total desired operational time.

  11. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the

  12. Miniature Fuel Processors for Portable Fuel Cell Power Supplies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holladay, Jamie D.; Jones, Evan O.; Palo, Daniel R.

    2003-06-02

    Miniature and micro-scale fuel processors are discussed. The enabling technologies for these devices are the novel catalysts and the micro-technology-based designs. The novel catalyst allows for methanol reforming at high gas hourly space velocities of 50,000 hr-1 or higher, while maintaining a carbon monoxide levels at 1% or less. The micro-technology-based designs enable the devices to be extremely compact and lightweight. The miniature fuel processors can nominally provide between 25-50 watts equivalent of hydrogen which is ample for soldier or personal portable power supplies. The integrated processors have a volume less than 50 cm3, a mass less than 150 grams,more » and thermal efficiencies of up to 83%. With reasonable assumptions on fuel cell efficiencies, anode gas and water management, parasitic power loss, etc., the energy density was estimated at 1700 Whr/kg. The miniature processors have been demonstrated with a carbon monoxide clean-up method and a fuel cell stack. The micro-scale fuel processors have been designed to provide up to 0.3 watt equivalent of power with efficiencies over 20%. They have a volume of less than 0.25 cm3 and a mass of less than 1 gram.« less

  13. Hydrogen Fuel System Design Trades for High-Altitude Long-Endurance Remotely- Operated Aircraft

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Tornabene, Robert T.; Jurns, John M.; Guynn, Mark D.; Tomsik, Thomas M.; VanOverbeke, Thomas J.

    2009-01-01

    Preliminary design trades are presented for liquid hydrogen fuel systems for remotely-operated, high-altitude aircraft that accommodate three different propulsion options: internal combustion engines, and electric motors powered by either polymer electrolyte membrane fuel cells or solid oxide fuel cells. Mission goal is sustained cruise at 60,000 ft altitude, with duration-aloft a key parameter. The subject aircraft specifies an engine power of 143 to 148 hp, gross liftoff weight of 9270 to 9450 lb, payload of 440 lb, and a hydrogen fuel capacity of 2650 to 2755 lb stored in two spherical tanks (8.5 ft inside diameter), each with a dry mass goal of 316 lb. Hydrogen schematics for all three propulsion options are provided. Each employs vacuum-jacketed tanks with multilayer insulation, augmented with a helium pressurant system, and using electric motor driven hydrogen pumps. The most significant schematic differences involve the heat exchangers and hydrogen reclamation equipment. Heat balances indicate that mission durations of 10 to 16 days appear achievable. The dry mass for the hydrogen system is estimated to be 1900 lb, including 645 lb for each tank. This tank mass is roughly twice that of the advanced tanks assumed in the initial conceptual vehicle. Control strategies are not addressed, nor are procedures for filling and draining the tanks.

  14. Accuracy of Mass and Radius Determination for Neutron Stars in X-ray Bursters from Simulated LOFT Spectra

    NASA Astrophysics Data System (ADS)

    Majczyna, A.; Madej, J.; Różańska, A.; Należyty, M.

    2017-06-01

    We present a simulation of an X-ray spectrum of a hot neutron star, as would be seen by the LAD detector on board of LOFT satellite. We also compute a grid of theoretical spectra corresponding to a range of effective temperatures Teff and surface gravities log g with values corresponding to compact stars in Type I X-ray bursters. A neutron star with the mass M=1.64 M⊙ and the radius R=11.95 km (which yields the surface gravity log g=14.30 [cgs] and the surface redshift z=0.30) is used in simulation. Accuracy of mass and radius determination by fitting theoretical spectra to the observed one is found to be M=1.64+0.16-0.02 M⊙ and R=11.95+1.57-0.40 km (2σ). The confidence contours for these two variables are narrow but elongated, and therefore the resulting constraints on the EOS cannot be strong. Note, that in this paper we aim to discuss error contours of NS mass and radius, whereas discussion of EOS is beyond the scope of this work.

  15. The impact of cockpit automation on crew coordination and communication. Volume 1: Overview, LOFT evaluations, error severity, and questionnaire data

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.; Chidester, Thomas R.; Kanki, Barbara G.; Palmer, Everett A.; Curry, Renwick E.; Gregorich, Steven E.

    1991-01-01

    The purpose was to examine, jointly, cockpit automation and social processes. Automation was varied by the choice of two radically different versions of the DC-9 series aircraft, the traditional DC-9-30, and the glass cockpit derivative, the MD-88. Airline pilot volunteers flew a mission in the simulator for these aircraft. Results show that the performance differences between the crews of the two aircraft were generally small, but where there were differences, they favored the DC-9. There were no criteria on which the MD-88 crews performed better than the DC-9 crews. Furthermore, DC-9 crews rated their own workload as lower than did the MD-88 pilots. There were no significant differences between the two aircraft types with respect to the severity of errors committed during the Line-Oriented Flight Training (LOFT) flight. The attitude questionnaires provided some interesting insights, but failed to distinguish between DC-9 and MD-88 crews.

  16. New design of a cathode flow-field with a sub-channel to improve the polymer electrolyte membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Wang, Yulin; Yue, Like; Wang, Shixue

    2017-03-01

    The cathode flow-field design of polymer electrolyte membrane (PEM) fuel cells determines the distribution of reactant gases and the removal of liquid water. A suitable design can result in perfect water management and thus high cell performance. In this paper, a new design for a cathode flow-field with a sub-channel was proposed and had been experimentally analyzed in a parallel flow-field PEM fuel cell. Three sub-channel inlets were placed along the cathode channel. The main-channel inlet was fed with moist air to humidify the membrane and maintain high proton conductivity, whereas, the sub-channel inlet was fed with dry air to enhance water removal in the flow channel. The experimental results indicated that the sub-channel design can decrease the pressure drop in the flow channel, and the sub-channels inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) and flow rates (SFR, percentage of air from the sub-channel inlet in the total cathode flow rate) had a considerable impact on water removal and cell performance. A proposed design that combines the SIP and SFR can effectively eliminate water from the fuel cell, increasing the maximum power density by more than 13.2% compared to the conventional design.

  17. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  18. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells.

    PubMed

    Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji

    2017-10-01

    Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems.

  19. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells

    PubMed Central

    Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji

    2017-01-01

    Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems. PMID:29075671

  20. Design of a fuel-efficient guidance system for a STOL aircraft

    NASA Technical Reports Server (NTRS)

    Mclean, J. D.; Erzberger, H.

    1981-01-01

    In the predictive mode, the system synthesizes a horizontal path from an initial aircraft position and heading to a desired final position and heading and then synthesizes a fuel-efficient speed-altitude profile along the path. In the track mode, the synthesized trajectory is reconstructed and tracked automatically. An analytical basis for the design of the system is presented and a description of the airborne computer implementation is given. A detailed discussion of the software, which should be helpful to those who use the actual software developed for these tests, is also provided.

  1. Determination of optimal parameters for dual-layer cathode of polymer electrolyte fuel cell using computational intelligence-aided design.

    PubMed

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference η and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs.

  2. Determination of Optimal Parameters for Dual-Layer Cathode of Polymer Electrolyte Fuel Cell Using Computational Intelligence-Aided Design

    PubMed Central

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs. PMID:25490761

  3. Design, construction, operation and costs of a modern small-scale fuel-alcohol plant

    NASA Astrophysics Data System (ADS)

    Leeper, S. A.; Dawley, L. J.; Wolfram, J. H.; Berglund, G. R.; Richardson, J. G.; McAtee, R. E.

    1982-01-01

    The design used for the small-scale fuel alcohol plant (SSFAP) is discussed. By incorporating a microprocessor into the plant design, most plant operations were automated and labor requirements were reduced. Continuous processing made energy conservation possible, thus reducing energy requirements. A low-temperature, continuous plug-flow cooker design made high yields possible. Ethanol was consistently produced at the SSFAP from corn at a yield of 2.6 gallons (anhydrous) per bushel and an energy requirement of 30,000 to 35,000 Btu/gallon (190-proof). In addition, barley, grain dust, and potato waste were converted at the SSFAP. The capacity of the SSFAP is 180,000 gallons per year (300 days operation). Competitively priced ethanol is produced at this capacity.

  4. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE PAGES

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.; ...

    2018-04-07

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less

  5. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less

  6. Fuel assembly design for APR1400 with low CBC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hah, Chang Joo, E-mail: changhah@kings.ac.kr

    2015-04-29

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gdmore » rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to Δk{sub TARGET}. A set of new designed fuel assembly satisfies an objective function, min [f=∑{sub i}(Δk{sub FA}−Δk{sub i})], and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to Δk{sub TARGET} as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.« less

  7. Demonstration of optimum fuel-to-moderator ratio in a PWR unit fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Pozsgai, C.

    1992-01-01

    Nuclear engineering students at The Pennsylvania State University develop scaled-down [[approx]350 MW(thermal)] pressurized water reactors (PWRs) using actual plants as references. The design criteria include maintaining the clad temperature below 2200[degree]F, fuel temperature below melting point, sufficient departure from nucleate boiling ratio (DNBR) margin, a beginning-of-life boron concentration that yields a negative moderator temperature coefficient, an adequate cycle power production (330 effective full-power days), and a batch loading scheme that is economical. The design project allows for many degrees of freedom (e.g., assembly number, pitch and height and batch enrichments) so that each student's result is unique. The iterative naturemore » of the design process is stressed in the course. The LEOPARD code is used for the unit cell depletion, critical boron, and equilibrium xenon calculations. Radial two-group diffusion equations are solved with the TWIDDLE-DEE code. The steady-state ZEBRA thermal-hydraulics program is used for calculating DNBR. The unit fuel cell pin radius and pitch (fuel-to-moerator ratio) for the scaled-down design, however, was set equal to the already optimized ratio for the reference PWR. This paper describes an honors project that shows how the optimum fuel-to-moderator ratio is found for a unit fuel cell shown in terms of neutron economics. This exercise illustrates the impact of fuel-to-moderator variations on fuel utilization factor and the effect of assuming space and energy separability.« less

  8. Conceptual Design Tool for Fuel-Cell Powered Micro Air Vehicles

    DTIC Science & Technology

    2010-03-01

    Electrolyte Membrane PEMFC PEM Fuel Cell RAM Rapid Aircraft Modeler R/C Radio Controlled RMFC Reformed Methanol Fuel Cell SBIR Small Business...of rechargeable batteries, the Proton Exchange Membrane Fuel Cell ( PEMFC ) is only limited by the amount of hydrogen it can store, and can be...of fuel cells within MAVs through the creation of the Hornet. This slightly heavier, 380 g MAV integrated a 10 W PEMFC into the wing surface for a

  9. Connecticut Nutmeg Fuel Cell Bus Project : Demonstrating Advanced-Design Hybrid Fuel Cell Buses in Connecticut

    DOT National Transportation Integrated Search

    2011-07-01

    The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. The Northeast Advanced Vehicle Consortium (NAVC) is one of three non-profit consortia chosen to ...

  10. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  11. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donley, Tim

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what hasmore » already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.« less

  12. High-freezing-point fuel studies

    NASA Technical Reports Server (NTRS)

    Tolle, F. F.

    1980-01-01

    Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.

  13. Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.

    2017-11-01

    Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.

  14. Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator

    NASA Technical Reports Server (NTRS)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.

  15. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    NASA Astrophysics Data System (ADS)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  16. Cryogenic Propulsion Stage (CPS) Configuration in Support of NASA's Multiple Design Reference Missions (DRMs)

    NASA Technical Reports Server (NTRS)

    Hanna, Stephen G.; Jones, David L.; Creech, Stephen D.; Lawrence, Thomas D.

    2012-01-01

    In support of the National Aeronautics and Space Administration's (NASA) Human Exploration and Operations Mission Directorate (HEOMD), the Space Launch System (SLS) is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's or-bit (BEO). The SLS Team is tasked with developing a system capable of safely and repeatedly lofting a new fleet of spaceflight vehicles beyond Earth orbit. The Cryogenic Propulsion Stage (CPS) is a key enabler for evolving the SLS capability for BEO missions. This paper reports on the methodology and initial recommendations relative to the CPS, giving a brief retrospective of early studies on this promising propulsion hardware. This paper provides an overview of the requirements development and CPS configuration in support of NASA's multiple Design Reference Missions (DRMs).

  17. Design and Economic Potential of an Integrated High-Temperature Fuel Cell and Absorption Chiller Combined Cooling, Heat, and Power System

    NASA Astrophysics Data System (ADS)

    Hosford, Kyle S.

    Clean distributed generation power plants can provide a much needed balance to our energy infrastructure in the future. A high-temperature fuel cell and an absorption chiller can be integrated to create an ideal combined cooling, heat, and power system that is efficient, quiet, fuel flexible, scalable, and environmentally friendly. With few real-world installations of this type, research remains to identify the best integration and operating strategy and to evaluate the economic viability and market potential of this system. This thesis informs and documents the design of a high-temperature fuel cell and absorption chiller demonstration system at a generic office building on the University of California, Irvine (UCI) campus. This work details the extension of prior theoretical work to a financially-viable power purchase agreement (PPA) with regard to system design, equipment sizing, and operating strategy. This work also addresses the metering and monitoring for the system showcase and research and details the development of a MATLAB code to evaluate the economics associated with different equipment selections, building loads, and economic parameters. The series configuration of a high-temperature fuel cell, heat recovery unit, and absorption chiller with chiller exhaust recirculation was identified as the optimal system design for the installation in terms of efficiency, controls, ducting, and cost. The initial economic results show that high-temperature fuel cell and absorption chiller systems are already economically competitive with utility-purchased generation, and a brief case study of a southern California hospital shows that the systems are scalable and viable for larger stationary power applications.

  18. BEHAVE: fire behavior prediction and fuel modeling system - BURN subsystem, Part 2

    Treesearch

    Patricia L. Andrews; Carolyn H. Chase

    1989-01-01

    This is the third publication describing the BEHAVE system of computer programs for predicting behavior of wildland fires. This publication adds the following predictive capabilities: distance firebrands are lofted ahead of a wind-driven surface fire, probabilities of firebrands igniting spot fires, scorch height of trees, and percentage of tree mortality. The system...

  19. Analysis of fuel system technology for broad property fuels

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1984-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broad property fuels. Significant results, with emphasis on design practicality from the engine manufacturer' standpoint, are highlighted. Several advanced fuel systems were modeled to determine as accurately as possible the relative merits of each system from the standpoint of compatibility with broad property fuel. Freezing point, thermal stability, and lubricity were key property issues. A computer model was formulated to determine the investment incentive for each system. Results are given.

  20. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  1. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period January 1, 2003--March 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with improvements to both the Willow Island and Albright Generating Station cofiring systems. These improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  2. Consolidated fuel reprocessing program

    NASA Astrophysics Data System (ADS)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  3. Integrated Fuel Cell/Coal Gasifier

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.

    1985-01-01

    Powerplant design with low-temperature coal gasifier coupled to highly-exothermic fuel cell for efficient production of dc power eliminates need for oxygen in gasifier and achieves high fuel efficiency with recycling of waste heat from fuel cell.

  4. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  5. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period July 1, 2001--September 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) continued construction of the Willow Island cofiring project, completed the installation of the fuel storage facility, the fuel receiving facility, and the processing building. All mechanical equipment has been installed and electrical construction has proceeded. During this time period significant short term testing of the Albright Generating Station cofiring facility was completed, and the 100-hour test was planned for early October. The testing demonstrated that cofiring at the Albright Generating Station could contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gasmore » emissions. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.« less

  6. Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability

    NASA Astrophysics Data System (ADS)

    Sinor, J. E.

    1994-05-01

    This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

  7. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  8. Performance of a multiple venturi fuel-air preparation system. [fuel injection for gas turbines

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1979-01-01

    Spatial fuel-air distributions, degree of vaporization, and pressure drop were measured 16.5 cm downstream of the fuel injection plane of a multiple Venturi tube fuel injector. Tests were performed in a 12 cm tubular duct. Test conditions were: a pressure of 0.3 MPa, inlet air temperature from 400 to 800K, air velocities of 10 and 20 m/s, and fuel-air ratios of 0.010 and 0.020. The fuel was Diesel #2. Spatial fuel-air distributions were within + or - 20 percent of the mean at inlet air temperatures above 450K. At an inlet air temperature of 400K, the fuel-air distribution was measured when a 50 percent blockage plate was placed 9.2 cm upstream of the fuel injection plane to distort the inlet air velocity fuel injection plane to distort the inlet air velocity profile. Vaporization of the fuel was 50 percent complete at an inlet air temperature of 400K and the percentage increased linearly with temperature to complete vaporization at 600K. The pressure drop was 3 percent at the design point which was three times greater than the designed value and the single tube experiment value. No autoignition or flashback was observed at the conditions tested.

  9. Fireplaces and Fireplace Fuels.

    ERIC Educational Resources Information Center

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fireplaces and fuels. Its objective is for the student to be able to discuss the structural design, operation, and efficiency of fireplaces and characteristics of different fireplace fuels. Some topics covered are fuels, elements…

  10. Evaluation of a ducted-fan power plant designed for high output and good cruise fuel economy

    NASA Technical Reports Server (NTRS)

    Behun, M; Rom, F E; Hensley, R V

    1950-01-01

    Theoretical analysis of performance of a ducted-fan power plant designed both for high-output, high-altitude operation at low supersonic Mach numbers and for good fuel economy at lower fight speeds is presented. Performance of ducted fan is compared with performance (with and without tail-pipe burner) of two hypothetical turbojet engines. At maximum power, the ducted fan has propulsive thrust per unit of frontal area between thrusts obtained by turbojet engines with and without tail-pipe burners. At cruise, the ducted fan obtains lowest thrust specific fuel consumption. For equal maximum thrusts, the ducted fan obtains cruising flight duration and range appreciably greater than turbojet engines.

  11. Assessment of the Neutronic and Fuel Cycle Performance of the Transatomic Power Molten Salt Reactor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Sean; Dewan, Leslie; Massie, Mark

    This report presents results from a collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear (GAIN) Nuclear Energy Voucher program. The TAP concept is a molten salt reactor using configurable zirconium hydride moderator rod assemblies to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parametersmore » necessary to simulate the continuously changing physics in this complex system. The implementation of continuous-energy Monte Carlo transport and depletion tools in ChemTriton provide for full-core three-dimensional modeling and simulation. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this concept. Additional analyses of mass feed rates and enrichments, isotopic removals, tritium generation, core power distribution, core vessel helium generation, moderator rod heat deposition, and reactivity coeffcients provide additional information to make informed design decisions. This work demonstrates capabilities of ORNL modeling and simulation tools for neutronic and fuel cycle analysis of molten salt reactor concepts.« less

  12. Alternative Fuels Data Center

    Science.gov Websites

    strategic locations along major highways to improve the mobility of alternative fuel vehicles. To designate providers and purchasers, and reestablishing the goal of achieving strategic deployment of fueling

  13. The TMI Regenerative Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  14. Used fuel extended storage security and safeguards by design roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric Richard; Jones, Robert

    2016-05-01

    In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. Amore » set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.« less

  15. Alcohol Fuel By-Product Utilization and Production.

    ERIC Educational Resources Information Center

    Boerboom, Jim

    Ten lessons comprise this curriculum intended to assist vocational teachers in establishing and conducting an alcohol fuels workshop on engine modification and plant design. A glossary is provided first. The 10 lessons cover these topics: the alcohol fuel plant, feedstock preparation lab, distillation lab, fuel plant processes, plant design lab,…

  16. Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations

    NASA Astrophysics Data System (ADS)

    Choi, YongMan; Lin, M. C.; Liu, Meilin

    The search for clean and renewable sources of energy represents one of the most vital challenges facing us today. Solid oxide fuel cells (SOFCs) are among the most promising technologies for a clean and secure energy future due to their high energy efficiency and excellent fuel flexibility (e.g., direct utilization of hydrocarbons or renewable fuels). To make SOFCs economically competitive, however, development of new materials for low-temperature operation is essential. Here we report our results on a computational study to achieve rational design of SOFC cathodes with fast oxygen reduction kinetics and rapid ionic transport. Results suggest that surface catalytic properties are strongly correlated with the bulk transport properties in several material systems with the formula of La 0.5Sr 0.5BO 2.75 (where B = Cr, Mn, Fe, or Co). The predictions seem to agree qualitatively with available experimental results on these materials. This computational screening technique may guide us to search for high-efficiency cathode materials for a new generation of SOFCs.

  17. System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe Ferrall, Tim Rehg, Vesna Stanic

    2000-09-30

    The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requiresmore » that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.« less

  18. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period April 1, 2003--June 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  19. Design and fabrication of miniaturized PEM fuel cell combined microreactor with self-regulated hydrogen mechanism

    NASA Astrophysics Data System (ADS)

    Balakrishnan, A.; Frei, M.; Kerzenmacher, S.; Reinecke, H.; Mueller, C.

    2015-12-01

    In this work we present the design and fabrication of the miniaturized PEM fuel cell combined microreactor system with hydrogen regulation mechanism and testing of prototype microreactor. The system consists of two components (i) fuel cell component and (ii) microreactor component. The fuel cell component represents the miniaturized PEM fuel cell system (combination of screen printed fuel cell assembly and an on-board hydrogen storage medium). Hydrogen production based on catalytic hydrolysis of chemical hydride takes place in the microreactor component. The self-regulated hydrogen mechanism based on the gaseous hydrogen produced from the catalytic hydrolysis of sodium borohydride (NaBH4) gets accumulated as bubbles at the vicinity of the hydrophobic coated hydrogen exhaust holes. When the built up hydrogen bubbles pressure exceeds the burst pressure at the hydrogen exhaust holes the bubble collapses. This collapse causes a surge of fresh NaBH4 solution onto the catalyst surface leading to the removal of the reaction by-products formed at the active sites of the catalyst. The catalyst used in the system is platinum deposited on a base substrate. Nickel foam, carbon porous medium (CPM) and ceramic plate were selected as candidates for base substrate for developing a robust catalyst surface. For the first time the platinum layer fabricated by pulsed electrodeposition and dealloying (EPDD) technique is used for hydrolysis of NaBH4. The major advantages of such platinum catalyst layers are its high surface area and their mechanical stability. Prototype microreactor system with self-regulated hydrogen mechanism is demonstrated.

  20. Simulation of a 250 kW diesel fuel processor/PEM fuel cell system

    NASA Astrophysics Data System (ADS)

    Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.

    Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.

  1. Experimental evaluation of combustor concepts for burning broad property fuels

    NASA Technical Reports Server (NTRS)

    Kasper, J. M.; Ekstedt, E. E.; Dodds, W. J.; Shayeson, M. W.

    1980-01-01

    A baseline CF6-50 combustor and three advanced combustor designs were evaluated to determine the effects of combustor design on operational characteristics using broad property fuels. Three fuels were used in each test: Jet A, a broad property 13% hydrogen fuel, and a 12% hydrogen fuel blend. Testing was performed in a sector rig at true cruise and simulated takeoff conditions for the CF6-50 engine cycle. The advanced combustors (all double annular, lean dome designs) generally exhibited lower metal temperatures, exhaust emissions, and carbon buildup than the baseline CF6-50 combustor. The sensitivities of emissions and metal temperatures to fuel hydrogen content were also generally lower for the advanced designs. The most promising advanced design used premixing tubes in the main stage. This design was chosen for additional testing in which fuel/air ratio, reference velocity, and fuel flow split were varied.

  2. Design, integration and demonstration of a 50 W JP8/kerosene fueled portable SOFC power generator

    NASA Astrophysics Data System (ADS)

    Cheekatamarla, Praveen K.; Finnerty, Caine M.; Robinson, Charles R.; Andrews, Stanley M.; Brodie, Jonathan A.; Lu, Y.; DeWald, Paul G.

    A man-portable solid oxide fuel cell (SOFC) system integrated with desulfurized JP8 partial oxidation (POX) reformer was demonstrated to supply a continuous power output of 50 W. This paper discusses some of the design paths chosen and challenges faced during the thermal integration of the stack and reformer in aiding the system startup and shutdown along with balance of plant and power management solutions. The package design, system capabilities, and test results of the prototype unit are presented.

  3. SFCOMPO 2.0 - A relational database of spent fuel isotopic measurements, reactor operational histories, and design data

    NASA Astrophysics Data System (ADS)

    Michel-Sendis, Franco; Martinez-González, Jesus; Gauld, Ian

    2017-09-01

    SFCOMPO-2.0 is a database of experimental isotopic concentrations measured in destructive radiochemical analysis of spent nuclear fuel (SNF) samples. The database includes corresponding design description of the fuel rods and assemblies, relevant operating conditions and characteristics of the host reactors necessary for modelling and simulation. Aimed at establishing a thorough, reliable, and publicly available resource for code and data validation of safety-related applications, SFCOMPO-2.0 is developed and maintained by the OECD Nuclear Energy Agency (NEA). The SFCOMPO-2.0 database is a Java application which is downloadable from the NEA website.

  4. Assessment, design and control strategy development of a fuel cell hybrid electric vehicle for CSU's EcoCAR

    NASA Astrophysics Data System (ADS)

    Fox, Matthew D.

    Advanced automotive technology assessment and powertrain design are increasingly performed through modeling, simulation, and optimization. But technology assessments usually target many competing criteria making any individual optimization challenging and arbitrary. Further, independent design simulations and optimizations take considerable time to execute, and design constraints and objectives change throughout the design process. Changes in design considerations usually require re-processing of simulations and more time. In this thesis, these challenges are confronted through CSU's participation in the EcoCAR2 hybrid vehicle design competition. The complexity of the competition's design objectives leveraged development of a decision support system tool to aid in multi-criteria decision making across technologies and to perform powertrain optimization. To make the decision support system interactive, and bypass the problem of long simulation times, a new approach was taken. The result of this research is CSU's architecture selection and component sizing, which optimizes a composite objective function representing the competition score. The selected architecture is an electric vehicle with an onboard range extending hydrogen fuel cell system. The vehicle has a 145kW traction motor, 18.9kWh of lithium ion battery, a 15kW fuel cell system, and 5kg of hydrogen storage capacity. Finally, a control strategy was developed that improves the vehicles performance throughout the driving range under variable driving conditions. In conclusion, the design process used in this research is reviewed and evaluated against other common design methodologies. I conclude, through the highlighted case studies, that the approach is more comprehensive than other popular design methodologies and is likely to lead to a higher quality product. The upfront modeling work and decision support system formulation will pay off in superior and timely knowledge transfer and more informed design

  5. Alternate Fuels for Use in Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  6. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Hofman, G.L.

    1997-12-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data.

  7. Hydrogen Fuel Cell Engines and Related Technologies

    NASA Astrophysics Data System (ADS)

    2001-12-01

    The Hydrogen Fuel Cell Engines and Related Technologies report documents the first training course ever developed and made available to the transportation community and general public on the use hydrogen fuel cells in transportation. The course is designed to train a new generation of technicians in gaining a more complete understanding of the concepts, procedures, and technologies involved with hydrogen fuel cell use in transportation purposes. The manual contains 11 modules (chapters). The first eight modules cover (1) hydrogen properties, use and safety; and (2) fuel cell technology and its systems, fuel cell engine design and safety, and design and maintenance of a heavy duty fuel cell bus engine. The different types of fuel cells and hybrid electric vehicles are presented, however, the system descriptions and maintenance procedures focus on proton-exchange-membrane (PEM) fuel cells with respect to heavy duty transit applications. Modules 9 and 10 are intended to provide a better understanding of the acts, codes, regulations and guidelines concerning the use of hydrogen, as well as the safety guidelines for both hydrogen maintenance and fueling facilities. Module 11 presents a glossary and conversions.

  8. Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

  9. External fuel vaporization study, phase 2

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  10. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    NASA Astrophysics Data System (ADS)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  11. Safeguards-by-Design:Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Schanfein; Casey Durst

    2012-11-01

    Introduction and Purpose The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA)more » time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on prismatic fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an

  12. Deployable Fuel Cell Power Generator - Multi-Fuel Processor

    DTIC Science & Technology

    2009-02-01

    and the system operating pressure, while the separation efficiency depends on the evaporator design. Desulfurizer – A flow-through gas -solid or gas ...meeting the Executive Order (EO) 13423 and the Energy Policy Act of 2005 to improve energy efficiency and reduce greenhouse gas emissions 3 percent...use available fuel such as natural gas (methane) or propane. The ability to reform multitude of fuels can accelerate the introduction of more

  13. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  14. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  15. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  16. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  17. Aviation-fuel lubricity evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-07-01

    Fuel-system components have experienced problems with the slipperiness or lubricity of the fuel back to the early 1960's. As a consequence of the level of refinement necessary for the PWA 523 fuel (now designated MIL-T-38219 grade JP-7) to obtain its high-temperature stability, many of the polar compounds contributing to lubricity had been removed, resulting in abnormal hydraulic fuel-pump wear. A lubricity-enhancing compound was developed (PWA 536) to eliminate the wear problem. High-pressure piston-type fuel pumps were one of the first parts of the engine fuel system to exhibit problems related to fuel properties. One early problem manifested itself as corrosionmore » of silver-plated slipper pads and was related to carryover of residual-chlorides fuel. Fuel controls were another part of the engine fuel system susceptible to fuel properties. Lack of lubricity agents caused fuel control sliding servo valves to stick.« less

  18. QUAD+ BWR Fuel Assembly demonstration program at Browns Ferry plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doshi, P.K.; Mayhue, L.T.; Robert, J.T.

    1984-04-01

    The QUAD+ fuel assembly is an improved BWR fuel assembly designed and manufactured by Westinghouse Electric Corporation. The design features a water cross separating four fuel minibundles in an integral channel. A demonstration program for this fuel design is planned for late 1984 in cycle 6 of Browns Ferry 2, a TVA plant. Objectives for the design of the QUAD+ demonstration assemblies are compatibility in performance and transparency in safety analysis with the feed fuel. These objectives are met. Inspections of the QUAD+ demonstration assemblies are planned at each refueling outage.

  19. Design, fabrication and performance evaluation of an integrated reformed methanol fuel cell for portable use

    NASA Astrophysics Data System (ADS)

    Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Yin, Congwen; Liu, Xiaowei

    2018-06-01

    In this paper, an integrated reformed methanol fuel cell (RMFC) as a portable power source is designed, fabricated and tested. The RMFC consists of a methanol steam reformer (MSR), a high temperature proton exchange membrane fuel cell (HT-PEMFC) stack, a microcontroller unit (MCU) and other auxiliaries. First, a system model based on Matlab/Simulink is established to investigate the mass and energy transport characteristics within the whole system. The simulation results suggest a hydrogen flow rate of at least 670 sccm is needed for the system to output 30 W and simultaneously maintain thermal equilibrium. Second, a metallic MSR and an HT-PEMFC stack with 12 cells are fabricated and tested. The tests show that the RMFC system is able to function normally when the performances of all the components meet the minimum requirements. At last, in the experiment of successfully powering a laptop, the RMFC system exhibits a stable performance during the complete work flow of all the phases, namely start-up, output and shutdown. Moreover, with a conservative design of 20 W power rating, maximum energy conversion efficiency of the RMFC system can be achieved (36%), and good stability in long-term operation is shown.

  20. 40 CFR 92.113 - Fuel specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed...) of this section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed...

  1. 40 CFR 92.113 - Fuel specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed... section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed natural gas...

  2. 40 CFR 92.113 - Fuel specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed... section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed natural gas...

  3. 40 CFR 92.113 - Fuel specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed... section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed natural gas...

  4. 40 CFR 92.113 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed...) of this section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed...

  5. Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells.

    PubMed

    Dogan, Didem C; Cho, Seonghun; Hwang, Sun-Mi; Kim, Young-Min; Guim, Hwanuk; Yang, Tae-Hyun; Park, Seok-Hee; Park, Gu-Gon; Yim, Sung-Dae

    2016-10-10

    Supportless Pt catalysts have several advantages over conventional carbon-supported Pt catalysts in that they are not susceptible to carbon corrosion. However, the need for high Pt loadings in membrane electrode assemblies (MEAs) to achieve state-of-the-art fuel cell performance has limited their application in proton exchange membrane fuel cells. Herein, we report a new approach to the design of a supportless Pt catalyst in terms of catalyst layer architecture, which is crucial for fuel cell performance as it affects water management and oxygen transport in the catalyst layers. Large Pt hollow spheres (PtHSs) 100 nm in size were designed and prepared using a carbon template method. Despite their large size, the unique structure of the PtHSs, which are composed of a thin-layered shell of Pt nanoparticles (ca. 7 nm thick), exhibited a high surface area comparable to that of commercial Pt black (PtB). The PtHS structure also exhibited twice the durability of PtB after 2000 potential cycles (0-1.3 V, 50 mV/s). A MEA fabricated with PtHSs showed significant improvement in fuel cell performance compared to PtB-based MEAs at high current densities (>800 mA/cm 2 ). This was mainly due to the 2.7 times lower mass transport resistance in the PtHS-based catalyst layers compared to that in PtB, owing to the formation of macropores between the PtHSs and high porosity (90%) in the PtHS catalyst layers. The present study demonstrates a successful example of catalyst design in terms of catalyst layer architecture, which may be applied to a real fuel cell system.

  6. Study of fuel cell powerplant with heat recovery

    NASA Technical Reports Server (NTRS)

    King, J. M.; Grasso, A. P.; Clausi, J. V.

    1975-01-01

    It was shown that heat can be recovered from fuel cell power plants by replacing the air-cooled heat exchangers in present designs with units which transfer the heat to the integrated utility system. Energy availability for a 40-kW power plant was studied and showed that the total usable energy at rated power represents 84 percent of the fuel lower heating value. The effects of design variables on heat availability proved to be small. Design requirements were established for the heat recovery heat exchangers, including measurement of the characteristics of two candidate fuel cell coolants after exposure to fuel cell operating conditions. A heat exchanger test program was defined to assess fouling and other characteristics of fuel cell heat exchangers needed to confirm heat exchanger designs for heat recovery.

  7. Fuel Fabrication and Nuclear Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF 6. UF 6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF 6 is converted into UO 2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  8. Analytical fuel property effects: Small combustors, phase 2

    NASA Technical Reports Server (NTRS)

    Hill, T. G.; Monty, J. D.; Morton, H. L.

    1985-01-01

    The effects of non-standard aviation fuels on a typical small gas turbine combustor were studied and the effectiveness of design changes intended to counter the effects of these fuels was evaluated. The T700/CT7 turboprop engine family was chosen as being representative of the class of aircraft power plants desired for this study. Fuel properties, as specified by NASA, are characterized by low hydrogen content and high aromatics levels. No. 2 diesel fuel was also evaluated in this program. Results demonstrated the anticipated higher than normal smoke output and flame radiation intensity with resulting increased metal temperatures on the baseline T700 combustor. Three new designs were evaluated using the non standard fuels. The three designs incorporated enhanced cooling features and smoke reduction features. All three designs, when burning the broad specification fuels, exhibited metal temperatures at or below the baseline combustor temperatures on JP-5. Smoke levels were acceptable but higher than predicted.

  9. Fuel cell drives for road vehicles

    NASA Astrophysics Data System (ADS)

    Charnah, R. M.

    For fuel-cell driven vehicles, including buses, the fuel cell may be the main, determining factor in the system but must be integrated into the complete design process. A Low-Floor Bus design is used to illustrate this point. The influence of advances in drive-train electronics is illustrated as are novel designs for motors and mechanical transmission of power to the wheels allowing the use of novel hub assemblies. A hybrid electric power system is being deployed in which Fuel Cells produce the energy needs but are coupled with batteries especially for acceleration phases and for recuperative braking.

  10. Rates of fuel discharge as affected by the design of fuel-injection systems for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Gelalles, A G; Marsh, E T

    1933-01-01

    Using the method of weighing fuel collected in a receiver during a definite interval of the injection period, rates of discharge were determined, and the effects noted, when various changes were made in a fuel-injection system. The injection system consisted primarily of a by-pass controlled fuel pump and an automatic injection valve. The variables of the system studied were the pump speed, pump-throttle setting, discharge-orifice diameter, injection-valve opening and closing pressures, and injection-tube length and diameter.

  11. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period October 1, 2003-December 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) continued with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Islandmore » and Albright Generating Stations.« less

  12. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Vernon Cole; Abhra Roy; Ashok Damle

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion pathsmore » for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the

  13. The preliminary design and feasibility study of the spent fuel and high level waste repository in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valvoda, Z.; Holub, J.; Kucerka, M.

    1996-12-31

    In the year 1993, began the Program of Development of the Spent Fuel and High Level Waste Repository in the Conditions of the Czech Republic. During the first phase, the basic concept and structure of the Program has been developed, and the basic design criteria and requirements were prepared. In the conditions of the Czech Republic, only an underground repository in deep geological formation is acceptable. Expected depth is between 500 to 1000 meters and as host rock will be granites. A preliminary variant design study was realized in 1994, that analyzed the radioactive waste and spent fuel flow frommore » NPPs to the repository, various possibilities of transportation in accordance to the various concepts of spent fuel conditioning and transportation to the underground structures. Conditioning and encapsulation of spent fuel and/or radioactive waste is proposed on the repository site. Underground disposal structures are proposed at one underground floor. The repository will have reserve capacity for radioactive waste from NPPs decommissioning and for waste non acceptable to other repositories. Vertical disposal of unshielded canisters in boreholes and/or horizontal disposal of shielded canisters is studied. As the base term of the start up of the repository operation, the year 2035 has been established. From this date, a preliminary time schedule of the Project has been developed. A method of calculating leveled and discounted costs within the repository lifetime, for each of selected 5 variants, was used for economic calculations. Preliminary expected parametric costs of the repository are about 0,1 Kc ($0.004) per MWh, produced in the Czech NPPs. In 1995, the design and feasibility study has gone in more details to the technical concept of repository construction and proposed technologies, as well as to the operational phase of the repository. Paper will describe results of the 1995 design work and will present the program of the repository development in

  14. 14 CFR 33.67 - Fuel system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.67 Fuel system. (a) With... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system. 33.67 Section 33.67... protection of the engine fuel system against foreign particles in the fuel. The applicant must show: (i) That...

  15. 14 CFR 33.67 - Fuel system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.67 Fuel system. (a) With... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system. 33.67 Section 33.67... protection of the engine fuel system against foreign particles in the fuel. The applicant must show: (i) That...

  16. 40 CFR 94.108 - Test fuels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Test fuels. 94.108 Section 94.108... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.108 Test fuels. (a) Distillate diesel test fuel. (1) The diesel fuels for testing Category 1 and Category 2 marine engines designed to...

  17. 40 CFR 94.108 - Test fuels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Test fuels. 94.108 Section 94.108... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.108 Test fuels. (a) Distillate diesel test fuel. (1) The diesel fuels for testing Category 1 and Category 2 marine engines designed to...

  18. 40 CFR 94.108 - Test fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Test fuels. 94.108 Section 94.108... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.108 Test fuels. (a) Distillate diesel test fuel. (1) The diesel fuels for testing Category 1 and Category 2 marine engines designed to...

  19. A recourse-based solution approach to the design of fuel cell aeropropulsion systems

    NASA Astrophysics Data System (ADS)

    Choi, Taeyun Paul

    outcome of uncertainties to another. On the contrary, what would be more valuable given the time-phased nature of engineering design is the capability to perform an anticipatory identification of an optimum that is also expected to incur the least costly recourse option in the future. It is argued that such a solution is in fact a more balanced alternative than robust, probabilistically maximized, or chance-constrained solutions, because it represents trading the design optimality in the present with the potential costs of future recourse. Therefore, it is further proposed that the original two-stage model be embedded inside a larger design loop, so that the realization of numerous recourse scenarios can be simulated for a given first-stage design. The repetitive procedure at the second stage is necessary for computing the expected cost of recourse, which is equivalent to its mathematical expectation as per the strong law of large numbers. The feedback loop then communicates this information to the aggregate-level optimizer, whose objective is to minimize the sum total of the first-stage metric and the expected cost of future corrective actions. The resulting stochastic solution is a design that is well-hedged against the uncertain consequences of later design phases, while at the same time being less conservative than a solution designed to more traditional deterministic standards. As a proof-of-concept demonstration, the recourse-based solution approach is presented as applied to a contemporary aerospace engineering problem of interest - the integration of fuel cell technology into uninhabited aerial systems. The creation of a simulation environment capable of designing three system alternatives based on Proton Exchange Membrane Fuel Cell (PEMFC) technology and another three systems leveraging upon Solid Oxide Fuel Cell (SOFC) technology is presented as the means to notionally emulate the development process of this revolutionary aeropropulsion method. Notable findings

  20. 1986 fuel cell seminar: Program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  1. [A computer aided design approach of all-ceramics abutment for maxilla central incisor].

    PubMed

    Sun, Yu-chun; Zhao, Yi-jiao; Wang, Yong; Han, Jing-yun; Lin, Ye; Lü, Pei-jun

    2010-10-01

    To establish the computer aided design (CAD) software platform of individualized abutment for the maxilla central incisor. Three-dimentional data of the incisor was collected by scanning and geometric transformation. Data mainly included the occlusal part of the healing abutment, the location carinae of the bedpiece, the occlusal 1/3 part of the artificial gingiva's inner surface, and so on. The all-ceramic crown designed in advanced was "virtual cutback" to get the original data of the abutment's supragingival part. The abutment's in-gum part was designed to simulate the individual natural tooth root. The functions such as "data offset", "bi-rail sweep surface" and "loft surface" were used in the process of CAD. The CAD route of the individualized all-ceramic abutment was set up. The functions and application methods were decided and the complete CAD process was realized. The software platform was basically set up according to the requests of the dental clinic.

  2. Microfluidic fuel cell systems

    NASA Astrophysics Data System (ADS)

    Ho, Bernard; Kjeang, Erik

    2011-06-01

    A microfluidic fuel cell is a microfabricated device that produces electrical power through electrochemical reactions involving a fuel and an oxidant. Microfluidic fuel cell systems exploit co-laminar flow on the microscale to separate the fuel and oxidant species, in contrast to conventional fuel cells employing an ion exchange membrane for this function. Since 2002 when the first microfluidic fuel cell was invented, many different fuels, oxidants, and architectures have been investigated conceptually and experimentally. In this mini-review article, recent advancements in the field of microfluidic fuel cell systems are documented, with particular emphasis on design, operation, and performance. The present microfluidic fuel cell systems are categorized by the fluidic phases of the fuel and oxidant streams, featuring gaseous/gaseous, liquid/gaseous, and liquid/liquid systems. The typical cell configurations and recent contributions in each category are analyzed. Key research challenges and opportunities are highlighted and recommendations for further work are provided.

  3. Stationary Liquid Fuel Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excessmore » reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The

  4. Space and Time Distribution of Pu Isotopes inside The First Experimental Fuel Pin Designed for PWR and Manufactured in Indonesia

    NASA Astrophysics Data System (ADS)

    Suwardi; Setiawan, J.; Susilo, J.

    2017-01-01

    The first short fuel pin containing natural UO2 pellet in Zry4 cladding has been prepared and planned to be tested in power ramp irradiation. An irradiation test should be designed to allow an experiment can be performed safely and giving maximum results of many performance aspects of design and manufacturing. Performance analysis to the fuel specimen shows that the specimen is not match to be used for power ramp testing. Enlargement by 0.20 mm of pellet diameter has been proposed. The present work is evaluation of modified design for important aspect of isotopic Pu distribution during irradiation test, because generated Pu isotopes in natural UO2 fuel, contribute more power relative to the contribution by enriched UO2 fuel. The axial profile of neutrons flux have been chosen from both experimental measurement and model calculation. The parameters of ramp power has been obtained from statistical experiment data. A simplified and typical base-load commercial PHWR profile of LHR history has been chosen, to determine the minimum irradiation time before ramp test can be performed. The data design and Mat pro XI materials properties models have been chosen. The axial profile of neutrons flux has been accommodated by 5 slices of discrete pin. The Pu distribution of slice-4 with highest power rate has been chosen to be evaluated. The radial discretion of pellet and cladding and numerical parameter have been used the default best practice of TU. The results shows that Pu 239 increased rapidly. The maximum burn up of slice 4 at upper the median slice, it reached nearly 90% of maximum value at about 6000 h with peak of 0.8%a Pu/HM at 22000 h, which is higher than initial U 235. Each 240, 241 and 240 Pu grows slower and ends up to 0.4, 0.2 and 0.18 % respectively. This results can be used for verification of other aspect of fuel behavior in the modeling results and also can be used as guide and comparison to the future post irradiation examination for Pu isotopes distribution.

  5. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  6. 14 CFR 31.45 - Fuel cells.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  7. 14 CFR 31.45 - Fuel cells.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  8. 14 CFR 31.45 - Fuel cells.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  9. 14 CFR 31.45 - Fuel cells.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  10. 14 CFR 31.45 - Fuel cells.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  11. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirementsmore » for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.« less

  12. 14 CFR 33.35 - Fuel and induction system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel and induction system. 33.35 Section 33... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.35 Fuel and induction system. (a) The fuel system of the engine must be designed and constructed to supply an...

  13. 14 CFR 33.35 - Fuel and induction system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel and induction system. 33.35 Section 33... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.35 Fuel and induction system. (a) The fuel system of the engine must be designed and constructed to supply an...

  14. 14 CFR 33.35 - Fuel and induction system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel and induction system. 33.35 Section 33... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.35 Fuel and induction system. (a) The fuel system of the engine must be designed and constructed to supply an...

  15. 14 CFR 33.35 - Fuel and induction system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel and induction system. 33.35 Section 33... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.35 Fuel and induction system. (a) The fuel system of the engine must be designed and constructed to supply an...

  16. 78 FR 9281 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ...Under section 211(o) of the Clean Air Act, the Environmental Protection Agency is required to set the renewable fuel standards each November for the following year. In general the standards are designed to ensure that the applicable volumes of renewable fuel specified in the statute are used. However, the statute specifies that EPA is to project the volume of cellulosic biofuel production for the upcoming year and must base the cellulosic biofuel standard on that projected volume if it is less than the applicable volume set forth in the Act. EPA is today proposing a projected cellulosic biofuel volume for 2013 that is below the applicable volume specified in the Act. EPA is proposing that the applicable volumes of advanced biofuel and total renewable fuel would remain at the statutory levels for 2013. Finally, today's action also proposes annual percentage standards for cellulosic biofuel, biomass-based diesel, advanced biofuel, and renewable fuels that would apply to all gasoline and diesel produced or imported in year 2013.

  17. A laboratory fuel efficiency and emissions comparison between Tanzanian traditional and improved biomass cooking stoves and alternative fuels

    NASA Astrophysics Data System (ADS)

    Mitchell, B. R.; Maggio, J. C.; Paterson, K.

    2010-12-01

    Large amounts of aerosols are emitted from domestic biomass burning globally every day. Nearly three billion people cook in their homes using traditional fires and stoves. Biomass is the primary fuel source which results in detrimental levels of indoor air pollution as well as having a strong impact on climate change. Variations in emissions occur depending on the combustion process and stove design as well as the condition and type of fuel used. The three most commonly used fuels for domestic biomass burning are wood, charcoal, and crop residue. In addition to these commonly used fuels and because of the increased difficulty of obtaining charcoal and wood due to a combination of deforestation and new governmental restrictions, alternative fuels are becoming more prevalent. In the Republic of Tanzania a field campaign was executed to test previously adopted and available traditional and improved cooking stoves with various traditional and alternative fuels. The tests were conducted over a two month period and included four styles of improved stoves, two styles of traditional cooking methods, and eight fuel types. The stoves tested include a sawdust stove, ceramic and brick insulated metal stoves, and a mud stove. A traditional three-stone fire was also tested as a benchmark by which to compare the other stoves. Fuel types tested include firewood, charcoal (Acacia), sawdust, pressed briquettes, charcoal dust briquettes, and carbonized crop residue. Water boiling tests were conducted on each stove with associated fuel types during which boiling time, water temperature, CO, CO2, and PM2.5μm emissions were recorded. All tests were conducted on-site in Arusha, Tanzania enabling the use of local materials and fuels under local conditions. It was found that both stove design and fuel type play a critical role in the amount of emissions produced. The most influential design aspect affecting emissions was the size of the combustion chamber in combination with air intake

  18. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1981-01-01

    A phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration is described. Functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes were performed. Fuel cell materials and components, and performance testing and evaluation of the repeating electrode components were characterized. The state of the art manufacturing technology for all fuel cell components and the fabrication of short stacks of various sites were established. A 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering aproach was developed.

  19. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    PubMed

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Creep analysis of solid oxide fuel cell with bonded compliant seal design

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.

    2013-12-01

    Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.

  1. Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Grossman, JC

    2014-12-01

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastablemore » structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.« less

  2. Accelerating the design of solar thermal fuel materials through high throughput simulations.

    PubMed

    Liu, Yun; Grossman, Jeffrey C

    2014-12-10

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  3. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents. 27.975 Section 27.975...

  4. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents. 27.975 Section 27.975...

  5. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents. 27.975 Section 27.975...

  6. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents. 27.975 Section 27.975...

  7. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents. 27.975 Section 27.975...

  8. Fuel saver based on electromagnetic induction for automotive engine

    NASA Astrophysics Data System (ADS)

    Siregar, Houtman P.; Sibarani, Maradu

    2007-12-01

    In the considered research is designed and analyzed the performance of the fuel saver which is based on electromagnetic induction for automotive diesel engine. The fuel saver which is based on permanent magnet has sold in market and its performance has tested. In comparison to the former fuel saver, in the proposed work is produced fuel saver which is based on electromagnetic induction. The considered research is the continuation of my former work. Performance of the produced fuel saver which is installed in the fuel line of internal combustion engine rig is compared to the performance of the standard internal combustion engine rig Speed of the engine, wire diameter of coil, and number of coil which is coiled in the winding of the the fuel saver are chosen as the testing variables. The considered research has succeeded to design the fuel saver which is based on electromagnetic induction for saving the automotive fuel consumption. Results of the research show that the addition of the fuel saver which is based on electromagnetic induction to the flow of the diesel fuel can significantly save the automative fuel consumption. In addition the designed fuel saver can reduce the opacity of the emission gas.

  9. Research on aviation fuel instability

    NASA Technical Reports Server (NTRS)

    Baker, C. E.; Bittker, D. A.; Cohen, S. M.; Seng, G. T.

    1983-01-01

    The underlying causes of fuel thermal degradation are discussed. Topics covered include: nature of fuel instability and its temperature dependence, methods of measuring the instability, chemical mechanisms involved in deposit formation, and instrumental methods for characterizing fuel deposits. Finally, some preliminary thoughts on design approaches for minimizing the effects of lowered thermal stability are briefly discussed.

  10. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  11. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Erich; Scopatz, Anthony

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  12. Low NOx Heavy Fuel Combustor Concept Program

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.

    1981-01-01

    The development of the technology required to operate an industrial gas turbine combustion system on minimally processed, heavy petroleum or residual fuels having high levels of fuel-bound nitrogen (FBN) while producing acceptable levels of exhaust emissions is discussed. Three combustor concepts were designed and fabricated. Three fuels were supplied for the combustor test demonstrations: a typical middle distillate fuel, a heavy residual fuel, and a synthetic coal-derived fuel. The primary concept was an air staged, variable-geometry combustor designed to produce low emissions from fuels having high levels of FBN. This combustor used a long residence time, fuel-rich primary combustion zone followed by a quick-quench air mixer to rapidly dilute the fuel rich products for the fuel-lean final burnout of the fuel. This combustor, called the rich quench lean (RQL) combustor, was extensively tested using each fuel over the entire power range of the model 570 K engine. Also, a series of parameteric tests was conducted to determine the combustor's sensitivity to rich-zone equivalence ratio, lean-zone equivalence ratio, rich-zone residence time, and overall system pressure drop. Minimum nitrogen oxide emissions were measured at 50 to 55 ppmv at maximum continuous power for all three fuels. Smoke was less than a 10 SAE smoke number.

  13. Design of Modular, Shape-transitioning Inlets for a Conical Hypersonic Vehicle

    NASA Technical Reports Server (NTRS)

    Gollan, Rowan J.; Smart, Michael K.

    2010-01-01

    For a hypersonic vehicle, propelled by scramjet engines, integration of the engines and airframe is highly desirable. Thus, the forward capture shape of the engine inlet should conform to the vehicle body shape. Furthermore, the use of modular engines places a constraint on the shape of the inlet sidewalls. Finally, one may desire a combustor cross- section shape that is different from that of the inlet. These shape constraints for the inlet can be accommodated by employing a streamline-tracing and lofting technique. This design technique was developed by Smart for inlets with a rectangular-to-elliptical shape transition. In this paper, we generalise that technique to produce inlets that conform to arbitrary shape requirements. As an example, we show the design of a body-integrated hypersonic inlet on a winged-cone vehicle, typical of what might be used in a three-stage orbital launch system. The special challenge of inlet design for this conical vehicle at an angle-of-attack is also discussed. That challenge is that the bow shock sits relatively close to the vehicle body.

  14. Off-Design Performance Analysis of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid for Auxiliary Aerospace Power

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Steffen, J., Jr.; Larosiliere, Louis M.

    2005-01-01

    A solid-oxide fuel cell/gas turbine hybrid system for auxiliary aerospace power is analyzed using 0-D and 1-D system-level models. The system is designed to produce 440 kW of net electrical power, sized for a typical long-range 300-passenger civil airplane, at both sea level and cruise flight level (12,500 m). In addition, a part power level of 250 kW is analyzed at the cruise condition, a requirement of the operating power profile. The challenge of creating a balanced system for the three distinct conditions is presented, along with the compromises necessary for each case. A parametric analysis is described for the cruise part power operating point, in which the system efficiency is maximized by varying the air flow rate. The system is compared to an earlier version that was designed solely for cruise operation. The results show that it is necessary to size the turbomachinery, fuel cell, and heat exchangers at sea level full power rather than cruise full power. The resulting estimated mass of the system is 1912 kg, which is significantly higher than the original cruise design point mass, 1396 kg. The net thermal efficiencies with respect to the fuel LHV are calculated to be 42.4 percent at sea level full power, 72.6 percent at cruise full power, and 72.8 percent at cruise part power. The cruise conditions take advantage of pre-compressed air from the on-board Environmental Control System, which accounts for a portion of the unusually high thermal efficiency at those conditions. These results show that it is necessary to include several operating points in the overall assessment of an aircraft power system due to the variations throughout the operating profile.

  15. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    DOEpatents

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  16. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Liu, Qiang (Inventor); Chen, Fanglin (Inventor); Zhao, Fei (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  17. 7 CFR 3201.92 - Fuel conditioners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Fuel conditioners. 3201.92 Section 3201.92... Designated Items § 3201.92 Fuel conditioners. (a) Definition. Products formulated to improve the performance... fuel system. (b) Minimum biobased content. The Federal preferred procurement product must have a...

  18. 7 CFR 3201.92 - Fuel conditioners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Fuel conditioners. 3201.92 Section 3201.92... Designated Items § 3201.92 Fuel conditioners. (a) Definition. Products formulated to improve the performance... fuel system. (b) Minimum biobased content. The Federal preferred procurement product must have a...

  19. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2011-11-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  20. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  1. Compact Fuel-Cell System Would Consume Neat Methanol

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  2. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  3. Inorganic salt mixtures as electrolyte media in fuel cells

    NASA Technical Reports Server (NTRS)

    Angell, Charles Austen (Inventor); Francis-Gervasio, Dominic (Inventor); Belieres, Jean-Philippe (Inventor)

    2012-01-01

    Fuel cell designs and techniques for converting chemical energy into electrical energy uses a fuel cell are disclosed. The designs and techniques include an anode to receive fuel, a cathode to receive oxygen, and an electrolyte chamber in the fuel cell, including an electrolyte medium, where the electrolyte medium includes an inorganic salt mixture in the fuel cell. The salt mixture includes pre-determined quantities of at least two salts chosen from a group consisting of ammonium trifluoromethanesulfonate, ammonium trifluoroacetate, and ammonium nitrate, to conduct charge from the anode to the cathode. The fuel cell includes an electrical circuit operatively coupled to the fuel cell to transport electrons from the cathode.

  4. Alternative Fuels and Their Potential Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Daggett, D.; Hendricks, R.; Walther, R.

    2006-01-01

    With a growing gap between the growth rate of petroleum production and demand, and with mounting environmental needs, the aircraft industry is investigating issues related to fuel availability, candidates for alternative fuels, and improved aircraft fuel efficiency. Bio-derived fuels, methanol, ethanol, liquid natural gas, liquid hydrogen, and synthetic fuels are considered in this study for their potential to replace or supplement conventional jet fuels. Most of these fuels present the airplane designers with safety, logistical, and performance challenges. Synthetic fuel made from coal, natural gas, or other hydrocarbon feedstock shows significant promise as a fuel that could be easily integrated into present and future aircraft with little or no modification to current aircraft designs. Alternatives, such as biofuel, and in the longer term hydrogen, have good potential but presently appear to be better suited for use in ground transportation. With the increased use of these fuels, a greater portion of a barrel of crude oil can be used for producing jet fuel because aircraft are not as fuel-flexible as ground vehicles.

  5. Optimized design and control of an off grid solar PV/hydrogen fuel cell power system for green buildings

    NASA Astrophysics Data System (ADS)

    Ghenai, C.; Bettayeb, M.

    2017-11-01

    Modelling, simulation, optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction, low emissions and low cost of energy. The goal is to manage the energy consumption of the building, reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations, modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system, 73% is produced from the solar PV, 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (<0.1%). The hybrid power system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable, economically viable and environmentally friendly: High renewable fraction (66.1%), low levelized cost of energy (92 /MWh), and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.

  6. N plus 2 Supersonic Concept Development and Systems Integration

    NASA Technical Reports Server (NTRS)

    Wedge, Harry R.; Bonet, John; Magee, Todd; Chen, Daniel; Hollowell, Steve; Kutzmann, Aaron; Mortlock, Alan; Stengle, Josh; Nelson, Chet; Adamson, Eric; hide

    2010-01-01

    Supersonic airplanes for two generations into the future (N+2, 2020-2025 EIS) were designed: the 100 passenger 765-072B, and the 30 passenger 765-076E. Both achieve a trans-Atlantic range of about 4000nm. The larger 765-072B meets fuel burn and emissions goals forecast for the 2025 time-frame, and the smaller 765-076E improves the boom and confidence in utilization that accompanies lower seat count. The boom level of both airplanes was reduced until balanced with performance. The final configuration product is two "realistic", non-proprietary future airplane designs, described in sufficient detail for subsequent multi-disciplinary design and optimization, with emphasis on the smaller 765-076E because of its lower boom characteristics. In addition IGES CAD files of the OML lofts of the two example configurations, a non-proprietary parametric engine model, and a first-cycle Finite Element Model are also provided for use in future multi-disciplinary analysis, optimization, and technology evaluation studies.

  7. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses,more » a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.« less

  8. The effect of fuel/air mixer design parameters on the continuous and discrete phase structure in the reaction-stabilizing region

    NASA Astrophysics Data System (ADS)

    Ateshkadi, Arash

    The demands on current and future aero gas turbine combustors are demanding a greater insight into the role of the injector/dome design on combustion performance. The structure of the two-phase flow and combustion performance associated with practical injector/dome hardware is thoroughly investigated. A spray injector with two radial inflow swirlers was custom-designed to maintain tight tolerances and strict assembly protocol to isolate the sensitivity of performance to hardware design. The custom set is a unique modular design that (1) accommodates parametric variation in geometry, (2) retains symmetry, and (3) maintains effective area. Swirl sense and presence of a venturi were found to be the most influential on fuel distribution and Lean Blowout. The venturi acts as a fuel-prefilming surface and constrains the highest fuel mass concentration to an annular ring near the centerline. Co-swirl enhances the radial dispersion of the continuous phase and counter-swirl increases the level of mixing that occurs in the downstream region of the mixer. The smallest drop size distributions were found to occur with the counter-swirl configuration with venturi. In the case of counter-swirl without venturi the high concentration of fluid mass is found in the center region of the flow. The Lean Blowout (LBO) equivalence ratio was lower for counter-swirl due to the coupling of the centerline recirculation zone with the location of high fuel concentration emanating from smaller droplets. In the co-swirl configuration a more intense reaction was found near the mixer exit leading to the lowest concentration of NOx, CO and UHC. An LBO model with good agreement to the measured values was developed that related, for the first time, specific hardware parameters and operating condition to stability performance. A semi-analytical model, which agreed best with co-swirl configurations, was modified and used to describe the axial velocity profile downstream of the mixer exit. The

  9. 14 CFR 29.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lightning protection. 29.954...

  10. 14 CFR 29.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lightning protection. 29.954...

  11. 14 CFR 27.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lightning protection. 27.954...

  12. 14 CFR 25.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lightning protection. 25.954...

  13. 14 CFR 29.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lightning protection. 29.954...

  14. 14 CFR 27.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 27.954...

  15. 14 CFR 29.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lightning protection. 29.954...

  16. 14 CFR 27.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lightning protection. 27.954...

  17. 14 CFR 25.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 25.954...

  18. 14 CFR 25.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lightning protection. 25.954...

  19. 14 CFR 25.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lightning protection. 25.954...

  20. 14 CFR 27.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lightning protection. 27.954...

  1. 14 CFR 29.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 29.954...

  2. 14 CFR 27.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lightning protection. 27.954...

  3. 14 CFR 25.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lightning protection. 25.954...

  4. Design and testing a high fuel volume fraction, externally finned, thermionic emitter.

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Ernst, D. M.

    1971-01-01

    A prototypical, high fuel volume fraction, thermionic emitter body was designed and tested. The emitter body is all tungsten, with a 1.40-cm ID, a 3.23-cm OD, and eight full-length axial fins. The emitter thickness is 0.15 cm while the fins and outer clad are 0.075 cm thick. Different methods of fabrication were used in making the test samples. Stress analysis was performed with a three-dimensional elastic code. Thermal testing of the samples, duplicating calculated radial temperature gradients, heatup and cooldown rates, and emitter body temperatures in operation, was performed with no structural failures noted (six heatup and cooldown cycles per sample). Further emitter analysis and testing is planned.

  5. Hydrogen/Air Fuel Nozzle Emissions Experiments

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.

    2001-01-01

    The use of hydrogen combustion for aircraft gas turbine engines provides significant opportunities to reduce harmful exhaust emissions. Hydrogen has many advantages (no CO2 production, high reaction rates, high heating value, and future availability), along with some disadvantages (high current cost of production and storage, high volume per BTU, and an unknown safety profile when in wide use). One of the primary reasons for switching to hydrogen is the elimination of CO2 emissions. Also, with hydrogen, design challenges such as fuel coking in the fuel nozzle and particulate emissions are no longer an issue. However, because it takes place at high temperatures, hydrogen-air combustion can still produce significant levels of NOx emissions. Much of the current research into conventional hydrocarbon-fueled aircraft gas turbine combustors is focused on NOx reduction methods. The Zero CO2 Emission Technology (ZCET) hydrogen combustion project will focus on meeting the Office of Aerospace Technology goal 2 within pillar one for Global Civil Aviation reducing the emissions of future aircraft by a factor of 3 within 10 years and by a factor of 5 within 25 years. Recent advances in hydrocarbon-based gas turbine combustion components have expanded the horizons for fuel nozzle development. Both new fluid designs and manufacturing technologies have led to the development of fuel nozzles that significantly reduce aircraft emissions. The goal of the ZCET program is to mesh the current technology of Lean Direct Injection and rocket injectors to provide quick mixing, low emissions, and high-performance fuel nozzle designs. An experimental program is planned to investigate the fuel nozzle concepts in a flametube test rig. Currently, a hydrogen system is being installed in cell 23 at NASA Glenn Research Center's Research Combustion Laboratory. Testing will be conducted on a variety of fuel nozzle concepts up to combustion pressures of 350 psia and inlet air temperatures of 1200 F

  6. Mixed Oxide Fresh Fuel Package Auxiliary Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yapuncich, F.; Ross, A.; Clark, R.H.

    2008-07-01

    The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It wasmore » necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)« less

  7. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    DOE PAGES

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; ...

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resultingmore » operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO 2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO 2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.« less

  8. Reference Models for Structural Technology Assessment and Weight Estimation

    NASA Technical Reports Server (NTRS)

    Cerro, Jeff; Martinovic, Zoran; Eldred, Lloyd

    2005-01-01

    Previously the Exploration Concepts Branch of NASA Langley Research Center has developed techniques for automating the preliminary design level of launch vehicle airframe structural analysis for purposes of enhancing historical regression based mass estimating relationships. This past work was useful and greatly reduced design time, however its application area was very narrow in terms of being able to handle a large variety in structural and vehicle general arrangement alternatives. Implementation of the analysis approach presented herein also incorporates some newly developed computer programs. Loft is a program developed to create analysis meshes and simultaneously define structural element design regions. A simple component defining ASCII file is read by Loft to begin the design process. HSLoad is a Visual Basic implementation of the HyperSizer Application Programming Interface, which automates the structural element design process. Details of these two programs and their use are explained in this paper. A feature which falls naturally out of the above analysis paradigm is the concept of "reference models". The flexibility of the FEA based JAVA processing procedures and associated process control classes coupled with the general utility of Loft and HSLoad make it possible to create generic program template files for analysis of components ranging from something as simple as a stiffened flat panel, to curved panels, fuselage and cryogenic tank components, flight control surfaces, wings, through full air and space vehicle general arrangements.

  9. Improvement of fuel injection system of locomotive diesel engine.

    PubMed

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  10. Aviation fuel property effects on altitude relight

    NASA Technical Reports Server (NTRS)

    Venkataramani, K.

    1987-01-01

    The major objective of this experimental program was to investigate the effects of fuel property variation on altitude relight characteristics. Four fuels with widely varying volatility properties (JP-4, Jet A, a blend of Jet A and 2040 Solvent, and Diesel 2) were tested in a five-swirl-cup-sector combustor at inlet temperatures and flows representative of windmilling conditions of turbofan engines. The effects of fuel physical properties on atomization were eliminated by using four sets of pressure-atomizing nozzles designed to give the same spray Sauter mean diameter (50 + or - 10 micron) for each fuel at the same design fuel flow. A second series of tests was run with a set of air-blast nozzles. With comparable atomization levels, fuel volatility assumes only a secondary role for first-swirl-cup lightoff and complete blowout. Full propagation first-cup blowout were independent of fuel volatility and depended only on the combustor operating conditions.

  11. Fuel conservation possibilities for terminal area compatible aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Design features and operational procedures are identified, which would reduce fuel consumption of future transport aircraft. The fuel-saving potential can be realized during the last decade of this century only if the necessary research and technology programs are implemented in the areas of composite primary structure, airfoil/wing design, and stability augmentation systems. The necessary individual R and T programs are defined. The sensitivity to fuel usage of several design parameters (wing geometry, cruise speed, propulsion) is investigated, and the results applied to a candidate 18, 140-kg (40,000-lb) payload, 5556-km (3000-nmi) transport design. Technical and economic comparisons are made with current commercial aircraft and other advanced designs.

  12. 40 CFR 86.146-96 - Fuel dispensing spitback procedure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... laboratory. (i) The fueling procedure consists of dispensing fuel through a nozzle, interrupted by a series... or methanol. The bag shall be designed and used so that liquid fuel does not spit back onto the... the orifice of the filler pipe. The bag must be designed to permit passage of the dispensing nozzle...

  13. 40 CFR 86.146-96 - Fuel dispensing spitback procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... laboratory. (i) The fueling procedure consists of dispensing fuel through a nozzle, interrupted by a series... or methanol. The bag shall be designed and used so that liquid fuel does not spit back onto the... the orifice of the filler pipe. The bag must be designed to permit passage of the dispensing nozzle...

  14. 40 CFR 86.1246-96 - Fuel dispensing spitback procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... laboratory. (i) The fueling procedure consists of dispensing fuel through a nozzle, interrupted by a series... or methanol. The bag shall be designed and used so that liquid fuel does not spit back onto the... the orifice of the filler pipe. The bag must be designed to permit passage of the dispensing nozzle...

  15. 40 CFR 86.1246-96 - Fuel dispensing spitback procedure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... laboratory. (i) The fueling procedure consists of dispensing fuel through a nozzle, interrupted by a series... or methanol. The bag shall be designed and used so that liquid fuel does not spit back onto the... the orifice of the filler pipe. The bag must be designed to permit passage of the dispensing nozzle...

  16. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara

    2005-02-06

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an earlymore » prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore

  17. Design of a Helium Vapor Shroud for Liquid Hydrogen Fueling of an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Cavender, K.; Evans, C.; Haney, J.; Leachman, J.

    2017-12-01

    Filling a vehicular liquid hydrogen fuel tank presents the potential for flammable mixtures due to oxygen concentration from liquid air condensation. Current liquid hydrogen tank designs utilize insulating paradigms such as aerogel/fiberglass materials, vacuum jackets, or inert gas purge systems to keep the outer surface from reaching the condensation temperature of air. This work examines the heat transfer at the refuelling connection of the tank to identify potential areas of condensation, as well as the surface temperature gradient. A shrouded inert gas purge was designed to minimize vehicle weight and refuelling time. The design of a shrouded inert gas purge system is presented to displace air preventing air condensation. The design investigates 3D printed materials for an inert gas shroud, as well as low-temperature sealing designs. Shroud designs and temperature profiles were measured and tested by running liquid nitrogen through the filling manifold. Materials for the inert gas shroud are discussed and experimental results are compared to analytical model predictions. Suggestions for future design improvements are made.

  18. Locked-wrap fuel rod

    DOEpatents

    Kaplan, Samuel; Chertock, Alan J.; Punches, James R.

    1977-01-01

    A method for spacing fast reactor fuel rods using a wire wrapper improved by orienting the wire-wrapped fuel rods in a unique manner which introduces desirable performance characteristics not attainable by previous wire-wrapped designs. Use of this method in a liquid metal fast breeder reactor results in: (a) improved mechanical performance, (b) improved rod-to-rod contact, (c) reduced steel volume, and (d) improved thermal-hydraulic performance. The method produces a "locked wrap" design which tends to lock the rods together at each of the wire cluster locations.

  19. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1982-01-01

    The efforts performed to develop a phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration are described. The work involves: (1) Performance of pertinent functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes, (2) characterization of fuel cell materials and components, and performance testing and evaluation of the repeating electrode components, (3) establishment of the state-of-the-art manufacturing technology for all fuel cell components at Westinghouse and the fabrication of short stacks of various sites, and (4) development of a 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering approach.

  20. 14 CFR 23.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...

  1. 14 CFR 23.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...

  2. 14 CFR 23.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...

  3. 14 CFR 23.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...

  4. 14 CFR 23.954 - Fuel system lightning protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...

  5. Canadian experience in irradiation and testing of MOX fuel

    NASA Astrophysics Data System (ADS)

    Yatabe, S.; Floyd, M.; Dimayuga, F.

    2018-04-01

    Experimental irradiation and performance testing of Mixed OXide (MOX) fuel at the Canadian Nuclear Laboratories (CNL) has taken place for more than 40 years. These experiments investigated MOX fuel behaviour and compared it with UO2 behaviour to develop and verify fuel performance models. This article compares the performance of MOX of various concentrations and homogeneities, under different irradiation conditions. These results can be applied to future fuel designs. MOX fuel irradiated by CNL was found to be comparable in performance to similarly designed and operated UO2 fuel. MOX differs in behaviour from UO2 fuel in several ways. Fission-gas release, grain growth and the thickness of zirconium oxide on the inner sheath appear to be related to MOX fuel homogeneity. Columnar grains formed at the pellet centre begin to develop at lower powers in MOX than in UO2 fuel.

  6. Cermet-fueled reactors for advanced space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, C.L.; Palmer, R.S.; Taylor, I.N.

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less

  7. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Fluxmore » Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias

  8. Helicopter fuel burn modeling in AEDT.

    DOT National Transportation Integrated Search

    2011-08-01

    This report documents work done to enhance helicopter fuel consumption modeling in the Federal Aviation : Administrations Aviation Environmental Design Tool (AEDT). Fuel consumption and flight performance data : were collected from helicopter flig...

  9. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less

  10. Fuel sensor-less control of a liquid feed fuel cell system under steady load for portable applications

    NASA Astrophysics Data System (ADS)

    Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.

    This study presents a novel fuel sensor-less control scheme for a liquid feed fuel cell system that does not rely on a fuel concentration sensor. The proposed approach simplifies the design and reduces the cost and complexity of a liquid feed fuel cell system, and is especially suited to portable power sources, of which the volume and weight are important. During the reaction of a fuel cell, the cell's operating characteristics, such as potential, current and power are measured to control the supply of fuel and regulate its concentration to optimize performance. Experiments were conducted to verify that the fuel sensor-less control algorithm is effective in the liquid feed fuel cell system.

  11. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period October 1, 2002--December 31, 2002, Allegheny Energy Supply Co., LLC (Allegheny) completed the first year of testing at the Willow Island cofiring project. This included data acquisition and analysis associated with certain operating parameters and environmental results. Over 2000 hours of cofiring operation were logged at Willow Island, and about 4,000 tons of sawdust were burned along with slightly more tire-derived fuel (TDF). The results were generally favorable. During this period, also, a new grinder was ordered for the Albright Generating Station to handle oversized material rejected by the disc screen. This report summarizes the activities associatedmore » with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the test results at Willow Island and summarizes the grinder program at Albright.« less

  12. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kurt R.; Howard, Richard H.; Daily, Charles R.

    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designsmore » allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.« less

  13. Design and evaluation of a nondestructive fissile assay device for HTGR fuel samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeany, S. R.; Knoll, R. W.; Jenkins, J. D.

    1979-02-01

    Nondestructive assay of fissile material plays an important role in nuclear fuel processing facilities. Information for product quality control, plant criticality safety, and nuclear materials accountability can be obtained from assay devices. All of this is necessary for a safe, efficient, and orderly operation of a production plant. Presented here is a design description and an operational evaluation of a device developed to nondestructively assay small samples of High-Temperature Gas-Cooled Reactor (HTGR) fuel. The measurement technique employed consists in thermal-neutron irradiation of a sample followed by pneumatic transfer to a high-efficiency neutron detector where delayed neutrons are counted. In general,more » samples undergo several irradiation and count cycles during a measurement. The total number of delayed-neutron counts accumulated is translated into grams of fissile mass through comparison with the counts accumulated in an identical irradiation and count sequence of calibration standards. Successful operation of the device through many experiments over a one-year period indicates high operational reliability. Tests of assay precision show this to be better than 0.25% for measurements of 10 min. Assay biases may be encountered if calibration standards are not representative of unknown samples, but reasonable care in construction and control of standards should lead to no more than 0.2% bias in the measurements. Nondestructive fissile assay of HTGR fuel samples by thermal-neutron irradiation and delayed-neutron detection has been demonstrated to be a rapid and accurate analysis technique. However, careful attention and control must be given to calibration standards to see that they remain representative of unknown samples.« less

  14. Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, Stewart

    A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study ofmore » the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.« less

  15. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  16. Fuel burn modeling of turboprop aircraft.

    DOT National Transportation Integrated Search

    2011-08-01

    This report documents work done to enhance turbo-propeller aircraft fuel consumption modeling in the Federal Aviation Administrations Aviation Environmental Design Tool (AEDT). Fuel consumption and flight performance data were collected from aircr...

  17. Tier 3 Certification Fuel Impacts Test Program

    EPA Science Inventory

    The recent Tier 3 regulations for light duty vehicles introduced a new certification fuel designed to be more characteristic of current market fuels. A laboratory test program was conducted to measure differences in CO2 and fuel economy between the current and future certificatio...

  18. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, David

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fuelingmore » infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas

  19. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period July 1, 2003-September 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of bio mass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. During this period, a major presentation summarizing the program was presented at the Pittsburgh Coal Conference.more » This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.« less

  20. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle...: (1) Mechanisms of action of each additive he reports; (2) Reactions between such additives and motor vehicle diesel fuel; (3) Identification and measurement of the emission products of such additives when...

  1. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle...: (1) Mechanisms of action of each additive he reports; (2) Reactions between such additives and motor vehicle diesel fuel; (3) Identification and measurement of the emission products of such additives when...

  2. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle...: (1) Mechanisms of action of each additive he reports; (2) Reactions between such additives and motor vehicle diesel fuel; (3) Identification and measurement of the emission products of such additives when...

  3. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle...: (1) Mechanisms of action of each additive he reports; (2) Reactions between such additives and motor vehicle diesel fuel; (3) Identification and measurement of the emission products of such additives when...

  4. Global Energy Issues and Alternate Fueling

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  5. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  6. Fuel cell system

    DOEpatents

    Early, Jack; Kaufman, Arthur; Stawsky, Alfred

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  7. Rational design of competitive electrocatalysts for the oxygen reduction reaction in hydrogen fuel cells

    NASA Astrophysics Data System (ADS)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2012-02-01

    The large-scale application of one of the most promising clean and renewable sources of energy, hydrogen fuel cells, still awaits efficient and cost-effective electrocatalysts for the oxygen reduction reaction (ORR) occurring on the cathode. We demonstrate that truly rational design renders electrocatalysts possessing both qualities. By unifying the knowledge on surface morphology, composition, electronic structure and reactivity, we solve that sandwich-like structures are an excellent choice for optimization. Their constituting species couple synergistically yielding reaction-environment stability, cost-effectiveness and tunable reactivity. This cooperative-action concept enabled us to predict two advantageous ORR electrocatalysts. Density functional theory calculations of the reaction free-energy diagrams confirm that these materials are more active toward ORR than the so far best Pt-based catalysts. Our designing concept advances also a general approach for engineering materials in heterogeneous catalysis.

  8. Liquid-fueled SOFC power sources for transportation

    NASA Astrophysics Data System (ADS)

    Myles, K. M.; Doshi, R.; Kumar, R.; Krumpelt, M.

    Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.

  9. Open-type ferry safety system design for using LNG fuel

    NASA Astrophysics Data System (ADS)

    Pagonis, D. N.; Livanos, G.; Theotokatos, G.; Peppa, S.; Themelis, N.

    2016-12-01

    In this feasibility study, we investigate the viability of using Liquefied Natural Gas (LNG) fuel in an open type Ro-Ro passenger ferry and the associated potential challenges with regard to the vessel safety systems. We recommend an appropriate methodology for converting existing ships to run on LNG fuel, discuss all the necessary modifications to the ship's safety systems, and also evaluate the relevant ship evacuation procedures. We outline the basic requirements with which the ship already complies for each safety system and analyze the additional restrictions that must be taken into consideration for the use of LNG fuel. Appropriate actions are recommended. Furthermore, we carry out a hazard identification study. Overall, we clearly demonstrate the technical feasibility of the investigated scenario. Minimal modifications to the ship's safety systems are required to comply with existing safety rules for this specific type of ship.

  10. Reformer Fuel Injector

    NASA Technical Reports Server (NTRS)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most

  11. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Frank L.

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storagemore » sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions

  12. Improved nuclear fuel assembly grid spacer

    DOEpatents

    Marshall, John; Kaplan, Samuel

    1977-01-01

    An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.

  13. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-16

    A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

  14. The Direct FuelCell™ stack engineering

    NASA Astrophysics Data System (ADS)

    Doyon, J.; Farooque, M.; Maru, H.

    FuelCell Energy (FCE) has developed power plants in the size range of 300 kW to 3 MW for distributed power generation. Field-testing of the sub-megawatt plants is underway. The FCE power plants are based on its Direct FuelCell™ (DFC) technology. This is so named because of its ability to generate electricity directly from a hydrocarbon fuel, such as natural gas, by reforming it inside the fuel cell stack itself. All FCE products use identical 8000 cm 2 cell design, approximately 350-400 cells per stack, external gas manifolds, and similar stack compression systems. The difference lies in the packaging of the stacks inside the stack module. The sub-megawatt system stack module contains a single horizontal stack whereas the MW-class stack module houses four identical vertical stacks. The commonality of the design, internal reforming features, and atmospheric operation simplify the system design, reduce cost, improve efficiency, increase reliability and maintainability. The product building-block stack design has been advanced through three full-size stack operations at company's headquarters in Danbury, CT. The initial proof-of-concept of the full-size stack design was verified in 1999, followed by a 1.5 year of endurance verification in 2000-2001, and currently a value-engineered stack version is in operation. This paper discusses the design features, important engineering solutions implemented, and test results of FCE's full-size DFC stacks.

  15. Design and Development of a 30 Watt Solid Polymer Electrolyte Fuel Cell Power Source Fueled with Calcium Hydride.

    DTIC Science & Technology

    1978-12-12

    hydri de and its integration with the fuel cell. I The combination of the SPE cel l with a hydride fuel offers -- comparedto batteries -- increased...demand changes without intermediate storage of hydrogen gas. In order to control the reacti on with water the hydri de is contained in a cartridge. The use

  16. SFCOMPO-2.0: An OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data

    DOE PAGES

    Michel-Sendis, F.; Gauld, I.; Martinez, J. S.; ...

    2017-08-02

    SFCOMPO-2.0 is the new release of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) database of experimental assay measurements. These measurements are isotopic concentrations from destructive radiochemical analyses of spent nuclear fuel (SNF) samples. We supplement the measurements with design information for the fuel assembly and fuel rod from which each sample was taken, as well as with relevant information on operating conditions and characteristics of the host reactors. These data are necessary for modeling and simulation of the isotopic evolution of the fuel during irradiation. SFCOMPO-2.0 has been developed and is maintained by the OECDmore » NEA under the guidance of the Expert Group on Assay Data of Spent Nuclear Fuel (EGADSNF), which is part of the NEA Working Party on Nuclear Criticality Safety (WPNCS). Significant efforts aimed at establishing a thorough, reliable, publicly available resource for code validation and safety applications have led to the capture and standardization of experimental data from 750 SNF samples from more than 40 reactors. These efforts have resulted in the creation of the SFCOMPO-2.0 database, which is publicly available from the NEA Data Bank. Our paper describes the new database, and applications of SFCOMPO-2.0 for computer code validation, integral nuclear data benchmarking, and uncertainty analysis in nuclear waste package analysis are briefly illustrated.« less

  17. SFCOMPO-2.0: An OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel-Sendis, F.; Gauld, I.; Martinez, J. S.

    SFCOMPO-2.0 is the new release of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) database of experimental assay measurements. These measurements are isotopic concentrations from destructive radiochemical analyses of spent nuclear fuel (SNF) samples. We supplement the measurements with design information for the fuel assembly and fuel rod from which each sample was taken, as well as with relevant information on operating conditions and characteristics of the host reactors. These data are necessary for modeling and simulation of the isotopic evolution of the fuel during irradiation. SFCOMPO-2.0 has been developed and is maintained by the OECDmore » NEA under the guidance of the Expert Group on Assay Data of Spent Nuclear Fuel (EGADSNF), which is part of the NEA Working Party on Nuclear Criticality Safety (WPNCS). Significant efforts aimed at establishing a thorough, reliable, publicly available resource for code validation and safety applications have led to the capture and standardization of experimental data from 750 SNF samples from more than 40 reactors. These efforts have resulted in the creation of the SFCOMPO-2.0 database, which is publicly available from the NEA Data Bank. Our paper describes the new database, and applications of SFCOMPO-2.0 for computer code validation, integral nuclear data benchmarking, and uncertainty analysis in nuclear waste package analysis are briefly illustrated.« less

  18. Fuel cell development for transportation: Catalyst development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doddapaneni, N.

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  19. Alternate aircraft fuels prospects and operational implications

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The paper discusses NASA studies of the potentials of coal-derived aviation fuels, specifically synthetic aviation kerosene, liquid methane, and liquid hydrogen. Topics include areas of fuel production, air terminal requirements for aircraft fueling (for liquid hydrogen only), and the performance characteristics of aircraft designed to utilize alternate fuels. Energy requirements associated with the production of each of the three selected fuels are determined, and fuel prices are estimated. Subsonic commercial air transports using liquid hydrogen fuel have been analyzed, and their performance and the performance of aircraft which use commercial aviation kerosene are compared. Environmental and safety issues are considered.

  20. Design of durability test protocol for vehicular fuel cell systems operated in power-follow mode based on statistical results of on-road data

    NASA Astrophysics Data System (ADS)

    Xu, Liangfei; Reimer, Uwe; Li, Jianqiu; Huang, Haiyan; Hu, Zunyan; Jiang, Hongliang; Janßen, Holger; Ouyang, Minggao; Lehnert, Werner

    2018-02-01

    City buses using polymer electrolyte membrane (PEM) fuel cells are considered to be the most likely fuel cell vehicles to be commercialized in China. The technical specifications of the fuel cell systems (FCSs) these buses are equipped with will differ based on the powertrain configurations and vehicle control strategies, but can generally be classified into the power-follow and soft-run modes. Each mode imposes different levels of electrochemical stress on the fuel cells. Evaluating the aging behavior of fuel cell stacks under the conditions encountered in fuel cell buses requires new durability test protocols based on statistical results obtained during actual driving tests. In this study, we propose a systematic design method for fuel cell durability test protocols that correspond to the power-follow mode based on three parameters for different fuel cell load ranges. The powertrain configurations and control strategy are described herein, followed by a presentation of the statistical data for the duty cycles of FCSs in one city bus in the demonstration project. Assessment protocols are presented based on the statistical results using mathematical optimization methods, and are compared to existing protocols with respect to common factors, such as time at open circuit voltage and root-mean-square power.

  1. 14 CFR 23.1001 - Fuel jettisoning system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel jettisoning system. 23.1001 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.1001 Fuel jettisoning system. (a) If the design landing weight is less than that permitted...

  2. 14 CFR 23.1001 - Fuel jettisoning system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel jettisoning system. 23.1001 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.1001 Fuel jettisoning system. (a) If the design landing weight is less than that permitted...

  3. 14 CFR 23.1001 - Fuel jettisoning system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel jettisoning system. 23.1001 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.1001 Fuel jettisoning system. (a) If the design landing weight is less than that permitted...

  4. 14 CFR 23.1001 - Fuel jettisoning system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel jettisoning system. 23.1001 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.1001 Fuel jettisoning system. (a) If the design landing weight is less than that permitted...

  5. 14 CFR 23.1001 - Fuel jettisoning system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel jettisoning system. 23.1001 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.1001 Fuel jettisoning system. (a) If the design landing weight is less than that permitted...

  6. 46 CFR 108.239 - Fuel transfer equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fuel transfer equipment. 108.239 Section 108.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN... static grounding device. (d) Each electric fuel transfer pump must have a control with a fuel transfer...

  7. Fuel Mix Impacts from Transportation Fuel Carbon Intensity Standards in Multiple Jurisdictions

    NASA Astrophysics Data System (ADS)

    Witcover, J.

    2017-12-01

    Fuel carbon intensity standards have emerged as an important policy in jurisdictions looking to target transportation greenhouse gas (GHG) emissions for reduction. A carbon intensity standard rates transportation fuels based on analysis of lifecycle GHG emissions, and uses a system of deficits and tradable, bankable credits to reward increased use of fuels with lower carbon intensity ratings while disincentivizing use of fuels with higher carbon intensity ratings such as conventional fossil fuels. Jurisdictions with carbon intensity standards now in effect include California, Oregon, and British Columbia, all requiring 10% reductions in carbon intensity of the transport fuel pool over a 10-year period. The states and province have committed to grow demand for low carbon fuels in the region as part of collaboration on climate change policies. Canada is developing a carbon intensity standard with broader coverage, for fuels used in transport, industry, and buildings. This study shows a changing fuel mix in affected jurisdictions under the policy in terms of shifting contribution of transportation energy from alternative fuels and trends in shares of particular fuel pathways. It contrasts program designs across the jurisdictions with the policy, highlights the opportunities and challenges these pose for the alternative fuel market, and discusses the impact of having multiple policies alongside federal renewable fuel standards and sometimes local carbon pricing regimes. The results show how the market has responded thus far to a policy that incentivizes carbon saving anywhere along the supply chain at lowest cost, in ways that diverged from a priori policy expectations. Lessons for the policies moving forward are discussed.

  8. Economic competitiveness of fuel cell onsite integrated energy systems

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.

    1983-01-01

    The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.

  9. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in ordermore » to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new

  10. Comprehensive Examination of Bottom Ash, Soil Dust, and Direct Emissions and Aging of Laboratory Biomass Burning as Potential Sources of Ice Nucleating Particles

    NASA Astrophysics Data System (ADS)

    Polen, M.; Jahl, L.; Jahn, L.; Somers, J.; Sullivan, R. C.

    2017-12-01

    Recent laboratory and field studies have found that biomass burning can produce ice nucleating particles (INP) with varying efficiencies depending on fuel and burn conditions. Few studies have examined the ice nucleating potential of bottom ash, which has the potential to be lofted during intense burning events. To date, no publications have examined the impact of atmospheric aging or lofted soil particles on INP emitted from biomass burning. This study investigated each of these aspects through laboratory biomass fuel combustion studies. We burned a number of grasses from different locations, and collected filter samples of fresh and photochemically aged biomass burning aerosol, as well as bottom ash collected after the burn. Some burns included soil that the grasses grew in to test for the importance of soil dust to INP emissions lofting during intense fires. The composition and mixing state of the aerosol was determined using a suite of online and offline single-particle techniques. Our findings suggest that bottom ash is a relatively weak INP, but all samples froze consistently at -20 °C < T < -25 °C. We also found that oxidation of the biomass burning aerosol typically enhances ice nucleating activity over fresh, unaged particles, increasing the ice active site surface density by up to a factor of 3 at T = -25 °C. Lastly, the presence of soil dust can greatly enhance INP concentrations for biomass burning events with an increase in the freezing temperature spectrum by > 3 °C. Detailed analysis of these samples aims to provide a clearer understanding of what components of biomass burning increase the ambient concentrations of ice nucleation active particles, and how their ice nucleation properties evolve during atmospheric aging.

  11. A Wind Tunnel Investigation to Determine Dominant Forebody Strake Design Characteristics for an F-15 Equipped with Conformal Fuel Tanks.

    DTIC Science & Technology

    1983-12-01

    LONSlZTUDNAL STABILITY DATA FOR Nl F-15 WITH ONLY CFTJ! AND AMl F-13 WITH CFTS AND FIB STRAKES. ., 0-34 -... .4r * CL 1.4. .2 .2 .4 .6 .8 1 1.2 1.4 CO CM...CONFORMAL FUEL TANKS THESIS "AFIT/GAE/AA/83D-7 Terry A. DuncanCaptain USAF DT C SELECTE ca JAN 18 1984 DEPARTMENT OF THE AIR FORCE S AIR UNIVERSITY E AIR...DETERMINE DOMINANT FOREBODY STRAKE DESIGN CHARACTERISTICS FOR AN F-15 EQUIPPED WITH CONFORMAL FUEL TANKS THESIS AFITIGAE/AA/83D-7 Terry A. Duncan

  12. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  13. Overview of the U.S. DOE Accident Tolerant Fuel Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jon Carmack; Frank Goldner; Shannon M. Bragg-Sitton

    2013-09-01

    The United States Fuel Cycle Research and Development Advanced Fuels Campaign has been given the responsibility to conduct research and development on enhanced accident tolerant fuels with the goal of performing a lead test assembly or lead test rod irradiation in a commercial reactor by 2022. The Advanced Fuels Campaign has defined fuels with enhanced accident tolerance as those that, in comparison with the standard UO2-Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining ormore » improving the fuel performance during normal operations and operational transients, as well as design-basis and beyond design-basis events. This paper provides an overview of the FCRD Accident Tolerant Fuel program. The ATF attributes will be presented and discussed. Attributes identified as potentially important to enhance accident tolerance include reduced hydrogen generation (resulting from cladding oxidation), enhanced fission product retention under severe accident conditions, reduced cladding reaction with high-temperature steam, and improved fuel-cladding interaction for enhanced performance under extreme conditions. To demonstrate the enhanced accident tolerance of candidate fuel designs, metrics must be developed and evaluated using a combination of design features for a given LWR design, potential improvements to that design, and the design of an advanced fuel/cladding system. The aforementioned attributes provide qualitative guidance for parameters that will be considered for fuels with enhanced accident tolerance. It may be unnecessary to improve in all attributes and it is likely that some attributes or combination of attributes provide meaningful gains in accident tolerance, while others may provide only marginal benefits. Thus, an initial step in program implementation will be the development of

  14. Lightweight fuel cell powerplant components program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1980-01-01

    A lightweight hydrogen-oxygen alkaline fuel cell incorporated into the design of a lightweight fuel cell powerplant (LFCP) was analytically and experimentally developed. The powerplant operates with passive water removal which contributes to a lower system weight and extended operating life. A preliminary LFCP specification and design table were developed along with a lightweight power section for the LFCP design, consisting of repeating two-cell modules was designed. Two, four-cell modules were designed incorporating 0.508 sq ft active area space shuttle technology fuel cells. Over 1,200 hours of single-cell and over 8,800 hours of two-cell module testing was completed. The 0.25 sq ft active area lightweight cell design was shown to be capable of operating on propellant purity reactants out to a current density of 600ASF. Endurance testing of the two-cell module configuration exceeded the 2,500-hour LFCP voltage requirements out to 3700-hours. A two-cell module capable of operating at increased reactant pressure completed 1000 hours of operation at a 30 psia reactant pressure. A lightweight power section consisting of fifteen, two-cell modules connected electrically in series was fabricated.

  15. Design Criteria for Future Fuels and Related Power Systems Addressing the Impacts of Non-CO2 Pollutants on Human Health and Climate Change.

    PubMed

    Schauer, James Jay

    2015-01-01

    Concerns over the economics, supply chain, and emissions of greenhouse gases associated with the wide use of fossil fuels have led to increasing interest in developing alternative and renewable fuels for stationary power generation and transportation systems. Although there is considerable uncertainty regarding the economic and environmental impacts of alternative and renewable fuels, there is a great need for assessment of potential and emerging fuels to guide research priorities and infrastructure investment. Likewise, there is a great need to identify potential unintended adverse impacts of new fuels and related power systems before they are widely adopted. Historically, the environmental impacts of emerging fuels and power systems have largely focused on carbon dioxide emissions, often called the carbon footprint, which is used to assess impacts on climate change. Such assessments largely ignore the large impacts of emissions of other air pollutants. Given the potential changes in emissions of air pollutants associated with the large-scale use of new and emerging fuels and power systems, there is a great need to better guide efforts to develop new fuels and power systems that can avoid unexpected adverse impacts on the environment and human health. This review covers the nature of emissions, including the key components and impacts from the use of fuels, and the design criteria for future fuels and associated power systems to assure that the non-CO2 adverse impacts of stationary power generation and transportation are minimized.

  16. 14 CFR 31.46 - Pressurized fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pressurized fuel systems. 31.46 Section 31... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.46 Pressurized fuel systems. For pressurized fuel systems, each element and its connecting fittings and lines must be tested to an ultimate...

  17. 14 CFR 31.46 - Pressurized fuel systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressurized fuel systems. 31.46 Section 31... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.46 Pressurized fuel systems. For pressurized fuel systems, each element and its connecting fittings and lines must be tested to an ultimate...

  18. 14 CFR 31.46 - Pressurized fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Pressurized fuel systems. 31.46 Section 31... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.46 Pressurized fuel systems. For pressurized fuel systems, each element and its connecting fittings and lines must be tested to an ultimate...

  19. Data Compilation for AGR-3/4 Designed-to-Fail (DTF) Fuel Particle Batch LEU04-02DTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D; Miller, James Henry

    2008-10-01

    This document is a compilation of coating and characterization data for the AGR-3/4 designed-to-fail (DTF) particles. The DTF coating is a high density, high anisotropy pyrocarbon coating of nominal 20 {micro}m thickness that is deposited directly on the kernel. The purpose of this coating is to fail early in the irradiation, resulting in a controlled release of fission products which can be analyzed to provide data on fission product transport. A small number of DTF particles will be included with standard TRISO driver fuel particles in the AGR-3 and AGR-4 compacts. The ORNL Coated Particle Fuel Development Laboratory 50-mm diametermore » fluidized bed coater was used to coat the DTF particles. The coatings were produced using procedures and process parameters that were developed in an earlier phase of the project as documented in 'Summary Report on the Development of Procedures for the Fabrication of AGR-3/4 Design-to-Fail Particles', ORNL/TM-2008/161. Two coating runs were conducted using the approved coating parameters. NUCO425-06DTF was a final process qualification batch using natural enrichment uranium carbide/uranium oxide (UCO) kernels. After the qualification run, LEU04-02DTF was produced using low enriched UCO kernels. Both runs were inspected and determined to meet the specifications for DTF particles in section 5 of the AGR-3 & 4 Fuel Product Specification (EDF-6638, Rev.1). Table 1 provides a summary of key properties of the DTF layer. For comparison purposes, an archive sample of DTF particles produced by General Atomics was characterized using identical methods. This data is also summarized in Table 1.« less

  20. Alternative fuels and vehicles choice model

    DOT National Transportation Integrated Search

    1994-10-01

    This report describes the theory and implementation of a model of alternative fuel and vehicle choice (AFVC), designed for use with the United States Department of Energy's Alternative Fuels Trade Model (AFTM). The AFTM is a static equilibrium model ...