Science.gov

Sample records for logic circuits predict

  1. LOGIC CIRCUIT

    DOEpatents

    Strong, G.H.; Faught, M.L.

    1963-12-24

    A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)

  2. Optically controllable molecular logic circuits

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-01

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  3. Optically controllable molecular logic circuits

    SciTech Connect

    Nishimura, Takahiro Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  4. Logic synthesis of cascade circuits

    NASA Astrophysics Data System (ADS)

    Zakrevskii, A. D.

    The work reviews aspects of the logic design of cascade circuits, particularly programmable logic matrices. Effective methods for solving various problems of the analysis and synthesis of these devices are examined; these methods are based on a matrix representation of the structure of these devices, and a vector-matrix interpretation of certain aspects of Boolean algebra. Particular consideration is given to the theory of elementary matrix circuits, methods for the minimization of Boolean functions, the synthesis of programmable logic matrices, multilevel combinational networks, and the development of automata with memory.

  5. Computerized logic design of digital circuits

    NASA Technical Reports Server (NTRS)

    Gussow, S.; Oglesby, R.

    1974-01-01

    Procedure performs all work required for logic design of digital counters or sequential circuits and simplification of Boolean expressions. Program provides simple, accurate, and comprehensive logic design capability to users both experienced and totally inexperienced in logic design

  6. Computerized logic design of digital circuits

    NASA Technical Reports Server (NTRS)

    Sussow, S.; Oglesby, R.

    1973-01-01

    This manual presents a computer program that performs all the work required for the logic design of digital counters or sequential circuits and the simplification of Boolean logic expressions. The program provides both the experienced and inexperienced logic designer with a comprehensive logic design capability. The manual contains Boolean simplification and sequential design theory, detailed instructions for use of the program, a large number of illustrative design examples, and complete program documentation.

  7. New Logic Circuit with DC Parametric Excitation

    NASA Astrophysics Data System (ADS)

    Sugahara, Masanori; Kaneda, Hisayoshi

    1982-12-01

    It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.

  8. Faster Evolution of More Multifunctional Logic Circuits

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Zebulum, Ricardo

    2005-01-01

    A modification in a method of automated evolutionary synthesis of voltage-controlled multifunctional logic circuits makes it possible to synthesize more circuits in less time. Prior to the modification, the computations for synthesizing a four-function logic circuit by this method took about 10 hours. Using the method as modified, it is possible to synthesize a six-function circuit in less than half an hour. The concepts of automated evolutionary synthesis and voltage-controlled multifunctional logic circuits were described in a number of prior NASA Tech Briefs articles. To recapitulate: A circuit is designed to perform one of several different logic functions, depending on the value of an applied control voltage. The circuit design is synthesized following an automated evolutionary approach that is so named because it is modeled partly after the repetitive trial-and-error process of biological evolution. In this process, random populations of integer strings that encode electronic circuits play a role analogous to that of chromosomes. An evolved circuit is tested by computational simulation (prior to testing in real hardware to verify a final design). Then, in a fitness-evaluation step, responses of the circuit are compared with specifications of target responses and circuits are ranked according to how close they come to satisfying specifications. The results of the evaluation provide guidance for refining designs through further iteration.

  9. Demonstrating Boolean Logic Using Simple Electrical Circuits

    ERIC Educational Resources Information Center

    McElhaney, Kevin W.

    2004-01-01

    While exploring the subject of geometric proofs, boolean logic operators AND and OR can be used to allow students to visualize their true-or-false patterns. An activity in the form of constructing electrical circuits is illustrated to explain the concept.

  10. Synthesis of logic circuits with evolutionary algorithms

    SciTech Connect

    JONES,JAKE S.; DAVIDSON,GEORGE S.

    2000-01-26

    In the last decade there has been interest and research in the area of designing circuits with genetic algorithms, evolutionary algorithms, and genetic programming. However, the ability to design circuits of the size and complexity required by modern engineering design problems, simply by specifying required outputs for given inputs has as yet eluded researchers. This paper describes current research in the area of designing logic circuits using an evolutionary algorithm. The goal of the research is to improve the effectiveness of this method and make it a practical aid for design engineers. A novel method of implementing the algorithm is introduced, and results are presented for various multiprocessing systems. In addition to evolving standard arithmetic circuits, work in the area of evolving circuits that perform digital signal processing tasks is described.

  11. Nonlinear dynamics based digital logic and circuits

    PubMed Central

    Kia, Behnam; Lindner, John. F.; Ditto, William L.

    2015-01-01

    We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two. PMID:26029096

  12. Nonlinear dynamics based digital logic and circuits.

    PubMed

    Kia, Behnam; Lindner, John F; Ditto, William L

    2015-01-01

    We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two. PMID:26029096

  13. Nanoeletromechanical switch and logic circuits formed therefrom

    DOEpatents

    Nordquist, Christopher D.; Czaplewski, David A.

    2010-05-18

    A nanoelectromechanical (NEM) switch is formed on a substrate with a source electrode containing a suspended electrically-conductive beam which is anchored to the substrate at each end. This beam, which can be formed of ruthenium, bows laterally in response to a voltage applied between a pair of gate electrodes and the source electrode to form an electrical connection between the source electrode and a drain electrode located near a midpoint of the beam. Another pair of gate electrodes and another drain electrode can be located on an opposite side of the beam to allow for switching in an opposite direction. The NEM switch can be used to form digital logic circuits including NAND gates, NOR gates, programmable logic gates, and SRAM and DRAM memory cells which can be used in place of conventional CMOS circuits, or in combination therewith.

  14. Scaling of pneumatic digital logic circuits.

    PubMed

    Duncan, Philip N; Ahrar, Siavash; Hui, Elliot E

    2015-03-01

    The scaling of integrated circuits to smaller dimensions is critical for achieving increased system complexity and speed. Digital logic circuits composed of pneumatic microfluidic components have to this point been limited to a circuit density of 2-4 gates cm(-2), constraining the complexity of the digital systems that can be achieved. We explored the use of precision machining techniques to reduce the size of pneumatic valves and resistors, and to achieve more accurate and efficient placement of ports and vias. In this way, we attained an order of magnitude increase in circuit density, reaching as high as 36 gates cm(-2). A 12-bit binary counter circuit composed of 96 gates was realized in an area of 360 mm(2). The reduction in size also brought an order of magnitude increase in speed. The frequency of a 13-stage ring oscillator increased from 2.6 Hz to 22.1 Hz, and the maximum clock frequency of a binary counter increased from 1/3 Hz to 6 Hz. PMID:25591784

  15. Superconductive combinational logic circuit using magnetically coupled SQUID array

    NASA Astrophysics Data System (ADS)

    Yamanashi, Y.; Umeda, K.; Sai, K.

    2010-11-01

    In this paper, we propose the development of superconductive combinational logic circuits. One of the difficulties in designing superconductive single-flux-quantum (SFQ) digital circuits can be attributed to the fundamental nature of the SFQ circuits, in which all logic gates have latching functions and are based on sequential logic. The design of ultralow-power superconductive digital circuits can be facilitated by the development of superconductive combinational logic circuits in which the output is a function of only the present input. This is because superconductive combinational logic circuits do not require determination of the timing adjustment and clocking scheme. Moreover, semiconductor design tools can be used to design digital circuits because CMOS logic gates are based on combinational logic. The proposed superconductive combinational logic circuits comprise a magnetically coupled SQUID array. By adjusting the circuit parameters and coupling strengths between neighboring SQUIDs, fundamental combinational logic gates, including the AND, OR, and NOT gates, can be built. We have verified the accuracy of the operations of the fundamental logic gates by analog circuit simulations.

  16. Fluid logic control circuit operates nutator actuator motor

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Fluid logic control circuit operates a pneumatic nutator actuator motor. It has no moving parts and consists of connected fluid interaction devices. The operation of this circuit demonstrates the ability of fluid interaction devices to operate in a complex combination of series and parallel logic sequence.

  17. Design of synthetic biological logic circuits based on evolutionary algorithm.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei

    2013-08-01

    The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose. PMID:23919952

  18. Digital circuits using universal logic gates

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor); Cameron, Eric G. (Inventor); Donohoe, Gregory W. (Inventor); Gambles, Jody W. (Inventor)

    2004-01-01

    According to the invention, a digital circuit design embodied in at least one of a structural netlist, a behavioral netlist, a hardware description language netlist, a full-custom ASIC, a semi-custom ASIC, an IP core, an integrated circuit, a hybrid of chips, one or more masks, a FPGA, and a circuit card assembly is disclosed. The digital circuit design includes first and second sub-circuits. The first sub-circuits comprise a first percentage of the digital circuit design and the second sub-circuits comprise a second percentage of the digital circuit design. Each of the second sub-circuits is substantially comprised of one or more kernel circuits. The kernel circuits are comprised of selection circuits. The second percentage is at least 5%. In various embodiments, the second percentage could be at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%.

  19. Reprogrammable Logic Gate and Logic Circuit Based on Multistimuli-Responsive Raspberry-like Micromotors.

    PubMed

    Zhang, Lina; Zhang, Hui; Liu, Mei; Dong, Bin

    2016-06-22

    In this paper, we report a polymer-based raspberry-like micromotor. Interestingly, the resulting micromotor exhibits multistimuli-responsive motion behavior. Its on-off-on motion can be regulated by the application of stimuli such as H2O2, near-infrared light, NH3, or their combinations. Because of the versatility in motion control, the current micromotor has great potential in the application field of logic gate and logic circuit. With use of different stimuli as the inputs and the micromotor motion as the output, reprogrammable OR and INHIBIT logic gates or logic circuit consisting of OR, NOT, and AND logic gates can be achieved. PMID:27237969

  20. A transition calculus for Boolean functions. [logic circuit analysis

    NASA Technical Reports Server (NTRS)

    Tucker, J. H.; Bennett, A. W.

    1974-01-01

    A transition calculus is presented for analyzing the effect of input changes on the output of logic circuits. The method is closely related to the Boolean difference, but it is more powerful. Both differentiation and integration are considered.

  1. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  2. Logic Circuits as a Vehicle for Technological Literacy.

    ERIC Educational Resources Information Center

    Hazeltine, Barrett

    1985-01-01

    Provides basic information on logic circuits, points out that the topic is a good vehicle for developing technological literacy. The subject could be included in such courses as philosophy, computer science, communications, as well as in courses dealing with electronic circuits. (JN)

  3. Synthetic circuits integrating logic and memory in living cells.

    PubMed

    Siuti, Piro; Yazbek, John; Lu, Timothy K

    2013-05-01

    Logic and memory are essential functions of circuits that generate complex, state-dependent responses. Here we describe a strategy for efficiently assembling synthetic genetic circuits that use recombinases to implement Boolean logic functions with stable DNA-encoded memory of events. Application of this strategy allowed us to create all 16 two-input Boolean logic functions in living Escherichia coli cells without requiring cascades comprising multiple logic gates. We demonstrate long-term maintenance of memory for at least 90 cell generations and the ability to interrogate the states of these synthetic devices with fluorescent reporters and PCR. Using this approach we created two-bit digital-to-analog converters, which should be useful in biotechnology applications for encoding multiple stable gene expression outputs using transient inputs of inducers. We envision that this integrated logic and memory system will enable the implementation of complex cellular state machines, behaviors and pathways for therapeutic, diagnostic and basic science applications. PMID:23396014

  4. Asynchronous sequential circuit design using pass transistor iterative logic arrays

    NASA Technical Reports Server (NTRS)

    Liu, M. N.; Maki, G. K.; Whitaker, S. R.

    1991-01-01

    The iterative logic array (ILA) is introduced as a new architecture for asynchronous sequential circuits. This is the first ILA architecture for sequential circuits reported in the literature. The ILA architecture produces a very regular circuit structure. Moreover, it is immune to both 1-1 and 0-0 crossovers and is free of hazards. This paper also presents a new critical race free STT state assignment which produces a simple form of design equations that greatly simplifies the ILA realizations.

  5. Programmed DNA Self-Assembly and Logic Circuits

    NASA Astrophysics Data System (ADS)

    Li, Wei

    DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the massive parallelism that is inherent in natural systems to solve computational problems. This dissertation focuses on building novel types of computational DNA systems based on both DNA reaction networks and DNA nanotechnology. A series of related research projects are presented here. First, a novel, three-input majority logic gate based on DNA strand displacement reactions was constructed. Here, the three inputs in the majority gate have equal priority, and the output will be true if any two of the inputs are true. We subsequently designed and realized a complex, 5-input majority logic gate. By controlling two of the five inputs, the complex gate is capable of realizing every combination of OR and AND gates of the other 3 inputs. Next, we constructed a half adder, which is a basic arithmetic unit, from DNA strand operated XOR and AND gates. The aim of these two projects was to develop novel types of DNA logic gates to enrich the DNA computation toolbox, and to examine plausible ways to implement large scale DNA logic circuits. The third project utilized a two dimensional DNA origami frame shaped structure with a hollow interior where DNA hybridization seeds were selectively positioned to control the assembly of small DNA tile building blocks. The small DNA tiles were directed to fill the hollow interior of the DNA origami frame, guided through sticky end interactions at prescribed positions. This research shed light on the fundamental behavior of DNA based self-assembling systems, and provided the information necessary to build programmed nanodisplays based on the self-assembly of DNA.

  6. A Novel Synthesizing Genetic Logic Circuit: Frequency Multiplier.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-01-01

    This paper presents a novel synthesizing genetic logic circuit design based on an existing synthetic genetic oscillator, which provides a function of frequency multiplier to synthesize a clock signal whose frequency is a multiple of that of the genetic oscillator. In the renowned literature, the synthetic genetic oscillator, known as a repressilator, has been successfully built in Escherichia coli to generate a periodic oscillating phenomenon through three repressive genes repress each other in a chain. On the basis of this fact, our proposed genetic frequency multiplier circuit utilizes genetic Buffers in series with a waveform-shaping circuit to reshape the genetic oscillation signal into a crisp logic clock signal. By regulating different threshold levels in the Buffer, the time length of logic high/low levels in a fundamental sinusoidal wave can be engineered to pulse-width-modulated (PWM) signals with various duty cycles. Integrating some of genetic logic XOR gates and PWM signals from the output of the Buffers, a genetic frequency multiplier circuit can be created and the clock signal with the integer-fold of frequency of the genetic oscillator is generated. The synthesized signal can be used in triggering the downstream digital genetic logic circuits. Simulation results show the applicability of the proposed idea. PMID:26356341

  7. The decomposition of an arbitrary reversible logic circuit

    NASA Astrophysics Data System (ADS)

    DeVos, Alexis; Van Rentergem, Yvan; DeKeyser, Koen

    2006-05-01

    The (2w)! reversible logic circuits of width w, i.e. reversible logic circuits with w inputs and w outputs, together with the action of cascading, form a group G, isomorphic to the symmetric group {\\bf S}_{2^w} . We define two conjugate subgroups G1 and G2. Together they partition the group G into 2w-1 + 1 double cosets. These allow us to decompose an arbitrary member of G into a cascade of three simpler members. This decomposition is a far relative of the well-known LU decomposition of a square matrix.

  8. Mechanically Flexible and High-Performance CMOS Logic Circuits

    PubMed Central

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-01-01

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal–oxide–semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882

  9. Mechanically Flexible and High-Performance CMOS Logic Circuits.

    PubMed

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-01-01

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882

  10. Integrated logic circuits using single-atom transistors

    PubMed Central

    Mol, J. A.; Verduijn, J.; Levine, R. D.; Remacle, F.

    2011-01-01

    Scaling down the size of computing circuits is about to reach the limitations imposed by the discrete atomic structure of matter. Reducing the power requirements and thereby dissipation of integrated circuits is also essential. New paradigms are needed to sustain the rate of progress that society has become used to. Single-atom transistors, SATs, cascaded in a circuit are proposed as a promising route that is compatible with existing technology. We demonstrate the use of quantum degrees of freedom to perform logic operations in a complementary-metal–oxide–semiconductor device. Each SAT performs multilevel logic by electrically addressing the electronic states of a dopant atom. A single electron transistor decodes the physical multivalued output into the conventional binary output. A robust scalable circuit of two concatenated full adders is reported, where by utilizing charge and quantum degrees of freedom, the functionality of the transistor is pushed far beyond that of a simple switch. PMID:21808050

  11. Integrated logic circuits using single-atom transistors.

    PubMed

    Mol, J A; Verduijn, J; Levine, R D; Remacle, F; Rogge, S

    2011-08-23

    Scaling down the size of computing circuits is about to reach the limitations imposed by the discrete atomic structure of matter. Reducing the power requirements and thereby dissipation of integrated circuits is also essential. New paradigms are needed to sustain the rate of progress that society has become used to. Single-atom transistors, SATs, cascaded in a circuit are proposed as a promising route that is compatible with existing technology. We demonstrate the use of quantum degrees of freedom to perform logic operations in a complementary-metal-oxide-semiconductor device. Each SAT performs multilevel logic by electrically addressing the electronic states of a dopant atom. A single electron transistor decodes the physical multivalued output into the conventional binary output. A robust scalable circuit of two concatenated full adders is reported, where by utilizing charge and quantum degrees of freedom, the functionality of the transistor is pushed far beyond that of a simple switch. PMID:21808050

  12. Controlling High Power Devices with Computers or TTL Logic Circuits

    ERIC Educational Resources Information Center

    Carlton, Kevin

    2002-01-01

    Computers are routinely used to control experiments in modern science laboratories. This should be reflected in laboratories in an educational setting. There is a mismatch between the power that can be delivered by a computer interfacing card or a TTL logic circuit and that required by many practical pieces of laboratory equipment. One common way…

  13. Probing Dynamical Character of Neural Circuits by Using Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Hu, Hong; Shi, Zhongzhi

    2008-11-01

    Analytical study or designing of large-scale nonlinear neural circuits, especially for chaotic neural circuits, is a difficult task. Here we analyze the function of neural systems by probing the fuzzy logical framework of the neural cells' dynamical equations. In this paper, the fuzzy logical framework of neural cells is used to understand the nonlinear dynamic attributes of a common neural system, and we proved that if a neural system works in a non-chaotic way, a suitable fuzzy logical framework can be found and we can analyze or design such kind neural system similar to analyze or design a digit computer, but if a neural system works in a chaotic way, an approximation is needed for understanding the function of such neural system.

  14. Efficient G(sup 4)FET-Based Logic Circuits

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh

    2008-01-01

    A total of 81 optimal logic circuits based on four-gate field-effect transistors (G(sup 4)4FETs) have been designed to implement all Boolean functions of up to three variables. The purpose of this development was to lend credence to the expectation that logic circuits based on G(sup 4)FETs could be more efficient (in the sense that they could contain fewer transistors), relative to functionally equivalent logic circuits based on conventional transistors. A G(sup 4)FET a combination of a junction field-effect transistor (JFET) and a metal oxide/semiconductor field-effect transistor (MOSFET) superimposed in a single silicon island and can therefore be regarded as two transistors sharing the same body. A G(sup 4)FET can also be regarded as a single device having four gates: two side junction-based gates, a top MOS gate, and a back gate activated by biasing of a silicon-on-insulator substrate. Each of these gates can be used to control the conduction characteristics of the transistor; this possibility creates new options for designing analog, radio-frequency, mixed-signal, and digital circuitry. One such option is to design a G(sup 4)FET to function as a three-input NOT-majority gate, which has been shown to be a universal and programmable logic gate. Optimal NOT-majority-gate, G(sup 4)FET-based logic-circuit designs were obtained in a comparative study that also included formulation of functionally equivalent logic circuits based on NOR and NAND gates implemented by use of conventional transistors. In the study, the problem of finding the optimal design for each logic function and each transistor type was solved as an integer-programming optimization problem. Considering all 81 non-equivalent Boolean functions included in the study, it was found that in 63% of the cases, fewer logic gates (and, hence, fewer transistors) would be needed in the G(sup 4)FET-based implementations.

  15. Mimicking the biological neural system using electronic logic circuits

    NASA Astrophysics Data System (ADS)

    Kirikera, Goutham R.; Shinde, Vishal; Kang, Inpil; Schulz, Mark J.; Shanov, Vesselin; Datta, Saurabh; Hurd, Doug; Westheider, Bo; Sundaresan, Mannur; Ghoshal, Anindya

    2004-07-01

    Detecting and locating cracks in structural components and joints that have high feature densities is a challenging problem in the field of Structural Health Monitoring. There have been advances in piezoelectric sensors, actuators, wave propagation, MEMS, and optical fiber sensors. However, few sensor-signal processing techniques have been applied to the monitoring of joints and complex structural geometries. This is in part because maintaining and analyzing a large amount of data obtained from a large number of sensors that may be needed to monitor joints for cracks is difficult. Reliable low cost assessment of the health of structures is crucial to maintain operational availability and productivity, reduce maintenance cost, and prevent catastrophic failure of large structures such as wind turbines, aircraft, and civil infrastructure. Recently, there have also been advances in development of simple passive techniques for health monitoring including a technique based on mimicking the biological neural system using electronic logic circuits. This technique aids in reducing the required number of data acquisition channels by a factor of ten or more and is able to predict the location of a crack within a rectangular grid or within an arbitrarily arranged network of continuous sensors or neurons. The current paper shows results obtained by implementing this method on an aluminum plate and joint. The plates were tested using simulated acoustic emissions and also loading via an MTS machine. The testing indicates that the neural system can monitor complex joints and detect acoustic emissions due to propagating cracks. High sensitivity of the neural system is needed, and further sensor development and testing on different types of joints is required. Also indicated is that sensor geometry, sensor location, signal filtering, and logic parameters of the neural system will be specific to the particular type of joint (material, thickness, geometry) being monitored. Also, a

  16. Interlocked DNA nanostructures controlled by a reversible logic circuit.

    PubMed

    Li, Tao; Lohmann, Finn; Famulok, Michael

    2014-01-01

    DNA nanostructures constitute attractive devices for logic computing and nanomechanics. An emerging interest is to integrate these two fields and devise intelligent DNA nanorobots. Here we report a reversible logic circuit built on the programmable assembly of a double-stranded (ds) DNA [3]pseudocatenane that serves as a rigid scaffold to position two separate branched-out head-motifs, a bimolecular i-motif and a G-quadruplex. The G-quadruplex only forms when preceded by the assembly of the i-motif. The formation of the latter, in turn, requires acidic pH and unhindered mobility of the head-motif containing dsDNA nanorings with respect to the central ring to which they are interlocked, triggered by release oligodeoxynucleotides. We employ these features to convert the structural changes into Boolean operations with fluorescence labelling. The nanostructure behaves as a reversible logic circuit consisting of tandem YES and AND gates. Such reversible logic circuits integrated into functional nanodevices may guide future intelligent DNA nanorobots to manipulate cascade reactions in biological systems. PMID:25229207

  17. G(sup 4)FET Implementations of Some Logic Circuits

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Akarvardar, Kerem; Cristoleveanu, Sorin; Gentil, Paul; Blalock, Benjamin; Chen, Suhan

    2009-01-01

    Some logic circuits have been built and demonstrated to work substantially as intended, all as part of a continuing effort to exploit the high degrees of design flexibility and functionality of the electronic devices known as G(sup 4)FETs and described below. These logic circuits are intended to serve as prototypes of more complex advanced programmable-logicdevice-type integrated circuits, including field-programmable gate arrays (FPGAs). In comparison with prior FPGAs, these advanced FPGAs could be much more efficient because the functionality of G(sup 4)FETs is such that fewer discrete components are needed to perform a given logic function in G(sup 4)FET circuitry than are needed perform the same logic function in conventional transistor-based circuitry. The underlying concept of using G(sup 4)FETs as building blocks of programmable logic circuitry was also described, from a different perspective, in G(sup 4)FETs as Universal and Programmable Logic Gates (NPO-41698), NASA Tech Briefs, Vol. 31, No. 7 (July 2007), page 44. A G(sup 4)FET can be characterized as an accumulation-mode silicon-on-insulator (SOI) metal oxide/semiconductor field-effect transistor (MOSFET) featuring two junction field-effect transistor (JFET) gates. The structure of a G(sup 4)FET (see Figure 1) is the same as that of a p-channel inversion-mode SOI MOSFET with two body contacts on each side of the channel. The top gate (G1), the substrate emulating a back gate (G2), and the junction gates (JG1 and JG2) can be biased independently of each other and, hence, each can be used to independently control some aspects of the conduction characteristics of the transistor. The independence of the actions of the four gates is what affords the enhanced functionality and design flexibility of G(sup 4)FETs. The present G(sup 4)FET logic circuits include an adjustable-threshold inverter, a real-time-reconfigurable logic gate, and a dynamic random-access memory (DRAM) cell (see Figure 2). The configuration

  18. Implementation of a genetic logic circuit: bio-register.

    PubMed

    Lin, Chun-Liang; Kuo, Ting-Yu; Chen, Yang-Yi

    2015-12-01

    We introduce an idea of synthesizing a class of genetic registers based on the existing sequential biological circuits, which are composed of fundamental biological gates. In the renowned literature, biological gates and genetic oscillator have been unveiled and experimentally realized in recent years. These biological circuits have formed a basis for realizing a primitive biocomputer. In the traditional computer architecture, there is an intermediate load-store section, i.e. a register, which serves as a part of the digital processor. With which, the processor can load data from a larger memory into it and proceed to conduct necessary arithmetic or logic operations. Then, manipulated data are stored back to the memory by instruction via the register. We propose here a class of bio-registers for the biocomputer. Four types of register structures are presented. In silicon experiments illustrate results of the proposed design. PMID:26702308

  19. Design automation for integrated nonlinear logic circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Van Vaerenbergh, Thomas; Pelc, Jason; Santori, Charles; Bose, Ranojoy; Kielpinski, Dave; Beausoleil, Raymond G.

    2016-05-01

    A key enabler of the IT revolution of the late 20th century was the development of electronic design automation (EDA) tools allowing engineers to manage the complexity of electronic circuits with transistor counts now reaching into the billions. Recently, we have been developing large-scale nonlinear photonic integrated logic circuits for next generation all-optical information processing. At this time a sufficiently powerful EDA-style software tool chain to design this type of complex circuits does not yet exist. Here we describe a hierarchical approach to automating the design and validation of photonic integrated circuits, which can scale to several orders of magnitude higher complexity than the state of the art. Most photonic integrated circuits developed today consist of a small number of components, and only limited hierarchy. For example, a simple photonic transceiver may contain on the order of 10 building-block components, consisting of grating couplers for photonic I/O, modulators, and signal splitters/combiners. Because this is relatively easy to lay out by hand (or simple script) existing photonic design tools have relatively little automation in comparison to electronics tools. But demonstrating all-optical logic will require significantly more complex photonic circuits containing up to 1,000 components, hence becoming infeasible to design manually. Our design framework is based off Python-based software from Luceda Photonics which provides an environment to describe components, simulate their behavior, and export design files (GDS) to foundries for fabrication. At a fundamental level, a photonic component is described as a parametric cell (PCell) similarly to electronics design. PCells are described by geometric characteristics of their layout. A critical part of the design framework is the implementation of PCells as Python objects. PCell objects can then use inheritance to simplify design, and hierarchical designs can be made by creating composite

  20. Topological Properties of Combinational Logic Functions for Very Large Scale Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Hiteshue, Elizabeth; Irvin, Kelsey; Lanzerotti, Mary; Vernizzi, Graziano; Kujawski, Joseph; Weatherwax, Allan

    2014-03-01

    This talk presents topological properties of combinational logic functions implemented with basic logic gates. Combinational logic can be implemented in very large scale integrated circuits, including high-performance microprocessors. Prior work has produced an historically-equivalent (HE) interpretation of Mr. E. F. Rent's 1960 memos for today's complex circuitry, an application to modern microprocessors, and topological constraints for electronic circuits. This talk will examine combinational logic blocks which may exhibit different connectivity and will evaluate their topological properties.

  1. DOIND: a technique for leakage reduction in nanoscale domino logic circuits

    NASA Astrophysics Data System (ADS)

    Prasad Shah, Ambika; Neema, Vaibhav; Daulatabad, Shreeniwas

    2016-05-01

    A novel DOIND logic approach is proposed for domino logic, which reduces the leakage current with a minimum delay penalty. Simulation is performed at 70 nm technology node with supply voltage 1V for domino logic and DOIND logic based AND, OR, XOR and Half Adder circuits using the tanner EDA tool. Simulation results show that the proposed DOIND approach decreases the average leakage current by 68.83%, 66.6%, 77.86% and 74.34% for 2 input AND, OR, XOR and Half Adder respectively. The proposed approach also has 47.76% improvement in PDAP for the buffer circuit as compared to domino logic.

  2. A novel circuit design for complementary resistive switch-based stateful logic operations

    NASA Astrophysics Data System (ADS)

    Xiao-Ping, Wang; Lin, Chen; Yi, Shen; Bo-Wen, Xu

    2016-05-01

    Recently, it has been demonstrated that memristors can be utilized as logic operations and memory elements. In this paper, we present a novel circuit design for complementary resistive switch (CRS)-based stateful logic operations. The proposed circuit can automatically write the destructive CRS cells back to the original states. In addition, the circuit can be used in massive passive crossbar arrays which can reduce sneak path current greatly. Moreover, the steps for CRS logic operations using our proposed circuit are reduced compared with previous circuit designs. We validate the effectiveness of our scheme through Hspice simulations on the logic circuits. Project supported by the National Natural Science Foundation of China (Grant Nos. 61374150 and 11271146), the State Key Program of the National Natural Science Foundation of China (Grant No. 61134012), the Doctoral Fund of Ministry of Education of China (Grant No. 20130142130012), and the Science and Technology Program of Shenzhen City, China (Grant No. JCYJ20140509162710496).

  3. Potential up-scaling of inkjet-printed devices for logical circuits in flexible electronics

    SciTech Connect

    Mitra, Kalyan Yoti E-mail: enrico.sowade@mb.tu-chemnitz.de; Sowade, Enrico E-mail: enrico.sowade@mb.tu-chemnitz.de; Martínez-Domingo, Carme; Ramon, Eloi; Carrabina, Jordi; Gomes, Henrique Leonel; Baumann, Reinhard R.

    2015-02-17

    Inkjet Technology is often mis-believed to be a deposition/patterning technology which is not meant for high fabrication throughput in the field of printed and flexible electronics. In this work, we report on the 1) printing, 2) fabrication yield and 3) characterization of exemplary simple devices e.g. capacitors, organic transistors etc. which are the basic building blocks for logical circuits. For this purpose, printing is performed first with a Proof of concept Inkjet printing system Dimatix Material Printer 2831 (DMP 2831) using 10 pL small print-heads and then with Dimatix Material Printer 3000 (DMP 3000) using 35 pL industrial print-heads (from Fujifilm Dimatix). Printing at DMP 3000 using industrial print-heads (in Sheet-to-sheet) paves the path towards industrialization which can be defined by printing in Roll-to-Roll format using industrial print-heads. This pavement can be termed as 'Bridging Platform'. This transfer to 'Bridging Platform' from 10 pL small print-heads to 35 pL industrial print-heads help the inkjet-printed devices to evolve on the basis of functionality and also in form of up-scaled quantities. The high printed quantities and yield of inkjet-printed devices justify the deposition reliability and potential to print circuits. This reliability is very much desired when it comes to printing of circuits e.g. inverters, ring oscillator and any other planned complex logical circuits which require devices e.g. organic transistors which needs to get connected in different staged levels. Also, the up-scaled inkjet-printed devices are characterized and they reflect a domain under which they can work to their optimal status. This status is much wanted for predicting the real device functionality and integration of them into a planned circuit.

  4. Automatic Single-Flux-Quantum (SFQ) Logic Synthesis Method for Top-Down Circuit Design

    NASA Astrophysics Data System (ADS)

    Kameda, Yoshio; Yorozu, Shinichi; Hashimoto, Yoshihito

    2006-06-01

    Single-flux-quantum (SFQ) logic circuits provide faster operations with lower power consumption, using Josephson junctions as the switching devices. In the top-down flow of SFQ circuit design, we have already developed a place-and-route tool that covers backend circuit design. In this paper, we present an automatic SFQ logic synthesis method that covers front-end circuit design. The logic synthesis is a process that generates a gate-level logic circuit from a functional specification written in hardware description languages. In our SFQ synthesis method, after we generate an intermediate circuit with the help of a synthesis tool for semiconductor circuits, we convert it into a gate-level pipelined SFQ circuit. To do this, an automatic synthesis tool was implemented. To evaluate the effectiveness of the method and the tool, we synthesized arithmetic and logic units (ALUs). It took only two and half minutes to synthesize a 64-bit-width ALU that consisted of about 18, 000 gates.

  5. A Chiroptical Logic Circuit Based on Self-Assembled Soft Materials Containing Amphiphilic Spiropyran.

    PubMed

    Liu, Changxia; Yang, Dong; Jin, Qingxian; Zhang, Li; Liu, Minghua

    2016-02-01

    A chiral logic circuit is proposed based on the multiple chiroptical responsiveness of a supramolecular gel material. The gel is fabricated by mixing a chiral gelator and a spiropyran derivative. Chiral responsiveness including the chiral switch and the logic gate is realized through the combined chirality transfer, photochromism, and acidichromism of the system. PMID:26677055

  6. Modular multi-level circuits from immobilized DNA-based logic gates.

    PubMed

    Frezza, Brian M; Cockroft, Scott L; Ghadiri, M Reza

    2007-12-01

    One of the fundamental goals of molecular computing is to reproduce the tenets of digital logic, such as component modularity and hierarchical circuit design. An important step toward this goal is the creation of molecular logic gates that can be rationally wired into multi-level circuits. Here we report the design and functional characterization of a complete set of modular DNA-based Boolean logic gates (AND, OR, and AND-NOT) and further demonstrate their wiring into a three-level circuit that exhibits Boolean XOR (exclusive OR) function. The approach is based on solid-supported DNA logic gates that are designed to operate with single-stranded DNA inputs and outputs. Since the solution-phase serves as the communication medium between gates, circuit wiring can be achieved by designating the DNA output of one gate as the input to another. Solid-supported logic gates provide enhanced gate modularity versus solution-phase systems by significantly simplifying the task of choosing appropriate DNA input and output sequences used in the construction of multi-level circuits. The molecular logic gates and circuits reported here were characterized by coupling DNA outputs to a single-input REPORT gate and monitoring the resulting fluorescent output signals. PMID:17994734

  7. Automatic test pattern generation for logic circuits using the Boolean tree

    SciTech Connect

    Jeong Taegwon.

    1991-01-01

    The goal of this study was to develop an algorithm that can generate test patterns for combinational circuits and sequential logic circuits automatically. The new proposed algorithm generates a test pattern by using a special tree called a modified Boolean tree. In this algorithm, the construction of a modified Boolean tree is the most time-consuming step. Following the construction of a modified Boolean tree, a test pattern can be found by simply assigning a logic value 1 for even primary inputs and a logic value 0 for odd primary inputs of the constructed modified Boolean tree. The algorithm is applied to several benchmark circuits. The results showed the following: (1) for combinational circuits, the algorithm can generate test patterns 10-15% faster than the FAN algorithm, which is known as one of the most efficient algorithms to-date; (2) for sequential circuits, the algorithm shows more fault coverage than the nine valued algorithm.

  8. Relay Protection and Automation Systems Based on Programmable Logic Integrated Circuits

    SciTech Connect

    Lashin, A. V. Kozyrev, A. V.

    2015-09-15

    One of the most promising forms of developing the apparatus part of relay protection and automation devices is considered. The advantages of choosing programmable logic integrated circuits to obtain adaptive technological algorithms in power system protection and control systems are pointed out. The technical difficulties in the problems which today stand in the way of using relay protection and automation systems are indicated and a new technology for solving these problems is presented. Particular attention is devoted to the possibility of reconfiguring the logic of these devices, using programmable logic integrated circuits.

  9. A tight-binding study of logic gate circuits for adding numbers inside a molecule

    NASA Astrophysics Data System (ADS)

    Stadler, R.; Ami, S.; Forshaw, M.; Joachim, C.

    2002-06-01

    The possibilities for the design of larger diode logic circuits such as a one-bit half-adder inside a molecule are investigated, based on a recent extension of the elastic scattering quantum chemistry technique. Since any diode logic circuit for an adder needs OR-gates and AND-gates as basic components and the properties of OR-gates have already been discussed in the ballistic and tunnelling electron transport regime, we focus on the more complicated AND-gates in the present work. For this case the output current, calculated from the transmission coefficients by using the Landauer-Büttiker formula, shows four different logical levels instead of two. The origin of this level variety is analysed in detail. The concept of programmable gate logic arrays is also addressed, where for intra-molecular circuits distinct deviations from earlier macroscopic or mesoscopic implementations of this scheme are found.

  10. Integrated circuits and logic operations based on single-layer MoS2.

    PubMed

    Radisavljevic, Branimir; Whitwick, Michael Brian; Kis, Andras

    2011-12-27

    Logic circuits and the ability to amplify electrical signals form the functional backbone of electronics along with the possibility to integrate multiple elements on the same chip. The miniaturization of electronic circuits is expected to reach fundamental limits in the near future. Two-dimensional materials such as single-layer MoS(2) represent the ultimate limit of miniaturization in the vertical dimension, are interesting as building blocks of low-power nanoelectronic devices, and are suitable for integration due to their planar geometry. Because they are less than 1 nm thin, 2D materials in transistors could also lead to reduced short channel effects and result in fabrication of smaller and more power-efficient transistors. Here, we report on the first integrated circuit based on a two-dimensional semiconductor MoS(2). Our integrated circuits are capable of operating as inverters, converting logical "1" into logical "0", with room-temperature voltage gain higher than 1, making them suitable for incorporation into digital circuits. We also show that electrical circuits composed of single-layer MoS(2) transistors are capable of performing the NOR logic operation, the basis from which all logical operations and full digital functionality can be deduced. PMID:22073905

  11. Cellular signaling circuits interfaced with synthetic, post-translational, negating Boolean logic devices.

    PubMed

    Razavi, Shiva; Su, Steven; Inoue, Takanari

    2014-09-19

    A negating functionality is fundamental to information processing of logic circuits within cells and computers. Aiming to adapt unutilized electronic concepts to the interrogation of signaling circuits in cells, we first took a bottom-up strategy whereby we created protein-based devices that perform negating Boolean logic operations such as NOT, NOR, NAND, and N-IMPLY. These devices function in living cells within a minute by precisely commanding the localization of an activator molecule among three subcellular spaces. We networked these synthetic gates to an endogenous signaling circuit and devised a physiological output. In search of logic functions in signal transduction, we next took a top-down approach and computationally screened 108 signaling pathways to identify commonalities and differences between these biological pathways and electronic circuits. This combination of synthetic and systems approaches will guide us in developing foundations for deconstruction of intricate cell signaling, as well as construction of biomolecular computers. PMID:25000210

  12. Design guidelines to achieve minimum energy operation for ultra low voltage tunneling FET logic circuits

    NASA Astrophysics Data System (ADS)

    Fuketa, Hiroshi; Yoshioka, Kazuaki; Fukuda, Koichi; Mori, Takahiro; Ota, Hiroyuki; Takamiya, Makoto; Sakurai, Takayasu

    2015-04-01

    A tunneling field effect transistor (TFET) attracts attention, because TFET circuits can achieve better energy efficiency than conventional MOSFET circuits. Although design issues in ultra low voltage logic circuits, such as the minimum operatable voltage (VDDmin), have been investigated for MOSFET’s, VDDmin for TFET’s have not been discussed. In this paper, VDDmin of TFET logic circuits is evaluated for the first time and a closed-form expression of VDDmin is derived, which indicates that the within-die threshold voltage variation (σVT) strongly affects VDDmin. In addition, since it is not clear how much the energy of the logic circuits is quantitatively reduced when both the subthreshold swing (S) and the power supply voltage are reduced, an analytical equation of the minimum energy of TFET logic circuits is also derived. From the derived equations, the design guideline is presented for the device engineers of TFET’s that σVT should be reduced as S decreases.

  13. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits

    PubMed Central

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-01

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits. PMID:24463956

  14. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls.

    PubMed

    Currivan-Incorvia, J A; Siddiqui, S; Dutta, S; Evarts, E R; Zhang, J; Bono, D; Ross, C A; Baldo, M A

    2016-01-01

    Spintronic computing promises superior energy efficiency and nonvolatility compared to conventional field-effect transistor logic. But, it has proven difficult to realize spintronic circuits with a versatile, scalable device design that is adaptable to emerging material physics. Here we present prototypes of a logic device that encode information in the position of a magnetic domain wall in a ferromagnetic wire. We show that a single three-terminal device can perform inverter and buffer operations. We demonstrate one device can drive two subsequent gates and logic propagation in a circuit of three inverters. This prototype demonstration shows that magnetic domain wall logic devices have the necessary characteristics for future computing, including nonlinearity, gain, cascadability, and room temperature operation. PMID:26754412

  15. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls

    PubMed Central

    Currivan-Incorvia, J. A.; Siddiqui, S.; Dutta, S.; Evarts, E. R.; Zhang, J.; Bono, D.; Ross, C. A.; Baldo, M. A.

    2016-01-01

    Spintronic computing promises superior energy efficiency and nonvolatility compared to conventional field-effect transistor logic. But, it has proven difficult to realize spintronic circuits with a versatile, scalable device design that is adaptable to emerging material physics. Here we present prototypes of a logic device that encode information in the position of a magnetic domain wall in a ferromagnetic wire. We show that a single three-terminal device can perform inverter and buffer operations. We demonstrate one device can drive two subsequent gates and logic propagation in a circuit of three inverters. This prototype demonstration shows that magnetic domain wall logic devices have the necessary characteristics for future computing, including nonlinearity, gain, cascadability, and room temperature operation. PMID:26754412

  16. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls

    NASA Astrophysics Data System (ADS)

    Currivan-Incorvia, J. A.; Siddiqui, S.; Dutta, S.; Evarts, E. R.; Zhang, J.; Bono, D.; Ross, C. A.; Baldo, M. A.

    2016-01-01

    Spintronic computing promises superior energy efficiency and nonvolatility compared to conventional field-effect transistor logic. But, it has proven difficult to realize spintronic circuits with a versatile, scalable device design that is adaptable to emerging material physics. Here we present prototypes of a logic device that encode information in the position of a magnetic domain wall in a ferromagnetic wire. We show that a single three-terminal device can perform inverter and buffer operations. We demonstrate one device can drive two subsequent gates and logic propagation in a circuit of three inverters. This prototype demonstration shows that magnetic domain wall logic devices have the necessary characteristics for future computing, including nonlinearity, gain, cascadability, and room temperature operation.

  17. Cavity-Enhanced Second-Order Nonlinear Photonic Logic Circuits

    NASA Astrophysics Data System (ADS)

    Trivedi, Rahul; Khankhoje, Uday K.; Majumdar, Arka

    2016-05-01

    A large obstacle for realizing photonic logic is the weak optical nonlinearity of available materials, which results in large power consumption. In this paper, we present the theoretical design of all-optical logic with second-order (χ(2 )) nonlinear bimodal cavities and their networks. Using semiclassical models derived from the Wigner quasiprobability distribution function, we analyze the power consumption and signal-to-noise ratio (SNR) of networks implementing an optical and gate and an optical latch. A comparison between the second- and third-order (χ(3 )) optical logic reveals that, while the χ(3 ) design outperforms the χ(2 ) design in terms of the SNR for the same input power, employing the χ(3 ) nonlinearity necessitates the use of cavities with ultrahigh-quality factors (Q ˜106) to achieve a gate power consumption comparable to that of the χ(2 ) design at significantly smaller quality factors (Q ˜104). Using realistic estimates of the χ(2 ) and χ(3 ) nonlinear susceptibilities of available materials, we show that, at achievable quality factors (Q ˜104), the χ(2 ) design is an order of magnitude more energy efficient than the corresponding χ(3 ) design.

  18. Energy-Efficient and Secure S-Box circuit using Symmetric Pass Gate Adiabatic Logic

    SciTech Connect

    Kumar, Dinesh; Mohammad, Azhar; Singh, Vijay; Perumalla, Kalyan S

    2016-01-01

    Differential Power Analysis (DPA) attack is considered to be a main threat while designing cryptographic processors. In cryptographic algorithms like DES and AES, S-Box is used to indeterminate the relationship between the keys and the cipher texts. However, S-box is prone to DPA attack due to its high power consumption. In this paper, we are implementing an energy-efficient 8-bit S-Box circuit using our proposed Symmetric Pass Gate Adiabatic Logic (SPGAL). SPGAL is energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. SPGAL is energy-efficient due to reduction of non-adiabatic loss during the evaluate phase of the outputs. Further, the S-Box circuit implemented using SPGAL is resistant to DPA attacks. The results are verified through SPICE simulations in 180nm technology. SPICE simulations show that the SPGAL based S-Box circuit saves upto 92% and 67% of energy as compared to the conventional CMOS and Secured Quasi-Adiabatic Logic (SQAL) based S-Box circuit. From the simulation results, it is evident that the SPGAL based circuits are energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. In nutshell, SPGAL based gates can be used to build secure hardware for lowpower portable electronic devices and Internet-of-Things (IoT) based electronic devices.

  19. A hybrid nanomemristor/transistor logic circuit capable of self-programming.

    PubMed

    Borghetti, Julien; Li, Zhiyong; Straznicky, Joseph; Li, Xuema; Ohlberg, Douglas A A; Wu, Wei; Stewart, Duncan R; Williams, R Stanley

    2009-02-10

    Memristor crossbars were fabricated at 40 nm half-pitch, using nanoimprint lithography on the same substrate with Si metal-oxide-semiconductor field effect transistor (MOS FET) arrays to form fully integrated hybrid memory resistor (memristor)/transistor circuits. The digitally configured memristor crossbars were used to perform logic functions, to serve as a routing fabric for interconnecting the FETs and as the target for storing information. As an illustrative demonstration, the compound Boolean logic operation (A AND B) OR (C AND D) was performed with kilohertz frequency inputs, using resistor-based logic in a memristor crossbar with FET inverter/amplifier outputs. By routing the output signal of a logic operation back onto a target memristor inside the array, the crossbar was conditionally configured by setting the state of a nonvolatile switch. Such conditional programming illuminates the way for a variety of self-programmed logic arrays, and for electronic synaptic computing. PMID:19171903

  20. Off-Line Testing for Bridge Faults in CMOS Domino Logic Circuits

    NASA Technical Reports Server (NTRS)

    Bennett, K.; Lala, P. K.; Busaba, F.

    1997-01-01

    Bridge faults, especially in CMOS circuits, have unique characteristics which make them difficult to detect during testing. This paper presents a technique for detecting bridge faults which have an effect on the output of CMOS Domino logic circuits. The faults are modeled at the transistor level and this technique is based on analyzing the off-set of the function during off-line testing.

  1. Electronic circuits and systems: A compilation. [including integrated circuits, logic circuits, varactor diode circuits, low pass filters, and optical equipment circuits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.

  2. Proposal for all-graphene monolithic logic circuits

    NASA Astrophysics Data System (ADS)

    Kang, Jiahao; Sarkar, Deblina; Khatami, Yasin; Banerjee, Kaustav

    2013-08-01

    Since the very inception of integrated circuits, dissimilar materials have been used for fabricating devices and interconnects. Typically, semiconductors are used for devices and metals are used for interconnecting them. This, however, leads to a "contact resistance" between them that degrades device and circuit performance, especially for nanoscale technologies. This letter introduces and explores an "all-graphene" device-interconnect co-design scheme, where a single 2-dimensional sheet of monolayer graphene is proposed to be monolithically patterned to form both active devices (graphene nanoribbon tunnel-field-effect-transistors) as well as interconnects in a seamless manner. Thereby, the use of external contacts is alleviated, resulting in substantial reduction in contact parasitics. Calculations based on tight-binding theory and Non-Equilibrium Green's Function (NEGF) formalism solved self-consistently with the Poisson's equation are used to analyze the intricate properties of the proposed structure. This constitutes the first NEGF simulation based demonstration that devices and interconnects can be built using the "same starting material" - graphene. Moreover, it is also shown that all-graphene circuits can surpass the static performances of the 22 nm complementary metal-oxide-semiconductor devices, including minimum operable supply voltage, static noise margin, and power consumption.

  3. The fundamental Fuzzy logic operators and some complex boolean logic circuits implemented by the chromogenism of a spirooxazine.

    PubMed

    Gentili, Pier Luigi

    2011-12-01

    1,3-Dihydro-1,3,3-trimethyl-8'-nitro-spiro[2H-indole-2,3'-[3H]naphth[2,1-b][1,4]oxazine] (SpO) is a photochromic, acidichromic and metallochromic compound. Its chromogenic properties are characterized in acetonitrile, at room temperature. They are exploited to process both boolean and Fuzzy logic. By using HClO(4), AlCl(3) and Cu(ClO(4))(2) as chemical inputs, UV radiation as power supply, and the absorbance at specific wavelengths in the visible as optical output, SpO results in a five-states molecular switch whereby some complex boolean logic circuits are implemented. If the chemical inputs are varied in an analog manner, the solution of SpO assumes an infinite number of colours. Therefore, by choosing the RGB colour coordinates as optical outputs, the fundamental operators of the "infinite-valued" Fuzzy logic are implemented. Particularly, two Fuzzy logic systems are built upon a new defuzzification procedure imitating the way humans perceive colours. PMID:21997229

  4. Introduction to Number Systems, Boolean Algebra, Logic Circuits. Navy Electricity and Electronics Training Series. Module 13.

    ERIC Educational Resources Information Center

    Naval Education and Training Program Development Center, Pensacola, FL.

    This textbook is one of a series of publications designed to provide information needed by Navy personnel whose duties require an elementary and general knowledge of the fundamental concepts of number systems, logic circuits, and Boolean algebra. Topic 1, Number Systems, describes the radix; the positional notation; the decimal, binary, octal, and…

  5. Graphene-based non-Boolean logic circuits

    NASA Astrophysics Data System (ADS)

    Liu, Guanxiong; Ahsan, Sonia; Khitun, Alexander G.; Lake, Roger K.; Balandin, Alexander A.

    2013-10-01

    Graphene revealed a number of unique properties beneficial for electronics. However, graphene does not have an energy band-gap, which presents a serious hurdle for its applications in digital logic gates. The efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. Here we show that the negative differential resistance experimentally observed in graphene field-effect transistors of "conventional" design allows for construction of viable non-Boolean computational architectures with the gapless graphene. The negative differential resistance—observed under certain biasing schemes—is an intrinsic property of graphene, resulting from its symmetric band structure. Our atomistic modeling shows that the negative differential resistance appears not only in the drift-diffusion regime but also in the ballistic regime at the nanometer-scale—although the physics changes. The obtained results present a conceptual change in graphene research and indicate an alternative route for graphene's applications in information processing.

  6. Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia.

    PubMed

    Macia, Javier; Manzoni, Romilde; Conde, Núria; Urrios, Arturo; de Nadal, Eulàlia; Solé, Ricard; Posas, Francesc

    2016-02-01

    Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit's complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined. PMID:26829588

  7. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch.

    PubMed

    Lou, Chunbo; Liu, Xili; Ni, Ming; Huang, Yiqi; Huang, Qiushi; Huang, Longwen; Jiang, Lingli; Lu, Dan; Wang, Mingcong; Liu, Chang; Chen, Daizhuo; Chen, Chongyi; Chen, Xiaoyue; Yang, Le; Ma, Haisu; Chen, Jianguo; Ouyang, Qi

    2010-01-01

    Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic information-processing systems. In this study, we report the design and construction of a genetic sequential logic circuit in Escherichia coli. It can generate different outputs in response to the same input signal on the basis of its internal state, and 'memorize' the output. The circuit is composed of two parts: (1) a bistable switch memory module and (2) a double-repressed promoter NOR gate module. The two modules were individually rationally designed, and they were coupled together by fine-tuning the interconnecting parts through directed evolution. After fine-tuning, the circuit could be repeatedly, alternatively triggered by the same input signal; it functions as a push-on push-off switch. PMID:20212522

  8. Novel Approach To Synthesis of Logic Circuits Based on Multifunctional Components

    NASA Astrophysics Data System (ADS)

    Crha, Adam; Růžička, Richard; Šimek, Václav

    2016-01-01

    Multifunctional logic continuously becomes an important way how to implement compact and cheap circuits with intrinsic reconfiguration features. Polymorphic electronics concept with its substantial technological independency opens a way to fulfil this objective through the adoption of emerging semiconductor technologies and advanced synthesis methods. The paper comes with a proposal of a novel synthesis method oriented on the exploitation of polymorphic electronics principles. Key part of it is based on Boolean divisor identification and function kernelling technique. The proposed method is evaluated with several test circuits.

  9. Application of error correcting codes in fault-tolerant logic design for VLSI circuits

    NASA Astrophysics Data System (ADS)

    Lala, P. K.; Martin, H. L.

    1990-05-01

    It is now generally accepted that not all faults in VLSI logic can be represented by the stuck-at-0 and stuck-at-1 models used at the gate level. In order to ensure realistic modeling, faults should be considered at the transistor level, since only at the level the complete circuit structure is known. In other words, test for circuits should be derived based on possible shorts and opens at the transistor level. A stuck-open or stuck-closed transistor can be modeled by replacing the faulty transistor with an open connection or a direct short respectively between the transistor's source and drain.

  10. How Young Children Understand Electric Circuits: Prediction, Explanation and Exploration

    ERIC Educational Resources Information Center

    Glauert, Esme Bridget

    2009-01-01

    This paper reports findings from a study of young children's views about electric circuits. Twenty-eight children aged 5 and 6 years were interviewed. They were shown examples of circuits and asked to predict whether they would work and explain why. They were then invited to try out some of the circuit examples or make circuits of their own…

  11. Circuit Sense for Elementary Teachers and Students: Understanding and Building Simple Logic Circuits.

    ERIC Educational Resources Information Center

    Houghton, Janaye Matteson; Houghton, Robert S.

    Today and in the future, critical toolmaking advances will need to be made in the area of circuit design, construction, and implementation. Traditional school curriculum has sidestepped the area of tool design, especially at the elementary level. This publication addresses a calling for a new curriculum direction, based not only on the study of…

  12. A new way of predicting cement strength -- Fuzzy logic

    SciTech Connect

    Gao Faliang

    1997-06-01

    This paper is to analyze the fuzzy logic method of predicting cement strength and to calculate some samples with fuzzy models. In order to compare, samples of them are calculated with regression method. All of results are shown in both root mean square error and scattered map.

  13. Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia

    PubMed Central

    Urrios, Arturo; de Nadal, Eulàlia; Solé, Ricard; Posas, Francesc

    2016-01-01

    Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined. PMID:26829588

  14. Cell-to-Cell Communication Circuits: Quantitative Analysis of Synthetic Logic Gates

    PubMed Central

    Hoffman-Sommer, Marta; Supady, Adriana; Klipp, Edda

    2012-01-01

    One of the goals in the field of synthetic biology is the construction of cellular computation devices that could function in a manner similar to electronic circuits. To this end, attempts are made to create biological systems that function as logic gates. In this work we present a theoretical quantitative analysis of a synthetic cellular logic-gates system, which has been implemented in cells of the yeast Saccharomyces cerevisiae (Regot et al., 2011). It exploits endogenous MAP kinase signaling pathways. The novelty of the system lies in the compartmentalization of the circuit where all basic logic gates are implemented in independent single cells that can then be cultured together to perform complex logic functions. We have constructed kinetic models of the multicellular IDENTITY, NOT, OR, and IMPLIES logic gates, using both deterministic and stochastic frameworks. All necessary model parameters are taken from literature or estimated based on published kinetic data, in such a way that the resulting models correctly capture important dynamic features of the included mitogen-activated protein kinase pathways. We analyze the models in terms of parameter sensitivity and we discuss possible ways of optimizing the system, e.g., by tuning the culture density. We apply a stochastic modeling approach, which simulates the behavior of whole populations of cells and allows us to investigate the noise generated in the system; we find that the gene expression units are the major sources of noise. Finally, the model is used for the design of system modifications: we show how the current system could be transformed to operate on three discrete values. PMID:22934039

  15. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals.

    PubMed

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2013-02-15

    Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411

  16. Spin-based logic in semiconductors for reconfigurable large-scale circuits

    NASA Astrophysics Data System (ADS)

    Dery, H.; Dalal, P.; Cywiński, Ł.; Sham, L. J.

    2007-05-01

    Research in semiconductor spintronics aims to extend the scope of conventional electronics by using the spin degree of freedom of an electron in addition to its charge. Significant scientific advances in this area have been reported, such as the development of diluted ferromagnetic semiconductors, spin injection into semiconductors from ferromagnetic metals and discoveries of new physical phenomena involving electron spin. Yet no viable means of developing spintronics in semiconductors has been presented. Here we report a theoretical design that is a conceptual step forward-spin accumulation is used as the basis of a semiconductor computer circuit. Although the giant magnetoresistance effect in metals has already been commercially exploited, it does not extend to semiconductor/ferromagnet systems, because the effect is too weak for logic operations. We overcome this obstacle by using spin accumulation rather than spin flow. The basic element in our design is a logic gate that consists of a semiconductor structure with multiple magnetic contacts; this serves to perform fast and reprogrammable logic operations in a noisy, room-temperature environment. We then introduce a method to interconnect a large number of these gates to form a `spin computer'. As the shrinking of conventional complementary metal-oxide-semiconductor (CMOS) transistors reaches its intrinsic limit, greater computational capability will mean an increase in both circuit area and power dissipation. Our spin-based approach may provide wide margins for further scaling and also greater computational capability per gate.

  17. Mixed logic style adder circuit designed and fabricated using SOI substrate for irradiation-hardened experiment

    NASA Astrophysics Data System (ADS)

    Yuan, Shoucai; Liu, Yamei

    2016-08-01

    This paper proposed a rail to rail swing, mixed logic style 28-transistor 1-bit full adder circuit which is designed and fabricated using silicon-on-insulator (SOI) substrate with 90 nm gate length technology. The main goal of our design is space application where circuits may be damaged by outer space radiation; so the irradiation-hardened technique such as SOI structure should be used. The circuit's delay, power and power-delay product (PDP) of our proposed gate diffusion input (GDI)-based adder are HSPICE simulated and compared with other reported high-performance 1-bit adder. The GDI-based 1-bit adder has 21.61% improvement in delay and 18.85% improvement in PDP, over the reported 1-bit adder. However, its power dissipation is larger than that reported with 3.56% increased but is still comparable. The worst case performance of proposed 1-bit adder circuit is also seen to be less sensitive to variations in power supply voltage (VDD) and capacitance load (CL), over a wide range from 0.6 to 1.8 V and 0 to 200 fF, respectively. The proposed and reported 1-bit full adders are all layout designed and wafer fabricated with other circuits/systems together on one chip. The chip measurement and analysis has been done at VDD = 1.2 V, CL = 20 fF, and 200 MHz maximum input signal frequency with temperature of 300 K.

  18. Hyperbranched Hybridization Chain Reaction for Triggered Signal Amplification and Concatenated Logic Circuits.

    PubMed

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying; Wang, Zonghua

    2015-07-01

    A hyper-branched hybridization chain reaction (HB-HCR) is presented herein, which consists of only six species that can metastably coexist until the introduction of an initiator DNA to trigger a cascade of hybridization events, leading to the self-sustained assembly of hyper-branched and nicked double-stranded DNA structures. The system can readily achieve ultrasensitive detection of target DNA. Moreover, the HB-HCR principle is successfully applied to construct three-input concatenated logic circuits with excellent specificity and extended to design a security-mimicking keypad lock system. Significantly, the HB-HCR-based keypad lock can alarm immediately if the "password" is incorrect. Overall, the proposed HB-HCR with high amplification efficiency is simple, homogeneous, fast, robust, and low-cost, and holds great promise in the development of biosensing, in the programmable assembly of DNA architectures, and in molecular logic operations. PMID:26012841

  19. Bus-controlled power driver circuits for high voltages, using linear compatible I2L logic

    NASA Astrophysics Data System (ADS)

    Clauss, H.; Kuebler, M.

    1986-04-01

    A technology for monolithic integration of bipolar transistors, having breakdown voltages greater than or = to 60 V, and I2L-logic was developed. Bipolar transistors with high breakdown voltages must have thick, low doped epitaxial layers and low dc current gain, but I2L-logic with high packing density and short gate delay demands thin epitaxial layers and high dc current gain. A process with two epitaxial layers with buried layer and different intrinsic base doping for the two types of npn-transistor was developed. Bus-controlled power driver circuits for inductive loads in industrial systems were realized. Devices have 60 V maximum supply voltage and, electronically limited, 260 mA max output current.

  20. Plasmonic-multimode-interference-based logic circuit with simple phase adjustment

    NASA Astrophysics Data System (ADS)

    Ota, Masashi; Sumimura, Asahi; Fukuhara, Masashi; Ishii, Yuya; Fukuda, Mitsuo

    2016-04-01

    All-optical logic circuits using surface plasmon polaritons have a potential for high-speed information processing with high-density integration beyond the diffraction limit of propagating light. However, a number of logic gates that can be cascaded is limited by complicated signal phase adjustment. In this study, we demonstrate a half-adder operation with simple phase adjustment using plasmonic multimode interference (MMI) devices, composed of dielectric stripes on a metal film, which can be fabricated by a complementary metal-oxide semiconductor (MOS)-compatible process. Also, simultaneous operations of XOR and AND gates are substantiated experimentally by combining 1 × 1 MMI based phase adjusters and 2 × 2 MMI based intensity modulators. An experimental on-off ratio of at least 4.3 dB is confirmed using scanning near-field optical microscopy. The proposed structure will contribute to high-density plasmonic circuits, fabricated by complementary MOS-compatible process or printing techniques.

  1. Plasmonic-multimode-interference-based logic circuit with simple phase adjustment

    PubMed Central

    Ota, Masashi; Sumimura, Asahi; Fukuhara, Masashi; Ishii, Yuya; Fukuda, Mitsuo

    2016-01-01

    All-optical logic circuits using surface plasmon polaritons have a potential for high-speed information processing with high-density integration beyond the diffraction limit of propagating light. However, a number of logic gates that can be cascaded is limited by complicated signal phase adjustment. In this study, we demonstrate a half-adder operation with simple phase adjustment using plasmonic multimode interference (MMI) devices, composed of dielectric stripes on a metal film, which can be fabricated by a complementary metal-oxide semiconductor (MOS)-compatible process. Also, simultaneous operations of XOR and AND gates are substantiated experimentally by combining 1 × 1 MMI based phase adjusters and 2 × 2 MMI based intensity modulators. An experimental on-off ratio of at least 4.3 dB is confirmed using scanning near-field optical microscopy. The proposed structure will contribute to high-density plasmonic circuits, fabricated by complementary MOS-compatible process or printing techniques. PMID:27086694

  2. Plasmonic-multimode-interference-based logic circuit with simple phase adjustment.

    PubMed

    Ota, Masashi; Sumimura, Asahi; Fukuhara, Masashi; Ishii, Yuya; Fukuda, Mitsuo

    2016-01-01

    All-optical logic circuits using surface plasmon polaritons have a potential for high-speed information processing with high-density integration beyond the diffraction limit of propagating light. However, a number of logic gates that can be cascaded is limited by complicated signal phase adjustment. In this study, we demonstrate a half-adder operation with simple phase adjustment using plasmonic multimode interference (MMI) devices, composed of dielectric stripes on a metal film, which can be fabricated by a complementary metal-oxide semiconductor (MOS)-compatible process. Also, simultaneous operations of XOR and AND gates are substantiated experimentally by combining 1 × 1 MMI based phase adjusters and 2 × 2 MMI based intensity modulators. An experimental on-off ratio of at least 4.3 dB is confirmed using scanning near-field optical microscopy. The proposed structure will contribute to high-density plasmonic circuits, fabricated by complementary MOS-compatible process or printing techniques. PMID:27086694

  3. Development of an optical parallel logic device and a half-adder circuit for digital optical processing

    NASA Technical Reports Server (NTRS)

    Athale, R. A.; Lee, S. H.

    1978-01-01

    The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.

  4. Nanoelectromechanical digital logic circuits using curved cantilever switches with amorphous-carbon-coated contacts

    NASA Astrophysics Data System (ADS)

    Ayala, Christopher L.; Grogg, Daniel; Bazigos, Antonios; Bleiker, Simon J.; Fernandez-Bolaños, Montserrat; Niklaus, Frank; Hagleitner, Christoph

    2015-11-01

    Nanoelectromechanical (NEM) switches have the potential to complement or replace traditional CMOS transistors in the area of ultra-low-power digital electronics. This paper reports the demonstration of prototype circuits including the first 3-stage ring oscillator built using cell-level digital logic elements based on curved NEM switches. The ring oscillator core occupies an area of 30 μm × 10 μm using 6 NEM switches. Each NEM switch device has a footprint of 5 μm × 3 μm, an air gap of 60 μm and is coated with amorphous carbon (a-C) for reliable operation. The ring oscillator operates at a frequency of 6.7 MHz, and confirms the simulated inverter propagation delay of 25 ns. The successful fabrication and measurement of this demonstrator are key milestones on the way towards an optimized, scaled technology with sub-nanosecond switching times, lower operating voltages and VLSI implementation.

  5. Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators.

    PubMed

    Tian, Yonghui; Zhao, Yongpeng; Chen, Wenjie; Guo, Anqi; Li, Dezhao; Zhao, Guolin; Liu, Zilong; Xiao, Huifu; Liu, Guipeng; Yang, Jianhong

    2015-10-01

    We report an electro-optic photonic integrated circuit which can perform the exclusive (XOR) logic operation based on two silicon parallel-cascaded microring resonators (MRRs) fabricated on the silicon-on-insulator (SOI) platform. PIN diodes embedded around MRRs are employed to achieve the carrier injection modulation. Two electrical pulse sequences regarded as two operands of operations are applied to PIN diodes to modulate two MRRs through the free carrier dispersion effect. The final operation result of two operands is output at the Output port in the form of light. The scattering matrix method is employed to establish numerical model of the device, and numerical simulator SG-framework is used to simulate the electrical characteristics of the PIN diodes. XOR operation with the speed of 100Mbps is demonstrated successfully. PMID:26480148

  6. A logical molecular circuit for programmable and autonomous regulation of protein activity using DNA aptamer-protein interactions.

    PubMed

    Han, Da; Zhu, Zhi; Wu, Cuichen; Peng, Lu; Zhou, Leiji; Gulbakan, Basri; Zhu, Guizhi; Williams, Kathryn R; Tan, Weihong

    2012-12-26

    Researchers increasingly envision an important role for artificial biochemical circuits in biological engineering, much like electrical circuits in electrical engineering. Similar to electrical circuits, which control electromechanical devices, biochemical circuits could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expressions in vivo. (1) As a consequence of their relative robustness and potential applicability for controlling a wide range of in vitro chemistries, synthetic cell-free biochemical circuits promise to be useful in manipulating the functions of biological molecules. Here, we describe the first logical circuit based on DNA-protein interactions with accurate threshold control, enabling autonomous, self-sustained and programmable manipulation of protein activity in vitro. Similar circuits made previously were based primarily on DNA hybridization and strand displacement reactions. This new design uses the diverse nucleic acid interactions with proteins. The circuit can precisely sense the local enzymatic environment, such as the concentration of thrombin, and when it is excessively high, a coagulation inhibitor is automatically released by a concentration-adjusted circuit module. To demonstrate the programmable and autonomous modulation, a molecular circuit with different threshold concentrations of thrombin was tested as a proof of principle. In the future, owing to tunable regulation, design modularity and target specificity, this prototype could lead to the development of novel DNA biochemical circuits to control the delivery of aptamer-based drugs in smart and personalized medicine, providing a more efficient and safer therapeutic strategy. PMID:23194304

  7. A logical molecular circuit for programmable and autonomous regulation of protein activity using DNA aptamer-protein interactions

    PubMed Central

    Han, Da; Zhu, Zhi; Wu, Cuichen; Peng, Lu; Zhou, Leiji; Gulbakan, Basri; Zhu, Guizhi; Williams, Kathryn R.; Tan, Weihong

    2013-01-01

    Researchers increasingly envision an important role for artificial biochemical circuits in biological engineering, much like electrical circuits in electrical engineering. Similar to electrical circuits, which control electromechanical devices, biochemical circuits could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expressions in vivo.1 As a consequence of their relative robustness and potential applicability for controlling a wide range of in vitro chemistries, synthetic cell-free biochemical circuits promise to be useful in manipulating the functions of biological molecules. Here we describe the first logical circuit based on DNA-protein interactions with accurate threshold control, enabling autonomous, self-sustained and programmable manipulation of protein activity in vitro. Similar circuits made previously were based primarily on DNA hybridization and strand displacement reactions. This new design uses the diverse nucleic acid interactions with proteins. The circuit can precisely sense the local enzymatic environment, such as the concentration of thrombin, and when it is excessively high, a coagulation inhibitor is automatically released by a concentration-adjusted circuit module. To demonstrate the programmable and autonomous modulation, a molecular circuit with different threshold concentrations of thrombin was tested as a proof of principle. In the future, owing to tunable regulation, design modularity and target specificity, this prototype could lead to the development of novel DNA biochemical circuits to control the delivery of aptamer-based drugs in smart and personalized medicine, providing a more efficient and safer therapeutic strategy. PMID:23194304

  8. A novel logic-based approach for quantitative toxicology prediction.

    PubMed

    Amini, Ata; Muggleton, Stephen H; Lodhi, Huma; Sternberg, Michael J E

    2007-01-01

    There is a pressing need for accurate in silico methods to predict the toxicity of molecules that are being introduced into the environment or are being developed into new pharmaceuticals. Predictive toxicology is in the realm of structure activity relationships (SAR), and many approaches have been used to derive such SAR. Previous work has shown that inductive logic programming (ILP) is a powerful approach that circumvents several major difficulties, such as molecular superposition, faced by some other SAR methods. The ILP approach reasons with chemical substructures within a relational framework and yields chemically understandable rules. Here, we report a general new approach, support vector inductive logic programming (SVILP), which extends the essentially qualitative ILP-based SAR to quantitative modeling. First, ILP is used to learn rules, the predictions of which are then used within a novel kernel to derive a support-vector generalization model. For a highly heterogeneous dataset of 576 molecules with known fathead minnow fish toxicity, the cross-validated correlation coefficients (R2CV) from a chemical descriptor method (CHEM) and SVILP are 0.52 and 0.66, respectively. The ILP, CHEM, and SVILP approaches correctly predict 55, 58, and 73%, respectively, of toxic molecules. In a set of 165 unseen molecules, the R2 values from the commercial software TOPKAT and SVILP are 0.26 and 0.57, respectively. In all calculations, SVILP showed significant improvements in comparison with the other methods. The SVILP approach has a major advantage in that it uses ILP automatically and consistently to derive rules, mostly novel, describing fragments that are toxicity alerts. The SVILP is a general machine-learning approach and has the potential of tackling many problems relevant to chemoinformatics including in silico drug design. PMID:17451225

  9. Final report on LDRD project :leaky-mode VCSELs for photonic logic circuits.

    SciTech Connect

    Hargett, Terry W.; Hadley, G. Ronald; Serkland, Darwin Keith; Blansett, Ethan L.; Geib, Kent Martin; Sullivan, Charles Thomas; Keeler, Gordon Arthur; Bauer, Thomas; Ongstand, Andrea; Medrano, Melissa R.; Peake, Gregory Merwin; Montano, Victoria A.

    2005-11-01

    This report describes the research accomplishments achieved under the LDRD Project ''Leaky-mode VCSELs for photonic logic circuits''. Leaky-mode vertical-cavity surface-emitting lasers (VCSELs) offer new possibilities for integration of microcavity lasers to create optical microsystems. A leaky-mode VCSEL output-couples light laterally, in the plane of the semiconductor wafer, which allows the light to interact with adjacent lasers, modulators, and detectors on the same wafer. The fabrication of leaky-mode VCSELs based on effective index modification was proposed and demonstrated at Sandia in 1999 but was not adequately developed for use in applications. The aim of this LDRD has been to advance the design and fabrication of leaky-mode VCSELs to the point where initial applications can be attempted. In the first and second years of this LDRD we concentrated on overcoming previous difficulties in the epitaxial growth and fabrication of these advanced VCSELs. In the third year, we focused on applications of leaky-mode VCSELs, such as all-optical processing circuits based on gain quenching.

  10. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range.

    PubMed

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-01-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154

  11. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    NASA Astrophysics Data System (ADS)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-04-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications.

  12. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    PubMed Central

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-01-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154

  13. Protein secondary structure prediction using logic-based machine learning.

    PubMed

    Muggleton, S; King, R D; Sternberg, M J

    1992-10-01

    Many attempts have been made to solve the problem of predicting protein secondary structure from the primary sequence but the best performance results are still disappointing. In this paper, the use of a machine learning algorithm which allows relational descriptions is shown to lead to improved performance. The Inductive Logic Programming computer program, Golem, was applied to learning secondary structure prediction rules for alpha/alpha domain type proteins. The input to the program consisted of 12 non-homologous proteins (1612 residues) of known structure, together with a background knowledge describing the chemical and physical properties of the residues. Golem learned a small set of rules that predict which residues are part of the alpha-helices--based on their positional relationships and chemical and physical properties. The rules were tested on four independent non-homologous proteins (416 residues) giving an accuracy of 81% (+/- 2%). This is an improvement, on identical data, over the previously reported result of 73% by King and Sternberg (1990, J. Mol. Biol., 216, 441-457) using the machine learning program PROMIS, and of 72% using the standard Garnier-Osguthorpe-Robson method. The best previously reported result in the literature for the alpha/alpha domain type is 76%, achieved using a neural net approach. Machine learning also has the advantage over neural network and statistical methods in producing more understandable results. PMID:1480619

  14. Threshold voltage control in dinaphthothienothiophene-based organic transistors by plasma treatment: Toward their application to logic circuits

    NASA Astrophysics Data System (ADS)

    Kitani, Asahi; Kimura, Yoshinari; Kitamura, Masatoshi; Arakawa, Yasuhiko

    2016-03-01

    The threshold voltage in p-channel organic thin-film transistors (TFTs) having dinaphthothienothiophene as a channel material has been investigated toward their applicability to logic circuits. Oxygen plasma treatment of the gate dielectric surface was carried out to control the threshold voltage. The threshold voltage changed in the range from -6.4 to 9.4 V, depending on plasma treatment time and the thickness of the gate dielectric. The surface charge after plasma treatment was estimated from the dependence of the threshold voltage. Operation of logic inverters consisting of TFTs with different threshold voltages was demonstrated as an application of TFTs with controlled threshold voltage.

  15. Path programmable logic: A structured design method for digital and/or mixed analog integrated circuits

    NASA Technical Reports Server (NTRS)

    Taylor, B.

    1990-01-01

    The design of Integrated Circuits has evolved past the black art practiced by a few semiconductor companies to a world wide community of users. This was basically accomplished by the development of computer aided design tools which were made available to this community. As the tools matured into different components of the design task they were accepted into the community at large. However, the next step in this evolution is being ignored by the large tool vendors hindering the continuation of this process. With system level definition and simulation through the logic specification well understood, why is the physical generation so blatantly ignored. This portion of the development is still treated as an isolated task with information being passed from the designer to the layout function. Some form of result given back but it severely lacks full definition of what has transpired. The level of integration in I.C.'s for tomorrow, whether through new processes or applications will require higher speeds, increased transistor density, and non-digital performance which can only be achieved through attention to the physical implementation.

  16. Providing Reliability of Physical Systems: Fully Delay Testable Logical Circuit Design with Compact Representation of all PDF Test Pairs

    NASA Astrophysics Data System (ADS)

    Matrosova, A. Yu.; Mitrofanov, E. V.; Akhynova, D. I.

    2016-01-01

    Functional reliability is one of the important properties of physical systems provided by reliability of system components, in particular, control logical components. The new approach to fully delay testable circuit design oriented to cut overheads and lengths of circuit paths has been developed. Compact representation of all PDF test pairs is reduced to keeping the corresponding generative vector pairs. The number of generative vector pairs does not exceed the doubled number of internal ROBDD nodes originating from the circuit, while the number of the circuit paths can exponentially depend on the number of these internal nodes. The algorithm of involving the PDF test pair from the proper generative vector pair is suggested. This procedure does not require essential calculations. The algorithm of deriving the generative vector pair has a polynomial complexity.

  17. Predicting the behavior of microfluidic circuits made from discrete elements

    PubMed Central

    Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-01-01

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand. PMID:26516059

  18. Predicting the behavior of microfluidic circuits made from discrete elements

    NASA Astrophysics Data System (ADS)

    Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-10-01

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand.

  19. Predicting the behavior of microfluidic circuits made from discrete elements.

    PubMed

    Bhargava, Krisna C; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-01-01

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand. PMID:26516059

  20. Fluorescence resonance energy transfer-based molecular logic circuit using a DNA scaffold

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Ogura, Yusuke; Tanida, Jun

    2012-12-01

    This paper presents a method of information processing using biomolecular input signals and fluorescence resonance energy transfer (FRET) signaling constructed on a DNA scaffold. Logic operations are achieved by encoding molecular inputs into an arrangement of fluorescence dyes using simple DNA reactions and by evaluating a logic expression using local photonic signaling that is much faster than DNA reactions. Experimental results verify the operation of a complete set of Boolean logic functions (AND, OR, NOT) and combinational logic operations using a FRET-signal cascade.

  1. Reliable Logic Circuit Elements that Exploit Nonlinearity in the Presence of a Noise Floor

    NASA Astrophysics Data System (ADS)

    Murali, K.; Sinha, Sudeshna; Ditto, William L.; Bulsara, Adi R.

    2009-03-01

    The response of a noisy nonlinear system to deterministic input signals can be enhanced by cooperative phenomena. We show that when one presents two square waves as input to a two-state system, the response of the system can produce a logical output (NOR/OR) with a probability controlled by the noise intensity. As one increases the noise (for fixed threshold or nonlinearity), the probability of the output reflecting a NOR/OR operation increases to unity and then decreases. Changing the nonlinearity (or the thresholds) of the system changes the output into another logic operation (NAND/AND) whose probability displays analogous behavior. The interplay of nonlinearity and noise can yield logic behavior, and the emergent outcome of such systems is a logic gate. This “logical stochastic resonance” is demonstrated via an experimental realization of a two-state system with two (adjustable) thresholds.

  2. Reliable logic circuit elements that exploit nonlinearity in the presence of a noise floor.

    PubMed

    Murali, K; Sinha, Sudeshna; Ditto, William L; Bulsara, Adi R

    2009-03-13

    The response of a noisy nonlinear system to deterministic input signals can be enhanced by cooperative phenomena. We show that when one presents two square waves as input to a two-state system, the response of the system can produce a logical output (NOR/OR) with a probability controlled by the noise intensity. As one increases the noise (for fixed threshold or nonlinearity), the probability of the output reflecting a NOR/OR operation increases to unity and then decreases. Changing the nonlinearity (or the thresholds) of the system changes the output into another logic operation (NAND/AND) whose probability displays analogous behavior. The interplay of nonlinearity and noise can yield logic behavior, and the emergent outcome of such systems is a logic gate. This "logical stochastic resonance" is demonstrated via an experimental realization of a two-state system with two (adjustable) thresholds. PMID:19392115

  3. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    NASA Astrophysics Data System (ADS)

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V‑1 sec‑1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  4. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    PubMed Central

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  5. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  6. Double gate (DG)-SOI ratioed logic with symmetric DG load??a novel approach for sub 50 nm low-voltage/low-power circuit design

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Salman, A.; Ioannou, D. P.; Tretz, C.; Ioannou, D. E.

    2004-11-01

    In this paper we introduce a novel logic gate family based on Double Gate (DG) SOI MOSFETs for low voltage/low power circuits. The logic gates are based on ratioed logic with depletion-mode (i.e., intrinsically on) Symmetric DG (SDG) load transistors and inversion-mode Asymmetric DG (ADG) driver transistors. Using this technique a basic inverter was designed, with better performance compared to "classical" CMOS DG design. This technique was extended to create a complete set of basic logic gates including NOR2, NAND2 and XOR2 gates.

  7. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    PubMed

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. PMID:26774211

  8. Cardiopulmonary Circuit Models for Predicting Injury to the Heart

    NASA Astrophysics Data System (ADS)

    Ward, Richard; Wing, Sarah; Bassingthwaighte, James; Neal, Maxwell

    2004-11-01

    Circuit models have been used extensively in physiology to describe cardiopulmonary function. Such models are being used in the DARPA Virtual Soldier (VS) Project* to predict the response to injury or physiological stress. The most complex model consists of systemic circulation, pulmonary circulation, and a four-chamber heart sub-model. This model also includes baroreceptor feedback, airway mechanics, gas exchange, and pleural pressure influence on the circulation. As part of the VS Project, Oak Ridge National Laboratory has been evaluating various cardiopulmonary circuit models for predicting the effects of injury to the heart. We describe, from a physicist's perspective, the concept of building circuit models, discuss both unstressed and stressed models, and show how the stressed models are used to predict effects of specific wounds. *This work was supported by a grant from the DARPA, executed by the U.S. Army Medical Research and Materiel Command/TATRC Cooperative Agreement, Contract # W81XWH-04-2-0012. The submitted manuscript has been authored by the U.S. Department of Energy, Office of Science of the Oak Ridge National Laboratory, managed for the U.S. DOE by UT-Battelle, LLC, under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purpose.

  9. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric

    PubMed Central

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-01-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V−1 sec−1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process. PMID:27184121

  10. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric

    NASA Astrophysics Data System (ADS)

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-05-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V‑1 sec‑1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process.

  11. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric.

    PubMed

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-01-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm(2) V(-1) sec(-)1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 10(4)), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process. PMID:27184121

  12. Fault-tolerant computer study. [logic designs for building block circuits

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.; Avizienis, A. A.; Ercegovac, M. D.

    1981-01-01

    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed.

  13. Do institutional logics predict interpretation of contract rules at the dental chair-side?

    PubMed

    Harris, Rebecca; Brown, Stephen; Holt, Robin; Perkins, Elizabeth

    2014-12-01

    In quasi-markets, contracts find purchasers influencing health care providers, although problems exist where providers use personal bias and heuristics to respond to written agreements, tending towards the moral hazard of opportunism. Previous research on quasi-market contracts typically understands opportunism as fully rational, individual responses selecting maximally efficient outcomes from a set of possibilities. We take a more emotive and collective view of contracting, exploring the influence of institutional logics in relation to the opportunistic behaviour of dentists. Following earlier qualitative work where we identified four institutional logics in English general dental practice, and six dental contract areas where there was scope for opportunism; in 2013 we surveyed 924 dentists to investigate these logics and whether they had predictive purchase over dentists' chair-side behaviour. Factor analysis involving 300 responses identified four logics entwined in (often technical) behaviour: entrepreneurial commercialism, duty to staff and patients, managerialism, public good. PMID:25441320

  14. Do institutional logics predict interpretation of contract rules at the dental chair-side?

    PubMed Central

    Harris, Rebecca; Brown, Stephen; Holt, Robin; Perkins, Elizabeth

    2014-01-01

    In quasi-markets, contracts find purchasers influencing health care providers, although problems exist where providers use personal bias and heuristics to respond to written agreements, tending towards the moral hazard of opportunism. Previous research on quasi-market contracts typically understands opportunism as fully rational, individual responses selecting maximally efficient outcomes from a set of possibilities. We take a more emotive and collective view of contracting, exploring the influence of institutional logics in relation to the opportunistic behaviour of dentists. Following earlier qualitative work where we identified four institutional logics in English general dental practice, and six dental contract areas where there was scope for opportunism; in 2013 we surveyed 924 dentists to investigate these logics and whether they had predictive purchase over dentists' chair-side behaviour. Factor analysis involving 300 responses identified four logics entwined in (often technical) behaviour: entrepreneurial commercialism, duty to staff and patients, managerialism, public good. PMID:25441320

  15. Standard high-reliability integrated circuit logic packaging. [for deep space tracking stations

    NASA Technical Reports Server (NTRS)

    Slaughter, D. W.

    1977-01-01

    A family of standard, high-reliability hardware used for packaging digital integrated circuits is described. The design transition from early prototypes to production hardware is covered and future plans are discussed. Interconnections techniques are described as well as connectors and related hardware available at both the microcircuit packaging and main-frame level. General applications information is also provided.

  16. Morphological elucidation of basal ganglia circuits contributing reward prediction

    PubMed Central

    Fujiyama, Fumino; Takahashi, Susumu; Karube, Fuyuki

    2015-01-01

    Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of the reward prediction error and conduct reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor–critic model has been previously proposed and extended by the existence of role sharing within the striatum, focusing on the striosome/matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome/matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments. PMID:25698913

  17. Morphological elucidation of basal ganglia circuits contributing reward prediction.

    PubMed

    Fujiyama, Fumino; Takahashi, Susumu; Karube, Fuyuki

    2015-01-01

    Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of the reward prediction error and conduct reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor-critic model has been previously proposed and extended by the existence of role sharing within the striatum, focusing on the striosome/matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome/matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments. PMID:25698913

  18. All-metallic electrically gated 2H-TaSe{sub 2} thin-film switches and logic circuits

    SciTech Connect

    Renteria, J.; Jiang, C.; Yan, Z.; Samnakay, R.; Goli, P.; Pope, T. R.; Salguero, T. T.; Wickramaratne, D.; Lake, R. K.; Khitun, A. G.; Balandin, A. A.

    2014-01-21

    We report the fabrication and performance of all-metallic three-terminal devices with tantalum diselenide thin-film conducting channels. For this proof-of-concept demonstration, the layers of 2H-TaSe{sub 2} were exfoliated mechanically from single crystals grown by the chemical vapor transport method. Devices with nanometer-scale thicknesses exhibit strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. We have found that the drain-source current in thin-film 2H-TaSe{sub 2}–Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. These results may open new application space for thin films of van der Waals materials.

  19. Data-Mining-Based Coronary Heart Disease Risk Prediction Model Using Fuzzy Logic and Decision Tree

    PubMed Central

    Kim, Jaekwon; Lee, Jongsik

    2015-01-01

    Objectives The importance of the prediction of coronary heart disease (CHD) has been recognized in Korea; however, few studies have been conducted in this area. Therefore, it is necessary to develop a method for the prediction and classification of CHD in Koreans. Methods A model for CHD prediction must be designed according to rule-based guidelines. In this study, a fuzzy logic and decision tree (classification and regression tree [CART])-driven CHD prediction model was developed for Koreans. Datasets derived from the Korean National Health and Nutrition Examination Survey VI (KNHANES-VI) were utilized to generate the proposed model. Results The rules were generated using a decision tree technique, and fuzzy logic was applied to overcome problems associated with uncertainty in CHD prediction. Conclusions The accuracy and receiver operating characteristic (ROC) curve values of the propose systems were 69.51% and 0.594, proving that the proposed methods were more efficient than other models. PMID:26279953

  20. A fuzzy-logic based dual-purpose adaptive circuit for vibration control and energy harvesting using piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Liu, Zhe Peng; Li, Qing

    2013-04-01

    Due to their two-way electromechanical coupling effect, piezoelectric transducers can be used to synthesize passive vibration control schemes, e.g., RLC circuit with the integration of inductance and resistance elements that is conceptually similar to damped vibration absorber. Meanwhile, the wide usage of wireless sensors has led to the recent enthusiasm of developing piezoelectric-based energy harvesting devices that can convert ambient vibratory energy into useful electrical energy. It can be shown that the integration of circuitry elements such as resistance and inductance can benefit the energy harvesting capability. Here we explore a dual-purpose circuit that can facilitate simultaneous vibration suppression and energy harvesting. It is worth noting that the goal of vibration suppression and the goal of energy harvesting may not always complement each other. That is, the maximization of vibration suppression doesn't necessarily lead to the maximization of energy harvesting, and vice versa. In this research, we develop a fuzzy-logic based algorithm to decide the proper selection of circuitry elements to balance between the two goals. As the circuitry elements can be online tuned, this research yields an adaptive circuitry concept for the effective manipulation of system energy and vibration suppression. Comprehensive analyses are carried out to demonstrate the concept and operation.

  1. Total Organic Carbon prediction in shale gas reservoirs using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Ouadfeul, Sid-Ali; Aliouane, Leila

    2015-04-01

    Here, we suggest the use the fuzzy logic approach for the prediction of the Total Organic Carbon (TOC) from well-logs data in shale gas reservoirs, two models are used for the estimation of the TOC from well-logs data; the first one is called the Schmoker's model while the second one is called the Passey's model. Scmocker's model requires the continuous measurement of the Bulk density, in case of absence of the bulk density measurement the Schmoker's model is not able to predict the TOC. In this case we suggest the use fuzzy logic system able to predict the total organic carbon in shale gas formations. The input of the fuzzy system is the four raw well-logs data measurements corresponding to the natural gamma ray, the neutron porosity, the slowness of the primary and shear waves. The desired output is the calculated TOC using the Schmoker's model. Application to well-logs data of two horizontal wells drilled in the lower Barnett shale clearly shows the ability of the fuzzy logic approach to suggest values of the total organic carbon in case of no bulk density measurement. Keywords TOC, Schmoker's model, Fuzzy logic, shale gas, Barnett shale, prediction.

  2. Optical flip-flops and sequential logic circuits using a liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Fatehi, M. T.; Collins, S. A., Jr.; Wasmundt, K. C.

    1984-01-01

    This paper is concerned with the application of optics to digital computing. A Hughes liquid crystal light valve is used as an active optical element where a weak light beam can control a strong light beam with either a positive or negative gain characteristic. With this device as the central element the ability to produce bistable states from which different types of flip-flop can be implemented is demonstrated. In this paper, some general comments are first presented on digital computing as applied to optics. This is followed by a discussion of optical implementation of various types of flip-flop. These flip-flops are then used in the design of optical equivalents to a few simple sequential circuits such as shift registers and accumulators. As a typical sequential machine, a schematic layout for an optical binary temporal integrator is presented. Finally, a suggested experimental configuration for an optical master-slave flip-flop array is given.

  3. Low voltage logic circuits exploiting gate level dynamic body biasing in 28 nm UTBB FD-SOI

    NASA Astrophysics Data System (ADS)

    Taco, Ramiro; Levi, Itamar; Lanuzza, Marco; Fish, Alexander

    2016-03-01

    In this paper, the recently proposed gate level body bias (GLBB) technique is evaluated for low voltage logic design in state-of-the-art 28 nm ultra-thin body and box (UTBB) fully-depleted silicon-on-insulator (FD-SOI) technology. The inherent benefits of the low-granularity body-bias control, provided by the GLBB approach, are emphasized by the efficiency of forward body bias (FBB) in the FD-SOI technology. In addition, the possibility to integrate PMOS and NMOS devices into a single common well configuration allows significant area reduction, as compared to an equivalent triple well implementation. Some arithmetic circuits were designed using GLBB approach and compared to their conventional CMOS and DTMOS counterparts under different running conditions at low voltage regime. Simulation results shows that, for 300 mV of supply voltage, a 4 × 4-bit GLBB Baugh Wooley multiplier allows performance improvement of about 30% and area reduction of about 35%, while maintaining low energy consumption as compared to the conventional CMOS ⧹ DTMOS solutions. Performance and energy benefits are maintained over a wide range of process-voltage-temperature (PVT) variations.

  4. Causal Mathematical Logic as a guiding framework for the prediction of "Intelligence Signals" in brain simulations

    NASA Astrophysics Data System (ADS)

    Lanzalaco, Felix; Pissanetzky, Sergio

    2013-12-01

    A recent theory of physical information based on the fundamental principles of causality and thermodynamics has proposed that a large number of observable life and intelligence signals can be described in terms of the Causal Mathematical Logic (CML), which is proposed to encode the natural principles of intelligence across any physical domain and substrate. We attempt to expound the current definition of CML, the "Action functional" as a theory in terms of its ability to possess a superior explanatory power for the current neuroscientific data we use to measure the mammalian brains "intelligence" processes at its most general biophysical level. Brain simulation projects define their success partly in terms of the emergence of "non-explicitly programmed" complex biophysical signals such as self-oscillation and spreading cortical waves. Here we propose to extend the causal theory to predict and guide the understanding of these more complex emergent "intelligence Signals". To achieve this we review whether causal logic is consistent with, can explain and predict the function of complete perceptual processes associated with intelligence. Primarily those are defined as the range of Event Related Potentials (ERP) which include their primary subcomponents; Event Related Desynchronization (ERD) and Event Related Synchronization (ERS). This approach is aiming for a universal and predictive logic for neurosimulation and AGi. The result of this investigation has produced a general "Information Engine" model from translation of the ERD and ERS. The CML algorithm run in terms of action cost predicts ERP signal contents and is consistent with the fundamental laws of thermodynamics. A working substrate independent natural information logic would be a major asset. An information theory consistent with fundamental physics can be an AGi. It can also operate within genetic information space and provides a roadmap to understand the live biophysical operation of the phenotype

  5. Simulation of the Predictive Control Algorithm for Container Crane Operation using Matlab Fuzzy Logic Tool Box

    NASA Technical Reports Server (NTRS)

    Richardson, Albert O.

    1997-01-01

    This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.

  6. Feasibility of using adaptive logic networks to predict compressor unit failure

    SciTech Connect

    Armstrong, W.W.; Chungying Chu; Thomas, M.M.

    1995-12-31

    In this feasibility study, an adaptive logic network (ALN) was trained to predict failures of turbine-driven compressor units using a large database of measurements. No expert knowledge about compressor systems was involved. The predictions used only the statistical properties of the measurements and the indications of failure types. A fuzzy set was used to model measurements typical of normal operation. It was constrained by a requirement imposed during ALN training, that it should have a shape similar to a Gaussian density, more precisely, that its logarithm should be convex-up. Initial results obtained using this approach to knowledge discovery in the database were encouraging.

  7. A novel prediction method about single components of analog circuits based on complex field modeling.

    PubMed

    Zhou, Jingyu; Tian, Shulin; Yang, Chenglin

    2014-01-01

    Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator) calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits' single components. At last, it uses particle filter (PF) to update parameters for the model and predicts remaining useful performance (RUP) of analog circuits' single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments. PMID:25147853

  8. Ferrite logic reliability study

    NASA Technical Reports Server (NTRS)

    Baer, J. A.; Clark, C. B.

    1973-01-01

    Development and use of digital circuits called all-magnetic logic are reported. In these circuits the magnetic elements and their windings comprise the active circuit devices in the logic portion of a system. The ferrite logic device belongs to the all-magnetic class of logic circuits. The FLO device is novel in that it makes use of a dual or bimaterial ferrite composition in one physical ceramic body. This bimaterial feature, coupled with its potential for relatively high speed operation, makes it attractive for high reliability applications. (Maximum speed of operation approximately 50 kHz.)

  9. Performance evaluation of cost-based vs. fuzzy-logic-based prediction approaches in PRIDE

    NASA Astrophysics Data System (ADS)

    Kootbally, Z.; Schlenoff, C.; Madhavan, R.; Foufou, S.

    2008-04-01

    PRIDE (PRediction In Dynamic Environments) is a hierarchical multi-resolutional framework for moving object prediction. PRIDE incorporates multiple prediction algorithms into a single, unifying framework. To date, we have applied this framework to predict the future location of autonomous vehicles during on-road driving. In this paper, we describe two different approaches to compute long-term predictions (on the order of seconds into the future) within PRIDE. The first is a cost-based approach that uses a discretized set of vehicle motions and costs associated with states and actions to compute probabilities of vehicle motion. The cost-based approach is the first prediction approach we have been using within PRIDE. The second is a fuzzy-logic-based approach that deals with the pervasive presence of uncertainty in the environment to negotiate complex traffic situations. Using the high-fidelity physics-based framework for the Unified System for Automation and Robot Simulation (USARSim), we will compare the performance of the two approaches in different driving situations at traffic intersections. Consequently, we will show how the two approaches complement each other and how their combination performs better than the cost-based approach only.

  10. Programmable logic controller implementation of an auto-tuned predictive control based on minimal plant information.

    PubMed

    Valencia-Palomo, G; Rossiter, J A

    2011-01-01

    This paper makes two key contributions. First, it tackles the issue of the availability of constrained predictive control for low-level control loops. Hence, it describes how the constrained control algorithm is embedded in an industrial programmable logic controller (PLC) using the IEC 61131-3 programming standard. Second, there is a definition and implementation of a novel auto-tuned predictive controller; the key novelty is that the modelling is based on relatively crude but pragmatic plant information. Laboratory experiment tests were carried out in two bench-scale laboratory systems to prove the effectiveness of the combined algorithm and hardware solution. For completeness, the results are compared with a commercial proportional-integral-derivative (PID) controller (also embedded in the PLC) using the most up to date auto-tuning rules. PMID:21056412

  11. Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling

    PubMed Central

    Flobak, Åsmund; Baudot, Anaïs; Remy, Elisabeth; Thommesen, Liv; Thieffry, Denis; Kuiper, Martin; Lægreid, Astrid

    2015-01-01

    Discovery of efficient anti-cancer drug combinations is a major challenge, since experimental testing of all possible combinations is clearly impossible. Recent efforts to computationally predict drug combination responses retain this experimental search space, as model definitions typically rely on extensive drug perturbation data. We developed a dynamical model representing a cell fate decision network in the AGS gastric cancer cell line, relying on background knowledge extracted from literature and databases. We defined a set of logical equations recapitulating AGS data observed in cells in their baseline proliferative state. Using the modeling software GINsim, model reduction and simulation compression techniques were applied to cope with the vast state space of large logical models and enable simulations of pairwise applications of specific signaling inhibitory chemical substances. Our simulations predicted synergistic growth inhibitory action of five combinations from a total of 21 possible pairs. Four of the predicted synergies were confirmed in AGS cell growth real-time assays, including known effects of combined MEK-AKT or MEK-PI3K inhibitions, along with novel synergistic effects of combined TAK1-AKT or TAK1-PI3K inhibitions. Our strategy reduces the dependence on a priori drug perturbation experimentation for well-characterized signaling networks, by demonstrating that a model predictive of combinatorial drug effects can be inferred from background knowledge on unperturbed and proliferating cancer cells. Our modeling approach can thus contribute to preclinical discovery of efficient anticancer drug combinations, and thereby to development of strategies to tailor treatment to individual cancer patients. PMID:26317215

  12. Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming

    SciTech Connect

    King, R.D.; Srinivasan, A.

    1996-10-01

    The machine learning program Progol was applied to the problem of forming the structure-activity relationship (SAR) for a set of compounds tested for carcinogenicity in rodent bioassays by the U.S. National Toxicology Program (NTP). Progol is the first inductive logic programming (ILP) algorithm to use a fully relational method for describing chemical structure in SARs, based on using atoms and their bond connectivities. Progol is well suited to forming SARs for carcinogenicity as it is designed to produce easily understandable rules (structural alerts) for sets of noncongeneric compounds. The Progol SAR method was tested by prediction of a set of compounds that have been widely predicted by other SAR methods (the compounds used in the NTP`s first round of carcinogenesis predictions). For these compounds no method (human or machine) was significantly more accurate than Progol. Progol was the most accurate method that did not use data from biological tests on rodents (however, the difference in accuracy is not significant). The Progol predictions were based solely on chemical structure and the results of tests for Salmonella mutagenicity. Using the full NTP database, the prediction accuracy of Progol was estimated to be 63% ({+-}3%) using 5-fold cross validation. A set of structural alerts for carcinogenesis was automatically generated and the chemical rationale for them investigated-these structural alerts are statistically independent of the Salmonella mutagenicity. Carcinogenicity is predicted for the compounds used in the NTP`s second round of carcinogenesis predictions. The results for prediction of carcinogenesis, taken together with the previous successful applications of predicting mutagenicity in nitroaromatic compounds, and inhibition of angiogenesis by suramin analogues, show that Progol has a role to play in understanding the SARs of cancer-related compounds. 29 refs., 2 figs., 4 tabs.

  13. Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming.

    PubMed Central

    King, R D; Srinivasan, A

    1996-01-01

    The machine learning program Progol was applied to the problem of forming the structure-activity relationship (SAR) for a set of compounds tested for carcinogenicity in rodent bioassays by the U.S. National Toxicology Program (NTP). Progol is the first inductive logic programming (ILP) algorithm to use a fully relational method for describing chemical structure in SARs, based on using atoms and their bond connectivities. Progol is well suited to forming SARs for carcinogenicity as it is designed to produce easily understandable rules (structural alerts) for sets of noncongeneric compounds. The Progol SAR method was tested by prediction of a set of compounds that have been widely predicted by other SAR methods (the compounds used in the NTP's first round of carcinogenesis predictions). For these compounds no method (human or machine) was significantly more accurate than Progol. Progol was the most accurate method that did not use data from biological tests on rodents (however, the difference in accuracy is not significant). The Progol predictions were based solely on chemical structure and the results of tests for Salmonella mutagenicity. Using the full NTP database, the prediction accuracy of Progol was estimated to be 63% (+/- 3%) using 5-fold cross validation. A set of structural alerts for carcinogenesis was automatically generated and the chemical rationale for them investigated- these structural alerts are statistically independent of the Salmonella mutagenicity. Carcinogenicity is predicted for the compounds used in the NTP's second round of carcinogenesis predictions. The results for prediction of carcinogenesis, taken together with the previous successful applications of predicting mutagenicity in nitroaromatic compounds, and inhibition of angiogenesis by suramin analogues, show that Progol has a role to play in understanding the SARs of cancer-related compounds. PMID:8933051

  14. Computer-aided prediction of high-frequency performance limits in silicon bipolar integrated circuits

    NASA Technical Reports Server (NTRS)

    Burns, J. L.; Choma, J., Jr.

    1982-01-01

    A circuit model for an existing silicon integrated bipolar junction transistor (IBJT) is used to evaluate presently achievable high frequency circuit performance. The relationship between circuit model and processing parameters are semi-quantitatively explored to make predictions on the frequency response, which can be achieved through realistic device fabrication modifications. A new figure of merit is introduced, which is defined as the signal frequency at which an integrated bipolar junction transistor can deliver a power gain of G. The most sensitive parameter influencing attainable high frequency IBJT performance is base resistance.

  15. Interference Path Loss Prediction in A319/320 Airplanes Using Modulated Fuzzy Logic and Neural Networks

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda L.

    2007-01-01

    In this paper, neural network (NN) modeling is combined with fuzzy logic to estimate Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data. Combining fuzzy logic and NN modeling is shown to improve estimates of measured data over estimates obtained with NN alone. A plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.

  16. Temporal and Spatial prediction of groundwater levels using Artificial Neural Networks, Fuzzy logic and Kriging interpolation.

    NASA Astrophysics Data System (ADS)

    Tapoglou, Evdokia; Karatzas, George P.; Trichakis, Ioannis C.; Varouchakis, Emmanouil A.

    2014-05-01

    The purpose of this study is to examine the use of Artificial Neural Networks (ANN) combined with kriging interpolation method, in order to simulate the hydraulic head both spatially and temporally. Initially, ANNs are used for the temporal simulation of the hydraulic head change. The results of the most appropriate ANNs, determined through a fuzzy logic system, are used as an input for the kriging algorithm where the spatial simulation is conducted. The proposed algorithm is tested in an area located across Isar River in Bayern, Germany and covers an area of approximately 7800 km2. The available data extend to a time period from 1/11/2008 to 31/10/2012 (1460 days) and include the hydraulic head at 64 wells, temperature and rainfall at 7 weather stations and surface water elevation at 5 monitoring stations. One feedforward ANN was trained for each of the 64 wells, where hydraulic head data are available, using a backpropagation algorithm. The most appropriate input parameters for each wells' ANN are determined considering their proximity to the measuring station, as well as their statistical characteristics. For the rainfall, the data for two consecutive time lags for best correlated weather station, as well as a third and fourth input from the second best correlated weather station, are used as an input. The surface water monitoring stations with the three best correlations for each well are also used in every case. Finally, the temperature for the best correlated weather station is used. Two different architectures are considered and the one with the best results is used henceforward. The output of the ANNs corresponds to the hydraulic head change per time step. These predictions are used in the kriging interpolation algorithm. However, not all 64 simulated values should be used. The appropriate neighborhood for each prediction point is constructed based not only on the distance between known and prediction points, but also on the training and testing error of

  17. Logic programming to predict cell fate patterns and retrodict genotypes in organogenesis

    PubMed Central

    Hall, Benjamin A.; Jackson, Ethan; Hajnal, Alex; Fisher, Jasmin

    2014-01-01

    Caenorhabditis elegans vulval development is a paradigm system for understanding cell differentiation in the process of organogenesis. Through temporal and spatial controls, the fate pattern of six cells is determined by the competition of the LET-23 and the Notch signalling pathways. Modelling cell fate determination in vulval development using state-based models, coupled with formal analysis techniques, has been established as a powerful approach in predicting the outcome of combinations of mutations. However, computing the outcomes of complex and highly concurrent models can become prohibitive. Here, we show how logic programs derived from state machines describing the differentiation of C. elegans vulval precursor cells can increase the speed of prediction by four orders of magnitude relative to previous approaches. Moreover, this increase in speed allows us to infer, or ‘retrodict’, compatible genomes from cell fate patterns. We exploit this technique to predict highly variable cell fate patterns resulting from dig-1 reduced-function mutations and let-23 mosaics. In addition to the new insights offered, we propose our technique as a platform for aiding the design and analysis of experimental data. PMID:24966232

  18. Controllable Threshold Voltage in Organic Complementary Logic Circuits with an Electron-Trapping Polymer and Photoactive Gate Dielectric Layer.

    PubMed

    Dao, Toan Thanh; Sakai, Heisuke; Nguyen, Hai Thanh; Ohkubo, Kei; Fukuzumi, Shunichi; Murata, Hideyuki

    2016-07-20

    We present controllable and reliable complementary organic transistor circuits on a PET substrate using a photoactive dielectric layer of 6-[4'-(N,N-diphenylamino)phenyl]-3-ethoxycarbonylcoumarin (DPA-CM) doped into poly(methyl methacrylate) (PMMA) and an electron-trapping layer of poly(perfluoroalkenyl vinyl ether) (Cytop). Cu was used for a source/drain electrode in both the p-channel and n-channel transistors. The threshold voltage of the transistors and the inverting voltage of the circuits were reversibly controlled over a wide range under a program voltage of less than 10 V and under UV light irradiation. At a program voltage of -2 V, the inverting voltage of the circuits was tuned to be at nearly half of the supply voltage of the circuit. Consequently, an excellent balance between the high and low noise margins (NM) was produced (64% of NMH and 68% of NML), resulting in maximum noise immunity. Furthermore, the programmed circuits showed high stability, such as a retention time of over 10(5) s for the inverter switching voltage. Our findings bring about a flexible, simple way to obtain robust, high-performance organic circuits using a controllable complementary transistor inverter. PMID:27348479

  19. Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi-responsive copolymer films on electrodes.

    PubMed

    Yu, Xue; Lian, Wenjing; Zhang, Jiannan; Liu, Hongyun

    2016-06-15

    Herein, poly(N-isopropylacrylamide-co-N,N'-dimethylaminoethylmethacrylate) copolymer films were polymerized on electrode surface with a simple one-step method, and the enzyme horseradish peroxidase (HRP) was embedded in the films simultaneously, which were designated as P(NiPAAm-co-DMEM)-HRP. The films exhibited a reversible structure change with the external stimuli, such as pH, CO2, temperature and SO4(2-), causing the cyclic voltammetric (CV) response of electroactive K3Fe(CN)6 at the film electrodes to display the corresponding multi-stimuli sensitive ON-OFF behavior. Based on the switchable CV property of the system and the electrochemical reduction of H2O2 catalyzed by HRP in the films and mediated by Fe(CN)6(3-) in solution, a 5-input/3-output logic gate was established. To further increase the complexity of the logic system, another enzyme glucose oxidase (GOD) was added into the films, designated as P(NiPAAm-co-DMEM)-HRP-GOD. In the presence of oxygen, the oxidation of glucose in the solution was catalyzed by GOD in the films, and the produced H2O2 in situ was recognized and electrocatalytically reduced by HRP and mediated by Fe(CN)6(3-). Based on the bienzyme films, a cascaded or concatenated 4-input/3-output logic gate system was proposed. The present work combined the multi-responsive interface with bioelectrocatalysis to construct cascaded logic circuits, which might open a new avenue to develop biocomputing elements with more sophisticated functions and design novel glucose biosensors. PMID:26901460

  20. Flip-flop logic circuit based on fully solution-processed organic thin film transistor devices with reduced variations in electrical performance

    NASA Astrophysics Data System (ADS)

    Takeda, Yasunori; Yoshimura, Yudai; Adib, Faiz Adi Ezarudin Bin; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2015-04-01

    Organic reset-set (RS) flip-flop logic circuits based on pseudo-CMOS inverters have been fabricated using full solution processing at a relatively low process temperatures of 150 °C or less. The work function for printed silver electrodes was increased from 4.7 to 5.4 eV through surface modification with a self-assembled monolayer (SAM) material. A bottom-gate, bottom-contact organic thin-film transistor (OTFT) device using a solution-processable small-molecular semiconductor material exhibited field-effect mobility of 0.40 cm2 V-1 s-1 in the saturation region and a threshold voltage (VTH) of -2.4 V in ambient air operation conditions. In order to reduce the variations in mobility and VTH, we designed a circuit with six transistors arranged in parallel, in order to average out their electrical characteristics. As a result, we have succeeded in reducing these variations without changing the absolute values of the mobility and VTH. The fabricated RS flip-flop circuits were functioned well and exhibited short delay times of 3.5 ms at a supply voltage of 20 V.

  1. Three-Dimensional Flexible Complementary Metal-Oxide-Semiconductor Logic Circuits Based On Two-Layer Stacks of Single-Walled Carbon Nanotube Networks.

    PubMed

    Zhao, Yudan; Li, Qunqing; Xiao, Xiaoyang; Li, Guanhong; Jin, Yuanhao; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2016-02-23

    We have proposed and fabricated stable and repeatable, flexible, single-walled carbon nanotube (SWCNT) thin film transistor (TFT) complementary metal-oxide-semiconductor (CMOS) integrated circuits based on a three-dimensional (3D) structure. Two layers of SWCNT-TFT devices were stacked, where one layer served as n-type devices and the other one served as p-type devices. On the basis of this method, it is able to save at least half of the area required to construct an inverter and make large-scale and high-density integrated CMOS circuits easier to design and manufacture. The 3D flexible CMOS inverter gain can be as high as 40, and the total noise margin is more than 95%. Moreover, the input and output voltage of the inverter are exactly matched for cascading. 3D flexible CMOS NOR, NAND logic gates, and 15-stage ring oscillators were fabricated on PI substrates with high performance as well. Stable electrical properties of these circuits can be obtained with bending radii as small as 3.16 mm, which shows that such a 3D structure is a reliable architecture and suitable for carbon nanotube electrical applications in complex flexible and wearable electronic devices. PMID:26768020

  2. Simulated Laboratory in Digital Logic.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    Design of computer circuits used to be a pencil and paper task followed by laboratory tests, but logic circuit design can now be done in half the time as the engineer accesses a program which simulates the behavior of real digital circuits, and does all the wiring and testing on his computer screen. A simulated laboratory in digital logic has been…

  3. Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model

    NASA Astrophysics Data System (ADS)

    Sakurai, Atsushi; Zhao, Bo; Zhang, Zhuomin M.

    2014-12-01

    Metamaterial thermal emitters and absorbers have been widely studied for different geometric patterns by exciting a variety of electromagnetic resonances. A resistor-inductor-capacitor (RLC) circuit model is developed to describe the magnetic resonances (i.e. magnetic polaritons) inside the structures. The RLC circuit model allows the prediction of not only the resonance frequency, but also the full width at half maximum and quality factor for various geometric patterns. The parameters predicted by the RLC model are compared with the finite-difference time-domain simulation. The magnetic field distribution and the power dissipation density profile are also used to justify the RLC circuit model. The geometric effects on the resonance characteristics are elucidated in the wire (or strip), cross, and square patterned metamaterial in the infrared region. This study will facilitate the design of metamaterial absorbers and emitters based on magnetic polaritons.

  4. A comparative study of fuzzy logic systems approach for river discharge prediction

    NASA Astrophysics Data System (ADS)

    Jayawardena, A. W.; Perera, E. D. P.; Zhu, Bing; Amarasekara, J. D.; Vereivalu, V.

    2014-06-01

    In recent years, flood disasters resulting from extreme rainfall have been on the increase in many regions of the world. In developed countries, the usual practice of mitigating flood disasters is by structural means which can reduce infrastructural damages as well as casualties but are unaffordable in most developing countries. The alternative then is to look for non-structural means that involve, among other things, early warning systems which can reduce casualties. The basic technical components of an early warning system involves a measurable input data set that trigger floods, a measurable output data set that quantify the extent of flood and an appropriate mathematical model that transforms the input data set into a corresponding output data set. There are many types of mathematical models that can be used to transform the input data into corresponding output data. The crux of this paper is on one type of data driven mathematical models, namely the use of fuzzy logic approach. The reliability and robustness of the approach are demonstrated with daily and 6-hourly discharge predictions in 4 rivers in 3 countries having contrasting climatological, geographical and land use characteristics. The first application is for two tropical rivers in Sri Lanka using daily upstream rainfall and discharge data to predict downstream discharge with the minimum implication function type Mamdani fuzzy inference system. The second application is for another tropical river in Fiji using similar type of data with daily and 6-h time scales. Both Mamdani type fuzzy inference system with minimum and product implication functions as well as Larsen type inference systems were used. In the third application, daily upstream and tributary discharges were used to predict downstream discharges in a temperate-climate river in China using the TSK type fuzzy inference system with clustering. The methods are robust and the results obtained are within reasonable agreement with observations.

  5. Low Power Consumption Complementary Inverters with n-MoS2 and p-WSe2 Dichalcogenide Nanosheets on Glass for Logic and Light-Emitting Diode Circuits.

    PubMed

    Jeon, Pyo Jin; Kim, Jin Sung; Lim, June Yeong; Cho, Youngsuk; Pezeshki, Atiye; Lee, Hee Sung; Yu, Sanghyuck; Min, Sung-Wook; Im, Seongil

    2015-10-14

    Two-dimensional (2D) semiconductor materials with discrete bandgap become important because of their interesting physical properties and potentials toward future nanoscale electronics. Many 2D-based field effect transistors (FETs) have thus been reported. Several attempts to fabricate 2D complementary (CMOS) logic inverters have been made too. However, those CMOS devices seldom showed the most important advantage of typical CMOS: low power consumption. Here, we adopted p-WSe2 and n-MoS2 nanosheets separately for the channels of bottom-gate-patterned FETs, to fabricate 2D dichalcogenide-based hetero-CMOS inverters on the same glass substrate. Our hetero-CMOS inverters with electrically isolated FETs demonstrate novel and superior device performances of a maximum voltage gain as ∼27, sub-nanowatt power consumption, almost ideal noise margin approaching 0.5VDD (supply voltage, VDD=5 V) with a transition voltage of 2.3 V, and ∼800 μs for switching delay. Moreover, our glass-substrate CMOS device nicely performed digital logic (NOT, OR, and AND) and push-pull circuits for organic light-emitting diode switching, directly displaying the prospective of practical applications. PMID:26399664

  6. Electrically reconfigurable logic array

    NASA Technical Reports Server (NTRS)

    Agarwal, R. K.

    1982-01-01

    To compose the complicated systems using algorithmically specialized logic circuits or processors, one solution is to perform relational computations such as union, division and intersection directly on hardware. These relations can be pipelined efficiently on a network of processors having an array configuration. These processors can be designed and implemented with a few simple cells. In order to determine the state-of-the-art in Electrically Reconfigurable Logic Array (ERLA), a survey of the available programmable logic array (PLA) and the logic circuit elements used in such arrays was conducted. Based on this survey some recommendations are made for ERLA devices.

  7. Plastic corollary discharge predicts sensory consequences of movements in a cerebellum-like circuit.

    PubMed

    Requarth, Tim; Sawtell, Nathaniel B

    2014-05-21

    The capacity to predict the sensory consequences of movements is critical for sensory, motor, and cognitive function. Though it is hypothesized that internal signals related to motor commands, known as corollary discharge, serve to generate such predictions, this process remains poorly understood at the neural circuit level. Here we demonstrate that neurons in the electrosensory lobe (ELL) of weakly electric mormyrid fish generate negative images of the sensory consequences of the fish's own movements based on ascending spinal corollary discharge signals. These results generalize previous findings describing mechanisms for generating negative images of the effects of the fish's specialized electric organ discharge (EOD) and suggest that a cerebellum-like circuit endowed with associative synaptic plasticity acting on corollary discharge can solve the complex and ubiquitous problem of predicting sensory consequences of movements. PMID:24853945

  8. Reversible logic gates on Physarum Polycephalum

    SciTech Connect

    Schumann, Andrew

    2015-03-10

    In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum.

  9. Fundamentals of Digital Logic.

    ERIC Educational Resources Information Center

    Noell, Monica L.

    This course is designed to prepare electronics personnel for further training in digital techniques, presenting need to know information that is basic to any maintenance course on digital equipment. It consists of seven study units: (1) binary arithmetic; (2) boolean algebra; (3) logic gates; (4) logic flip-flops; (5) nonlogic circuits; (6)…

  10. Pore Pressure prediction in shale gas reservoirs using neural network and fuzzy logic with an application to Barnett Shale.

    NASA Astrophysics Data System (ADS)

    Aliouane, Leila; Ouadfeul, Sid-Ali; Boudella, Amar

    2015-04-01

    The main goal of the proposed idea is to use the artificial intelligence such as the neural network and fuzzy logic to predict the pore pressure in shale gas reservoirs. Pore pressure is a very important parameter that will be used or estimation of effective stress. This last is used to resolve well-bore stability problems, failure plan identification from Mohr-Coulomb circle and sweet spots identification. Many models have been proposed to estimate the pore pressure from well-logs data; we can cite for example the equivalent depth model, the horizontal model for undercompaction called the Eaton's model…etc. All these models require a continuous measurement of the slowness of the primary wave, some thing that is not easy during well-logs data acquisition in shale gas formtions. Here, we suggest the use the fuzzy logic and the multilayer perceptron neural network to predict the pore pressure in two horizontal wells drilled in the lower Barnett shale formation. The first horizontal well is used for the training of the fuzzy set and the multilayer perecptron, the input is the natural gamma ray, the neutron porosity, the slowness of the compression and shear wave, however the desired output is the estimated pore pressure using Eaton's model. Data of another horizontal well are used for generalization. Obtained results clearly show the power of the fuzzy logic system than the multilayer perceptron neural network machine to predict the pore pressure in shale gas reservoirs. Keywords: artificial intelligence, fuzzy logic, pore pressure, multilayer perecptron, Barnett shale.

  11. Poisson's ratio prediction through dual stimulated fuzzy logic by ACE and GA-PS

    NASA Astrophysics Data System (ADS)

    Bagheripour, Parisa; Asoodeh, Mojtaba

    2014-08-01

    Poisson's ratio is one of the most important rock mechanical parameters having significance in both planning and post analysis of wellbore operations. Laboratory measurement of this parameter covers a broad range of costs, including sidewall sampling, preservation, and laboratory tests. This study proposes an improved strategy, called dual stimulated fuzzy logic by ACE and GA-PS for determining Poisson's ratio from conventional well log data in a rapid, precise, and cost-effective way. Firstly, conventional well log data are transformed to a higher correlated data space with Poisson's ratio through the use of alternative condition expectation (ACE) algorithm. This step simplifies the convoluted space of the problem and makes it easier to solve for fuzzy logic. Subsequently, transformed conventional well log data are fed to fuzzy logic model. To ensure that optimal fuzzy model is constructed, a hybrid genetic algorithm-pattern search (GA-PS) technique is employed for extracting fuzzy clusters (or rules). This step sets fuzzy logic to its optimal performance. The propounded strategy was successfully applied to data from carbonate reservoir rocks of an Iranian Oil Field. A comparison between present model and previous models showed superiority of current study.

  12. Predicting conversion time of circuit design file by artificial neural networks

    NASA Astrophysics Data System (ADS)

    Jang, Sung-Hoon; Lee, Jee-Hyong; Ahn, Byoung-Sup; Ki, Won-Tai; Choi, Ji-Hyeon; Woo, Sang-Gyun; Cho, Han-Ku

    2008-03-01

    GDSII is a data format of the circuit design file for producing semiconductor. GDSII is also used as a transfer format for fabricating photo mask as well. As design rules are getting smaller and RET (Resolution Enhancement Technology) is getting more complicated, the time of converting GDSII to a mask data format has been increased, which influences the period of mask production. Photo mask shops all over the world are widely using computer clusters which are connected through a network, that is, called distributed computing method, to reduce the converting time. Commonly computing resource for conversion is assigned based on the input file size. However, the result of experiments showed that the input file size was improper to predict the computing resource usage. In this paper, we propose the methodology of artificial intelligence with considering the properties of GDSII file to handle circuit design files more efficiently. The conversion time will be optimized by controlling the hardware resource for data conversion as long as the conversion time is predictable through analyzing the design data. Neural networks are used to predict the conversion time for this research. In this paper, the application of neural networks for the time prediction will be discussed and experimental results will be shown with comparing to statistical model based approaches.

  13. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  14. Helical logic

    NASA Astrophysics Data System (ADS)

    Merkle, Ralph C.; Drexler, K. Eric

    1996-12-01

    Helical logic is a theoretical proposal for a future computing technology using the presence or absence of individual electrons (or holes) to encode 1s and 0s. The electrons are constrained to move along helical paths, driven by a rotating electric field in which the entire circuit is immersed. The electric field remains roughly orthogonal to the major axis of the helix and confines each charge carrier to a fraction of a turn of a single helical loop, moving it like water in an Archimedean screw. Each loop could in principle hold an independent carrier, permitting high information density. One computationally universal logic operation involves two helices, one of which splits into two `descendant' helices. At the point of divergence, differences in the electrostatic potential resulting from the presence or absence of a carrier in the adjacent helix controls the direction taken by a carrier in the splitting helix. The reverse of this sequence can be used to merge two initially distinct helical paths into a single outgoing helical path without forcing a dissipative transition. Because these operations are both logically and thermodynamically reversible, energy dissipation can be reduced to extremely low levels. This is the first proposal known to the authors that combines thermodynamic reversibility with the use of single charge carriers. It is important to note that this proposal permits a single electron to switch another single electron, and does not require that many electrons be used to switch one electron. The energy dissipated per logic operation can very likely be reduced to less than 0957-4484/7/4/004/img5 at a temperature of 1 K and a speed of 10 GHz, though further analysis is required to confirm this. Irreversible operations, when required, can be easily implemented and should have a dissipation approaching the fundamental limit of 0957-4484/7/4/004/img6.

  15. Neural logic molecular, counter-intuitive.

    PubMed

    Egorov, Igor K

    2007-09-01

    A hypothesis is proposed that multiple "LOGIC" genes control Boolean logic in a neuron. Each hypothetical LOGIC gene encodes a transcription factor that regulates another LOGIC gene(s). Through transcription regulation, LOGIC genes connect into a complex circuit, such as a XOR logic gate or a two-input flip-flop logic circuit capable of retaining information. LOGIC gene duplication, mutation and recombination may result in the diversification of Boolean logic gates. Creative thinking may sometimes require counter-intuitive reasoning, rather than common sense. Such reasoning is likely to engage novel logic circuits produced by LOGIC somatic mutations. An individual's logic maturates by a mechanism of somatic hypermutation, gene conversion and recombination of LOGIC genes in precursor cells followed by selection of neurons in the brain for functional competence. In this model, a single neuron among billions in the brain may contain a unique logic circuit being the key to a hard intellectual problem. The output of a logic neuron is likely to be a neurotransmitter. This neuron is connected to other neurons in the spiking neural network. The LOGIC gene hypothesis is testable by molecular techniques. Understanding mechanisms of authentic human ingenuity may help to invent digital systems capable of creative thinking. PMID:17509937

  16. Pass transistor implementations of multivalued logic

    NASA Technical Reports Server (NTRS)

    Maki, G.; Whitaker, S.

    1990-01-01

    A simple straight-forward Karnaugh map logic design procedure for realization of multiple-valued logic circuits is presented in this paper. Pass transistor logic gates are used to realize multiple-valued networks. This work is an extension of pass transistor implementations for binary-valued logic.

  17. An innovative approach to predict technology evolution for the desoldering of printed circuit boards: A perspective from China and America.

    PubMed

    Wang, Chen; Zhao, Wu; Wang, Jie; Chen, Ling; Luo, Chun-Jing

    2016-06-01

    The printed circuit boards basis of electronic equipment have seen a rapid growth in recent years and played a significant role in modern life. Nowadays, the fact that electronic devices upgrade quickly necessitates a proper management of waste printed circuit boards. Non-destructive desoldering of waste printed circuit boards becomes the first and the most crucial step towards recycling electronic components. Owing to the diversity of materials and components, the separation process is difficult, which results in complex and expensive recovery of precious materials and electronic components from waste printed circuit boards. To cope with this problem, we proposed an innovative approach integrating Theory of Inventive Problem Solving (TRIZ) evolution theory and technology maturity mapping system to forecast the evolution trends of desoldering technology of waste printed circuit boards. This approach can be applied to analyse the technology evolution, as well as desoldering technology evolution, then research and development strategy and evolution laws can be recommended. As an example, the maturity of desoldering technology is analysed with a technology maturity mapping system model. What is more, desoldering methods in different stages are analysed and compared. According to the analysis, the technological evolution trends are predicted to be 'the law of energy conductivity' and 'increasing the degree of idealisation'. And the potential technology and evolutionary state of waste printed circuit boards are predicted, offering reference for future waste printed circuit boards recycling. PMID:27067430

  18. Predicting missing expression values in gene regulatory networks using a discrete logic modeling optimization guided by network stable states

    PubMed Central

    Crespo, Isaac; Krishna, Abhimanyu; Le Béchec, Antony; del Sol, Antonio

    2013-01-01

    The development of new high-throughput technologies enables us to measure genome-wide transcription levels, protein abundance, metabolite concentration, etc. Nevertheless, these experimental data are often noisy and incomplete, which hinders data analysis, modeling and prediction. Here, we propose a method to predict expression values of genes involved in stable cellular phenotypes from the expression values of the remaining genes in a literature-based gene regulatory network. The consistency between predicted and known stable states from experimental data is used to guide an iterative network pruning that contextualizes the network to the biological conditions under which the expression data were obtained. Using the contextualized network and the property of network stability we predict gene expression values missing from experimental data. The prediction method assumes a Boolean model to compute steady states of networks and an evolutionary algorithm to iteratively prune the networks. The evolutionary algorithm samples the probability distribution of positive feedback loops or positive circuits and individual interactions within the subpopulation of the best-pruned networks at each iteration. The resulting expression inference is based not only on previous knowledge about local connectivity but also on a global network property (stability), providing robustness in the predictions. PMID:22941654

  19. ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster

    PubMed Central

    Volna, Eva; Kotyrba, Martin; Habiballa, Hashim

    2015-01-01

    The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series. PMID:26221620

  20. ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster.

    PubMed

    Volna, Eva; Kotyrba, Martin; Habiballa, Hashim

    2015-01-01

    The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series. PMID:26221620

  1. The Use of a Predictive Habitat Model and a Fuzzy Logic Approach for Marine Management and Planning

    PubMed Central

    Hattab, Tarek; Ben Rais Lasram, Frida; Albouy, Camille; Sammari, Chérif; Romdhane, Mohamed Salah; Cury, Philippe; Leprieur, Fabien; Le Loc’h, François

    2013-01-01

    Bottom trawl survey data are commonly used as a sampling technique to assess the spatial distribution of commercial species. However, this sampling technique does not always correctly detect a species even when it is present, and this can create significant limitations when fitting species distribution models. In this study, we aim to test the relevance of a mixed methodological approach that combines presence-only and presence-absence distribution models. We illustrate this approach using bottom trawl survey data to model the spatial distributions of 27 commercially targeted marine species. We use an environmentally- and geographically-weighted method to simulate pseudo-absence data. The species distributions are modelled using regression kriging, a technique that explicitly incorporates spatial dependence into predictions. Model outputs are then used to identify areas that met the conservation targets for the deployment of artificial anti-trawling reefs. To achieve this, we propose the use of a fuzzy logic framework that accounts for the uncertainty associated with different model predictions. For each species, the predictive accuracy of the model is classified as ‘high’. A better result is observed when a large number of occurrences are used to develop the model. The map resulting from the fuzzy overlay shows that three main areas have a high level of agreement with the conservation criteria. These results align with expert opinion, confirming the relevance of the proposed methodology in this study. PMID:24146867

  2. Complementary transistor-transistor logic /CTTL/ - An approach to high-speed micropower logic.

    NASA Technical Reports Server (NTRS)

    Stehlin, R. A.; Niemann, G. W.

    1972-01-01

    Description of a new approach to micropower integrated circuits that is called complementary transistor-transistor logic (CTTL). This logic combines the inherent low standby power of a complementary inverter with the high speed of the TTL-type input. Results of monolithic fabricated circuits are presented. These circuits are shown to be equally adaptable to hybrid and discrete circuitry.

  3. Model-based predictions of solid state intermetallic compound layer growth in hybrid microelectronic circuits

    SciTech Connect

    Vianco, P.T.; Erickson, K.L.; Hopkins, P.L.

    1997-12-31

    A mathematical model was developed to quantitatively describe the intermetallic compound (IMC) layer growth that takes place between a Sn-based solder and a noble metal thick film conductor material used in hybrid microcircuit (HMC) assemblies. The model combined the reaction kinetics of the solder/substrate interaction, as determined from ancillary isothermal aging experiments, with a 2-D finite element mesh that took account of the porous morphology of the thick film coating. The effect of the porous morphology on the IMC layer growth when compared to the traditional 1-D computations was significant. The previous 1-D calculations under-predicted the nominal IMC layer thickness relative to the 2-D case. The 2-D model showed greater substrate consumption by IMC growth and lesser solder consumption that was determined with the 1-D computation. The new 2-D model allows the design engineer to better predict circuit aging and hence, the reliability of HMC hardware that is placed in the field.

  4. Neural circuits underlying mother's voice perception predict social communication abilities in children.

    PubMed

    Abrams, Daniel A; Chen, Tianwen; Odriozola, Paola; Cheng, Katherine M; Baker, Amanda E; Padmanabhan, Aarthi; Ryali, Srikanth; Kochalka, John; Feinstein, Carl; Menon, Vinod

    2016-05-31

    The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child's life is mother's voice: Infants discriminate their mother's voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother's voice or whether this brain activity is related to children's social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (<1 s) nonsense words produced by their biological mother and two female control voices and explored relationships between speech-evoked neural activity and social function. Compared to female control voices, mother's voice elicited greater activity in primary auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother's voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired. PMID:27185915

  5. Neural circuits underlying mother’s voice perception predict social communication abilities in children

    PubMed Central

    Abrams, Daniel A.; Chen, Tianwen; Odriozola, Paola; Cheng, Katherine M.; Baker, Amanda E.; Padmanabhan, Aarthi; Ryali, Srikanth; Kochalka, John; Feinstein, Carl; Menon, Vinod

    2016-01-01

    The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child’s life is mother's voice: Infants discriminate their mother’s voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother’s voice or whether this brain activity is related to children’s social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (<1 s) nonsense words produced by their biological mother and two female control voices and explored relationships between speech-evoked neural activity and social function. Compared to female control voices, mother’s voice elicited greater activity in primary auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother’s voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired. PMID:27185915

  6. Electronic logic for enhanced switch reliability

    DOEpatents

    Cooper, J.A.

    1984-01-20

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and fail-safe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  7. Assessment and prediction of air quality using fuzzy logic and autoregressive models

    NASA Astrophysics Data System (ADS)

    Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.

    2012-12-01

    In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.

  8. Prediction of historical forest habitat patterns using binomial distributions and simple Boolean logic from high spatial resolution remote sensing

    NASA Astrophysics Data System (ADS)

    Coops, Nicholas C.; Catling, Peter C.

    2001-08-01

    The identification of forest habitat, its spatial pattern and use by selected taxa is a vital step for the protection of biodiversity. The use of airborne videography and frequency distribution models based on historical habitat complexity data can provide detailed information on the spatial and temporal variation of habitat, respectively. The two techniques, however, have not been jointly applied to link the temporal variation in habitat to the spatial variation of habitat over the landscape to provide a complete historical picture of the variation of habitat quality of a forest estate. In this paper, a processing methodology is developed which allows the current spatial distribution of habitat quality to be used as a base to make retrospective predictions of the spatial extent and pattern of habitat quality over the landscape. This is achieved by projecting the spatial distribution of habitat complexity scores derived from the videography, backward in time using a combination of simple Boolean logic, estimated binomial distributions, and the use of random fluctuations to mimic natural forest dynamics that are likely to have occurred over the modeling period. The simulations provide information on the type and condition of habitat in recent history and can be linked to models predicting the abundance of a variety of common and endangered taxa.

  9. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  10. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  11. Radiation tolerant combinational logic cell

    NASA Technical Reports Server (NTRS)

    Maki, Gary R. (Inventor); Gambles, Jody W. (Inventor); Whitaker, Sterling (Inventor)

    2009-01-01

    A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine. Some embodiments of the invention produce dual rail outputs Q and Q'. The logic block typically contains combinational logic and is similar, in size and transistor configuration, to a conventional CMOS combinational logic design. However, only a very small portion of the circuits of these embodiments, is sensitive to Single Event Upset and/or Single Event Transients.

  12. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices.

    PubMed

    Vanhoestenberghe, A; Donaldson, N

    2013-06-01

    Corrosion is a prime concern for active implantable devices. In this paper we review the principles underlying the concepts of hermetic packages and encapsulation, used to protect implanted electronics, some of which remain widely overlooked. We discuss how technological advances have created a need to update the way we evaluate the suitability of both protection methods. We demonstrate how lifetime predictability is lost for very small hermetic packages and introduce a single parameter to compare different packages, with an equation to calculate the minimum sensitivity required from a test method to guarantee a given lifetime. In the second part of this paper, we review the literature on the corrosion of encapsulated integrated circuits (ICs) and, following a new analysis of published data, we propose an equation for the pre-corrosion lifetime of implanted ICs, and discuss the influence of the temperature, relative humidity, encapsulation and field-strength. As any new protection will be tested under accelerated conditions, we demonstrate the sensitivity of acceleration factors to some inaccurately known parameters. These results are relevant for any application of electronics working in a moist environment. Our comparison of encapsulation and hermetic packages suggests that both concepts may be suitable for future implants. PMID:23685410

  13. New Approach on Logic Application of Ferroelectric Random Access Memory Technology

    NASA Astrophysics Data System (ADS)

    Takayama, Masao; Koyama, Shinzo; Nozawa, Hiroshi

    2002-11-01

    In this paper, a new approach is described to solve some problems that occur when ferroelectric random access memory (FeRAM) is applied to logic circuits, particularly RSA cryptography. Application of a programmable switch device to RSA-based cryptography processing circuits was explored. RSA-based cryptography processing circuits have been designed as code conversion circuits. The capacity of the code conversion programmable AND gate and FeRAM and the translation rate have been investigated as a function of bit length. As a result, a problem of huge capacity at the practical bit length can be predicted theoretically. To solve this problem, we propose a new scheme for circuits and a new algorithm of logic operation using the binomial theorem.

  14. Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions.

    PubMed

    Albert, Réka; Thakar, Juilee

    2014-01-01

    The biomolecules inside or near cells form a complex interacting system. Cellular phenotypes and behaviors arise from the totality of interactions among the components of this system. A fruitful way of modeling interacting biomolecular systems is by network-based dynamic models that characterize each component by a state variable, and describe the change in the state variables due to the interactions in the system. Dynamic models can capture the stable state patterns of this interacting system and can connect them to different cell fates or behaviors. A Boolean or logic model characterizes each biomolecule by a binary state variable that relates the abundance of that molecule to a threshold abundance necessary for downstream processes. The regulation of this state variable is described in a parameter free manner, making Boolean modeling a practical choice for systems whose kinetic parameters have not been determined. Boolean models integrate the body of knowledge regarding the components and interactions of biomolecular systems, and capture the system's dynamic repertoire, for example the existence of multiple cell fates. These models were used for a variety of systems and led to important insights and predictions. Boolean models serve as an efficient exploratory model, a guide for follow-up experiments, and as a foundation for more quantitative models. PMID:25269159

  15. Implementing Exclusive-OR Logic

    NASA Technical Reports Server (NTRS)

    Hough, M. E.

    1983-01-01

    Two integrated circuits, BCD-to-decimal decoder and four-input NAND gate, form basic four, input XOR circuit. Multiple-input exclusive-OR logic is implemented by combining several basic elements. 16-input XOR gate is assembled from five NAND gates and five decoders. Same principle extended to handle more inputs.

  16. A Formalized Design Process for Bacterial Consortia That Perform Logic Computing

    PubMed Central

    Sun, Rui; Xi, Jingyi; Wen, Dingqiao; Feng, Jingchen; Chen, Yiwei; Qin, Xiao; Ma, Yanrong; Luo, Wenhan; Deng, Linna; Lin, Hanchi; Yu, Ruofan; Ouyang, Qi

    2013-01-01

    The concept of microbial consortia is of great attractiveness in synthetic biology. Despite of all its benefits, however, there are still problems remaining for large-scaled multicellular gene circuits, for example, how to reliably design and distribute the circuits in microbial consortia with limited number of well-behaved genetic modules and wiring quorum-sensing molecules. To manage such problem, here we propose a formalized design process: (i) determine the basic logic units (AND, OR and NOT gates) based on mathematical and biological considerations; (ii) establish rules to search and distribute simplest logic design; (iii) assemble assigned basic logic units in each logic operating cell; and (iv) fine-tune the circuiting interface between logic operators. We in silico analyzed gene circuits with inputs ranging from two to four, comparing our method with the pre-existing ones. Results showed that this formalized design process is more feasible concerning numbers of cells required. Furthermore, as a proof of principle, an Escherichia coli consortium that performs XOR function, a typical complex computing operation, was designed. The construction and characterization of logic operators is independent of “wiring” and provides predictive information for fine-tuning. This formalized design process provides guidance for the design of microbial consortia that perform distributed biological computation. PMID:23468999

  17. Electronics. Module 3: Digital Logic Application. Instructor's Guide.

    ERIC Educational Resources Information Center

    Carter, Ed; Murphy, Mark

    This guide contains instructor's materials for a 10-unit secondary school course on digital logic application. The units are introduction to digital, logic gates, digital integrated circuits, combination logic, flip-flops, counters and shift registers, encoders and decoders, arithmetic circuits, memory, and analog/digital and digital/analog…

  18. Benchmarking emerging logic devices

    NASA Astrophysics Data System (ADS)

    Nikonov, Dmitri

    2014-03-01

    As complementary metal-oxide-semiconductor field-effect transistors (CMOS FET) are being scaled to ever smaller sizes by the semiconductor industry, the demand is growing for emerging logic devices to supplement CMOS in various special functions. Research directions and concepts of such devices are overviewed. They include tunneling, graphene based, spintronic devices etc. The methodology to estimate future performance of emerging (beyond CMOS) devices and simple logic circuits based on them is explained. Results of benchmarking are used to identify more promising concepts and to map pathways for improvement of beyond CMOS computing.

  19. Logic Simulator Program

    NASA Technical Reports Server (NTRS)

    Agarwal, R. K.

    1983-01-01

    The source code for the SPICE 2 program was deblocked in order to isolate and compile the subroutine in an effort to provide a software simulation of discrete and combinatorial electronic components. Incompatibilities between the UNIVAC 1180 FORTRAN and the Sigma V CP-V FORTRAN 4 were resolved. The SPICE 2 model is to be used to determine gate and fan-out delays, logic state conditions, and signal race conditions for transistor array elements and circuit logic to be patterned in the (SPI) 7101 CMOS silicon gate semicustom array. The simulator is to be operable from the CP-V time sharing terminals.

  20. The universal magnetic tunnel junction logic gates representing 16 binary Boolean logic operations

    NASA Astrophysics Data System (ADS)

    Lee, Junwoo; Suh, Dong Ik; Park, Wanjun

    2015-05-01

    The novel devices are expected to shift the paradigm of a logic operation by their own nature, replacing the conventional devices. In this study, the nature of our fabricated magnetic tunnel junction (MTJ) that responds to the two external inputs, magnetic field and voltage bias, demonstrated seven basic logic operations. The seven operations were obtained by the electric-field-assisted switching characteristics, where the surface magnetoelectric effect occurs due to a sufficiently thin free layer. The MTJ was transformed as a universal logic gate combined with three supplementary circuits: A multiplexer (MUX), a Wheatstone bridge, and a comparator. With these circuits, the universal logic gates demonstrated 16 binary Boolean logic operations in one logic stage. A possible further approach is parallel computations through a complimentary of MUX and comparator, capable of driving multiple logic gates. A reconfigurable property can also be realized when different logic operations are produced from different level of voltages applying to the same configuration of the logic gate.

  1. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater.

    PubMed

    Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan

    2010-10-15

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98. PMID:20609515

  2. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-09-01

    In order to better understand the behavior of lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, electrical and thermal response is presented for predicting short-circuit under external crush. The combined mechanical-electrical-thermal response is simulated in a commercial finite element software LS-DYNA® using a representative-sandwich finite-element model, where electrical-thermal modeling is conducted after an instantaneous mechanical crush. The model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under quasi-static indentation. Model predictions show good agreement with experiments: the fracture of the battery structure under an indentation test is accurately predicted. The electrical-thermal simulation predicts the current density and temperature distribution in a reasonable manner. Whereas previously reported models consider the mechanical response exclusively, we use the electrical contact between active materials following the failure of the separator as a criterion for short-circuit. These results are used to build a lumped representative sandwich model that is computationally efficient and captures behavior at the cell level without resolving the individual layers.

  3. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  4. Practical applications of digital integrated circuits. Part 2: Minimization techniques, code conversion, flip-flops, and asynchronous circuits

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Here, the 7400 line of transistor to transistor logic (TTL) devices is emphasized almost exclusively where hardware is concerned. However, it should be pointed out that the logic theory contained herein applies to all hardware. Binary numbers, simplification of logic circuits, code conversion circuits, basic flip-flop theory, details about series 54/7400, and asynchronous circuits are discussed.

  5. Flexible programmable logic module

    SciTech Connect

    Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.

    2001-01-01

    The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.

  6. Introducing Exclusion Logic as a Deontic Logic

    NASA Astrophysics Data System (ADS)

    Evans, Richard

    This paper introduces Exclusion Logic - a simple modal logic without negation or disjunction. We show that this logic has an efficient decision procedure. We describe how Exclusion Logic can be used as a deontic logic. We compare this deontic logic with Standard Deontic Logic and with more syntactically restricted logics.

  7. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    NASA Astrophysics Data System (ADS)

    Xavier, Marcelo A.; Trimboli, M. Scott

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models.

  8. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    SciTech Connect

    Xavier, MA; Trimboli, MS

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.

  9. Model of Reentrant Ventricular Tachycardia based upon Infarct Border Zone Geometry Predicts Reentrant Circuit Features as Determined by Activation Mapping

    PubMed Central

    Ciaccio, Edward J; Ashikaga, Hiroshi; Kaba, Riyaz A; Cervantes, Daniel; Hopenfeld, Bruce; Wit, Andrew L; Peters, Nicholas S; McVeigh, Elliot R; Garan, Hasan; Coromilas, James

    2008-01-01

    Background Infarct border zone (IBZ) geometry likely affects inducibility and characteristics of postinfarction reentrant ventricular tachycardia, but the connection has not been established. Objective To determine characteristics of post infarction ventricular tachycardia in the IBZ. Methods A geometric model describing the relationship between IBZ geometry and wavefront propagation in reentrant circuits was developed. Based on the formulation, slow conduction and block was expected to coincide with areas where IBZ thickness (T) is minimal and the local spatial gradient in thickness (ΔT) is maximal, so that the degree of wavefront curvature ρ ∝ ΔT/T is maximal. Regions of fastest conduction velocity were predicted to coincide with areas of minimum ΔT. In seven arrhythmogenic postinfarction canine heart experiments, tachycardia was induced by programmed stimulation, and activation maps were constructed from multichannel recordings. IBZ thickness was measured in excised hearts from histologic analysis or magnetic resonance imaging. Reentrant circuit properties were predicted from IBZ geometry and compared with ventricular activation maps following tachycardia induction. Results Mean IBZ thickness was 231±140µm at the reentry isthmus and 1440±770µm in the outer pathway (p<0.001). Mean curvature ρ was 1.63±0.45mm−1 at functional block line locations, 0.71±0.18mm−1 at isthmus entrance-exit points, and 0.33±0.13mm−1 in the outer reentrant circuit pathway. The mean conduction velocity about the circuit during reentrant tachycardia was 0.32±0.04mm/ms at entrance-exit points, 0.42±0.13mm/ms for the entire outer pathway, and 0.64±0.16mm/ms at outer pathway regions with minimum ΔT. Model sensitivity and specificity to detect isthmus location was 75.0±5.7% and 97.2±0.7%. Conclusions Reentrant circuit features as determined by activation mapping can be predicted on the basis of IBZ geometrical relationships. PMID:17675078

  10. Implementation of Complete Boolean Logic Functions in Single Complementary Resistive Switch.

    PubMed

    Gao, Shuang; Zeng, Fei; Wang, Minjuan; Wang, Guangyue; Song, Cheng; Pan, Feng

    2015-01-01

    The unique complementary switching behaviour of complementary resistive switches (CRSs) makes them very attractive for logic applications. The implementation of complete Boolean logic functions in a single CRS cell is certainly an extremely important step towards the commercialisation of related logic circuits, but it has not been accomplished to date. Here, we report two methods for the implementation of complete Boolean logic functions in a single CRS cell. The first method is based on the intrinsic switchable diode of a peculiar CRS cell that is composed of two anti-serial bipolar resistive switches with a rectifying high resistance state, while the second method is based directly on the complementary switching behaviour itself of any single CRS cell. The feasibilities of both methods have been theoretically predicted and then experimentally demonstrated on the basis of a Ta/Ta2O5/Pt/Ta2O5/Ta CRS cell. Therefore, these two methods-in particular the complementary switching behaviour itself-based method, which has natural immunity to the sneak-path issue of crossbar logic circuits-are believed to be capable of significantly advancing both our understanding and commercialization of related logic circuits. Moreover, peculiar CRS cells have been demonstrated to be feasible for tri-level storage, which can serve as an alternative method of realising ultra-high-density data storage. PMID:26486231

  11. Dispositional logic

    SciTech Connect

    Zadeh, L.A.

    1988-01-01

    The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived. 7 references.

  12. Dispositional logic

    NASA Technical Reports Server (NTRS)

    Le Balleur, J. C.

    1988-01-01

    The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived.

  13. MLS, a magnetic logic simulator for magnetic bubble logic design

    NASA Astrophysics Data System (ADS)

    Kinsman, Thomas B.; Cendes, Zoltan J.

    1987-04-01

    A computer program that simulates the logic functions of magnetic bubble devices has been developed. The program uses a color graphics screen to display the locations of bubbles on a chip during operation. It complements the simulator previously developed for modeling bubble devices on the gate level [Smith et al., IEEE Trans. Magn. MAG-19, 1835 (1983); Smith and Kryder, ibid. MAG-21, 1779 (1985)]. This new tool simplifies the design and testing of bubble logic devices, and facilitates the development of complicated LSI bubble circuits. The program operation is demonstrated with the design of an in-stream faulty loop compensator using bubble logic.

  14. Logical error rate in the Pauli twirling approximation

    PubMed Central

    Katabarwa, Amara; Geller, Michael R.

    2015-01-01

    The performance of error correction protocols are necessary for understanding the operation of potential quantum computers, but this requires physical error models that can be simulated efficiently with classical computers. The Gottesmann-Knill theorem guarantees a class of such error models. Of these, one of the simplest is the Pauli twirling approximation (PTA), which is obtained by twirling an arbitrary completely positive error channel over the Pauli basis, resulting in a Pauli channel. In this work, we test the PTA’s accuracy at predicting the logical error rate by simulating the 5-qubit code using a 9-qubit circuit with realistic decoherence and unitary gate errors. We find evidence for good agreement with exact simulation, with the PTA overestimating the logical error rate by a factor of 2 to 3. Our results suggest that the PTA is a reliable predictor of the logical error rate, at least for low-distance codes. PMID:26419417

  15. A bit serial sequential circuit

    NASA Technical Reports Server (NTRS)

    Hu, S.; Whitaker, S.

    1990-01-01

    Normally a sequential circuit with n state variables consists of n unique hardware realizations, one for each state variable. All variables are processed in parallel. This paper introduces a new sequential circuit architecture that allows the state variables to be realized in a serial manner using only one next state logic circuit. The action of processing the state variables in a serial manner has never been addressed before. This paper presents a general design procedure for circuit construction and initialization. Utilizing pass transistors to form the combinational next state forming logic in synchronous sequential machines, a bit serial state machine can be realized with a single NMOS pass transistor network connected to shift registers. The bit serial state machine occupies less area than other realizations which perform parallel operations. Moreover, the logical circuit of the bit serial state machine can be modified by simply changing the circuit input matrix to develop an adaptive state machine.

  16. Teaching Logic.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    To make introducing logic to college students in speech and expository writing classes more interesting, letters to the editor can be used to teach logical fallacies. Letters to the editor are particularly useful because they give students a sense of the community they live in (issues, concerns, and the spectrum of opinion), they are easily…

  17. Prediction of multiple resonance characteristics by an extended resistor-inductor-capacitor circuit model for plasmonic metamaterials absorbers in infrared.

    PubMed

    Xu, Xiaolun; Li, Yongqian; Wang, Binbin; Zhou, Zili

    2015-10-01

    The resonance characteristics of plasmonic metamaterials absorbers (PMAs) are strongly dependent on geometric parameters. A resistor-inductor-capacitor (RLC) circuit model has been extended to predict the resonance wavelengths and the bandwidths of multiple magnetic polaritons modes in PMAs. For a typical metallic-dielectric-metallic structure absorber working in the infrared region, the developed model describes the correlation between the resonance characteristics and the dimensional sizes. In particular, the RLC model is suitable for not only the fundamental resonance mode, but also for the second- and third-order resonance modes. The prediction of the resonance characteristics agrees fairly well with those calculated by the finite-difference time-domain simulation and the experimental results. The developed RLC model enables the facilitation of designing multi-band PMAs for infrared radiation detectors and thermal emitters. PMID:26421549

  18. An all digital implementation of a modified Hamming net for video compression with prediction and quantization circuits

    NASA Astrophysics Data System (ADS)

    Kaul, Richard; Adkins, Kenneth; Bibyk, Steven

    The hardware and algorithms used to vector quantize (VQ) predicted pixel intensity differences for real-time video compression are described. The hardware is designed for rapid vector quantization performance, which entails the development of application-specific associative memory circuits. A modified DPCM algorithm is originally examined to determine how neural circuitry could enhance its operation. It was determined that quantization and encoding could be improved by consolidating these two functions into one, and by increasing the amount of information (i.e. number of pixels) quantized at a time. The result is a predictive scheme that vector quantizes differential values. Some of the disadvantages of VQ algorithms are solved using associative memories. The video compression algorithm and the associative memory design are described.

  19. All-optical symmetric ternary logic gate

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  20. Resting amygdala and medial prefrontal metabolism predicts functional activation of the fear extinction circuit

    PubMed Central

    Linnman, Clas; Zeidan, Mohamed A.; Furtak, Sharon C.; Pitman, Roger K.; Quirk, Gregory J.; Milad, Mohammed R.

    2014-01-01

    Objective Individual differences in ability to control fear have been linked to activation of dorsal anterior cingulate cortex, ventromedial prefrontal cortex, and amygdala. This study investigated whether functional variance in this network can be predicted by resting metabolism in these same regions. Methods Healthy subject volunteers were studied with positron emission tomography using [18F]-deoxyglucose to measure resting brain metabolism. This was followed by a two-day fear conditioning and extinction training paradigm in a functional magnetic resonance imaging scanner to measure brain activation during fear extinction and its recall. Skin conductance response was used to index conditioned responding. Resting metabolism in amygdala, dorsal anterior cingulate cortex and ventromedial prefrontal cortex were used to predict responses during fear extinction and extinction recall. Results During extinction training, resting amygdala metabolism positively predicted ventromedial prefrontal cortex, and negatively predicted dorsal anterior cingulate cortex, activation. In contrast, during extinction recall, resting amygdala metabolism negatively predicted ventromedial prefrontal cortex, and positively predicted dorsal anterior cingulate cortex, activation. Resting dorsal anterior cingulate cortex metabolism predicted fear expression (skin conductance response) during extinction recall. Conclusions Brain metabolism at rest predicts neuronal reactivity and skin conductance changes associated with recall of the fear extinction memory. PMID:22318762

  1. Description Logics

    NASA Astrophysics Data System (ADS)

    Baader, Franz

    Description Logics (DLs) are a well-investigated family of logic-based knowledge representation formalisms, which can be used to represent the conceptual knowledge of an application domain in a structured and formally well-understood way. They are employed in various application domains, such as natural language processing, configuration, and databases, but their most notable success so far is the adoption of the DL-based language OWL as standard ontology language for the semantic web.

  2. Miniaturization of magnetic logic circuitry

    NASA Technical Reports Server (NTRS)

    Baba, P. D.

    1969-01-01

    Magnetic logic circuit design features two ferrite materials, with different formulation and magnetic characteristics, which are bonded into a continuous structure by preparing the materials as a slurry and using the doctor blade method to form flexible ferrite sheets. After firing, the sintering process was continuous across the bond.

  3. Electronic design with integrated circuits

    NASA Astrophysics Data System (ADS)

    Comer, D. J.

    The book is concerned with the application of integrated circuits and presents the material actually needed by the system designer to do an effective job. The operational amplifier (op amp) is discussed, taking into account the electronic amplifier, the basic op amp, the practical op amp, analog applications, and digital applications. Digital components are considered along with combinational logic, digital subsystems, the microprocessor, special circuits, communications, and integrated circuit building blocks. Attention is given to logic gates, logic families, multivibrators, the digital computer, digital methods, communicating with a computer, computer organization, register and timing circuits for data transfer, arithmetic circuits, memories, the microprocessor chip, the control unit, communicating with the microprocessor, examples of microprocessor architecture, programming a microprocessor, the voltage-controlled oscillator, the phase-locked loop, analog-to-digital conversion, amplitude modulation, frequency modulation, pulse and digital transmission, the semiconductor diode, the bipolar transistor, and the field-effect transistor.

  4. Avoidant symptoms in PTSD predict fear circuit activation during multimodal fear extinction

    PubMed Central

    Sripada, Rebecca K.; Garfinkel, Sarah N.; Liberzon, Israel

    2013-01-01

    Convergent evidence suggests that individuals with posttraumatic stress disorder (PTSD) exhibit exaggerated avoidance behaviors as well as abnormalities in Pavlonian fear conditioning. However, the link between the two features of this disorder is not well understood. In order to probe the brain basis of aberrant extinction learning in PTSD, we administered a multimodal classical fear conditioning/extinction paradigm that incorporated affectively relevant information from two sensory channels (visual and tactile) while participants underwent fMRI scanning. The sample consisted of fifteen OEF/OIF veterans with PTSD. In response to conditioned cues and contextual information, greater avoidance symptomatology was associated with greater activation in amygdala, hippocampus, vmPFC, dmPFC, and insula, during both fear acquisition and fear extinction. Heightened responses to previously conditioned stimuli in individuals with more severe PTSD could indicate a deficiency in safety learning, consistent with PTSD symptomatology. The close link between avoidance symptoms and fear circuit activation suggests that this symptom cluster may be a key component of fear extinction deficits in PTSD and/or may be particularly amenable to change through extinction-based therapies. PMID:24146643

  5. Implementation of Complete Boolean Logic Functions in Single Complementary Resistive Switch

    PubMed Central

    Gao, Shuang; Zeng, Fei; Wang, Minjuan; Wang, Guangyue; Song, Cheng; Pan, Feng

    2015-01-01

    The unique complementary switching behaviour of complementary resistive switches (CRSs) makes them very attractive for logic applications. The implementation of complete Boolean logic functions in a single CRS cell is certainly an extremely important step towards the commercialisation of related logic circuits, but it has not been accomplished to date. Here, we report two methods for the implementation of complete Boolean logic functions in a single CRS cell. The first method is based on the intrinsic switchable diode of a peculiar CRS cell that is composed of two anti-serial bipolar resistive switches with a rectifying high resistance state, while the second method is based directly on the complementary switching behaviour itself of any single CRS cell. The feasibilities of both methods have been theoretically predicted and then experimentally demonstrated on the basis of a Ta/Ta2O5/Pt/Ta2O5/Ta CRS cell. Therefore, these two methods—in particular the complementary switching behaviour itself-based method, which has natural immunity to the sneak-path issue of crossbar logic circuits—are believed to be capable of significantly advancing both our understanding and commercialization of related logic circuits. Moreover, peculiar CRS cells have been demonstrated to be feasible for tri-level storage, which can serve as an alternative method of realising ultra-high-density data storage. PMID:26486231

  6. Implementation of Complete Boolean Logic Functions in Single Complementary Resistive Switch

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Zeng, Fei; Wang, Minjuan; Wang, Guangyue; Song, Cheng; Pan, Feng

    2015-10-01

    The unique complementary switching behaviour of complementary resistive switches (CRSs) makes them very attractive for logic applications. The implementation of complete Boolean logic functions in a single CRS cell is certainly an extremely important step towards the commercialisation of related logic circuits, but it has not been accomplished to date. Here, we report two methods for the implementation of complete Boolean logic functions in a single CRS cell. The first method is based on the intrinsic switchable diode of a peculiar CRS cell that is composed of two anti-serial bipolar resistive switches with a rectifying high resistance state, while the second method is based directly on the complementary switching behaviour itself of any single CRS cell. The feasibilities of both methods have been theoretically predicted and then experimentally demonstrated on the basis of a Ta/Ta2O5/Pt/Ta2O5/Ta CRS cell. Therefore, these two methods—in particular the complementary switching behaviour itself-based method, which has natural immunity to the sneak-path issue of crossbar logic circuits—are believed to be capable of significantly advancing both our understanding and commercialization of related logic circuits. Moreover, peculiar CRS cells have been demonstrated to be feasible for tri-level storage, which can serve as an alternative method of realising ultra-high-density data storage.

  7. Activity levels in the left hemisphere caudate–fusiform circuit predict how well a second language will be learned

    PubMed Central

    Tan, Li Hai; Chen, Lin; Yip, Virginia; Chan, Alice H. D.; Yang, Jing; Gao, Jia-Hong; Siok, Wai Ting

    2011-01-01

    How second language (L2) learning is achieved in the human brain remains one of the fundamental questions of neuroscience and linguistics. Previous neuroimaging studies with bilinguals have consistently shown overlapping cortical organization of the native language (L1) and L2, leading to a prediction that a common neurobiological marker may be responsible for the development of the two languages. Here, by using functional MRI, we show that later skills to read in L2 are predicted by the activity level of the fusiform–caudate circuit in the left hemisphere, which nonetheless is not predictive of the ability to read in the native language. We scanned 10-y-old children while they performed a lexical decision task on L2 (and L1) stimuli. The subjects’ written language (reading) skills were behaviorally assessed twice, the first time just before we performed the fMRI scan (time 1 reading) and the second time 1 y later (time 2 reading). A whole-brain based analysis revealed that activity levels in left caudate and left fusiform gyrus correlated with L2 literacy skills at time 1. After controlling for the effects of time 1 reading and nonverbal IQ, or the effect of in-scanner lexical performance, the development in L2 literacy skills (time 2 reading) was also predicted by activity in left caudate and fusiform regions that are thought to mediate language control functions and resolve competition arising from L1 during L2 learning. Our findings suggest that the activity level of left caudate and fusiform regions serves as an important neurobiological marker for predicting accomplishment in reading skills in a new language. PMID:21262807

  8. Nanowire NMOS Logic Inverter Characterization.

    PubMed

    Hashim, Yasir

    2016-06-01

    This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly. PMID:27427653

  9. Back to basics: Making predictions in the orbitofrontal-amygdala circuit.

    PubMed

    Sharpe, Melissa J; Schoenbaum, Geoffrey

    2016-05-01

    Underlying many complex behaviors are simple learned associations that allow humans and animals to anticipate the consequences of their actions. The orbitofrontal cortex and basolateral amygdala are two regions which are crucial to this process. In this review, we go back to basics and discuss the literature implicating both these regions in simple paradigms requiring the development of associations between stimuli and the motivationally-significant outcomes they predict. Much of the functional research surrounding this ability has suggested that the orbitofrontal cortex and basolateral amygdala play very similar roles in making these predictions. However, electrophysiological data demonstrates critical differences in the way neurons in these regions respond to predictive cues, revealing a difference in their functional role. On the basis of these data and theories that have come before, we propose that the basolateral amygdala is integral to updating information about cue-outcome contingencies whereas the orbitofrontal cortex is critical to forming a wider network of past and present associations that are called upon by the basolateral amygdala to benefit future learning episodes. The tendency for orbitofrontal neurons to encode past and present contingencies in distinct neuronal populations may facilitate its role in the formation of complex, high-dimensional state-specific associations. PMID:27112314

  10. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  11. A verification logic representation of indeterministic signal states

    NASA Technical Reports Server (NTRS)

    Gambles, J. W.; Windley, P. J.

    1991-01-01

    The integration of modern CAD tools with formal verification environments require translation from hardware description language to verification logic. A signal representation including both unknown state and a degree of strength indeterminacy is essential for the correct modeling of many VLSI circuit designs. A higher-order logic theory of indeterministic logic signals is presented.

  12. Dynamic Divisive Normalization Predicts Time-Varying Value Coding in Decision-Related Circuits

    PubMed Central

    LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W.

    2014-01-01

    Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. PMID:25429145

  13. Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.

    PubMed

    Louie, Kenway; LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W

    2014-11-26

    Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. PMID:25429145

  14. An evaluation of logic regression-based biomarker discovery across multiple intergenic regions for predicting host specificity in Escherichia coli.

    PubMed

    Zhi, Shuai; Li, Qiaozhi; Yasui, Yutaka; Banting, Graham; Edge, Thomas A; Topp, Edward; McAllister, Tim A; Neumann, Norman F

    2016-10-01

    Several studies have demonstrated that E. coli appears to display some level of host adaptation and specificity. Recent studies in our laboratory support these findings as determined by logic regression modeling of single nucleotide polymorphisms (SNP) in intergenic regions (ITGRs). We sought to determine the degree of host-specific information encoded in various ITGRs across a library of animal E. coli isolates using both whole genome analysis and a targeted ITGR sequencing approach. Our findings demonstrated that ITGRs across the genome encode various degrees of host-specific information. Incorporating multiple ITGRs (i.e., concatenation) into logic regression model building resulted in greater host-specificity and sensitivity outcomes in biomarkers, but the overall level of polymorphism in an ITGR did not correlate with the degree of host-specificity encoded in the ITGR. This suggests that distinct SNPs in ITGRs may be more important in defining host-specificity than overall sequence variation, explaining why traditional unsupervised learning phylogenetic approaches may be less informative in terms of revealing host-specific information encoded in DNA sequence. In silico analysis of 80 candidate ITGRs from publically available E. coli genomes was performed as a tool for discovering highly host-specific ITGRs. In one ITGR (ydeR-yedS) we identified a SNP biomarker that was 98% specific for cattle and for which 92% of all E. coli isolates originating from cattle carried this unique biomarker. In the case of humans, a host-specific biomarker (98% specificity) was identified in the concatenated ITGR sequences of rcsD-ompC, ydeR-yedS, and rclR-ykgE, and for which 78% of E. coli originating from humans carried this biomarker. Interestingly, human-specific biomarkers were dominant in ITGRs regulating antibiotic resistance, whereas in cattle host-specific biomarkers were found in ITGRs involved in stress regulation. These data suggest that evolution towards host

  15. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    DOEpatents

    Clark, Lawrence T.; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  16. Biotechnical measurement and software system for the prediction and diagnosis of osteochondrosis of the lumbar region with the use of fuzzy logic rules.

    PubMed

    Al-Kasasbeh, Riad; Korenevskiy, Nikolay; Ionescu, Florin; Alshamasin, Mahdi; Smith, Andrew P; Alwadie, Abdullah

    2013-02-01

    We propose a biotech measurement scheme and software based on new features for the diagnosis of backbone osteochondrosis. Together with the traditional methods of diagnosis, the energy characteristics of biologically active points (acupuncture points, or APs) are used. This new software is based on mathematical models of the internal and biologically active points of meridian structures' interaction. The information from the APs is used in the solving rules based on fuzzy logic for decision-making, together with the factors of confidence of Shortliffe, the membership functions of Zadeh, and Kullback's informativeness measures. In terms of prognostic decision rules, clinical test shows that the quality of prediction using only the energy characteristics of APs is high, with high coefficient of confidence for the control sample as well. A check on control samples allows us to recommend the obtained results for use in medical practice as a part of corresponding systems of support for decision-making. PMID:23370903

  17. Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor

    SciTech Connect

    Gentili, Pier Luigi; Gotoda, Hiroshi; Dolnik, Milos; Epstein, Irving R.

    2015-01-15

    Forecasting of aperiodic time series is a compelling challenge for science. In this work, we analyze aperiodic spectrophotometric data, proportional to the concentrations of two forms of a thermoreversible photochromic spiro-oxazine, that are generated when a cuvette containing a solution of the spiro-oxazine undergoes photoreaction and convection due to localized ultraviolet illumination. We construct the phase space for the system using Takens' theorem and we calculate the Lyapunov exponents and the correlation dimensions to ascertain the chaotic character of the time series. Finally, we predict the time series using three distinct methods: a feed-forward neural network, fuzzy logic, and a local nonlinear predictor. We compare the performances of these three methods.

  18. Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor

    NASA Astrophysics Data System (ADS)

    Gentili, Pier Luigi; Gotoda, Hiroshi; Dolnik, Milos; Epstein, Irving R.

    2015-01-01

    Forecasting of aperiodic time series is a compelling challenge for science. In this work, we analyze aperiodic spectrophotometric data, proportional to the concentrations of two forms of a thermoreversible photochromic spiro-oxazine, that are generated when a cuvette containing a solution of the spiro-oxazine undergoes photoreaction and convection due to localized ultraviolet illumination. We construct the phase space for the system using Takens' theorem and we calculate the Lyapunov exponents and the correlation dimensions to ascertain the chaotic character of the time series. Finally, we predict the time series using three distinct methods: a feed-forward neural network, fuzzy logic, and a local nonlinear predictor. We compare the performances of these three methods.

  19. Fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lofti A.

    1988-01-01

    The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.

  20. HDL to verification logic translator

    NASA Astrophysics Data System (ADS)

    Gambles, J. W.; Windley, P. J.

    The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.

  1. HDL to verification logic translator

    NASA Technical Reports Server (NTRS)

    Gambles, J. W.; Windley, P. J.

    1992-01-01

    The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.

  2. Towards programmable plant genetic circuits.

    PubMed

    Medford, June I; Prasad, Ashok

    2016-07-01

    Synthetic biology enables the construction of genetic circuits with predictable gene functions in plants. Detailed quantitative descriptions of the transfer function or input-output function for genetic parts (promoters, 5' and 3' untranslated regions, etc.) are collected. These data are then used in computational simulations to determine their robustness and desired properties, thereby enabling the best components to be selected for experimental testing in plants. In addition, the process forms an iterative workflow which allows vast improvement to validated elements with sub-optimal function. These processes enable computational functions such as digital logic in living plants and follow the pathway of technological advances which took us from vacuum tubes to cell phones. PMID:27297052

  3. GMAG Dissertation Award Talk: All Spin Logic -- Multimagnet Networks interacting via Spin currents

    NASA Astrophysics Data System (ADS)

    Srinivasan, Srikant

    2012-02-01

    Digital logic circuits have traditionally been based on storing information as charge on capacitors, and the stored information is transferred by controlling the flow of charge. However, electrons carry both charge and spin, the latter being responsible for magnetic phenomena. In the last few decades, there has been a significant improvement in our ability to control spins and their interaction with magnets. All Spin Logic (ASL) represents a new approach to information processing where spins and magnets now mirror the roles of charges and capacitors in conventional logic circuits. In this talk I first present a model [1] that couples non-collinear spin transport with magnet-dynamics to predict the switching behavior of the basic ASL device. This model is based on established physics and is benchmarked against available experimental data that demonstrate spin-torque switching in lateral structures. Next, the model is extended to simulate multi-magnet networks coupled with spin transport channels. The simulations suggest ASL devices have the essential characteristics for building logic circuits. In particular, (1) the example of an ASL ring oscillator [2, 3] is used to provide a clear signature of directed information transfer in cascaded ASL devices without the need for external control circuitry and (2) a simulated NAND [4] gate with fan-out of 2 suggests that ASL can implement universal logic and drive subsequent stages. Finally I will discuss how ASL based circuits could also have potential use in the design of neuromorphic circuits suitable for hybrid analog/digital information processing because of the natural mapping of ASL devices to neurons [4]. [4pt] [1] B. Behin-Aein, A. Sarkar, S. Srinivasan, and S. Datta, ``Switching Energy-Delay of All-Spin Logic devices,'' Appl. Phys. Lett., 98, 123510 (2011).[0pt] [2] S. Srinivasan, A. Sarkar, B. Behin-Aein, and S. Datta, ``All Spin Logic Device with Inbuilt Non-reciprocity,'' IEEE Trans. Magn., 47, 10 (2011).[0pt] [3

  4. Use of fuzzy logic models for prediction of taste and odor compounds in algal bloom-affected inland water bodies.

    PubMed

    Bruder, Slawa; Babbar-Sebens, Meghna; Tedesco, Lenore; Soyeux, Emmanuel

    2014-03-01

    Mechanistic modeling of how algal species produce metabolites (e.g., taste and odor compounds geosmin and 2-methyl isoborneol (2-MIB)) as a biological response is currently not well understood. However, water managers and water utilities using these reservoirs often need methods for predicting metabolite production, so that appropriate water treatment procedures can be implemented. In this research, a heuristic approach using Adaptive Network-based Fuzzy Inference System (ANFIS) was developed to determine the underlying nonlinear and uncertain quantitative relationship between observed cyanobacterial metabolites (2-MIB and geosmin), various algal species, and physical and chemical variables. The model is proposed to be used in conjunction with numerical water quality models that can predict spatial-temporal distribution of flows, velocities, water quality parameters, and algal functional groups. The coupling of the proposed metabolite model with the numerical water quality models would assist various utilities which use mechanistic water quality models to also be able to predict distribution of taste and odor metabolites, especially when monitoring of metabolites is limited. The proposed metabolite model was developed and tested for the Eagle Creek Reservoir in Indiana (USA) using observations over a 3-year period (2008-2010). Results show that the developed models performed well for geosmin (R (2) = 0.83 for all training data and R (2) = 0.78 for validation of all 10 data points in the validation dataset) and reasonably well for the 2-MIB (R (2) = 0.82 for all training data and R (2) = 0.70 for 7 out of 10 data points in the validation dataset). PMID:24242080

  5. Development of ferrite logic devices for an arithmetic processor

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.

    1972-01-01

    A number of fundamentally ultra-reliable, all-magnetic logic circuits are developed using as a basis a single element ferrite structure wired as a logic delay element. By making minor additions or changes to the basic wiring pattern of the delay element other logic functions such as OR, AND, NEGATION, MAJORITY, EXCLUSIVE-OR, and FAN-OUT are developed. These logic functions are then used in the design of a full-adder, a set/reset flip-flop, and an edge detector. As a demonstration of the utility of all the developed devices, an 8-bit, all-magnetic, logic arithmetic unit capable of controlled addition, subtraction, and multiplication is designed. A new basic ferrite logic element and associated complementary logic scheme with the potential of improved performance is also described. Finally, an improved batch process for fabricating joint-free power drive and logic interconnect conductors for this basic class of all-magnetic logic is presented.

  6. Physical synthesis of quantum circuits using templates

    NASA Astrophysics Data System (ADS)

    Mirkhani, Zahra; Mohammadzadeh, Naser

    2016-06-01

    Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of "physical synthesis" was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.

  7. Design automation for integrated circuits

    NASA Astrophysics Data System (ADS)

    Newell, S. B.; de Geus, A. J.; Rohrer, R. A.

    1983-04-01

    Consideration is given to the development status of the use of computers in automated integrated circuit design methods, which promise the minimization of both design time and design error incidence. Integrated circuit design encompasses two major tasks: error specification, in which the goal is a logic diagram that accurately represents the desired electronic function, and physical specification, in which the goal is an exact description of the physical locations of all circuit elements and their interconnections on the chip. Design automation not only saves money by reducing design and fabrication time, but also helps the community of systems and logic designers to work more innovatively. Attention is given to established design automation methodologies, programmable logic arrays, and design shortcuts.

  8. Small circuits for cryptography.

    SciTech Connect

    Torgerson, Mark Dolan; Draelos, Timothy John; Schroeppel, Richard Crabtree; Miller, Russell D.; Anderson, William Erik

    2005-10-01

    This report examines a number of hardware circuit design issues associated with implementing certain functions in FPGA and ASIC technologies. Here we show circuit designs for AES and SHA-1 that have an extremely small hardware footprint, yet show reasonably good performance characteristics as compared to the state of the art designs found in the literature. Our AES performance numbers are fueled by an optimized composite field S-box design for the Stratix chipset. Our SHA-1 designs use register packing and feedback functionalities of the Stratix LE, which reduce the logic element usage by as much as 72% as compared to other SHA-1 designs.

  9. Ground State Spin Logic

    NASA Astrophysics Data System (ADS)

    Whitfield, James; Faccin, Mauro; Biamonte, Jacob

    2013-03-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  10. Boolean network model for GPR142 against Type 2 diabetes and relative dynamic change ratio analysis using systems and biological circuits approach.

    PubMed

    Kaushik, Aman Chandra; Sahi, Shakti

    2015-06-01

    Systems biology addresses challenges in the analysis of genomics data, especially for complex genes and protein interactions using Meta data approach on various signaling pathways. In this paper, we report systems biology and biological circuits approach to construct pathway and identify early gene and protein interactions for predicting GPR142 responses in Type 2 diabetes. The information regarding genes, proteins and other molecules involved in Type 2 diabetes were retrieved from literature and kinetic simulation of GPR142 was carried out in order to determine the dynamic interactions. The major objective of this work was to design a GPR142 biochemical pathway using both systems biology as well as biological circuits synthetically. The term 'synthetically' refers to building biological circuits for cell signaling pathway especially for hormonal pathway disease. The focus of the paper is on logical components and logical circuits whereby using these applications users can create complex virtual circuits. Logic gates process represents only true or false and investigates whether biological regulatory circuits are active or inactive. The basic gates used are AND, NAND, OR, XOR and NOT gates and Integrated circuit composition of many such basic gates and some derived gates. Biological circuits may have a futuristic application in biomedical sciences which may involve placing a micro chip in human cells to modulate the down or up regulation of hormonal disease. PMID:25972988

  11. Adaptive parallel logic networks

    SciTech Connect

    Martinez, T.R.; Vidal, J.J.

    1988-02-01

    This paper presents a novel class of special purpose processors referred to as ASOCS (adaptive self-organizing concurrent systems). Intended applications include adaptive logic devices, robotics, process control, system malfunction management, and in general, applications of logic reasoning. ASOCS combines massive parallelism with self-organization to attain a distributed mechanism for adaptation. The ASOCS approach is based on an adaptive network composed of many simple computing elements (nodes) which operate in a combinational and asynchronous fashion. Problem specification (programming) is obtained by presenting to the system if-then rules expressed as Boolean conjunctions. New rules are added incrementally. In the current model, when conflicts occur, precedence is given to the most recent inputs. With each rule, desired network response is simply presented to the system, following which the network adjusts itself to maintain consistency and parsimony of representation. Data processing and adaptation form two separate phases of operation. During processing, the network acts as a parallel hardware circuit. Control of the adaptive process is distributed among the network nodes and efficiently exploits parallelism.

  12. Bilayer avalanche spin-diode logic

    NASA Astrophysics Data System (ADS)

    Friedman, Joseph S.; Fadel, Eric R.; Wessels, Bruce W.; Querlioz, Damien; Sahakian, Alan V.

    2015-11-01

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  13. Bilayer avalanche spin-diode logic

    SciTech Connect

    Friedman, Joseph S. Querlioz, Damien; Fadel, Eric R.; Wessels, Bruce W.; Sahakian, Alan V.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  14. Engineering genetic circuits that compute and remember.

    PubMed

    Siuti, Piro; Yazbek, John; Lu, Timothy K

    2014-01-01

    Memory and logic are central to complex state-dependent computing, and state-dependent behaviors are a feature of natural biological systems. Recently, we created a platform for integrated logic and memory by using synthetic gene circuits, and we demonstrated the implementation of all two-input logic gates with memory in living cells. Here we provide a detailed protocol for the construction of two-input Boolean logic functions with concomitant DNA-based memory. This technology platform allows for straightforward assembly of integrated logic-and-memory circuits that implement desired behaviors within a couple of weeks. It should enable the encoding of advanced computational operations in living cells, including sequential-logic and biological-state machines, for a broad range of applications in biotechnology, basic science and biosensing. PMID:24810038

  15. Accuracy of prediction of infarct-related arrhythmic circuits from image-based models reconstructed from low and high resolution MRI.

    PubMed

    Deng, Dongdong; Arevalo, Hermenegild; Pashakhanloo, Farhad; Prakosa, Adityo; Ashikaga, Hiroshi; McVeigh, Elliot; Halperin, Henry; Trayanova, Natalia

    2015-01-01

    Identification of optimal ablation sites in hearts with infarct-related ventricular tachycardia (VT) remains difficult to achieve with the current catheter-based mapping techniques. Limitations arise from the ambiguities in determining the reentrant pathways location(s). The goal of this study was to develop experimentally validated, individualized computer models of infarcted swine hearts, reconstructed from high-resolution ex-vivo MRI and to examine the accuracy of the reentrant circuit location prediction when models of the same hearts are instead reconstructed from low clinical-resolution MRI scans. To achieve this goal, we utilized retrospective data obtained from four pigs ~10 weeks post infarction that underwent VT induction via programmed stimulation and epicardial activation mapping via a multielectrode epicardial sock. After the experiment, high-resolution ex-vivo MRI with late gadolinium enhancement was acquired. The Hi-res images were downsampled into two lower resolutions (Med-res and Low-res) in order to replicate image quality obtainable in the clinic. The images were segmented and models were reconstructed from the three image stacks for each pig heart. VT induction similar to what was performed in the experiment was simulated. Results of the reconstructions showed that the geometry of the ventricles including the infarct could be accurately obtained from Med-res and Low-res images. Simulation results demonstrated that induced VTs in the Med-res and Low-res models were located close to those in Hi-res models. Importantly, all models, regardless of image resolution, accurately predicted the VT morphology and circuit location induced in the experiment. These results demonstrate that MRI-based computer models of hearts with ischemic cardiomyopathy could provide a unique opportunity to predict and analyze VT resulting for from specific infarct architecture, and thus may assist in clinical decisions to identify and ablate the reentrant circuit(s). PMID

  16. Simple digital pulse-programing circuit

    NASA Technical Reports Server (NTRS)

    Langston, J. L.

    1979-01-01

    Pulse-sequencing circuit uses only shift register and Exclusive-OR gates. Circuit also serves as date-transition edge detector (for rising or falling edges). It is used in sample-and-hold, analog-to-digital conversion sequence control, multiphase clock logic, precise delay control computer control logic, edge detectors, other timing applications, and provides simple means to generate timing and control signals for data transfer, addressing, or mode control in microprocessors and minicomputers.

  17. Logical operations realized on the Ising chain of N qubits

    SciTech Connect

    Asano, Masanari; Tateda, Norihiro; Ishii, Chikara

    2004-08-01

    Multiqubit logical gates are proposed as implementations of logical operations on N qubits realized physically by the local manipulation of qubits before and after the one-time evolution of an Ising chain. This construction avoids complicated tuning of the interactions between qubits. The general rules of the action of multiqubit logical gates are derived by decomposing the process into the product of two-qubit logical operations. The formalism is demonstrated by the construction of a special type of multiqubit logical gate that is simulated by a quantum circuit composed of controlled-NOT gates.

  18. Measuring circuit

    DOEpatents

    Sun, Shan C.; Chaprnka, Anthony G.

    1977-01-11

    An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.

  19. Digital system provides superregulation of nanosecond amplifier-discriminator circuit

    NASA Technical Reports Server (NTRS)

    Forges, K. G.

    1966-01-01

    Feedback system employing a digital logic comparator to detect and correct amplifier drift provides stable gain characteristics for nanosecond amplifiers used in counting applications. Additional anticoincidence logic enables application of the regulation circuit to the amplifier and discriminator while they are mounted in an operable circuit.

  20. Electronic logic to enhance switch reliability in detecting openings and closures of redundant switches

    DOEpatents

    Cooper, James A.

    1986-01-01

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and failsafe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  1. Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory

    SciTech Connect

    Li, Y.; Zhong, Y. P.; Deng, Y. F.; Zhou, Y. X.; Xu, L.; Miao, X. S.

    2013-12-21

    Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.

  2. Toward spin-based Magneto Logic Gate in Graphene

    NASA Astrophysics Data System (ADS)

    Wen, Hua; Dery, Hanan; Amamou, Walid; Zhu, Tiancong; Lin, Zhisheng; Shi, Jing; Zutic, Igor; Krivorotov, Ilya; Sham, Lu; Kawakami, Roland

    Graphene has emerged as a leading candidate for spintronic applications due to its long spin diffusion length at room temperature. A universal magnetologic gate (MLG) based on spin transport in graphene has been recently proposed as the building block of a logic circuit which could replace the current CMOS technology. This MLG has five ferromagnetic electrodes contacting a graphene channel and can be considered as two three-terminal XOR logic gates. Here we demonstrate this XOR logic gate operation in such a device. This was achieved by systematically tuning the injection current bias to balance the spin polarization efficiency of the two inputs, and offset voltage in the detection circuit to obtain binary outputs. The output is a current which corresponds to different logic states: zero current is logic `0', and nonzero current is logic `1'. We find improved performance could be achieved by reducing device size and optimizing the contacts.

  3. Attenuation of single event induced pulses in CMOS combinational logic

    SciTech Connect

    Baze, M.P.; Buchner, S.P.

    1997-12-01

    Results are presented of a study of SEU generated transient pulse attenuation in combinational logic structures built using common digital CMOS design practices. SPICE circuit analysis, heavy ion tests, and pulsed, focused laser simulations were used to examine the response characteristics of transient pulse behavior in long logic strings. Results show that while there is an observable effect, it cannot be generally assumed that attenuation will significantly reduce observed circuit bit error rates.

  4. Picosecond Imaging Circuit Analysis

    NASA Astrophysics Data System (ADS)

    Kash, Jeffrey A.

    1998-03-01

    With ever-increasing complexity, probing the internal operation of a silicon IC becomes more challenging. Present methods of internal probing are becoming obsolete. We have discovered that a very weak picosecond pulse of light is emitted by each FET in a CMOS circuit whenever the circuit changes logic state. This pulsed emission can be simultaneously imaged and time resolved, using a technique we have named Picosecond Imaging Circuit Analysis (PICA). With a suitable imaging detector, PICA allows time resolved measurement on thousands of devices simultaneously. Computer videos made from measurements on real IC's will be shown. These videos, along with a more quantitative evaluation of the light emission, permit the complete operation of an IC to be measured in a non-invasive way with picosecond time resolution.

  5. Synthetic Aperture Radar Image Formation in Reconfigurable Logic

    SciTech Connect

    DUDLEY,PETER A.

    2001-06-01

    This paper studies the implementation of polar format, synthetic aperture radar image formation in modern Field Programmable Gate Arrays (FPGA's). The polar format algorithm is described in rough terms and each of the processing steps is mapped to FPGA logic. This FPGA logic is analyzed with respect to throughput and circuit size for compatibility with airborne image formation.

  6. Implementation of field programmable logic arrays. Final report

    SciTech Connect

    Anderson, J.D.

    1981-03-01

    Field Programmable Logic Arrays (FPLAs) were incorporated into a fire set tester and a development tester used to test a signal generator's logic boards. Other circuits were designed using the FPLA in code conversion and sequential control applications. A Curtiss Electro Devices FPLA programmer was purchased to program Signetics 82S100 and 82S101 devices.

  7. Quantum logic gates for superconducting resonator qudits

    SciTech Connect

    Strauch, Frederick W.

    2011-11-15

    We study quantum information processing using superpositions of Fock states in superconducting resonators as quantum d-level systems (qudits). A universal set of single and coupled logic gates is theoretically proposed for resonators coupled by superconducting circuits of Josephson junctions. These gates use experimentally demonstrated interactions and provide an attractive route to quantum information processing using harmonic oscillator modes.

  8. Giving Programming Students a Logical Step Up.

    ERIC Educational Resources Information Center

    Brown, David W.

    1990-01-01

    Presents a method to enhance the teaching of computer programing to secondary students that establishes a connection between logic, truth tables, switching circuits, gating symbols, flow charts, and pseudocode. The author asserts that the method prepares students for thinking processes related to programing. (MDH)

  9. Low power SEU immune CMOS memory circuits

    NASA Technical Reports Server (NTRS)

    Liu, M. N.; Whitaker, Sterling

    1992-01-01

    The authors report a design improvement for CMOS static memory circuits hardened against single event upset (SEU) using a recently proposed logic/circuit design technique. This improvement drastically reduces static power consumption, reduces the number of transistors required in a D flip-flop design, and eliminates the possibility of capturing an upset state in the slave section during a clock transition.

  10. Introduction to lethal circuit transformations

    NASA Astrophysics Data System (ADS)

    Fišer, Petr; Schmidt, Jan

    2015-12-01

    Logic optimization is a process that takes a logic circuit description (Boolean network) as an input and tries to refine it, to reduce its size and/or depth. An ideal optimization process should be able to devise an optimum implementation of a network in a reasonable time, given any circuit structure at the input. However, there are cases where it completely fails to produce even near-optimum solutions. Such cases are typically induced by non-standard circuit structure modifications. Surprisingly enough, such deviated structures are frequently present in standard benchmark sets too. We may only wonder whether it is an intention of the benchmarks creators, or just an unlucky coincidence. Even though synthesis tools should be primarily well suited for practical circuits, there is no guarantee that, e.g., a higher-level synthesis process will not generate such unlucky structures. Here we present examples of circuit transformations that lead to failure of most of state-of-the-art logic synthesis and optimization processes, both academic and commercial, and suggest actions to mitigate the disturbing effects.