Science.gov

Sample records for long-range coherence revealed

  1. Long range coherence in free electron lasers

    NASA Technical Reports Server (NTRS)

    Colson, W. B.

    1984-01-01

    The simple free electron laser (FEL) design uses a static, periodic, transverse magnetic field to undulate relativistic electrons traveling along its axis. This allows coupling to a co-propagating optical wave and results in bunching to produce coherent radiation. The advantages of the FEL are continuous tunability, operation at wavelengths ranging from centimeters to angstroms, and high efficiency resulting from the fact that the interaction region only contains light, relativistic electrons, and a magnetic field. Theoretical concepts and operational principles are discussed.

  2. Automatic airway wall segmentation and thickness measurement for long-range optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Qi, Li; Huang, Shenghai; Heidari, Andrew E.; Dai, Cuixia; Zhu, Jiang; Zhang, Xuping; Chen, Zhongping

    2016-03-01

    We present an automatic segmentation method for delineation and quantitative thickness measurement of multiple layers in endoscopic airway optical coherence tomography (OCT) images. The boundaries of the mucosa and the sub-mucosa layers were extracted using a graph-theory-based dynamic programming algorithm. The algorithm was tested with pig airway OCT images acquired with a custom built long range endoscopic OCT system. The performance of the algorithm was demonstrated by cross-validation between auto and manual segmentation experiments. Quantitative thicknesses changes in the mucosal layers are obtained automatically for smoke inhalation injury experiments.

  3. Long-range Fourier domain optical coherence tomography of the pediatric subglottis

    PubMed Central

    Volgger, Veronika; Sharma, Giriraj K.; Jing, Joe; Peaks, Ya-Sin A.; Loy, Anthony Chin; Lazarow, Frances; Wang, Alex; Qu, Yueqiao; Su, Erica; Chen, Zhongping; Ahuja, Gurpreet S.; Wong, Brian J-F.

    2014-01-01

    Background Acquired subglottic stenosis (SGS) most commonly results from prolonged endotracheal intubation and is a diagnostic challenge in the intubated child. At present, no imaging modality allows for in vivo characterization of subglottic microanatomy to identify early signs of acquired SGS while the child remains intubated. Fourier domain optical coherence tomography (FD-OCT) is a minimally invasive, light-based imaging modality which provides high resolution, three dimensional (3D) cross-sectional images of biological tissue. We used long-range FD-OCT to image the subglottis in intubated pediatric patients undergoing minor head and neck surgical procedures in the operating room. Methods A long-range FD-OCT system and rotary optical probes (1.2 mm and 0.7 mm outer diameters) were constructed. Forty-six pediatric patients (ages 2–16 years) undergoing minor upper airway surgery (e.g. tonsillectomy, adenoidectomy) were selected for intraoperative, trans-endotracheal tube FD-OCT of the subglottis. Images were analyzed for anatomical landmarks and subepithelial histology. Volumetric image sets were rendered into virtual 3D airway models in Mimics software. Results FD-OCT was performed on 46 patients (ages 2–16 years) with no complications. Gross airway contour was visible on all 46 data sets. Twenty (43%) high-quality data sets clearly demonstrated airway anatomy (e.g., tracheal rings, cricoid, vocal folds) and layered microanatomy of the mucosa (e.g., epithelium, basement membrane, lamina propria). The remaining 26 data sets were discarded due to artifact, high signal-to-noise ratio or missing data. 3D airway models allowed for user-controlled manipulation and multiplanar airway slicing (e.g. sagittal, coronal) for visualization of OCT data at multiple anatomic levels simultaneously. Conclusions Long-range FD-OCT produces high-resolution, 3D volumetric images of the pediatric subglottis. This technology offers a safe and practical means for in vivo evaluation

  4. Imaging of the Internal Nasal Valve Using Long-Range Fourier Domain Optical Coherence Tomography

    PubMed Central

    Englhard, Anna S.; Wiedmann, Maximilian; Ledderose, Georg J.; Lemieux, Bryan; Badran, Alan; Chen, Zhongping; Betz, Christian S.; Wong, Brian J.

    2016-01-01

    Objectives/Hypothesis To evaluate for the first time the feasibility and methodology of long-range Fourier domain optical coherence tomography (LR-OCT) imaging of the internal nasal valve (INV) area in healthy individuals. Study Design Prospective individual cohort study. Methods For 16 individuals, OCT was performed in each nare. The angle and the cross-sectional area of the INV were measured. OCT images were compared to corresponding digital pictures recorded with a flexible endoscope. Results INV angle measured by OCT was found to be 18.3° ± 3.1° (mean ± standard deviation). The cross-sectional area was 0.65 ± 0.23 cm2. The INV angle measured by endoscopy was 18.8° ± 6.9°. There was no statistically significant difference between endoscopy and OCT concerning the mean INV angle (P = .778), but there was a significant difference in test precision (coefficient of variance 50% vs. 15%; P < .001). Conclusions LR-OCT proved to be a fast and easily performed method. OCT could accurately quantify the INV area. The values of the angle and the cross-sectional area of the INV were reproducible and correlated well with the data seen with other methods. Changes in size could be reliably delineated. Endoscopy showed similar values but was significantly less precise. PMID:26599137

  5. The primary structure of the aridicin aglycon as revealed by long-range J values

    NASA Astrophysics Data System (ADS)

    Mueller, Luciano; Jeffs, Peter W.

    The aglycon of aridicin, which is a member of the vancomycin class of antibiotics, was analyzed by utilizing J spin-spin interactions in two-dimensional NMR experiments.This unusual heptapeptide with the molecular formula C 59H 45N 7O 19Cl 4 (MW 1296.160) has a large number of quateernary carbons in aromatic side chains. For that reason most information was obtained from delayed COSY and COLOC spectra which reveal homo- and heteronuclear connectivities via long-range J couplings. The carbon-13 spectrum was assigned completely. In addition, the primary structure of the aridicin aglycon could be deduced, with the exception of the ether linkages between the side chains A, B, and C, by solely relying on J-connectivity maps.

  6. Simple and versatile long range swept source for optical coherence tomography applications

    NASA Astrophysics Data System (ADS)

    Bräuer, Bastian; Lippok, Norman; Murdoch, Stuart G.; Vanholsbeeck, Frédérique

    2015-12-01

    We present a versatile long coherence length swept-source laser design for optical coherence tomography applications. This design consists of a polygonal spinning mirror and an optical gain chip in a modified Littman-Metcalf cavity. A narrowband intra-cavity filter is implemented through multiple passes off a diffraction grating set at grazing incidence. The key advantage of this design is that it can be readily adapted to any wavelength regions for which broadband gain chips are available. We demonstrate this by implementing sources at 1650 nm, 1550 nm, 1310 nm and 1050 nm. In particular, we present a 1310 nm swept source laser with 24 mm coherence length, 95 nm optical bandwidth, 2 kHz maximum sweep frequency and 7.5 mW average output power. These parameters make it a suitable source for the imaging of biological samples.

  7. Coherent control of long-range photoinduced electron transfer by stimulated X-ray Raman processes.

    PubMed

    Dorfman, Konstantin E; Zhang, Yu; Mukamel, Shaul

    2016-09-01

    We show that X-ray pulses resonant with selected core transitions can manipulate electron transfer (ET) in molecules with ultrafast and atomic selectivity. We present possible protocols for coherently controlling ET dynamics in donor-bridge-acceptor (DBA) systems by stimulated X-ray resonant Raman processes involving various transitions between the D, B, and A sites. Simulations presented for a Ru(II)-Co(III) model complex demonstrate how the shapes, phases and amplitudes of the X-ray pulses can be optimized to create charge on demand at selected atoms, by opening up otherwise blocked ET pathways. PMID:27559082

  8. The role of laser coherence in long-range vibration measurements

    NASA Technical Reports Server (NTRS)

    Eng, R. S.; Freed, C.; Kingston, R. H.; Schultz, K. I.; Kachelmyer, A. L.; Keicher, W. E.

    1992-01-01

    In this paper, the temporal coherence effect of a laser oscillator will be critically examined using existing laser frequency stability data in the time domain by first converting them to the frequency domain. We limit our discussion to CO2 lasers. To be more specific, our presentation will include the following items: (1) a review of the definitions and representations of laser oscillator frequency stability; (2) a methodology will be developed for determining the dynamic range of vibration measurements; (3) the methodology will show that the conversion of the laser frequency stability from the time domain to the frequency domain can be performed effectively in the optical region; and (4) because of a finite time delay, the phase noise is reduced for offset frequencies close to the carrier frequency.

  9. Morphology of central California continental margin, revealed by long-range side-scan sonar (GLORIA)

    SciTech Connect

    Gardner, J.V.; McCulloch, D.S.; Eittreim, S.L.; Masson, D.G.

    1985-02-01

    Leg 2 of the 4-leg USGS EEZ-SCAN 84 program used GLORIA long-range side-scan sonar to survey the region from Pt. Conception to just south of Pt. Arena, from the shelf break to the 200-nmi coverage. The overlapping digital sonographs were slant-range and anamorphically corrected, and a photomosaic of the sonographs was constructed at a scale of 1:375,000 (1 in. = 11.1 km). The underlying bed rock appears to be an important control in shaping the morphology of this margin. Several faults have sea-floor expression and lie subparallel to the margin. The density of canyons and gullies on the slope varies from south to north, probably because of variations in the characteristics of the bed rock. The slope west of San Francisco is the most dissected segment of the central California slope. Monterey Fan is covered by large-scale bed forms (5-15 m amplitude and 1.5-2.0 km wavelength) over much of its surface. Monterey channel crosses southwestward across the fan, but abruptly turns south along a 40-km long surface fault that coincides with a well-mapped meander loop. The channel loops to the north then turns southward crossing the entire Monterey Fan, at its distal reaches, changes to a broad, braided pattern. Major slumps on the margin have long (> 30 km) scarps, some have slump folds, and one has a debris-flow deposit that can be acoustically traced for more than 75 km. Seventeen new seamounts were mapped. Taney Seamounts are large, rimmed, calderas with diameters of about 15 km each; these appear to be very large explosive or summit-collapse features.

  10. In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography

    PubMed Central

    Coughlan, Carolyn A.; Chou, Li-dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.

    2016-01-01

    Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx. PMID:26960250

  11. In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography.

    PubMed

    Coughlan, Carolyn A; Chou, Li-Dek; Jing, Joseph C; Chen, Jason J; Rangarajan, Swathi; Chang, Theodore H; Sharma, Giriraj K; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A; Chen, Zhongping; Wong, Brian J F

    2016-01-01

    Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients' vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx. PMID:26960250

  12. In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Coughlan, Carolyn A.; Chou, Li-Dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.

    2016-03-01

    Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.

  13. INTRAOPERATIVE LONG RANGE OPTICAL COHERENCE TOMOGRAPHY AS A NOVEL METHOD OF IMAGING THE PEDIATRIC UPPER AIRWAY BEFORE AND AFTER ADENOTONSILLECTOMY

    PubMed Central

    Lazarow, Frances B.; Ahuja, Gurpreet S.; Loy, Anthony Chin; Su, Erica; Nguyen, Tony D.; Sharma, Giriraj K.; Wang, Alex; Jing, Joe; Chen, Zhongping; Wong, Brian J.F.

    2015-01-01

    BACKGROUND/OBJECTIVES While upper airway obstruction is a common problem in the pediatric population, the first-line treatment, adenotonsillectomy, fails in up to 20% of patients. The decision to proceed to surgery is often made without quantitative anatomic guidance. We evaluated the use of a novel technique, long-range optical coherence tomography (LR-OCT), to image the upper airway of children under general anesthesia immediately before and after tonsillectomy and/or adenoidectomy. We investigated the feasibility of LR-OCT to identify both normal anatomy and sites of airway narrowing and to quantitatively compare airway lumen size in the oropharyngeal and nasopharyngeal regions pre- and post-operatively. METHODS 46 children were imaged intraoperatively with a custom-designed LR-OCT system, both before and after adenotonsillectomy. These axial LR-OCT images were both rendered into 3D airway models for qualitative analysis and manually segmented for quantitative comparison of cross-sectional area. RESULTS LR-OCT images demonstrated normal anatomic structures (base of tongue, epiglottis) as well as regions of airway narrowing. Volumetric rendering of pre- and post-operative images clearly showed regions of airway collapse and post-surgical improvement in airway patency. Quantitative analysis of cross-sectional images showed an average change of 70.52mm2 (standard deviation 47.87mm2) in the oropharynx after tonsillectomy and 105.58mm2 (standard deviation 60.62mm2) in the nasopharynx after adenoidectomy. CONCLUSIONS LR-OCT is an emerging technology that rapidly generates 3D images of the pediatric upper airway in a feasible manner. This is the first step toward development of an office-based system to image awake pediatric subjects and thus better identify loci of airway obstruction prior to surgery. PMID:25479699

  14. Analysis of a transgenic Oct4 enhancer reveals high fidelity long-range chromosomal interactions

    PubMed Central

    Cai, Mingyang; Gao, Fan; Zhang, Peilin; An, Woojin; Shi, Jiandang; Wang, Kai; Lu, Wange

    2015-01-01

    Genome structure or nuclear organization has fascinated researchers investigating genome function. Recently, much effort has gone into defining relationships between specific genome structures and gene expression in pluripotent cells. We previously analyzed chromosomal interactions of the endogenous Oct4 distal enhancer in pluripotent cells. Here, we derive ES and iPS cells from a transgenic Oct4 distal enhancer reporter mouse. Using sonication-based Circularized Chromosome Conformation Capture (4C) coupled with next generation sequencing, we determined and compared the genome-wide interactome of the endogenous and transgenic Oct4 distal enhancers. Integrative genomic analysis indicated that the transgenic enhancer binds to a similar set of loci and shares similar key enrichment profiles with its endogenous counterpart. Both the endogenous and transgenic Oct4 enhancer interacting loci were enriched in the open nucleus compartment, which is associated with active histone marks (H3K4me1, H3K27ac, H3K4me3 and H3K9ac), active cis-regulatory sequences (DNA hypersensitivity sites (DHS)), 5-hydroxymethylcytosine (5-hmc), and early DNA replication domains. In addition, binding of some pluripotency-related transcription factors was consistently enriched in our 4C sites, and genes in those sites were generally more highly expressed. Overall, our work reveals critical features that may function in gene expression regulation in mouse pluripotent cells. PMID:26435056

  15. Theory of box-model hyperfine couplings and transport signatures of long-range nuclear-spin coherence in a quantum-dot spin valve

    NASA Astrophysics Data System (ADS)

    Chesi, Stefano; Coish, W. A.

    2015-06-01

    We have theoretically analyzed coherent nuclear-spin dynamics induced by electron transport through a quantum-dot spin valve. The hyperfine interaction between electron and nuclear spins in a quantum dot allows for the transfer of angular momentum from spin-polarized electrons injected from ferromagnetic or half-metal leads to the nuclear spin system under a finite voltage bias. Accounting for a local nuclear-spin dephasing process prevents the system from becoming stuck in collective dark states, allowing a large nuclear polarization to be built up in the long-time limit. After reaching a steady state, reversing the voltage bias induces a transient current response as the nuclear polarization is reversed. Long-range nuclear-spin coherence leads to a strong enhancement of spin-flip transition rates (by an amount proportional to the number of nuclear spins) and is revealed by an intense current burst, analogous to superradiant light emission. The crossover to a regime with incoherent spin flips occurs on a relatively long-time scale, on the order of the single-nuclear-spin dephasing time, which can be much longer than the time scale for the superradiant current burst. This conclusion is confirmed through a general master equation. For the two limiting regimes (coherent/incoherent spin flips), the general master equation recovers our simpler treatment based on rate equations, but is also applicable at intermediate dephasing. Throughout this work, we assume uniform hyperfine couplings, which yield the strongest coherent enhancement. We propose realistic strategies, based on isotopic modulation and wave-function engineering in core-shell nanowires, to realize this analytically solvable "box-model" of hyperfine couplings.

  16. iRED analysis of TAR RNA reveals motional coupling, long-range correlations, and a dynamical hinge.

    PubMed

    Musselman, Catherine; Al-Hashimi, Hashim M; Andricioaei, Ioan

    2007-07-15

    The HIV-1 transactivation response RNA element (TAR), which is essential to the lifecycle of the virus, has been suggested, based on NMR and hydrodynamic measurements, to undergo substantial, collective, structural dynamics that are important for its function. To deal with the significant coupling between overall diffusional rotation and internal motion expected to exist in TAR, here we utilize an isotropic reorientational eigenmode dynamics analysis of simulated molecular trajectories to obtain a detailed description of TAR dynamics and an accurately quantified pattern of dynamical correlations. The analysis demonstrates the inseparability of internal and overall motional modes, confirms the existence and reveals the nature of collective domain dynamics, and additionally reveals that the hinge for these motions is centered on residues U23, C24, and C41. Results also indicate the existence of long-range communication between the loop and the core of the RNA, and between the loop and the bulge. Additionally, the isotropic reorientational eigenmode dynamics analysis explains, from a dynamical perspective, several existing biochemical mutational studies and suggests new mutations for future structural dynamics studies. PMID:17449677

  17. Long-range intramolecular signaling in a tRNA synthetase complex revealed by pre-steady-state kinetics.

    PubMed

    Uter, Nathan T; Perona, John J

    2004-10-01

    Pre-steady-state kinetic studies of Escherichia coli glutaminyl-tRNA synthetase conclusively demonstrate the existence of long-distance pathways of communication through the protein-RNA complex. Measurements of aminoacyl-tRNA synthesis reveal a rapid burst of product formation followed by a slower linear increase corresponding to k(cat). Thus, a step after chemistry but before regeneration of active enzyme is rate-limiting for synthesis of Gln-tRNA(Gln). Single-turnover kinetics validates these observations, confirming that the rate of the chemical step for tRNA aminoacylation (k(chem)) exceeds the steady-state rate by nearly 10-fold. The concentration dependence of the single-turnover reaction further reveals that the glutamine K(d) is significantly higher than the steady-state K(m) value. The separation of binding from catalytic events by transient kinetics now allows precise interpretation of how alterations in tRNA structure affect the aminoacylation reaction. Mutation of U35 in the tRNA anticodon loop decreases k(chem) by 30-fold and weakens glutamine binding affinity by 20-fold, demonstrating that the active-site configuration depends on enzyme-tRNA contacts some 40 A distant. By contrast, mutation of the adjacent G36 has very small effects on k(chem) and K(d) for glutamine. Together with x-ray crystallographic data, these findings allow a comparative evaluation of alternative long-range signaling pathways and lay the groundwork for systematic exploration of how induced-fit conformational transitions may control substrate selection in this model enzyme-RNA complex. PMID:15452355

  18. Long-range chemical orders in Au-Pd nanoparticles revealed by aberration-corrected electron microscopy.

    PubMed

    Nelayah, Jaysen; Nguyen, Nhat Tai; Alloyeau, Damien; Wang, Guillaume Yangshu; Ricolleau, Christian

    2014-09-01

    Despite the importance of gold-palladium nanoalloys in heterogeneous catalysis, the phase stability of Au-Pd alloys still remains unclear. We report here on the alloying and chemical ordering in epitaxially-grown and post-annealed gold-palladium nanoparticles (NPs) using aberration-corrected transmission electron microscopy. Au-Pd NPs with a controlled size, composition and structure were grown by pulsed laser deposition on freshly-cleaved NaCl(001) single crystals heated at 300 °C. After transfer to an amorphous carbon support, the NPs were annealed in vacuum at elevated temperatures above 400 °C for a few hours (6-10 hours) to promote chemical ordering. The as-grown NPs were mostly monocrystalline with a chemically-disordered face-centered cubic structure. Upon high-temperature annealing, a high degree of chemical ordering was observed in nanometer-sized NPs. Electron microscopy measurements showed that both L10 and L12 orders are stabilized in the Au-rich region of the Au-Pd phase diagram. These ordered phases exist at temperatures as high as 600 °C. Moreover, compositional analysis of single annealed particles revealed that the observed chemical ordering occurs in parallel to a two-tiered Ostwald ripening process. Due to this ripening process, a clear dependence between chemical composition and particle size is established during annealing with an enrichment in Pd as the NPs grow in size. Our results, besides clarifying some controversial aspects about long-range order in Au-Pd alloys, shed light on the structural stability of Au-Pd nanoalloys at elevated temperatures. PMID:25079393

  19. Revealing Hidden Coherence in Partially Coherent Light

    NASA Astrophysics Data System (ADS)

    Svozilík, Jiří; Vallés, Adam; Peřina, Jan; Torres, Juan P.

    2015-11-01

    Coherence and correlations represent two related properties of a compound system. The system can be, for instance, the polarization of a photon, which forms part of a polarization-entangled two-photon state, or the spatial shape of a coherent beam, where each spatial mode bears different polarizations. Whereas a local unitary transformation of the system does not affect its coherence, global unitary transformations modifying both the system and its surroundings can enhance its coherence, transforming mutual correlations into coherence. The question naturally arises of what is the best measure that quantifies the correlations that can be turned into coherence, and how much coherence can be extracted. We answer both questions, and illustrate its application for some typical simple systems, with the aim at illuminating the general concept of enhancing coherence by modifying correlations.

  20. Reproducibility of a Long-Range Swept Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers

    PubMed Central

    Grulkowski, Ireneusz; Liu, Jonathan J.; Zhang, Jason Y.; Potsaid, Benjamin; Jayaraman, Vijaysekhar; Cable, Alex E.; Duker, Jay S.

    2013-01-01

    Purpose To demonstrate a novel swept source optical coherence tomography (SS-OCT) imaging device employing a vertical cavity surface-emitting laser (VCSEL) capable of imaging the full eye length and to introduce a method employing this device for non-contact optical ocular biometry. To compare the measurements of intraocular distances using this SS-OCT instrument with commercially available optical and ultrasound biometers. To evaluate the intersession reproducibility of measurements of intraocular distances using SS-OCT. Design Evaluation of technology Participants Twenty eyes of 10 healthy subjects imaged at the New England Eye Center at Tufts Medical Center and Massachusetts Institute of Technology between May and September 2012. Methods Averaged central depth profiles were extracted from volumetric SS-OCT datasets. The intraocular distances such as central corneal thickness (CCT), aqueous depth (AD), anterior chamber depth (ACD), crystalline lens thickness (LT), vitreous depth (VD), and axial eye length (AL) were measured and compared with a partial coherence interferometry (PCI) device (IOL Master; Carl Zeiss Meditec, Inc.), as well as an immersion ultrasound (IUS) A-scan biometer (Axis-II PR; Quantel Medical, Inc.). Main Outcome Measures Reproducibility of the measurements of intraocular distances, correlation coefficients, intraclass correlation coefficients Results The standard deviations of the repeated measurements of intraocular distances using SS-OCT were: 6 μm (CCT), 16 μm (ACD), 14 μm (AD), 13 μm (LT), 14 μm (VD) and 16 μm (AL). Strong correlations between all three biometric instruments were found for AL (r > 0.98). AL measurement using SS-OCT correlates better with IOL Master (r = 0.998) than with immersion ultrasound (r = 0.984). SS-OCT and IOL Master measured higher AL values than ultrasound (175 μm and 139 μm). No statistically significant difference of ACD between optical (SS-OCT or IOL Master) and ultrasound method was detected. High

  1. Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer

    PubMed Central

    Tomschik, Miroslav; Zheng, Haocheng; van Holde, Ken; Zlatanova, Jordanka; Leuba, Sanford H.

    2005-01-01

    The nucleosome core particle, the basic repeated structure in chromatin fibers, consists of an octamer of eight core histone molecules, organized as dimers (H2A/H2B) and tetramers [(H3/H4)2] around which DNA wraps tightly in almost two left-handed turns. The nucleosome has to undergo certain conformational changes to allow processes that need access to the DNA template to occur. By single-pair fluorescence resonance energy transfer, we demonstrate fast, long-range, reversible conformational fluctuations in nucleosomes between two states: fully folded (closed), with the DNA wrapped around the histone core, or open, with the DNA significantly unraveled from the histone octamer. The brief excursions into an extended open state may create windows of opportunity for protein factors involved in DNA transactions to bind to or translocate along the DNA. PMID:15728351

  2. Long Range Technology Planning.

    ERIC Educational Resources Information Center

    Ambron, Sueann, Ed.

    1986-01-01

    This summary of a meeting of the Apple Education Advisory Council, on long range technology plans at the state, county, district, and school levels, includes highlights from group discussions on future planning, staff development, and curriculum. Three long range technology plans at the state level are provided: Long Range Educational Technology…

  3. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep.

    PubMed

    Sivakumar, Siddharth S; Namath, Amalia G; Galán, Roberto F

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in

  4. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep

    PubMed Central

    Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics

  5. Anatomy and growth pattern of Amazon deep-sea fan as revealed by long-range side-scan sonar (GLORIA) and high-resolution seismic studies

    SciTech Connect

    Damuth, J.E.; Flood, R.D.; Kowsmann, R.O.; Belderson, R.H.; Gorini, M.A.

    1988-08-01

    Imaging of the Amazon deep-sea fan with long-range side-scan sonar (GLORIA) has, for the first time, revealed the anatomy, trends, and growth pattern of distributary channels on this fan. Only one channel-levee system was active at any given time and extended from the Amazon Submarine Canyon downslope onto the lower fan (> 4,200 m). Formation of new channel-levee systems occurred when a currently active channel-levee system was cut off and abandoned through avulsion, and a new channel-levee system was established nearby. Through time, successive channel-levee formation and abandonment built two broad levee complexes consisting of groups of overlapping, coalescing segments of channel-levee systems across the present fan surface. These, plus older, now buried levee complexes, indicate that fan growth is radially outward and downslope through development of successive levee complexes. The most striking characteristic of the distributary channels is their intricate, often recurving, meanders with sinuosities of up to 2.5. Cutoffs and abandoned meander loops indicate that the channels migrate laterally through time. Channel bifurcation results predominantly from avulsion when flows breach a channel levee, thereby abandoning the present channel and establishing a new channel-levee segment nearby. No clear evidence of channel branching (i.e., division of a single channel into two active segments) or braiding was observed. 22 figs.

  6. Long range detection of line-array multi-pulsed coding lidar by combining the Accumulation coherence and Subpixel-energy detection method.

    PubMed

    Su, Jinshan; Wang, Yuanqing; Liang, Dongdong

    2015-06-15

    This paper presents a multi-pulsed line-array push broom lidar, the pixel array scale reaches Geiger mode detectors in time-of-flight (TOF) depth imaging: by using time and space correlation between array elements of array avalanche photo detector (APD), light coding technology and a diode pumped solid-state laser with 10kHz repetition rate and 5µJ per pulses. Two signal enhancement methods, accumulation-coherence and high accuracy energy detection were combined improves the decode effect and realizes further long detection range. Experimental results and theory analysis indicating that the retrieval and denoising results of both simulated and real signals demonstrate that our method is practical and effective; what's more, the increasing scale of array sensor and the code bits can further improve system performance. PMID:26193500

  7. Institutional Long-Range Planning.

    ERIC Educational Resources Information Center

    Bolin, John G.

    This booklet presents a general outline for conducting a long-range planning study that can be adapted for use by any institution of higher education. The basic components of an effective long-range plan should include: (1) purposes of the plan, which define the scope of the study and provide the setting in which it will be initiated; (2) a set of…

  8. Long-range effects of histone point mutations on DNA remodeling revealed from computational analyses of SIN-mutant nucleosome structures

    PubMed Central

    Xu, Fei; Colasanti, Andrew V.; Li, Yun; Olson, Wilma K.

    2010-01-01

    The packaging of DNA into nucleosomes impedes the binding and access of molecules involved in its processing. The SWI/SNF multi-protein assembly, found in yeast, is one of many regulatory factors that stimulate the remodeling of DNA required for its transcription. Amino-acid point mutations in histones H3 or H4 partially bypass the requirement of the SWI/SNF complex in this system. The mechanisms underlying the observed remodeling, however, are difficult to discern from the crystal structures of nucleosomes bearing these so-called SIN (SWI/SNF INdependent) mutations. Here, we report detailed analyses of the conformations and interactions of the histones and DNA in these assemblies. We find that the loss of direct protein–DNA contacts near point-mutation sites, reported previously, is coupled to unexpected additional long-range effects, i.e. loss of intermolecular contacts and accompanying DNA conformational changes at sequentially and spatially distant sites. The SIN mutations seemingly transmit information relevant to DNA binding across the nucleosome. The energetic cost of deforming the DNA to the states found in the SIN-mutant structures helps to distinguish the mutants that show phenotypes in yeast from those that do not. Models incorporating these deformed dimer steps suggest ways that nucleosomal DNA may be remodeled during its biological processing. PMID:20647418

  9. Movement-related changes in local and long-range synchronization in Parkinson’s disease revealed by simultaneous magnetoencephalography and intracranial recordings

    PubMed Central

    Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth; Foltynie, Tom; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan I.; Friston, Karl; Brown, Peter

    2012-01-01

    Functional neurosurgery has afforded the opportunity to assess interactions between populations of neurons in the human cerebral cortex and basal ganglia in patients with Parkinson’s disease (PD). Interactions occur over a wide range of frequencies, and the functional significance of those above 30 Hz is particularly unclear. Do they improve movement and, if so, in what way? We acquired simultaneously magnetoencephalography (MEG) and direct recordings from the subthalamic nucleus (STN) in 17 PD patients. We examined the effect of synchronous and sequential finger movements and of the dopamine prodrug levodopa on induced power in the contralateral primary motor cortex (M1) and STN and on the coherence between the two structures. We observed discrete peaks in M1 and STN power over 60-90 Hz and 300-400 Hz. All these power peaks increased with movement and levodopa treatment. Only STN activity over 60-90 Hz was coherent with activity in M1. Directionality analysis showed that STN gamma activity at 60-90 Hz tended to drive gamma activity in M1. The effects of levodopa on both local and distant synchronisation over 60-90 Hz correlated with the degree of improvement in bradykinesia-rigidity, as did local STN activity at 300-400 Hz. Despite this, there were no effects of movement type, nor interactions between movement type and levodopa in the STN, nor in the coherence between STN and M1. We conclude that synchronisation over 60-90 Hz in the basal ganglia cortical network is prokinetic, but likely through a modulatory effect rather than any involvement in explicit motor processing. PMID:22855804

  10. 4C-seq revealed long-range interactions of a functional enhancer at the 8q24 prostate cancer risk locus

    PubMed Central

    Cai, Mingyang; Kim, Sewoon; Wang, Kai; Farnham, Peggy J.; Coetzee, Gerhard A.; Lu, Wange

    2016-01-01

    Genome-wide association studies (GWAS) have identified >100 independent susceptibility loci for prostate cancer, including the hot spot at 8q24. However, how genetic variants at this locus confer disease risk hasn’t been fully characterized. Using circularized chromosome conformation capture (4C) coupled with next-generation sequencing and an enhancer at 8q24 as “bait”, we identified genome-wide partners interacting with this enhancer in cell lines LNCaP and C4-2B. These 4C-identified regions are distributed in open nuclear compartments, featuring active histone marks (H3K4me1, H3K4me2 and H3K27Ac). Transcription factors NKX3-1, FOXA1 and AR (androgen receptor) tend to occupy these 4C regions. We identified genes located at the interacting regions, and found them linked to positive regulation of mesenchymal cell proliferation in LNCaP and C4-2B, and several pathways (TGF beta signaling pathway in LNCaP and p53 pathway in C4-2B). Common genes (e.g. MYC and POU5F1B) were identified in both prostate cancer cell lines. However, each cell line also had exclusive genes (e.g. ELAC2 and PTEN in LNCaP and BRCA2 and ZFHX3 in C4-2B). In addition, BCL-2 identified in C4-2B might contribute to the progression of androgen-refractory prostate cancer. Overall, our work reveals key genes and pathways involved in prostate cancer onset and progression. PMID:26934861

  11. Coherent Backscattering Reveals the Anderson Transition.

    PubMed

    Ghosh, S; Delande, D; Miniatura, C; Cherroret, N

    2015-11-13

    We develop an accurate finite-time scaling analysis of the angular width of the coherent backscattering (CBS) peak for waves propagating in 3D random media. Applying this method to ultracold atoms in optical speckle potentials, we show how to determine both the mobility edge and the critical exponent of the Anderson transition from the temporal behavior of the CBS width. Our method could be used in experiments to fully characterize the 3D Anderson transition. PMID:26613427

  12. Coherent Backscattering Reveals the Anderson Transition

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Delande, D.; Miniatura, C.; Cherroret, N.

    2015-11-01

    We develop an accurate finite-time scaling analysis of the angular width of the coherent backscattering (CBS) peak for waves propagating in 3D random media. Applying this method to ultracold atoms in optical speckle potentials, we show how to determine both the mobility edge and the critical exponent of the Anderson transition from the temporal behavior of the CBS width. Our method could be used in experiments to fully characterize the 3D Anderson transition.

  13. Long-range electron transfer

    PubMed Central

    Gray, Harry B.; Winkler, Jay R.

    2005-01-01

    Recent investigations have shed much light on the nuclear and electronic factors that control the rates of long-range electron tunneling through molecules in aqueous and organic glasses as well as through bonds in donor–bridge–acceptor complexes. Couplings through covalent and hydrogen bonds are much stronger than those across van der Waals gaps, and these differences in coupling between bonded and nonbonded atoms account for the dependence of tunneling rates on the structure of the media between redox sites in Ru-modified proteins and protein–protein complexes. PMID:15738403

  14. Long-range atmospheric predictability

    NASA Astrophysics Data System (ADS)

    Reichler, Thomas Josef

    This study investigated the prospects and limits of global atmospheric predictability on the long range (beyond 2 weeks). Forecasting the atmosphere at this range is very challenging since elements of both weather and climate prediction enter the problem. The basic questions were: (1) how large is long-range predictability with perfect model and data; (2) how sensitive is such predictability to uncertainties in model and data; (3) which atmospheric processes are related to this predictability? These questions were answered through numerical experiments with an atmospheric general circulation model which is forced with different combinations of initial and boundary conditions. In particular, four tasks were accomplished: First, temporal variations of predictability and its relationship to initial and boundary conditions were examined. On average, initial conditions dominated predictability for the first 4 weeks, improved predictability for 6 weeks, and influenced predictability for 8 weeks. These time scales varied with season, region, and strength of the external forcing. Second, the global 3-dimensional structure of predictability was examined. Boundary forcing dominated over the tropics, and over the two main teleconnection regions in the North and South Pacific. Initial conditions influenced predictability almost everywhere, in particular when the external forcing was weak. This was mostly related to atmospheric persistence, which in turn was linked to low-frequency variability of major atmospheric modes. Third, predictability in the tropics was investigated for monthly means. Boundary forcing is generally dominating for this time scale, and its quality is crucial. The atmospheric response was strongly asymmetric to SST forcing, which suggests that tropical convection has a positive self-amplifying feedback. Initial conditions were also important, in particular over the Eastern Hemisphere. This was related to strong persistence of the divergent circulation and

  15. Space - The long range future

    NASA Technical Reports Server (NTRS)

    Von Puttkamer, J.

    1985-01-01

    Space exploration goals for NASA in the year 2000 time frame are examined. A lunar base would offer the opportunity for continuous earth viewing, further cosmogeochemical exploration and rudimentary steps at self-sufficiency in space. The latter two factors are also compelling reasons to plan a manned Mars base. Furthermore, competition and cooperation in a Mars mission and further interplanetary exploration is an attractive substitute for war. The hardware requirements for various configurations of Mars missions are briefly addressed, along with other, unmanned missions to the asteroid belt, Mercury, Venus, Jupiter and the moons of Jupiter and Saturn. Finally, long-range technological requirements for providing adequate living/working facilities for larger human populations in Space Station environments are summarized.

  16. Long range fast tool servo

    NASA Astrophysics Data System (ADS)

    Moorefield, G. M., II; Dow, Thomas A.; Falter, Karl J.; Ro, Paul I.

    1993-05-01

    The PEC's MAC 100 Fast Tool Servo (FTS) System has demonstrated the efficacy of fabricating off-axis parabolic segments on axis by utilizing a fast tool motion to machine non-rotationally symmetric surfaces. The key to this technique was a servo for the tool motion that had a high-bandwidth coupled with a small range of motion. The Keck telescope, with its thirty-six (36) 1-meter diameter segments, would have been an excellent application for this technology. Since this technology was not available at the time of construction, each mirror segment was fabricated to its desired shape by loading it to a specified deformed shape and polishing it to a spherical contour, then removing the bending loads to allow the segment to relax to the desired asymmetric shape. If the segments of this optic had been constructed on axis with an FTS, the fabrication of the most extreme segment would have required only about 200 micrometers of non-rotational symmetry. However, the demand for larger displacement actuators is being driven by new applications with nonrotationally symmetric components in the millimeter range. This report describes the search for a suitable actuator for a long range fast tool servo system that would allow the fabrication of non-rotationally symmetric optical surfaces with a 1 mm range of servo motion. To allow cost-effective machining of these surfaces, the actuator must also possess a 50 Hz bandwidth (minimum) and 25 nanometer resolution.

  17. Revealing and Characterizing Dark Excitons through Coherent Multidimensional Spectroscopy.

    PubMed

    Tollerud, Jonathan O; Cundiff, Steven T; Davis, Jeffrey A

    2016-08-26

    Dark excitons are of fundamental importance in a broad range of contexts but are difficult to study using conventional optical spectroscopy due to their weak interaction with light. We show how coherent multidimensional spectroscopy can reveal and characterize dark states. Using this approach, we identify parity-forbidden and spatially indirect excitons in InGaAs/GaAs quantum wells and determine details regarding lifetimes, homogeneous and inhomogeneous linewidths, broadening mechanisms, and coupling strengths. The observations of coherent coupling between these states and bright excitons hint at a role for a multistep process by which excitons in the barrier can relax into the quantum wells. PMID:27610881

  18. Long-range neural synchrony in behavior.

    PubMed

    Harris, Alexander Z; Gordon, Joshua A

    2015-07-01

    Long-range synchrony between distant brain regions accompanies multiple forms of behavior. This review compares and contrasts the methods by which long-range synchrony is evaluated in both humans and model animals. Three examples of behaviorally relevant long-range synchrony are discussed in detail: gamma-frequency synchrony during visual perception, hippocampal-prefrontal synchrony during working memory, and prefrontal-amygdala synchrony during anxiety. Implications for circuit mechanism, translation, and clinical relevance are discussed. PMID:25897876

  19. Long-range neural synchrony in behavior

    PubMed Central

    Harris, Alexander Z.; Gordon, Joshua A.

    2015-01-01

    Long-range synchrony between distant brain regions accompanies multiple forms of behavior. This review compares and contrasts the methods by which long-range synchrony is evaluated in both humans and model animals. Three examples of behaviorally-relevant long-range synchrony are discussed in detail: gamma-frequency synchrony during visual perception; hippocampal-prefrontal synchrony during working memory; and prefrontal-amygdala synchrony during anxiety. Implications for circuit mechanism, translation, and clinical relevance are discussed. PMID:25897876

  20. 1995-1998 Long Range Plan.

    ERIC Educational Resources Information Center

    Pennsylvania Coll. of Technology, Williamsport.

    At Pennsylvania College of Technology (PCT), in Williamsport, long range planning is used to define institutional philosophy and mission and determine strategies to make the best use of available resources and implement actions to fulfill institutional mission. This document presents PCT's long-range plan for 1995-98 in three parts. Following an…

  1. Long Range Plan: 1992-1995.

    ERIC Educational Resources Information Center

    Pennsylvania Coll. of Technology, Williamsport.

    Intended to enhance strategic planning and enable staff to work as a team toward a shared vision and common goals, this report presents the 1992-95 long-range plan of the Pennsylvania College of Technology (PCT). Part I defines long-range planning; describes the structure and use of the plan at PCT; presents PCT's philosophy, mission, and vision…

  2. Long Range Plan, 1991-1994.

    ERIC Educational Resources Information Center

    Pennsylvania Coll. of Technology, Williamsport.

    This long-range plan for the Pennsylvania College of Technology (PCT) is divided into three main sections. Part I provides an overview of planning at PCT, including a definition of long-range planning, the college philosophy, mission, and vision statements, major institutional initiatives for 1991-92, and accreditation agency recommendations…

  3. Long Range Plan, 1997-2000.

    ERIC Educational Resources Information Center

    Pennsylvania Coll. of Technology, Williamsport. Office of Strategic Planning and Research.

    At Pennsylvania College of Technology (PCT), long range planning is used to define institutional philosophy and mission and determine strategies to make the best use of available resources and implement actions to fulfill institutional mission. This document presents PCT's long-range plan for 1997-2000 in three parts. The first part describes long…

  4. Long-range forecasting of intermittent streamflow

    NASA Astrophysics Data System (ADS)

    van Ogtrop, F. F.; Vervoort, R. W.; Heller, G. Z.; Stasinopoulos, D. M.; Rigby, R. A.

    2011-01-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a probabilistic statistical model to forecast streamflow 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth) of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.

  5. Long-range forecasting of intermittent streamflow

    NASA Astrophysics Data System (ADS)

    van Ogtrop, F. F.; Vervoort, R. W.; Heller, G. Z.; Stasinopoulos, D. M.; Rigby, R. A.

    2011-11-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth) of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 6 and 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.

  6. Topological defects with long-range interactions

    NASA Astrophysics Data System (ADS)

    Mello, B. A.; González, J. A.; Guerrero, L. E.; López-Atencio, E.

    1998-07-01

    We investigate a modified sine-Gordon equation which possesses soliton solutions with long-range interaction. We introduce a generalized version of the Ginzburg-Landau equation which supports long-range topological defects in D = 1 and D > 1. The interaction force between the defects decays so slowly that it is possible to enter the non-extensivity regime. These results can be applied to non-equilibrium systems, pattern formation and growth models.

  7. Passive long range acousto-optic sensor

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2006-08-01

    Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).

  8. Photon assisted long-range tunneling

    SciTech Connect

    Gallego-Marcos, Fernando; Sánchez, Rafael; Platero, Gloria

    2015-03-21

    We analyze long-range transport through an ac driven triple quantum dot with a single electron. Resonant transitions between separated and detuned dots are mediated by the exchange of n photons with the time-dependent field. An effective model is proposed in terms of second order (cotunneling) processes which dominate the long-range transport between the edge quantum dots. The ac field renormalizes the inter dot hopping, modifying the level hybridization. It results in a non-trivial behavior of the current with the frequency and amplitude of the external ac field.

  9. Photon assisted long-range tunneling

    NASA Astrophysics Data System (ADS)

    Gallego-Marcos, Fernando; Sánchez, Rafael; Platero, Gloria

    2015-03-01

    We analyze long-range transport through an ac driven triple quantum dot with a single electron. Resonant transitions between separated and detuned dots are mediated by the exchange of n photons with the time-dependent field. An effective model is proposed in terms of second order (cotunneling) processes which dominate the long-range transport between the edge quantum dots. The ac field renormalizes the inter dot hopping, modifying the level hybridization. It results in a non-trivial behavior of the current with the frequency and amplitude of the external ac field.

  10. College and University Long-Range Planning.

    ERIC Educational Resources Information Center

    Haas, Raymond M.

    The system for long-range planning at West Virginia University is described, with emphasis on how it relates to short-range planning and how it is carried out operationally. Planning tools used include (1) an inventory of the past and present of the institution, (2) a statement of the division of labor within the institution and the objectives of…

  11. Long-Range Plan, 1978-83.

    ERIC Educational Resources Information Center

    Jonas, Stephen

    This nine-part, long-range plan discusses the internal and external factors that will affect Lorain County Community College's (LCCC's) development from 1978 to 1983 and presents a forecast of LCCC's future needs. Part I traces the history of LCCC, provides a conceptual framework for college planning, and discusses the plan development process…

  12. Discussion of long-range weather prediction

    SciTech Connect

    Canavan, G.H.

    1998-09-10

    A group of scientists at Los Alamos have held a series of discussions of the issues in and prospects for improvements in Long-range Weather Predictions Enabled by Proving of the Atmosphere at High Space-Time Resolution. The group contained the requisite skills for a full evaluation, although this report presents only an informal discussion of the main technical issues. The group discussed all aspects of the proposal, which are grouped below into the headings: (1) predictability; (2) sensors and satellites, (3) DIAL and atmospheric sensing; (4) localized transponders; and (5) summary and integration. Briefly, the group agreed that the relative paucity of observations of the state of the atmosphere severely inhibits the accuracy of weather forecasts, and any program that leads to a more dense and uniform observational network is welcome. As shown in Long-range Weather more dense and uniform observational network is welcome. As shown in Long-range Weather Predictions, the pay-back of accurate long-range forecasts should more than justify the expenditure associated with improved observations and forecast models required. The essential step is to show that the needed technologies are available for field test and space qualification.

  13. Look Ahead: Long-Range Learning Plans

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2010-01-01

    Faced with an unsteady economy and fluctuating learning needs, planning a learning strategy designed to last longer than the next six months can be a tall order. But a long-range learning plan can provide a road map for success. In this article, four companies (KPMG LLP, CarMax, DPR Construction, and EMC Corp.) describe their learning plans, and…

  14. Resources and Long-Range Forecasts

    ERIC Educational Resources Information Center

    Smith, Waldo E.

    1973-01-01

    The author argues that forecasts of quick depletion of resources in the environment as a result of overpopulation and increased usage may not be free from error. Ignorance still exists in understanding the recovery mechanisms of nature. Long-range forecasts are likely to be wrong in such situations. (PS)

  15. Long-Range Interactions Restrict Water Transport in Pyrophyllite Interlayers.

    PubMed

    Zarzycki, Piotr; Gilbert, Benjamin

    2016-01-01

    Water diffusion within smectite clay interlayers is reduced by confinement and hence is highly determined by the interlayer spacings that are adopted during swelling. However, a molecular understanding of the short- and long-range forces governing interlayer water structure and dynamics is lacking. Using molecular dynamics simulations of water intercalated between pyrophyllite (smectite prototype) layers we provide a detailed picture of the variation of interlayered water mobility accompanying smectite expansion. Subtle changes in hydrogen bond network structure cause significant changes in water mobility that is greater for stable hydration states and reduced for intermediate separations. By studying pyrophyllite with and without external water we reveal that long-range electrostatic forces apply a restraining effect upon interlayer water mobility. Our findings are relevant for broad range of confining nanostructures with walls thin enough to permit long-range interactions that could affect the mobility of confined solvent molecules and solute species. PMID:27118164

  16. Entanglement area law for long-range interacting systems

    NASA Astrophysics Data System (ADS)

    Gong, Zhexuan; Foss-Feig, Michael; Brandao, Fernando G. S. L.; Gorshkov, Alexey V.

    Area laws for entanglement provide crucial insight into the low-energy behavior of many-body systems and are intimately connected to the efficiency of classical computational methods. For 1D systems, an area law was rigorously proven for ground states of gapped Hamiltonians with local interactions and for states with exponentially decaying correlations. In the presence of long-range interactions, the proof of an area law for gapped ground states becomes much more challenging because long-range interactions can change the effective dimensionality of the system and introduce correlations decaying slower than an exponential. Based on recent theoretical advances that reveal strong remnants of locality in quenched systems with power-law decaying interactions, we prove an area law for a large class of gapped Hamiltonians with long-range interactions. As an intermediate step, we prove tight bounds on the decay of ground-state correlations.

  17. Long-Range Interactions Restrict Water Transport in Pyrophyllite Interlayers

    PubMed Central

    Zarzycki, Piotr; Gilbert, Benjamin

    2016-01-01

    Water diffusion within smectite clay interlayers is reduced by confinement and hence is highly determined by the interlayer spacings that are adopted during swelling. However, a molecular understanding of the short- and long-range forces governing interlayer water structure and dynamics is lacking. Using molecular dynamics simulations of water intercalated between pyrophyllite (smectite prototype) layers we provide a detailed picture of the variation of interlayered water mobility accompanying smectite expansion. Subtle changes in hydrogen bond network structure cause significant changes in water mobility that is greater for stable hydration states and reduced for intermediate separations. By studying pyrophyllite with and without external water we reveal that long-range electrostatic forces apply a restraining effect upon interlayer water mobility. Our findings are relevant for broad range of confining nanostructures with walls thin enough to permit long-range interactions that could affect the mobility of confined solvent molecules and solute species. PMID:27118164

  18. Reconfigurable long-range phonon dynamics in optomechanical arrays.

    PubMed

    Xuereb, André; Genes, Claudiu; Pupillo, Guido; Paternostro, Mauro; Dantan, Aurélien

    2014-04-01

    We investigate periodic optomechanical arrays as reconfigurable platforms for engineering the coupling between multiple mechanical and electromagnetic modes and for exploring many-body phonon dynamics. Exploiting structural resonances in the coupling between light fields and collective motional modes of the array, we show that tunable effective long-range interactions between mechanical modes can be achieved. This paves the way towards the implementation of controlled phononic walks and heat transfer on densely connected graphs as well as the coherent transfer of excitations between distant elements of optomechanical arrays. PMID:24745417

  19. Critical Hamiltonians with long range hopping

    NASA Astrophysics Data System (ADS)

    Levitov, L. S.

    1999-11-01

    Critical states are studied by a real space RG in the problem with strong diagonal disorder and long range power law hopping. The RG ow of the distribution of coupling parameters is characterized by a family of non-trivial fix points. We consider the RG flow of the distribution of participation ratios of eigenstates. Scaling of participation ratios is sensitive to the nature of the RG fix point. For some fix points, scaling of participation ratios is characterized by a distribution of exponents, rather than by a single exponent.The RG method can be generalized to treat certain fermionic Hamiltonians with disorder and long range hopping. We derive the RG for a model of interacting two-level systems. Besides couplings, in this problem the RG includes the density of states. The density of states is renormalized so that it develops a singularity near zero energy.

  20. Long-range correlations in nucleotide sequences

    NASA Astrophysics Data System (ADS)

    Peng, C.-K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.

    1992-03-01

    DNA SEQUENCES have been analysed using models, such as an it-step Markov chain, that incorporate the possibility of short-range nucleotide correlations1. We propose here a method for studying the stochastic properties of nucleotide sequences by constructing a 1:1 map of the nucleotide sequence onto a walk, which we term a 'DNA walk'. We then use the mapping to provide a quantitative measure of the correlation between nucleotides over long distances along the DNA chain. Thus we uncover in the nucleotide sequence a remarkably long-range power law correlation that implies a new scale-invariant property of DNA. We find such long-range correlations in intron-containing genes and in nontranscribed regulatory DNA sequences, but not in complementary DNA sequences or intron-less genes.

  1. Gemini: A long-range cargo transport

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The proposed Gemini, a long-range cargo transport, is designed as a high capacity, dedicated cargo transporter of 8'x8'x20' inter-modal containers, and long-range design. These requirements will result in a design that is larger than any existing aircraft. Due to the size, a conventional configuration would result in an aircraft unable to operate economically at existing airports. It is necessary to design for a minimum possible empty weight, wingspan, and landing gear track. After considering both a single fuselage biplane and a double fuselage biplane configuration, the design team choose the double fuselage biplane configuration. Both of these configuration choices result in a reduced wing root bending moment and subsequently in substantial savings in the wing weight. An overall decrease in the weight of the airplane, its systems, and fuel will be a direct result of the wing weight savings.

  2. Holographic thermalization with initial long range correlation

    NASA Astrophysics Data System (ADS)

    Lin, Shu

    2016-01-01

    We studied the evolution of the Wightman correlator in a thermalizing state modeled by AdS3 -Vaidya background. We gave a prescription for calculating the Wightman correlator in coordinate space without using any approximation. For equal-time correlator ⟨ O (v ,x )O (v ,0 )⟩ , we obtained an enhancement factor v2 due to long range correlation present in the initial state. This was missed by previous studies based on geodesic approximation. We found that the long range correlation in initial state does not lead to significant modification to thermalization time as compared to known results with generic initial state. We also studied the spatially integrated Wightman correlator and showed evidence on the distinction between long distance and small momentum physics for an out-of-equilibrium state. We also calculated the radiation spectrum of particles weakly coupled to O and found that lower frequency mode approaches thermal spectrum faster than high frequency mode.

  3. Holographic thermalization with initial long range correlation

    DOE PAGESBeta

    Lin, Shu

    2016-01-19

    Here, we studied the evolution of the Wightman correlator in a thermalizing state modeled by AdS3-Vaidya background. A prescription was given for calculating the Wightman correlator in coordinate space without using any approximation. For equal-time correlator , we obtained an enhancement factor v2 due to long range correlation present in the initial state. This was missed by previous studies based on geodesic approximation. Moreover, we found that the long range correlation in initial state does not lead to significant modification to thermalization time as compared to known results with generic initial state. We also studied the spatially integrated Wightman correlatormore » and showed evidence on the distinction between long distance and small momentum physics for an out-of-equilibrium state. We also calculated the radiation spectrum of particles weakly coupled to O and found that lower frequency mode approaches thermal spectrum faster than high frequency mode.« less

  4. Long-range charge transfer in biopolymers

    NASA Astrophysics Data System (ADS)

    Astakhova, T. Yu; Likhachev, V. N.; Vinogradov, G. A.

    2012-11-01

    The results of theoretical and experimental studies on the charge transfer in biopolymers, namely, DNA and peptides, are presented. Conditions that ensure the efficient long-range charge transport (by several tens of nanometres) are considered. The known theoretical models of charge transfer mechanisms are discussed and the scopes of their application are analyzed. Attention is focused on the charge transport by the polaron mechanism. The bibliography includes 262 references.

  5. Long-range hybrid wedge plasmonic waveguide.

    PubMed

    Zhang, Zhonglai; Wang, Jian

    2014-01-01

    We design a novel long-range hybrid wedge plasmonic (LRHWP) waveguide composed of two identical dielectric nanowires symmetrically placed on two opposed wedges of a diamond shaped metal wire. With strong coupling between the dielectric nanowire mode and long-range surface plasmon polariton (SPP) mode, both deep subwavelength mode confinement and low propagation loss are achieved. On one hand, when compared to the previous long-range hybrid SPP waveguide, LRHWP waveguide can achieve smaller mode size with similar propagation length; on the other hand, when compared to the previous hybrid wedge SPP waveguide, LRHWP waveguide can provide an order of magnitude longer propagation length with similar level of mode confinement. The designed LRHWP waveguide also features an overall advantage of one-order improvement of Figure of Merit. We further evaluate in detail the impacts of possible practical fabrication imperfections on the mode properties. The obtained results of mode properties show that the proposed LRHWP waveguide with an optimized wedge tip angle of 140 degree is fairly tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, asymmetry in the vertical direction, variation of wedge tip angle, tilt or rotation of metal wire, and variation of wedge tip curvature radius. PMID:25362900

  6. Long-range hybrid wedge plasmonic waveguide

    PubMed Central

    Zhang, Zhonglai; Wang, Jian

    2014-01-01

    We design a novel long-range hybrid wedge plasmonic (LRHWP) waveguide composed of two identical dielectric nanowires symmetrically placed on two opposed wedges of a diamond shaped metal wire. With strong coupling between the dielectric nanowire mode and long-range surface plasmon polariton (SPP) mode, both deep subwavelength mode confinement and low propagation loss are achieved. On one hand, when compared to the previous long-range hybrid SPP waveguide, LRHWP waveguide can achieve smaller mode size with similar propagation length; on the other hand, when compared to the previous hybrid wedge SPP waveguide, LRHWP waveguide can provide an order of magnitude longer propagation length with similar level of mode confinement. The designed LRHWP waveguide also features an overall advantage of one-order improvement of Figure of Merit. We further evaluate in detail the impacts of possible practical fabrication imperfections on the mode properties. The obtained results of mode properties show that the proposed LRHWP waveguide with an optimized wedge tip angle of 140 degree is fairly tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, asymmetry in the vertical direction, variation of wedge tip angle, tilt or rotation of metal wire, and variation of wedge tip curvature radius. PMID:25362900

  7. Fan-less long range alpha detector

    DOEpatents

    MacArthur, Duncan W.; Bounds, John A.

    1994-01-01

    A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.

  8. Fan-less long range alpha detector

    DOEpatents

    MacArthur, D.W.; Bounds, J.A.

    1994-05-10

    A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

  9. A criterion autoscheduler for long range planning

    NASA Technical Reports Server (NTRS)

    Sponsler, Jeffrey L.

    1994-01-01

    A constraint-based scheduling system called SPIKE is used to create long-term schedules for the Hubble Space Telescope. A meta-level scheduler called the Criterion Autoscheduler for Long range planning (CASL) was created to guide SPIKE's schedule generation according to the agenda of the planning scientists. It is proposed that sufficient flexibility exists in a schedule to allow high level planning heuristics to be applied without adversely affected crucial constraints such as spacecraft efficiency. This hypothesis is supported by test data which is described.

  10. NASA's Long-range Technology Goals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This document is part of the Final Report performed under contract NASW-3864, titled "NASA's Long-Range Technology Goals". The objectives of the effort were: To identify technologies whose development falls within NASA's capability and purview, and which have high potential for leapfrog advances in the national industrial posture in the 2005-2010 era. To define which of these technologies can also enable quantum jumps in the national space program. To assess mechanisms of interaction between NASA and industry constituencies for realizing the leapfrog technologies. This Volume details the findings pertaining to the advanced space-enabling technologies.

  11. Long-range imaging ladar flight test

    NASA Astrophysics Data System (ADS)

    Brandt, James; Steiner, Todd D.; Mandeville, William J.; Dinndorf, Kenneth M.; Krasutsky, Nick J.; Minor, John L.

    1995-06-01

    Wright Laboratory and Loral Vought Systems (LVS) have been involved for the last nine years in the research and development of high power diode pumped solid state lasers for medium to long range laser radar (LADAR) seekers for tactical air-to-ground munitions. LVS provided the lead in three key LADAR programs at Wright Lab; the Submunition Guidance Program (Subguide), the Low Cost Anti-Armor Submunition Program (LOCAAS) and the Diode Laser and Detector Array Development Program (3-D). This paper discusses recent advances through the 3-D program that provide the opportunity to obtain three dimensional laser radar imagery in captive flight at a range of 5 km.

  12. Long-range energy transport in photosystem II

    NASA Astrophysics Data System (ADS)

    Roden, Jan J. J.; Bennett, Doran I. G.; Whaley, K. Birgitta

    2016-06-01

    We simulate the long-range inter-complex electronic energy transfer in photosystem II - from the antenna complex, via a core complex, to the reaction center - using a non-Markovian (ZOFE) quantum master equation description that allows the electronic coherence involved in the energy transfer to be explicitly included at all length scales. This allows us to identify all locations where coherence is manifested and to further identify the pathways of the energy transfer in the full network of coupled chromophores using a description based on excitation probability currents. We investigate how the energy transfer depends on the initial excitation - localized, coherent initial excitation versus delocalized, incoherent initial excitation - and find that the overall energy transfer is remarkably robust with respect to such strong variations of the initial condition. To explore the importance of vibrationally enhanced transfer and to address the question of optimization in the system parameters, we systematically vary the strength of the coupling between the electronic and the vibrational degrees of freedom. We find that the natural parameters lie in a (broad) region that enables optimal transfer efficiency and that the overall long-range energy transfer on a ns time scale appears to be very robust with respect to variations in the vibronic coupling of up to an order of magnitude. Nevertheless, vibrationally enhanced transfer appears to be crucial to obtain a high transfer efficiency, with the latter falling sharply for couplings outside the optimal range. Comparison of our full quantum simulations to results obtained with a "classical" rate equation based on a modified-Redfield/generalized-Förster description previously used to simulate energy transfer dynamics in the entire photosystem II complex shows good agreement for the overall time scales of excitation energy transport.

  13. The long-range interaction landscape of gene promoters.

    PubMed

    Sanyal, Amartya; Lajoie, Bryan R; Jain, Gaurav; Dekker, Job

    2012-09-01

    The vast non-coding portion of the human genome is full of functional elements and disease-causing regulatory variants. The principles defining the relationships between these elements and distal target genes remain unknown. Promoters and distal elements can engage in looping interactions that have been implicated in gene regulation. Here we have applied chromosome conformation capture carbon copy (5C) to interrogate comprehensively interactions between transcription start sites (TSSs) and distal elements in 1% of the human genome representing the ENCODE pilot project regions. 5C maps were generated for GM12878, K562 and HeLa-S3 cells and results were integrated with data from the ENCODE consortium. In each cell line we discovered >1,000 long-range interactions between promoters and distal sites that include elements resembling enhancers, promoters and CTCF-bound sites. We observed significant correlations between gene expression, promoter-enhancer interactions and the presence of enhancer RNAs. Long-range interactions show marked asymmetry with a bias for interactions with elements located ∼120 kilobases upstream of the TSS. Long-range interactions are often not blocked by sites bound by CTCF and cohesin, indicating that many of these sites do not demarcate physically insulated gene domains. Furthermore, only ∼7% of looping interactions are with the nearest gene, indicating that genomic proximity is not a simple predictor for long-range interactions. Finally, promoters and distal elements are engaged in multiple long-range interactions to form complex networks. Our results start to place genes and regulatory elements in three-dimensional context, revealing their functional relationships. PMID:22955621

  14. Long-range interaction of anisotropic systems

    NASA Astrophysics Data System (ADS)

    Zhang, J.-Y.; Schwingenschlögl, U.

    2015-02-01

    The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, \\varepsilon(D) \\propto -D-3-O(D-4) , is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form \\varepsilon(D) \\propto -D-4 .

  15. Long-range polarimetric imaging through fog.

    PubMed

    Fade, Julien; Panigrahi, Swapnesh; Carré, Anthony; Frein, Ludovic; Hamel, Cyril; Bretenaker, Fabien; Ramachandran, Hema; Alouini, Mehdi

    2014-06-20

    We report an experimental implementation of long-range polarimetric imaging through fog over kilometric distance in real field atmospheric conditions. An incoherent polarized light source settled on a telecommunication tower is imaged at a distance of 1.3 km with a snapshot polarimetric camera including a birefringent Wollaston prism, allowing simultaneous acquisition of two images along orthogonal polarization directions. From a large number of acquisitions datasets and under various environmental conditions (clear sky/fog/haze, day/night), we compare the efficiency of using polarized light for source contrast increase with different signal representations (intensity, polarimetric difference, polarimetric contrast, etc.). With the limited-dynamics detector used, a maximum fourfold increase in contrast was demonstrated under bright background illumination using polarimetric difference image. PMID:24979415

  16. Fe-based long range ordered alloys

    DOEpatents

    Liu, C.T.

    Malleable long range ordered alloys with high critical ordering temperatures exist in the V(Co,Fe)/sub 3/ and V(Co,Fe,Ni)/sub 3/ system. The composition comprising by weight 22 to 23% V, 35 to 50% Fe, 0 to 22% Co and 19 to 40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22 to 23% V, 35 to 45% Fe, 0 to 10% Co, 25 to 35% Ni; 22 to 23% V, 28 to 33% Ni and the remainder Fe; and 22 to 23% V, 19 to 22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  17. Fe-based long range ordered alloys

    DOEpatents

    Liu, Chain T; Inouye, Henry; Schaffhauser, Anthony C.

    1980-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Co,Fe).sub.3 and V(Co,Fe,Ni).sub.3 system having the composition comprising by weight 22-23% V, 35-50% Fe, 0-22% Co and 19-40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22-23% V, 35-45% Fe, 0-10% Co, 25-35% Ni; 22-23% V, 28-33% Ni and the remainder Fe; and 22-23% V, 19-22% Ni, 19-22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  18. A Long-Range Video Observation Post

    SciTech Connect

    Arlowe, D.

    1995-07-01

    The Long Range Video Observation Post (LRVOP) Project is a cooperative effort between the US and a Middle Eastern country to develop an improved version of their current video observation post. This project is part of a larger effort to cooperatively develop anti-terrorist technology. This particular equipment is required to facilitate the recording and identification of humans at a range of 1000 meters in day-light and 500 meters at night. The project objective was to take advantage of recent advances in camera technology, recorders, and image processing to provide an significant increase in performance with only a minimum increase in size, weight, and cost. The goal of the project was to convert the users general needs and desires into specific requirements that could be bid on by several companies. This paper covers the specific performance requirements, generally describe the components that might be used, and concentrate on describing the more difficult issues and technical challenges.

  19. Long range inductive power transfer system

    NASA Astrophysics Data System (ADS)

    Lawson, James; Pinuela, Manuel; Yates, David C.; Lucyszyn, Stepan; Mitcheson, Paul D.

    2013-12-01

    We report upon a recently developed long range inductive power transfer system (IPT) designed to power remote sensors with mW level power consumption at distances up to 7 m. In this paper an inductive link is established between a large planar (1 × 1 m) transmit coil (Tx) and a small planer (170 × 170 mm) receiver coil (Rx), demonstrating the viability of highly asymmetrical coil configurations that real-world applications such as sensor networks impose. High Q factor Tx and Rx coils required for viable power transfer efficiencies over such distances are measured using a resonant method. The applicability of the Class-E amplifier in very low magnetic coupling scenarios and at the high frequencies of operation required for high Q operation is demonstrated by its usage as the Tx coil driver.

  20. Geometry of the ergodic quotient reveals coherent structures in flows

    NASA Astrophysics Data System (ADS)

    Budišić, Marko; Mezić, Igor

    2012-08-01

    Dynamical systems that exhibit diverse behaviors can rarely be completely understood using a single approach. However, by identifying coherent structures in their state spaces, i.e., regions of uniform and simpler behavior, we could hope to study each of the structures separately and then form the understanding of the system as a whole. The method we present in this paper uses trajectory averages of scalar functions on the state space to: (a) identify invariant sets in the state space, and (b) to form coherent structures by aggregating invariant sets that are similar across multiple spatial scales. First, we construct the ergodic quotient, the object obtained by mapping trajectories to the space of the trajectory averages of a function basis on the state space. Second, we endow the ergodic quotient with a metric structure that successfully captures how similar the invariant sets are in the state space. Finally, we parametrize the ergodic quotient using intrinsic diffusion modes on it. By segmenting the ergodic quotient based on the diffusion modes, we extract coherent features in the state space of the dynamical system. The algorithm is validated by analyzing the Arnold-Beltrami-Childress flow, which was the test-bed for alternative approaches: the Ulam’s approximation of the transfer operator and the computation of Lagrangian Coherent Structures. Furthermore, we explain how the method extends the Poincaré map analysis for periodic flows. As a demonstration, we apply the method to a periodically-driven three-dimensional Hill’s vortex flow, discovering unknown coherent structures in its state space. Finally, we discuss differences between the ergodic quotient and alternatives, propose a generalization to analysis of (quasi-)periodic structures, and lay out future research directions.

  1. High energy factorization in nucleus-nucleus collisions III. Long range rapidity correlations

    SciTech Connect

    Venugopalan, R.; Gelis, F., Lappi, T.

    2009-10-27

    We obtain a novel result in QCD for long range rapidity correlations between gluons produced in the collision of saturated high energy hadrons or nuclei. This result, obtained in a high energy factorization framework, provides strong justification for the Glasma flux tube picture of coherent strong color fields. Our formalism can be applied to 'near side ridge' events at the Relativistic Heavy Ion Collider and in future studies of long range rapidity correlations at the LHC.

  2. High energy factorization in nucleus-nucleus collisions. III. Long range rapidity correlations

    SciTech Connect

    Gelis, Francois

    2009-05-01

    We obtain a novel result in QCD for long range rapidity correlations between gluons produced in the collision of saturated high energy hadrons or nuclei. This result, obtained in a high energy factorization framework, provides strong justification for the Glasma flux tube picture of coherent strong color fields. Our formalism can be applied to 'near side ridge' events at the Relativistic Heavy Ion Collider and in future studies of long range rapidity correlations at the LHC.

  3. Long-Range Spin Transfer in Triple Quantum Dots

    NASA Astrophysics Data System (ADS)

    Sánchez, R.; Granger, G.; Gaudreau, L.; Kam, A.; Pioro-Ladrière, M.; Studenikin, S. A.; Zawadzki, P.; Sachrajda, A. S.; Platero, G.

    2014-05-01

    Tunneling in a quantum coherent structure is not restricted to only nearest neighbors. Hopping between distant sites is possible via the virtual occupation of otherwise avoided intermediate states. Here we report the observation of long-range transitions in the transport through three quantum dots coupled in series. A single electron is delocalized between the left and right quantum dots, while the center one remains always empty. Superpositions are formed, and both charge and spin are exchanged between the outermost dots. The delocalized electron acts as a quantum bus transferring the spin state from one end to the other. Spin selection is enabled by spin correlations. The process is detected via the observation of narrow resonances which are insensitive to Pauli spin blockade.

  4. Long-range spin transfer in triple quantum dots.

    PubMed

    Sánchez, R; Granger, G; Gaudreau, L; Kam, A; Pioro-Ladrière, M; Studenikin, S A; Zawadzki, P; Sachrajda, A S; Platero, G

    2014-05-01

    Tunneling in a quantum coherent structure is not restricted to only nearest neighbors. Hopping between distant sites is possible via the virtual occupation of otherwise avoided intermediate states. Here we report the observation of long-range transitions in the transport through three quantum dots coupled in series. A single electron is delocalized between the left and right quantum dots, while the center one remains always empty. Superpositions are formed, and both charge and spin are exchanged between the outermost dots. The delocalized electron acts as a quantum bus transferring the spin state from one end to the other. Spin selection is enabled by spin correlations. The process is detected via the observation of narrow resonances which are insensitive to Pauli spin blockade. PMID:24836266

  5. Long range position and Orientation Tracking System

    SciTech Connect

    Armstrong, G.A.; Jansen, J.F.; Burks, B.L.

    1996-02-01

    The long range Position and Orientation Tracking System is an active triangulation-based system that is being developed to track a target to a resolution of 6.35 mm (0.25 in.) and 0.009{degrees}(32.4 arcseconds) over a range of 13.72 m (45 ft.). The system update rate is currently set at 20 Hz but can be increased to 100 Hz or more. The tracking is accomplished by sweeping two pairs of orthogonal line lasers over infrared (IR) sensors spaced with known geometry with respect to one another on the target (the target being a rigid body attached to either a remote vehicle or a remote manipulator arm). The synchronization and data acquisition electronics correlates the time that an IR sensor has been hit by one of the four lasers and the angle of the respective mirror at the time of the hit. This information is combined with the known geometry of the IR sensors on the target to determine position and orientation of the target. This method has the advantage of allowing the target to be momentarily lost due to occlusions and then reacquired without having to return the target to a known reference point. The system also contains a camera with operator controlled lighting in each pod that allows the target to be continuously viewed from either pod, assuming their are no occlusions.

  6. A long-range laser velocimeter

    NASA Technical Reports Server (NTRS)

    Reinath, Michael S.

    1991-01-01

    A long-range laser velocimeter (LV) developed for remote operation from within the flow fields of large wind tunnels is described. Emphasis is placed on recent improvements in optical hardware as well as recent additions to data acquisition and processing techniques. The method used for data reduction of photon resolved signals is outlined in detail, and measurement accuracy is discussed. To study the performance of the LV and verify the measurement accuracy, laboratory measurements were made in the flow field of a 10-cm-diameter, 30-m/s axisymetric jet. The measured velocity and turbulence intensity surveys are compared with measurements made with a hot-wire anemometer. Additionally, the LV was used during the flow calibration of the 80-ft x 120-ft wind tunnel to measure the test-section boundary-layer thickness at the maximum wind tunnel speed of 51.5 m/s. The requirements and techniques used to seed the flow are discussed, and boundary-layer surveys of mean velocity and turbulence intensity of the streamwise component and the component normal to the surface are presented. The streamwise component of mean velocity is compared with data obtained with a total pressure rake.

  7. Long range position and orientation tracking system

    SciTech Connect

    Armstrong, G.A.; Jansen, J.F.; Burks, B.L.; Bernacki, B.E.; Nypaver, D.J.

    1995-12-31

    The long range position and orientation tracking system (LRPOTS) will consist of two measurement pods, a VME-based computer system, and a detector array. The system is used to measure the position and orientation of a target that may be attached to a robotic arm, teleoperated manipulator, or autonomous vehicle. The pods have been designed to be mounted in the man-ways of the domes of the Fernald K-65 waste silos. Each pod has two laser scanner subsystems as well as lights and camera systems. One of the laser scanners will be oriented to scan in the pan direction, the other in the tilt direction. As the lasers scan across the detector array, the angles of incidence with each detector are recorded. Combining measurements from each of the four lasers yields sufficient data for a closed-form solution of the transform describing the location and orientation of the Content Mobilization System (CMS). Redundant detectors will be placed on the CMS to accommodate occlusions, to provide improved measurement accuracy, and to determine the CMS orientation.

  8. Segmentation of time series with long-range fractal correlations

    PubMed Central

    Bernaola-Galván, P.; Oliver, J.L.; Hackenberg, M.; Coronado, A.V.; Ivanov, P.Ch.; Carpena, P.

    2012-01-01

    Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome. PMID:23645997

  9. Long-range dismount activity classification: LODAC

    NASA Astrophysics Data System (ADS)

    Garagic, Denis; Peskoe, Jacob; Liu, Fang; Cuevas, Manuel; Freeman, Andrew M.; Rhodes, Bradley J.

    2014-06-01

    Continuous classification of dismount types (including gender, age, ethnicity) and their activities (such as walking, running) evolving over space and time is challenging. Limited sensor resolution (often exacerbated as a function of platform standoff distance) and clutter from shadows in dense target environments, unfavorable environmental conditions, and the normal properties of real data all contribute to the challenge. The unique and innovative aspect of our approach is a synthesis of multimodal signal processing with incremental non-parametric, hierarchical Bayesian machine learning methods to create a new kind of target classification architecture. This architecture is designed from the ground up to optimally exploit correlations among the multiple sensing modalities (multimodal data fusion) and rapidly and continuously learns (online self-tuning) patterns of distinct classes of dismounts given little a priori information. This increases classification performance in the presence of challenges posed by anti-access/area denial (A2/AD) sensing. To fuse multimodal features, Long-range Dismount Activity Classification (LODAC) develops a novel statistical information theoretic approach for multimodal data fusion that jointly models multimodal data (i.e., a probabilistic model for cross-modal signal generation) and discovers the critical cross-modal correlations by identifying components (features) with maximal mutual information (MI) which is efficiently estimated using non-parametric entropy models. LODAC develops a generic probabilistic pattern learning and classification framework based on a new class of hierarchical Bayesian learning algorithms for efficiently discovering recurring patterns (classes of dismounts) in multiple simultaneous time series (sensor modalities) at multiple levels of feature granularity.

  10. Long-Range Weather Forecasting In The Ukraine

    NASA Astrophysics Data System (ADS)

    Martazinova, V. F.; Ivanova, E. K.

    2004-12-01

    The operational system for long range weather forecasting (LRF) was developed by Ukrainian Hydrometeorological Institute (UHMI) in the result of studies of general circulation and on the long-range weather forecasting which were began in 1975 by research group leaded by Prof. V. Martazinova. Three key approaches are used in the operational system LRF of UHMI: (1) Floating analog method (FAM); (2) Two-month quasi-periodicity of atmospheric processes in the troposphere of the Northern Hemisphere; (3)Ethalon-field approach. The based on the pattern recognition technique FAM is the continuation of the ideas of former Soviet Union school of long-range forecasting. The traditional method of analog was generalized and advanced as the method of "floating analog" (Martazinova and Sologub, 1986; Martazinova, 1989; 2001). FAM requires only geometrical similarity of the planetary high-level frontal zone and surface pressure on the Northern Hemisphere. The limiting conditions of the coincidence in time and space are lifted. The use of FAM made it possible to reveal the two-month quasi-periodicity of synoptic situation in the Northern Hemisphere. The strong changes of weather within month are predicted using statistical "ethalon field" approach that was developed for classification of meteorological fields in the climate research and the long-range forecasting (Martazinova and Prokhorenko, 1991). The meteorological information for the forecast is used only for the last two months before the target month. The fields of geopotential and pressure are recognized by the "ethalon-field-analog" which corresponds to two-month quasi-periodicity of the ethalon-fields. The forecast for days the strong changes of weather over the territory of Ukraine in next two months. Recognition of daily synoptic situations of last two months by the synoptic situation of two-month quasi-periodicity of atmospheric processes for ethalons when there are waves of cold and heat, strong precipitation, strong

  11. Optical Coherence Tomography Reveals New Insights into the Accommodation Mechanism

    PubMed Central

    Farouk, Mahmoud Mohamed; Naito, Takeshi; Shinomiya, Kayo; Eguchi, Hiroshi; Sayed, Khulood Mohammed; Nagasawa, Toshihiko; Katome, Takashi; Mitamura, Yoshinori

    2015-01-01

    Purpose. To evaluate the movement of the anterior and posterior lens poles during naturally stimulated accommodation in children using anterior segment optical coherence tomography (OCT). Methods. This is a prospective, observational, noncomparative case series including 18 eyes of nine children. Analysis of the anterior segment in the accommodated and unaccommodated state (with cycloplegia) was done using anterior segment OCT. The main outcome measures were the position of the anterior and posterior lens poles (in relation to the cornea) and lens thickness (LT). Results. A Statistically significant forward movement of the anterior lens pole and backward movement of the posterior lens pole with an increase in LT were found during accommodation (P < 0.001). There was no significant difference between the degree of movement of the anterior lens pole and the posterior lens pole during accommodation (P = 0.944). Conclusions. Anterior segment OCT provides a rapid noncontact method for studying accommodation in children. The backward movement of the posterior lens pole during accommodation nearly equals the forward movement of its anterior pole. These data minimize the theoretical hydraulic effect of the vitreous during accommodation, adding more support to the capsular theory of Helmholtz. PMID:26236498

  12. Superharmonic long-range triplet current in a diffusive Josephson junction.

    PubMed

    Richard, Caroline; Houzet, Manuel; Meyer, Julia S

    2013-05-24

    We study the Josephson current through a long ferromagnetic bilayer in the diffusive regime. For noncollinear magnetizations, we find that the current-phase relation is dominated by its second harmonic, which corresponds to the long-range coherent propagation of two triplet pairs of electrons. PMID:23745915

  13. Chromatin and epigenetic features of long-range gene regulation

    PubMed Central

    Harmston, Nathan; Lenhard, Boris

    2013-01-01

    The precise regulation of gene transcription during metazoan development is controlled by a complex system of interactions between transcription factors, histone modifications and modifying enzymes and chromatin conformation. Developments in chromosome conformation capture technologies have revealed that interactions between regions of chromatin are pervasive and highly cell-type specific. The movement of enhancers and promoters in and out of higher-order chromatin structures within the nucleus are associated with changes in expression and histone modifications. However, the factors responsible for mediating these changes and determining enhancer:promoter specificity are still not completely known. In this review, we summarize what is known about the patterns of epigenetic and chromatin features characteristic of elements involved in long-range interactions. In addition, we review the insights into both local and global patterns of chromatin interactions that have been revealed by the latest experimental and computational methods. PMID:23766291

  14. DNA Structural Correlation in Short and Long Ranges.

    PubMed

    Gu, Chan; Zhang, Jun; Yang, Y Isaac; Chen, Xi; Ge, Hao; Sun, Yujie; Su, Xiaodong; Yang, Lijiang; Xie, Sunney; Gao, Yi Qin

    2015-11-01

    Recent single-molecule measurements have revealed the DNA allostery in protein/DNA binding. MD simulations showed that this allosteric effect is associated with the deformation properties of DNA. In this study, we used MD simulations to further investigate the mechanism of DNA structural correlation, its dependence on DNA sequence, and the chemical modification of the bases. Besides a random sequence, poly d(AT) and poly d(GC) are also used as simpler model systems, which show the different bending and twisting flexibilities. The base-stacking interactions and the methyl group on the 5-carbon site of thymine causes local structures and flexibility to be very different for the two model systems, which further lead to obviously different tendencies of the conformational deformations, including the long-range allosteric effects. PMID:26439165

  15. Long Range Correlation of Hydrophilicity and Flexibility Along the Hemoglobin Chain

    SciTech Connect

    Craciun, D.; Isvoran, A.; Avram, N. M.

    2010-08-04

    Within this study, we reveal the long range correlation concerning hydrophilicity and flexibility along sequences of hemoglobins belonging to different organisms and we compare them with the long range correlations properties obtained for other protein families. For all hemoglobins considered, we investigate two discrete spatial series: the hydrophilicity and flexibility respectively. We apply the nonlinear analysis methods to analyze the two spatial series by calculating the spectral coefficient {beta}, the scaling exponent {alpha} and Hurst exponent H. The obtained values for the mentioned coefficients suggest long range correlation within the analyzed sequences of hemoglobins in good agreement with those obtained for the calcium binding proteins and hydrolases.

  16. Long Range Plan, 1993-1996. Pennsylvania College of Technology.

    ERIC Educational Resources Information Center

    Slotnick, Sandra; And Others

    At Pennsylvania College of Technology (PCT), in Williamsport, long range planning is used to define institutional philosophy and mission and determine strategies to make the best use of available resources and implement actions to fulfill institutional mission. This document presents PCT's long-range plan for 1993-96 in three parts. Following an…

  17. 77 FR 13683 - Alaska Federal Lands Long Range Transportation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Federal Highway Administration Alaska Federal Lands Long Range Transportation Plan AGENCY: Federal Highway..., announced the availability of the draft Alaska Federal Lands Long Range Transportation Plans (LRTP) for..., 2011, at 76 FR 77300, the FHWA published a notice in the Federal Register inviting comments to...

  18. 76 FR 77300 - Alaska Federal Lands Long Range Transportation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... Federal Highway Administration Alaska Federal Lands Long Range Transportation Plan AGENCY: Federal Highway... Lands Long Range Transportation Plans (LRTP) for public review and comment. The draft plans outline a... United States Code Section 204 requires all Federal land management agencies to conduct long...

  19. Long-Range Planning and the Enrollment Decline.

    ERIC Educational Resources Information Center

    Fredrickson, John H.

    The current period of enrollment decline offers school districts an ideal opportunity for program and facility reevaluation and long-range planning. Any long-range plan should evaluate current programs in light of statutory and educational trends, estimate existing facilities' ability to accommodate change, determine the community's potential…

  20. A Model for Long Range Planning for Seminole Community College.

    ERIC Educational Resources Information Center

    Miner, Norris

    A model for long-range planning designed to maximize involvement of college personnel, to improve communication among various areas of the college, to provide a process for evaluation of long-range plans and the planning process, to adjust to changing conditions, to utilize data developed at a level useful for actual operations, and to have…

  1. Report of the Long-Range Planning Committee

    SciTech Connect

    Not Available

    1984-07-01

    This is the final report of the Long-Range Planning Committee of the Lawrence Livermore National Laboratory. It describes the make-up, purpose, working assumptions, and activities of the Committee and discusses the work done by the Committee on defense matters, energy, a number of additional topics, and future long-range planning activities.

  2. Quench dynamics in long-range interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Gong, Zhexuan

    2016-05-01

    A distinctive feature of atomic, molecular, and optical systems is that interactions between particles are often long-ranged. Control techniques from quantum optics often allow one to tune the pattern of these long-range interactions, creating an entirely new degree of freedom, absent in typical condensed matter systems. These tunable long-range interactions can result in very different far-from-equilibrium dynamics compared to systems with only short-range interactions. In the first half of the talk, I will describe how very general types of long-range interactions can qualitatively change the entanglement and correlation growth shortly after a quantum quench. In the second half of the talk I will show that, at longer times, long-range interactions can lead to exotic quasi-stationary states and dynamical phase transitions. These theoretical ideas have been explored in recent trapped-ion experiments, and connections to these experiments will be emphasized in both parts of the talk.

  3. Long Range Chiral Imprinting of Cu(110) by Tartaric Acid

    SciTech Connect

    Lawton, T J; Pushkarev, V; Wei, D; Lucci, F R; Sholl, D S; Gellman, A J; Sykes, E C. H.

    2013-10-31

    Restructuring of metals by chiral molecules represents an important route to inducing and controlling enantioselective surface chemistry. Tartaric acid adsorption on Cu(110) has served as a useful system for understanding many aspects of chiral molecule adsorption and ordering on a metal surface, and a number of chiral and achiral unit cells have been reported. Herein, we show that given the appropriate annealing treatment, singly deprotonated tartaric acid monolayers can restructure the Cu metal itself, and that the resulting structure is both highly ordered and chiral. Molecular resolution scanning tunneling microscopy reveals that singly deprotonated tartaric acid extracts Cu atoms from the Cu(110) surface layer and incorporates them into highly ordered, chiral adatom arrays capped by a continuous molecular layer. Further evidence for surface restructuring comes from images of atom-deep trenches formed in the Cu(110) surface during the process. These trenches also run in low symmetry directions and are themselves chiral. Simulated scanning tunneling microscopy images are consistent with the appearance of the added atom rows and etched trenches. The chiral imprinting results in a long-range, highly ordered unit cell covering the whole surface as confirmed by low energy electron diffraction. Details of the restructuring mechanism were further investigated via time-lapse imaging at elevated temperature. This work reveals the stages of nanoscale surface restructuring and offers an interesting method for chiral modification of an achiral metal surface.

  4. Long-range persistence of femtosecond modulations on laser-plasma-accelerated electron beams

    SciTech Connect

    Tilborg, J. van; Lin, C.; Nakamura, K.; Gonsalves, A. J.; Matlis, N. H.; Sokollik, T.; Shiraishi, S.; Osterhoff, J.; Benedetti, C.; Schroeder, C. B.; Toth, Cs.; Esarey, E.; Leemans, W. P.

    2012-12-21

    Laser plasma accelerators have produced femtosecond electron bunches with a relative energy spread ranging from 100% to a few percent. Simulations indicate that the measured energy spread can be dominated by a correlated spread, with the slice spread significantly lower. Measurements of coherent optical transition radiation are presented for broad-energy-spread beams with laser-induced density and momentum modulations. The long-range (meter-scale) observation of coherent optical transition radiation indicates that the slice energy spread is below the percent level to preserve the modulations.

  5. Gamma- and theta-band synchronization during semantic priming reflect local and long-range lexical-semantic networks

    PubMed Central

    Mellem, Monika S.; Friedman, Rhonda B.; Medvedev, Andrei V.

    2013-01-01

    Anterior and posterior brain areas are involved in the storage and retrieval of semantic representations, but it is not known how these areas dynamically interact during semantic processing. We hypothesized that long-range theta-band coherence would reflect coupling of these areas and examined the oscillatory dynamics of lexical-semantic processing using a semantic priming paradigm with a delayed letter-search task while recording subjects' EEG. Time-frequency analysis revealed facilitation of semantic processing for Related compared to Unrelated conditions, which resulted in a reduced N400 and reduced gamma power from 150-450 ms. Moreover, we observed greater anterior-posterior theta coherence for Unrelated compared to Related conditions over the time windows 150-425 ms and 600-900 ms. We suggest that while gamma power reflects activation of local functional networks supporting semantic representations, theta coherence indicates dynamic coupling of anterior and posterior areas for retrieval and post-retrieval processing and possibly an interaction between semantic relatedness and working memory. PMID:24135132

  6. Truncated Long-Range Percolation on Oriented Graphs

    NASA Astrophysics Data System (ADS)

    van Enter, A. C. D.; de Lima, B. N. B.; Valesin, D.

    2016-07-01

    We consider different problems within the general theme of long-range percolation on oriented graphs. Our aim is to settle the so-called truncation question, described as follows. We are given probabilities that certain long-range oriented bonds are open; assuming that the sum of these probabilities is infinite, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. We give some conditions in which the answer is affirmative. We also translate some of our results on oriented percolation to the context of a long-range contact process.

  7. Hyperfine-structure-induced purely long-range molecules.

    PubMed

    Enomoto, Katsunari; Kitagawa, Masaaki; Tojo, Satoshi; Takahashi, Yoshiro

    2008-03-28

    We have experimentally observed and theoretically identified a novel class of purely long-range molecules. This novel purely long-range state is formed due to a very weak hyperfine interaction that is usually treated only as a small perturbation in molecular spectra. Photoassociation spectroscopy of ultracold ytterbium (171Yb) atoms with the 1S0-3P1 intercombination transition presents clear identification of molecular states and the shallowest molecular potential depth of about 750 MHz among the purely long-range molecules ever observed. PMID:18517858

  8. Measured long-range repulsive Casimir–Lifshitz forces

    PubMed Central

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian

    2014-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843

  9. Neural network analysis of long-range precipitation forecasts

    NASA Astrophysics Data System (ADS)

    Silverman, David I.

    The object of this research is to show that long range forecasts of precipitation for California is possible using large-scale climatological indexes and that artificial neural networks (ANNs) are a viable tool for modeling and data extraction. For each of California's seven climate zones, ANNs were trained using a calendar year's input of parameters to predict the coming water year's total precipitation and to predict the following water year's. Activity by the El Niño-Southern Oscillation (ENSO) in the east Pacific and the 700 mb height anomaly over the northern hemisphere is known to be related to various phenomena in specific regions of California. These large-scale climatological parameters represent the global atmospheric circulation that, in a sense, bring the weather to a region. By determining how these parameters interact over time, we can determine the general weather conditions that will arrive in a region. Because of the large amount of data, the short time period the data covers, the unknown type of relationships involved, and the possibly extraneous data, common statistical methods are not easily applied. Artificial neural networks (ANNs) are powerful and useful tools, especially in cases where the complex relationship between the inputs and outputs cannot easily be determined by common modeling methods. 0It was found that the pattern of rainfall predicted by the ANN model matched closely the observed rainfall with the nine month time lag for most California climate zones and for most years. This portion of the research shows the possibility of making long range forecasts using ANNs and large scale climatological parameters. These artificial ``brains'' were then analyzed by two different methods to reveal their methods of forecasting. One method produced for each climate zone a reduced set of important global parameters that were used in a simple linear regression model with good results. The second method gave information about how the individual

  10. Assessment of a long-range corrected hybrid functional

    SciTech Connect

    Vydrov, Oleg A.; Scuseria, Gustavo E.

    2006-12-21

    Common approximate exchange-correlation functionals suffer from self-interaction error, and as a result, their corresponding potentials have incorrect asymptotic behavior. The exact asymptote can be imposed by introducing range separation into the exchange component and replacing the long-range portion of the approximate exchange by the Hartree-Fock counterpart. The authors show that this long-range correction works particularly well in combination with the short-range variant of the Perdew-Burke-Ernzerhof (PBE) exchange functional. This long-range-corrected hybrid, here denoted LC-{omega}PBE, is remarkably accurate for a broad range of molecular properties, such as thermochemistry, barrier heights of chemical reactions, bond lengths, and most notably, description of processes involving long-range charge transfer.

  11. Long-range eye tracking: A feasibility study

    SciTech Connect

    Jayaweera, S.K.; Lu, Shin-yee

    1994-08-24

    The design considerations for a long-range Purkinje effects based video tracking system using current technology is presented. Past work, current experiments, and future directions are thoroughly discussed, with an emphasis on digital signal processing techniques and obstacles. It has been determined that while a robust, efficient, long-range, and non-invasive eye tracking system will be difficult to develop, such as a project is indeed feasible.

  12. Long-Range Correlations in Stride Intervals May Emerge from Non-Chaotic Walking Dynamics

    PubMed Central

    Ahn, Jooeun; Hogan, Neville

    2013-01-01

    Stride intervals of normal human walking exhibit long-range temporal correlations. Similar to the fractal-like behaviors observed in brain and heart activity, long-range correlations in walking have commonly been interpreted to result from chaotic dynamics and be a signature of health. Several mathematical models have reproduced this behavior by assuming a dominant role of neural central pattern generators (CPGs) and/or nonlinear biomechanics to evoke chaos. In this study, we show that a simple walking model without a CPG or biomechanics capable of chaos can reproduce long-range correlations. Stride intervals of the model revealed long-range correlations observed in human walking when the model had moderate orbital stability, which enabled the current stride to affect a future stride even after many steps. This provides a clear counterexample to the common hypothesis that a CPG and/or chaotic dynamics is required to explain the long-range correlations in healthy human walking. Instead, our results suggest that the long-range correlation may result from a combination of noise that is ubiquitous in biological systems and orbital stability that is essential in general rhythmic movements. PMID:24086274

  13. Quantum transport with long-range steps on Watts-Strogatz networks

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Xu, Xin-Jian

    2016-07-01

    We study transport dynamics of quantum systems with long-range steps on the Watts-Strogatz network (WSN) which is generated by rewiring links of the regular ring. First, we probe physical systems modeled by the discrete nonlinear schrödinger (DNLS) equation. Using the localized initial condition, we compute the time-averaged occupation probability of the initial site, which is related to the nonlinearity, the long-range steps and rewiring links. Self-trapping transitions occur at large (small) nonlinear parameters for coupling ɛ=-1 (1), as long-range interactions are intensified. The structure disorder induced by random rewiring, however, has dual effects for ɛ=-1 and inhibits the self-trapping behavior for ɛ=1. Second, we investigate continuous-time quantum walks (CTQW) on the regular ring ruled by the discrete linear schrödinger (DLS) equation. It is found that only the presence of the long-range steps does not affect the efficiency of the coherent exciton transport, while only the allowance of random rewiring enhances the partial localization. If both factors are considered simultaneously, localization is greatly strengthened, and the transport becomes worse.

  14. Long-range energy transport in single supramolecular nanofibres at room temperature

    NASA Astrophysics Data System (ADS)

    Haedler, Andreas T.; Kreger, Klaus; Issac, Abey; Wittmann, Bernd; Kivala, Milan; Hammer, Natalie; Köhler, Jürgen; Schmidt, Hans-Werner; Hildner, Richard

    2015-07-01

    Efficient transport of excitation energy over long distances is a key process in light-harvesting systems, as well as in molecular electronics. However, in synthetic disordered organic materials, the exciton diffusion length is typically only around 10 nanometres (refs 4, 5), or about 50 nanometres in exceptional cases, a distance that is largely determined by the probability laws of incoherent exciton hopping. Only for highly ordered organic systems has the transport of excitation energy over macroscopic distances been reported--for example, for triplet excitons in anthracene single crystals at room temperature, as well as along single polydiacetylene chains embedded in their monomer crystalline matrix at cryogenic temperatures (at 10 kelvin, or -263 degrees Celsius). For supramolecular nanostructures, uniaxial long-range transport has not been demonstrated at room temperature. Here we show that individual self-assembled nanofibres with molecular-scale diameter efficiently transport singlet excitons at ambient conditions over more than four micrometres, a distance that is limited only by the fibre length. Our data suggest that this remarkable long-range transport is predominantly coherent. Such coherent long-range transport is achieved by one-dimensional self-assembly of supramolecular building blocks, based on carbonyl-bridged triarylamines, into well defined H-type aggregates (in which individual monomers are aligned cofacially) with substantial electronic interactions. These findings may facilitate the development of organic nanophotonic devices and quantum information technology.

  15. Dissipation-Assisted Prethermalization in Long-Range Interacting Atomic Ensembles.

    PubMed

    Schütz, Stefan; Jäger, Simon B; Morigi, Giovanna

    2016-08-19

    We theoretically characterize the semiclassical dynamics of an ensemble of atoms after a sudden quench across a driven-dissipative second-order phase transition. The atoms are driven by a laser and interact via conservative and dissipative long-range forces mediated by the photons of a single-mode cavity. These forces can cool the motion and, above a threshold value of the laser intensity, induce spatial ordering. We show that the relaxation dynamics following the quench exhibits a long prethermalizing behavior which is first dominated by coherent long-range forces and then by their interplay with dissipation. Remarkably, dissipation-assisted prethermalization is orders of magnitude longer than prethermalization due to the coherent dynamics. We show that it is associated with the creation of momentum-position correlations, which remain nonzero for even longer times than mean-field predicts. This implies that cavity cooling of an atomic ensemble into the self-organized phase can require longer time scales than the typical experimental duration. In general, these results demonstrate that noise and dissipation can substantially slow down the onset of thermalization in long-range interacting many-body systems. PMID:27588853

  16. Dissipation-Assisted Prethermalization in Long-Range Interacting Atomic Ensembles

    NASA Astrophysics Data System (ADS)

    Schütz, Stefan; Jäger, Simon B.; Morigi, Giovanna

    2016-08-01

    We theoretically characterize the semiclassical dynamics of an ensemble of atoms after a sudden quench across a driven-dissipative second-order phase transition. The atoms are driven by a laser and interact via conservative and dissipative long-range forces mediated by the photons of a single-mode cavity. These forces can cool the motion and, above a threshold value of the laser intensity, induce spatial ordering. We show that the relaxation dynamics following the quench exhibits a long prethermalizing behavior which is first dominated by coherent long-range forces and then by their interplay with dissipation. Remarkably, dissipation-assisted prethermalization is orders of magnitude longer than prethermalization due to the coherent dynamics. We show that it is associated with the creation of momentum-position correlations, which remain nonzero for even longer times than mean-field predicts. This implies that cavity cooling of an atomic ensemble into the self-organized phase can require longer time scales than the typical experimental duration. In general, these results demonstrate that noise and dissipation can substantially slow down the onset of thermalization in long-range interacting many-body systems.

  17. Application of advanced technology to future long-range aircraft

    NASA Technical Reports Server (NTRS)

    Schrader, O. E.

    1976-01-01

    The objective of this paper is to provide an overview assessment of three separate programs at Langley Research Center that have incorporated advanced technology into the design of long-range passenger and cargo aircraft. The first technology centers around the use of an span-loaded cargo aircraft with the payload distributed along the wing. This concept has the potential for reduced structural weights. The second technology is the application of laminar flow control (LFC) to the aircraft to reduce the aerodynamic drag. The use of LFC can reduce the fuel requirements during long-range cruise. The last program evaluates the production of alternate aircraft fuels from coal and the use of liquid hydrogen as an aircraft fuel. Coal-derived hydrogen as an aircraft fuel offers both the prospect for reduced dependence on petroleum fuels and improved performance for long-range aircraft.

  18. Fourth International Symposium on Long-Range Sound Propagation

    NASA Technical Reports Server (NTRS)

    Willshire, William L., Jr. (Compiler)

    1990-01-01

    Long range sound propagation is an aspect of many acoustical problems ranging from en route aircraft noise to the acoustic detection of aircraft. Over the past decade, the University of Mississippi and the Open University of England, together with a third institution, have held a symposium approx. every 2 years so that experts in the field of long range propagation could exchange information on current research, identify areas needing additional work, and coordinate activities as much as possible. The Fourth International Symposium on Long Range Sound Propagation was jointly sponsored by the University of Mississippi, the Open University of England, and NASA. Papers were given in the following areas: ground effects on propagation; infrasound propagation; and meteorological effects on sound propagation. A compilation of the presentations made at the symposium is presented along with a list of attendees, and the agenda.

  19. Long-range interactions in lattice field theory

    SciTech Connect

    Rabin, J.M.

    1981-06-01

    Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.

  20. Long-range oil and gas forecasting methodologies: literature survey

    SciTech Connect

    Cherniavsky, E.A.

    1980-08-01

    Performance of long-range energy system analyses requires the capability to project conventional domestic oil and gas supplies in the long term. The objective of the Long-range Forecasting Methodology project is to formulate an approach to this problem which will be compatible with the principal tool employed by the Energy Information Administration of the Department of Energy for long-range energy system analyses, the Long-term Energy Analysis Package (LEAP). This paper reports on projection methodologies that have appeared in the literature, evaluates them in terms of their applicability to the LEAP framework, and discusses the principal determinants of conventional domestic oil and gas supply in the long run.

  1. Memory and long-range correlations in chess games

    NASA Astrophysics Data System (ADS)

    Schaigorodsky, Ana L.; Perotti, Juan I.; Billoni, Orlando V.

    2014-01-01

    In this paper we report the existence of long-range memory in the opening moves of a chronologically ordered set of chess games using an extensive chess database. We used two mapping rules to build discrete time series and analyzed them using two methods for detecting long-range correlations; rescaled range analysis and detrended fluctuation analysis. We found that long-range memory is related to the level of the players. When the database is filtered according to player levels we found differences in the persistence of the different subsets. For high level players, correlations are stronger at long time scales; whereas in intermediate and low level players they reach the maximum value at shorter time scales. This can be interpreted as a signature of the different strategies used by players with different levels of expertise. These results are robust against the assignation rules and the method employed in the analysis of the time series.

  2. Long-Range Beam-Beam Compensation Using Wires

    NASA Astrophysics Data System (ADS)

    Zimmermann, F.; Schmickler, H.

    At the LHC, the effect of unavoidable long-range beam-beam collisions reduces the dynamic aperture, calling for a minimum crossing angle. A wire compensator partially cancels the effect of the long-range collisions, and may allow operation with reduced crossing angle or decreased beta function at the interaction point, thereby increasing the (virtual) peak luminosity. In this chapter, we describe the proposed compensation scheme, previous validation experiments with a single beam and multiple wires at the SPS, simulations for the LHC high-luminosity upgrade, a demonstrator project with real long-range encounters foreseen in the LHC proper, and the possible use of a low-energy electron beam as a future ultimate "wire".

  3. Long-range correction for dipolar fluids at planar interfaces

    NASA Astrophysics Data System (ADS)

    Werth, Stephan; Horsch, Martin; Hasse, Hans

    2015-12-01

    A slab-based long-range correction for dipolar interactions in molecular dynamics simulation of systems with a planar geometry is presented and applied to simulate vapour-liquid interfaces. The present approach is validated with respect to the saturated liquid density and the surface tension of the Stockmayer fluid and a molecular model for ethylene oxide. The simulation results exhibit no dependence on the cut-off radius for radii down to 1 nm, proving that the long-range correction accurately captures the influence of the dipole moment on the intermolecular interaction energies and forces as well as the virial and the surface tension.

  4. Long-range dependence in interest rates and monetary policy

    NASA Astrophysics Data System (ADS)

    Cajueiro, Daniel O.; Tabak, Benjamin M.

    2008-01-01

    This Letter studies the dynamics of Brazilian interest rates for short-term maturities. The Letter employs developed techniques in the econophysics literature and tests for long-range dependence in the term structure of these interest rates for the last decade. Empirical results suggest that the degree of long-range dependence has changed over time due to changes in monetary policy, specially in the short-end of the term structure of interest rates. Therefore, we show that it is possible to identify monetary arrangements using these techniques from econophysics.

  5. Long-Range Beam-Beam Compensation in RHIC

    SciTech Connect

    Kim, Hyung Jin; Sen, Tanaji; Fischer, Wolfram; /Brookhaven

    2010-05-01

    In order to avoid the effects of long-range beam-beam interactions which produce beam blow-up and deteriorate beam life time, a compensation scheme with current carrying wires has been proposed. Two long-range beam-beam compensators were installed in RHIC rings in 2006. The effects of the compensators have been experimentally investigated. An indication was observed that the compensators are beneficial to beam life time in measurements performed in RHIC during 2009. In this paper, we report the effects of wire compensator on beam loss and emittance for proton-proton beams at collision energy.

  6. Small long-range alpha detector (LRAD) with computer readout

    SciTech Connect

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.; Butterfield, K.B.

    1991-10-01

    The small long-range alpha detector developed by N-2 was described in detail in the Los Alamos publication LA-12073-MS, Long-Range Alpha Detector,'' published in 1991. Since publication of that report, a computerized data acquisition system has been added to the LRAD detector. In addition to detailing the new data acquisition system, we discuss new data generated with the enhanced system, including measurements of (1) ultimate sensitivity; (2) detector linearity; (3) ion lifetime; and (4) characteristics. Furthermore, we have expanded our understanding of ion recombination and statistical noise effects in the LRAD and have addressed them here as well as several proposed applications. 6 refs., 30 figs.

  7. Design of a high capacity long range cargo aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.

    1994-01-01

    This report examines the design of a long range cargo transport to attempt to reduce ton-mile shipping costs and to stimulate the air cargo market. This design effort involves the usual issues but must also include consideration of: airport terminal facilities; cargo loading and unloading; and defeating the 'square-cube' law to design large structures. This report reviews the long range transport design problem and several solutions developed by senior student design teams at Purdue University. The results show that it will be difficult to build large transports unless the infrastructure is changed and unless the basic form of the airplane changes so that aerodynamic and structural efficiencies are employed.

  8. Long-range correlation in cosmic microwave background radiation.

    PubMed

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution. PMID:21928945

  9. Against the long-range spectral leakage of the cosine window family

    NASA Astrophysics Data System (ADS)

    Chen, Kui Fu; Jiang, Jing Tao; Crowsen, Stephen

    2009-06-01

    Suppressing spectral leakage in the fast Fourier transform (FFT) has been investigated for over 30 years. Regarding the frequently used cosine window family, it is observed that the long-range leakage sampled by FFT spectral lines follow a flat trajectory. Consequently, the long-range leakage is approximated by polynomials in this paper. In light of this parametric model, the interpolating formula is presented with up to nine-point for a cosine window with maximum side lobe decaying. Its expression is general in the window order and number of interpolating points. Some well-known formulas of the modulus-based interpolated FFT are parallel to special cases of the new formula, but the former are susceptible to significant bias at coherent sampling conditions. The new formula was tested with real-valued signals containing a single tone and then duel tones. It is demonstrated the new formula is easy to implement and is free of the significant bias aforementioned.

  10. Long-range order and pinning of charge-density waves in competition with superconductivity

    NASA Astrophysics Data System (ADS)

    Caplan, Yosef; Wachtel, Gideon; Orgad, Dror

    2015-12-01

    Recent experiments show that charge-density-wave correlations are prevalent in underdoped cuprate superconductors. The correlations are short ranged at weak magnetic fields but their intensity and spatial extent increase rapidly at low temperatures beyond a crossover field. Here we consider the possibility of long-range charge-density-wave order in a model of a layered system where such order competes with superconductivity. We show that in the clean limit, low-temperature long-range order is stabilized by arbitrarily weak magnetic fields. This apparent discrepancy with the experiments is resolved by the presence of disorder. Like the field, disorder nucleates halos of charge-density wave, but unlike the former it also disrupts interhalo coherence, leading to a correlation length that is always finite. Our results are compatible with various experimental trends, including the onset of longer range correlations induced by interlayer coupling above a characteristic field scale.

  11. Probing the antiferromagnetic long-range order with Glauber spin states

    NASA Technical Reports Server (NTRS)

    Cabrera, Guillermo G.

    1994-01-01

    It is well known that the ground state of low-dimensional antiferromagnets deviates from Neel states due to strong quantum fluctuations. Even in the presence of long-range order, those fluctuations produce a substantial reduction of the magnetic moment from its saturation value. Numerical simulations in anisotropic antiferromagnetic chains suggest that quantum fluctuations over Neel order appear in the form of localized reversal of pairs of neighboring spins. In this paper, we propose a coherent state representation for the ground state to describe the above situation. In the one-dimensional case, our wave function corresponds to a two-mode Glauber state, when the Neel state is used as a reference, while the boson fields are associated to coherent flip of spin pairs. The coherence manifests itself through the antiferromagnetic long-range order that survives the action of quantum fluctuations. The present representation is different from the standard zero-point spin wave state, and is asymptotically exact in the limit of strong anisotropy. The fermionic version of the theory, obtained through the Jordan-Wigner transformation, is also investigated.

  12. RESIDENCE TIME OF ATMOSPHERIC POLLUTANTS AND LONG-RANGE TRANSPORT

    EPA Science Inventory

    The Lagrangian trajectory model which is suitable for the study of long-range transport of pollutants, is developed. The computer program is capable of calculating trajectories over the region of the U.S. using routine sounding data. The output consists of tables of locations of ...

  13. Long-range correlation analysis of economic news flow intensity

    NASA Astrophysics Data System (ADS)

    Sidorov, S. P.; Faizliev, A. R.; Balash, V. A.; Korobov, E. A.

    2016-02-01

    The goal of the paper is to examine the auto-correlation properties for time series of the news flow intensity using different methods, such as the fluctuation analysis, the detrended fluctuation analysis and the detrending moving average analysis. Empirical findings for news analytics data show the presence of long-range correlations for the time series of news intensity data.

  14. LONG RANGE DEVELOPMENT PLAN FOR HONOLULU COMMUNITY COLLEGE.

    ERIC Educational Resources Information Center

    KILIAN, OTTO H.

    THE LONG RANGE DEVELOPMENT PLAN FOR HONOLULU COMMUNITY COLLEGE DESCRIBES VERY BRIEFLY A WIDE RANGE OF TOPICS AS FOLLOWS--(1) SITE CONDITIONS--VICINITY MAP, PHYSICAL CHARACTERISTICS, ZONING AND LAND USE, ASSESSED VALUATIONS, TRAFFIC ANALYSIS, (2) EXISTING CAMPUS--TYPE, AGE AND CONDITION OF NEIGHBORHOOD AND CAMPUS STRUCTURES, CAMPUS PLAN, CAMPUS…

  15. "MAPseq"-uencing Long-Range Neuronal Projections.

    PubMed

    Yonehara, Keisuke; Roska, Botond

    2016-09-01

    Kebschull et al. (2016a) describe "MAPseq," which tags individual neurons from a specific brain region with individual mRNA barcodes and sequences these barcodes in other brain regions. This allows the simultaneous mapping of long-range neuronal projections at single-cell resolution. PMID:27608754

  16. New Long-Range Interaction between Dipolar Chains

    NASA Astrophysics Data System (ADS)

    Gross, Mark; Kiskamp, Stephen

    1997-09-01

    The interaction between two finite chains of dipoles is treated in a systematic fashion by considering perturbations from the idealized case of two infinite, uniform, parallel chains. A long-range attractive interaction is obtained which survives the zero-temperature limit. Thermal effects increase the range of attraction. Applications to magnetorheological fluids are discussed.

  17. Long-Range Strategic Planning: The Rochester Experience.

    ERIC Educational Resources Information Center

    Schultz, John M.; Anthony, Deborah L.

    The administration of Rochester Community Schools (Michigan) initiated a process for long-range strategic planning in 1984, described in this synopsis. Strategic planning is an ongoing, evolutionary process of defining the business one is in or should be in; establishing organizational goals and objectives; and developing and implementing…

  18. Long Range Development Plan, University of California, Riverside.

    ERIC Educational Resources Information Center

    Russell (George Vernon) and Associates, Architects and Planners.

    A long range development plan, conceived as a general guide to final objectives, uses many diagrams and maps to illustrate the text. The plan is predicated on the assumption that orderly and efficient development of site possibilities is subject to ever-changing influences. The following areas are examined--(1) campus environment, (2) academic…

  19. Microcanonical Analysis on a System with Long-Range Interactions

    NASA Astrophysics Data System (ADS)

    Hou, Ji-Xuan; Yu, Xu-Chen; Hou, Jing-Min

    2016-09-01

    We study a long-range interacting spin chain placed in a staggered magnetic field using microcanonical approach and obtain the global phase diagram. We find that this model exhibits both first order phase transition and second order phase transition separated by a tricritical point, and temperature jump can be observed in the first order phase transition.

  20. Strategic Long Range Planning for Universities. AIR Forum 1980 Paper.

    ERIC Educational Resources Information Center

    Baker, Michael E.

    The use of strategic long-range planning at Carnegie-Mellon University (CMU) is discussed. A structure for strategic planning analysis that integrates existing techniques is presented, and examples of planning activities at CMU are included. The key concept in strategic planning is competitive advantage: if a university has a competitive…

  1. Long-range contributions to double beta decay revisited

    NASA Astrophysics Data System (ADS)

    Helo, J. C.; Hirsch, M.; Ota, T.

    2016-06-01

    We discuss the systematic decomposition of all dimension-7 ( d = 7) lepton number violating operators. These d = 7 operators produce momentum enhanced contributions to the long-range part of the 0νββ decay amplitude and thus are severely constrained by existing half-live limits. In our list of possible models one can find contributions to the long-range amplitude discussed previously in the literature, such as the left-right symmetric model or scalar leptoquarks, as well as some new models not considered before. The d = 7 operators generate Majorana neutrino mass terms either at tree-level, 1-loop or 2-loop level. We systematically compare constraints derived from the mass mechanism to those derived from the long-range 0 νββ decay amplitude and classify our list of models accordingly. We also study one particular example decomposition, which produces neutrino masses at 2-loop level, can fit oscillation data and yields a large contribution to the long-range 0 νββ decay amplitude, in some detail.

  2. Causality and quantum criticality in long-range lattice models

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Gong, Zhe-Xuan; Foss-Feig, Michael; Gorshkov, Alexey V.

    2016-03-01

    Long-range quantum lattice systems often exhibit drastically different behavior than their short-range counterparts. In particular, because they do not satisfy the conditions for the Lieb-Robinson theorem, they need not have an emergent relativistic structure in the form of a light cone. Adopting a field-theoretic approach, we study the one-dimensional transverse-field Ising model with long-range interactions, and a fermionic model with long-range hopping and pairing terms, explore their critical and near-critical behavior, and characterize their response to local perturbations. We deduce the dynamic critical exponent, up to the two-loop order within the renormalization group theory, which we then use to characterize the emergent causal behavior. We show that beyond a critical value of the power-law exponent of the long-range couplings, the dynamics effectively becomes relativistic. Various other critical exponents describing correlations in the ground state, as well as deviations from a linear causal cone, are deduced for a wide range of the power-law exponent.

  3. DEMONSTRATION OF A LONG RANGE TRACER SYSTEM USING PERFLUOROCARBONS

    EPA Science Inventory

    Regional-scale tracer experiments are needed to validate atmospheric dispersion aspects of air pollution models. The capability of a new system, using perfluorocarbon tracers (PFTs), for long-range dispersion experiments at reasonable cost, was demonstrated in two experiments. Tw...

  4. Hierarchical organization of long-range circuits in the olfactory cortices

    PubMed Central

    Yang, Weiguo; Sun, Qian-Quan

    2015-01-01

    How sensory information is processed within olfactory cortices is unclear. Here, we examined long-range circuit wiring between different olfactory cortical regions of acute mouse brain slices using a channelrhodopsin-2 (ChR2)-based neuronal targeting approach. Our results provide detailed information regarding the synaptic properties of the reciprocal long-range monosynaptic glutamatergic projections (LRMGP) between and within anterior piriform cortex (aPC), posterior piriform cortex (pPC), and lateral entorhinal cortex (LEC), thereby creating a long-range inter- and intracortical circuit diagrams at the level of synapses and single cortical neurons. Our results reveal the following information regarding hierarchical intra- and intercortical organizations: (i) there is massive bottom-up (i.e., rostral–caudal) excitation within the LRMGP accompanied with strong feedforward (FF) inhibition; (ii) there are convergent FF connections onto LEC from both aPC and pPC; (iii) feedback (FB) intercortical connections are weak with a significant fraction of presumptive silent synapses; and (iv) intra and intercortical long-range connections lack layer specificity and their innervation of interneurons are stronger than neighboring pyramidal neurons. The elucidation of the distinct hierarchical organization of long-range olfactory cortical circuits paves the way for further understanding of higher order cortical processing within the olfactory system. PMID:26416972

  5. Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L., III; Wang, Shang; Larin, Kirill V.; Overbeek, Paul A.; Larina, Irina V.

    2015-09-01

    Efficient phenotyping of developmental defects in model organisms is critical for understanding the genetic specification of normal development and congenital abnormalities in humans. We previously reported that optical coherence tomography (OCT) combined with live embryo culture is a valuable tool for mouse embryo imaging and four-dimensional (4-D) cardiodynamic analysis; however, its capability for analysis of mouse mutants with cardiac phenotypes has not been previously explored. Here, we report 4-D (three-dimensional+time) OCT imaging and analysis of the embryonic heart in a Wdr19 mouse mutant, revealing a heart looping defect. Quantitative analysis of cardiac looping revealed a statistically significant difference between mutant and control embryos. Our results indicate that live 4-D OCT imaging provides a powerful phenotyping approach to characterize embryonic cardiac function in mouse models.

  6. Inversion Domain Boundaries in GaN Wires Revealed by Coherent Bragg Imaging.

    PubMed

    Labat, Stéphane; Richard, Marie-Ingrid; Dupraz, Maxime; Gailhanou, Marc; Beutier, Guillaume; Verdier, Marc; Mastropietro, Francesca; Cornelius, Thomas W; Schülli, Tobias U; Eymery, Joël; Thomas, Olivier

    2015-09-22

    Interfaces between polarity domains in nitride semiconductors, the so-called Inversion Domain Boundaries (IDB), have been widely described, both theoretically and experimentally, as perfect interfaces (without dislocations and vacancies). Although ideal planar IDBs are well documented, the understanding of their configurations and interactions inside crystals relies on perfect-interface assumptions. Here, we report on the microscopic configuration of IDBs inside n-doped gallium nitride wires revealed by coherent X-ray Bragg imaging. Complex IDB configurations are evidenced with 6 nm resolution and the absolute polarity of each domain is unambiguously identified. Picoscale displacements along and across the wire are directly extracted from several Bragg reflections using phase retrieval algorithms, revealing rigid relative displacements of the domains and the absence of microscopic strain away from the IDBs. More generally, this method offers an accurate inner view of the displacements and strain of interacting defects inside small crystals that may alter optoelectronic properties of semiconductor devices. PMID:26322655

  7. The design of a long-range megatransport aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Allen, Carl L.

    1992-01-01

    Aircraft manufacturers are examining the market and feasibility of long-range passenger aircraft carrying more than 600 passengers. These aircraft would carry travelers at reduced cost and, at the same time, reduce congestion around major airports. The design of a large, long-range transport involves broad issues such as: the integration of airport terminal facilities; passenger loading and unloading; trade-offs between aircraft size and the cost to reconfigure these existing facilities; and, defeating the 'square-cube' law. Thirteen Purdue design teams generated RFP's that defined passenger capability and range, based upon team perception of market needs and infrastructure constraints. Turbofan engines were designed by each group to power these aircraft. The design problem and the variety of solutions developed are reviewed.

  8. Travel: a long-range goal of retired women.

    PubMed

    Staats, Sara; Pierfelice, Loretta

    2003-09-01

    The authors surveyed retired persons (predominately women) with regard to their immediate, intermediate, and long-range activities following retirement. As predicted, leisure travel emerged as a frequent long-range goal for persons retired more than 5 years. The travel activity preferences of long-retired older women present challenges and opportunities to both researchers and marketers. Length of trips and frequency of trips have been predicted from regression models, with trip length in particular being well predicted by the problem of daily life hassles. A theoretical model of continued post-retirement travel is presented as a variant of Solomon's opponent process theory of affect (R. L. Solomon, 1980). The authors suggest that to the degree that places traveled to are varied and different, older people may remain stimulated and continue to enjoy retirement. PMID:14629078

  9. Long-range correlation analysis of urban traffic data

    NASA Astrophysics Data System (ADS)

    Sheng, Peng; Wang, Jun-Feng; Tang, Tie-Qiao; Zhao, Shu-Long

    2010-08-01

    This paper investigates urban traffic data by analysing the long-range correlation with detrended fluctuation analysis. Through a large number of real data collected by the travel time detection system in Beijing, the variation of flow in different time periods and intersections is studied. According to the long-range correlation in different time scales, it mainly discusses the effect of intersection location in road net, people activity customs and special traffic controls on urban traffic flow. As demonstrated by the obtained results, the urban traffic flow represents three-phase characters similar to highway traffic. Moreover, compared by the two groups of data obtained before and after the special traffic restrictions (vehicles with special numbered plates only run in a special workday) enforcement, it indicates that the rules not only reduce the flow but also avoid irregular fluctuation.

  10. Periodic discrete energy for long-range potentials

    NASA Astrophysics Data System (ADS)

    Hardin, D. P.; Saff, E. B.; Simanek, B.

    2014-12-01

    We consider periodic energy problems in Euclidean space with a special emphasis on long-range potentials that cannot be defined through the usual infinite sum. One of our main results builds on more recent developments of Ewald summation to define the periodic energy corresponding to a large class of long-range potentials. Two particularly interesting examples are the logarithmic potential and the Riesz potential when the Riesz parameter is smaller than the dimension of the space. For these examples, we use analytic continuation methods to provide concise formulas for the periodic kernel in terms of the Epstein Hurwitz Zeta function. We apply our energy definition to deduce several properties of the minimal energy including the asymptotic order of growth and the distribution of points in energy minimizing configurations as the number of points becomes large. We conclude with some detailed calculations in the case of one dimension, which shows the utility of this approach.

  11. Temperature inversion in long-range interacting systems

    NASA Astrophysics Data System (ADS)

    Teles, Tarcísio N.; Gupta, Shamik; Di Cintio, Pierfrancesco; Casetti, Lapo

    2015-08-01

    Temperature inversions occur in nature, e.g., in the solar corona and in interstellar molecular clouds: Somewhat counterintuitively, denser parts of the system are colder than dilute ones. We propose a simple and appealing way to spontaneously generate temperature inversions in systems with long-range interactions, by preparing them in inhomogeneous thermal equilibrium states and then applying an impulsive perturbation. In similar situations, short-range systems would typically relax to another thermal equilibrium, with a uniform temperature profile. By contrast, in long-range systems, the interplay between wave-particle interaction and spatial inhomogeneity drives the system to nonequilibrium stationary states that generically exhibit temperature inversion. We demonstrate this mechanism in a simple mean-field model and in a two-dimensional self-gravitating system. Our work underlines the crucial role the range of interparticle interaction plays in determining the nature of steady states out of thermal equilibrium.

  12. Sirius: a long-range infrared search and track system

    NASA Astrophysics Data System (ADS)

    Knepper, R.

    1997-08-01

    Sirius is a long range infra red search and track system (LR- IRST) and intended to be used in an anti air warfare (AAW) multisensor suite on board of modern frigates. This Dutch/Canadian development program started 1/1/95 and includes also the evaluation of the system in warm and cold water scenarios. The operational requirements were drafted by both the national navies. The primary task is automatic detection, tracking and reporting of seaskimming missiles at long range. The design is based on recent experiences with IRSTs and the latest technological achievements in the areas of processing capabilities and IR-detectors. In this presentation design drivers and main technical choices are discussed.

  13. Preservation of long range temporal correlations under extreme random dilution

    NASA Astrophysics Data System (ADS)

    Mirzayof, Dror; Ashkenazy, Yosef

    2010-12-01

    Many natural time series exhibit long range temporal correlations that may be characterized by power-law scaling exponents. However, in many cases, the time series have uneven time intervals due to, for example, missing data points, noisy data, and outliers. Here we study the effect of randomly missing data points on the power-law scaling exponents of time series that are long range temporally correlated. The Fourier transform and detrended fluctuation analysis (DFA) techniques are used for scaling exponent estimation. We find that even under extreme dilution of more than 50%, the value of the scaling exponent remains almost unaffected. Random dilution is also applied on heart interbeat interval time series. It is found that dilution of 70%-80% of the data points leads to a reduction of only 8% in the scaling exponent; it is also found that it is possible to discriminate between healthy and heart failure subjects even under extreme dilution of more than 90%.

  14. Quantum Defect Theory for Long-range Anisotropic Interactions

    NASA Astrophysics Data System (ADS)

    Ruzic, Brandon P.; Bohn, John L.; Greene, Chris H.

    2014-05-01

    Quantum Defect Theory (QDT) is a numerically efficient and accurate tool for studying a wide variety of ultracold atomic collisions, where the asymptotic behavior of the atoms is well described by a set of simple parameters. However, analytic formulas for these parameters only exist for the pure - 1 /R6 potential. The long-range parameters are given by simple power law equations in the collision energy, and the bound state energies of different partial waves are simply related. We extend these formulas to encompass all potentials of the form - 1 /Rn , where n > 2 . Moreover, the accuracy of QDT is limited by long-range anisotropic interactions, which, for example, play an important role in collisions of dysprosium or erbium atoms. We present our recent developments on numerically treating this type of interaction within perturbation theory. This work is supported by the US Department of Energy.

  15. Long-range nuclear cruise missiles and stability

    SciTech Connect

    Lewis, G.N.; Postol, T.A. )

    1992-01-01

    Long-range nuclear-armed cruise missiles are highly accurate and are capable of reaching most targets within the United States and the Commonwealth of Independent States (CIS) from launch points beyond their borders. Neither the United States nor the CIS has air surveillance systems capable of providing reliable warning against cruise missiles. Thus it is possible that a small-scale cruise missile attack could go entirely undetected until the nuclear weapons arrived over their targets. Such an attack could destroy the other country's entire strategic bomber force on the ground and severely damage its strategic command and control system, perhaps to the point of endangering the ability of its ICBM force to be launched on warning. This capability makes long-range nuclear cruise missiles potentially one of the most destabilizing of all nuclear weapons.

  16. Long-range mutual information and topological uncertainty principle

    NASA Astrophysics Data System (ADS)

    Jian, Chao-Ming; Kim, Isaac; Qi, Xiao-Liang

    Ordered phases in Landau paradigm can be diagnosed by a local order parameter, whereas topologically ordered phases cannot be detected in such a way. In this paper, we propose long-range mutual information (LRMI) as a unified diagnostic for both conventional long-range order and topological order. Using the LRMI, we characterize orders in n +1D gapped systems as m-membrane condensates with 0 <= m <= n-1. The familiar conventional order and 2 +1D topological orders are respectively identified as 0-membrane and 1-membrane condensates. We propose and study the topological uncertainty principle, which describes the non-commuting nature of non-local order parameters in topological orders.

  17. Information propagation and equilibration in long-range Kitaev chains

    NASA Astrophysics Data System (ADS)

    Van Regemortel, Mathias; Sels, Dries; Wouters, Michiel

    2016-03-01

    We study the propagation of information through a Kitaev chain with long-range pairing interactions. Although the Lieb-Robinson bound is violated in the strict sense for long-range interacting systems, we illustrate that a major amount of information in this model still propagates ballistically on a light cone. We find a pronounced effect of the interaction range on the decay of the mutual information between spatially disconnected subsystems. A significant amount of information is shared at timelike separations. This regime is accompanied by very slow equilibration of local observables. As the Kitaev model is quasifree, we illustrate how the distribution of quasiparticle group velocities explains the physics of this system qualitatively.

  18. Long-range Coulomb interaction in nodal-ring semimetals

    NASA Astrophysics Data System (ADS)

    Huh, Yejin; Moon, Eun-Gook; Kim, Yong Baek

    2016-01-01

    Recently there have been several proposals of materials predicted to be nodal-ring semimetals, where zero energy excitations are characterized by a nodal ring in the momentum space. This class of materials falls between the Dirac-like semimetals and the more conventional Fermi-surface systems. As a step towards understanding this unconventional system, we explore the effects of the long-range Coulomb interaction. Due to the vanishing density of states at the Fermi level, Coulomb interaction is only partially screened and remains long-ranged. Through renormalization group and large-Nf computations, we have identified a nontrivial interacting fixed point. The screened Coulomb interaction at the interacting fixed point is an irrelevant perturbation, allowing controlled perturbative evaluations of physical properties of quasiparticles. We discuss unique experimental consequences of such quasiparticles: acoustic wave propagation, anisotropic dc conductivity, and renormalized phonon dispersion as well as energy dependence of quasiparticle lifetime.

  19. Reaching for the Horizon: The 2015 NSAC Long Range Plan

    NASA Astrophysics Data System (ADS)

    Geesaman, Donald

    2015-10-01

    In April 2014, the Nuclear Science Advisory Committee was charged to conduct a new study of the opportunities and priorities for United States nuclear physics research and to recommend a long range plan for the coordinated advancement of the Nation's nuclear science program over the next decade. The entire community actively contributed to developing this plan. Ideas and goals, new and old, were examined and community priorities were established. The Long Range Plan Working Group gathered at Kitty Hawk, NC to converge on the recommendations. In this talk I will discuss the vision for the future that has emerged from this process. The new plan, ``Reaching for the Horizon,'' offers the promise of great leaps forward in our understanding of nuclear science and new opportunities for nuclear science to serve society. This work was supported by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  20. The design of a long range megatransport aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Allen, Carl L.

    1992-01-01

    During the period from August 1991 - June 1992 two design classes at Purdue University participated in the design of a long range, high capacity transport aircraft, dubbed the megatransport. Thirteen Purdue design teams generated RFP's that defined passenger capability and range, based upon team perception of market needs and infrastructure constraints. Turbofan engines were designed by each group to power these aircraft. The design problem and the variety of solutions developed are described in an attached paper.

  1. Long Range Interactions With Laser Cooled Neutral Atoms

    SciTech Connect

    Gattobigio, Giovanni Luca; Michaud, Franck; Labeyrie, Guillaume; Kaiser, Robin; Loureiro, Jorge; Mendonca, Jose Tito; Tercas, Hugo; Pohl, Thomas

    2008-09-07

    Multiple scattering of light in a trap of laser cooled neutral atoms leads to repulsion forces between the atoms. The corresponding interactions have long range behavior in 1/r{sup 2} and are thus similar to Coulomb interaction in an one component confined plasma. Consequences of these interactions will be described in this paper, including the limitation of the spatial density one can obtain in such systems and self-sustained oscillations of the cloud.

  2. Emergent long-range couplings in arrays of fluid cells

    SciTech Connect

    Abraham, Douglas Bruce

    2014-08-07

    We present a system exhibiting extraordinarily long-range cooperative effects, on a length scale far exceeding the bulk correlation length. We give a theoretical explanation of these phenomena based on the mesoscopic picture of phase coexistence in finite systems, which is confirmedly Monte Carlo (MC) simulation studies. Our work demonstrates that such action-at-a-distance can occur in classical systems involving simple or complex fluids, such as colloid-polymer mixtures, or ferromagnets.

  3. Long-range substantially nonradiative metallo-dielectric waveguide.

    PubMed

    Buckley, Robin; Berini, Pierre

    2009-01-15

    A waveguide structure capable of aggressive bends (r(0)-->0) and long-range propagation (approximately 1.2 dB/mm) is described here. The structure uses a step-index slab to create the vertical confinement and a pair of metallic parallel plates on either side of the core for lateral confinement. The parallel plates are dimensioned to ensure that all modes that would cause radiation loss in a bend are cut off. PMID:19148262

  4. Long-range quantum entanglement in noisy cluster states

    SciTech Connect

    Raussendorf, Robert; Bravyi, Sergey; Harrington, Jim

    2005-06-15

    We describe a phase transition for long-range entanglement in a three-dimensional cluster state affected by noise. The partially decohered state is modeled by the thermal state of a short-range translation-invariant Hamiltonian. We find that the temperature at which the entanglement length changes from infinite to finite is nonzero. We give an upper and lower bound to this transition temperature.

  5. Long range Ising model for credit risk modeling

    NASA Astrophysics Data System (ADS)

    Molins, Jordi; Vives, Eduard

    2005-07-01

    Within the framework of maximum entropy principle we show that the finite-size long-range Ising model is the adequate model for the description of homogeneous credit portfolios and the computation of credit risk when default correlations between the borrowers are included. The exact analysis of the model suggest that when the correlation increases a first-order-like transition may occur inducing a sudden risk increase.

  6. Long range science scheduling for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Miller, Glenn; Johnston, Mark

    1991-01-01

    Observations with NASA's Hubble Space Telescope (HST) are scheduled with the assistance of a long-range scheduling system (SPIKE) that was developed using artificial intelligence techniques. In earlier papers, the system architecture and the constraint representation and propagation mechanisms were described. The development of high-level automated scheduling tools, including tools based on constraint satisfaction techniques and neural networks is described. The performance of these tools in scheduling HST observations is discussed.

  7. Long-range electrostatic screening in ionic liquids.

    PubMed

    Gebbie, Matthew A; Dobbs, Howard A; Valtiner, Markus; Israelachvili, Jacob N

    2015-06-16

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  8. Long-range infrasound monitoring of eruptive volcanoes.

    NASA Astrophysics Data System (ADS)

    Marchetti, Emanuele; Innocenti, Lorenzo; Ulivieri, Giacomo; Lacanna, Giorgio; Ripepe, Maurizio

    2016-04-01

    The efficient long-range propagation in the atmosphere makes infrasound of active volcanoes extremely promising and opens new perspectives for volcano monitoring at large scale. In favourable propagation conditions, long-range infrasound observations can be used to track the occurrence and the duration of volcanic eruptions also at remote non-monitored volcanoes, but its potential to infer volcanic eruptive source term is still debated. We present results of comparing five years of infrasound of eruptive activity at Mt.Etna volcano (Italy) recorded both at local (~5 km) and at regional distances (~600 km) from the source. Infrasound of lava fountains at Etna volcano, occurring in between 2010 and 2015, are analysed in terms of the local and regional wavefield record, and by comparing to all available volcanic source terms (i.e. plume height and mass eruption rates). Besides, the potential of near real-time notification of ongoing volcanic activity at Etna volcano at a regional scale is investigated. In particular we show how long range infrasound, in the case of Etna volcano, can be used to promptly deliver eruption notification and reliability is constrained by the results of the local array. This work is performed in the framework of the H2020 ARISE2 project funded by the EU in the period 2015-2018.

  9. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  10. Long-range intercellular Ca2+ wave patterns

    NASA Astrophysics Data System (ADS)

    Tabi, C. B.; Maïna, I.; Mohamadou, A.; Ekobena, H. P. F.; Kofané, T. C.

    2015-10-01

    Modulational instability is utilized to investigate intercellular Ca2+ wave propagation in an array of diffusively coupled cells. Cells are supposed to be connected via paracrine signaling, where long-range effects, due to the presence of extracellular messengers, are included. The multiple-scale expansion is used to show that the whole dynamics of Ca2+ waves, from the endoplasmic reticulum to the cytosol, can be reduced to a single differential-difference nonlinear equation whose solutions are assumed to be plane waves. Their linear stability analysis is studied, with emphasis on the impact of long-range coupling, via the range parameter s. It is shown that s, as well as the number of interacting cells, importantly modifies the features of modulational instability, as small values of s imply a strong coupling, and increasing its value rather reduces the problem to a first-neighbor one. Our theoretical findings are numerically tested, as the generic equations are fully integrated, leading to the emergence of nonlinear patterns of Ca2+ waves. Strong long-range coupling is pictured by extended trains of breather-like structures whose frequency decreases with increasing s. We also show numerically that the number of interacting cells plays on the spatio-temporal formation of Ca2+ patterns, whilst the quasi-perfect intercellular communication depends on the paracrine coupling parameter.

  11. Reduced long-range functional connectivity in young children with autism spectrum disorder

    PubMed Central

    Yoshimura, Yuko; Hiraishi, Hirotoshi; Munesue, Toshio; Hashimoto, Takanori; Tsubokawa, Tsunehisa; Takahashi, Tsutomu; Suzuki, Michio; Higashida, Haruhiro; Minabe, Yoshio

    2015-01-01

    Autism spectrum disorder (ASD) is often described as a disorder of aberrant neural connectivity. Although it is important to study the pathophysiology of ASD in the developing cortex, the functional connectivity in the brains of young children with ASD has not been well studied. In this study, brain activity was measured non-invasively during consciousness in 50 young human children with ASD and 50 age- and gender-matched typically developing human (TD) children. We employed a custom child-sized magnetoencephalography (MEG) system in which sensors were located as close to the brain as possible for optimal recording in young children. We focused on theta band oscillations because they are thought to be involved in long-range networks associated with higher cognitive processes. The ASD group showed significantly reduced connectivity between the left-anterior and the right-posterior areas, exhibiting a decrease in the coherence of theta band (6 Hz) oscillations compared with the TD group. This reduction in coherence was significantly correlated with clinical severity in right-handed children with ASD. This is the first study to demonstrate reduced long-range functional connectivity in conscious young children with ASD using a novel MEG approach. PMID:24652855

  12. Energy transport in the three coupled α-polypeptide chains of collagen molecule with long-range interactions effect.

    PubMed

    Mvogo, Alain; Ben-Bolie, G H; Kofané, T C

    2015-06-01

    The dynamics of three coupled α-polypeptide chains of a collagen molecule is investigated with the influence of power-law long-range exciton-exciton interactions. The continuum limit of the discrete equations reveal that the collagen dynamics is governed by a set of three coupled nonlinear Schrödinger equations, whose dispersive coefficient depends on the LRI parameter r. We construct the analytic symmetric and asymmetric (antisymmetric) soliton solutions, which match with the structural features of collagen related with the acupuncture channels. These solutions are used as initial conditions for the numerical simulations of the discrete equations, which reveal a coherent transport of energy in the molecule for r > 3. The results also indicate that the width of the solitons is a decreasing function of r, which help to stabilize the solitons propagating in the molecule. To confirm further the efficiency of energy transport in the molecule, the modulational instability of the system is performed and the numerical simulations show that the energy can flow from one polypeptide chain to another in the form of nonlinear waves. PMID:26117109

  13. Energy transport in the three coupled α-polypeptide chains of collagen molecule with long-range interactions effect

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Ben-Bolie, G. H.; Kofané, T. C.

    2015-06-01

    The dynamics of three coupled α-polypeptide chains of a collagen molecule is investigated with the influence of power-law long-range exciton-exciton interactions. The continuum limit of the discrete equations reveal that the collagen dynamics is governed by a set of three coupled nonlinear Schrödinger equations, whose dispersive coefficient depends on the LRI parameter r. We construct the analytic symmetric and asymmetric (antisymmetric) soliton solutions, which match with the structural features of collagen related with the acupuncture channels. These solutions are used as initial conditions for the numerical simulations of the discrete equations, which reveal a coherent transport of energy in the molecule for r > 3. The results also indicate that the width of the solitons is a decreasing function of r, which help to stabilize the solitons propagating in the molecule. To confirm further the efficiency of energy transport in the molecule, the modulational instability of the system is performed and the numerical simulations show that the energy can flow from one polypeptide chain to another in the form of nonlinear waves.

  14. Acceleration of evolutionary spread by long-range dispersal.

    PubMed

    Hallatschek, Oskar; Fisher, Daniel S

    2014-11-18

    The spreading of evolutionary novelties across populations is the central element of adaptation. Unless populations are well mixed (like bacteria in a shaken test tube), the spreading dynamics depend not only on fitness differences but also on the dispersal behavior of the species. Spreading at a constant speed is generally predicted when dispersal is sufficiently short ranged, specifically when the dispersal kernel falls off exponentially or faster. However, the case of long-range dispersal is unresolved: Although it is clear that even rare long-range jumps can lead to a drastic speedup--as air-traffic-mediated epidemics show--it has been difficult to quantify the ensuing stochastic dynamical process. However, such knowledge is indispensable for a predictive understanding of many spreading processes in natural populations. We present a simple iterative scaling approximation supported by simulations and rigorous bounds that accurately predicts evolutionary spread, which is determined by a trade-off between frequency and potential effectiveness of long-distance jumps. In contrast to the exponential laws predicted by deterministic "mean-field" approximations, we show that the asymptotic spatial growth is according to either a power law or a stretched exponential, depending on the tails of the dispersal kernel. More importantly, we provide a full time-dependent description of the convergence to the asymptotic behavior, which can be anomalously slow and is relevant even for long times. Our results also apply to spreading dynamics on networks with a spectrum of long-range links under certain conditions on the probabilities of long-distance travel: These are relevant for the spread of epidemics. PMID:25368183

  15. Acceleration of evolutionary spread by long-range dispersal

    PubMed Central

    Hallatschek, Oskar; Fisher, Daniel S.

    2014-01-01

    The spreading of evolutionary novelties across populations is the central element of adaptation. Unless populations are well mixed (like bacteria in a shaken test tube), the spreading dynamics depend not only on fitness differences but also on the dispersal behavior of the species. Spreading at a constant speed is generally predicted when dispersal is sufficiently short ranged, specifically when the dispersal kernel falls off exponentially or faster. However, the case of long-range dispersal is unresolved: Although it is clear that even rare long-range jumps can lead to a drastic speedup—as air-traffic–mediated epidemics show—it has been difficult to quantify the ensuing stochastic dynamical process. However, such knowledge is indispensable for a predictive understanding of many spreading processes in natural populations. We present a simple iterative scaling approximation supported by simulations and rigorous bounds that accurately predicts evolutionary spread, which is determined by a trade-off between frequency and potential effectiveness of long-distance jumps. In contrast to the exponential laws predicted by deterministic “mean-field” approximations, we show that the asymptotic spatial growth is according to either a power law or a stretched exponential, depending on the tails of the dispersal kernel. More importantly, we provide a full time-dependent description of the convergence to the asymptotic behavior, which can be anomalously slow and is relevant even for long times. Our results also apply to spreading dynamics on networks with a spectrum of long-range links under certain conditions on the probabilities of long-distance travel: These are relevant for the spread of epidemics. PMID:25368183

  16. The Origin of Long-Range Attraction between Hydrophobes in Water

    PubMed Central

    Despa, Florin; Berry, R. Stephen

    2007-01-01

    When water-coated hydrophobic surfaces meet, direct contacts form between the surfaces, driving water out. However, long-range attractive forces first bring those surfaces close. This analysis reveals the source and strength of the long-range attraction between water-coated hydrophobic surfaces. The origin is in the polarization field produced by the strong correlation and coupling of the dipoles of the water molecules at the surfaces. We show that this polarization field gives rise to dipoles on the surface of the hydrophobic solutes that generate long-range hydrophobic attractions. Thus, hydrophobic aggregation begins with a step in which water-coated nonpolar solutes approach one another due to long-range electrostatic forces. This precursor regime occurs before the entropy increase of releasing the water layers and the short-range van der Waals attraction provide the driving force to “dry out” the contact surface. The effective force of attraction is derived from basic molecular principles, without assumptions of the structure of the hydrophobe-water interaction. The strength of this force can be measured directly from atomic force microscopy images of a hydrophobic molecule tethered to a surface but extending into water, and another hydrophobe attached to an atomic force probe. The phenomenon can be observed in the transverse relaxation rates in water proton magnetic resonance as well. The results shed light on the way water mediates chemical and biological self-assembly, a long outstanding problem. PMID:16997876

  17. Long-range attraction of particles adhered to lipid vesicles

    NASA Astrophysics Data System (ADS)

    Sarfati, Raphael; Dufresne, Eric R.

    2016-07-01

    Many biological systems fold thin sheets of lipid membrane into complex three-dimensional structures. This microscopic origami is often mediated by the adsorption and self-assembly of proteins on a membrane. As a model system to study adsorption-mediated interactions, we study the collective behavior of micrometric particles adhered to a lipid vesicle. We estimate the colloidal interactions using a maximum likelihood analysis of particle trajectories. When the particles are highly wrapped by a tense membrane, we observe strong long-range attractions with a typical binding energy of 150 kBT and significant forces extending a few microns.

  18. DIII-D tokamak long range plan. Revision 3

    SciTech Connect

    1992-08-01

    The DIII-D Tokamak Long Range Plan for controlled thermonuclear magnetic fusion research will be carried out with broad national and international participation. The plan covers: (1) operation of the DIII-D tokamak to conduct research experiments to address needs of the US Magnetic Fusion Program; (2) facility modifications to allow these new experiments to be conducted; and (3) collaborations with other laboratories to integrate DIII-D research into the national and international fusion programs. The period covered by this plan is 1 November 19983 through 31 October 1998.

  19. A Long Range Science Rover For Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    1997-01-01

    This paper describes the design and implementation currently underway at the Jet Propulsion Laboratory of a long range science rover for future missions to Mars. The small rover prototype, called Rocky 7, is capable of long traverse. autonomous navigation. and science instrument control, carries three science instruments, and can be commanded from any computer platform and any location using the World Wide Web. In this paper we describe the mobility system, the sampling system, the sensor suite, navigation and control, onboard science instruments. and the ground command and control system.

  20. Application of advanced technology to future long-range aircraft

    NASA Technical Reports Server (NTRS)

    Schrader, O. E.

    1976-01-01

    An assessment is presented of three separate programs that have incorporated advanced technology into the design of long-range passenger and cargo aircraft. The first technology centers around the use of a span-loaded cargo aircraft with the payload distributed along the wing. The second technology is the application of laminar flow control to the aircraft to reduce the aerodynamic drag. The last program evaluates the production of alternate aircraft fuels from coal and the use of liquid hydrogen as an aircraft fuel.

  1. Impact of atmospheric aerosols on long range image quality

    NASA Astrophysics Data System (ADS)

    LeMaster, Daniel A.; Eismann, Michael T.

    2012-06-01

    Image quality in high altitude long range imaging systems can be severely limited by atmospheric absorption, scattering, and turbulence. Atmospheric aerosols contribute to this problem by scattering target signal out of the optical path and by scattering in unwanted light from the surroundings. Target signal scattering may also lead to image blurring though, in conventional modeling, this effect is ignored. The validity of this choice is tested in this paper by developing an aerosol modulation transfer function (MTF) model for an inhomogeneous atmosphere and then applying it to real-world scenarios using MODTRAN derived scattering parameters. The resulting calculations show that aerosol blurring can be effectively ignored.

  2. INEL D&D Long-Range Plan

    SciTech Connect

    Buckland, R.J.; Kenoyer, D.J.; Preussner, D.H.

    1993-10-01

    This Long-Range Plan presents the Decontamination and Decommissioning (D&D) Program planning status for facilities at the Idaho National Engineering Laboratory (INEL). The plan provides a general description of the D&D Program objectives, management criteria, and philosophy; discusses current activities; and documents the INEL D&D Program cost and schedule estimate projections for the next 15 years. appendices are included that provide INEL D&D project historical information and a comprehensive descriptive summary of each current surplus facility.

  3. Comment on "Temperature inversion in long-range interacting systems".

    PubMed

    Dumin, Yurii V

    2016-06-01

    In the recent paper by Teles et al. [Phys. Rev. E 92, 020101 (2015)]PRESCM1539-375510.1103/PhysRevE.92.020101, it was suggested that the inversed temperature profiles in various astrophysical objects-ranging from the solar corona to the interstellar molecular clouds-can be explained by the specific features of relaxation in the long-range interacting systems. Here, we show that this mechanism can really work in the self-gravitating interstellar gaseous clouds; but it is irrelevant in the solar (and stellar) coronas where stratification of density is produced by the external gravitational field. PMID:27415395

  4. INEL D&D long-range plan

    SciTech Connect

    Buckland, R.J.; Kenoyer, D.J.; LaBuy, S.A.

    1995-09-01

    This Long-Range Plan presents the Decontamination and Dismantlement (D&D) Program planning status for facilities at the Idaho National Engineering Laboratory (INEL). The plan provides a general description of the D&D Program objectives, management criteria, and policy; discusses current activities; and documents the INEL D&D Program cost and schedule estimate projections for the next 15 years. Appendices are included that provide INEL D&D project historical information, a comprehensive descriptive summary of each current D&D surplus facility, and a summary database of all INEL contaminated facilities awaiting or undergoing the facility transition process.

  5. The design of a long range megatransport aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Layton, J. B.; Allen, C. L.

    1993-01-01

    Megatransport objectives and constraints are briefly reviewed, and certain solutions developed by student design teams at Perdue University are summarized. Particular attention is given to the market needs and the economic risks involved in such a project; and the different approaches taken to solve the problem and difficulties faced by the design teams. A long range megatransport aircraft is aimed at carrying more than 600 passengers at reduced cost, and at the same time, reducing airport and airway congestion. The design effort must take into account airport terminal facilities; passenger loading and unloading; and defeating the 'square-cube' law to design large structures.

  6. Comment on "Temperature inversion in long-range interacting systems"

    NASA Astrophysics Data System (ADS)

    Dumin, Yurii V.

    2016-06-01

    In the recent paper by Teles et al. [Phys. Rev. E 92, 020101 (2015)], 10.1103/PhysRevE.92.020101, it was suggested that the inversed temperature profiles in various astrophysical objects—ranging from the solar corona to the interstellar molecular clouds—can be explained by the specific features of relaxation in the long-range interacting systems. Here, we show that this mechanism can really work in the self-gravitating interstellar gaseous clouds; but it is irrelevant in the solar (and stellar) coronas where stratification of density is produced by the external gravitational field.

  7. Political Mechanisms for Long-Range Survival and Development

    NASA Astrophysics Data System (ADS)

    Marshall, W.

    As the first species aware of extinction and capable of proactively ensuring our long-term survival and development, it is striking that we do not do so with the rigor, formality, and foresight it requires. Only from a reactive posture have we responded to the challenges of global warfare, human rights, environmental concerns, and sustainable development. Despite our awareness of the possibility for extinction and apocalyptic set-backs to our evolution, and despite the existence of long-range studies-which must still be dramatically increased-proactive global policy implementation regarding our long-term survival and development is arguably non-existent. This lack of long-term policy making can be attributed in part to the lack of formal political mechanisms to facilitate longer-range policy making that extends 30 years or more into the future. Political mechanisms for infusing long-range thinking, research, and strategic planning into the policy-making process can help correct this shortcoming and provide the motivation needed to adequately address long-term challenges with the political rigor required to effectively establish and implement long-term policies. There are some efforts that attempt to address longer-range issues, but those efforts often do not connect to the political process, do not extend 30 or more years into the future, are not well-funded, and are not sufficiently systemic. Political mechanisms for long-range survival and prosperity could correct these inadequacies by raising awareness, providing funding, and most importantly, leveraging political rigor to establish and enforce long-range strategic planning and policies. The feasibility of such mechanisms should first be rigorously studied and assessed in a feasibility study, which could then inform implementation. This paper will present the case for such a study and suggest some possible political mechanisms that should be investigated further in the proposed study. This work is being further

  8. Immiscible Lattice Gas with Long-Range Interaction

    NASA Astrophysics Data System (ADS)

    Tsumaya, Akira; Ohashi, Hirotada

    We developed a new LGA model which has the applicability for simulation of immiscible two phases with wide difference in density. We introduced long-range interparticle forces into the Rothman and Keller's ILG model to represent density difference between phases. We attempted some simulations of phase separation using our new model. Two-phase interfaces are stably made with density distribution coinciding with particle color distribution. Furthermore, the two-phase interface is clearer than that obtained by the Appert and Zaleski's LG model.

  9. Reinvestigation of long-range magnetic ordering in icosahedral Tb-Mg-Zn

    NASA Astrophysics Data System (ADS)

    Islam, Z.; Fisher, I. R.; Zarestky, J.; Canfield, P. C.; Stassis, C.; Goldman, A. I.

    1998-05-01

    We present results of a study of possible magnetic ordering in the icosahedral phase of Tb-Mg-Zn probed by bulk magnetization measurements and neutron diffraction. Measurements on both crushed single grains and cast polycrystalline samples of Tb-Mg-Zn were performed. Magnetization measurements on both samples reveal only a spin-glass-like transition at approximately 5.8 K. Neutron diffraction from the crushed single grains reveals only short-range magnetic ordering at low temperatures, with no evidence of the long-range magnetic ordering reported previously [Charrier, Ouladdiaf, and Schmitt, Phys. Rev. Lett. 78, 4637 (1997)]. Likewise, the cast polycrystalline samples exhibit primarily diffuse magnetic scattering at low temperature, but at least one relatively sharp diffraction peak was observed. Our results indicate that for single grain samples there is no long-range magnetic ordering and that, at best, the magnetic ordering in these quasicrystalline alloys is not very robust.

  10. Surface tension and long range corrections of cylindrical interfaces

    SciTech Connect

    Bourasseau, E.; Ghoufi, A.

    2015-12-21

    The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential, (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.

  11. Long-range response in ac electricity grids.

    PubMed

    Jung, Daniel; Kettemann, Stefan

    2016-07-01

    Local changes in the topology of electricity grids can cause overloads far away from the disturbance [D. Witthaut and M. Timme, Eur. Phys. J. B 86, 377 (2013)EPJBFY1434-602810.1140/epjb/e2013-40469-4], making the prediction of the robustness against changes in the topology-for example, caused by power outages or grid extensions-a challenging task. The impact of single-line additions on the long-range response of dc electricity grids has recently been studied [D. Labavić, R. Suciu, H. Meyer-Ortmanns, and S. Kettemann, Eur. Phys. J.: Spec. Top. 223, 2517 (2014)1951-635510.1140/epjst/e2014-02273-0]. By solving the real part of the static ac load flow equations, we conduct a similar investigation for ac grids. In a regular two-dimensional grid graph with cyclic boundary conditions, we find a power law decay for the change of power flow as a function of distance to the disturbance over a wide range of distances. The power exponent increases and saturates for large system sizes. By applying the same analysis to the German transmission grid topology, we show that also in real-world topologies a long-ranged response can be found. PMID:27575148

  12. Slow and long-ranged dynamical heterogeneities in dissipative fluids.

    PubMed

    Avila, Karina E; Castillo, Horacio E; Vollmayr-Lee, Katharina; Zippelius, Annette

    2016-06-28

    A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, Nc, and their radius of gyration, RG. We show that , providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, df, that is observed to increase with packing fraction ϕ. The cluster size distribution obeys scaling, approaching an algebraic decay in the limit of structural arrest, i.e., ϕ→ϕc. Alternatively, dynamical heterogeneities are analyzed via the four-point structure factor S4(q,t) and the dynamical susceptibility χ4(t). S4(q,t) is shown to obey scaling in the full range of packing fractions, 0.6 ≤ϕ≤ 0.805, and to become increasingly long-ranged as ϕ→ϕc. Finite size scaling of χ4(t) provides a consistency check for the previously analyzed divergences of χ4(t) ∝ (ϕ-ϕc)(-γχ) and the correlation length ξ∝ (ϕ-ϕc)(-γξ). We check the robustness of our results with respect to our definition of mobility. The divergences and the scaling for ϕ→ϕc suggest a non-equilibrium glass transition which seems qualitatively independent of the coefficient of restitution. PMID:27230572

  13. Helioseismology with long-range dark matter-baryon interactions

    SciTech Connect

    Lopes, Ilídio; Panci, Paolo; Silk, Joseph E-mail: panci@iap.fr

    2014-11-10

    Assuming the existence of a primordial asymmetry in the dark sector, we study how long-range dark matter (DM)-baryon interactions, induced by the kinetic mixing of a new U(1) gauge boson and a photon, affect the evolution of the Sun and, in turn, the sound speed the profile obtained from helioseismology. Thanks to the explicit dependence on the exchanged momenta in the differential cross section (Rutherford-like scattering), we find that DM particles with a mass of ∼10 GeV, kinetic mixing parameter of the order of 10{sup –9}, and a mediator with a mass smaller than a few MeV improve the agreement between the best solar model and the helioseismic data without being excluded by direct detection experiments. In particular, the LUX detector will soon be able to either constrain or confirm our best-fit solar model in the presence of a dark sector with long-range interactions that reconcile helioseismology with thermal neutrino results.

  14. Dolphin "packet" use during long-range echolocation tasks.

    PubMed

    Finneran, James J

    2013-03-01

    When echolocating, dolphins typically emit a single broadband "click," then wait to receive the echo before emitting another click. However, previous studies have shown that during long-range echolocation tasks, they may instead emit a burst, or "packet," of several clicks, then wait for the packet of echoes to return before emitting another packet of clicks. The reasons for the use of packets are unknown. In this study, packet use was examined by having trained bottlenose dolphins perform long-range echolocation tasks. The tasks featured "phantom" echoes produced by capturing the dolphin's outgoing echolocation clicks, convolving the clicks with an impulse response to create an echo waveform, and then broadcasting the delayed, scaled echo to the dolphin. Dolphins were trained to report the presence of phantom echoes or a change in phantom echoes. Target range varied from 25 to 800 m. At ranges below 75 m, the dolphins rarely used packets. As the range increased beyond 75 m, two of the three dolphins increasingly produced packets, while the third dolphin instead utilized very high click repetition rates. The use of click packets appeared to be governed more by echo delay (target range) than echo amplitude. PMID:23464048

  15. Emergent long-range magnetic ordering in manganite superlattices

    NASA Astrophysics Data System (ADS)

    Burganov, Bulat; Macke, Sebastian; Monkman, Eric; Adamo, Carolina; Shai, Daniel; Schlom, Darrell; Sawatzky, George; Shen, Kyle

    2015-03-01

    Complex oxides composed into atomically precise heterostructures host a plethora of new phenomena driven by interface effects, dimensionality, correlations and strain. An example is emergent ferromagnetism in the superlattices (SL) of LaMnO3/SrMnO3 and the dimensionality-driven metal insulator transition, still not well understood theoretically. We use soft x-ray scattering combined with SQUID magnetometry to determine the magnetic and orbital ordering in the (LaMnO3)2n /(SrMnO3)n SL for n =1,2,3,4. By composition this system is close to colossal-magnetoresistive La2/3Sr1/3MnO3, an FM metal below 400K. The system undergoes a metal-insulator transition with higher n and is believed to have a complex magnetic ordering. We observe an unexpected long-range order in the n =4 sample where the magnetic period is equal to two chemical periods. The observed half-order Bragg peaks show strong linear and no circular dichroism. The temperature and polarization dependence of reflectometry points towards alignment between A-type AFM orders in the neighboring LaMnO3 layers, which is very unusual and indicates a long range interaction acting across the thick SrMnO3 layers with nominally G-type spin configuration. We simulate the reflectometry data for several model spin configurations to further elucidate the nature of this ordering.

  16. Long-range response in ac electricity grids

    NASA Astrophysics Data System (ADS)

    Jung, Daniel; Kettemann, Stefan

    2016-07-01

    Local changes in the topology of electricity grids can cause overloads far away from the disturbance [D. Witthaut and M. Timme, Eur. Phys. J. B 86, 377 (2013), 10.1140/epjb/e2013-40469-4], making the prediction of the robustness against changes in the topology—for example, caused by power outages or grid extensions—a challenging task. The impact of single-line additions on the long-range response of dc electricity grids has recently been studied [D. Labavić, R. Suciu, H. Meyer-Ortmanns, and S. Kettemann, Eur. Phys. J.: Spec. Top. 223, 2517 (2014), 10.1140/epjst/e2014-02273-0]. By solving the real part of the static ac load flow equations, we conduct a similar investigation for ac grids. In a regular two-dimensional grid graph with cyclic boundary conditions, we find a power law decay for the change of power flow as a function of distance to the disturbance over a wide range of distances. The power exponent increases and saturates for large system sizes. By applying the same analysis to the German transmission grid topology, we show that also in real-world topologies a long-ranged response can be found.

  17. Helioseismology with Long-range Dark Matter-Baryon Interactions

    NASA Astrophysics Data System (ADS)

    Lopes, Ilídio; Panci, Paolo; Silk, Joseph

    2014-11-01

    Assuming the existence of a primordial asymmetry in the dark sector, we study how long-range dark matter (DM)-baryon interactions, induced by the kinetic mixing of a new U(1) gauge boson and a photon, affect the evolution of the Sun and, in turn, the sound speed the profile obtained from helioseismology. Thanks to the explicit dependence on the exchanged momenta in the differential cross section (Rutherford-like scattering), we find that DM particles with a mass of ~10 GeV, kinetic mixing parameter of the order of 10-9, and a mediator with a mass smaller than a few MeV improve the agreement between the best solar model and the helioseismic data without being excluded by direct detection experiments. In particular, the LUX detector will soon be able to either constrain or confirm our best-fit solar model in the presence of a dark sector with long-range interactions that reconcile helioseismology with thermal neutrino results.

  18. The ORNL Surplus Facilities Management Program Long Range Plan

    SciTech Connect

    Myrick, T.E.

    1984-09-01

    The Surplus Facilities Management Program (SFMP) at Oak Ridge National Laboratory (ORNL) is part of the Department of Energy`s (DOE) National SFMP, administered by the Richland Operations Office. This program was established to provide for the management of DOE surplus radioactively contaminated facilities from the end of their operating life until final facility disposition is completed. As part of this program, the ORNL SFMP oversees some 76 individual surplus facilities, ranging in complexity from abandoned waste storage tanks to large experimental reactors. The ORNL SFMP has prepared this Long Range Plan to outline the long-term management strategy for those facilities included in the program. The primary objective of this plan are to: (1) develop a base of information for each ORNL SFMP facility, (2) conduct preliminary decommissioning analyses to identify feasible alternatives, (3) assess the current and future risk of each facility, (4) establish a priority list for the decommissioning projects, and (5) integrate the individual project costs and schedules into an overall program schedule and cost estimate for the ORNL site. The Long Range Plan also provides an overview of the ORNL SFMP management structure, specifies the decommissioning criteria to be employed, and identifies special technical problems, research and development needs, and special facilities and equipment that may be required for decommissioning operations.

  19. Advanced 3D imaging lidar concepts for long range sensing

    NASA Astrophysics Data System (ADS)

    Gordon, K. J.; Hiskett, P. A.; Lamb, R. A.

    2014-06-01

    Recent developments in 3D imaging lidar are presented. Long range 3D imaging using photon counting is now a possibility, offering a low-cost approach to integrated remote sensing with step changing advantages in size, weight and power compared to conventional analogue active imaging technology. We report results using a Geiger-mode array for time-of-flight, single photon counting lidar for depth profiling and determination of the shape and size of tree canopies and distributed surface reflections at a range of 9km, with 4μJ pulses with a frame rate of 100kHz using a low-cost fibre laser operating at a wavelength of λ=1.5 μm. The range resolution is less than 4cm providing very high depth resolution for target identification. This specification opens up several additional functionalities for advanced lidar, for example: absolute rangefinding and depth profiling for long range identification, optical communications, turbulence sensing and time-of-flight spectroscopy. Future concepts for 3D time-of-flight polarimetric and multispectral imaging lidar, with optical communications in a single integrated system are also proposed.

  20. First hyperpolarizability of polymethineimine with long-range corrected functionals

    NASA Astrophysics Data System (ADS)

    Jacquemin, Denis; Perpète, Eric A.; Medved', Miroslav; Scalmani, Giovanni; Frisch, Michael J.; Kobayashi, Rika; Adamo, Carlo

    2007-05-01

    Using the long-range corrected (LC) density functional theory (DFT) scheme introduced by Iikura et al. [J. Chem. Phys. 115, 3540 (2001)] and the Coulomb-attenuating model (CAM-B3LYP) of Yanai et al. [Chem. Phys. Lett. 393, 51 (2004)], we have calculated the longitudinal dipole moments and static electronic first hyperpolarizabilities of increasingly long polymehtineimine oligomers. For comparison purposes Hartree-Fock (HF), Møller-Plesset perturbation theory (MP2), and conventional pure and hybrid functionals have been considered as well. HF, generalized gradient approximation (GGA), and conventional hybrids provide too large dipole moments for long oligomers, while LC-DFT allows to reduce the discrepancy with respect to MP2 by a factor of 3. For the first hyperpolarizability, the incorrect evolution with the chain length predicted by HF is strongly worsened by BLYP, Perdew-Burke-Ernzerhof (PBE), and also by B3LYP and PBE0. On the reverse, LC-BLYP and LC-PBE hyperpolarizabilities are correctly predicted to be positive (but for the two smallest chains). Indeed, for medium and long oligomers LC hyperpolarizabilities are slightly smaller than MP2 hyperpolarizabilities, as it should be. CAM-B3LYP also strongly improves the B3LYP results, though a bit less impressively for small chain lengths. The present study demonstrates the efficiency of long-range DFT, even in very pathological cases.

  1. Long Range Memory and Trends in Model Data

    NASA Astrophysics Data System (ADS)

    Oestvand, L.; Nilsen, T.; Rypdal, K.; Rypdal, M.

    2013-12-01

    Local and global observed temperature records have previously been found to have the property of long range memory (LRM). Some model data sets have also been analyzed, with various results. In this work, new model data for the Northern Hemisphere are analyzed with the wavelet variance analysis (WVA) and maximum likelihood estimation (MLE) method to look for long range memory. The data have a monthly resolution over approximately the last 2000 years. Reconstructed temperature records for the same time period seem to have an oscillation, but it is not yet decided if this oscillation is a significant trend or a natural part of an LRM record. In some of the model data used here, an oscillatory trend seems to be present, and the significance of the amplitude is tested against a null hypothesis that the data are an LRM stochastic process with no trend. In the cases where the trends are significant, the data are detrended by subtracting the estimated trend. The detrended data are then analyzed with WVA and MLE to test for LRM. The method is applied to temperature reconstructions by Mann and Moberg, for comparing the results of the model data to those of the reconstructions.

  2. Towards Long Range Spin-Spin Interactions via Mechanical Resonators

    NASA Astrophysics Data System (ADS)

    Kabcenell, Aaron; Gieseler, Jan; Safira, Arthur; Kolkowitz, Shimon; Zibrov, Alexander; Harris, Jack; Lukin, Mikhail

    2016-05-01

    Nitrogen vacancy centers (NVs) are promising candidates for quantum computation, with room temperature optical spin read-out and initialization, microwave manipulability, and weak coupling to the environment resulting in long spin coherence times. The major outstanding challenge involves engineering coherent interactions between the spin states of spatially separated NV centers. To address this challenge, we are working towards the experimental realization of mechanical spin transducers. We have successfully fabricated magnetized high quality factor (Q> 105) , doubly-clamped silicon nitride mechanical resonators integrated close to a diamond surface, and report on experimental progress towards achieving the coherent coupling of the motion of these resonators with the electronic spin states of individual NV centers under cryogenic conditions. Such a system is expected to provide a scalable platform for mediating effective interactions between isolated spin qubits.

  3. ATTENUATION OF THE GANGLION CELL LAYER IN A PREMATURE INFANT REVEALED WITH HANDHELD SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY

    PubMed Central

    Goldberg, Mara R.; Zakka, Fouad R.; Carroll, Joseph J.

    2016-01-01

    Purpose: To report on subclinical retinal abnormalities shown through handheld spectral domain optical coherence tomography on a premature infant. Methods: Case report. Results: The initial and follow-up exams on a premature infant revealed severely attenuated ganglion cell and nerve fiber layers. There was cystoid macular edema in both eyes at the initial visits, which resolved by the 1-year follow-up. Discussion: Optical coherence tomography can reveal significant retinal abnormalities in premature infants which are not detectable through funduscopic exam. Documenting such findings may be useful for the comprehensive management of vision problems in children with a history of premature birth. PMID:26529438

  4. Long-Range Lepton Flavor Interactions and Neutrino Oscillations

    SciTech Connect

    Davoudiasl, H.; Lee, H-S; Marciano, W.

    2011-03-31

    Recent results from the MINOS accelerator neutrino experiment suggest a possible difference between {nu}{sub {mu}} and {bar {nu}}{sub {mu}} disappearance oscillation parameters, which one may ascribe to a new long distance potential acting on neutrinos. As a specific example, we consider a model with gauged B - L{sub e} - 2L{sub {tau}} number which contains an extremely light new vector boson, m{sub Z}, < 10{sup -18} eV and extraordinarily weak coupling {alpha}{prime} {approx}< 10{sup -52}. In that case, differences between {nu}{sub {mu}} {yields} {nu}{sub {tau}} and {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub {tau}} oscillations can result from a long-range potential due to neutrons in the Earth and the Sun that distinguishes {nu}{sub {mu}} and {nu}{sub {tau}} on Earth, with a potential difference of {approx} 6 x 10{sup -14} eV, and changes sign for anti-neutrinos. We show that existing solar, reactor, accelerator, and atmospheric neutrino oscillation constraints can be largely accommodated for values of parameters that help explain the possible MINOS anomaly by this new physics, although there is some tension with atmospheric constraints. A long-range interaction, consistent with current bounds, could have very pronounced effects on atmospheric neutrino disappearance in the 20-50 GeV range that will be studied with the IceCube DeepCore array, currently in operation, and can have a significant effect on future high-precision long-baseline oscillation experiments which aim for {+-}1% sensitivity, in {nu}{sub {mu}} and {bar {nu}}{sub {mu}} disappearance, separately. Together, these experiments can extend the reach for new long-distance effects well beyond current bounds and test their relevance to the aforementioned MINOS anomaly. We also point out that long-range potentials originating from the Sun could lead to annual modulations of neutrino data at the percent level, due to the variation of the Earth-Sun distance. A similar phenomenology is shown to apply to

  5. Reservoir shore development in long range terrestrial laser scanning monitoring.

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Halina

    2016-04-01

    Shore zones of reservoirs are in most cases very active, getting transformed as a result of coastal processes and mass movements initiated on the slopes surrounding the reservoir. From the point of view of the users of water reservoirs shore recession strongly undesirable as it causes destruction to infrastructure and buildings located in the immediate vicinity of the reservoir. For this reason, reservoir shores require continuous geodetic monitoring. Fast and accurate geodetic measurements covering shore sections several kilometers long, often in poorly accessible areas, are available using long range terrestrial laser scanning (TLS). The possibilities of using long range terrestrial laser scanning are shown on the example of the reservoir Jeziorsko on the Warta River (Central Poland). This reservoir, created in the years 1986-1992, is a typical retention reservoir, the annual fluctuations of which reach 5 m. Depending on the water level its surface area ranges from 42.3 to 19.6 km2. The width of the reservoir is 2.5 km. The total shore length of the reservoir, developed in Quaternary till and sand-till sediments, is 44.3 km, including 30.1 km of the unreinforced shore. Out of the unreinforced shore 27% is subject to coastal erosion. The cliff heights vary from a few cm to 12.5 meters, and the current rate of the cliff recession ranges from 0 to 1.12 m/y. The study used a terrestrial long range laser scanner Riegl VZ-4000 of a range of up to 4000 m. It enabled conducting the measurements of the cliff recession from the opposite shore of the reservoir, with an angular resolution of 0.002°, which gives about 50 measurement points per 1 m2. The measurements were carried out in the years 2014-2015, twice a year, in early spring before high water level, and in late autumn at a dropping water level. This allowed the separation of the impact of coastal processes and frost weathering on the cliff recession and their quantitative determination. The size and nature of

  6. Adaptive optics instrument for long-range imaging. Final report

    SciTech Connect

    Crawford, T.M.

    1998-06-01

    The science and history of imaging through a turbulent atmosphere is reviewed in detail. Traditional methods for reducing the effects of turbulence are presented. A simplified method for turbulence reduction called the Sheared Coherent Interferometric Photography (SCIP) method is presented. Implementation of SCIP is discussed along with experimental results. Limitations in the use of this method are discussed along with recommendations for future improvements.

  7. Ratchetaxis: Long-Range Directed Cell Migration by Local Cues.

    PubMed

    Caballero, David; Comelles, Jordi; Piel, Matthieu; Voituriez, Raphaël; Riveline, Daniel

    2015-12-01

    Directed cell migration is usually thought to depend on the presence of long-range gradients of either chemoattractants or physical properties such as stiffness or adhesion. However, in vivo, chemical or mechanical gradients have not systematically been observed. Here we review recent in vitro experiments, which show that other types of spatial guidance cues can bias cell motility. Introducing local geometrical or mechanical anisotropy in the cell environment, such as adhesive/topographical microratchets or tilted micropillars, show that local and periodic external cues can direct cell motion. Together with modeling, these experiments suggest that cell motility can be viewed as a stochastic phenomenon, which can be biased by various types of local cues, leading to directional migration. PMID:26615123

  8. A long-range polarization-controlled optical tractor beam

    NASA Astrophysics Data System (ADS)

    Shvedov, Vladlen; Davoyan, Arthur R.; Hnatovsky, Cyril; Engheta, Nader; Krolikowski, Wieslaw

    2014-11-01

    The laser beam has become an indispensable tool for the controllable manipulation and transport of microscopic objects in biology, physical chemistry and condensed matter physics. In particular, ‘tractor’ laser beams can draw matter towards a laser source and perform, for instance, all-optical remote sampling. Recent advances in lightwave technology have already led to small-scale experimental demonstrations of tractor beams. However, the realization of long-range tractor beams has not gone beyond the realm of theoretical investigations. Here, we demonstrate the stable transfer of gold-coated hollow glass spheres against the power flow of a single inhomogeneously polarized laser beam over tens of centimetres. Additionally, by varying the polarization state of the beam we can stop the spheres or reverse the direction of their motion at will.

  9. Theory of Long-Range Ultracold Atom-Molecule Photoassociation

    NASA Astrophysics Data System (ADS)

    Pérez-Ríos, Jesús; Lepers, Maxence; Dulieu, Olivier

    2015-08-01

    The creation of ultracold molecules is currently limited to diatomic species. In this Letter, we present a theoretical description of the photoassociation of ultracold atoms and molecules to create ultracold excited triatomic molecules, thus being a novel example of a light-assisted ultracold chemical reaction. The calculation of the photoassociation rate of an ultracold Cs2 molecule in its rovibrational ground state with an ultracold Cs atom at frequencies close to its resonant excitation is reported, based on the solution of the quantum dynamics involving the atom-molecule long-range interactions and assuming a model potential for the short-range physics. The rate for the formation of excited Cs3 molecules is predicted to be comparable with currently observed atom-atom photoassociation rates. We formulate an experimental proposal to observe this process relying on the available techniques of optical lattices and standard photoassociation spectroscopy.

  10. Long-range properties of 1 S bottomonium states

    NASA Astrophysics Data System (ADS)

    Brambilla, Nora; Krein, Gastão; Tarrús Castellà, Jaume; Vairo, Antonio

    2016-03-01

    In the framework of weakly coupled potential nonrelativistic QCD, we derive, first, an analytical expression for the chromopolarizability of 1 S bottomonium states in agreement with previous determinations. Then we use the QCD trace anomaly to obtain the two-pion production amplitude for the chromopolarizability operator and match the result to a chiral effective field theory with 1 S bottomonium states and pions as degrees of freedom. In this chiral effective field theory we compute some long-range properties of the 1 S bottomonium generated by the pion coupling such as the leading chiral logarithm to the 1 S bottomonium mass and the van der Waals potential between two 1 S bottomonium states. Both results improve on previously known expressions.

  11. Sparse Labeling of Proteins: Structural Characterization from Long Range Constraints

    PubMed Central

    Prestegard, James H.; Agard, David A.; Moremen, Kelley W.; Lavery, Laura A.; Morris, Laura C.; Pederson, Kari

    2014-01-01

    Structural characterization of biologically important proteins faces many challenges associated with degradation of resolution as molecular size increases and loss of resolution improving tools such as perdeuteration when non-bacterial hosts must be used for expression. In these cases, sparse isotopic labeling (single or small subsets of amino acids) combined with long range paramagnetic constraints and improved computational modeling offer an alternative. This perspective provides a brief overview of this approach and two discussions of potential applications; one involving a very large system (an Hsp90 homolog) in which perdeuteration is possible and methyl-TROSY sequences can potentially be used to improve resolution, and one involving ligand placement in a glycosylated protein where resolution is achieved by single amino acid labeling (the sialyltransferase, ST6Gal1). This is not intended as a comprehensive review, but as a discussion of future prospects that promise impact on important questions in the structural biology area. PMID:24656078

  12. Sparse labeling of proteins: Structural characterization from long range constraints

    NASA Astrophysics Data System (ADS)

    Prestegard, James H.; Agard, David A.; Moremen, Kelley W.; Lavery, Laura A.; Morris, Laura C.; Pederson, Kari

    2014-04-01

    Structural characterization of biologically important proteins faces many challenges associated with degradation of resolution as molecular size increases and loss of resolution improving tools such as perdeuteration when non-bacterial hosts must be used for expression. In these cases, sparse isotopic labeling (single or small subsets of amino acids) combined with long range paramagnetic constraints and improved computational modeling offer an alternative. This perspective provides a brief overview of this approach and two discussions of potential applications; one involving a very large system (an Hsp90 homolog) in which perdeuteration is possible and methyl-TROSY sequences can potentially be used to improve resolution, and one involving ligand placement in a glycosylated protein where resolution is achieved by single amino acid labeling (the sialyltransferase, ST6Gal1). This is not intended as a comprehensive review, but as a discussion of future prospects that promise impact on important questions in the structural biology area.

  13. Superconductivity from a Long-Range Repulsive Interaction

    NASA Astrophysics Data System (ADS)

    Onari, S.; Arita, R.; Kuroki, K.; Aoki, H.

    2006-09-01

    The lattice model with short-range interactions (exemplified by the Hubbard model) is known to exhibit quite different features from those in the electron gas with the long-range Coulomb interaction. In order to explore how they cross over to each other, we have studied an extended Hubbard model which includes repulsions up to the 12th neighbors with the simplified fluctuation exchange (FLEX) approximation for the square lattice. We have found that (i) in the most dilute density region, spin and charge fluctuations become comparable, and s- and p-waves superconductivity become dominant, in agreement with the result for the electron gas by Takada, while (ii) the dominant spin fluctuation and its reflection on dx2-y2 and dxy pairing, both the effect of lattice structure, persists well away (n ≳ 0.2) from the half filling. 2006 American Institute of Physics

  14. Phantom energy mediates a long-range repulsive force.

    PubMed

    Amendola, Luca

    2004-10-29

    Scalar field models with nonstandard kinetic terms have been proposed in the context of k inflation, of Born-Infeld Lagrangians, of phantom energy and, more in general, of low-energy string theory. In general, scalar fields are expected to couple to matter inducing a new interaction. In this Letter I derive the cosmological perturbation equations and the Yukawa correction to gravity for such general models. I find three interesting results: first, when the field behaves as phantom energy (equation of state less than -1), then the coupling strength is negative, inducing a long-range repulsive force; second, the dark-energy field might cluster on astrophysical scales; third, applying the formalism to a Brans-Dicke theory with a general kinetic term it is shown that its Newtonian effects depend on a single parameter that generalizes the Brans-Dicke constant. PMID:15525149

  15. Disrupting long-range polar order with an electric field

    NASA Astrophysics Data System (ADS)

    Guo, Hanzheng; Liu, Xiaoming; Xue, Fei; Chen, Long-Qing; Hong, Wei; Tan, Xiaoli

    2016-05-01

    Electric fields are known to favor long-range polar order through the aligning of electric dipoles in relation to Coulomb's force. Therefore, it would be surprising to observe a disordered polar state induced from an ordered state by electric fields. Here we show such an unusual phenomenon in a polycrystalline oxide where electric fields induce a ferroelectric-to-relaxor phase transition. The nonergodic relaxor phase with disordered dipoles appears as an intermediate state under electric fields during polarization reversal of the ferroelectric phase. Using the phenomenological theory, the underlying mechanism for this unexpected behavior can be attributed to the slow kinetics of the ferroelectric-to-relaxor phase transition, as well as its competition against domain switching during electric reversal. The demonstrated material could also serve as a model system to study the transient stages in first-order phase transitions; the slow kinetics does not require the use of sophisticated ultrafast tools.

  16. Mechanism of long-range proton translocation along biological membranes

    PubMed Central

    Medvedev, Emile S.; Stuchebrukhov, Alexei A.

    2014-01-01

    Recent experiments suggest that protons can travel along biological membranes up to tens of micrometers, but the mechanism of transport is unknown. To explain such a long-range proton translocation we describe a model that takes into account the coupled bulk diffusion that accompanies the migration of protons on the surface. We show that protons diffusing at or near the surface before equilibrating with the bulk desorb and re-adsorb at the surface thousands of times, giving rise to a power-law desorption kinetics. As a result, the decay of the surface protons occurs very slowly, allowing for establishing local gradient and local exchange, as was envisioned in the early local models of biological energy transduction. PMID:23268201

  17. Fractional dynamics of coupled oscillators with long-range interaction

    SciTech Connect

    Tarasov, Vasily E.; Zaslavsky, George M.

    2006-06-15

    We consider a one-dimensional chain of coupled linear and nonlinear oscillators with long-range powerwise interaction. The corresponding term in dynamical equations is proportional to 1/|n-m|{sup {alpha}}{sup +1}. It is shown that the equation of motion in the infrared limit can be transformed into the medium equation with the Riesz fractional derivative of order {alpha}, when 0<{alpha}<2. We consider a few models of coupled oscillators and show how their synchronization can appear as a result of bifurcation, and how the corresponding solutions depend on {alpha}. The presence of a fractional derivative also leads to the occurrence of localized structures. Particular solutions for fractional time-dependent complex Ginzburg-Landau (or nonlinear Schroedinger) equation are derived. These solutions are interpreted as synchronized states and localized structures of the oscillatory medium.

  18. Modeling of long range frequency sweeping for energetic particle modes

    SciTech Connect

    Nyqvist, R. M.; Breizman, B. N.

    2013-04-15

    Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries.

  19. Transuranic waste projections at SRS for long range planning

    SciTech Connect

    Hootman, H.E.; Cook, J.R.

    1994-05-01

    This report predicts 30 year receipts of solid transuranic (TRU) wastes from eventual plutonium facility deactivation and cleanup, and combines them with the existing TRU waste holdings to provide a technical and quantitative basis for interim and long range TRU waste management planning. The current TRU waste holdings have been characterized based on data from the Computerized Radioactive Waste Burial Records Analysis (COBRA) system. Six TRU waste disposition categories have been identified for existing TRU waste as shown in Table 1. An additional category has been quantified that includes projected waste volumes from the Decontamination and Decommissioning (D&D) of TRU waste generating facilities. These projections are based on COBRA data from D&D of the original plutonium finishing facilities in F and H Areas that were replaced in the 1970`s and 80`s.

  20. Parallelized Stochastic Cutoff Method for Long-Range Interacting Systems

    NASA Astrophysics Data System (ADS)

    Endo, Eishin; Toga, Yuta; Sasaki, Munetaka

    2015-07-01

    We present a method of parallelizing the stochastic cutoff (SCO) method, which is a Monte-Carlo method for long-range interacting systems. After interactions are eliminated by the SCO method, we subdivide a lattice into noninteracting interpenetrating sublattices. This subdivision enables us to parallelize the Monte-Carlo calculation in the SCO method. Such subdivision is found by numerically solving the vertex coloring of a graph created by the SCO method. We use an algorithm proposed by Kuhn and Wattenhofer to solve the vertex coloring by parallel computation. This method was applied to a two-dimensional magnetic dipolar system on an L × L square lattice to examine its parallelization efficiency. The result showed that, in the case of L = 2304, the speed of computation increased about 102 times by parallel computation with 288 processors.

  1. Position-insensitive long range inductive power transfer

    NASA Astrophysics Data System (ADS)

    Kwan, Christopher H.; Lawson, James; Yates, David C.; Mitcheson, Paul D.

    2014-11-01

    This paper presents results of an improved inductive wireless power transfer system for reliable long range powering of sensors with milliwatt-level consumption. An ultra-low power flyback impedance emulator operating in open loop is used to present the optimal load to the receiver's resonant tank. Transmitter power modulation is implemented in order to maintain constant receiver power and to prevent damage to the receiver electronics caused by excessive received voltage. Received power is steady up to 3 m at around 30 mW. The receiver electronics and feedback system consumes 3.1 mW and so with a transmitter input power of 163.3 W the receiver becomes power neutral at 4.75 m. Such an IPT system can provide a reliable alternative to energy harvesters for supplying power concurrently to multiple remote sensors.

  2. Protein lethality investigated in terms of long range dynamical interactions.

    PubMed

    Rodrigues, Francisco A; Costa, Luciano da Fontoura

    2009-04-01

    The relationship between network structure/dynamics and biological function constitutes a fundamental issue in systems biology. However, despite many related investigations, the correspondence between structure and biological functions is not yet fully understood. A related subject that has deserved particular attention recently concerns how essentiality is related to the structure and dynamics of protein interactions. In the current work, protein essentiality is investigated in terms of long range influences in protein-protein interaction networks by considering simulated dynamical aspects. This analysis is performed with respect to outward activations, an approach which models the propagation of interactions between proteins by considering self-avoiding random walks. The obtained results are compared to protein local connectivity. Both the connectivity and the outward activations were found to be strongly related to protein essentiality. PMID:19396375

  3. Long-Range Correlations of Global Sea Surface Temperature.

    PubMed

    Jiang, Lei; Zhao, Xia; Wang, Lu

    2016-01-01

    Scaling behaviors of the global monthly sea surface temperature (SST) derived from 1870-2009 average monthly data sets of Hadley Centre Sea Ice and SST (HadISST) are investigated employing detrended fluctuation analysis (DFA). The global SST fluctuations are found to be strong positively long-range correlated at all pertinent time-intervals. The value of scaling exponent is larger in the tropics than those in the intermediate latitudes of the northern and southern hemispheres. DFA leads to the scaling exponent α = 0.87 over the globe (60°S~60°N), northern hemisphere (0°N~60°N), and southern hemisphere (0°S~60°S), α = 0.84 over the intermediate latitude of southern hemisphere (30°S~60°S), α = 0.81 over the intermediate latitude of northern hemisphere (30°N~60°N) and α = 0.90 over the tropics 30°S~30°N [fluctuation F(s) ~ sα], which the fluctuations of monthly SST anomaly display long-term correlated behaviors. Furthermore, the larger the standard deviation is, the smaller long-range correlations (LRCs) of SST in the corresponding regions, especially in three distinct upwelling areas. After the standard deviation is taken into account, an index χ = α * σ is introduced to obtain the spatial distributions of χ. There exists an obvious change of global SST in central east and northern Pacific and the northwest Atlantic. This may be as a clue on predictability of climate and ocean variabilities. PMID:27100397

  4. Photoassociation of long-range nD Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Raithel, Georg

    2015-05-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. Of particular interest are a recently discovered class of long-range, homonuclear Rydberg molecules first predicted in and observed in. In rubidium, these molecules are formed via low-energy electron scattering of the Rydberg electron from a 5S1/2 ground-state atom that is present within the Rydberg atom's volume. The binding mostly arises from S-wave and P-wave triplet scattering. In recent work, we have observed long-range homonuclear diatomic nD Rydberg molecules photoassociated out of an ultracold gas of 87Rb atoms for principal quantum numbers 34 <= n <= 40. Related results have also been reported in. The measured ground-state binding energies of 87Rb(nD + 5S1 / 2) molecular states are larger than those of their 87Rb(nS + 5S1 / 2) counterparts, showing the dependence of the molecular bond on the angular momentum of the Rydberg atom. We have exhibited the transition of 87Rb(nD + 5S1 / 2) molecules from a molecular-binding-dominant regime at low n to a fine-structure-dominant regime at high n [akin to Hund's cases (a) and (c), respectively]. In our analysis, we use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom. The hyperfine structure is important because it gives rise to mixed singlet-triplet potentials. This work was supported by the AFOSR (FA9550-10-1-0453) and the NSF (PHY-1205559).

  5. Long-Range Correlations of Global Sea Surface Temperature

    PubMed Central

    Jiang, Lei; Zhao, Xia; Wang, Lu

    2016-01-01

    Scaling behaviors of the global monthly sea surface temperature (SST) derived from 1870–2009 average monthly data sets of Hadley Centre Sea Ice and SST (HadISST) are investigated employing detrended fluctuation analysis (DFA). The global SST fluctuations are found to be strong positively long-range correlated at all pertinent time-intervals. The value of scaling exponent is larger in the tropics than those in the intermediate latitudes of the northern and southern hemispheres. DFA leads to the scaling exponent α = 0.87 over the globe (60°S~60°N), northern hemisphere (0°N~60°N), and southern hemisphere (0°S~60°S), α = 0.84 over the intermediate latitude of southern hemisphere (30°S~60°S), α = 0.81 over the intermediate latitude of northern hemisphere (30°N~60°N) and α = 0.90 over the tropics 30°S~30°N [fluctuation F(s) ~ sα], which the fluctuations of monthly SST anomaly display long-term correlated behaviors. Furthermore, the larger the standard deviation is, the smaller long-range correlations (LRCs) of SST in the corresponding regions, especially in three distinct upwelling areas. After the standard deviation is taken into account, an index χ = α * σ is introduced to obtain the spatial distributions of χ. There exists an obvious change of global SST in central east and northern Pacific and the northwest Atlantic. This may be as a clue on predictability of climate and ocean variabilities. PMID:27100397

  6. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Havlin, S.; Hausdorff, J. M.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.

    1995-01-01

    Under healthy conditions, the normal cardiac (sinus) interbeat interval fluctuates in a complex manner. Quantitative analysis using techniques adapted from statistical physics reveals the presence of long-range power-law correlations extending over thousands of heartbeats. This scale-invariant (fractal) behavior suggests that the regulatory system generating these fluctuations is operating far from equilibrium. In contrast, it is found that for subjects at high risk of sudden death (e.g., congestive heart failure patients), these long-range correlations break down. Application of fractal scaling analysis and related techniques provides new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as motivating development of novel physiologic models of systems that appear to be heterodynamic rather than homeostatic.

  7. Organic thin films. Rational synthesis of organic thin films with exceptional long-range structural integrity.

    PubMed

    Seiki, Noriya; Shoji, Yoshiaki; Kajitani, Takashi; Ishiwari, Fumitaka; Kosaka, Atsuko; Hikima, Takaaki; Takata, Masaki; Someya, Takao; Fukushima, Takanori

    2015-06-01

    Highly oriented, domain-boundary-free organic thin films could find use in various high-performance organic materials and devices. However, even with state-of-the-art supramolecular chemistry, it is difficult to construct organic thin films with structural integrity in a size regime beyond the micrometer length scale. We show that a space-filling design, relying on the two-dimensional (2D) nested hexagonal packing of a particular type of triptycene, enables the formation of large-area molecular films with long-range 2D structural integrity up to the centimeter length scale by vacuum evaporation, spin-coating, and cooling from the isotropic liquid of the triptycene. X-ray diffraction analysis and microscopic observations reveal that triptycene molecules form a completely oriented 2D (hexagonal triptycene array) + 1D (layer stacking) structure, which is key for the long-range propagation of structural order. PMID:26045433

  8. Long-range transport and universality classes in in vitro viral infection spread

    NASA Astrophysics Data System (ADS)

    Manrubia, S. C.; García-Arriaza, J.; Domingo, E.; Escarmís, C.

    2006-05-01

    Dispersal mechanisms play a main role in the dynamics of infection spread. Recent experimental results with in vitro infections of foot-and-mouth disease virus reveal that the time needed for the virus to kill a cellular monolayer depends qualitatively on the number of viral particles required to initiate infection in a susceptible cell. A two-dimensional susceptible-infected-removed (SIR) model based on the experimental setting agrees with the observations only when viral particles are subject to long-range transport. Numerical and analytical results show that this long-range transport plays a role when a single particle causes infection, while it is inefficient when complementation between two or more particles is necessary.

  9. Cesium Ultra-Long-Range Rydberg Molecules and Many-Body Physics

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Jahangiri, Akbar; Rittenhouse, Seth; Reschke, Margarita; Booth, Donald; Sadeghpour, Hossein; Shaffer, James

    2016-05-01

    Ultra-long-range Rydberg molecules have received increasing interest recently because of their novel properties such as the ability to serve as an electron trap, the potential to possess kilo-Debye dipole moments, and their unique binding mechanism. Recently, experiments focusing on Rydberg P-state and D-state molecules have revealed interesting new features of these novel molecules, like coupling between singlet and triplet scattering channels, p-wave scattering dominated states and their behavior in magnetic fields. In this presentation, we report our recent observation of Cesium D-state ultra-long-range Rydberg molecules and compare our observations to theoretical calculations. We also report our preliminary data on ``polymer'' molecules, which are formed by one Cs Rydberg atom but more than one Cs ground state atom. The transition from a few-body system to a many-body system can provide insight into many-body physics. We acknowledge funding from the NSF.

  10. Anomalous diffusion and long-range correlations in the score evolution of the game of cricket

    NASA Astrophysics Data System (ADS)

    Ribeiro, Haroldo V.; Mukherjee, Satyam; Zeng, Xiao Han T.

    2012-08-01

    We investigate the time evolution of the scores of the second most popular sport in the world: the game of cricket. By analyzing, event by event, the scores of more than 2000 matches, we point out that the score dynamics is an anomalous diffusive process. Our analysis reveals that the variance of the process is described by a power-law dependence with a superdiffusive exponent, that the scores are statistically self-similar following a universal Gaussian distribution, and that there are long-range correlations in the score evolution. We employ a generalized Langevin equation with a power-law correlated noise that describes all the empirical findings very well. These observations suggest that competition among agents may be a mechanism leading to anomalous diffusion and long-range correlation.

  11. Long-range correlations in the diffuse seismic coda.

    PubMed

    Campillo, Michel; Paul, Anne

    2003-01-24

    The late seismic coda may contain coherent information about the elastic response of Earth. We computed the correlations of the seismic codas of 101 distant earthquakes recorded at stations that were tens of kilometers apart. By stacking cross-correlation functions of codas, we found a low-frequency coherent part in the diffuse field. The extracted pulses have the polarization characteristics and group velocities expected for Rayleigh and Love waves. The set of cross-correlations has the symmetries of the surface-wave part of the Green tensor. This seismological example shows that diffuse waves produced by distant sources are sufficient to retrieve direct waves between two perfectly located points of observation. Because it relies on general properties of diffuse waves, this result has potential applications in other fields. PMID:12543969

  12. Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke

    PubMed Central

    Srinivasan, Vivek J.; Mandeville, Emiri T.; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H.; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties. PMID:23940761

  13. Propagation of near-infrasound over long ranges

    SciTech Connect

    Mutschlecner, J.P.; Whitaker, R.W.

    1986-01-01

    This paper describes the results of basic research on the physics of infrasonic propagation, both for predictive purposes and signal interpretation. The following aspects were considered: (1) attenuation, (2) seasonal effects, (3) wave effects, (4) average velocity, (5) azimuth deviations, (6) coherence, and (7) surface effects. The primary region of interest was approximately 0.1 to Hz with corresponding wavelengths of 3000 to 30 meters. (ACR)

  14. Long-range synchrony in the gamma band: role in music perception.

    PubMed

    Bhattacharya, J; Petsche, H; Pereda, E

    2001-08-15

    Synchronization seems to be a central mechanism for neuronal information processing within and between multiple brain areas. Furthermore, synchronization in the gamma band has been shown to play an important role in higher cognitive functions, especially by binding the necessary spatial and temporal information in different cortical areas to build a coherent perception. Specific task-induced (evoked) gamma oscillations have often been taken as an indication of synchrony, but the presence of long-range synchrony cannot be inferred from spectral power in the gamma range. We studied the usefulness of a relatively new measure, called similarity index to detect asymmetric interdependency between two brain regions. Spontaneous EEG from two groups-musicians and non-musicians-were recorded during several states: listening to music, listening to text, and at rest (eyes closed and eyes open). While listening to music, degrees of the gamma band synchrony over distributed cortical areas were found to be significantly higher in musicians than non-musicians. Yet no differences between these two groups were found at resting conditions and while listening to a neutral text. In contrast to the degree of long-range synchrony, spectral power in the gamma band was higher in non-musicians. The degree of spatial synchrony, a measure of signal complexity based on eigen-decomposition method, was also significantly increased in musicians while listening to music. As compared with non-musicians, the finding of increased long-range synchrony in musicians independent of spectral power is interpreted as a manifestation of a more advanced musical memory of musicians in binding together several features of the intrinsic complexity of music in a dynamical way. PMID:11487656

  15. HF Radar for Long-Range Monitoring of Ionospheric Irregularities in the Equatorial Region

    NASA Astrophysics Data System (ADS)

    Pedersen, T. R.; Parris, R. T.; Dao, E. V.

    2014-12-01

    Ionospheric instabilities associated with plasma bubbles in the equatorial region are one of the major space weather impacts, creating scintillation that affects satellite communications and navigation as well as spread-F and propagation effects on lower frequency systems. Coherent scatter radars can be used to detect the presence of irregularities at a scale size corresponding to half the wavelength of the radar when the raypaths are perpendicular to the magnetic field. A number of vertical incidence radars operating in the VHF range near the magnetic equator use this effect to map out vertical irregularity structure in bubbles, while at high latitudes in both the northern and more recently southern hemisphere, HF radars in the SuperDARN network have successfully used refraction along near-horizontal paths to reach perpendicularity with the near-vertical magnetic field and map out ionospheric convection and irregularity structure over fields of view thousands of km across. In the equatorial region, perpendicularity can be obtained anywhere within a near-vertical plane even without refraction, although refraction can be used to achieve long ranges after one or more reflections from the earth's surface and bottomside ionosphere. This potentially provides a means of detecting and monitoring equatorial plasma bubbles over the oceans from long ranges using a small number of ground-based sites. We discuss the possible echoes that could be detected by such a system, the likely propagation modes and characteristics, and means of obtaining and utilizing elevation angle information to correctly locate distant plasma bubbles.

  16. In-flight sleep, pilot fatigue and Psychomotor Vigilance Task performance on ultra-long range versus long range flights.

    PubMed

    Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain

    2013-12-01

    This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations. PMID:23889686

  17. Long-range Cooper pair splitter with high entanglement production rate

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Shi, D. N.; Xing, D. Y.

    2015-01-01

    Cooper pairs in the superconductor are a natural source of spin entanglement. The existing proposals of the Cooper pair splitter can only realize a low efficiency of entanglement production, and its size is constrained by the superconducting coherence length. Here we show that a long-range Cooper pair splitter can be implemented in a normal metal-superconductor-normal metal (NSN) junction by driving a supercurrent in the S. The supercurrent results in a band gap modification of the S, which significantly enhances the crossed Andreev reflection (CAR) of the NSN junction and simultaneously quenches its elastic cotunneling. Therefore, a high entanglement production rate close to its saturation value can be achieved by the inverse CAR. Interestingly, in addition to the conventional entangled electron states between opposite energy levels, novel entangled states with equal energy can also be induced in our proposal.

  18. Synchronization and plateau splitting of coupled oscillators with long-range power-law interactions

    NASA Astrophysics Data System (ADS)

    Kuo, Huan-Yu; Wu, Kuo-An

    2015-12-01

    We investigate synchronization and plateau splitting of coupled oscillators on a one-dimensional lattice with long-range interactions that decay over distance as a power law. We show that in the thermodynamic limit the dynamics of systems of coupled oscillators with power-law exponent α ≤1 is identical to that of the all-to-all coupling case. For α >1 , oscillatory behavior of the phase coherence appears as a result of single plateau splitting into multiple plateaus. A coarse-graining method is used to investigate the onset of plateau splitting. We analyze a simple oscillatory state formed by two plateaus in detail and propose a systematic approach to predict the onset of plateau splitting. The prediction of breaking points of plateau splitting is in quantitatively good agreement with numerical simulations.

  19. Ultracold Long-Range Rydberg Molecules with Complex Multichannel Spectra

    NASA Astrophysics Data System (ADS)

    Eiles, Matthew; Greene, Chris

    2016-05-01

    A generalized class of exotic long-range Rydberg molecules consisting of a multichannel Rydberg atom bound to a distant ground state atom by the Rydberg electron is predicted. These molecules are characterized by the rich physics provided by the strongly perturbed multichannel Rydberg spectra of divalent atoms, in contrast to the regular Rydberg series of the alkali atoms used to form Rydberg molecules to date. These multichannel Rydberg molecules exhibit favorable properties for laser excitation, because states exist where the quantum defect varies strongly with the principal quantum number n. In particular, the nd Rydberg state of calcium becomes nearly degenerate with states of high orbital angular momentum over the range 17 < n < 22 , promoting its admixture into the high l deeply bound ``trilobite'' molecule states and thereby circumventing the usual difficulty posed by electric dipole selection rules. Further novel molecular states are predicted to occur in the low- J states of silicon, which are strongly perturbed due to channel interactions between Rydberg series leading to the spin-orbit split ionization thresholds. These interactions manifest themselves in potential curves exhibiting two distinct length scales, providing novel opportunities for quantum manipulation. Supported in part by the National Science Foundation under Grant No. PHY-1306905.

  20. Metrological capabilities of Scanning Long Range Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Loaec, Sophie; Boquet, Matthieu; Cariou, Jean-Pierre

    2013-04-01

    Many application areas are interested in getting wind measurements within the Planetary Boundary Layer (PBL) height, and with a relatively high accuracy. These applications include meteorology like PBL studies, air traffic safety like aircraft induced wake vortices and wind shears detection or wind farming like wind resources assessment. In order to answer these demands there are recent developments and deployments of long-range vertical profiler or fully hemispherical scanning wind lidars. To validate the measurements provided by such a system, it is possible to make inter-comparisons with a met mast at short distance and with wind profilers radar or sodar at longer distance. But, there are difficulties that may arise from the implementation of this kind of methodology because of the uncertainty related to the campaign set-up and the instruments used as reference. In that perspective Leosphere is developing a method to assess the accuracy of the Leosphere's lidars. In this presentation, we will give a detail description of the method and its results.

  1. Long-range forecasts of UK winter hydrology

    NASA Astrophysics Data System (ADS)

    Svensson, C.; Brookshaw, A.; Scaife, A. A.; Bell, V. A.; Mackay, J. D.; Jackson, C. R.; Hannaford, J.; Davies, H. N.; Arribas, A.; Stanley, S.

    2015-06-01

    Seasonal river flow forecasts are beneficial for planning agricultural activities, river navigation, and for management of reservoirs for public water supply and hydropower generation. In the United Kingdom (UK), skilful seasonal river flow predictions have previously been limited to catchments in lowland (southern and eastern) regions. Here we show that skilful long-range forecasts of winter flows can now be achieved across the whole of the UK. This is due to a remarkable geographical complementarity between the regional geological and meteorological sources of predictability for river flows. Forecast skill derives from the hydrogeological memory of antecedent conditions in southern and eastern parts of the UK and from meteorological predictability in northern and western areas. Specifically, it is the predictions of the atmospheric circulation over the North Atlantic that provides the skill at the seasonal timescale. In addition, significant levels of skill in predicting the frequency of winter high flow events is demonstrated, which has the potential to allow flood adaptation measures to be put in place.

  2. Long range metrological atomic force microscope with versatile measuring head

    NASA Astrophysics Data System (ADS)

    Lu, Mingzhen; Gao, Sitian; Li, Qi; Li, Wei; Shi, Yushu; Tao, Xingfu

    2013-01-01

    A long range metrological atomic force microscope (AFM) has been developed at NIM. It aims to realize a maximum measurement volume of 50mm×50mm×2mm with an uncertainty of a few tens of nanometers in the whole range. In compliance with Abbe Principle, the instrument is designed as a sample-scanning type. The sample is moved by a 6-DOF piezostage in combination with a hybrid slide-air bearing stage for long scanning range. Homodyne interferometers with four passes attached to a metrological frame measure relative displacement between the probe and sample thus the instrument is directly traceable to the SI. An AFM head is developed as the measuring head for the instrument. Considering accuracy and dynamic performance of the instrument, it is designed to be capable of scanning perpendicularly in a range of 5μm×5μm×5μm with a 3-DOF piezostage. Optical beam deflection method is used and a minimum of components are mounted on the moving part. A novel design is devised so that the photodetector is only sensitive to the deflection of cantilever, but not the displacement of the head. Moving manner of the head varies with scanning range and mode of the instrument. Results of different measurements are demonstrated, showing the excellent performance of the instrument.

  3. Stochastic Kinetic Monte Carlo algorithms for long-range Hamiltonians

    SciTech Connect

    Mason, D R; Rudd, R E; Sutton, A P

    2003-10-13

    We present a higher order kinetic Monte Carlo methodology suitable to model the evolution of systems in which the transition rates are non- trivial to calculate or in which Monte Carlo moves are likely to be non- productive flicker events. The second order residence time algorithm first introduced by Athenes et al.[1] is rederived from the n-fold way algorithm of Bortz et al.[2] as a fully stochastic algorithm. The second order algorithm can be dynamically called when necessary to eliminate unproductive flickering between a metastable state and its neighbors. An algorithm combining elements of the first order and second order methods is shown to be more efficient, in terms of the number of rate calculations, than the first order or second order methods alone while remaining statistically identical. This efficiency is of prime importance when dealing with computationally expensive rate functions such as those arising from long- range Hamiltonians. Our algorithm has been developed for use when considering simulations of vacancy diffusion under the influence of elastic stress fields. We demonstrate the improved efficiency of the method over that of the n-fold way in simulations of vacancy diffusion in alloys. Our algorithm is seen to be an order of magnitude more efficient than the n-fold way in these simulations. We show that when magnesium is added to an Al-2at.%Cu alloy, this has the effect of trapping vacancies. When trapping occurs, we see that our algorithm performs thousands of events for each rate calculation performed.

  4. Long-range magnetic coupling across a polar insulating layer.

    PubMed

    Lü, W M; Saha, Surajit; Wang, X Renshaw; Liu, Z Q; Gopinadhan, K; Annadi, A; Zeng, S W; Huang, Z; Bao, B C; Cong, C X; Venkatesan, M; Yu, T; Coey, J M D; Ariando; Venkatesan, T

    2016-01-01

    Magnetic interactions in solids are normally mediated by short-range exchange or weak dipole fields. Here we report a magnetic interaction that can propagate over long distances (∼10 nm) across a polar insulating oxide spacer. Evidence includes oscillations of magnetization, coercivity and field-cooled loop shift with the thickness of LaAlO3 in La0.67Sr0.33MnO3/LaAlO3/SrTiO3 heterostructures. Similar modifications of the hysteresis loop appear when two coupled films of La0.67Sr0.33MnO3 are separated by LaAlO3, or another polar insulator, but they are absent when the oxide spacer layer is nonpolar. The loop shift is attributed to strong spin-orbit coupling and Dzyaloshinskii-Moriya interaction at the interfaces. There is evidence from inelastic light scattering that the polar spacer mediates long-range transmission of orbital magnetization. This coupling mechanism is expected to apply for any conducting ferromagnetic oxide with mixed valence; in view of electron hopping frequency involved, it raises the prospect of terahertz tunability of magnetic coupling. PMID:26980456

  5. On long-range forces of repulsion between biological cells

    NASA Astrophysics Data System (ADS)

    Derjaguin, B. V.; Golovanov, M. V.

    1992-05-01

    We have established experimentally that when biological cells, for example, blood, are suspended in concentrated solutions of inorganic electrolytes (for instance, in a 15% solution of sodium chloride) then around some cells (leucocytes, especially tumour cells) there form haloes, i.e., circular spaces free from background cells (erythrocytes, yeast cells, colloidal particles of Indian ink). In the medium made up of erythrocytes the haloes form during 5-10 min as a result of the background cells drawing apart from the central halo-forming cell (HFC) at a distance of 10-100 μm and more. In the medium made of the Indian ink particles, the haloes form during 2-4 s and attain a thickness of about 10-20 μm. The erythrocytes and the haloes forming in their medium can be preserved for about three to five days at room temperature. It has been established that, when tumour HFCs are present at sufficient concentrations, they form hexagonal periodic structures having a mean spacing between cells of up to 60 μm. The authors put forward as one probable suggestion that the formation of haloes is largely determined by long-range repulsive forces arising from the phenomenon of diffusiophoresis generated by the diffusion currents that emerge from the surface of halo-forming cells.

  6. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes

    PubMed Central

    Jack, Benjamin R.; Meyer, Austin G.; Echave, Julian; Wilke, Claus O.

    2016-01-01

    Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein–protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes. PMID:27138088

  7. ORNL long-range environmental and waste management plan

    SciTech Connect

    Baldwin, J.S.; Bates, L.D.; Brown, C.H.; Easterday, C.A.; Hill, L.G.; Kendrick, C.M.; McNeese, L.E.; Myrick, T.E.; Payne, T.L.; Pepper, C.E.; Robinson, S.M.; Rohwer, P.S.; Scanlan, T.F.; Smith, M.A.; Stratton, L.E.; Trabalka, J.R.

    1989-09-01

    This report, the ORNL Long-Range Environmental and Waste Management Plan, is the annual update in a series begun in fiscal year 1985. Its primary purpose is to provide a thorough and systematic planning document to reflect the continuing process of site assessment, strategy development, and planning for the current and long-term control of environmental issues, waste management practices, and remedial action requirements. The document also provides an estimate of the resources required to implement the current plan. This document is not intended to be a budget document; it is, however, intended to provide guidance to both Martin Marietta Energy Systems, Inc., and the US Department of Energy (DOE) management as to the near order of magnitude of the resources (primarily funding requirements) and the time frame required to execute the strategy in the present revision of the plan. As with any document of this nature, the near-term (one to three years) part of the plan is a pragmatic assessment of the current program and ongoing capital projects and reflects the efforts perceived to be necessary to comply with all current state and federal regulations and DOE orders. It also should be in general agreement with current budget (funding) requests and obligations for these immediate years. 55 figs., 72 tabs.

  8. Long-range magnetic coupling across a polar insulating layer

    PubMed Central

    Lü, W. M.; Saha, Surajit; Wang, X. Renshaw; Liu, Z. Q.; Gopinadhan, K.; Annadi, A.; Zeng, S. W.; Huang, Z.; Bao, B. C.; Cong, C. X.; Venkatesan, M.; Yu, T.; Coey, J. M. D.; Ariando; Venkatesan, T.

    2016-01-01

    Magnetic interactions in solids are normally mediated by short-range exchange or weak dipole fields. Here we report a magnetic interaction that can propagate over long distances (∼10 nm) across a polar insulating oxide spacer. Evidence includes oscillations of magnetization, coercivity and field-cooled loop shift with the thickness of LaAlO3 in La0.67Sr0.33MnO3/LaAlO3/SrTiO3 heterostructures. Similar modifications of the hysteresis loop appear when two coupled films of La0.67Sr0.33MnO3 are separated by LaAlO3, or another polar insulator, but they are absent when the oxide spacer layer is nonpolar. The loop shift is attributed to strong spin–orbit coupling and Dzyaloshinskii–Moriya interaction at the interfaces. There is evidence from inelastic light scattering that the polar spacer mediates long-range transmission of orbital magnetization. This coupling mechanism is expected to apply for any conducting ferromagnetic oxide with mixed valence; in view of electron hopping frequency involved, it raises the prospect of terahertz tunability of magnetic coupling. PMID:26980456

  9. Two general models that generate long range correlation

    NASA Astrophysics Data System (ADS)

    Gan, Xiaocong; Han, Zhangang

    2012-06-01

    In this paper we study two models that generate sequences with LRC (long range correlation). For the IFT (inverse Fourier transform) model, our conclusion is the low frequency part leads to LRC, while the high frequency part tends to eliminate it. Therefore, a typical method to generate a sequence with LRC is multiplying the spectrum of a white noise sequence by a decaying function. A special case is analyzed: the linear combination of a smooth curve and a white noise sequence, in which the DFA plot consists of two line segments. For the patch model, our conclusion is long subsequences leads to LRC, while short subsequences tend to eliminate it. Therefore, we can generate a sequence with LRC by using a fat-tailed PDF (probability distribution function) of the length of the subsequences. A special case is also analyzed: if a patch model with long subsequences is mixed with a white noise sequence, the DFA plot will consist of two line segments. We have checked known models and actual data, and found they are all consistent with this study.

  10. Long range transport of colloids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Florea, Daniel; Musa, Sami; Huyghe, Jacques M. R. J.; Wyss, Hans M.

    2013-03-01

    Colloids in aqueous suspensions can experience strong, extremely long range repulsive forces near interfaces such as biological tissues, gels, ion exchange resins or metals. As a result exclusion zones extending over several millimeters can be formed. While this phenomenon has been previously described, a physical understanding of this process is still lacking. This exclusion zone formation is puzzling because the typical forces acting on colloidal particles are limited to much shorter distances and external fields that could drive the particles are absent. Here we study the exclusion zone formation in detail by following the time and distance-dependent forces acting on the particles. We present a simple model that accounts for our experimental data and directly links the exclusion zone formation to an already known physical transport phenomenon. We show that the effect can be tuned by changing the zeta potential of the particles or by varying the species present in the aqueous solution. We thus provide a direct physical explanation for the intriguing exclusion zone formation and we illustrate how this effect can be exploited in a range of industrial applications.

  11. Nonlinear Behaviour in Long Range Integrable Models with Spin

    NASA Astrophysics Data System (ADS)

    Kulkarni, Manas; Franchini, Fabio; Abanov, Alexander

    2010-03-01

    We study nonlinear aspects of long range integrable models with spin by going beyond the Luttinger Liquid theory. We present here [1], the fully nonlinear dynamics of spin and charge in spin-Calogero model (sCM), an integrable 1D model of quantum spin-1/2 particles interacting through inverse square interaction and exchange. Hydrodynamic equations of motion are written for this model in the regime where gradient corrections to the exact theory may be neglected. In this approximation, variables separate in terms of dressed Fermi momenta of the model. Hydrodynamic equations reduce to a set of decoupled Riemann-Hopf equations for the dressed Fermi momenta. We study the dynamics of some non-equilibrium spin-charge configurations for times smaller than the time-scale of gradient catastrophe. We then show [2] how this field theory allows to calculate correlation functions that cannot be considered with conventional bosonization. We also highlight the connections between sCM, Haldane-Shastry model and λ=2 spin-less Calogero model. [1] M. Kulkarni, F. Franchini, A. G. Abanov, Phys. Rev. B 80, 165105 (2009) [2] F. Franchini, M. Kulkarni, Nucl. Phys. B, 825, 320 (2010)

  12. Long-range position and orientation tracking system

    SciTech Connect

    Armstrong, G.A.; Jansen, J.F.; Burks, B.L.

    1995-12-31

    The long-range position and orientation tracking system will consist of two measurement pods, a VME-based computer system, and a detector array. The system is used to measure the position and orientation of a target that may be attached to a robotic arm, teleoperated manipulator, or autonomous vehicle. The pods have been designed to be mounted in the manways of the domes of the Fernald K-65 waste silos. Each pod has two laser scanner subsystems as well as lights and camera systems. One of the laser scanners will be oriented to scan in the pan direction, the other in the tilt direction. As the lasers scan across the detector array, the angles of incidence with each detector are recorded. Combining measurements from each of the four lasers yields sufficient data for a closed-form solution of the transform describing the location and orientation of the content mobilization system (CMS). Redundant detectors will be placed on the CMS to accommodate occlusions, to provide improved measurement accuracy, and to determine the CMS orientation.

  13. Fibers in the extracellular matrix enable long-range stress transmission between cells.

    PubMed

    Ma, Xiaoyue; Schickel, Maureen E; Stevenson, Mark D; Sarang-Sieminski, Alisha L; Gooch, Keith J; Ghadiali, Samir N; Hart, Richard T

    2013-04-01

    Cells can sense, signal, and organize via mechanical forces. The ability of cells to mechanically sense and respond to the presence of other cells over relatively long distances (e.g., ∼100 μm, or ∼10 cell-diameters) across extracellular matrix (ECM) has been attributed to the strain-hardening behavior of the ECM. In this study, we explore an alternative hypothesis: the fibrous nature of the ECM makes long-range stress transmission possible and provides an important mechanism for long-range cell-cell mechanical signaling. To test this hypothesis, confocal reflectance microscopy was used to develop image-based finite-element models of stress transmission within fibroblast-seeded collagen gels. Models that account for the gel's fibrous nature were compared with homogenous linear-elastic and strain-hardening models to investigate the mechanisms of stress propagation. Experimentally, cells were observed to compact the collagen gel and align collagen fibers between neighboring cells within 24 h. Finite-element analysis revealed that stresses generated by a centripetally contracting cell boundary are concentrated in the relatively stiff ECM fibers and are propagated farther in a fibrous matrix as compared to homogeneous linear elastic or strain-hardening materials. These results support the hypothesis that ECM fibers, especially aligned ones, play an important role in long-range stress transmission. PMID:23561517

  14. Fibers in the Extracellular Matrix Enable Long-Range Stress Transmission between Cells

    PubMed Central

    Ma, Xiaoyue; Schickel, Maureen E.; Stevenson, Mark D.; Sarang-Sieminski, Alisha L.; Gooch, Keith J.; Ghadiali, Samir N.; Hart, Richard T.

    2013-01-01

    Cells can sense, signal, and organize via mechanical forces. The ability of cells to mechanically sense and respond to the presence of other cells over relatively long distances (e.g., ∼100 μm, or ∼10 cell-diameters) across extracellular matrix (ECM) has been attributed to the strain-hardening behavior of the ECM. In this study, we explore an alternative hypothesis: the fibrous nature of the ECM makes long-range stress transmission possible and provides an important mechanism for long-range cell-cell mechanical signaling. To test this hypothesis, confocal reflectance microscopy was used to develop image-based finite-element models of stress transmission within fibroblast-seeded collagen gels. Models that account for the gel’s fibrous nature were compared with homogenous linear-elastic and strain-hardening models to investigate the mechanisms of stress propagation. Experimentally, cells were observed to compact the collagen gel and align collagen fibers between neighboring cells within 24 h. Finite-element analysis revealed that stresses generated by a centripetally contracting cell boundary are concentrated in the relatively stiff ECM fibers and are propagated farther in a fibrous matrix as compared to homogeneous linear elastic or strain-hardening materials. These results support the hypothesis that ECM fibers, especially aligned ones, play an important role in long-range stress transmission. PMID:23561517

  15. Long-range density-matrix-functional theory: Application to a modified homogeneous electron gas

    SciTech Connect

    Pernal, Katarzyna

    2010-05-15

    We propose a method that employs functionals of the one-electron reduced density matrix (density matrix) to capture long-range effects of electron correlation. The complementary short-range regime is treated with density functionals. In an effort to find approximations for the long-range density-matrix functional, a modified power functional is applied to the homogeneous electron gas with Coulomb interactions replaced by their corresponding long-range counterparts. For the power {beta}=1/2 and the range-separation parameter {omega}=1/r{sub s}, the functional reproduces the correlation and the kinetic correlation energies with a remarkable accuracy for intermediate and large values of r{sub s}. Analysis of the Euler equation corresponding to this functional reveals correct r{sub s} expansion of the correlation energy in the limit of large r{sub s}. The first expansion coefficient is in very good agreement with that obtained from the modified Wigner-Seitz model.

  16. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation.

    PubMed

    Cui, Xu; Bryant, Daniel M; Reiss, Allan L

    2012-02-01

    We used Near-Infrared Spectroscopy (NIRS) to simultaneously measure brain activity in two people while they played a computer-based cooperation game side by side. Inter-brain activity coherence was calculated between the two participants. We found that the coherence between signals generated by participants' right superior frontal cortices increased during cooperation, but not during competition. Increased coherence was also associated with better cooperation performance. To our knowledge, this work represents the first use of a single NIRS instrument for simultaneous measurements of brain activity in two people. This study demonstrates the use of NIRS-based hyperscanning in studies of social interaction in a naturalistic environment. PMID:21933717

  17. Universal, strong and long-ranged trapping by optical conveyors

    NASA Astrophysics Data System (ADS)

    Ruffner, David; Grier, David G.

    2015-03-01

    Optical conveyors are active tractor beams that selectively transport illuminated objects either upstream or downstream along their axes. Formed by the coherent superposition of coaxial Bessel beams, an optical conveyor features an axial array of equally spaced intensity maxima that act as optical traps for small objects. We demonstrate through measurements on colloidal spheres and numerical calculations based on the generalized Lorenz-Mie theory that optical conveyors' interferometric structure endows them with trapping characteristics far superior to those of conventional optical tweezers. Optical conveyors form substantially stiffer traps and can transport a wider variety of materials over a much longer axial range.

  18. Universal, strong and long-ranged trapping by optical conveyors.

    PubMed

    Ruffner, David B; Grier, David G

    2014-11-01

    Optical conveyors are active tractor beams that selectively transport illuminated objects either upstream or downstream along their axes. Formed by the coherent superposition of coaxial Bessel beams, an optical conveyor features an axial array of equally spaced intensity maxima that act as optical traps for small objects. We demonstrate through measurements on colloidal spheres and numerical calculations based on the generalized Lorenz-Mie theory that optical conveyors' interferometric structure endows them with trapping characteristics far superior to those of conventional optical tweezers. Optical conveyors form substantially stiffer traps and can transport a wider variety of materials over a much longer axial range. PMID:25401830

  19. Long-range vibration detection system using heterodyne interferometry.

    PubMed

    Rzasa, John R; Cho, Kyuman; Davis, Christopher C

    2015-07-10

    We present the design and performance of an extremely sensitive coherent remote vibration detection system using optical heterodyne vibration of phase shifts produced by laser light scattered off a remote target. The resulting phase-modulated intermediate RF of 200 MHz, which carries the vibrational motion of the target, is demodulated down to baseband using an RF in-phase and quadrature demodulator. Acquisition and calculation of the target phase angle is carried out on a custom-made control board which utilizes high-resolution A/D converters, variable gain amplifiers, and a Spartan-6 field programmable gate array. PMID:26193398

  20. Long-range phase coherence in YBCO ultra-thin films

    SciTech Connect

    Aprili, M.; Lesueur, J.; Quinton, W.A.; Dumoulin, L.

    1996-12-31

    The authors have investigated the resistive transition of YBCO ultra-thin films (thickness from 5 to 50 nm) grown on MgO(100). The amount of disorder increases as the thickness is reduced, leading to a broad transition that can be described using a 3D weakly-coupled Josephson array. Below a critical thickness, this regime seems to dominate even the fluctuating part of the transition (paraconductive region), when the system undergoes a 3D-0D transition.

  1. Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana

    2014-05-01

    The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling

  2. Cortico-cortical networks in patients with ideomotor apraxia as revealed by EEG coherence analysis

    PubMed Central

    Wheaton, Lewis A.; Bohlhalter, Stephan; Nolte, Guido; Shibasaki, Hiroshi; Hattori, Noriaki; Fridman, Esteban; Vorbach, Sherry; Grafman, Jordan; Hallett, Mark

    2008-01-01

    We sought to determine whether coherent networks which circumvent lesioned cortex are seen in patients with ideomotor apraxia (IMA) while performing tool use pantomimes. Five normal subjects and five patients with IMA (three patients with corticobasal degeneration and two with left hemisphere stroke) underwent 64-channel EEG recording while performing three tool-use pantomimes with their left hand in a self-paced manner. Beta band (20–22 Hz) coherence indicates that normal subjects have a dominant left hemisphere network responsible for praxis preparation, which was absent in patients. Corticobasal degeneration patients showed significant coherence increase between left parietal - right premotor areas. Left hemisphere stroke patients showed significant coherence increases in a right parietofrontal network. The right hemisphere appears to store useable praxis representations in IMA patients with left hemisphere damage. PMID:18249498

  3. Long range laser propagation: power scaling and beam quality issues

    NASA Astrophysics Data System (ADS)

    Bohn, Willy L.

    2010-09-01

    This paper will address long range laser propagation applications where power and, in particular beam quality issues play a major role. Hereby the power level is defined by the specific mission under consideration. I restrict myself to the following application areas: (1)Remote sensing/Space based LIDAR, (2) Space debris removal (3)Energy transmission, and (4)Directed energy weapons Typical examples for space based LIDARs are the ADM Aeolus ESA mission using the ALADIN Nd:YAG laser with its third harmonic at 355 nm and the NASA 2 μm Tm:Ho:LuLiF convectively cooled solid state laser. Space debris removal has attracted more attention in the last years due to the dangerous accumulation of debris in orbit which become a threat to the satellites and the ISS space station. High power high brightness lasers may contribute to this problem by partially ablating the debris material and hence generating an impulse which will eventually de-orbit the debris with their subsequent disintegration in the lower atmosphere. Energy transmission via laser beam from space to earth has long been discussed as a novel long term approach to solve the energy problem on earth. In addition orbital transfer and stationkeeping are among the more mid-term applications of high power laser beams. Finally, directed energy weapons are becoming closer to reality as corresponding laser sources have matured due to recent efforts in the JHPSSL program. All of this can only be realized if he laser sources fulfill the necessary power requirements while keeping the beam quality as close as possible to the diffraction limited value. And this is the rationale and motivation of this paper.

  4. Epidemic spreading in networks with nonrandom long-range interactions

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Kalala-Mutombo, Franck; Valverde-Colmeiro, Alba

    2011-09-01

    An “infection,” understood here in a very broad sense, can be propagated through the network of social contacts among individuals. These social contacts include both “close” contacts and “casual” encounters among individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts between two individuals are a function of their social distance in the network of close contacts. Then, we assume that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range (LR) interactions determined by the social proximity of the two individuals. This approach is then implemented in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A parameter called “conductance” controls the feasibility of those casual encounters. In a zero conductance network only contagion through close contacts is allowed. As the conductance increases the probability of having casual encounters also increases. We show here that as the conductance parameter increases, the rate of propagation increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks with scale-free degree distributions, where infections easily become epidemics. Our model provides a general framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts accounted for by means of LR interactions.

  5. Long-range Plans for the NASA Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Tokunaga, A. T.; Bus, S. J.; Rayner, J.; Tollestrup, E. V.

    2004-11-01

    The NASA Infrared Telescope Facility (IRTF) is a 3-meter optical/IR telescope dedicated to NASA-related programs of mission support and basic solar system research. All of the funding for IRTF operations comes from the Planetary Astronomy Program. The IRTF is unique in providing NASA with a dedicated telescope for mission support. Its aperture is sufficient for many kinds of solar system observations. While large telescopes like the Keck allow astronomers to push the limits of sensitivity, the IRTF provides the ability to carry out complementary studies on brighter objects. In addition, the IRTF provides the planetary community with access to one of the world's best observing sites, the summit of Mauna Kea. The user base of the telescope has been expanding in recent years due to new instrumentation, visible imaging capability, and remote observing. The IRTF also provides opportunities for instrument development and training of students and post-docs, thus helping ensure a solid foundation for the next generation of planetary scientists. A long-range plan is being developed that will position the IRTF to be a powerful facility for mission support well beyond the Cassini mission. A refurbished IRTF would have: (1) Optimized instruments for planetary science that provide high-spectral resolution, wide wavelength coverage, and diffraction-limited imaging capabilities. (2) An adaptive optics system that produces extremely high Strehl ratio images, and includes an extended object wave-front sensor. (3) Focused programs on mission support, NEOs, asteroids, and comets. (4) Remote observing. (5) Rapid response to needs of the planetary community. (6) Flexible scheduling. (7) Daytime observing close to the Sun. We acknowledge the support of NASA Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Planetary Astronomy Program.

  6. Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis

    PubMed Central

    Apelian, Clement; Harms, Fabrice; Thouvenin, Olivier; Boccara, A. Claude

    2016-01-01

    We developed a new endogenous approach to reveal subcellular metabolic contrast in fresh ex vivo tissues taking advantage of the time dependence of the full field optical coherence tomography interferometric signals. This method reveals signals linked with local activity of the endogenous scattering elements which can reveal cells where other OCT-based techniques fail or need exogenous contrast agents. We benefit from the micrometric transverse resolution of full field OCT to image intracellular features. We used this time dependence to identify different dynamics at the millisecond scale on a wide range of organs in normal or pathological conditions. PMID:27446672

  7. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

    PubMed Central

    Chernet, Brook T.; Fields, Chris; Levin, Michael

    2015-01-01

    In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions—key mediators of cell-cell communication—in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC) is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host's physiological parameters. PMID:25646081

  8. On the long range propagation of sound over irregular terrain

    NASA Technical Reports Server (NTRS)

    Howe, M. S.

    1984-01-01

    The theory of sound propagation over randomly irregular, nominally plane terrain of finite impedance is discussed. The analysis is an extension of the theory of coherent scatter originally proposed by Biot for an irregular rigid surface. It combines Biot's approach, wherein the surface irregularities are modeled by a homogeneous distribution of hemispherical bosses, with more conventional analyses in which the ground is modeled as a smooth plane of finite impedance. At sufficiently low frequencies the interaction of the surface irregularities with the nearfield of a ground-based source leads to the production of surface waves, which are effective in penetrating the ground shadow zone predicted for a smooth surface of the same impedance.

  9. On the long range propagation of sound over irregular terrain

    NASA Technical Reports Server (NTRS)

    Howe, M. S.

    1985-01-01

    The theory of sound propagation over randomly irregular, nominally plane terrain of finite impedance is discussed. The analysis is an extension of the theory of coherent scatter originally proposed by Biot for an irregular rigid surface. It combines Biot's approach, wherein the surface irregularities are modeled by a homogeneous distribution of hemispherical bosses, with more conventional analyses in which the ground is modeled as a smooth plane of finite impedance. At sufficiently low frequencies the interaction of the surface irregularities with the nearfield of a ground-based source leads to the production of surface waves, which are effective in penetrating the ground shadow zone predicted for a smooth surface of the same impedance.

  10. Flow effects in long-range dipolar field MRI

    NASA Astrophysics Data System (ADS)

    Loureiro de Sousa, Paulo; Gounot, Daniel; Grucker, Daniel

    2003-06-01

    Incoherent spin motion, such as diffusion, can lead to significant signal loss in multiple spin echoes (MSE) experiments, sometimes to its complete extinction. Coherent spin motion, such as laminar flow, can also modify the magnetization in MSE imaging and yield additional contrast. Our experimental results indicate that MSE is flow-sensitive. Our theoretical analysis and experimental results show how the effect of the distant dipolar field can be annihilated by flow. This effect can be quantified by directly solving the nonlinear Bloch equation, taking into account the deformation of the dipolar field by motion. Unexpected results have been observed, such as a recovery of the dipolar interaction due to flow in the "magic angle" condition.

  11. Periodic Landau-Zener problem in long-range migration

    SciTech Connect

    Oksengendler, B. L.; Turaeva, N. N.

    2006-09-15

    From studies of radiation effects in semiconductors at low temperatures, it is known that an interstitial atom migrates over a distance of up to 1000 A (Watkins effect). The interpretation of this effect is based on the inversion of potential energy curves of an interstitial atom in semiconductors when it changes its charge. At low temperatures, a cascade of radiationless transitions can occur between the ground and excited states of a relocalized electron, which leads to the coherent tunneling of the interstitial atom through the lattice. The description of this effect using the scattering matrix S leads to the dispersion law and to an equation for the effective mass of such a quasiparticle called an inversion.

  12. Induced Long-Range Attractive Potentials of Human Serum Albumin by Ligand Binding

    SciTech Connect

    Sato, Takaaki; Komatsu, Teruyuki; Nakagawa, Akito; Tsuchida, Eishun

    2007-05-18

    Small-angle x-ray scattering and dielectric spectroscopy investigation on the solutions of recombinant human serum albumin and its heme hybrid revealed that heme incorporation induces a specific long-range attractive potential between protein molecules. This is evidenced by the enhanced forward intensity upon heme binding, despite no hindrance to rotatory Brownian motion, unbiased colloid osmotic pressure, and discontiguous nearest-neighbor distance, confirming monodispersity of the proteins. The heme-induced potential may play a trigger role in recognition of the ligand-filled human serum albumins in the circulatory system.

  13. Multifractal Geophysical Extremes: Nonstationarity and Long Range Correlations

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2012-04-01

    Throughout the world, extremes in environmental sciences are of prime importance. They are key variables not only for risk assessments and engineering designs (e.g. of dams and bridges), but also for resource management (e.g. water and energy) and for land use. A better understanding of them is more and more indispensable in settling the debate on their possible climatological evolution. Whereas it took decades before a uniform technique for estimating flow frequencies within a stationary framework, it is often claimed that « stationarity is dead ! ». The fact that geophysical and environmental fields are variable over a wider range of scales than previously thought require to go beyond the limits of the (classical) Extreme Value Theory (EVT). Indeed, long-range correlations are beyond the scope of the classical EVT theory. We show that multifractal concepts and techniques are particularly appealing because they can effectively deal with a cascade of interactions concentrating for instance energy, liquid water, etc. into smaller and smaller space-time domains. Furthermore, a general outcome of these cascade processes -which surprisingly was realized only rather recently- is that rather independently of their details they yield probability distributions with power-law fall-offs, often called (asymptotic) Pareto or Zipf laws. We discuss the corresponding probability distributions of their maxima and its relationship with the Frechet law. We use these multifractal techniques to investigate the possibility of using very short or incomplete data records for reliable statistical predictions of the extremes. In particular we assess the multifractal parameter uncertainty with the help of long synthetic multifractal series and their sub-samples, in particular to obtain an approximation of confidence intervals that would be particularly important for the predictions of multifractal extremes. We finally illustrate the efficiency of this approach with its application to

  14. Long-range transport of air pollution into the Arctic

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Berg, T.; Breivik, K.; Burkhart, J. F.; Eckhardt, S.; Fjæraa, A.; Forster, C.; Herber, A.; Lunder, C.; McMillan, W. W.; None, N.; Manø, S.; Oltmans, S.; Shiobara, M.; Stebel, K.; Hirdman, D.; Stroem, J.; Tørseth, K.; Treffeisen, R.; Virkkunen, K.; Yttri, K. E.; Andrews, E.; Kowal, D.; Mefford, T.; Ogren, J. A.; Sharma, S.; Spichtinger, N.; Stone, R.; Hoch, S.; Wehrli, C.

    2007-12-01

    This paper presents an overview of air pollution transport into the Arctic. The major transport processes will be highlighted, as well as their seasonal, interannual, and spatial variability. The source regions of Arctic air pollution will be discussed, with a focus on black carbon (BC) sources, as BC can produce significant radiative forcing in the Arctic. It is found that Europe is the main source region for BC in winter, whereas boreal forest fires are the strongest source in summer, especially in years of strong burning. Two case studies of recent extreme Arctic air pollution events will be presented. In summer 2004, boreal forest fires in Alaska and Canada caused pan-Arctic enhancements of black carbon. The BC concentrations measured at Barrow (Alaska), Alert (Canada), Summit (Greenland) and Zeppelin (Spitsbergen) were all episodically elevated, as a result of the long-range transport of the biomass burning emissions. Aerosol optical depth was also episodically elevated at these stations, with an almost continuous elevation over more than a month at Summit. During the second episode in spring 2006, new records were set for all measured air pollutant species at the Zeppelin station (Spitsbergen) as well as for ozone in Iceland. At Zeppelin, BC, AOD, aerosol mass, ozone, carbon monoxide and other compounds all reached new record levels, compared to the long-term monitoring record. The episode was caused by transport of polluted air masses from Eastern Europe deep into the Arctic, a consequence of the unusual warmth in the European Arctic during the episode. While fossil fuel combustion sources certainly contributed to this episode, smoke from agricultural fires in Eastern Europe was the dominant pollution component. We also suggest a new revolatilization mechanism for persistent organic pollutants (POPs) stored in soils and vegetation by fires, as POPs were strongly elevated during both episodes. All this suggests a considerable influence of biomass burning on

  15. Local orderings in long-range-disordered bismuth-layered intergrowth structure

    SciTech Connect

    Zhang, Faqiang; Li, Yongxiang; Gu, Hui; Gao, Xiang

    2014-04-01

    A series of intergrowth bismuth-layered (Bi{sub 3}TiNbO{sub 9}){sub 2}(Bi{sub 4}Ti{sub 3}O{sub 12}) (2{sub 2}3) ceramics were prepared by conventional solid-state reaction to study the characteristics of the local orderings in long-range-disordered intergrowth structures. High-resolution high-angle annular dark-field (HAADF) imaging reveals the intergrowth structure composed of mixtures of -23-, -223-, -2223- and -22- sequences, while the -223- structure is the thermodynamic stable state of this intergrowth system. It was confirmed by the crystals of recurrent -223- structure prepared by self-flux method and the nature of the local ordering was discussed from their differences in repeating units. The statistics show that when repeating units reach 4 or higher, the independent -223- intergrowth ordering emerges clearly among the competing associated orderings. We infer it is the kinetic factor that induces local compositional variance to result in long-range disordered intergrowth structures. - Graphical abstract: The long-range-disordered intergrowth structure in a (Bi{sub 3}TiNbO{sub 9}){sub 2}(Bi{sub 4}Ti{sub 3}O{sub 12}) (2{sub 2}3) grain, which is composed of various types of local orderings, such as -22-, -23- and -223-. - Highlights: • The characteristic of the long-range-disordered (Bi{sub 3}TiNbO{sub 9}){sub 2}(Bi{sub 4}Ti{sub 3}O{sub 12}) (2{sub 2}3) structure was statistically analyzed, and the ordered -223- structure was speculated to be the thermodynamic stable state of the system. • The crystals of the -223- structure were successfully prepared for the first time by self-melt method. • The lower limit of the repeating units (L) to uniquely determine an independent intergrowth structure was speculated to be L=4. • The analysis inferred that the kinetic process is the controlling factor to limit the structural continuity and induce the long-range-disordered intergrowth structure.

  16. 2006 Long Range Development Plan Final Environmental ImpactReport

    SciTech Connect

    Philliber, Jeff

    2007-01-22

    This environmental impact report (EIR) has been prepared pursuant to the applicable provisions of the California Environmental Quality Act (CEQA) and its implementing guidelines (CEQA Guidelines), and the Amended University of California Procedures for Implementation of the California Environmental Quality Act (UC CEQA Procedures). The University of California (UC or the University) is the lead agency for this EIR, which examines the overall effects of implementation of the proposed 2006 Long Range Development Plan (LRDP; also referred to herein as the 'project' for purposes of CEQA) for Lawrence Berkeley National Laboratory (LBNL; also referred to as 'Berkeley Lab,' 'the Laboratory,' or 'the Lab' in this document). An LRDP is a land use plan that guides overall development of a site. The Lab serves as a special research campus operated by the University employees, but it is owned and financed by the federal government and as such it is distinct from the UC-owned Berkeley Campus. As a campus operated by the University of California, the Laboratory is required to prepare an EIR for an LRDP when one is prepared or updated pursuant to Public Resources Code Section 21080.09. The adoption of an LRDP does not constitute a commitment to, or final decision to implement, any specific project, construction schedule, or funding priority. Rather, the proposed 2006 LRDP describes an entire development program of approximately 980,000 gross square feet of new research and support space construction and 320,000 gross square feet of demolition of existing facilities, for a total of approximately 660,000 gross square feet of net new occupiable space for the site through 2025. Specific projects will undergo CEQA review at the time proposed to determine what, if any, additional review is necessary prior to approval. As described in Section 1.4.2, below, and in Chapter 3 of this EIR (the Project Description), the size of the project has been reduced since the Notice of Preparation for

  17. Long range wind lidars based on novel high spectral brilliance all-fibered sources

    NASA Astrophysics Data System (ADS)

    Lombard, L.; Dolfi-Bouteyre, A.; Besson, C.; Augère, B.; Bourdon, P.; Durécu, A.; Goular, D.; Le Gouët, J.; Planchat, C.; Renard, W.; Valla, M.; Canat, G.

    2015-10-01

    New Lidar applications related to aircraft safety in the area of an airport include mapping wind velocity and monitoring turbulences within a radius longer than 8km in a short acquisition time (360° map in 1 minute). During landing and takeoff, a minimal distance separation between aircrafts is set by referring to wake turbulence categories. However, it was shown that wake vortices can dissipate quicker because of atmospheric turbulence (characterized by eddy dissipation rate - EDR) or can be transported out of the way on oncoming traffic by cross-winds. Long range scanning Lidars provide radial wind data that can be used to calculate EDR. To reach long range within a short acquisition time, coherent wind Lidars require high power (~kW), narrow linewidth (few MHz) pulsed laser sources with nearly TF limited pulse duration (~1μs). Eyesafe, all-fiber laser sources based on MOPFA (master oscillator, power fiber amplifier) architecture offer many advantages over bulk sources such as low sensitivity to vibrations, efficiency and versatility. However, narrow linewidth pulsed fiber lasers and amplifiers are usually limited by nonlinear effects such as stimulated Brillouin scattering (SBS) to 300W with commercial fibers. We investigated various solutions to push this limit further. For example, a source based on a new fiber composition yielded a peak power of 1120W for 650ns pulse duration with excellent beam quality. Based on these innovative solutions we built a Lidar with a record range of 16km in 0.1s averaging time. In this proceeding, we present some recent results obtained with our wind Lidars based on these high power sources with record ranges. EDR measurements using the developed algorithm based on structure function calculation are presented, as well as its validation with simulations and measurements campaign results.

  18. Reinvestigation of long-range magnetic ordering in icosahedral Tb-Mg-Zn

    SciTech Connect

    Islam, Z.; Fisher, I.R.; Zarestky, J.; Canfield, P.C.; Stassis, C.; Goldman, A.I.

    1998-05-01

    We present results of a study of possible magnetic ordering in the icosahedral phase of Tb-Mg-Zn probed by bulk magnetization measurements and neutron diffraction. Measurements on both crushed single grains and cast polycrystalline samples of Tb-Mg-Zn were performed. Magnetization measurements on both samples reveal only a spin-glass-like transition at approximately 5.8K. Neutron diffraction from the crushed single grains reveals only short-range magnetic ordering at low temperatures, with no evidence of the long-range magnetic ordering reported previously [Charrier, Ouladdiaf, and Schmitt, Phys. Rev. Lett. {bold 78}, 4637 (1997)]. Likewise, the cast polycrystalline samples exhibit primarily diffuse magnetic scattering at low temperature, but at least one relatively sharp diffraction peak was observed. Our results indicate that for single grain samples there is no long-range magnetic ordering and that, at best, the magnetic ordering in these quasicrystalline alloys is not very robust. {copyright} {ital 1998} {ital The American Physical Society}

  19. Long-range intralaminar noise correlations in the barrel cortex.

    PubMed

    Reyes-Puerta, Vicente; Amitai, Yael; Sun, Jyh-Jang; Shani, Itamar; Luhmann, Heiko J; Shamir, Maoz

    2015-05-01

    Identifying the properties of correlations in the firing of neocortical neurons is central to our understanding of cortical information processing. It has been generally assumed, by virtue of the columnar organization of the neocortex, that the firing of neurons residing in a certain vertical domain is highly correlated. On the other hand, firing correlations between neurons steeply decline with horizontal distance. Technical difficulties in sampling neurons with sufficient spatial information have precluded the critical evaluation of these notions. We used 128-channel "silicon probes" to examine the spike-count noise correlations during spontaneous activity between multiple neurons with identified laminar position and over large horizontal distances in the anesthetized rat barrel cortex. Eigen decomposition of correlation coefficient matrices revealed that the laminar position of a neuron is a significant determinant of these correlations, such that the fluctuations of layer 5B/6 neurons are in opposite direction to those of layers 5A and 4. Moreover, we found that within each experiment, the distribution of horizontal, intralaminar spike-count correlation coefficients, up to a distance of ∼1.5 mm, is practically identical to the distribution of vertical correlations. Taken together, these data reveal that the neuron's laminar position crucially affects its role in cortical processing. Moreover, our analyses reveal that this laminar effect extends over several functional columns. We propose that within the cortex the influence of the horizontal elements exists in a dynamic balance with the influence of the vertical domain and this balance is modulated with brain states to shape the network's behavior. PMID:25787960

  20. Long-range intralaminar noise correlations in the barrel cortex

    PubMed Central

    Reyes-Puerta, Vicente; Sun, Jyh-Jang; Shani, Itamar; Luhmann, Heiko J.; Shamir, Maoz

    2015-01-01

    Identifying the properties of correlations in the firing of neocortical neurons is central to our understanding of cortical information processing. It has been generally assumed, by virtue of the columnar organization of the neocortex, that the firing of neurons residing in a certain vertical domain is highly correlated. On the other hand, firing correlations between neurons steeply decline with horizontal distance. Technical difficulties in sampling neurons with sufficient spatial information have precluded the critical evaluation of these notions. We used 128-channel “silicon probes” to examine the spike-count noise correlations during spontaneous activity between multiple neurons with identified laminar position and over large horizontal distances in the anesthetized rat barrel cortex. Eigen decomposition of correlation coefficient matrices revealed that the laminar position of a neuron is a significant determinant of these correlations, such that the fluctuations of layer 5B/6 neurons are in opposite direction to those of layers 5A and 4. Moreover, we found that within each experiment, the distribution of horizontal, intralaminar spike-count correlation coefficients, up to a distance of ∼1.5 mm, is practically identical to the distribution of vertical correlations. Taken together, these data reveal that the neuron's laminar position crucially affects its role in cortical processing. Moreover, our analyses reveal that this laminar effect extends over several functional columns. We propose that within the cortex the influence of the horizontal elements exists in a dynamic balance with the influence of the vertical domain and this balance is modulated with brain states to shape the network's behavior. PMID:25787960

  1. Fast Faraday fading of long range satellite signals.

    NASA Technical Reports Server (NTRS)

    Heron, M. L.

    1972-01-01

    20 MHz radio signals have been received during the day from satellite Beacon-B when it was below the optical horizon by using a bank of narrow filters to improve the signal to noise ratio. The Faraday fading rate becomes constant, under these conditions, at a level determined by the plasma frequency just below the F-layer peak. Variations in the Faraday fading rate reveal fluctuations in the electron density near the peak, while the rate of attaining the constant level depends on the shape of the electron density profile.

  2. Aggregation of heteropolyanions in aqueous solutions exhibiting short-range attractions and long-range repulsions

    DOE PAGESBeta

    Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; Burton-Pye, Benjamin P.; Monica Olvera de la Cruz; Antonio, Mark R.

    2015-12-15

    Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomersmore » and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.« less

  3. Aggregation of heteropolyanions in aqueous solutions exhibiting short-range attractions and long-range repulsions

    SciTech Connect

    Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; Burton-Pye, Benjamin P.; Monica Olvera de la Cruz; Antonio, Mark R.

    2015-12-15

    Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomers and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.

  4. Long-range structural correlations in amorphous ternary In-based oxides

    NASA Astrophysics Data System (ADS)

    Khanal, Rabi; Medvedeva, Julia

    2015-03-01

    In recent years, there is an increasing shift towards the use of oxide semiconductor materials in their amorphous form owing to several technological advantages and the fact that amorphous oxides exhibit similar or even superior properties than their crystalline counterparts. In this work we have systemically investigated the effect of chemical composition and oxygen stoichiometry on the local and long-range structure of ternary amorphous oxides, namely In-X-O with X =Sn, Zn, Ga, Cd, Ge, Sc, Y, or La, by means of ab-initio molecular dynamics. The results reveal that the local MO structure remains nearly intact upon amorphization and exhibit weak dependence on the composition. In marked contrast, the structural characteristics of the metal-metal shell, namely, the M-M distances and M-O-M angles that determine how MO polyhedra are connected into a network, are affected by the presence of X. Complex interplay between several factors such as the cation ionic size, metal-oxygen bond strength, as well as the natural preference for edge, corner, or face-sharing between the MO polyhedra, leads to a correlated behavior in the long-range structure. These findings highlight the mechanisms of the amorphous structure formation as well as the species of the carrier transport in these oxides.

  5. Mechanism of Long-Range Penetration of Low-Energy Ions in Botanic Samples

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Wang, Yu-Gang; Xue, Jian-Ming; Wang, Si-Xue; Du, Guang-Hua; Yan, Sha; Zhao, Wei-Jiang

    2002-03-01

    We present experimental evidence to reveal the mechanism of long-range penetration of low-energy ions in botanic samples. In the 100 keV Ar+ ion transmission measurement, the result confirmed that low-energy ions could penetrate at least 60 µm thick kidney bean slices with the probability of about 1.0×10-5. The energy spectrum of 1 MeV He+ ions penetrating botanic samples has shown that there is a peak of the count of ions with little energy loss. The probability of the low-energy ions penetrating the botanic sample is almost the same as that of the high-energy ions penetrating the same samples with little energy loss. The results indicate that there are some micro-regions with mass thickness less than the projectile range of low-energy ions in the botanic samples and they result in the long-range penetration of low-energy ions in botanic samples.

  6. Large-Area Sub-Wavelength Optical Patterning via Long-Range Ordered Polymer Lens Array.

    PubMed

    Wu, Jin; Liow, Chihao; Tao, Kai; Guo, Yuanyuan; Wang, Xiaotian; Miao, Jianmin

    2016-06-29

    Fabrication of large-area, highly orderly, and high-resolution nanostructures in a cost-effective fashion prompts advances in nanotechnology. Herein, for the first time, we demonstrate a unique strategy to prepare a long-range highly regular polymer lens from photoresist nanotrenches based templates, which are obtained from underexposure. The relationship between exposure dose and the cross-sectional morphology of produced photoresist nanostructures is revealed for the first time. The polymer lens arrays are repeatedly used for rapid generation of sub-100 nm nanopatterns across centimeter-scale areas. The light focusing properties of the nanoscale polymer lens are investigated by both simulation and experiment. It is found that the geometry, size of the lens, and the exposure dose can be deployed to adjust the produced feature size, spacing, and shapes. Because the polymer lenses are derived from top-down photolithography, the nearly perfect long-range periodicity of produced nanopatterns is ensured, and the feature shapes can be flexibly designed. Because this nanolithographic strategy enables subwavelength periodical nanopatterns with controllable feature size, geometry, and composition in a cost-effective manner, it can be optimized as a viable and potent nanofabrication tool for various technological applications. PMID:27301636

  7. Adaptor long-range PCR procedure for clone-specific characterization and chromosomal localization.

    PubMed

    Tsoktouridis, Georgios; Merz, Christian A; DelVecchio, Vito G

    2005-06-01

    An efficient adaptor long-range PCR (ALR-PCR) procedure was developed to detect genomic rearrangements in high-plasticity genomic regions between closely related strains of bacteria. The method was precisely optimized using a combination of high-speed experimental steps for the chromosomal localization and elucidation of deletions, inversions, duplications, or inserted sequences within a clone-specific flanking region. The advantages of this strategy are: (i) ready-to-use polymerase mixtures and Master mix (ready-to-use reaction mixtures with polymerase MasterAmp and buffer 2x Premix 4); (ii) a 5-min ligation procedure; (iii) rapid purification of DNA digests; (iv) optimized DNA template concentration protocol to avoid nonspecific amplification and high backgrounds; (v) long-range PCR protocol to obtain at least 9.6 kb single PCR products; (vi) two-step PCR cycling with the same annealing and extension temperature at 68 degrees C; (vii) simple design of the adaptors according to the preferred restriction endonuclease enzyme; and (viii) simple technology and equipment required. The application of this method for a tester-specific suppressive subtractive hybridization (SSH) clone of Brucella melitensis 16M revealed an 837-bp deletion and a 7255-bp DNA transfer from one chromosomal location to another for Brucella abortus 2308 used as a driver. PMID:16018549

  8. Quasi-phase matching for efficient long-range plasmonic third-harmonic generation via graphene.

    PubMed

    Nasari, Hadiseh; Abrishamian, Mohammad Sadegh

    2015-12-01

    We propose and numerically investigate an efficient method for long-range third-harmonic generation (THG) of propagating surface plasmon polaritons (SPP) waves on graphene sheets for nonlinear plasmonic purposes in the terahertz (THZ) gap region of the electromagnetic spectrum via a developed nonlinear finite-difference time-domain technique. We reveal that although extended and unmodulated graphene sheets with low Fermi levels can offer high-conversion efficiency (CE) for SPP THG at short distances, suitable for miniaturized plasmonic circuits, they suffer from inherent absorption loss induced by graphene that noticeably reduces the CE of the THG at long ranges. We suggest a structure benefiting from low Fermi-level graphene regions of strong nonlinear response as oscillators and high Fermi-level ones of low loss as a propagating medium in a periodic manner, which satisfies the quasi-phase matching condition and shows considerable efficiency improvement at long propagation distances. We predict that such a configuration can find valuable potential applications in the realm of nonlinear THz plasmonics for generating new frequencies and also in spectroscopy, signal processing, and so on. PMID:26625038

  9. Statistical Significance of Long-Range `Optimal Climate Normal' Temperature and Precipitation Forecasts.

    NASA Astrophysics Data System (ADS)

    Wilks, Daniel S.

    1996-04-01

    A simple approach to long-range forecasting of monthly or seasonal quantities is as the average of observations over some number of the most recent years. Finding this `optimal climate normal' (OCN) involves examining the relationships between the observed variable and averages of its values over the previous one to 30 years and selecting the averaging period yielding the best results. This procedure involves a multiplicity of comparisons, which will lead to misleadingly positive results for developments data. The statistical significance of these OCNs are assessed here using a resampling procedure, in which time series of U.S. Climate Division data are repeatedly shuffled to produce statistical distributions of forecast performance measures, under the null hypothesis that the OCNs exhibit no predictive skill. Substantial areas in the United States are found for which forecast performance appears to be significantly better than would occur by chance.Another complication in the assessment of the statistical significance of the OCNs derives from the spatial correlation exhibited by the data. Because of this correlation, instances of Type I errors (false rejections of local null hypotheses) will tend to occur with spatial coherency and accordingly have the potential to be confused with regions for which there may be real predictability. The `field significance' of the collections of local tests is also assessed here by simultaneously and coherently shuffling the time series for the Climate Divisions. Areas exhibiting significant local tests are large enough to conclude that seasonal OCN temperature forecasts exhibit significant skill over parts of the United States for all seasons except SON, OND, and NDJ, and that seasonal OCN precipitation forecasts are significantly skillful only in the fall. Statistical significance is weaker for monthly than for seasonal OCN temperature forecasts, and the monthly OCN precipitation forecasts do not exhibit significant predictive

  10. Revealing anisotropic properties of cornea at different intraocular pressures using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Li, Jiasong; Singh, Manmohan; Han, Zhaolong; Wu, Chen; Nair, Achuth; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.

    2016-03-01

    In this study we have evaluated the elastic anisotropy of porcine corneas with increasing intraocular pressures (IOPs) using a noncontact optical coherence elastography (OCE) technique. A focused air-pulse induced low amplitude (<=10 μm) elastic waves in fresh porcine corneas (n=9) in situ in the whole eye-globe configuration. A phase-stabilized swept source optical coherence elastography (PhS-SSOCE) system imaged the propagation of the elastic wave in different stepped radial directions. A closed-loop feedback system was utilized to artificially manipulate the IOP, and OCE measurements were repeated while the IOP was increased in 5 mmHg increments from 15 to 30 mmHg. The OCE measurements demonstrated that the elastic anisotropy of the cornea became more pronounced at higher IOPs, and that there were distinct radial angles of higher and lower stiffness. The presented noncontact OCE method was capable of detecting and assessing the corneal elastic anisotropy as a function of IOP. Due to the noninvasive nature and small amplitude of the elastic wave, this method may be able to provide additional information about corneal health and integrity in vivo.

  11. Photon Devil's staircase: photon long-range repulsive interaction in lattices of coupled resonators with Rydberg atoms.

    PubMed

    Zhang, Yuanwei; Fan, Jingtao; Liang, J-Q; Ma, Jie; Chen, Gang; Jia, Suotang; Nori, Franco

    2015-01-01

    The realization of strong coherent interactions between individual photons is a long-standing goal in science and engineering. In this report, based on recent experimental setups, we derive a strong photon long-range repulsive interaction, by controlling the van der Waals repulsive force between Cesium Rydberg atoms located inside different cavities in extended Jaynes-Cummings-Hubbard lattices. We also find novel quantum phases induced by this photon long-range repulsive interaction. For example, without photon hopping, a photon Devil's staircase, induced by the breaking of long-range translation symmetry, can emerge. If photon hopping occurs, we predict a photon-floating solid phase, due to the motion of particle- and hole-like defects. More importantly, for a large chemical potential in the resonant case, the photon hopping can be frozen even if the hopping term exists. We call this new phase the photon-frozen solid phase. In experiments, these predicted phases could be detected by measuring the number of polaritons via resonance fluorescence. PMID:26108705

  12. Photon Devil’s staircase: photon long-range repulsive interaction in lattices of coupled resonators with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanwei; Fan, Jingtao; Liang, J.-Q.; Ma, Jie; Chen, Gang; Jia, Suotang; Nori, Franco

    2015-06-01

    The realization of strong coherent interactions between individual photons is a long-standing goal in science and engineering. In this report, based on recent experimental setups, we derive a strong photon long-range repulsive interaction, by controlling the van der Waals repulsive force between Cesium Rydberg atoms located inside different cavities in extended Jaynes-Cummings-Hubbard lattices. We also find novel quantum phases induced by this photon long-range repulsive interaction. For example, without photon hopping, a photon Devil’s staircase, induced by the breaking of long-range translation symmetry, can emerge. If photon hopping occurs, we predict a photon-floating solid phase, due to the motion of particle- and hole-like defects. More importantly, for a large chemical potential in the resonant case, the photon hopping can be frozen even if the hopping term exists. We call this new phase the photon-frozen solid phase. In experiments, these predicted phases could be detected by measuring the number of polaritons via resonance fluorescence.

  13. Photon Devil’s staircase: photon long-range repulsive interaction in lattices of coupled resonators with Rydberg atoms

    PubMed Central

    Zhang, Yuanwei; Fan, Jingtao; Liang, J.-Q.; Ma, Jie; Chen, Gang; Jia, Suotang; Nori, Franco

    2015-01-01

    The realization of strong coherent interactions between individual photons is a long-standing goal in science and engineering. In this report, based on recent experimental setups, we derive a strong photon long-range repulsive interaction, by controlling the van der Waals repulsive force between Cesium Rydberg atoms located inside different cavities in extended Jaynes-Cummings-Hubbard lattices. We also find novel quantum phases induced by this photon long-range repulsive interaction. For example, without photon hopping, a photon Devil’s staircase, induced by the breaking of long-range translation symmetry, can emerge. If photon hopping occurs, we predict a photon-floating solid phase, due to the motion of particle- and hole-like defects. More importantly, for a large chemical potential in the resonant case, the photon hopping can be frozen even if the hopping term exists. We call this new phase the photon-frozen solid phase. In experiments, these predicted phases could be detected by measuring the number of polaritons via resonance fluorescence. PMID:26108705

  14. Revealing Long-Range Interconnected Hubs in Human Chromatin Interaction Data Using Graph Theory

    NASA Astrophysics Data System (ADS)

    Boulos, R. E.; Arneodo, A.; Jensen, P.; Audit, B.

    2013-09-01

    We use graph theory to analyze chromatin interaction (Hi-C) data in the human genome. We show that a key functional feature of the genome—“master” replication origins—corresponds to DNA loci of maximal network centrality. These loci form a set of interconnected hubs both within chromosomes and between different chromosomes. Our results open the way to a fruitful use of graph theory concepts to decipher DNA structural organization in relation to genome functions such as replication and transcription. This quantitative information should prove useful to discriminate between possible polymer models of nuclear organization.

  15. Long-range evolutionary constraints reveal cis-regulatory interactions on the human X chromosome

    PubMed Central

    Naville, Magali; Ishibashi, Minaka; Ferg, Marco; Bengani, Hemant; Rinkwitz, Silke; Krecsmarik, Monika; Hawkins, Thomas A.; Wilson, Stephen W.; Manning, Elizabeth; Chilamakuri, Chandra S. R.; Wilson, David I.; Louis, Alexandra; Lucy Raymond, F.; Rastegar, Sepand; Strähle, Uwe; Lenhard, Boris; Bally-Cuif, Laure; van Heyningen, Veronica; FitzPatrick, David R.; Becker, Thomas S.; Roest Crollius, Hugues

    2015-01-01

    Enhancers can regulate the transcription of genes over long genomic distances. This is thought to lead to selection against genomic rearrangements within such regions that may disrupt this functional linkage. Here we test this concept experimentally using the human X chromosome. We describe a scoring method to identify evolutionary maintenance of linkage between conserved noncoding elements and neighbouring genes. Chromatin marks associated with enhancer function are strongly correlated with this linkage score. We test >1,000 putative enhancers by transgenesis assays in zebrafish to ascertain the identity of the target gene. The majority of active enhancers drive a transgenic expression in a pattern consistent with the known expression of a linked gene. These results show that evolutionary maintenance of linkage is a reliable predictor of an enhancer's function, and provide new information to discover the genetic basis of diseases caused by the mis-regulation of gene expression. PMID:25908307

  16. Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep

    PubMed Central

    Tagliazucchi, Enzo; von Wegner, Frederic; Morzelewski, Astrid; Brodbeck, Verena; Jahnke, Kolja; Laufs, Helmut

    2013-01-01

    The integration of segregated brain functional modules is a prerequisite for conscious awareness during wakeful rest. Here, we test the hypothesis that temporal integration, measured as long-term memory in the history of neural activity, is another important quality underlying conscious awareness. For this aim, we study the temporal memory of blood oxygen level-dependent signals across the human nonrapid eye movement sleep cycle. Results reveal that this property gradually decreases from wakefulness to deep nonrapid eye movement sleep and that such decreases affect areas identified with default mode and attention networks. Although blood oxygen level-dependent spontaneous fluctuations exhibit nontrivial spatial organization, even during deep sleep, they also display a decreased temporal complexity in specific brain regions. Conversely, this result suggests that long-range temporal dependence might be an attribute of the spontaneous conscious mentation performed during wakeful rest. PMID:24003146

  17. Measuring long-range carrier diffusion across multiple grains in polycrystalline semiconductors by photoluminescence imaging

    PubMed Central

    Alberi, K.; Fluegel, B.; Moutinho, H.; Dhere, R. G.; Li, J. V.; Mascarenhas, A.

    2013-01-01

    Thin-film polycrystalline semiconductors are currently at the forefront of inexpensive large-area solar cell and integrated circuit technologies because of their reduced processing and substrate selection constraints. Understanding the extent to which structural and electronic defects influence carrier transport in these materials is critical to controlling the optoelectronic properties, yet many measurement techniques are only capable of indirectly probing their effects. Here we apply a novel photoluminescence imaging technique to directly observe the low temperature diffusion of photocarriers through and across defect states in polycrystalline CdTe thin films. Our measurements show that an inhomogeneous distribution of localized defect states mediates long-range hole transport across multiple grain boundaries to locations exceeding 10 μm from the point of photogeneration. These results provide new insight into the key role deep trap states have in low temperature carrier transport in polycrystalline CdTe by revealing their propensity to act as networks for hopping conduction. PMID:24158163

  18. Long range transported pollutants and conductivity of atmospheric ice on insulators

    SciTech Connect

    Fikke, S.M. ); Hanssen, J.E. ); Rolfseng, L. )

    1993-07-01

    Internationally comprehensive studies have been performed to analyze the effect of clean or contaminated snow and ice accretions on high voltage insulators. The experience with transmission lines in inland mountainous areas reveals a substantial contribution of pollution from anthropogenic (man made) contaminants. One observation of a flash over case with thin rime ice layers in contrast to the many cases with thicker accretions without similar failures, led to the question of the role of the ion content of the ice. 55 ice samples are analyzed and the contributions to the conductivity from natural (sea salt) and man made ions (sulphur and nitrogen components) are found. It is shown that long range transported anthropogenic ions contributed to more than 50% of the conductivity in 33 of the 55 cases, and in 21 cases the contribution was more than 80%.

  19. Protein adsorption on tailored substrates: long-range forces and conformational changes

    NASA Astrophysics Data System (ADS)

    Bellion, M.; Santen, L.; Mantz, H.; Hähl, H.; Quinn, A.; Nagel, A.; Gilow, C.; Weitenberg, C.; Schmitt, Y.; Jacobs, K.

    2008-10-01

    Adsorption of proteins onto solid surfaces is an everyday phenomenon that is not yet fully understood. To further the current understanding, we have performed in situ ellipsometry studies to reveal the adsorption kinetics of three different proteins, lysozyme, α-amylase and bovine serum albumin. As substrates we offer Si wafers with a controlled Si oxide layer thickness and a hydrophilic or hydrophobic surface functionalization, allowing the tailoring of the influence of short- and long-range interactions. Our studies show that not only the surface chemistry determines the properties of an adsorbed protein layer but also the van der Waals contributions of a composite substrate. We compare the experimental findings to results of a colloidal Monte Carlo approach that includes conformational changes of the adsorbed proteins induced by density fluctuations.

  20. Picosecond x-ray strain rosette reveals direct laser excitation of coherent transverse acoustic phonons

    DOE PAGESBeta

    Lee, Sooheyong; Williams, G. Jackson; Campana, Maria I.; Walko, Donald A.; Landahl, Eric C.

    2016-01-11

    Using a strain-rosette, we demonstrate the existence of transverse strain using time-resolved x-ray diffraction from multiple Bragg reflections in laser-excited bulk gallium arsenide. We find that anisotropic strain is responsible for a considerable fraction of the total lattice motion at early times before thermal equilibrium is achieved. Our measurements are described by a new model where the Poisson ratio drives transverse motion, resulting in the creation of shear waves without the need for an indirect process such as mode conversion at an interface. Finally, using the same excitation geometry with the narrow-gap semiconductor indium antimonide, we detected coherent transverse acousticmore » oscillations at frequencies of several GHz.« less

  1. Picosecond x-ray strain rosette reveals direct laser excitation of coherent transverse acoustic phonons

    PubMed Central

    Lee, Sooheyong; Williams, G. Jackson; Campana, Maria I.; Walko, Donald A.; Landahl, Eric C.

    2016-01-01

    Using a strain-rosette, we demonstrate the existence of transverse strain using time-resolved x-ray diffraction from multiple Bragg reflections in laser-excited bulk gallium arsenide. We find that anisotropic strain is responsible for a considerable fraction of the total lattice motion at early times before thermal equilibrium is achieved. Our measurements are described by a new model where the Poisson ratio drives transverse motion, resulting in the creation of shear waves without the need for an indirect process such as mode conversion at an interface. Using the same excitation geometry with the narrow-gap semiconductor indium antimonide, we detected coherent transverse acoustic oscillations at frequencies of several GHz. PMID:26751616

  2. Satellite measurements reveal strong anisotropy in spatial coherence of climate variations over the Tibet Plateau.

    PubMed

    Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai

    2016-01-01

    This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302-480 km, while the annual precipitation showed smaller scales of 111-182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions. PMID:27553388

  3. Satellite measurements reveal strong anisotropy in spatial coherence of climate variations over the Tibet Plateau

    PubMed Central

    Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai

    2016-01-01

    This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302–480 km, while the annual precipitation showed smaller scales of 111–182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions. PMID:27553388

  4. Simulating 2,368 temperate lakes reveals weak coherence in stratification phenology

    USGS Publications Warehouse

    Read, Jordan S.; Winslow, Luke A.; Hansen, Gretchen J. A.; Van Den Hoek, Jamon; Hanson, Paul C.; Bruce, Louise C; Markfort, Corey D

    2014-01-01

    Changes in water temperatures resulting from climate warming can alter the structure and function of aquatic ecosystems. Lake-specific physical characteristics may play a role in mediating individual lake responses to climate. Past mechanistic studies of lake-climate interactions have simulated generic lake classes at large spatial scales or performed detailed analyses of small numbers of real lakes. Understanding the diversity of lake responses to climate change across landscapes requires a hybrid approach that couples site-specific lake characteristics with broad-scale environmental drivers. This study provides a substantial advancement in lake ecosystem modeling by combining open-source tools with freely available continental-scale data to mechanistically model daily temperatures for 2,368 Wisconsin lakes over three decades (1979-2011). The model accurately predicted observed surface layer temperatures (RMSE: 1.74°C) and the presence/absence of stratification (81.1% agreement). Among-lake coherence was strong for surface temperatures and weak for the timing of stratification, suggesting individual lake characteristics mediate some - but not all - ecologically relevant lake responses to climate.

  5. Theta phase coherence in affective picture processing reveals dysfunctional sensory integration in psychopathic offenders.

    PubMed

    Tillem, Scott; Ryan, Jonathan; Wu, Jia; Crowley, Michael J; Mayes, Linda C; Baskin-Sommers, Arielle

    2016-09-01

    Psychopathic offenders are described as emotionally cold, displaying deficits in affective responding. However, research demonstrates that many of the psychopathy-related deficits are moderated by attention, such that under conditions of high attentional and perceptual load psychopathic offenders display deficits in affective responses, but do not in conditions of low load. To date, most studies use measures of defensive reflex (i.e., startle) and conditioning manipulations to examine the impact of load on psychopathy-related processing, but have not examined more direct measures of attention processing. In a sample of adult male offenders, the present study examined time-frequency EEG phase coherence in response to a picture-viewing paradigm that manipulated picture familiarity to assess neural changes in processing based on perceptual demands. Results indicated psychopathy-related differences in the theta response, an index of readiness to perceive and integrate sensory information. These data provide further evidence that psychopathic offenders have disrupted integration of sensory information. PMID:27373371

  6. Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation

    PubMed Central

    Srinivasan, Vivek J.; Radhakrishnan, Harsha

    2014-01-01

    The BOLD (blood-oxygen-level dependent) fMRI (functional Magnetic Resonance Imaging) signal is shaped, in part, by changes in red blood cell (RBC) content and flow across vascular compartments over time. These complex dynamics have been challenging to characterize directly due to a lack of appropriate imaging modalities. In this study, making use of infrared light scattering from RBCs, depth-resolved Optical Coherence Tomography (OCT) angiography was applied to image laminar functional hyperemia in the rat somatosensory cortex. After defining and validating depth-specific metrics for changes in RBC content and speed, laminar hemodynamic responses in microvasculature up to cortical depths of >1 mm were measured during a forepaw stimulus. The results provide a comprehensive picture of when and where changes in RBC content and speed occur during and immediately following cortical activation. In summary, the earliest and largest microvascular RBC content changes occurred in the middle cortical layers, while post-stimulus undershoots were most prominent superficially. These laminar variations in positive and negative responses paralleled known distributions of excitatory and inhibitory synapses, suggesting neuronal underpinnings. Additionally, the RBC speed response consistently returned to baseline more promptly than RBC content after the stimulus across cortical layers, supporting a “flow-volume mismatch” of hemodynamic origin. PMID:25111471

  7. Long-range orientational order, local-field anisotropy, and mean molecular polarizability in liquid crystals

    SciTech Connect

    Aver'yanov, E. M.

    2009-01-15

    The problems on the relation of the mean effective molecular polarizability {gamma}-bar to the long-range orientational order of molecules (the optical anisotropy of the medium) in uniaxial and biaxial liquid crystals, the local anisotropy on mesoscopic scales, and the anisotropy of the Lorentz tensor L and the local-field tensor f are formulated and solved. It is demonstrated that the presence of the long-range orientational order of molecules in liquid crystals imposes limitations from below on the molecular polarizability {gamma}-bar, which differs for uniaxial and biaxial liquid crystals. The relation between the local anisotropy and the molecular polarizability {gamma}-bar is investigated for calamitic and discotic uniaxial liquid crystals consisting of lath- and disk-shaped molecules. These liquid crystals with identical macroscopic symmetry differ in the local anisotropy and the relationships between the components L{sub parallel} < L{sub perpendicular} , f{sub parallel} < f{sub perpendicular} (calamitic) and L{sub parallel} > L{sub perpendicular} , f{sub parallel} > f{sub perpendicular} (discotic) for an electric field oriented parallel and perpendicular to the director. The limitations from below and above on the molecular polarizability {gamma}-bar due to the anisotropy of the tensors L and f are established for liquid crystals of both types. These limitations indicate that the molecular polarizability {gamma}-bar depends on the phase state and the temperature. The factors responsible for the nonphysical consequences of the local-field models based on the approximation {gamma}-bar = const are revealed. The theoretical inferences are confirmed by the experimental data for a number of calamitic nematic liquid crystals with different values of birefringence and the discotic liquid crystal Col{sub ho}.

  8. Long-Range Temporal Correlations, Multifractality, and the Causal Relation between Neural Inputs and Movements

    PubMed Central

    Hu, Jing; Zheng, Yi; Gao, Jianbo

    2013-01-01

    Understanding the causal relation between neural inputs and movements is very important for the success of brain-machine interfaces (BMIs). In this study, we analyze 104 neurons’ firings using statistical, information theoretic, and fractal analysis. The latter include Fano factor analysis, multifractal adaptive fractal analysis (MF-AFA), and wavelet multifractal analysis. We find neuronal firings are highly non-stationary, and Fano factor analysis always indicates long-range correlations in neuronal firings, irrespective of whether those firings are correlated with movement trajectory or not, and thus does not reveal any actual correlations between neural inputs and movements. On the other hand, MF-AFA and wavelet multifractal analysis clearly indicate that when neuronal firings are not well correlated with movement trajectory, they do not have or only have weak temporal correlations. When neuronal firings are well correlated with movements, they are characterized by very strong temporal correlations, up to a time scale comparable to the average time between two successive reaching tasks. This suggests that neurons well correlated with hand trajectory experienced a “re-setting” effect at the start of each reaching task, in the sense that within the movement correlated neurons the spike trains’ long-range dependences persisted about the length of time the monkey used to switch between task executions. A new task execution re-sets their activity, making them only weakly correlated with their prior activities on longer time scales. We further discuss the significance of the coalition of those important neurons in executing cortical control of prostheses. PMID:24130549

  9. Network of long-range concerted chemical shift displacements upon ligand binding to human angiogenin

    PubMed Central

    Gagné, Donald; Narayanan, Chitra; Doucet, Nicolas

    2015-01-01

    Molecular recognition models of both induced fit and conformational selection rely on coupled networks of flexible residues and/or structural rearrangements to promote protein function. While the atomic details of these motional events still remain elusive, members of the pancreatic ribonuclease superfamily were previously shown to depend on subtle conformational heterogeneity for optimal catalytic function. Human angiogenin, a structural homologue of bovine pancreatic RNase A, induces blood vessel formation and relies on a weak yet functionally mandatory ribonucleolytic activity to promote neovascularization. Here, we use the NMR chemical shift projection analysis (CHESPA) to clarify the mechanism of ligand binding in human angiogenin, further providing information on long-range intramolecular residue networks potentially involved in the function of this enzyme. We identify two main clusters of residue networks displaying correlated linear chemical shift trajectories upon binding of substrate fragments to the purine- and pyrimidine-specific subsites of the catalytic cleft. A large correlated residue network clusters in the region corresponding to the V1 domain, a site generally associated with the angiogenic response and structural stability of the enzyme. Another correlated network (residues 40–42) negatively affects the catalytic activity but also increases the angiogenic activity. 15N-CPMG relaxation dispersion experiments could not reveal the existence of millisecond timescale conformational exchange in this enzyme, a lack of flexibility supported by the very low-binding affinities and catalytic activity of angiogenin. Altogether, the current report potentially highlights the existence of long-range dynamic reorganization of the structure upon distinct subsite binding events in human angiogenin. PMID:25450558

  10. Long-Range Temporal Correlations, Multifractality, and the Causal Relation between Neural Inputs and Movements.

    PubMed

    Hu, Jing; Zheng, Yi; Gao, Jianbo

    2013-01-01

    Understanding the causal relation between neural inputs and movements is very important for the success of brain-machine interfaces (BMIs). In this study, we analyze 104 neurons' firings using statistical, information theoretic, and fractal analysis. The latter include Fano factor analysis, multifractal adaptive fractal analysis (MF-AFA), and wavelet multifractal analysis. We find neuronal firings are highly non-stationary, and Fano factor analysis always indicates long-range correlations in neuronal firings, irrespective of whether those firings are correlated with movement trajectory or not, and thus does not reveal any actual correlations between neural inputs and movements. On the other hand, MF-AFA and wavelet multifractal analysis clearly indicate that when neuronal firings are not well correlated with movement trajectory, they do not have or only have weak temporal correlations. When neuronal firings are well correlated with movements, they are characterized by very strong temporal correlations, up to a time scale comparable to the average time between two successive reaching tasks. This suggests that neurons well correlated with hand trajectory experienced a "re-setting" effect at the start of each reaching task, in the sense that within the movement correlated neurons the spike trains' long-range dependences persisted about the length of time the monkey used to switch between task executions. A new task execution re-sets their activity, making them only weakly correlated with their prior activities on longer time scales. We further discuss the significance of the coalition of those important neurons in executing cortical control of prostheses. PMID:24130549

  11. 75 FR 1799 - Terminate Long Range Aids to Navigation (Loran-C) Signal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... Register of January 7, 2010 (75 FR 998). The document announced termination of the Long Range Aids to... January 7, 2010, in ] FR Doc. 2010-83, on page 998 in the second column under DATES, correct... SECURITY Coast Guard Terminate Long Range Aids to Navigation (Loran-C) Signal AGENCY: U.S. Coast Guard,...

  12. Long Range Plan for Information Systems from the State Board of Education.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    The Information Systems Long Range Plan specifically addresses Goal four of the Texas State Board of Education's (SBOE's) "Long-Range Plan for Public School Education" dealing with efficient management and organization of the educational system. To facilitate this goal, the SBOE in 1986 approved and directed the Texas Education Agency to implement…

  13. 48 CFR 5.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Release of long-range... REGULATION ACQUISITION PLANNING PUBLICIZING CONTRACT ACTIONS Release of Information 5.404 Release of long... may be desirable to publicize estimates of unclassified long-range acquisition requirements....

  14. 48 CFR 405.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Release of long-range acquisition estimates. 405.404 Section 405.404 Federal Acquisition Regulations System DEPARTMENT OF... Release of long-range acquisition estimates....

  15. 48 CFR 405.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Release of long-range acquisition estimates. 405.404 Section 405.404 Federal Acquisition Regulations System DEPARTMENT OF... Release of long-range acquisition estimates....

  16. 48 CFR 605.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Release of long-range acquisition estimates. 605.404 Section 605.404 Federal Acquisition Regulations System DEPARTMENT OF STATE... long-range acquisition estimates....

  17. 48 CFR 5.404-2 - Announcements of long-range acquisition estimates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Announcements of long... Announcements of long-range acquisition estimates. Further publicizing, consistent with the needs of the individual case, may be accomplished by announcing through the GPE that long-range acquisition estimates...

  18. 48 CFR 405.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Release of long-range acquisition estimates. 405.404 Section 405.404 Federal Acquisition Regulations System DEPARTMENT OF... Release of long-range acquisition estimates....

  19. 48 CFR 605.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Release of long-range acquisition estimates. 605.404 Section 605.404 Federal Acquisition Regulations System DEPARTMENT OF STATE... long-range acquisition estimates....

  20. 48 CFR 5.404-2 - Announcements of long-range acquisition estimates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Announcements of long... Announcements of long-range acquisition estimates. Further publicizing, consistent with the needs of the individual case, may be accomplished by announcing through the GPE that long-range acquisition estimates...

  1. 48 CFR 5.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Release of long-range... REGULATION ACQUISITION PLANNING PUBLICIZING CONTRACT ACTIONS Release of Information 5.404 Release of long... may be desirable to publicize estimates of unclassified long-range acquisition requirements....

  2. 48 CFR 605.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Release of long-range acquisition estimates. 605.404 Section 605.404 Federal Acquisition Regulations System DEPARTMENT OF STATE... long-range acquisition estimates....

  3. 48 CFR 1405.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Release of long-range acquisition estimates. 1405.404 Section 1405.404 Federal Acquisition Regulations System DEPARTMENT OF THE... Release of long-range acquisition estimates....

  4. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may... current flight navigator certificate; or (2) Two independent, properly functioning, and approved...

  5. 48 CFR 1305.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Release of long-range acquisition estimates. 1305.404 Section 1305.404 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE... long-range acquisition estimates....

  6. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may... current flight navigator certificate; or (2) Two independent, properly functioning, and approved...

  7. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may... current flight navigator certificate; or (2) Two independent, properly functioning, and approved...

  8. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may... current flight navigator certificate; or (2) Two independent, properly functioning, and approved...

  9. 48 CFR 405.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Release of long-range acquisition estimates. 405.404 Section 405.404 Federal Acquisition Regulations System DEPARTMENT OF... Release of long-range acquisition estimates....

  10. 48 CFR 605.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Release of long-range acquisition estimates. 605.404 Section 605.404 Federal Acquisition Regulations System DEPARTMENT OF STATE... long-range acquisition estimates....

  11. 48 CFR 1405.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Release of long-range acquisition estimates. 1405.404 Section 1405.404 Federal Acquisition Regulations System DEPARTMENT OF THE... Release of long-range acquisition estimates....

  12. 48 CFR 5.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Release of long-range... REGULATION ACQUISITION PLANNING PUBLICIZING CONTRACT ACTIONS Release of Information 5.404 Release of long... may be desirable to publicize estimates of unclassified long-range acquisition requirements....

  13. 48 CFR 5.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Release of long-range... REGULATION ACQUISITION PLANNING PUBLICIZING CONTRACT ACTIONS Release of Information 5.404 Release of long... may be desirable to publicize estimates of unclassified long-range acquisition requirements....

  14. 48 CFR 5.404-2 - Announcements of long-range acquisition estimates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Announcements of long... Announcements of long-range acquisition estimates. Further publicizing, consistent with the needs of the individual case, may be accomplished by announcing through the GPE that long-range acquisition estimates...

  15. 48 CFR 5.404-2 - Announcements of long-range acquisition estimates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Announcements of long... Announcements of long-range acquisition estimates. Further publicizing, consistent with the needs of the individual case, may be accomplished by announcing through the GPE that long-range acquisition estimates...

  16. 48 CFR 1305.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Release of long-range acquisition estimates. 1305.404 Section 1305.404 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE... long-range acquisition estimates....

  17. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may...-range means of navigation which enable a reliable determination to be made of the position of...

  18. 23 CFR 450.214 - Development and content of the long-range statewide transportation plan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Development and content of the long-range statewide transportation plan. 450.214 Section 450.214 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Programming § 450.214 Development and content of the long-range statewide transportation plan. (a) The...

  19. North Idaho College Long-Range Plan and Statement of Institutional Mission and Purpose.

    ERIC Educational Resources Information Center

    Cargol, Owen F.

    Based upon a planning project initiated at North Idaho College (NIC) in 1981 and approved by the Board of Trustees in 1982, this long-range plan states the mission of NIC and specifies goals and objectives to be attained in the next 3 years. First, introductory sections consider the qualities of a good long-range plan, address the responsibilities…

  20. 7 CFR 1717.604 - Long-range engineering plans and construction work plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... construction work plans (CWPs) in form and substance as set forth in 7 CFR part 1710, subpart F. (b... 7 Agriculture 11 2010-01-01 2010-01-01 false Long-range engineering plans and construction work... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.604 Long-range engineering plans...

  1. 48 CFR 1405.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Release of long-range acquisition estimates. 1405.404 Section 1405.404 Federal Acquisition Regulations System DEPARTMENT OF THE... Release of long-range acquisition estimates....

  2. 48 CFR 1305.404 - Release of long-range acquisition estimates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Release of long-range acquisition estimates. 1305.404 Section 1305.404 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE... long-range acquisition estimates....

  3. 7 CFR 1717.604 - Long-range engineering plans and construction work plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... construction work plans (CWPs) in form and substance as set forth in 7 CFR part 1710, subpart F. (b... 7 Agriculture 11 2011-01-01 2011-01-01 false Long-range engineering plans and construction work... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.604 Long-range engineering plans...

  4. 7 CFR 1717.604 - Long-range engineering plans and construction work plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... construction work plans (CWPs) in form and substance as set forth in 7 CFR part 1710, subpart F. (b... 7 Agriculture 11 2013-01-01 2013-01-01 false Long-range engineering plans and construction work... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.604 Long-range engineering plans...

  5. 7 CFR 1717.604 - Long-range engineering plans and construction work plans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... construction work plans (CWPs) in form and substance as set forth in 7 CFR part 1710, subpart F. (b... 7 Agriculture 11 2014-01-01 2014-01-01 false Long-range engineering plans and construction work... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.604 Long-range engineering plans...

  6. 7 CFR 1717.604 - Long-range engineering plans and construction work plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... construction work plans (CWPs) in form and substance as set forth in 7 CFR part 1710, subpart F. (b... 7 Agriculture 11 2012-01-01 2012-01-01 false Long-range engineering plans and construction work... AND GUARANTEED ELECTRIC LOANS Operational Controls § 1717.604 Long-range engineering plans...

  7. Long-range correlations and burstiness in written texts: Universal and language-specific aspects

    NASA Astrophysics Data System (ADS)

    Constantoudis, Vassilios; Kalimeri, Maria; Diakonos, Fotis; Karamanos, Konstantinos; Papadimitriou, Constantinos; Chatzigeorgiou, Manolis; Papageorgiou, Harris

    2016-08-01

    Recently, methods from the statistical physics of complex systems have been applied successfully to identify universal features in the long-range correlations (LRCs) of written texts. However, in real texts, these universal features are being intermingled with language-specific influences. This paper aims at the characterization and further understanding of the interplay between universal and language-specific effects on the LRCs in texts. To this end, we apply the language-sensitive mapping of written texts to word-length series (wls) and analyse large parallel (of same content) corpora from 10 languages classified to four families (Romanic, Germanic, Greek and Uralic). The autocorrelation functions of the wls reveal tiny but persistent LRCs decaying at large scales following a power-law with a language-independent exponent ˜0.60-0.65. The impact of language is displayed in the amplitude of correlations where a relative standard deviation >40% among the analyzed languages is observed. The classification to language families seems to play a significant role since, the Finnish and Germanic languages exhibit more correlations than the Greek and Roman families. To reveal the origins of the LRCs, we focus on the long words and perform burst and correlation analysis in their positions along the corpora. We find that the universal features are linked more to the correlations of the inter-long word distances while the language-specific aspects are related more to their distributions.

  8. QUANTIFYING UNCERTAINTY IN LONG RANGE TRANSPORT MODELS: WORKSHOP REPORT ON SOURCES AND EVALUATION OF UNCERTAINTY IN LONG-RANGE TRANSPORT MODELS

    EPA Science Inventory

    The quantification of uncertainty in long-range transport model predictions and the implications of these uncertainties on formulations of control policy have been the subject of investigations by both the United States and Canada. To more fully address these topics, the American...

  9. Long-range looping of a locus control region drives tissue-specific chromatin packing within a multigene cluster.

    PubMed

    Tsai, Yu-Cheng; Cooke, Nancy E; Liebhaber, Stephen A

    2016-06-01

    The relationships of higher order chromatin organization to mammalian gene expression remain incompletely defined. The human Growth Hormone (hGH) multigene cluster contains five gene paralogs. These genes are selectively activated in either the pituitary or the placenta by distinct components of a remote locus control region (LCR). Prior studies have revealed that appropriate activation of the placental genes is dependent not only on the actions of the LCR, but also on the multigene composition of the cluster itself. Here, we demonstrate that the hGH LCR 'loops' over a distance of 28 kb in primary placental nuclei to make specific contacts with the promoters of the two GH genes in the cluster. This long-range interaction sequesters the GH genes from the three hCS genes which co-assemble into a tightly packed 'hCS chromatin hub'. Elimination of the long-range looping, via specific deletion of the placental LCR components, triggers a dramatic disruption of the hCS chromatin hub. These data reveal a higher-order structural pathway by which long-range looping from an LCR impacts on local chromatin architecture that is linked to tissue-specific gene regulation within a multigene cluster. PMID:26893355

  10. Long-range looping of a locus control region drives tissue-specific chromatin packing within a multigene cluster

    PubMed Central

    Tsai, Yu-Cheng; Cooke, Nancy E.; Liebhaber, Stephen A.

    2016-01-01

    The relationships of higher order chromatin organization to mammalian gene expression remain incompletely defined. The human Growth Hormone (hGH) multigene cluster contains five gene paralogs. These genes are selectively activated in either the pituitary or the placenta by distinct components of a remote locus control region (LCR). Prior studies have revealed that appropriate activation of the placental genes is dependent not only on the actions of the LCR, but also on the multigene composition of the cluster itself. Here, we demonstrate that the hGH LCR ‘loops’ over a distance of 28 kb in primary placental nuclei to make specific contacts with the promoters of the two GH genes in the cluster. This long-range interaction sequesters the GH genes from the three hCS genes which co-assemble into a tightly packed ‘hCS chromatin hub’. Elimination of the long-range looping, via specific deletion of the placental LCR components, triggers a dramatic disruption of the hCS chromatin hub. These data reveal a higher-order structural pathway by which long-range looping from an LCR impacts on local chromatin architecture that is linked to tissue-specific gene regulation within a multigene cluster. PMID:26893355

  11. Magnetic hyperthermia dosimetry by biomechanical properties revealed in magnetomotive optical coherence elastography (MM-OCE) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Pin-Chieh; Marjanovic, Marina; Spillman, Darold R.; Odintsov, Boris M.; Boppart, Stephen A.

    2016-03-01

    Magnetic nanoparticles (MNPs) have been utilized in magnetic hyperthermia to treat solid tumors. Under an appropriate AC magnetic field, energy can be transferred to the MNPs to heat up the intended tissue target while sparing non-targeted healthy tissue. However, a sensitive monitoring technique for the dose of MNP thermal therapy is desirable in order to prevent over-treatment and collateral injury. Typical hyperthermia dosimetry often relies on changes in imaging properties or temperature measurements based on the thermal distribution. Alternative dosimetric indicators can include the biomechanical properties of the tissue, reflecting the changes due to protein denaturation, coagulation, and tissue dehydration during hyperthermia treatments. Tissue stiffness can be probed by elastography modalities including MRI, ultrasound imaging, and optical coherence elastography (OCE), with OCE showing the highest displacement sensitivity (tens of nanometers). Magnetomotive optical coherence elastography (MM-OCE) is one type of OCE that utilizes MNPs as internal force transducers to probe the tissue stiffness. Therefore, we examined the feasibility of evaluating the hyperthermia dose based on the elasticity changes revealed by MM-OCE. Superparamagnetic MNPs were applied to ex vivo tissue specimens for both magnetic hyperthermia and MM-OCE experiments, where temperature and elastic modulus were obtained. A correlation between temperature rise and measured stiffness was observed. In addition, we found that with repetitive sequential treatments, tissue stiffness increased, while temperature rise remained relatively constant. These results potentially suggest that MM-OCE could indicate the irreversible changes the tissue undergoes during thermal therapy, which supports the idea for MM-OCE-based hyperthermia dosage control in future applications.

  12. Long-range dependence and multifractality in the term structure of LIBOR interest rates

    NASA Astrophysics Data System (ADS)

    Cajueiro, Daniel O.; Tabak, Benjamin M.

    2007-01-01

    In this paper we present evidence of long-range dependence in LIBOR interest rates. We study a data set from 2000 to 2005, for six different currencies and various maturities. Empirical results suggest that the degree of long-range dependence decreases with maturity, with the exception of interest rates on Japanese Yen and on Indonesian Rupiah. Furthermore, interest rates have a multifractal nature and the degree of multifractality is much stronger for Indonesia (emerging market). These findings suggest that interest rates derivatives should take these features into account. Furthermore, fixed income risk and portfolio management should incorporate long-range dependence in the modeling of interest rates.

  13. Ising-model description of long-range correlations in DNA sequences

    NASA Astrophysics Data System (ADS)

    Colliva, A.; Pellegrini, R.; Testori, A.; Caselle, M.

    2015-05-01

    We model long-range correlations of nucleotides in the human DNA sequence using the long-range one-dimensional (1D) Ising model. We show that, for distances between 103 and 106 bp, the correlations show a universal behavior and may be described by the non-mean-field limit of the long-range 1D Ising model. This allows us to make some testable hypothesis on the nature of the interaction between distant portions of the DNA chain which led to the DNA structure that we observe today in higher eukaryotes.

  14. Non-equilibrium entropy and dynamics in a system with long-range interactions

    NASA Astrophysics Data System (ADS)

    Rocha Filho, T. M.

    2016-05-01

    We extend the core-halo approach of Levin et al (2014 Phys. Rep. 535, 1) for the violent relaxation of long-range interacting system with a waterbag initial condition, in the case of a widely studied Hamiltonian mean field model. The Gibbs entropy maximization principle is considered with the constraints of energy conservation and of coarse-grained Casimir invariants of the Vlasov equation. The core-halo distribution function depends only on the one-particle mean-field energy, as is expected from the Jeans theorem, and depends on a set of parameters which in our approach is completely determined without having to solve an envelope equation for the contour of the initial state, as required in the original approach. We also show that a different ansatz can be used for the core-halo distribution with similar results. This work also reveals a link between a parametric resonance causing the non-equilibrium phase transition in the model, a dynamical property, and a discontinuity of the (non-equilibrium) entropy of the system.

  15. Observation of long-range tertiary interactions during ligand binding by the TPP riboswitch aptamer

    PubMed Central

    Duesterberg, Van K; Fischer-Hwang, Irena T; Perez, Christian F; Hogan, Daniel W; Block, Steven M

    2015-01-01

    The thiamine pyrophosphate (TPP) riboswitch is a cis-regulatory element in mRNA that modifies gene expression in response to TPP concentration. Its specificity is dependent upon conformational changes that take place within its aptamer domain. Here, the role of tertiary interactions in ligand binding was studied at the single-molecule level by combined force spectroscopy and Förster resonance energy transfer (smFRET), using an optical trap equipped for simultaneous smFRET. The ‘Force-FRET’ approach directly probes secondary and tertiary structural changes during folding, including events associated with binding. Concurrent transitions observed in smFRET signals and RNA extension revealed differences in helix-arm orientation between two previously-identified ligand-binding states that had been undetectable by spectroscopy alone. Our results show that the weaker binding state is able to bind to TPP, but is unable to form a tertiary docking interaction that completes the binding process. Long-range tertiary interactions stabilize global riboswitch structure and confer increased ligand specificity. DOI: http://dx.doi.org/10.7554/eLife.12362.001 PMID:26709838

  16. Role of Long-Range Protein Dynamics in Different Thymidylate Synthase Catalyzed Reactions

    PubMed Central

    Abeysinghe, Thelma; Kohen, Amnon

    2015-01-01

    Recent studies of Escherichia coli thymidylate synthase (ecTSase) showed that a highly conserved residue, Y209, that is located 8 Å away from the reaction site, plays a key role in the protein’s dynamics. Those crystallographic studies indicated that Y209W mutant is a structurally identical but dynamically altered relative to the wild type (WT) enzyme, and that its turnover catalytic rate governed by a slow hydride-transfer has been affected. The most challenging test of an examination of a fast chemical conversion that precedes the rate-limiting step has been achieved here. The physical nature of both fast and slow C-H bond activations have been compared between the WT and mutant by means of observed and intrinsic kinetic isotope effects (KIEs) and their temperature dependence. The findings indicate that the proton abstraction step has not been altered as much as the hydride transfer step. Additionally, the comparison indicated that other kinetic steps in the TSase catalyzed reaction were substantially affected, including the order of the substrate binding. Enigmatically, although Y209 is H-bonded to 3'-OH of 2'-deoxyuridine-5'-mono­phosphate (dUMP), its altered dynamics is more pronounced on the binding of the remote cofactor, (6R)-N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2H4folate), revealing the importance of long-range dynamics of the enzymatic complex and its catalytic function. PMID:25837629

  17. Effective long-range interlayer interactions and electric-field-induced subphases in ferrielectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Chandani, A. D. L.; Fukuda, Atsuo; Vij, Jagdish K.; Takanishi, Yoichi; Iida, Atsuo

    2016-04-01

    Microbeam resonant x-ray scattering experiments recently revealed the sequential emergence of electric-field-induced subphases (stable states) with exceptionally large unit cells consisting of 12 and 15 smectic layers. We explain the emergence of the field-induced subphases by the quasimolecular model based on the Emelyanenko-Osipov long-range interlayer interactions (LRILIs) together with our primitive way of understanding the frustration in clinicity using the qE number defined as qE=|[R ] -[L ] | /([R ] +[L ] ) ; here [R ] and [L ] refer to the numbers of smectic layers with directors tilted to the right and to the left, respectively, in the unit cell of a field-induced subphase. We show that the model actually stabilizes the field-induced subphases with characteristic composite unit cells consisting of several blocks, each of which is originally a ferrielectric three-layer unit cell stabilized by the LRILIs, but some of which would be modified to become ferroelectric by an applied electric field. In a similar line of thought, we also try to understand the puzzling electric-field-induced birefringence data in terms of the LRILIs.

  18. Directed alignment of conjugated polymers for enhanced long-range photocurrent collection

    NASA Astrophysics Data System (ADS)

    Li, Anton; Bilby, David; Dong, Ban; Kim, Jinsang; Green, Peter

    2015-03-01

    To realize the full potential of conjugated polymers, possessing anisotropic structure and properties, it is often desirable to extend their organization to larger length scales. An epitaxy-directing solvent additive 1,3,5-trichlorobenzene was combined with an off-center spin-casting technique to produce poly(3-hexylthiophene) (P3HT) fibers with uniaxial in-plane alignment on the centimeter scale, which were incorporated into planar heterojunction solar cells with PCBM acceptor. Topography and photocurrent were mapped by photoconductive AFM; in devices with aligned P3HT, local photocurrent measured on fibers was over 4 times higher than in control devices with unaligned polymer. Even at large distances (>200 μm) between laser spot (carrier excitation) and conductive probe (charge extraction), significant long-range photocurrent was measured in the aligned devices, especially when the separation was oriented parallel to the fiber alignment. Complementary TFT measurements of neat P3HT fibers revealed that the anisotropy of in-plane carrier mobilities was greater than a factor of 3. Together, these findings highlight the importance of conjugated polymer alignment for improving carrier transport and ultimately the performance of solar cells and other devices.

  19. Quantifying long-range correlations and 1/f patterns in a minimal experiment of social interaction

    PubMed Central

    Bedia, Manuel G.; Aguilera, Miguel; Gómez, Tomás; Larrode, David G.; Seron, Francisco

    2014-01-01

    In recent years, researchers in social cognition have found the “perceptual crossing paradigm” to be both a theoretical and practical advance toward meeting particular challenges. This paradigm has been used to analyze the type of interactive processes that emerge in minimal interactions and it has allowed progress toward understanding of the principles of social cognition processes. In this paper, we analyze whether some critical aspects of these interactions could not have been observed by previous studies. We consider alternative indicators that could complete, or even lead us to rethink, the current interpretation of the results obtained from both experimental and simulated modeling in the fields of social interactions and minimal perceptual crossing. In particular, we discuss the possibility that previous experiments have been analytically constrained to a short-term dynamic type of player response. Additionally, we propose the possibility of considering these experiments from a more suitable framework based on the use and analysis of long-range correlations and fractal dynamics. We will also reveal evidence supporting the idea that social interactions are deployed along many scales of activity. Specifically, we propose that the fractal structure of the interactions could be a more adequate framework to understand the type of social interaction patterns generated in a social engagement. PMID:25429277

  20. Short- and long-range magnetic order in LaMnAsO

    NASA Astrophysics Data System (ADS)

    McGuire, Michael A.; Garlea, V. Ovidiu

    2016-02-01

    The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the Néel temperature TN=360 (1 ) K. Below TN the critical exponent describing the magnetic order parameter is β =0.33 -0.35 , consistent with a three-dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to TSRO=650 (10 ) K. The magnetic susceptibility shows a weak anomaly at TSRO and no anomaly at TN. Analysis of the diffuse scattering data using a reverse Monte Carlo algorithm indicates that above TN nearly two-dimensional, short-range magnetic order is present with a correlation length of 9.3(3) Å within the Mn layers at 400 K. The inelastic scattering data reveal a spin gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasielastic) magnetic excitations emerging in the short-range ordered state. Comparison with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above TN is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.

  1. The role of long-range connections on the specificity of the macaque interareal cortical network

    PubMed Central

    Markov, Nikola T.; Ercsey-Ravasz, Maria; Lamy, Camille; Ribeiro Gomes, Ana Rita; Magrou, Loïc; Misery, Pierre; Giroud, Pascale; Barone, Pascal; Dehay, Colette; Toroczkai, Zoltán; Knoblauch, Kenneth; Van Essen, David C.; Kennedy, Henry

    2013-01-01

    We investigated the influence of interareal distance on connectivity patterns in a database obtained from the injection of retrograde tracers in 29 areas distributed over six regions (occipital, temporal, parietal, frontal, prefrontal, and limbic). One-third of the 1,615 pathways projecting to the 29 target areas were reported only recently and deemed new-found projections (NFPs). NFPs are predominantly long-range, low-weight connections. A minimum dominating set analysis (a graph theoretic measure) shows that NFPs play a major role in globalizing input to small groups of areas. Randomization tests show that (i) NFPs make important contributions to the specificity of the connectivity profile of individual cortical areas, and (ii) NFPs share key properties with known connections at the same distance. We developed a similarity index, which shows that intraregion similarity is high, whereas the interregion similarity declines with distance. For area pairs, there is a steep decline with distance in the similarity and probability of being connected. Nevertheless, the present findings reveal an unexpected binary specificity despite the high density (66%) of the cortical graph. This specificity is made possible because connections are largely concentrated over short distances. These findings emphasize the importance of long-distance connections in the connectivity profile of an area. We demonstrate that long-distance connections are particularly prevalent for prefrontal areas, where they may play a prominent role in large-scale communication and information integration. PMID:23479610

  2. Enhancer-like long-range transcriptional activation by λ CI-mediated DNA looping

    PubMed Central

    Cui, Lun; Murchland, Iain; Shearwin, Keith E.; Dodd, Ian B.

    2013-01-01

    How distant enhancer elements regulate the assembly of a transcription complex at a promoter remains poorly understood. Here, we use long-range gene regulation by the bacteriophage λ CI protein as a powerful system to examine this process in vivo. A 2.3-kb DNA loop, formed by CI bridging its binding sites at OR and OL, is known already to enhance repression at the lysogenic promoter PRM, located at OR. Here, we show that CI looping also activates PRM by allowing the C-terminal domain of the α subunit of the RNA polymerase bound at PRM to contact a DNA site adjacent to the distal CI sites at OL. Our results establish OL as a multifaceted enhancer element, able to activate transcription from long distances independently of orientation and position. We develop a physicochemical model of our in vivo data and use it to show that the observed activation is consistent with a simple recruitment mechanism, where the α–C-terminal domain to DNA contact need only provide ∼2.7 kcal/mol of additional binding energy for RNA polymerase. Structural modeling of this complete enhancer–promoter complex reveals how the contact is achieved and regulated, and suggests that distal enhancer elements, once appropriately positioned at the promoter, can function in essentially the same way as proximal promoter elements. PMID:23382214

  3. Short- and long-range magnetic order in LaMnAsO

    DOE PAGESBeta

    McGuire, Michael A.; Garlea, Vasile Ovidiu

    2016-02-02

    The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the Néel temperature TN = 360(1) K. Below TN the critical exponent describing the magnetic order parameter is β=0.33–0.35 , consistent with a three-dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to TSRO = 650(10) K. Morevoer, the magnetic susceptibility shows a weak anomaly at TSRO and no anomaly at TN. Analysis of the diffuse scattering data using a reverse Monte Carlo algorithm indicates that abovemore » TN nearly two-dimensional, short-range magnetic order is present with a correlation length of 9.3(3) Å within the Mn layers at 400 K. The inelastic scattering data reveal a spin gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasielastic) magnetic excitations emerging in the short-range ordered state. When we compared it with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above TN is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.« less

  4. Emergence of long-range order in sheets of magnetic dimers

    PubMed Central

    Haravifard, S.; Banerjee, A.; van Wezel, J.; Silevitch, D. M.; dos Santos, A. M.; Lang, J. C.; Kermarrec, E.; Srajer, G.; Gaulin, B. D.; Molaison, J. J.; Dabkowska, H. A.; Rosenbaum, T. F.

    2014-01-01

    Quantum spins placed on the corners of a square lattice can dimerize and form singlets, which then can be transformed into a magnetic state as the interactions between dimers increase beyond threshold. This is a strictly 2D transition in theory, but real-world materials often need the third dimension to stabilize long-range order. We use high pressures to convert sheets of Cu2+ spin 1/2 dimers from local singlets to global antiferromagnet in the model system SrCu2(BO3)2. Single-crystal neutron diffraction measurements at pressures above 5 GPa provide a direct signature of the antiferromagnetic ordered state, whereas high-resolution neutron powder and X-ray diffraction at commensurate pressures reveal a tilting of the Cu spins out of the plane with a critical exponent characteristic of 3D transitions. The addition of anisotropic, interplane, spin–orbit terms in the venerable Shastry–Sutherland Hamiltonian accounts for the influence of the third dimension. PMID:25246541

  5. Role of long-range protein dynamics in different thymidylate synthase catalyzed reactions.

    PubMed

    Abeysinghe, Thelma; Kohen, Amnon

    2015-01-01

    Recent studies of Escherichia coli thymidylate synthase (ecTSase) showed that a highly conserved residue, Y209, that is located 8 Å away from the reaction site, plays a key role in the protein's dynamics. Those crystallographic studies indicated that Y209W mutant is a structurally identical but dynamically altered relative to the wild type (WT) enzyme, and that its turnover catalytic rate governed by a slow hydride-transfer has been affected. The most challenging test of an examination of a fast chemical conversion that precedes the rate-limiting step has been achieved here. The physical nature of both fast and slow C-H bond activations have been compared between the WT and mutant by means of observed and intrinsic kinetic isotope effects (KIEs) and their temperature dependence. The findings indicate that the proton abstraction step has not been altered as much as the hydride transfer step. Additionally, the comparison indicated that other kinetic steps in the TSase catalyzed reaction were substantially affected, including the order of the substrate binding. Enigmatically, although Y209 is H-bonded to 3'-OH of 2'-deoxyuridine-5'-mono-phosphate (dUMP), its altered dynamics is more pronounced on the binding of the remote cofactor, (6R)-N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2H4folate), revealing the importance of long-range dynamics of the enzymatic complex and its catalytic function. PMID:25837629

  6. Global Low Frequency Protein Motions in Long-Range Allosteric Signaling

    NASA Astrophysics Data System (ADS)

    McLeish, Tom; Rogers, Thomas; Townsend, Philip; Burnell, David; Pohl, Ehmke; Wilson, Mark; Cann, Martin; Richards, Shane; Jones, Matthew

    2015-03-01

    We present a foundational theory for how allostery can occur as a function of low frequency dynamics without a change in protein structure. Elastic inhomogeneities allow entropic ``signalling at a distance.'' Remarkably, many globular proteins display just this class of elastic structure, in particular those that support allosteric binding of substrates (long-range co-operative effects between the binding sites of small molecules). Through multi-scale modelling of global normal modes we demonstrate negative co-operativity between the two cAMP ligands without change to the mean structure. Crucially, the value of the co-operativity is itself controlled by the interactions around a set of third allosteric ``control sites.'' The theory makes key experimental predictions, validated by analysis of variant proteins by a combination of structural biology and isothermal calorimetry. A quantitative description of allostery as a free energy landscape revealed a protein ``design space'' that identified the key inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore, by analyzing naturally occurring CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve residues crucial for allosteric control. The methodology establishes the means to engineer allosteric mechanisms that are driven by low frequency dynamics.

  7. Enhancer-like long-range transcriptional activation by λ CI-mediated DNA looping.

    PubMed

    Cui, Lun; Murchland, Iain; Shearwin, Keith E; Dodd, Ian B

    2013-02-19

    How distant enhancer elements regulate the assembly of a transcription complex at a promoter remains poorly understood. Here, we use long-range gene regulation by the bacteriophage λ CI protein as a powerful system to examine this process in vivo. A 2.3-kb DNA loop, formed by CI bridging its binding sites at OR and OL, is known already to enhance repression at the lysogenic promoter PRM, located at OR. Here, we show that CI looping also activates PRM by allowing the C-terminal domain of the α subunit of the RNA polymerase bound at PRM to contact a DNA site adjacent to the distal CI sites at OL. Our results establish OL as a multifaceted enhancer element, able to activate transcription from long distances independently of orientation and position. We develop a physicochemical model of our in vivo data and use it to show that the observed activation is consistent with a simple recruitment mechanism, where the α-C-terminal domain to DNA contact need only provide ∼2.7 kcal/mol of additional binding energy for RNA polymerase. Structural modeling of this complete enhancer-promoter complex reveals how the contact is achieved and regulated, and suggests that distal enhancer elements, once appropriately positioned at the promoter, can function in essentially the same way as proximal promoter elements. PMID:23382214

  8. Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch

    SciTech Connect

    Huang, Lili; Ishibe-Murakami, Satoko; Patel, Dinshaw J.; Serganov, Alexander

    2011-09-15

    Tetrahydrofolate (THF), a biologically active form of the vitamin folate (B{sub 9}), is an essential cofactor in one-carbon transfer reactions. In bacteria, expression of folate-related genes is controlled by feedback modulation in response to specific binding of THF and related compounds to a riboswitch. Here, we present the X-ray structures of the THF-sensing domain from the Eubacterium siraeum riboswitch in the ligand-bound and unbound states. The structure reveals an 'inverted' three-way junctional architecture, most unusual for riboswitches, with the junction located far from the regulatory helix P1 and not directly participating in helix P1 formation. Instead, the three-way junction, stabilized by binding to the ligand, aligns the riboswitch stems for long-range tertiary pseudoknot interactions that contribute to the organization of helix P1 and therefore stipulate the regulatory response of the riboswitch. The pterin moiety of the ligand docks in a semiopen pocket adjacent to the junction, where it forms specific hydrogen bonds with two moderately conserved pyrimidines. The aminobenzoate moiety stacks on a guanine base, whereas the glutamate moiety does not appear to make strong interactions with the RNA. In contrast to other riboswitches, these findings demonstrate that the THF riboswitch uses a limited number of available determinants for ligand recognition. Given that modern antibiotics target folate metabolism, the THF riboswitch structure provides insights on mechanistic aspects of riboswitch function and may help in manipulating THF levels in pathogenic bacteria

  9. van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections

    SciTech Connect

    Angyan, Janos G.; Gerber, Iann C.; Savin, Andreas; Toulouse, Julien

    2005-07-15

    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a 'range-separated hybrid' functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well adapted to describe van der Waals complexes, such as rare gas dimers.

  10. Relationships Between Long-Range Lightning Networks and TRMM/LIS Observations

    NASA Technical Reports Server (NTRS)

    Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cummins, Kenneth L.; Cummins, Kenneth L.; Blakeslee, Richard J.; Goodman, Steven J.

    2012-01-01

    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. The present study intercompares long-range lightning data with observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study examines network detection efficiency and location accuracy relative to LIS observations, describes spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by the long-range networks. Improved knowledge of relationships between these datasets will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).

  11. Possible causes of long-range dependence in the Brazilian stock market

    NASA Astrophysics Data System (ADS)

    Cajueiro, Daniel O.; Tabak, Benjamin M.

    2005-01-01

    While the presence of long-range dependence in the asset returns seems to be a stylized fact, the issue of arguing the possible causes of this phenomena is totally obscure. Trying to shed light in this problem, we investigate the possible sources of the long-range dependence phenomena in the Brazilian Stock Market. For this purpose, we employ a sample which comprises stocks traded in the Brazilian financial market (BOVESPA Index). The Hurst exponent here is considered as our measure of long-range dependence and it is evaluated by six different methods. We have found evidence of statistically significant rank correlation between specific variables of the Brazilian firms which subscribe stocks and the long-range dependence phenomena present in these stocks.

  12. Modeling of Long-Range Atmospheric Lasercom Links Between Static and Mobile Platforms

    SciTech Connect

    Scharlemann, E T; Breitfeller, E F; Henderson, J R; Kallman, J S; Morris, J R; Ruggiero, A J

    2003-07-29

    We describe modeling and simulation of long-range terrestrial laser communications links between static and mobile platforms. Atmospheric turbulence modeling, along with pointing, tracking and acquisition models are combined to provide an overall capability to estimate communications link performance.

  13. Nucleosome eviction and multiple co-factor binding predict estrogen-receptor-alpha-associated long-range interactions

    PubMed Central

    He, Chao; Wang, Xiaowo; Zhang, Michael Q.

    2014-01-01

    Many enhancers regulate their target genes via long-distance interactions. High-throughput experiments like ChIA-PET have been developed to map such largely cell-type-specific interactions between cis-regulatory elements genome-widely. In this study, we integrated multiple types of data in order to reveal the general hidden patterns embedded in the ChIA-PET data. We found characteristic distance features related to promoter–promoter, enhancer–enhancer and insulator–insulator interactions. Although a protein may have many binding sites along the genome, our hypothesis is that those sites that share certain open chromatin structure can accommodate relatively larger protein complex consisting of specific regulatory and ‘bridging’ factors, and may be more likely to form robust long-range deoxyribonucleic acid (DNA) loops. This hypothesis was validated in the estrogen receptor alpha (ERα) ChIA-PET data. An efficient classifier was built to predict ERα-associated long-range interactions solely from the related ChIP-seq data, hence linking distal ERα-dependent enhancers to their target genes. We further applied the classifier to generate additional novel interactions, which were undetected in the original ChIA-PET paper but were validated by other independent experiments. Our work provides a new insight into the long-range chromatin interactions through deeper and integrative ChIA-PET data analysis and demonstrates DNA looping predictability from ordinary ChIP-seq data. PMID:24782518

  14. Motion planning in unstructured road for intelligent vehicle with long-range perception

    NASA Astrophysics Data System (ADS)

    Shi, Chaoxia; Wang, Yanqing; Yang, Jingyu; Liu, Hanxiang

    2011-10-01

    We present a novel motion planning method for intelligent vehicle with long-range perception under the uncertain constraints of unstructured road boundary on the basis of obstacle roadside fusion strategy and beam curvature method . Not only does this method inherit the advantages of reliability, smoothness and speediness from LCM, but also it can produce more reasonable path than traditional LCM does by virtue of the global information acquired by long-range sensors.

  15. Long-range interactions and wave patterns in a DNA model.

    PubMed

    Tabi, C B; Mohamadou, A; Kofané, T C

    2010-07-01

    We propose a spin-like model of DNA nonlinear dynamics with long-range interactions between adjacent base pairs. We show that the model equation is a modified sine-Gordon equation. We perform the linear stability analysis of a plane wave, which predicts high-amplitude and extended oscillating waves for high values of the long-range parameter. This is confirmed numerically and biological implications of the obtained patterns are suggested. PMID:20676723

  16. Mode tomography using signals from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX)

    NASA Astrophysics Data System (ADS)

    Chandrayadula, Tarun K.

    Ocean acoustic tomography uses acoustic signals to infer the environmental properties of the ocean. The procedure for tomography consists of low frequency acoustic transmissions at mid-water depths to receivers located at hundreds of kilometer ranges. The arrival times of the signal at the receiver are then inverted for the sound speed of the background environment. Using this principle, experiments such as the 2004 Long Range Ocean Acoustic Propagation EXperiment have used acoustic signals recorded across Vertical Line Arrays (VLAs) to infer the Sound Speed Profile (SSP) across depth. The acoustic signals across the VLAs can be represented in terms of orthonormal basis functions called modes. The lower modes of the basis set concentrated around mid-water propagate longer distances and can be inverted for mesoscale effects such as currents and eddies. In spite of these advantages, mode tomography has received less attention. One of the important reasons for this is that internal waves in the ocean cause significant amplitude and travel time fluctuations in the modes. The amplitude and travel time fluctuations cause errors in travel time estimates. The absence of a statistical model and the lack of signal processing techniques for internal wave effects have precluded the modes from being used in tomographic inversions. This thesis estimates a statistical model for modes affected by internal waves and then uses the estimated model to design appropriate signal processing methods to obtain tomographic observables for the low modes. In order to estimate a statistical model, this thesis uses both the LOAPEX signals and also numerical simulations. The statistical model describes the amplitude and phase coherence across different frequencies for modes at different ranges. The model suggests that Matched Subspace Detectors (MSDs) based on the amplitude statistics of the modes are the optimum detectors to make travel time estimates for modes up to 250 km. The mean of the

  17. Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography

    PubMed Central

    Reveley, Colin; Seth, Anil K.; Pierpaoli, Carlo; Silva, Afonso C.; Yu, David; Saunders, Richard C.; Leopold, David A.; Ye, Frank Q.

    2015-01-01

    In vivo tractography based on diffusion magnetic resonance imaging (dMRI) has opened new doors to study structure–function relationships in the human brain. Initially developed to map the trajectory of major white matter tracts, dMRI is used increasingly to infer long-range anatomical connections of the cortex. Because axonal projections originate and terminate in the gray matter but travel mainly through the deep white matter, the success of tractography hinges on the capacity to follow fibers across this transition. Here we demonstrate that the complex arrangement of white matter fibers residing just under the cortical sheet poses severe challenges for long-range tractography over roughly half of the brain. We investigate this issue by comparing dMRI from very-high-resolution ex vivo macaque brain specimens with histological analysis of the same tissue. Using probabilistic tracking from pure gray and white matter seeds, we found that ∼50% of the cortical surface was effectively inaccessible for long-range diffusion tracking because of dense white matter zones just beneath the infragranular layers of the cortex. Analysis of the corresponding myelin-stained sections revealed that these zones colocalized with dense and uniform sheets of axons running mostly parallel to the cortical surface, most often in sulcal regions but also in many gyral crowns. Tracer injection into the sulcal cortex demonstrated that at least some axonal fibers pass directly through these fiber systems. Current and future high-resolution dMRI studies of the human brain will need to develop methods to overcome the challenges posed by superficial white matter systems to determine long-range anatomical connections accurately. PMID:25964365

  18. Statistical mechanics in biology: how ubiquitous are long-range correlations?

    NASA Technical Reports Server (NTRS)

    Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Goldberger, Z. D.; Havlin, S.; Mantegna, R. N.; Ossadnik, S. M.; Peng, C. K.; Simons, M.

    1994-01-01

    The purpose of this opening talk is to describe examples of recent progress in applying statistical mechanics to biological systems. We first briefly review several biological systems, and then focus on the fractal features characterized by the long-range correlations found recently in DNA sequences containing non-coding material. We discuss the evidence supporting the finding that for sequences containing only coding regions, there are no long-range correlations. We also discuss the recent finding that the exponent alpha characterizing the long-range correlations increases with evolution, and we discuss two related models, the insertion model and the insertion-deletion model, that may account for the presence of long-range correlations. Finally, we summarize the analysis of long-term data on human heartbeats (up to 10(4) heart beats) that supports the possibility that the successive increments in the cardiac beat-to-beat intervals of healthy subjects display scale-invariant, long-range "anti-correlations" (a tendency to beat faster is balanced by a tendency to beat slower later on). In contrast, for a group of subjects with severe heart disease, long-range correlations vanish. This finding suggests that the classical theory of homeostasis, according to which stable physiological processes seek to maintain "constancy," should be extended to account for this type of dynamical, far from equilibrium, behavior.

  19. Retinal Structure of Birds of Prey Revealed by Ultra-High Resolution Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Ruggeri, Marco; Major, James C.; McKeown, Craig; Knighton, Robert W.; Puliafito, Carmen A.

    2010-01-01

    Purpose. To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. Methods. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 μm (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. Results. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Conclusions. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey. PMID:20554605

  20. Long-range magnetic order and spin-lattice coupling in delafossite CuFeO2

    NASA Astrophysics Data System (ADS)

    Eyert, Volker; Frésard, Raymond; Maignan, Antoine

    2008-08-01

    The electronic and magnetic properties of the delafossite CuFeO2 are investigated by means of electronic structure calculations. They are performed using density functional theory in the generalized gradient approximation, as well as the new full-potential augmented spherical wave method. The calculations reveal three different spin states at the iron sites. Using for the first time the experimentally determined low-temperature crystal structure, we find long-range antiferromagnetic ordering in agreement with experiment. In addition, our calculations show that nonlocal interactions as covered by the generalized gradient approximation lead to a semiconducting ground state.

  1. Long-Range Correlations in the Sequence of Human Heartbeats and Other Biological Signals

    NASA Astrophysics Data System (ADS)

    Teich, Malvin C.

    1998-03-01

    The sequence of heartbeat occurrence times provides information about the state of health of the heart. We used a variety of measures, including multiresolution wavelet analysis, to identify the form of the point process that describes the human heartbeat. These measures, which are based on both interbeat (R-R) intervals and counts (heart rate), have been applied to records for both normal and heart-failure patients drawn from a standard database, and various surrogate versions thereof. Several of these measures reveal scaling behavior (1/f-type fluctuations; long-range power-law correlations).(R. G. Turcott and M. C. Teich, Proc. SPIE) 2036 (Chaos in Biology and Medicine), 22--39 (1993). Essentially all of the R-R and count-based measures we investigated, including those that exhibit scaling, differ in statistically significant ways for the normal and heart-failure patients. The wavelet measures, however, reveal a heretofore unknown scale window, between 16 and 32 heartbeats, over which the magnitudes of the wavelet-coefficient variances fall into disjoint sets for the normal and heart-failure patients.(R. G. Turcott and M. C. Teich, Ann. Biomed. Eng.) 24, 269--293 (1996).^,(S. Thurner, M. C. Feurstein, and M. C. Teich, Phys. Rev. Lett.) (in press). This enables us to correctly classify every patient in the standard data set as either belonging to the heart-failure or normal group with 100% accuracy, thereby providing a clinically significant measure of the presence of heart-failure. Previous approaches have provided only statistically significant measures. The tradeoff between sensitivity and

  2. Assessing very long-range impacts from a rapid climate change

    SciTech Connect

    Markley, O.W.; Hall, P.R.

    1982-01-01

    A variety of anthropogenic, or human-generated forces are gradually changing global climate. These include effects due to slash and burn agriculture, industrial particulates, waste heat and gasses such as chlorofluoromethanes, nitrous oxide, and carbon dioxide. Although the short-range effects of these forces may seem to be relatively minor from a long-range perspective, climatologists warn that the long-range effects - especially of increases in atmospheric carbon dioxide resulting from widespread fossil fuel use - will be great, bringing significant alterations in atmospheric temperature, wind and ocean currents, precipitation patterns, and other ecological phenomena. From a geological time perspective, the resulting climate changes will occur quite rapidly, and will affect human concerns in a number of ways. Besides being important for long-range social planning, these effects are of intrinsic interest to futures research and impact assessment methodologists. Although many uncertainties exist in long-range climate forecasting, climate change comprises one of the very few classes of phenomena where the nature of very long-range (i.e., 30 to 3000 years) impact-producing changes are feasible to forecast in reasonably rigorous, quantitative terms.

  3. Aberrant long-range functional connectivity density in generalized tonic-clonic seizures.

    PubMed

    Zhu, Ling; Li, Yibo; Wang, Yifeng; Li, Rong; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu

    2016-06-01

    Studies in generalized tonic-clonic seizures (GTCS) have reported both structural and functional alterations in the brain. However, changes in spontaneous neuronal functional organization in GTCS remain largely unknown.In this study, 70 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 70 age- and sex-matched healthy controls were recruited. Here, functional connectivity density (FCD) mapping, an ultrafast data-driven method based on functional magnetic resonance imaging (fMRI), was applied for the first time to investigate the changes of spontaneous functional brain activity caused by epilepsy.The results showed significantly decreased long-range FCD in the middle and inferior temporal, prefrontal, and inferior parietal cortices as well as increased long-range FCD in the cerebellum anterior lobe and sensorimotor areas. Negative correlation between duration of disease and reduced long-range FCD was found. In addition, most regions with reduced long-range FCD showed decreased resting-state functional connectivity (rsFC) within default mode network.Negative correlation between duration of disease and long-range FCD may reflect an adverse consequence eventually from original. Furthermore, the observed FCD and rsFC alterations have been speculated to be associated with the social-cognitive impairments as well as motor control. Our study provided novel evidences to look into neuro-pathophysiological mechanisms underlying GTCS. PMID:27310985

  4. Long-range Weather Prediction and Prevention of Climate Catastrophes: A Status Report

    DOE R&D Accomplishments Database

    Caldeira, K.; Caravan, G.; Govindasamy, B.; Grossman, A.; Hyde, R.; Ishikawa, M.; Ledebuhr, A.; Leith, C.; Molenkamp, C.; Teller, E.; Wood, L.

    1999-08-18

    As the human population of Earth continues to expand and to demand an ever-higher quality-of-life, requirements for ever-greater knowledge--and then control--of the future of the state of the terrestrial biosphere grow apace. Convenience of living--and, indeed, reliability of life itself--become ever more highly ''tuned'' to the future physical condition of the biosphere being knowable and not markedly different than the present one. Two years ago, we reported at a quantitative albeit conceptual level on technical ways-and-means of forestalling large-scale changes in the present climate, employing practical means of modulating insolation and/or the Earth's mean albedo. Last year, we reported on early work aimed at developing means for creating detailed, high-fidelity, all-Earth weather forecasts of two weeks duration, exploiting recent and anticipated advances in extremely high-performance digital computing and in atmosphere-observing Earth satellites bearing high-technology instrumentation. This year, we report on recent progress in both of these areas of endeavor. Preventing the commencement of large-scale changes in the current climate presently appears to be a considerably more interesting prospect than initially realized, as modest insolation reductions are model-predicted to offset the anticipated impacts of ''global warming'' surprisingly precisely, in both space and time. Also, continued study has not revealed any fundamental difficulties in any of the means proposed for insolation modulation and, indeed, applicability of some of these techniques to other planets in the inner Solar system seems promising. Implementation of the high-fidelity, long-range weather-forecasting capability presently appears substantially easier with respect to required populations of Earth satellites and atmospheric transponders and data-processing systems, and more complicated with respect to transponder lifetimes in the actual atmosphere; overall, the enterprise seems more

  5. Bacterial Fe(II) oxidation distinguished by long-range correlation in redox potential

    NASA Astrophysics Data System (ADS)

    Enright, Allison M. L.; Ferris, F. Grant

    2016-05-01

    The kinetics of bacterial Fe(II) oxidation was investigated 297 m underground at the Äspö Hard Rock Laboratory (near Oskarshamn, Sweden) under steady state groundwater flow conditions in a flow-through cell containing well-developed flocculent mats of bacteriogenic iron oxides (BIOS). Pseudo first-order rate constants of 0.004 min-1 and 0.009 min-1 were obtained for chemical and bacterial Fe(II) oxidation, respectively, based on the 104 min retention time of groundwater in the flow cell, inlet Fe(II) concentration of 21.0 ± 0.5 µm, outlet Fe(II) concentration of 8.5 ± 0.7 µm, as well as constant pH = - log H+ of 7.42 ± 0.01, dissolved O2 concentration of 0.11 ± 0.01 mg/L, and groundwater temperature of 12.4 ± 0.1°C. Redox potential was lower at the BIOS-free inlet (-135.4 ± 1.16 mV) compared to inside BIOS within the flow cell (-112.6 ± 1.91 mV), consistent with the Nernst relationship and oxidation of Fe(II) to Fe(III). Further evaluation of the redox potential time series data using detrended fluctuation analysis (DFA) revealed power law scaling in the amplitude of fluctuations over increasing intervals of time with significantly different (p < 0.01) DFA α scaling exponents of 1.89 ± 0.03 for BIOS and 1.67 ± 0.06 at the inlet. These α values not only signal the presence of long-range correlation in the redox potential time series measurements but also distinguish between the slower rate of chemical Fe(II) oxidation at the inlet and faster rate accelerated by FeOB in BIOS.

  6. Long-range weather prediction and prevention of climate catastrophes: a status report

    SciTech Connect

    Caldeira, K; Caravan, G; Govindasamy, B; Grossman, A; Hyde, R; Ishikawa, M; Ledebuhr, A; Leith, C; Molenkamp, C; Teller, E; Wood, L

    1999-08-18

    As the human population of Earth continues to expand and to demand an ever-higher quality-of-life, requirements for ever-greater knowledge--and then control--of the future of the state of the terrestrial biosphere grow apace. Convenience of living--and, indeed, reliability of life itself--become ever more highly ''tuned'' to the future physical condition of the biosphere being knowable and not markedly different than the present one, Two years ago, we reported at a quantitative albeit conceptual level on technical ways-and-means of forestalling large-scale changes in the present climate, employing practical means of modulating insolation and/or the Earth's mean albedo. Last year, we reported on early work aimed at developing means for creating detailed, high-fidelity, all-Earth weather forecasts of two weeks duration, exploiting recent and anticipated advances in extremely high-performance digital computing and in atmosphere-observing Earth satellites bearing high-technology instrumentation. This year, we report on recent progress in both of these areas of endeavor. Preventing the commencement of large-scale changes in the current climate presently appears to be a considerably more interesting prospect than initially realized, as modest insolation reductions are model-predicted to offset the anticipated impacts of ''global warming'' surprisingly precisely, in both space and time. Also, continued study has not revealed any fundamental difficulties in any of the means proposed for insolation modulation and, indeed, applicability of some of these techniques to other planets in the inner Solar system seems promising. Implementation of the high-fidelity, long-range weather-forecasting capability presently appears substantially easier with respect to required populations of Earth satellites and atmospheric transponders and data-processing systems, and more complicated with respect to transponder lifetimes in the actual atmosphere; overall, the enterprise seems more

  7. Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides

    NASA Astrophysics Data System (ADS)

    Lysenko, Oleg; Bache, Morten; Malureanu, Radu; Lavrinenko, Andrei

    2016-04-01

    This paper is devoted to experimental and theoretical studies of nonlinear propagation of a long-range surface plasmon polariton (LRSPP) in gold strip waveguides. The plasmonic waveguides are fabricated in house, and contain a gold layer, tantalum pentoxide adhesion layers, and silicon dioxide cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrödinger equation is solved. The dispersion length is much larger than the waveguides length, and the chromatic dispersion does not affect the propagation of the plasmonic mode. We find that the third-order susceptibility of the gold layer has a dominant contribution to the effective third-order susceptibility of the LRSPP mode. The real part of the effective third-order susceptibility leads to the observed spectral broadening through the self-phase modulation effect, and its imaginary part determines the nonlinear absorption parameter and leads to the observed nonlinear power transmission. The experimental values of the third-order susceptibility of the gold layers are obtained. They indicate an effective enhancement of the third-order susceptibility for the gold layers, comparing to the bulk gold values. This enhancement is explained in terms of the change of the electrons motion.

  8. Impact of long-range wavelength-scale distortion on fine-structure constant measurements.

    NASA Astrophysics Data System (ADS)

    Dumont, Vincent; Webb, John Kelvin

    2015-08-01

    New ideas in unification theories suggest space-time variations of dimensionless physical constants may exist and that they might be within reach of current instrumental precision available from the world's best observatories. State-of-the-art observations already hint at such an effect. If confirmed, fundamental revisions in standard physics would be required.Accurate calibrations are of course crucial in searches for space-time variations of dimensionless physical constants using spectroscopic observations from the world's best observatories. Several recent studies reveal wavelength distortions in optical echelle spectrographs. These are not yet understood and they have not yet been measured using the actual science data used to derive constraints on space-time variation of alpha (critical since they appear to vary with time). In this work we study the impact of such distortions on measurements of the fine structure constant, alpha, observed at high redshift using high-resolution quasar spectroscopy.We have carried out extensive high-performance computing calculations that quantify the effect accurately for the first time, using the same quasar spectra used to measure alpha at high redshift. The spectra we use were obtained using the Keck telescope in Hawaii and the European Southern Observatory's VLT.We explain the detailed methodologies required, using instrumental configuration information from each wavelength setting used in forming a final summed spectrum. Our results show that whilst long-range wavelength-scale distortions do exist, and hence contribute an additional systematic error, these systematics (measured directly from the science exposures themselves) are small and unlikely to explain the spatial variations alpha of reported recently.

  9. Long-range ordered vorticity patterns in living tissue induced by cell division

    PubMed Central

    Rossen, Ninna S.; Tarp, Jens M.; Mathiesen, Joachim; Jensen, Mogens H.; Oddershede, Lene B.

    2014-01-01

    In healthy blood vessels with a laminar blood flow, the endothelial cell division rate is low, only sufficient to replace apoptotic cells. The division rate significantly increases during embryonic development and under halted or turbulent flow. Cells in barrier tissue are connected and their motility is highly correlated. Here we investigate the long-range dynamics induced by cell division in an endothelial monolayer under non-flow conditions, mimicking the conditions during vessel formation or around blood clots. Cell divisions induce long-range, well-ordered vortex patterns extending several cell diameters away from the division site, in spite of the system’s low Reynolds number. Our experimental results are reproduced by a hydrodynamic continuum model simulating division as a local pressure increase corresponding to a local tension decrease. Such long-range physical communication may be crucial for embryonic development and for healing tissue, for instance around blood clots. PMID:25483750

  10. Emergent long-range synchronization of oscillating ecological populations without external forcing described by Ising universality

    PubMed Central

    Noble, Andrew E.; Machta, Jonathan; Hastings, Alan

    2015-01-01

    Understanding the synchronization of oscillations across space is fundamentally important to many scientific disciplines. In ecology, long-range synchronization of oscillations in spatial populations may elevate extinction risk and signal an impending catastrophe. The prevailing assumption is that synchronization on distances longer than the dispersal scale can only be due to environmental correlation (the Moran effect). In contrast, we show how long-range synchronization can emerge over distances much longer than the length scales of either dispersal or environmental correlation. In particular, we demonstrate that the transition from incoherence to long-range synchronization of two-cycle oscillations in noisy spatial population models is described by the Ising universality class of statistical physics. This result shows, in contrast to all previous work, how the Ising critical transition can emerge directly from the dynamics of ecological populations. PMID:25851364

  11. Density of states and magnetotransport in Weyl semimetals with long-range disorder

    NASA Astrophysics Data System (ADS)

    Pesin, D. A.; Mishchenko, E. G.; Levchenko, A.

    2015-11-01

    We study the density of states and magnetotransport properties of disordered Weyl semimetals, focusing on the case of a strong long-range disorder. To calculate the disorder-averaged density of states close to nodal points, we treat exactly the long-range random potential fluctuations produced by charged impurities, while the short-range component of disorder potential is included systematically and controllably with the help of a diagram technique. We find that, for energies close to the degeneracy point, long-range potential fluctuations lead to a finite density of states. In the context of transport, we discuss that a self-consistent theory of screening in magnetic field may conceivably lead to nonmonotonic low-field magnetoresistance.

  12. UTag: Long-range Ultra-wideband Passive Radio Frequency Tags

    SciTech Connect

    Dowla, F

    2007-03-14

    Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.

  13. Exact Diagonalization of a Quantum XXZ Model with Long-Range Interactions

    NASA Astrophysics Data System (ADS)

    Williams, Justin A.; Smith, David A.; Wang, C. C.-Joseph; Varney, Christopher N.

    In recent years, rapid advancement has been made in using ultra-cold gases as quantum spin simulators, with two dimensional lattices becoming a rich target for exploring the exotic states and excitations of spin-1/2 systems on frustrated lattices. When the interaction in the system becomes long-ranged, the spins are frustrated by the long-range interaction. Consequently, the competition between the geometric frustration and the long-range interaction results in the the underlying orders present in the ground state being unclear. Here, we investigate the quantum dipolar XXZ model with exact diagonalization to characterize and contrast the ground state and excitations on square and triangular lattices to provide a baseline for comparison with experiments. University of West Florida Summer Undergraduate Research Program, University of West Florida Quality Enhancement Plan Award.

  14. Spreading of Perturbations in Long-Range Interacting Classical Lattice Models

    NASA Astrophysics Data System (ADS)

    Métivier, David; Bachelard, Romain; Kastner, Michael

    2014-05-01

    Lieb-Robinson-type bounds are reported for a large class of classical Hamiltonian lattice models. By a suitable rescaling of energy or time, such bounds can be constructed for interactions of arbitrarily long range. The bound quantifies the dependence of the system's dynamics on a perturbation of the initial state. The effect of the perturbation is found to be effectively restricted to the interior of a causal region of logarithmic shape, with only small, algebraically decaying effects in the exterior. A refined bound, sharper than conventional Lieb-Robinson bounds, is required to correctly capture the shape of the causal region, as confirmed by numerical results for classical long-range XY chains. We discuss the relevance of our findings for the relaxation to equilibrium of long-range interacting lattice models.

  15. Cross-Sensor Calibration of the GAI Long Range Detection Network

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Boeck, William; Goodman, Steven J.; Cummins, K.; Cramer, J.

    1999-01-01

    The long range component of the North American Lightning Detection Network has been providing experimental data products since July 1996, offering cloud-to-ground lightning coverage throughout the Atlantic and Western Pacific oceans, as well as south to the Intertropical Convergence Zone. The network experiences a strong decrease in detection efficiency with range, which is also significantly modulated by differential propagation under day, night and terminator-crossing conditions. A climatological comparison of total lightning data observed by the Optical Transient Detector (OTD) and CG lightning observed by the long range network is conducted, with strict quality control and allowance for differential network performance before and after the activation of the Canadian Lightning Detection Network. This yields a first-order geographic estimate of long range network detection efficiency and its spatial variability. Intercomparisons are also performed over the continental US, allowing large scale estimates of the midlatitude climatological IC:CG ratio and its possible dependence on latitude.

  16. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Hao, Xiaolei; Chen, Yongju; Yu, Shaogang; Xu, Songpo; Wang, Yanlan; Sun, Renping; Lai, Xuanyang; Wu, Chengyin; Gong, Qihuang; He, Xiantu; Liu, Xiaojun; Chen, Jing

    2016-06-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  17. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    PubMed Central

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-01-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904

  18. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.

    PubMed

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-01-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904

  19. Long-range ordered vorticity patterns in living tissue induced by cell division

    NASA Astrophysics Data System (ADS)

    Rossen, Ninna S.; Tarp, Jens M.; Mathiesen, Joachim; Jensen, Mogens H.; Oddershede, Lene B.

    2014-12-01

    In healthy blood vessels with a laminar blood flow, the endothelial cell division rate is low, only sufficient to replace apoptotic cells. The division rate significantly increases during embryonic development and under halted or turbulent flow. Cells in barrier tissue are connected and their motility is highly correlated. Here we investigate the long-range dynamics induced by cell division in an endothelial monolayer under non-flow conditions, mimicking the conditions during vessel formation or around blood clots. Cell divisions induce long-range, well-ordered vortex patterns extending several cell diameters away from the division site, in spite of the system’s low Reynolds number. Our experimental results are reproduced by a hydrodynamic continuum model simulating division as a local pressure increase corresponding to a local tension decrease. Such long-range physical communication may be crucial for embryonic development and for healing tissue, for instance around blood clots.

  20. Nucleation in the presence of long-range interactions. [performed on ferroelectric barium titanate

    NASA Technical Reports Server (NTRS)

    Chandra, P.

    1989-01-01

    Unlike droplet nucleation near a liquid-gas critical point, the decay of metastable phases in crystalline materials is strongly affected by the presence of long-range forces. Field quench experiments performed on the ferroelectric barium titanate indicate that nucleation in this material is markedly different from that observed in liquids. In this paper, a theory for nucleation at a first-order phase transition in which the mediating forces are long range is presented. It is found that the long-range force induces cooperative nucleation and growth processes, and that this feedback mechanism produces a well-defined delay time with a sharp onset in the transformation to the stable phase. Closed-form expressions for the characteristic onset time and width of the transition are developed, in good agreement with numerical and experimental results.

  1. Fractality Evidence and Long-Range Dependence on Capital Markets: a Hurst Exponent Evaluation

    NASA Astrophysics Data System (ADS)

    Oprean, Camelia; Tănăsescu, Cristina

    2014-07-01

    Since the existence of market memory could implicate the rejection of the efficient market hypothesis, the aim of this paper is to find any evidence that selected emergent capital markets (eight European and BRIC markets, namely Hungary, Romania, Estonia, Czech Republic, Brazil, Russia, India and China) evince long-range dependence or the random walk hypothesis. In this paper, the Hurst exponent as calculated by R/S fractal analysis and Detrended Fluctuation Analysis is our measure of long-range dependence in the series. The results reinforce our previous findings and suggest that if stock returns present long-range dependence, the random walk hypothesis is not valid anymore and neither is the market efficiency hypothesis.

  2. Effect of disorder with long-range correlation on transport in graphene nanoribbon

    SciTech Connect

    Zhang, GP; Gao, M.; Zhang, Y.Y.; Liu, N.; Qin, Z.J.; Shanqqan, M.H.

    2012-06-13

    Transport in disordered armchair graphene nanoribbons (AGR) with long-range correlation between quantum wire contacts is investigated by a transfer matrix combined with Landauer's formula. The metal-insulator transition is induced by disorder in neutral AGR. Therein, the conductance is one conductance quantum for the metallic phase and exponentially decays otherwise, when the length of AGR approaches infinity and far longer than its width. Similar to the case of long-range disorder, the conductance of neutral AGR first increases and then decreases while the conductance of doped AGR monotonically decreases, as the disorder strength increases. In the presence of strong disorder, the conductivity depends monotonically and non-monotonically on the aspect ratio for heavily doped and slightly doped AGR, respectively. For edge disordered graphene nanoribbon, the conductance increases with the disorder strength of long-range correlated disordered while no delocalization exists, since the edge disorder induces localization.

  3. Effects of long-range hopping and interactions on quantum walks in ordered and disordered lattices

    NASA Astrophysics Data System (ADS)

    Chattaraj, T.; Krems, R. V.

    2016-08-01

    We study the effects of long-range hopping and long-range interparticle interactions on the quantum walk of hard-core bosons in ideal and disordered one-dimensional lattices. We find that the range of hopping has a much more significant effect on the particle correlation dynamics than the range of interactions. We illustrate that long-range hopping makes the correlation diagrams asymmetric with respect to the sign of the interaction. We examine the relative role of repulsive and attractive interactions on the dynamics of scattering by isolated impurities and Anderson localization in disordered lattices. We show that weakly repulsive interactions increase the probability of tunneling through isolated impurities and decrease the localization.

  4. Long-range magnetic response of the XY spin chain under far-from-equilibrium conditions

    NASA Astrophysics Data System (ADS)

    Gorczyca–Goraj, Anna; Mierzejewski, Marcin; Prosen, Tomaž

    2010-05-01

    Within the formalism of the Keldysh Green’s functions we investigate long-range response of an anisotropic XY chain to the local magnetic field. This field couples to a single spin on a selected lattice site. The system is driven out of equilibrium by a coupling to two semi-infinite XX spin chains. We demonstrate that the long-range response becomes enhanced by a few orders of magnitude upon application of nonequilibrium conditions. This enhancement does not occur in the isotropic XX chain. Our results agree with the recently predicted nonequilibrium-driven long-range magnetic correlations [T. Prosen and I. Pižorn, Phys. Rev. Lett. 101, 105701 (2008)]. We argue that this effect may be observed in quasi-one-dimensional triplet superconductors.

  5. The impact of long-range transport on secondary aerosol in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Carmichael, G. R.; Woo, J.; Zhang, Q.

    2013-12-01

    Long-range transport air pollution is an important issue in Northeast Asia. Large amounts of anthropogenic emissions of SO2 and NOx aggravate air pollution in the region. Most of the emissions come from the industrialized regions along the East China coast. China and Korea are changing their air quality standards for particle pollutant from PM10 to PM2.5 in 2012 and 2015, respectively. According to many previous studies, the long-rang transport of particle matter contributes to Korean air pollution problems, but there are many uncertainties regarding the impact of long range transport. Secondary inorganic aerosols (sulfate, nitrate and ammonium) are dominant ionic contributors to PM2.5. Especially high relative contributions of secondary aerosol appear under westerly wind cases at Korea. The secondary aerosols are produced by converting from SO2 and NOx during the long-range transport, but the contribution varies dramatically depending on season and wind pattern. So far, sulfate is the primary contributor to PM2.5, but nitrate levels are increasing because that NOx emissions in China are increasing dramatically since 2000 due to the growth in power, industry, and transport, while SO2 emissions are trending downward since 2005. We will present chemical characteristics of PM2.5 by westerly long-range transport focused on secondary aerosol, tracking their transport pattern, and production pathway in order to better understand regional air quality modeling of the long-range transport. This study will be performed based on the international study, MICS-Asia phase III, initiated with many researchers. Results using CMAQ with the modeling domain covering Northeast and Southeast China, Korea, and Japan with 15km resolution will be discussed.

  6. The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy.

    PubMed

    Ferretti, Marco; Novoderezhkin, Vladimir I; Romero, Elisabet; Augulis, Ramunas; Pandit, Anjali; Zigmantas, Donatas; van Grondelle, Rienk

    2014-06-01

    Light-harvesting in photosynthesis is determined by the excitonic interactions in disordered antennae and the coupling of collective electronic excitations to fast nuclear motions, producing efficient energy transfer with a complicated interplay between exciton and vibrational coherences. Two-dimensional electronic spectroscopy (2DES) is a powerful tool to study the presence of these coherences in photosynthetic complexes. However, the unambiguous assignment of the nature of the observed coherences is still under debate. In this paper we apply 2DES to an excitonically coupled bacteriochlorophyll dimer, the B820 subunit of the light harvesting complex 1 (LH1-RC) of R. rubrum G9. Fourier analysis of the measured kinetics and modeling of the spectral responses in a complete basis of electronic and vibrational states allow us to distinguish between pure vibrational, mixed exciton-vibrational (vibronic), and predominantly exciton coherences. The mixed coherences have been found in a wide range of oscillation frequencies, whereas exciton coherences give the biggest contributions for the frequencies in the 400-550 cm(-1) range, corresponding to the exciton splitting energy of the B820 dimer. Significant exciton coherences are also present at higher frequencies, i.e., up to 800 cm(-1), which are determined by realizations of the disorder with a large energy gap between the two pigments (which increases the apparent value of the exciton splitting). Although the B820 dimer is a model system, the approach presented here represents a basis for further analyses of more complicated systems, providing a tool for studying the interplay between electronic and vibrational coherences in disordered photosynthetic antennae and reaction centres. PMID:24430275

  7. Long-range corrected density functional theory with linearly-scaled HF exchange

    NASA Astrophysics Data System (ADS)

    Song, Jong-Won; Hirao, Kimihiko

    2015-12-01

    Long-range corrected density functional theory (LC-DFT) attracts many chemists' attentions as a quantum chemical method to be applied to large molecular system and its property calculations. However, the expensive time cost to evaluate the long-range HF exchange is a big obstacle to be overcome to be applied to the large molecular systems and the solid state materials. Upon this problem, we propose a linear-scaling method of the HF exchange integration, in particular, for the LC-DFT hybrid functional.

  8. Effective Long-Range Attraction between Protein Molecules in Solutions Studied by Small Angle Neutron Scattering

    SciTech Connect

    Liu Yun; Chen, W.-R.; Chen, S.-H.; Fratini, Emiliano; Baglioni, Piero

    2005-09-09

    Small angle neutron scattering intensity distributions taken from cytochrome C and lysozyme protein solutions show a rising intensity at a very small wave vector Q, which can be interpreted in terms of the presence of a weak long-range attraction between protein molecules. This interaction has a range several times that of the diameter of the protein molecule, much greater than the range of the screened electrostatic repulsion. We show evidence that this long-range attraction is closely related to the type of anion present and ion concentration in the solution.

  9. Monitoring aerosol elemental composition in particle size fractions of long-range transport

    NASA Astrophysics Data System (ADS)

    Metternich, P.; Georgii, H.-W.; Groeneveld, K. O.

    1983-04-01

    Collection of atmospheric samples was performed at Malta, a semi-remote environment in the Mediterranean, in case of long-range transport studies of pollutants and natural substances. Using PIXE as a non-destructive trace-element analytical tool, the elemental composition of these samples was determined. Atmospheric concentrations obtained in this study were of one magnitude higher than those observed over the open North Alantic in purely marine air. For most of the anomalously enriched elements in the Mediterranean aerosol, the high concentrations can be explained by long-range transport.

  10. Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends

    SciTech Connect

    Degiron, Aloyse; Cho, Sang-Yeon; Harrison, Cameron; Jokerst, Nan Marie; Smith, David R.; Dellagiacoma, Claudio; Martin, Olivier J. F.

    2008-02-15

    We report on the characterization of long-range surface plasmon waveguide bends at telecom wavelengths ({lambda}=1550 nm). The structures consist of a thin Au stripe embedded in a transparent polymer film. When the polymer thickness is larger than the lateral extension of the plasmon, the stripe sustains a conventional long-range mode; in the opposite case, the mode is hybrid because its field distribution is confined by total internal reflection in the dielectric cladding. This hybridization increases the damping by absorption but dramatically reduces the radiation loss that occurs for curved geometries, such as bends. Our results are supported quantitatively by full-wave finite-element simulations.

  11. Long-range corrected density functional theory with linearly-scaled HF exchange

    SciTech Connect

    Song, Jong-Won; Hirao, Kimihiko

    2015-12-31

    Long-range corrected density functional theory (LC-DFT) attracts many chemists’ attentions as a quantum chemical method to be applied to large molecular system and its property calculations. However, the expensive time cost to evaluate the long-range HF exchange is a big obstacle to be overcome to be applied to the large molecular systems and the solid state materials. Upon this problem, we propose a linear-scaling method of the HF exchange integration, in particular, for the LC-DFT hybrid functional.

  12. Acidic loadings in South Korean ecosystems by long-range transport and local emissions

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Myun; Park, Soon-Ung

    2004-10-01

    Exceedances of sulfur and nitrogen critical loads in South Korean ecosystems caused by long-range transport and local emissions of sulfur and nitrogen have been estimated using the maximum critical load of sulfur and the critical load of nutrient nitrogen. The long-term-averaged deposition of sulfur and nitrogen is estimated with a simplified chemical model and the K-mean clustering technique. The three consecutive days of gridded daily mean National Center for Environmental Protection (NCEP) reanalyzed 850 hPa geopotential height fields with and without precipitation on the last day over South Korea are used for clustering of synoptic patterns for the period of 1994-1998. Two emission conditions are simulated for each cluster to estimate long-term averaged depositions of sulfur and nitrogen by long-range transport and local emissions over South Korea. One condition takes all emissions within the simulated domain into account as a base case and the other condition excludes all South Korean emissions but includes all of the other emissions, as a control case. The results of the present study indicate that the contribution of long-range transport to the annual total deposition over South Korea is found to be about 40% (530 eqha-1yr-1) for sulfur and 49% (650 eqha-1yr-1) for nitrogen, of which 55% for sulfur and 58% for nitrogen are contributed by wet deposition. This suggests the importance of wet deposition through the transformed acidic precursors for long-range transport to South Korea's total deposition of sulfur and nitrogen. The estimated exceedance for South Korean ecosystems indicates that the current estimate of total sulfur deposition affects about 42% of the South Korean ecosystems adversely, of which 14% is attributed to South Korean source only and the rest 28% is attributed to long-range transport together with South Korean source. Long-range transport of sulfur itself does not exceed the maximum critical load of sulfur. On the other hand, the current

  13. Long-range airplane study: The consumer looks at SST travel

    NASA Technical Reports Server (NTRS)

    Landes, K. H.; Matter, J. A.

    1980-01-01

    The attitudes of long-range air travelers toward several basic air travel decisions, were surveyed. Of interest were tradeoffs involving time versus comfort and time versus cost as they pertain to supersonic versus conventional wide-body aircraft on overseas routes. The market focused upon was the segment of air travelers most likely to make that type of tradeoff decision: those having flown overseas routes for business or personal reasons in the recent past. The information generated is intended to provide quantifiable insight into consumer demand for supersonic as compared to wide-body aircraft alternatives for long-range overseas air travel.

  14. Long range forecasts of the Northern Hemisphere anomalies with antecedent sea surface temperature patterns

    NASA Technical Reports Server (NTRS)

    Kung, Ernest C.

    1994-01-01

    The contract research has been conducted in the following three major areas: analysis of numerical simulations and parallel observations of atmospheric blocking, diagnosis of the lower boundary heating and the response of the atmospheric circulation, and comprehensive assessment of long-range forecasting with numerical and regression methods. The essential scientific and developmental purpose of this contract research is to extend our capability of numerical weather forecasting by the comprehensive general circulation model. The systematic work as listed above is thus geared to developing a technological basis for future NASA long-range forecasting.

  15. Effect of long-range interactions on ion equilibria in liquid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Dufrêche, J.-F.; Zemb, Th.

    2015-02-01

    We demonstrate here that equilibria of electrolytes between a water phase and an (organic) solvent phase containing amphiphilic extractants depend not only on complexation toward nearest neighbors but also on long range supramolecular interactions (LRI). Taking into account bulk, polarization and chain reorganization terms, we show that the net free energy difference associated with one metal ion transfer from water results from a strong inhibition (>25 kBT/ metal ion) due to colloidal long range interactions competing with differences in complexation considered in surpramolecular chemistry (≈-30 kBT/ metal ion). LRI also influence selectivity.

  16. Long-range anticorrelations and non-Gaussian behavior of the heartbeat

    NASA Technical Reports Server (NTRS)

    Peng, C.-K.; Mietus, J.; Hausdorff, J. M.; Havlin, S.; Stanley, H. E.; Goldberger, A. L.

    1993-01-01

    We find that the successive increments in the cardiac beat-to-beat intervals of healthy subjects display scale-invariant, long-range anticorrelations (up to 10 exp 4 heart beats). Furthermore, we find that the histogram for the heartbeat intervals increments is well described by a Levy (1991) stable distribution. For a group of subjects with severe heart disease, we find that the distribution is unchanged, but the long-range correlations vanish. Therefore, the different scaling behavior in health and disease must relate to the underlying dynamics of the heartbeat.

  17. DNA binding by FOXP3 domain-swapped dimer suggests mechanisms of long-range chromosomal interactions

    PubMed Central

    Chen, Yongheng; Chen, Chunxia; Zhang, Zhe; Liu, Chun-Chi; Johnson, Matthew E.; Espinoza, Celso A.; Edsall, Lee E.; Ren, Bing; Zhou, Xianghong Jasmine; Grant, Struan F.A.; Wells, Andrew D.; Chen, Lin

    2015-01-01

    FOXP3 is a lineage-specific transcription factor that is required for regulatory T cell development and function. In this study, we determined the crystal structure of the FOXP3 forkhead domain bound to DNA. The structure reveals that FOXP3 can form a stable domain-swapped dimer to bridge DNA in the absence of cofactors, suggesting that FOXP3 may play a role in long-range gene interactions. To test this hypothesis, we used circular chromosome conformation capture coupled with high throughput sequencing (4C-seq) to analyze FOXP3-dependent genomic contacts around a known FOXP3-bound locus, Ptpn22. Our studies reveal that FOXP3 induces significant changes in the chromatin contacts between the Ptpn22 locus and other Foxp3-regulated genes, reflecting a mechanism by which FOXP3 reorganizes the genome architecture to coordinate the expression of its target genes. Our results suggest that FOXP3 mediates long-range chromatin interactions as part of its mechanisms to regulate specific gene expression in regulatory T cells. PMID:25567984

  18. 75 FR 998 - Terminate Long Range Aids to Navigation (Loran-C) Signal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... FR 4047), the U.S. Coast Guard began a public review process for its Draft Programmatic Environmental... SECURITY Coast Guard Terminate Long Range Aids to Navigation (Loran-C) Signal AGENCY: U.S. Coast Guard, DHS..., the Department of Transportation has determined that sufficient alternative navigation aids...

  19. South Dakota Arts Council Long Range Plan FY 2006-2008

    ERIC Educational Resources Information Center

    South Dakota Arts Council, 2006

    2006-01-01

    This report presents South Dakota Arts Council Long Range Plan for Fiscal Years 2006-2008 in terms of how it intends to achieve six goals. These goals are: (1) Enhance quality of life and economic development through the arts; (2) Promote public awareness and support of the arts; (3) Advance the arts as essential to education and life-long…

  20. Managing Strategic and Long-Range Planning via a Proactive, User-Friendly Planning Document.

    ERIC Educational Resources Information Center

    Dailey, Anne Louise; And Others

    1991-01-01

    A computerized method for managing institutional information to use in creating college planning documents is described. Development of the database, manipulation of the data for reporting, uses in strategic and long-range planning, and the model's implications for improvement of planning processes are discussed. (MSE)

  1. The Long Range Plan for Statewide Library Development in Texas, 1989-1991.

    ERIC Educational Resources Information Center

    Texas State Library, Austin. Dept. of Library Development.

    This long-range plan was prepared to satisfy the requirements of the Library Services and Construction Act (LSCA; Public Law 98-480) and to guide the Texas State Library and Archives Commission in the fulfillment of its statutory mission. The plan provides a framework for the establishment or expansion of programs to carry out the purposes…

  2. Long-Range Plan for Library Services in Wisconsin, 1991-1996. Bulletin No. 92157.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison. Div. of Library Services.

    This report addresses the status of library development in Wisconsin, the needs and problems of libraries, and possible ways of meeting these needs over the next 5 years. These long-range plans developed by the staff of the Division for Library Services (DLS) reflect reports submitted to the DLS, surveys, consultations with librarians and…

  3. Idaho State Library Long Range Plan for Implementation of LSCA Priorities, 1989-1991.

    ERIC Educational Resources Information Center

    Joslin, Ann

    Based largely on recommendations from a 1986 strategy study, this long range plan for the improvement of library services in Idaho addresses goals and activities for the years 1989-1991. It is intended to support the direction of library development begun in 1984 to improve services to the user and to meet Library Services and Construction Act…

  4. The Long Range Plan for Statewide Library Development in Texas, 1990-1993. Revised.

    ERIC Educational Resources Information Center

    Texas State Library, Austin. Dept. of Library Development.

    The Long Range Plan was prepared to satisfy requirements of the Library Services Construction Act (LSCA) and to guide the Texas State Library and Archives Commission in the fulfillment of its statutory mission. The plan provides a framework for the establishment or expansion of programs to carry out the purposes mandated by the state and federal…

  5. Long Range Plan for Statewide Library Development in Texas: 1996 to 1999.

    ERIC Educational Resources Information Center

    Texas State Library, Austin. Dept. of Library Development.

    Texas State Library's 1996 to 1999 long range plan for library development provides for the establishment and expansion of programs needed to carry out the objectives of the Library Services and Construction Act (LSCA) and the Library Systems Act (LSA). The first three chapters give an overview of the Statewide Library Development Program of the…

  6. LONG-RANGE TRANSPORT AND TRANSFORMATION OF SO2 AND SULFATE

    EPA Science Inventory

    Technical descriptions and computer programs are presented for two models that calculate long-range transport, diffusion, transformation of SO2 to sulfate, and dry and precipitation deposition of initially emitted SO2. One model treats the mixing layer height as constant; the oth...

  7. FINE-PARTICLE SODIUM TRACER FOR LONG-RANGE TRANSPORT OF THE KUWAITI OIL FIRE PLUME

    EPA Science Inventory

    Evidence for long-range transport of the Kuwaiti oil-fire smoke during the months following the Persian Gulf War has been more or less indirect. or example, high concentrations of aerosols containing soot and oil-combustion tracers such as vanadium observed at great distances fro...

  8. Long range correlations in high multiplicity hadron collisions: Building bridges with ridges

    SciTech Connect

    Venugopalan, Raju

    2015-01-15

    We discuss the physics of the ridge–azimuthally collimated long range rapidity correlations–in high multiplicity proton–proton and proton–nucleus collisions. We outline some of the theoretical discussions in the literature that address the systematics of these ridge correlations.

  9. Attractor nonequilibrium stationary states in perturbed long-range interacting systems

    NASA Astrophysics Data System (ADS)

    Joyce, Michael; Morand, Jules; Viot, Pascal

    2016-05-01

    Isolated long-range interacting particle systems appear generically to relax to nonequilibrium states ("quasistationary states" or QSSs) which are stationary in the thermodynamic limit. A fundamental open question concerns the "robustness" of these states when the system is not isolated. In this paper we explore, using both analytical and numerical approaches to a paradigmatic one-dimensional model, the effect of a simple class of perturbations. We call them "internal local perturbations" in that the particle energies are perturbed at collisions in a way which depends only on the local properties. Our central finding is that the effect of the perturbations is to drive all the very different QSSs we consider towards a unique QSS. The latter is thus independent of the initial conditions of the system, but determined instead by both the long-range forces and the details of the perturbations applied. Thus in the presence of such a perturbation the long-range system evolves to a unique nonequilibrium stationary state, completely different from its state in absence of the perturbation, and it remains in this state when the perturbation is removed. We argue that this result may be generic for long-range interacting systems subject to perturbations which are dependent on the local properties (e.g., spatial density or velocity distribution) of the system itself.

  10. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements.

    PubMed

    Schoenfelder, Stefan; Furlan-Magaril, Mayra; Mifsud, Borbala; Tavares-Cadete, Filipe; Sugar, Robert; Javierre, Biola-Maria; Nagano, Takashi; Katsman, Yulia; Sakthidevi, Moorthy; Wingett, Steven W; Dimitrova, Emilia; Dimond, Andrew; Edelman, Lucas B; Elderkin, Sarah; Tabbada, Kristina; Darbo, Elodie; Andrews, Simon; Herman, Bram; Higgs, Andy; LeProust, Emily; Osborne, Cameron S; Mitchell, Jennifer A; Luscombe, Nicholas M; Fraser, Peter

    2015-04-01

    The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression. PMID:25752748

  11. A Long-Range, Comprehensive Plan for Early Childhood Education in Alaska.

    ERIC Educational Resources Information Center

    Rath, Robert R.

    This long-range, comprehensive plan for early childhood education in Alaska focuses on providing environmental surroundings conducive to learning for children aged 3, 4 and 5. Topics covered are: (1) needs, objectives and activities--projected numbers of students (age and grade distribution, school distribution), early childhood education…

  12. Kaleidoscope of quantum phases in a long-range interacting spin-1 chain

    NASA Astrophysics Data System (ADS)

    Gong, Z.-X.; Maghrebi, M. Â. F.; Hu, A.; Foss-Feig, M.; Richerme, P.; Monroe, C.; Gorshkov, A. Â. V.

    2016-05-01

    Motivated directly by recent trapped-ion quantum simulation experiments, we carry out a comprehensive study of the phase diagram of a spin-1 chain with XXZ-type interactions that decay as 1 /rα , using a combination of finite and infinite-size DMRG calculations, spin-wave analysis, and field theory. In the absence of long-range interactions, varying the spin-coupling anisotropy leads to four distinct and well-studied phases: a ferromagnetic Ising phase, a disordered XY phase, a topological Haldane phase, and an antiferromagnetic Ising phase. If long-range interactions are antiferromagnetic and thus frustrated, we find primarily a quantitative change of the phase boundaries. On the other hand, ferromagnetic (nonfrustrated) long-range interactions qualitatively impact the entire phase diagram. Importantly, for α ≲3 , long-range interactions destroy the Haldane phase, break the conformal symmetry of the XY phase, give rise to a new phase that spontaneously breaks a U (1 ) continuous symmetry, and introduce a possibly exotic tricritical point with no direct parallel in short-range interacting spin chains. Importantly, we show that the main signatures of all five phases found could be observed experimentally in the near future.

  13. Application of powered-lift concepts for improved cruise efficiency of long-range aircraft

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Fournier, P. G.

    1976-01-01

    Results of studies conducted to explore the use of powered lift concepts for improved low speed performance of long range subsonic and supersonic cruise vehicles are summarized. It is indicated that powered lift can provide significant improvements in low speed performance, as well as substantial increases in cruise efficiency and range for both subsonic and supersonic cruise configurations.

  14. 25 CFR 170.410 - What is the purpose of tribal long-range transportation planning?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What is the purpose of tribal long-range transportation planning? 170.410 Section 170.410 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Planning, Design, and Construction of Indian Reservation...

  15. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements

    PubMed Central

    Schoenfelder, Stefan; Furlan-Magaril, Mayra; Mifsud, Borbala; Tavares-Cadete, Filipe; Sugar, Robert; Javierre, Biola-Maria; Nagano, Takashi; Katsman, Yulia; Sakthidevi, Moorthy; Wingett, Steven W.; Dimitrova, Emilia; Dimond, Andrew; Edelman, Lucas B.; Elderkin, Sarah; Tabbada, Kristina; Darbo, Elodie; Andrews, Simon; Herman, Bram; Higgs, Andy; LeProust, Emily; Osborne, Cameron S.; Mitchell, Jennifer A.

    2015-01-01

    The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression. PMID:25752748

  16. SOURCES AND EVALUATION OF UNCERTAINTY IN LONG-RANGE TRANSPORT MODELS

    EPA Science Inventory

    The American Meteorological Society, under joint sponsorship from the U.S. Environmental Protection Agency, the Atmospheric Environment Service, Canada and the Ontario Ministry of the Environment, Canada, convened a workshop in September 1984 to address an aspect of long-range tr...

  17. Calculation of long range forces and their applications in determining gaseous properties

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1979-01-01

    A discussion of various theoretical and experimental techniques for the calculation of long range interaction between two atomic systems at moderate separation is presented. Some applications of these techniques for obtaining gaseous properties are described. The forces between neutral molecules and metallic surfaces are also discussed and numerical values of heats of adsorption for a number of systems are calculated.

  18. Towards theoretical analysis of long-range proton transfer kinetics in biomolecular pumps

    PubMed Central

    König, P. H.; Ghosh, N.; Hoffmann, M.; Elstner, M.; Tajkhorshid, E.; Frauenheim, Th.; Cui, Q.

    2008-01-01

    Motivated by the long-term goal of theoretically analyzing long-range proton transfer (PT) kinetics in biomolecular pumps, a number of technical developments were made in the framework of QM/MM simulations. A set of collective reaction co-ordinates is proposed for characterizing the progress of long-range proton transfers; unlike previous suggestions, the new coordinates can describe PT along highly non-linear three-dimensional pathways. Calculations using a realistic model of carbonic anhydrase demonstrated that adiabatic mapping using these collective coordinates gives reliable energetics and critical geometrical parameters as compared to minimum energy path calculations, which suggests that the new coordinates can be effectively used as reaction coordinate in potential of mean force calculations for long-range PT in complex systems. In addition, the generalized solvent boundary potential was implemented in the QM/MM framework for rectangular geometries, which is useful for studying reactions in membrane systems. The resulting protocol was found to produce water structure in the interior of aquaporin consistent with previous studies including much larger number of explicit solvent and lipid molecules. The effect of electrostatics for PT through membrane protein was also illustrated with a simple model channel embedded in different dielectric continuum environments. The encouraging results observed so far suggest that robust theoretical analysis of long-range PT kinetics in biomolecular pumps can soon be realized in a QM/MM framework. PMID:16405327

  19. Global and Regional Modeling of Long-Range Transport and Intercontinental Source-Receptor Linkages (presentation)

    EPA Science Inventory

    Because long-range transport has been shown to affect air quality in downwind continents, there is a growing realization that these effects may need to be considered in air quality management efforts by distinguishing between the contributions of local and regional emission sourc...

  20. Policy Directions for U. S. Agriculture; Long-Range Choices in Farming and Rural Living.

    ERIC Educational Resources Information Center

    Clawson, Marion

    A comprehensive view of agriculture is presented in this volume written to aid critical re-examination of long-range agricultural policy. Farm people, rural institutions and services, rural towns, the spatial organization of agriculture, and its capital structure, in addition to the usual subjects of agricultural output, demand, trade, price, and…

  1. INVESTIGATING THE INFLUENCE OF LONG RANGE TRANSPORT ON MERCURY DEPOSITION IN SOUTH FLORIDA

    EPA Science Inventory

    In 1999, the US EPA National Exposure Research Laboratory (NERL) through a Regional Applied Research Effort initiated a study to evaluate the magnitude of long-range transport of mercury through the marine free troposphere to South Florida via aircraft measurements (200 to 11,5...

  2. Long-range dispersion interactions. III: Method for two homonuclear atoms

    SciTech Connect

    Mitroy, J.; Zhang, J.-Y.

    2007-12-15

    A procedure for systematically evaluating the long-range dispersion interaction between two homonuclear atoms in arbitrary LS coupled states is outlined. The method is then used to generate dispersion coefficients for a number of the low-lying states of the Na and Mg dimers.

  3. Futures Research and the Strategic Planning Process: Implications for Long-Range Planning in Higher Education.

    ERIC Educational Resources Information Center

    Morrison, James L.; Renfro, William L.

    The concepts of long-range planning and strategic planning are explained, and a planning model is proposed. Attention is directed to an environmental scanning model that is congruent with the concept of strategic planning and that emerges from one portion of the futures research community, issues management. A third planning model, the strategic…

  4. Sterling landing fuel tanks site environmental baseline survey: Tatalina Long Range Radar Station, Alaska. Final report

    SciTech Connect

    1997-03-01

    The purpose of the environmental baselines survey (EBS) was to document the existence of petroleum hydrocarbon contamination and to identify potential environmental liabilities to the US. Air Force (USAF) associated with the fuel storage tanks at Sterling Landing on the Tatalina Long Range Radar Station (LRRS).

  5. Attenuated MP2 with a Long-Range Dispersion Correction for Treating Nonbonded Interactions.

    PubMed

    Goldey, Matthew B; Belzunces, Bastien; Head-Gordon, Martin

    2015-09-01

    Attenuated second order Møller-Plesset theory (MP2) captures intermolecular binding energies at equilibrium geometries with high fidelity with respect to reference methods, yet must fail to reproduce dispersion energies at stretched geometries due to the removal of fully long-range dispersion. For this problem to be ameliorated, long-range correction using the VV10 van der Waals density functional is added to attenuated MP2, capturing short-range correlation with attenuated MP2 and long-range dispersion with VV10. Attenuated MP2 with long-range VV10 dispersion in the aug-cc-pVTZ (aTZ) basis set, MP2-V(terfc, aTZ), is parametrized for noncovalent interactions using the S66 database and tested on a variety of noncovalent databases, describing potential energy surfaces and equilibrium binding energies equally well. Further, a spin-component scaled (SCS) version, SCS-MP2-V(2terfc, aTZ), is produced using the W4-11 database as a supplemental thermochemistry training set, and the resulting method reproduces the quality of MP2-V(terfc, aTZ) for noncovalent interactions and exceeds the performance of SCS-MP2/aTZ for thermochemistry. PMID:26575911

  6. Imputation of Missing Genotypes From Sparse to High Density Using Long-Range Phasing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Related individuals in a population share long chromosome segments which trace to a common ancestor. We describe a long-range phasing algorithm that makes use of this property to phase whole chromosomes and simultaneously impute a large number of missing markers. We test our method by imputing marke...

  7. Long-Range Statewide Enrollment and WSCH Forecast, California Community Colleges.

    ERIC Educational Resources Information Center

    McIntyre, Chuck; Chan, Chuen-Rong

    This report summarizes the most recent (December 1998) long-range statewide forecast of fall enrollment and average annual weekly student contact hours (WSCH) in California Community Colleges. The annual fall survey of college registrars shows that fall 1998 enrollment is up 1.8 percent over fall 1997. The office forecasting model projects an…

  8. Long-Range Strategic Planning for the Alamo Community College District. Position Papers.

    ERIC Educational Resources Information Center

    McClenney, Byron N.; Moore, Kay M.

    Prepared for use in long-range planning in the Alamo Community College District (ACCD), this report presents an overview of the District and position papers containing data and interpretive discussion on five planning concerns. Following an overview of ACCD enrollments, personnel, and finances, the first position paper outlines population…

  9. NIDRR Long-Range Plan for Fiscal Years 2005-09. Executive Summary

    ERIC Educational Resources Information Center

    US Department of Education, 2007

    2007-01-01

    The National Institute on Disability and Rehabilitation Research (NIDRR) "Long-Range Plan for Fiscal Years 2005-09" (the "Plan") provides an agenda for achieving advancements in applied rehabilitation research that will benefit people with disabilities in the United States. This executive summary describes the purposes and scope of the "Plan,"…

  10. 25 CFR 170.411 - What may a long-range transportation plan include?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What may a long-range transportation plan include? 170.411 Section 170.411 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Planning, Design, and Construction of Indian Reservation Roads Program...

  11. 25 CFR 170.411 - What may a long-range transportation plan include?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What may a long-range transportation plan include? 170.411 Section 170.411 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Planning, Design, and Construction of Indian Reservation Roads Program...

  12. Long range ordered alloys modified by addition of niobium and cerium

    DOEpatents

    Liu, Chain T.

    1987-01-01

    Long range ordered alloys are described having the nominal composition (Fe,Ni,Co).sub.3 (V,M) where M is a ductility enhancing metal selected from the group Ti, Zr, Hf with additions of small amounts of cerium and niobium to drammatically enhance the creep properties of the resulting alloys.

  13. Long range ordered alloys modified by addition of niobium and cerium

    DOEpatents

    Liu, C.T.

    1984-08-22

    Long range ordered alloys are described having the nominal composition (Fe,Ni,Co)/sub 3/ (V,M) where M is a ductility enhancing metal selected from the group Ti, Zr, Hf with additions of small amounts of cerium and niobium to dramatically enhance the creep properties of the resulting alloys.

  14. A long range transmission system communication plan for ComEd of Chicago 1995 to 2000

    SciTech Connect

    Casanova, R.; Gerleve, F.J.

    1995-10-01

    The design of a telecommunication fiber optical network serving ComEd`s commercial centers and generation stations is described. A long range communication plan is presented describing a migration of transmission substation protection, monitoring and control from an analog system over power line carrier, microwave, and leased phone lines to a digital system using an optimum mix of communication channels including fiber.

  15. Robustness of Estimators of Long-Range Dependence and Self-Similarity under non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Franzke, C.; Watkins, N. W.; Graves, T.; Gramacy, R.; Hughes, C.

    2011-12-01

    Long-range dependence and non-Gaussianity are ubiquitous in many natural systems like ecosystems, biological systems and climate. However, it is not always appreciated that both phenomena may occur together in natural systems and that self-similarity in a system can be a superposition of both phenomena. These features, which are common in complex systems, impact the attribution of trends and the occurrence and clustering of extremes. The risk assessment of systems with these properties will lead to different outcomes (e.g. return periods) than the more common assumption of independence of extremes. Two paradigmatic models are discussed which can simultaneously account for long-range dependence and non-Gaussianity: Autoregressive Fractional Integrated Moving Average (ARFIMA) and Linear Fractional Stable Motion (LFSM). Statistical properties of estimators for long-range dependence and self-similarity are critically assessed. It is found that the most popular estimators can be biased in the presence of important features of many natural systems like trends and multiplicative noise. Also the long-range dependence and non-Gaussianity of two typical natural time series are discussed.

  16. Long-Range Reduced Predictive Information Transfers of Autistic Youths in EEG Sensor-Space During Face Processing.

    PubMed

    Khadem, Ali; Hossein-Zadeh, Gholam-Ali; Khorrami, Anahita

    2016-03-01

    The majority of previous functional/effective connectivity studies conducted on the autistic patients converged to the underconnectivity theory of ASD: "long-range underconnectivity and sometimes short-rang overconnectivity". However, to the best of our knowledge the total (linear and nonlinear) predictive information transfers (PITs) of autistic patients have not been investigated yet. Also, EEG data have rarely been used for exploring the information processing deficits in autistic subjects. This study is aimed at comparing the total (linear and nonlinear) PITs of autistic and typically developing healthy youths during human face processing by using EEG data. The ERPs of 12 autistic youths and 19 age-matched healthy control (HC) subjects were recorded while they were watching upright and inverted human face images. The PITs among EEG channels were quantified using two measures separately: transfer entropy with self-prediction optimality (TESPO), and modified transfer entropy with self-prediction optimality (MTESPO). Afterwards, the directed differential connectivity graphs (dDCGs) were constructed to characterize the significant changes in the estimated PITs of autistic subjects compared with HC ones. By using both TESPO and MTESPO, long-range reduction of PITs of ASD group during face processing was revealed (particularly from frontal channels to right temporal channels). Also, it seemed the orientation of face images (upright or upside down) did not modulate the binary pattern of PIT-based dDCGs, significantly. Moreover, compared with TESPO, the results of MTESPO were more compatible with the underconnectivity theory of ASD in the sense that MTESPO showed no long-range increase in PIT. It is also noteworthy that to the best of our knowledge it is the first time that a version of MTE is applied for patients (here ASD) and it is also its first use for EEG data analysis. PMID:26433373

  17. The Characteristics of Long-range Transboundary Inorganic Secondary Aerosols in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Carmichael, G. R.; Woo, J. H.; Qiang, Z.

    2014-12-01

    Recurrent particle matter episodes greatly influence air quality in Northeast Asia. According to many studies, a major reason is long-range transport of air pollutant. Large amount of emission of chemical compounds aggravate air pollution in the region. Emitted air pollutants mainly come from industrialized regions along the East China coast. It can be transported over downwind region by the prevailing westerlies. The long-rang transported fine particle certainly attributes to air quality in downwind region, but there are many unknowns on the quantity, transport pattern, and secondary aerosol production mechanism despite the fact with many studies have been performed. Major contributors of PM2.5 are inorganic secondary aerosols, sulfate, nitrate and ammonium, in Korea. Especially high relative contributions of inorganic secondary aerosols appear for westerly wind cases. The main pathway of production of inorganic secondary aerosols is produced by converting from SO2 and NOx during the long-range transport but the contribution varies dramatically depending on season and wind pattern. Sulfate is consistently the primary contributor of PM2.5 still now but we should more concern nitrate because that NOx emissions of China is increasing steeply since 2000 by leading powerplant, industry, and transport, despite downward trend of SO2. In order to better understand regional air quality modeling of the long-range transport, international study, MICS-Asia phase III, has been initiated with many researchers. We will present chemical characteristics of PM2.5 long-range transport during westerly wind cases focused on secondary aerosol, tracking their transport pattern, and production pathway. Results using CMAQ with the modeling domain covering Northeast and Southeast China, Korea, and Japan with 15km resolution will be discussed.

  18. Assessment of long-range correlation in time series: how to avoid pitfalls.

    PubMed

    Gao, Jianbo; Hu, Jing; Tung, Wen-Wen; Cao, Yinhe; Sarshar, N; Roychowdhury, Vwani P

    2006-01-01

    Due to the ubiquity of time series with long-range correlation in many areas of science and engineering, analysis and modeling of such data is an important problem. While the field seems to be mature, three major issues have not been satisfactorily resolved. (i) Many methods have been proposed to assess long-range correlation in time series. Under what circumstances do they yield consistent results? (ii) The mathematical theory of long-range correlation concerns the behavior of the correlation of the time series for very large times. A measured time series is finite, however. How can we relate the fractal scaling break at a specific time scale to important parameters of the data? (iii) An important technique in assessing long-range correlation in a time series is to construct a random walk process from the data, under the assumption that the data are like a stationary noise process. Due to the difficulty in determining whether a time series is stationary or not, however, one cannot be 100% sure whether the data should be treated as a noise or a random walk process. Is there any penalty if the data are interpreted as a noise process while in fact they are a random walk process, and vice versa? In this paper, we seek to gain important insights into these issues by examining three model systems, the autoregressive process of order 1, on-off intermittency, and Lévy motions, and considering an important engineering problem, target detection within sea-clutter radar returns. We also provide a few rules of thumb to safeguard against misinterpretations of long-range correlation in a time series, and discuss relevance of this study to pattern recognition. PMID:16486226

  19. Long-range spin coupling: a tetraphosphine-bridged palladium dimer.

    PubMed

    Arumugam, Kuppuswamy; Shaw, Mohammed C; Mague, Joel T; Bill, Eckhard; Sproules, Stephen; Donahue, James P

    2011-04-01

    The dipalladium compound [{(adt)Pd}(2)(μ-tpbz)] (1) (adt = bis(p-anisyl)-1,2-ethylenedithiolate, tpbz = 1,2,4,5-tetrakis(diphenylphosphino)benzene) has been synthesized from [{Cl(2)Pd}(2)(μ-tpbz)] by transmetalation employing (adt)SnMe(2). The cyclic voltammogram (CV) of 1 reveals reversible oxidation waves at 0.00 V and +0.50 V (vs [Fc](+)/Fc) with current amplitude twice that for identical processes in the monopalladium compound [(adt)Pd(dppb)] (2) (dppb = 1,2-bis(diphenylphosphino)benzene), an observation indicating each wave involves simultaneous one-electron oxidations at each metallodithiolene fragment. This assignment is affirmed by density functional theory (DFT) calculations that show the redox-active molecular orbital (MO) is principally composed of the dithiolene S(2)C(2) π-system, and by spectroelectrochemical UV-vis of [1](2+), which displays hallmark low energy charge transfer (CT) bands. Dication [1](2+) is a diradical with a near degenerate singlet-triplet ground state; fluid solution electron paramagnetic resonance (EPR) spectra validate the DFT-derived isotropic exchange coupling, J' = -6.3 cm(-1). The frozen solution X-band EPR spectrum of [1](2+) is consistent with a spin-triplet bearing a very faint half-field ("ΔM(S) = 2") signal. It is successfully simulated with an amazingly small zero field splitting, D = -15 × 10(-4) cm(-1) and negligible rhombicity (E/D = 0.008). These zero-field splitting parameters, which stem from the long-range dipolar spin coupling, are very accurately reproduced using a multipoint dipole model with an optimized interspin distance of 12.434 Å. With the framework reported herein for understanding how the weak interaction of two spins is mediated by tpbz, this bridging ligand can now be incorporated into extended systems with tailored chemical and physical properties for use in a variety of molecular-based electronic and magnetic devices. PMID:21381668

  20. Evaluation of eight short-term long-range transport models using field data

    NASA Astrophysics Data System (ADS)

    Carhart, R. A.; Policastro, A. J.; Wastag, M.; Coke, L.

    Eight short-term long-range transport models (MESOPUFF, MESOPLUME, MSPUFF, MESOPUFF II, MTDDIS, ARRPA, RADM and RTM-II) have been tested with field data from two data bases involving tracer releases. The Oklahoma data base involved two separate experiments with measurements taken at 100 and 600 km arcs downwind of a 3-h perfluorocarbon release. The Savannah River Plant data base encompassed 15 experiments with measurements taken over 2-5 days at distances of 28-144 km downwind from a 62 m stack release of Kr-85 gas. Application of the American Meteorological Society statistics to the model/data comparisons showed that six of the eight models predicted within a factor of two of the observed concentrations for all of the following: points paired in space and time, points paired in space only, and for points unpaired in space and time. However, the ratio of the standard deviation of residuals to the average observed value showed improvement as more unpairing was done in the comparison of the models with the data. The statistical comparisons reveal a definite tendency of the models to overpredict plume concentrations. Supplemental graphical comparisons showed that plume concentration overprediction is accompanied with an underprediction of plume spreading, and that a definite time lag is often observed between the time of arrival of the observed plume and the time of arrival of the predicted plume. The causes of model/data discrepancies can be largely traced to inadequate wind field modeling that leads to an incorrect temporal and spatial positioning of the plume, and the use of the Turner [Workbook of atmospheric dispersion estimates. U.S. Dept of H.E.W. Publication 999-AP-26 (1970)] curves to downwind distances beyond which they can accurately represent the scales of atmospheric turbulence. The use of multilayer wind field models and the use of the Heffter [ J. appl. Met.4, 153-156 (1965)] formula for lateral plume dispersion close to the source appear to improve

  1. Coherence of compound field potentials reveals discontinuities in the CA1-subiculum of the hippocampus in freely-moving rats.

    PubMed

    Bullock, T H; Buzsáki, G; McClune, M C

    1990-01-01

    The ongoing micro-electroencephalogram was recorded with a chronically implanted comb-like array of 16 tungsten semi-microelectrodes 0.2 or 0.25 mm apart, spanning CA1 strata oriens, pyramidale and radiatum and into subiculum, in four behavioral states: walking, standing still, paradoxical and slow wave sleep and under scopolamine. Power, phase and coherence spectra were computed, the latter two for each of the 120 pairs, in frequency bands from 1 to 64 Hz. (1) Coherence is high for all frequencies within the same subfield, e.g. stratum radiatum, but falls with distance. Theta frequency (8 Hz), when prominent and widespread (during "theta states" walking and paradoxical sleep), shows the most widespread synchrony: coherence falls slowly, from 1.0 at 0.2 mm to 0.7 at c. 2 mm longitudinally within stratum radiatum; all other frequencies fall two or three times faster. (2) An abrupt drop in coherence occurs across field borders (CA1-subiculum) and between stratum oriens and radiatum, across a line just under stratum pyramidale, between high coherence regions on each side of the coherence discontinuity. A less extreme drop occurs in stratum radiatum 0.4 mm from the subiculum border, without obvious histological correlate. The discontinuities in coherence are stable through all four behavioral states as well as under scopolamine. (3) Phase profiles diagonally across CA1 and into subiculum show abrupt, local shifts of phase (up to 125) at these same levels. No gradual shift reaching 180 (phase reversal) occurs in the span of loci examined. (4) The theta power peak in theta states is not necessarily due to additional energy in that band; in some conditions it is mainly due to reduced power in other frequencies. Root mean square voltage is generally less in the high theta ("synchronized") than in the non-theta states. Only the theta peak correlates with a peak in coherence. (5) Significant microstructure in the dynamics of neuronal cooperativity distinguishes behavioral

  2. Single parameter scaling for 1d systems with scale-free long-range correlated disordered potentials

    NASA Astrophysics Data System (ADS)

    Sandler, Nancy; Petersen, Greg

    2013-03-01

    Disordered optical lattices have renewed the interest in localization physics under power-law long-range correlated disorder potentials. For these systems, insight can be gained by combining numerical data and analytic expressions based on scaling laws. Thus, the absence of a transition in short-range correlated disordered systems can been proved by verifying the validity of the single parameter scaling (SPS) hypothesis for the distribution function of the dimensionless conductance. In this talk we discuss this hypothesis for a system with scale-free long-range correlated disorder potentials of the form ~ 1 /rα as a function of the correlation exponent α. We present results for the 1st (the β-function) and 2nd (variance) cumulants of the distribution function, and show a violation of SPS at an energy scale ESPS, that scales with an α-renormalized disorder strength. Calculations for the localization length reveals the existence of a crossover scale Ecross between two regions as correlations increase. An increased number of more extended-like states appear near the band-center while states near the band edges experience reduced localization lengths. We confirm previously predicted scaling behavior near the band edge and center. Supported by NSF-MWN/CIAM and NSF-PIRE.

  3. GenoFrag: software to design primers optimized for whole genome scanning by long-range PCR amplification

    PubMed Central

    Ben Zakour, Nouri; Gautier, Michel; Andonov, Rumen; Lavenier, Dominique; Cochet, Marie-Françoise; Veber, Philippe; Sorokin, Alexei; Le Loir, Yves

    2004-01-01

    Genome sequence data can be used to analyze genome plasticity by whole genome PCR scanning. Small sized chromosomes can indeed be fully amplified by long-range PCR with a set of primers designed using a reference strain and applied to several other strains. Analysis of the resulting patterns can reveal the genome plasticity. To facilitate such analysis, we have developed GenoFrag, a software package for the design of primers optimized for whole genome scanning by long-range PCR. GenoFrag was developed for the analysis of Staphylococcus aureus genome plasticity by whole genome amplification in ∼10 kb-long fragments. A set of primers was generated from the genome sequence of S.aureus N315, employed here as a reference strain. Two subsets of primers were successfully used to amplify two portions of the N315 chromosome. This experimental validation demonstrates that GenoFrag is a robust and reliable tool for primer design and that whole genome PCR scanning can be envisaged for the analysis of genome diversity in S.aureus, one of the major public health concerns worldwide. PMID:14704339

  4. The Role of Long-Range Connectivity for the Characterization of the Functional–Anatomical Organization of the Cortex

    PubMed Central

    Knösche, Thomas R.; Tittgemeyer, Marc

    2011-01-01

    This review focuses on the role of long-range connectivity as one element of brain structure that is of key importance for the functional–anatomical organization of the cortex. In this context, we discuss the putative guiding principles for mapping brain function and structure onto the cortical surface. Such mappings reveal a high degree of functional–anatomical segregation. Given that brain regions frequently maintain characteristic connectivity profiles and the functional repertoire of a cortical area is closely related to its anatomical connections, long-range connectivity may be used to define segregated cortical areas. This methodology is called connectivity-based parcellation. Within this framework, we investigate different techniques to estimate connectivity profiles with emphasis given to non-invasive methods based on diffusion magnetic resonance imaging (dMRI) and diffusion tractography. Cortical parcellation is then defined based on similarity between diffusion tractograms, and different clustering approaches are discussed. We conclude that the use of non-invasively acquired connectivity estimates to characterize the functional–anatomical organization of the brain is a valid, relevant, and necessary endeavor. Current and future developments in dMRI technology, tractography algorithms, and models of the similarity structure hold great potential for a substantial improvement and enrichment of the results of the technique. PMID:21779237

  5. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex

    PubMed Central

    Stehberg, Jimmy; Dang, Phat T.; Frostig, Ron D.

    2014-01-01

    Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed. PMID:25309339

  6. Controlling the long-range corrections in atomistic Monte Carlo simulations of two-phase systems.

    PubMed

    Goujon, Florent; Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2015-10-13

    The long-range correction to the surface tension can amount to up to 55% of the calculated value of the surface tension for cutoffs in the range of 2.1-6.4 σ. The calculation of the long-range corrections to the surface tension and to the configurational energy in two-phase systems remains an active area of research. In this work, we compare the long-range corrections methods proposed by Guo and Lu ( J. Chem. Phys. 1997 , 106 , 3688 - 3695 ) and Janeček ( J. Phys. Chem. B 2006 , 110 , 6264 - 6269 ) for the calculation of the surface tension and of the coexisting densities in Monte Carlo simulations of the truncated Lennard-Jones potential and the truncated and shifted Lennard-Jones potential models. These methods require an estimate of the long-range correction at each step in the Monte Carlo simulation. We apply the full version of the Guo and Lu method, which involves the calculation of a double integral that contains a series of density differences, and we compare these results with the simplified version of the method which is routinely used in two-phase simulations. We conclude that the cutoff dependencies of the surface tension and coexisting densities are identical for the full versions of Guo and Lu and Janeček methods. We show that it is possible to avoid applying the long-range correction at every step by using the truncated Lennard-Jones potential with a cutoff rc ≥ 5 σ. The long-range correction can then be applied at the end of the simulation. The limiting factor in the accurate calculation of this final correction is an accurate estimate of the coexisting densities. Link-cell simulations performed using a cutoff rc = 5.5 σ require twice as much computing time as those with a more typical cutoff of rc = 3.0 σ. The application of the Janeček correction increases the running time of the simulation by less than 10%, and it can be profitably applied with the shorter cutoff. PMID:26574249

  7. Preeruptive inflation and surface interferometric coherence characteristics revealed by satellite radar interferometry at Makushin Volcano, Alaska: 1993-2000

    USGS Publications Warehouse

    Lu, Zhiming; Power, J.A.; McConnell, V.S.; Wicks, C., Jr.; Dzurisin, D.

    2002-01-01

    Pilot reports in January 1995 and geologic field observations from the summer of 1996 indicate that a relatively small explosive eruption of Makushin, one of the more frequently active volcanoes in the Aleutian arc of Alaska, occured on 30 January 1995. Several independent radar interferograms that each span the time period from October 1993 to September 1995 show evidence of ???7 cm of uplift centered on the volcano's east flank, which we interpret as preeruptive inflation of a ???7-km-deep magma source (??V = 0.022 km3). Subsequent interferograms for 1995-2000, a period that included no reported eruptive activity, show no evidence of additional ground deformation. Interferometric coherence at C band is found to persist for 3 years or more on lava flow and other rocky surfaces covered with short grass and sparsely distributed tall grass and for at least 1 year on most pyroclastic deposits. On lava flow and rocky surfaces with dense tall grass and on alluvium, coherence lasts for a few months. Snow and ice surfaces lose coherence within a few days. This extended timeframe of coherence over a variety of surface materials makes C band radar interferometry an effective tool for studying volcano deformation in Alaska and other similar high-latitude regions.

  8. Determination of long-range scalar (1)H-(1)H coupling constants responsible for polarization transfer in SABRE.

    PubMed

    Eshuis, Nan; Aspers, Ruud L E G; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2Hz (4)J coupling to p-H2 derived hydrides for their ortho protons, and a much lower (5)J coupling for their meta protons. Interestingly, the (4)J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1Hz. PMID:26859865

  9. Determination of long-range scalar 1H-1H coupling constants responsible for polarization transfer in SABRE

    NASA Astrophysics Data System (ADS)

    Eshuis, Nan; Aspers, Ruud L. E. G.; van Weerdenburg, Bram J. A.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz 4J coupling to p-H2 derived hydrides for their ortho protons, and a much lower 5J coupling for their meta protons. Interestingly, the 4J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz.

  10. From the Cover: PNAS Plus: Long range order and two-fluid behavior in heavy electron materials

    NASA Astrophysics Data System (ADS)

    Shirer, Kent R.; Shockley, Abigail C.; Dioguardi, Adam P.; Crocker, John; Lin, Ching H.; apRoberts-Warren, Nicholas; Nisson, David M.; Klavins, Peter; Cooley, Jason C.; Yang, Yi-feng; Curro, Nicholas J.

    2012-11-01

    The heavy electron Kondo liquid is an emergent state of condensed matter that displays universal behavior independent of material details. Properties of the heavy electron liquid are best probed by NMR Knight shift measurements, which provide a direct measure of the behavior of the heavy electron liquid that emerges below the Kondo lattice coherence temperature as the lattice of local moments hybridizes with the background conduction electrons. Because the transfer of spectral weight between the localized and itinerant electronic degrees of freedom is gradual, the Kondo liquid typically coexists with the local moment component until the material orders at low temperatures. The two-fluid formula captures this behavior in a broad range of materials in the paramagnetic state. In order to investigate two-fluid behavior and the onset and physical origin of different long range ordered ground states in heavy electron materials, we have extended Knight shift measurements to URu2Si2, CeIrIn5, and CeRhIn5. In CeRhIn5 we find that the antiferromagnetic order is preceded by a relocalization of the Kondo liquid, providing independent evidence for a local moment origin of antiferromagnetism. In URu2Si2 the hidden order is shown to emerge directly from the Kondo liquid and so is not associated with local moment physics. Our results imply that the nature of the ground state is strongly coupled with the hybridization in the Kondo lattice in agreement with phase diagram proposed by Yang and Pines.

  11. Generalized mean-field approach to simulate the dynamics of large open spin ensembles with long range interactions

    NASA Astrophysics Data System (ADS)

    Krämer, Sebastian; Ritsch, Helmut

    2015-12-01

    We numerically study the collective coherent and dissipative dynamics in spin lattices with long range interactions in one, two and three dimensions. For generic geometric configurations with a small spin number, which are fully solvable numerically, we show that a dynamical mean-field approach based upon a spatial factorization of the density operator often gives a surprisingly accurate representation of the collective dynamics. Including all pair correlations at any distance in the spirit of a second order cumulant expansion improves the numerical accuracy by at least one order of magnitude. We then apply this truncated expansion method to simulate large numbers of spins from about ten in the case of the full quantum model, a few thousand, if all pair correlations are included, up to several ten-thousands in the mean-field approximation. We find collective modifications of the spin dynamics in surprisingly large system sizes. In 3D, the mutual interaction strength does not converge to a desired accuracy within the maximum system sizes we can currently implement. Extensive numerical tests help in identifying interaction strengths and geometric configurations where our approximations perform well and allow us to state fairly simple error estimates. By simulating systems of increasing size we show that in one and two dimensions we can include as many spins as needed to capture the properties of infinite size systems with high accuracy. As a practical application our approach is well suited to provide error estimates for atomic clock setups or super radiant lasers using magic wavelength optical lattices.

  12. Low-frequency source for very long-range underwater communication.

    PubMed

    Mosca, Frédéric; Matte, Guillaume; Shimura, Takuya

    2013-01-01

    Very long-range underwater acoustic communication (UAC) is crucial for long cruising (>1000 km) autonomous underwater vehicles (AUVs). Very long-range UAC source for AUV must exhibit high electro-acoustic efficiency (>60%) and compactness. This paper describes the Janus-Hammer Bell (JHB) transducer that has been designed for this purpose and meets those requirements. The transducer works on the 450-550 Hz bandwidth and reaches source level above 200 dB (ref. 1 μPa at 1 m) with 1 kW excitation and full immersion capability. JHB source has been used for communication experiments by the Japanese institute for marine technology (Japan Agency for Marine-Earth Science and Technology) achieving a baud rate of 100 bits/s at 1000 km. PMID:23298019

  13. Long-range spoof surface plasmons on the doubly corrugated metal surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Qiang; Kong, Ling-Bao; Liu, Pu-Kun

    2016-07-01

    In this paper, symmetric spoof surface plasmon (SSP) mode on the doubly corrugated metal surfaces is indentified as long-range spoof surface plasmon (LRSSP) because of its extreme low propagation loss and symmetric dominant field profile so as short-range SSP (SRSSP) for anti-symmetric mode. Based on theoretical calculation and numerical simulation of finite integration method, symmetric and anti-symmetric SSP modes with various gap sizes between these two identical corrugated metal surfaces are investigated in terahertz (THz) regime and good agreement is realized. Besides, the low loss superiority of LRSSP diminishes along with the increased gap size. This work opens up new avenues to utilize this long-range surface mode in far-infrared, THz or lower frequency band and can find many potential applications such as low-loss waveguide, filters and novel electronic sources.

  14. Electrically tunable birefringence of a polymer composite with long-range orientational ordering of liquid crystals.

    PubMed

    Choi, Byeongdae; Song, Seongkyu; Jeong, Soon Moon; Chung, Seok-Hwan; Glushchenko, Anatoliy

    2014-07-28

    We report an optical film with electrically tunable birefringence in which the liquid crystals (LCs), mixed with the host polymer, form long-range ordering. The film was prepared through polymerization without phase separation between the LCs and polymers. Driving voltage below 30 V for full switching of birefringence is achieved in a 6 μm-thick film. Electro-optical investigations for the film suggest that the long-range ordering of the LCs mixed in the film caused by polymerization lead to rotations of the LCs as well as optical anisotropy in the film. These films with electrically tunable birefringence could have applications as flexible light modulators and phase retardation films for 2D-3D image switching. PMID:25089422

  15. Atmosphere-surface exchange and long-range transport of persistent organic pollutants

    SciTech Connect

    Pul, W.A.J. van; Jaarsveld, J.A. van; Jacobs, C.M.J.

    1996-12-31

    Persistent Organic Pollutants (POPs) are compounds that are resistant to photolytic, biological and chemical degradation. Many POPs are semi-volatile at atmospheric conditions. Because of these characteristics POPs have a atmospheric lifetime of weeks or more and are subject to long-range atmospheric transport. During this transport POPs can be deposited as well as be re-emitted from soil and water bodies. In this study a model for the exchange of POP at the soil and sea surface is presented as well as its application in a long-range atmospheric transport model. The main goal of this study is to simulate the spatial distribution of POP deposition (accumulation) over Europe.

  16. Impact of Local Pollution Versus Long Range Transported Aerosols on Clouds and Precipitation over California

    NASA Astrophysics Data System (ADS)

    Prather, K. A.

    2015-12-01

    Aerosols form cloud droplets and ice crystals in clouds and can profoundly impact precipitation processes. In-situ aircraft measurements of the composition of individual cloud residuals have been used to study the impact of different aerosol sources including sea spray, dust, soot, and biomass burning on cloud microphysics and precipitation processes. Aircraft studies in 2011 as part of the CalWater project showed that long range transport of dust aerosols from as far away as Africa and biological particles can lead to an increase in the amount of snowfall over California. This presentation will describe results from CalWater-2015 involving aircraft and ground-based measurements at a coastal site. A discussion of the aerosol sources measured in clouds will be presented detailing the relative impacts of local versus long range transported pollution aerosols over California.

  17. Spin Superfluidity and Long-Range Transport in Thin-Film Ferromagnets.

    PubMed

    Skarsvåg, Hans; Holmqvist, Cecilia; Brataas, Arne

    2015-12-01

    In ferromagnets, magnons may condense into a single quantum state. Analogous to superconductors, this quantum state may support transport without dissipation. Recent works suggest that longitudinal spin transport through a thin-film ferromagnet is an example of spin superfluidity. Although intriguing, this tantalizing picture ignores long-range dipole interactions; here, we demonstrate that such interactions dramatically affect spin transport. In single-film ferromagnets, "spin superfluidity" only exists at length scales (a few hundred nanometers in yttrium iron garnet) somewhat larger than the exchange length. Over longer distances, dipolar interactions destroy spin superfluidity. Nevertheless, we predict the reemergence of spin superfluidity in trilayer ferromagnet-normal metal-ferromagnet films that are ∼1  μm in size. Such systems also exhibit other types of long-range spin transport in samples that are several micrometers in size. PMID:26684138

  18. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope

    PubMed Central

    Wang, Yang-Yang; Zhang, Tong

    2014-01-01

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application. PMID:25234712

  19. Entropy and long-range memory in random symbolic additive Markov chains

    NASA Astrophysics Data System (ADS)

    Melnik, S. S.; Usatenko, O. V.

    2016-06-01

    The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov chain with long-range memory. Supposing that the correlations between random elements of the chain are weak, we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The developed theory opens the way for constructing a more consistent and sophisticated approach to describe the systems with strong short-range and weak long-range memory.

  20. Excitation of Ultracold Molecules to ``TRILOBITE-LIKE" Long-Range Molecular Rydberg States

    NASA Astrophysics Data System (ADS)

    Bellos, M. A.; Carollo, R.; Banerjee, J.; Eyler, E. E.; Gould, P. L.; Stwalley, W. C.

    2013-06-01

    A class of long-range Rydberg molecules, sometimes called ``trilobite states", occurs when a ground-state atom is embedded in the electronic cloud of a Rydberg atom. The bond between the Rydberg atom and the ground-state atom originates from the low-energy scattering of the Rydberg electron from the ground-state atom. We produce trilobite-like states of ultracold Rb_2 at low principal quantum numbers and at internuclear separations less than 40 bohr. We populate these states through single-photon ultraviolet transitions starting from molecules in high-lying vibrational levels of the lowest triplet state. This demonstrates that long-range Rydberg molecules can also be excited through bound-bound transitions, in addition to previous studies that used free-bound transitions. We also discuss the advantages of a bound-bound pathway. C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, Phys. Rev. Lett. 85, 2458 (2000).

  1. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.

    PubMed

    Riascos, A P; Mateos, José L

    2015-11-01

    In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs. PMID:26651751

  2. On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Kay; Lenzmann, Enno; Staffilani, Gigliola

    2013-02-01

    We consider a general class of discrete nonlinear Schrödinger equations (DNLS) on the lattice {h{Z}} with mesh size h > 0. In the continuum limit when h → 0, we prove that the limiting dynamics are given by a nonlinear Schrödinger equation (NLS) on {{R}} with the fractional Laplacian (-Δ) α as dispersive symbol. In particular, we obtain that fractional powers {1/2 < α < 1} arise from long-range lattice interactions when passing to the continuum limit, whereas the NLS with the usual Laplacian -Δ describes the dispersion in the continuum limit for short-range or quick-decaying interactions (e. g., nearest-neighbor interactions). Our results rigorously justify certain NLS model equations with fractional Laplacians proposed in the physics literature. Moreover, the arguments given in our paper can be also applied to discuss the continuum limit for other lattice systems with long-range interactions.

  3. Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler.

    PubMed

    Samanta, Anirban; Zhou, Yadong; Zou, Shengli; Yan, Hao; Liu, Yan

    2014-09-10

    The dependence of quantum dot (QD) fluorescence emission on the proximity of 30 nm gold nanoparticles (AuNPs) was studied with controlled interparticle distances ranging from 15 to 70 nm. This was achieved by coassembling DNA-conjugated QDs and AuNPs in a 1:1 ratio at precise positions on a triangular-shaped DNA origami platform. A profound, long-range quenching of the photoluminescence intensity of the QDs was observed. A combination of static and time-resolved fluorescence measurements suggests that the quenching is due to an increase in the nonradiative decay rate of QD emission. Unlike FRET, the energy transfer is inversely proportional to the 2.7th power of the distance between nanoparticles with half quenching at ∼28 nm. This long-range quenching phenomena may be useful for developing extended spectroscopic rulers in the future. PMID:25084363

  4. Photoassociation of a cold-atom-molecule pair: Long-range quadrupole-quadrupole interactions

    SciTech Connect

    Lepers, M.; Dulieu, O.; Kokoouline, V.

    2010-10-15

    The general formalism of the multipolar expansion of electrostatic interactions is applied to the calculation of the potential energy between an excited atom (without fine structure) and a ground-state diatomic molecule at large mutual separations. Both partners exhibit a permanent quadrupole moment so that their mutual long-range interaction is dominated by a quadrupole-quadrupole term, which is attractive enough to bind trimers. Numerical results are given for an excited Cs(6{sup 2}P) atom and a ground-state Cs{sub 2} molecule. The prospects for achieving photoassociation of a cold-atom-dimer pair are thus discussed and found promising. The formalism can be generalized to the long-range interaction between molecules to investigate the formation of cold tetramers.

  5. Stable distribution and long-range correlation of Brent crude oil market

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Zhuang, Xin-tian; Jin, Xiu; Huang, Wei-qiang

    2014-11-01

    An empirical study of stable distribution and long-range correlation in Brent crude oil market was presented. First, it is found that the empirical distribution of Brent crude oil returns can be fitted well by a stable distribution, which is significantly different from a normal distribution. Second, the detrended fluctuation analysis for the Brent crude oil returns shows that there are long-range correlation in returns. It implies that there are patterns or trends in returns that persist over time. Third, the detrended fluctuation analysis for the Brent crude oil returns shows that after the financial crisis 2008, the Brent crude oil market becomes more persistence. It implies that the financial crisis 2008 could increase the frequency and strength of the interdependence and correlations between the financial time series. All of these findings may be used to improve the current fractal theories.

  6. Quantum spin models with long-range interactions and tunnelings: a quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Maik, Michał; Hauke, Philipp; Dutta, Omjyoti; Zakrzewski, Jakub; Lewenstein, Maciej

    2012-11-01

    We use a quantum Monte Carlo method to investigate various classes of two-dimensional spin models with long-range interactions at low temperatures. In particular, we study a dipolar XXZ model with U(1) symmetry that appears as a hard-core boson limit of an extended Hubbard model describing polarized dipolar atoms or molecules in an optical lattice. Tunneling, in such a model, is short-range, whereas density-density couplings decay with distance following a cubic power law. We also investigate an XXZ model with long-range couplings of all three spin components—such a model describes a system of ultracold ions in a lattice of microtraps. We describe an approximate phase diagram for such systems at zero and at finite temperature, and compare their properties. In particular, we compare the extent of crystalline, superfluid and supersolid phases. Our predictions apply directly to current experiments with mesoscopic numbers of polar molecules and trapped ions.

  7. Dark matter, long-range forces, and large-scale structure

    NASA Technical Reports Server (NTRS)

    Gradwohl, Ben-Ami; Frieman, Joshua A.

    1992-01-01

    If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. We discuss the astrophysical and cosmological implications of a long-range force coupled only to the dark matter and find rather tight constraints on its strength. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). We explore the consequent effects on the two-point correlation function, large-scale velocity flows, and microwave background anisotropies, for models with initial scale-invariant adiabatic perturbations and cold dark matter.

  8. Collective modes in charge-density waves and long-range Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Virosztek, Attila; Maki, Kazumi

    1993-07-01

    We study theoretically the collective modes in charge-density waves in the presence of long-range Coulomb interaction. We find that earlier works by Takada and his collaborators are inadequate since they introduced inconsistent approximations in evaluating a variety of correlation functions. The amplitude mode is unaffected by the Coulomb interaction, while the phase mode splits into the phason with linear dispersion (i.e., acoustic mode) and the optical mode with an energy gap in the presence of the Coulomb interaction. In particular, we establish the temperature dependence of the phason velocity vφ. A comparison with recent neutron-scattering data on the phason velocity in the charge-density wave of a single crystal of blue bronze K0.3MoO3 indicates that mean-field theory which includes the long-range Coulomb interaction gives an excellent description of the observed phason velocity.

  9. Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking

    NASA Technical Reports Server (NTRS)

    Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)

    2009-01-01

    A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,

  10. Evaluation of Long-Range Lightning Detection Networks Using TRMM/LIS Observations

    NASA Technical Reports Server (NTRS)

    Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cecil, Daniel J.; Cummins, Kenneth L.; Petersen, Walter A.; Blakeslee, Richard J.; Goodman, Steven J.

    2011-01-01

    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. Toward this end, the present study evaluates data from the World Wide Lightning Location Network (WWLLN) using observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study documents the WWLLN detection efficiency and location accuracy relative to LIS observations, describes the spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by WWLLN. Improved knowledge of the WWLLN detection capabilities will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).

  11. Pairing in high-density neutron matter including short- and long-range correlations

    NASA Astrophysics Data System (ADS)

    Ding, Dong; Rios, Arnau; Dussan, Helber; Dickhoff, Willem; Witte, Sam; Polls, Artur

    2016-03-01

    To address open questions in neutron star phenomenology, pairing gaps of 1S0 and 3P2 -3F2 channels in a wide range of densities has been calculated using three different interactions (AV18 CDbonn N3LO). Traditionally, the Bardeen-Cooper-Schrieffer(BCS) approach has been used to compute gaps from bare nucleon-nucleon interactions. Here, we incorporate the influence of short- and long-range correlations in the pairing gaps. Short-range correlations (SRC) are treated including the appropriate fragmentation of single-particle states, and they suppress the gaps substantially. Long-range correlations(LRC) dress the pairing interaction via density and spin modes, and provide a relatively small correction. Results are relevant and parametrized in a user friendly way for neutron-star cooling scenarios, in particular in view of the recent observational data on Cassiopeia A.

  12. FY 1991--FY 1995 Information Technology Resources Long-Range Plan

    SciTech Connect

    Not Available

    1989-12-01

    The Department of Energy has consolidated its plans for Information Systems, Computing Resources, and Telecommunications into a single document, the Information Technology Resources Long-Range Plan. The consolidation was done as a joint effort by the Office of ADP Management and the Office of Computer Services and Telecommunications Management under the Deputy Assistant Secretary for Administration, Information, and Facilities Management. This Plan is the product of a long-range planning process used to project both future information technology requirements and the resources necessary to meet those requirements. It encompasses the plans of the various organizational components within the Department and its management and operating contractors over the next 5 fiscal years, 1991 through 1995.

  13. ATCOM: accelerated image processing for terrestrial long-range imaging through atmospheric effects

    NASA Astrophysics Data System (ADS)

    Curt, Petersen F.; Paolini, Aaron

    2013-05-01

    Long-range video surveillance performance is often severely diminished due to atmospheric turbulence. The larger apertures typically used for video-rate operation at long-range are particularly susceptible to scintillation and blurring effects that limit the overall diffraction efficiency and resolution. In this paper, we present research progress made toward a digital signal processing technique which aims to mitigate the effects of turbulence in real-time. Our previous work in this area focused on an embedded implementation for portable applications. Our more recent research has focused on functional enhancements to the same algorithm using general-purpose hardware. We present some techniques that were successfully employed to accelerate processing of high-definition color video streams and study performance under nonideal conditions involving moving objects and panning cameras. Finally, we compare the real-time performance of two implementations using a CPU and a GPU.

  14. Shear-induced quench of long-range correlations in a liquid mixture.

    PubMed

    Wada, Hirofumi

    2004-03-01

    A static correlation function of concentration fluctuations in a (dilute) binary liquid mixture subjected to both a concentration gradient and uniform shear flow is investigated within the framework of fluctuating hydrodynamics. It is shown that a well-known |c|(2)/k(4) long-range correlation at large wave numbers k crosses over to a weaker divergent one at wave numbers satisfying k<(gamma;/D)(1/2), while an asymptotic shear-controlled power-law dependence is found at much smaller wave numbers given by k<(gamma;/nu)(1/2), where c, gamma;, D, and nu are the mass concentration, the rate of the shear, the mass diffusivity, and the kinematic viscosity of the mixture, respectively. The result will provide the possibility to observe the shear-induced suppression of a long-range correlation experimentally by using, for example, a low-angle light scattering technique. PMID:15089275

  15. Pairing in high-density neutron matter including short- and long-range correlations

    NASA Astrophysics Data System (ADS)

    Ding, D.; Rios, A.; Dussan, H.; Dickhoff, W. H.; Witte, S. J.; Carbone, A.; Polls, A.

    2016-08-01

    Pairing gaps in neutron matter need to be computed in a wide range of densities to address open questions in neutron-star phenomenology. Traditionally, the Bardeen-Cooper-Schrieffer approach has been used to compute gaps from bare nucleon-nucleon interactions. Here we incorporate the influence of short- and long-range correlations in the pairing gaps. Short-range correlations are treated, including the appropriate fragmentation of single-particle states, and substantially suppress the gaps. Long-range correlations dress the pairing interaction via density and spin modes and provide a relatively small correction. We use different interactions, some with three-body forces, as a starting point to control for any systematic effects. Results are relevant for neutron-star cooling scenarios, in particular in view of the recent observational data on Cassiopeia A.

  16. Instabilities and relaxation to equilibrium in long-range oscillator chains

    NASA Astrophysics Data System (ADS)

    Miloshevich, George; Nguenang, Jean-Pierre; Dauxois, Thierry; Khomeriki, Ramaz; Ruffo, Stefano

    2015-03-01

    We study instabilities and relaxation to equilibrium in a long-range extension of the Fermi-Pasta-Ulam-Tsingou (FPU) oscillator chain by exciting initially the lowest Fourier mode. Localization in mode space is stronger for the long-range FPU model. This allows us to uncover the sporadic nature of instabilities, i.e., by varying initially the excitation amplitude of the lowest mode, which is the control parameter, instabilities occur in narrow amplitude intervals. Only for sufficiently large values of the amplitude, the system enters a permanently unstable regime. These findings also clarify the long-standing problem of the relaxation to equilibrium in the short-range FPU model. Because of the weaker localization in mode space of this latter model, the transfer of energy is retarded and relaxation occurs on a much longer timescale.

  17. Long-range repulsion of colloids driven by ion exchange and diffusiophoresis

    PubMed Central

    Florea, Daniel; Musa, Sami; Huyghe, Jacques M. R.; Wyss, Hans M.

    2014-01-01

    Interactions between surfaces and particles in aqueous suspension are usually limited to distances smaller than 1 μm. However, in a range of studies from different disciplines, repulsion of particles has been observed over distances of up to hundreds of micrometers, in the absence of any additional external fields. Although a range of hypotheses have been suggested to account for such behavior, the physical mechanisms responsible for the phenomenon still remain unclear. To identify and isolate these mechanisms, we perform detailed experiments on a well-defined experimental system, using a setup that minimizes the effects of gravity and convection. Our experiments clearly indicate that the observed long-range repulsion is driven by a combination of ion exchange, ion diffusion, and diffusiophoresis. We develop a simple model that accounts for our data; this description is expected to be directly applicable to a wide range of systems exhibiting similar long-range forces. PMID:24748113

  18. Long range correlations in tree ring chronologies of the USA: Variation within and across species

    NASA Astrophysics Data System (ADS)

    Bowers, M. C.; Gao, J. B.; Tung, W. W.

    2013-02-01

    Abstract Tree ring width data are among the best proxies for reconstructing past temperature and precipitation records. The discovery of fractal scaling and long-memory in meteorological and hydrological signals motivates us to investigate such properties in tree ring chronologies. Detrended fluctuation analysis and adaptive fractal analysis are utilized to estimate the Hurst parameter values of 697 tree ring chronologies from the continental United States. We find significant differences in the Hurst parameter values across the 10 species studied in the work. The <span class="hlt">long-range</span> scaling relations found here suggest that the behavior of tree ring growth observed in a short calibration period may be similar to the general behavior of tree ring growth in a much longer period, and therefore, the limited calibration period may be more useful than originally thought. The variations of the <span class="hlt">long-range</span> correlations within and across species may be further explored in future to better reconstruct paleoclimatic records.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/10159129','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/10159129"><span id="translatedtitle">Information resources management <span class="hlt">long-range</span> plan, FY1994--1998</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Not Available</p> <p>1993-04-01</p> <p>This document describes IRM activities and the information technology resources and capabilities of the Department, the future requirements, and the strategies and plans to satisfy the identified requirements. The <span class="hlt">long-range</span> planning process provides the systematic means to meet this objective and assists the Department in assuring that information technology (IT) support is provided in an efficient, effective, and timely manner so that its programmatic missions can be accomplished. Another important objective of the Plan is to promote better understanding, both within and external to the Department, of its IT environment, requirements, issues, and recommended solutions. This DOE IRM Plan takes into consideration the IRM requirements of approximately 50 different sites. The annual <span class="hlt">long-range</span> planning cycle for supporting this Plan was initiated by a Call in August 1991 for site plans to be submitted in February 1992 by those Departmental components and contractors with major IRM requirements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/6731272','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/6731272"><span id="translatedtitle">ESR study of 2-substituted 2-adamantyl radicals. Configuration and <span class="hlt">long-range</span> hyperfine interaction</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Kira, Mitsuo; Akiyama, Mieko; Ichinose, Michiko; Sakurai, Hideki )</p> <p>1989-10-11</p> <p>Structure and <span class="hlt">long-range</span> hyperfine interaction in 2-adamantyl, 5,7-dimethyl-2-adamantyl, and the various 2-substituted radicals (substituent = CH{sub 3}, CH{sub 2}SiMe{sub 3}, OSiMe{sub 3}, SSiMe{sub 3}, CH{sub 2}GeMe{sub 3}, etc.) were studied by ESR. The origin of the <span class="hlt">long-range</span> hyperfine interaction is discussed on the basis of the comparison between experimental and theoretical hfs values. The analyses of hfs values for persistent 2-bis(trimethylsilyl)methyl-2-adamantyl radical and the 5,7-dimethyl derivative were made by the assistance of the ENDOR spectrum.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <center> <div class="footer-extlink text-muted"><small>Some links on this page may take you to non-federal websites. Their policies may differ from this site.</small> </div> </center> <div id="footer-wrapper"> <div class="footer-content"> <div id="footerOSTI" class=""> <div class="row"> <div class="col-md-4 text-center col-md-push-4 footer-content-center"><small><a href="http://www.science.gov/disclaimer.html">Privacy and Security</a></small> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center col-md-pull-4 footer-content-left"> <img src="http://www.osti.gov/images/DOE_SC31.png" alt="U.S. Department of Energy" usemap="#doe" height="31" width="177"><map style="display:none;" name="doe" id="doe"><area shape="rect" coords="1,3,107,30" href="http://www.energy.gov" alt="U.S. Deparment of Energy"><area shape="rect" coords="114,3,165,30" href="http://www.science.energy.gov" alt="Office of Science"></map> <a ref="http://www.osti.gov" style="margin-left: 15px;"><img src="http://www.osti.gov/images/footerimages/ostigov53.png" alt="Office of Scientific and Technical Information" height="31" width="53"></a> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center footer-content-right"> <a href="http://www.osti.gov/nle"><img src="http://www.osti.gov/images/footerimages/NLElogo31.png" alt="National Library of Energy" height="31" width="79"></a> <a href="http://www.science.gov"><img src="http://www.osti.gov/images/footerimages/scigov77.png" alt="science.gov" height="31" width="98"></a> <a href="http://worldwidescience.org"><img src="http://www.osti.gov/images/footerimages/wws82.png" alt="WorldWideScience.org" height="31" width="90"></a> </div> </div> </div> </div> </div> <p><br></p> </div><!-- container --> </body> </html>