Science.gov

Sample records for long-term building energy

  1. Energy use in buildings in a long-term perspective

    SciTech Connect

    Urge-Vorsatz, Diana; Petrichenko, Ksenia; Staniec, Maja; Eom, Jiyong

    2013-06-01

    Energy services in and related to buildings are responsible for approximately one-third of total global final energy demand and energy-related greenhouse gas emissions. They also contribute to the other key energy-related global sustainability challenges including lack of access to modern energy services, climate change, indoor and outdoor air pollution, related and additional health risks and energy dependence. The aim of this paper is to summarize the main sustainability challenges related to building thermal energy use and to identify the key strategies for how to address these challenges. The paper’s basic premises and results are provided by and updated from the analysis conducted for the Global Energy Assessment: identification of strategies and key solutions; scenario assessment; and the comparison of the results with other models in the literature.

  2. The implications of future building scenarios for long-term building energy research and development

    SciTech Connect

    Flynn, W.T.

    1986-12-01

    This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

  3. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    SciTech Connect

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

    2014-04-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

  4. China's Building Energy Use: A Long-Term Perspective based on a Detailed Assessment

    SciTech Connect

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-01-13

    We present here a detailed, service-based model of China's building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China's building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  5. Post Hoc Evaluation of Long-Term Goals for Energy Savings in the Buildings Sector: Lessons from Hindsight

    SciTech Connect

    Anderson, Dave M. ); Hostick, Donna J. )

    2003-04-28

    This report is one of two that re-examines the forecasted impact of individual programs currently within the Buildings Technology Program (BT) and the Weatherization and Intergovernmental Program (WIP) that appeared in the FY2000 Presidential Budget request. This report outlines the effects of re-estimating the FY 2000 budget request based on overlaying project data from subsequent years essentially revised out-year forecasts of project benefits. It shows that year-to-year long-term projections of primary energy savings can vary widely as models improve and programs change. Note that the FY2000 budget request was originally analyzed under the former Office of Building Technology, State and Community Programs (BTS), where BT and WIP were previously combined. Throughout the document, reference will be made to the predecessor of the BT and WIP programs, BTS, as FY2000 reflected that organization. A companion report develops potential methods for allowing inherent risk to be captured in the project benefits analysis. The point estimates in this paper are not influenced by uncertainty or risk. That report develops potential methods for allowing inherent risk to affect the benefits analysis via Monte Carlo simulation.

  6. Long-term U. S. energy outlook

    SciTech Connect

    Friesen, G.

    1984-01-01

    Each year Chase Econometrics offers its clients a brief summary of the assumptions underlying the long-term energy forecast for the U.S. To illustrate the uncertainty involved in forecasting for the period to the year 2000, they choose to compare forecasts with some recent projections prepared by the Department of Energy's Office of Policy, Planning and Analysis for the annual National Energy Policy Plan supplement. Particular emphasis is placed on Scenario B, which is the mid-range reference case. As the introduction to the supplement emphasizes, the NEPP projections should not be considered a statement of the policy goals of the Reagan Administration. They represent an analysis of the possible evolution of U.S. energy markets, given current information and existing policies. The purpose of providing Scenario B as a reference case as well as Scenarios A and C as alternate cases is to show the sensitivity of oil price projections to small swings in energy demand.

  7. Long-term global nuclear energy and fuel cycle strategies

    SciTech Connect

    Krakowski, R.A.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  8. The long term energy problem and aeronautics

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1975-01-01

    The projected increase in energy consumption by transportation in general and civil aviation in particular is directly opposed to the dwindling supplies of natural petroleum crude oil currently used to produce aircraft fuels. This fact dictates the need to develop even more energy conservative aircraft and propulsion systems than are currently available and to explore the potential of alternative fuels to replace the current petroleum derived hydrocarbons. Advances in technology are described in the areas of improved component efficiency, aircraft and engine integration, control systems, and advanced lightweight materials that are needed to maximize performance and minimize fuel usage. Also, improved turbofan and unconventional engine cycles which can provide significant fuel usage reductions are described. These advancements must be accomplished within expected environmental constraints such as noise and pollution limits. Alternative fuels derived from oil shale and coal are described, and the possible technological advancements needed to use these fuels in aircraft engines are discussed and evaluated with relation to potential differences in fuel characteristics.

  9. Energy scavenging for long-term deployable wireless sensor networks.

    PubMed

    Mathúna, Cian O; O'Donnell, Terence; Martinez-Catala, Rafael V; Rohan, James; O'Flynn, Brendan

    2008-05-15

    The coming decade will see the rapid emergence of low cost, intelligent, wireless sensors and their widespread deployment throughout our environment. While wearable systems will operate over communications ranges of less than a meter, building management systems will operate with inter-node communications ranges of the order of meters to tens of meters and remote environmental monitoring systems will require communications systems and associated energy systems that will allow reliable operation over kilometers. Autonomous power should allow wireless sensor nodes to operate in a "deploy and forget" mode. The use of rechargeable battery technology is problematic due to battery lifetime issues related to node power budget, battery self-discharge, number of recharge cycles and long-term environmental impact. Duty cycling of wireless sensor nodes with long "SLEEP" times minimises energy usage. A case study of a multi-sensor, wireless, building management system operating using the Zigbee protocol demonstrates that, even with a 1 min cycle time for an 864 ms "ACTIVE" mode, the sensor module is already in SLEEP mode for almost 99% of the time. For a 20-min cycle time, the energy utilisation in SLEEP mode exceeds the ACTIVE mode energy by almost a factor of three and thus dominates the module energy utilisation thereby providing the ultimate limit to the power system lifetime. Energy harvesting techniques can deliver energy densities of 7.5 mW/cm(2) from outdoor solar, 100 microW/cm(2) from indoor lighting, 100 microW/cm(3) from vibrational energy and 60 microW/cm(2) from thermal energy typically found in a building environment. A truly autonomous, "deploy and forget" battery-less system can be achieved by scaling the energy harvesting system to provide all the system energy needs. In the building management case study discussed, for duty cycles of less than 0.07% (i.e. in ACTIVE mode for 0.864 s every 20 min), energy harvester device dimensions of approximately 2 cm on a

  10. Samish Indian Nation Long-Term Strategic Energy Plan

    SciTech Connect

    Christine Woodward; B. Beckley; K. Hagen

    2005-06-30

    The Tribes strategic energy planning effort is divided into three phases: (1) Completing an Energy Resource Assessment; (2) Developing a Long-Term Strategic Energy Plan; and (3) Preparing a Strategic Energy Implementation Plan for the Samish Homelands. The Samish Indian Nation developed a comprehensive Strategic Energy plan to set policy for future development on tribal land that consists of a long-term, integrated, systems approach to providing a framework under which the Samish Community can use resources efficiently, create energy-efficient infrastructures, and protect and enhance quality of life. Development of the Strategic Energy plan will help the Samish Nation create a healthy community that will sustain current and future generations by addressing economic, environmental, and social issues while respecting the Samish Indian Nation culture and traditions.

  11. Fusion energy in context: its fitness for the long term.

    PubMed

    Holdren, J P

    1978-04-14

    Long-term limits to growth in energy will be imposed not by inability to expand supply, but by the rising environmental and social costs of doing so. These costs will therefore be central issues in choosing long-term options. Fusion, like solar energy, is not one possibility but many, some with very attractive environmental characteristics and others perhaps little better in these regards than fission. None of the fusion options will be cheap, and none is likely to be widely available before the year 2010. The most attractive forms of fusion may require greater investments of time and money to achieve, but they are the real reason for wanting fusion at all. PMID:17818794

  12. A model for Long-term Industrial Energy Forecasting (LIEF)

    SciTech Connect

    Ross, M. Michigan Univ., Ann Arbor, MI . Dept. of Physics Argonne National Lab., IL . Environmental Assessment and Information Sciences Div.); Hwang, R. )

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  13. A model for Long-term Industrial Energy Forecasting (LIEF)

    SciTech Connect

    Ross, M. ||; Hwang, R.

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  14. Comment on ``Long-Term Global Heating From Energy Use''

    NASA Astrophysics Data System (ADS)

    Fleming, James R.

    2008-12-01

    In a prominent article published in Tellus in 1969, Mikhail I. Budyko, with the Main Geophysical Observatory, Leningrad, Soviet Union, wrote that ``all the energy used by man is transformed into heat, the main portion of this energy being an additional source of heat as compared to the present radiation gain'' [Budyko, 1969, p. 618]. He pointed out that this heating was over and above any climate forcing from anthropogenic greenhouse gases and-since energy use was growing geometrically-it was likely to result in the retreat of the cryosphere, accompanied by excessive and potentially damaging global warming, perhaps in 200 years or less. Eric J. Chaisson, in Eos (``Long-Term Global Heating From Energy Use,'' 89(28), 253-254, 2008), does not acknowledge Budyko's research. Chaisson cites cosmic history and the history of the human species, but he provides no references to the conceptual history of the idea that human energy use could result in global heating. Budyko first published on the Earth's heat budget in 1948 and in 1998 received the Blue Planet Prize, sponsored by the Asahi Glass Foundation, for his lifetime accomplishments in quantitative climatology. His work on the energy budget of the Earth and anthropogenic influences really should have been cited (see a selection of key articles in the online National Science Digital Library, at http://wiki.nsdl.org/index.php/PALE:ClassicArticles/GlobalWarming).

  15. Resilience and Robustness in Long-Term Planning of the National Energy and Transportation System

    SciTech Connect

    Ibanez, Eduardo; Lavrenz, Steven; Gkritza, Konstantina; Mejia-Giraldo, Diego A.; Krishnan, Venkat; McCalley, James D.; Somani, Arun K.

    2016-01-01

    The most significant energy consuming infrastructures and the greatest contributors to greenhouse gases for any developed nation today are electric and freight/passenger transportation systems. Technological alternatives for producing, transporting and converting energy for electric and transportation systems are numerous. Addressing costs, sustainability and resilience of electric and transportation needs requires long-term assessment since these capital-intensive infrastructures take years to build with lifetimes approaching a century. Yet, the advent of electrically driven transportation, including cars, trucks and trains, creates potential interdependencies between the two infrastructures that may be both problematic and beneficial. We are developing modelling capability to perform long-term electric and transportation infrastructure design at a national level, accounting for their interdependencies. The approach combines network flow modelling with a multi-objective solution method. We describe and compare it to the state of the art in energy planning models. An example is presented to illustrate important features of this new approach.

  16. Australia's TERN: Building, Sustaining and Advancing Collaborative Long Term Ecosystem Research Networks

    NASA Astrophysics Data System (ADS)

    HEld, A. A.; Phinn, S. R.

    2012-12-01

    TERN is Australia's Terrestrial Ecosystem Research Network (www.tern.org.au) is one of several environmental data collection, storage and sharing projects developed through the government's research infrastructure programs 2008-2014. This includes terrestrial and coastal ecosystem data collection infrastructure across multiple disciplines, hardware, software and processes used to store, analyse and integrate data sets. TERN's overall objective is to build the collaborations, infrastructure and programs to meet the needs of ecosystem science communities in Australia in the long term, through institutional frameworks necessary to establish a national terrestrial ecosystem site and observational network, coordinated networks enabling cooperation and operational experience; public access to quality assured and appropriately licensed data; and allowing the terrestrial ecosystem research community to define and sustain the terrestrial observing paradigm into the longer term. This paper explains how TERN was originally established, and now operates, along with plans to sustain itself in the future. TERN is implemented through discipline/technical groups referred to as "TERN Facilities". Combined, the facilities provide observations of surface mass and energy fluxes over key ecosystems, biophysical remote sensing data, ecological survey plots, soils information, and coastal ecosystems and associated water quality variables across Australia. Additional integrative facilities cover elements of ecoinformatics, data-scaling and modelling, and linking science to management. A central coordination and portal facility provides meta-data storage, data identification, legal and licensing support. Data access, uploading, meta-data generation, DOI attachment and licensing is completed at each facility's own portal level. TERN also acts as the open-data repository of choice for Australian scientists required to publish their data. Several key lessons we have learnt, will be presented

  17. Role of the breeder in long-term energy economics

    SciTech Connect

    Kosobud, R.F.; Daly, T.A.; Chang, Y.I.

    1982-01-01

    Private and public decisions affecting the use of nuclear and other energy technologies over a long-run time horizon were studied using the ETA-MACRO model which provides for economic- and energy-sector interactions. The impact on the use of competing energy technologies of a public decision to apply benefit-cost analysis to the production of carbon dioxide that enters the atmosphere is considered. Assuming the public choice is to impose an appropriate penalty tax on those technologies which generate CO/sub 2/ and to allow decentralized private decisions to choose the optimal mix of energy technologies that maximize a nonlinear objective function subject to constraints, the study showed that breeder technology provides a much-larger share of domestically consumed energy. Having the breeder technology available as a substitute permits control of CO/sub 2/ without significant reductions in consumption or gross national product growth paths.

  18. Long term performance of wearable transducer for motion energy harvesting

    NASA Astrophysics Data System (ADS)

    McGarry, Scott A.; Behrens, Sam

    2010-04-01

    Personal electronic devices such as cell phones, GPS and MP3 players have traditionally depended on battery energy storage technologies for operation. By harvesting energy from a person's motion, these devices may achieve greater run times without increasing the mass or volume of the electronic device. Through the use of a flexible piezoelectric transducer such as poly-vinylidene fluoride (PVDF), and integrating it into a person's clothing, it becomes a 'wearable transducer'. As the PVDF transducer is strained during the person's routine activities, it produces an electrical charge which can then be harvested to power personal electronic devices. Existing wearable transducers have shown great promise for personal motion energy harvesting applications. However, they are presently physically bulky and not ergonomic for the wearer. In addition, there is limited information on the energy harvesting performance for wearable transducers, especially under realistic conditions and for extended cyclic force operations - as would be experienced when worn. In this paper, we present experimental results for a wearable PVDF transducer using a person's measured walking force profile, which is then cycled for a prolonged period of time using an experimental apparatus. Experimental results indicate that after an initial drop in performance, the transducer energy harvesting performance does not substantially deteriorate over time, as less than 10% degradation was observed. Longevity testing is still continuing at CSIRO.

  19. New energy Era: Short Term and Long Term.

    ERIC Educational Resources Information Center

    Beckwith, Robert

    This paper examines the causes and effects of the 1973 oil embargo imposed by OPEC. The author notes that since the embargo, little positive action has been taken to reduce American dependence upon a very limited and very expensive energy source. In order to achieve any degree of independence, it will be necessary to repidly expand coal and…

  20. Long-term stability of Fermilab Energy-Saver magnets

    SciTech Connect

    Cooper, W.E.; Brown, B.C.; Hanft, R.W.; Schmidt, E.E.

    1983-03-01

    The quench and field properties of Energy Saver dipole and quadrupole magnets are measured at the Fermilab Magnet Test Facility shortly after the magnets have been produced. It is important that magnet properties remain unchanged with time. This question has been investigated by remeasuring magnets at a later time and comparing the two sets of measurements. The remeasurements agree well with the original measurements. The measurement techniques and magnet properties obtained from the full magnet samples are described elsewhere.

  1. Long-term monitoring at two Department of Energy sites

    SciTech Connect

    Gray, R.H.

    1995-12-31

    The US Department of Energy`s Hanford Site was established in southeastern Washington during the 1940s to produce plutonium during World War 2. The Pantex Plant in the Texas Panhandle was originally used by the US Army for loading conventional ammunition shells and bombs. The Plant was rehabilitated and enhanced in the 1950s to assemble nuclear weapons. Environmental monitoring has been ongoing at both locations for several decades. Monitoring objectives are to detect and assess potential impacts of facility operations on air, surface and ground waters, foodstuffs, fish, wildlife, soils, and vegetation. Currently, measured concentrations of airborne radionuclides around the perimeters of both sites are below applicable guidelines. Concentrations of radionuclides and nonradiological water quality in the Columbia River at Hanford are in compliance with applicable standards. Radiological and nonradiological water quality in the Ogallala Aquifer beneath the Pantex Plant is also in compliance with applicable standards. Foodstuffs irrigated with river water downstream from the Hanford Site show levels of radionuclides that are similar to those found in foodstuffs from control areas. The low levels of {sup 137}Cs and {sup (90)}Sr in some onsite Hanford wildlife samples and concentrations of radionuclides in soils and vegetation from onsite and offsite at both locations are typical of those attributable to naturally occurring radioactivity and to worldwide fallout. The calculated dose potentially received by a maximally exposed individual (i.e., based on hypothetical, worst-case assumptions for all routes of exposure) at both sites in 1993 was {le} 0.03 mrem.

  2. Capacity building for long-term community-academic health partnership outcomes

    PubMed Central

    Stewart, M Kathryn; Felix, Holly C; Cottoms, Naomi; Olson, Mary; Shelby, Beatrice; Huff, Anna; Colley, Dianne; Sparks, Carla; McKindra, Freeman

    2014-01-01

    Too often, populations experiencing the greatest burden of disease and disparities in health outcomes are left out of or ineffectively involved in academic-led efforts to address issues that impact them the most. Community-based participatory research (CBPR) is an approach increasingly being used to address these issues, but the science of CBPR is still viewed by many as a nascent field. Important to the development of the science of CBPR is documentation of the partnership process, particularly capacity building activities important to establishing the CBPR research infrastructure. This paper uses a CBPR Logic Model as a structure for documenting partnership capacity building activities of a long-term community-academic partnership addressing public health issues in Arkansas, U.S. Illustrative activities, programs, and experiences are described for each of the model’s four constructs: context, group dynamics, interventions, and outcomes. Lessons learned through this process were: capacity building is required by both academic and community partners; shared activities provide a common base of experiences and expectations; and creating a common language facilitates dialogue about difficult issues. Development of community partnerships with one institutional unit promoted community engagement institution-wide, enhanced individual and partnership capacity, and increased opportunity to address priority issues. PMID:25750694

  3. Building a Comprehensive System of Services to Support Adults Living with Long-Term Mechanical Ventilation.

    PubMed

    Leasa, David; Elson, Stephen

    2016-01-01

    Background. Increasing numbers of individuals require long-term mechanical ventilation (LTMV) in the community. In the South West Local Health Integration Network (LHIN) in Ontario, multiple organizations have come together to design, build, and operate a system to serve adults living with LTMV. Objective. The goal was to develop an integrated approach to meet the health and supportive care needs of adults living with LTMV. Methods. The project was undertaken in three phases: System Design, Implementation Planning, and Implementation. Results. There are both qualitative and quantitative evidences that a multiorganizational system of care is now operational and functioning in a way that previously did not exist. An Oversight Committee and an Operations Management Committee currently support the system of services. A Memorandum of Understanding has been signed by the participating organizations. There is case-based evidence that hospital admissions are being avoided, transitions in care are being thoughtfully planned and executed collaboratively among service providers, and new roles and responsibilities are being accepted within the overall system of care. Conclusion. Addressing the complex and variable needs of adults living with LTMV requires a systems response involving the full continuum of care. PMID:27445527

  4. Building a Comprehensive System of Services to Support Adults Living with Long-Term Mechanical Ventilation

    PubMed Central

    Leasa, David; Elson, Stephen

    2016-01-01

    Background. Increasing numbers of individuals require long-term mechanical ventilation (LTMV) in the community. In the South West Local Health Integration Network (LHIN) in Ontario, multiple organizations have come together to design, build, and operate a system to serve adults living with LTMV. Objective. The goal was to develop an integrated approach to meet the health and supportive care needs of adults living with LTMV. Methods. The project was undertaken in three phases: System Design, Implementation Planning, and Implementation. Results. There are both qualitative and quantitative evidences that a multiorganizational system of care is now operational and functioning in a way that previously did not exist. An Oversight Committee and an Operations Management Committee currently support the system of services. A Memorandum of Understanding has been signed by the participating organizations. There is case-based evidence that hospital admissions are being avoided, transitions in care are being thoughtfully planned and executed collaboratively among service providers, and new roles and responsibilities are being accepted within the overall system of care. Conclusion. Addressing the complex and variable needs of adults living with LTMV requires a systems response involving the full continuum of care. PMID:27445527

  5. DATA LOGGING SYSTEMS FOR MONITORING LONG-TERM RADON MITIGATION EXPERIMENTAL PROGRAMS IN SCHOOLS AND OTHER LARGE BUILDINGS

    EPA Science Inventory

    The paper discusses data logging systems for monitoring long-term radon mitigation experimental programs in schools and other large buildings. Several mitigation systems have been installed in schools as part of a mitigation research program conducted by the U.S. EPA. ach install...

  6. A Comparison of Energy Provision by Diet Order in a Long-Term Care Facility

    ERIC Educational Resources Information Center

    Durant, Matthew

    2008-01-01

    Involuntary weight loss (IWL) is common in the North American elderly population and affects as many as 60 per cent of nursing home residents, representing a threat to health and function. Investigation into nutrient provision in a long-term care (LTC) centre showed that mean total energy exposure over the 5-week menu cycle differed significantly…

  7. Building Long-Term Support for Alcohol and Other Drug Prevention Programs.

    ERIC Educational Resources Information Center

    DeJong, William; Davidson, Laurie

    This publication describes actions and basic principles that campus-based alcohol and other drug (AOD) prevention coordinators can take to develop long-term administrative and financial support for campus AOD programs. The first section covers types of prevention programs that increase the probability of success. These programs include:…

  8. Long-term energy policy: an example of technical planning for the future

    SciTech Connect

    von Weizsaecker, C.F.F.

    1980-01-01

    Long-term energy policy, encompassing a 50-year time frame, is analyzed in the context of how much energy will be needed, how much people will pay for it, how the demand can be met, and what are the consequences of producing and using energy. The analysis shows that energy conservation deserves top priority and that fossil fuels should be limited to the production of liquid fuels for transportation. Other recommendations are for stronger security regulations, solar energy for space heating, and decentralization of supply systems. The possibility of an energy crisis in this century will increase if a long-range plan is sacrificed to risk possibilities and excuses. (DCK)

  9. The ELDER expansion project: building cultural competence among long term home care workers.

    PubMed

    Lange, Jean W; Mager, Diana R; Andrews, Nancy

    2013-05-01

    This study aimed to improve communication and care provision in five home or long term care settings by raising staff awareness about health beliefs and patterns among varied cultures. Lack of cultural competence is linked to ethnocentric attitudes that can lead to inappropriate communication and ineffective interventions. Understanding the culturally imbedded belief systems of patients and providers is an integral part of effective communication skills that are foundational to optimal team functioning. Participants included five home or long term care agencies in an underserved region of New England. Seventy-four nurses, aids and allied health professionals participated in 10-12 small group interactive sessions. Comparison of pre and post cultural self efficacy scores revealed that participant confidence regarding their knowledge and skills when interacting with other cultures improved interactions with patients and co-workers. Journal exemplars supported the ability of attendees to apply content to the workplace. PMID:23265680

  10. University of Minnesota aquifer thermal energy storage (ATES) project report on the third long-term cycle

    SciTech Connect

    Hoyer, M.C.; Hallgren, J.P.; Uebel, M.H.; Delin, G.N.; Eisenreich, S.J.; Sterling, R.L.

    1994-12-01

    The University of Minnesota aquifer thermal energy storage (ATES) system has been operated as a field test facility (FTF) since 1982. The objectives were to design, construct, and operate the facility to study the feasibility of high-temperature ATES in a confined aquifer. Four short-term and two long-term cycles were previously conducted, which provided a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. The third long-term cycle (LT3) was conducted to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact that heated water storage had on the aquifer. For LT3, the source and storage wells were modified so that only the most permeable portion, the Ironton-Galesville part, of the Franconia-Ironton-Galesville aquifer was used for storage. This was expected to improve storage efficiency by reducing the surface area of the heated volume and simplify analysis of water chemistry results by reducing the number of aquifer-related variables which need to be considered. During LT3, a total volume of 63.2 {times} 10{sup 3} m {sup 3} of water was injected at a rate of 54.95 m{sup 3}/hr into the storage well at a mean temperature of 104.7{degrees}C. Tie-in to the reheat system of the nearby Animal Sciences Veterinary Medicine (ASVM) building was completed after injection was completed. Approximately 66 percent (4.13 GWh) of the energy added to the aquifer was recovered. Approximately 15 percent (0.64 GWh) of the usable (10 building. Operations during heat recovery with the ASVM building`s reheat system were trouble-free. Integration into more of the ASVM (or other) building`s mechanical systems would have resulted in significantly increasing the proportion of energy used during heat recovery.

  11. Energy management in long-term care facilities: a hot or cold issue?

    PubMed

    Smith, H L; Discenza, R

    1981-01-01

    Conservation of energy resources through total energy management programs is receiving considerable attention in the health services sector. Although the total energy management concept has been favorably implemented in hospitals, the record is not entirely clear for other health care institutions. Thirty-one Arizona and 37 Minnesota long-term care facilities were surveyed to examine the attitudes, knowledge and practice of energy management in the nursing home context. Specific questions were directed toward average monthly energy costs, energy consumption, energy conservation methods implemented, energy conservation methods planned for future implementation, and administrator attitudes on the energy management problem. The results of this study indicate that energy is not perceived to be a major problem in long-term care facilities. Administrators generally lack basic knowledge about energy consumption and energy-related characteristics of their facilities. Few long-range plans and programs have been established to address energy problems. These results suggest the need for new energy policies in the health care system, particularly for institutions other than hospitals. PMID:10253193

  12. Biochemical Mechanisms and Energy Strategies of Geobacter sulfurreducens for Long- Term Survival

    NASA Astrophysics Data System (ADS)

    Helmus, R. A.; Liermann, L. J.; Brantley, S. L.; Tien, M.

    2008-12-01

    Numerous species of bacteria have been observed to exhibit a growth advantage in stationary phase (GASP) phenotype, indicating that microorganisms starved of an energy source may adapt to allow for long-term survival. Understanding how Geobacter sulfurreducens persists using various metal forms as energy sources and whether a GASP phenotype develops during long-term growth are important for efficient application of this bacterium to sites requiring engineered bioremediation of soluble metals. Thus, we investigated the growth kinetics and survival of G. sulfurreducens. The growth rate of G. sulfurreducens was highest when cultured with soluble iron and generally higher on iron oxide than manganese oxide, suggesting that soluble metal forms are more readily utilized as energy sources by G. sulfurreducens. By monitoring the abundance of G. sulfurreducens in batch cultures for >6 months, distinct growth, stationary, and prolonged starvation phases were observed and a cell density of 105- 106 cells/mL persisted under long-term starvation conditions. The outgrowth of an aged G. sulfurreducens strain co-cultured with a young strain was monitored as a measure of the existence of the GASP phenotype. As the strains aged, the rpoS gene was cloned and sequenced at different stages of growth to identify mutations corresponding to a growth advantage. The results of these studies provide insight into the use of various metal forms for growth by G. sulfurreducens and its ability to persist when starved of energy sources.

  13. Comfort Care Rounds: a staff capacity-building initiative in long-term care homes.

    PubMed

    Wickson-Griffiths, Abigail; Kaasalainen, Sharon; Brazil, Kevin; McAiney, Carrie; Crawshaw, Diane; Turner, Mickey; Kelley, Mary Lou

    2015-01-01

    This article reports a pilot evaluation of Comfort Care Rounds (CCRs)--a strategy for addressing long-term care home staff's palliative and end-of-life care educational and support needs. Using a qualitative descriptive design, semistructured individual and focus group interviews were conducted to understand staff members' perspectives and feedback on the implementation and application of CCRs. Study participants identified that effective advertising, interest, and assigning staff to attend CCRs facilitated their participation. The key barriers to their attendance included difficulty in balancing heavy workloads and scheduling logistics. Interprofessional team member representation was sought but was not consistent. Study participants recognized the benefits of attending; however, they provided feedback on how the scheduling, content, and focus could be improved. Overall, study participants found CCRs to be beneficial to their palliative and end-of-life care knowledge, practice, and confidence. However, they identified barriers and recommendations, which warrant ongoing evaluation. PMID:24971588

  14. From the Past to the Future: Building a New Continental Scale Long-Term In-Situ Data Network

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    2014-12-01

    Long-term networks are essential for identifying environmental changes driven by climate, land-use, biodiversity, and/or a multitude of other factors. This has already been demonstrated by a number of existing networks, such as the Long Term Ecological Research Network (LTER), the Network for the Detection of Atmospheric Composition Change (NDACC), the Department of Energy's Atmospheric Radiation Network (DOE-ARM), and the multitude of Flux Networks around the world, including AmeriFlux and FLUXNET. The great success of these networks has encouraged the development of new, up-and-coming, networks such as the Long Term Agricultural Network (LTAR) and the National Ecological Observatory Network (NEON), to name a few.NEON is responsible for making observations of terrestrial, aquatic, and organismal ecology at 106 sites in 20 different eco-climatic domains across the North American continent. NEON will provide data on key local biogeochemical, meteorological, climate, remote sensing, and chemical variables, as well as their associated biotic responses, in an effort to inform climate change, land-use change, and invasive species. Great care has been taken to ensure that NEON is being built to complement and expand upon the knowledge that has been gained from these other long-term observing networks. This talk will highlight the measurements that NEON will be making and how they will inform ecology, meteorology, climate change, and hydrology in the coming 30 years of operations.

  15. Long term smoking with age builds up excessive oxidative stress in bronchoalveolar lavage fluid

    PubMed Central

    Nagai, K; Betsuyaku, T; Kondo, T; Nasuhara, Y; Nishimura, M

    2006-01-01

    Background Epithelial lining fluid plays a critical role in protecting the lung from oxidative stress, in which the oxidised status may change by ageing, smoking history, and pulmonary emphysema. Methods Bronchoalveolar lavage (BAL) was performed on 109 young and older subjects with various smoking histories. The protein carbonyls, total and oxidised glutathione were examined in BAL fluid. Results By Western blot analysis, the major carbonylated protein in the BAL fluid was sized at 68 kDa, corresponding to albumin. The amount of carbonylated albumin per mg total albumin in BAL fluid was four times higher in older current smokers and three times higher in older former smokers than in age matched non‐smokers (p<0.0001, p = 0.0003, respectively), but not in young smokers. Total glutathione in BAL fluid was significantly increased both in young (p = 0.006) and older current smokers (p = 0.0003) compared with age matched non‐smokers. In contrast, the ratio of oxidised to total glutathione was significantly raised (72%) only in older current smokers compared with the other groups. There was no significant difference in these parameters between older smokers with and without mild emphysema. Conclusions Oxidised glutathione associated with excessive protein carbonylation accumulates in the lung of older smokers with long term smoking histories even in the absence of lung diseases, but they are not significantly enhanced in smokers with mild emphysema. PMID:16537669

  16. Resilience, integrated development and family planning: building long-term solutions.

    PubMed

    De Souza, Roger-Mark

    2014-05-01

    For the many individuals and communities experiencing natural disasters and environmental degradation, building resilience means becoming more proficient at anticipating, preventing, recovering, and rebuilding following negative shocks and stresses. Development practitioners have been working to build this proficiency in vulnerable communities around the world for several decades. This article first examines the meaning of resilience as a component of responding to disasters and some of the key components of building resilience. It then summarises approaches to resilience developed by the Rockefeller and Packard Foundations, the Intergovernmental Panel on Climate Change, USAID and DFID, which show how family planning services can contribute to resilience. Next, it gives some examples of how family planning has been integrated into some current environment and development programmes. Finally, it describes how these integrated programmes have succeeded in helping communities to diversify livelihoods, bolster community engagement and resilience, build new governance structures, and position women as agents of change. PMID:24908458

  17. Long-Term Mentors' Perceptions of Building Mentoring Relationships with At-Risk Youth

    ERIC Educational Resources Information Center

    Smith, Cindy Ann; Newman-Thomas, Cathy; Stormont, Melissa

    2015-01-01

    Youth mentoring, defined within this study, as the pairing of a youth at risk with a caring adult, is an intervention that is often used for youth at risk for academic and social failure. We sought to understand mentors' perspectives of the fundamental elements that foster positive mentor--mentee relationships that build resiliency and increase…

  18. Long-term abdominal adiposity activates several parameters of cardiac energy function.

    PubMed

    Mourmoura, Evangelia; Rigaudière, Jean-Paul; Couturier, Karine; Hininger, Isabelle; Laillet, Brigitte; Malpuech-Brugère, Corinne; Azarnoush, Kasra; Demaison, Luc

    2016-09-01

    Abdominal obesity increases the incidence of cardiac events but reduces mortality when one of these events occurs. The phenomenon called obesity paradox might be related to myocardial energetics. This study was aimed at determining whether long-term abdominal adiposity alters cardiac energy function. Two groups of male Wistar rats were fed a standard or a Western-type (WD) diet for 8 months. The ex vivo coronary reactivity and mechanical function as well as the mitochondrial oxidative phosphorylation (mOxPhos) and hydrogen peroxide release (mH2O2r) were determined. Abdominal adiposity was augmented by the WD. This was also the case for the coronary reactivity to acetylcholine, but the rate pressure product remained roughly stable despite a reduction of the left ventricle-developed pressure partly compensated by a slight increase in heart rate. The prolonged WD administration resulted in an improvement of mOxPhos, but the mH2O2r was exaggerated which was confirmed in the whole cell by a reduced aconitase to fumarase ratio. This did not modify the plasma oxidative stress due to an increased plasma antioxidant status. In conclusion, long-term WD administration improved the cardiac fitness and might predispose the organism to the obesity paradox. Conversely, the increased mitochondrial mH2O2r can precipitate the heart toward cardiomyopathy if the WD is maintained for a longer duration. PMID:26255304

  19. Incorporating elastic and plastic work rates into energy balance for long-term tectonic modeling

    NASA Astrophysics Data System (ADS)

    Ahamed, M. S.; Choi, E.

    2014-12-01

    Deformation-related energy budget is usually considered in the simplest form or even completely omitted from the energy balance equation. We derive an energy balance equation that accounts not only for heat energy but also for elastic and plastic work. Such a general description of the energy balance principle will be useful for modeling complicated interactions between geodynamic processes such as thermoelastisity, thermoplasticity and mechanical consequences of metamorphism. Following the theory of large deformation plasticity, we start from the assumption that Gibbs free energy (g) is a function of temperature (T), the second Piola-Kirchhoff stress (S), density (ρ) and internal variables (qj, j=1…n). In this formulation, new terms are derived, which are related to the energy dissipated through plastic work and the elastically stored energy that are not seen in the usual form of the energy balance equation used in geodynamics. We then simplify the generic equation to one involving more familiar quantities such as Cauchy stress and material density assuming that the small deformation formulation holds for our applications. The simplified evolution equation for temperature is implemented in DyanEarthSol3D, an unstructured finite element solver for long-term tectonic deformation. We calculate each of the newly derived terms separately in simple settings and compare the numerical results with a corresponding analytic solution. We also present the effects of the new energy balance on the evolution of a large offset normal fault.

  20. Long-term differential energy spectrum for solar-flare iron-group particles

    NASA Technical Reports Server (NTRS)

    Blanford, G. E.; Fruland, R. M.; Morrison, D. A.

    1975-01-01

    A long-term solar-flare differential energy spectrum for iron-group nuclei from approximately 0.1 to approximately 600 MeV/amu is derived from track density profile measurements in sample 64455 and sample 68815. Measurements from uneroded surfaces were obtained from quench crystals of plagioclase in 64455, and a Kr-81/Kr method indicates that the exposure age of this sample is 2,010,000 yrs. The power laws which best fit the normalized track density data are reported; the energy spectrum consists of two power law curves smoothly joined together which in turn are smoothly connected to a modulated galactic cosmic-ray spectrum. Standard track production versus depth profiles can be used to determine solar-flare track exposure ages and erosion rates for lunar samples.

  1. Long-term energy capture and the effects of optimizing wind turbine operating strategies

    NASA Technical Reports Server (NTRS)

    Miller, A. H.; Formica, W. J.

    1982-01-01

    Methods of increasing energy capture without affecting the turbine design were investigated. The emphasis was on optimizing the wind turbine operating strategy. The operating strategy embodies the startup and shutdown algorithm as well as the algorithm for determining when to yaw (rotate) the axis of the turbine more directly into the wind. Using data collected at a number of sites, the time-dependent simulation of a MOD-2 wind turbine using various, site-dependent operating strategies provided evidence that site-specific fine tuning can produce significant increases in long-term energy capture as well as reduce the number of start-stop cycles and yawing maneuvers, which may result in reduced fatigue and subsequent maintenance.

  2. Long-term Operation of an External Cavity Quantum Cascade Laser-based Trace-gas Sensor for Building Air Monitoring

    SciTech Connect

    Phillips, Mark C.; Craig, Ian M.

    2013-11-03

    We analyze the long-term performance and stability of a trace-gas sensor based on an external cavity quantum cascade laser using data collected over a one-year period in a building air monitoring application.

  3. Comparison and interactions between the long-term pursuit of energy independence and climate policies

    NASA Astrophysics Data System (ADS)

    Jewell, Jessica; Vinichenko, Vadim; McCollum, David; Bauer, Nico; Riahi, Keywan; Aboumahboub, Tino; Fricko, Oliver; Harmsen, Mathijs; Kober, Tom; Krey, Volker; Marangoni, Giacomo; Tavoni, Massimo; van Vuuren, Detlef P.; van der Zwaan, Bob; Cherp, Aleh

    2016-06-01

    Ensuring energy security and mitigating climate change are key energy policy priorities. The recent Intergovernmental Panel on Climate Change Working Group III report emphasized that climate policies can deliver energy security as a co-benefit, in large part through reducing energy imports. Using five state-of-the-art global energy-economy models and eight long-term scenarios, we show that although deep cuts in greenhouse gas emissions would reduce energy imports, the reverse is not true: ambitious policies constraining energy imports would have an insignificant impact on climate change. Restricting imports of all fuels would lower twenty-first-century emissions by only 2–15% against the Baseline scenario as compared with a 70% reduction in a 450 stabilization scenario. Restricting only oil imports would have virtually no impact on emissions. The modelled energy independence targets could be achieved at policy costs comparable to those of existing climate pledges but a fraction of the cost of limiting global warming to 2 ∘C.

  4. Long-term energy security in a national scale using LEAP. Application to de-carbonization scenarios in Andorra

    NASA Astrophysics Data System (ADS)

    Travesset-Baro, Oriol; Jover, Eric; Rosas-Casals, Marti

    2016-04-01

    This paper analyses the long-term energy security in a national scale using Long-range Energy Alternatives Planning System (LEAP) modelling tool. It builds the LEAP Andorra model, which forecasts energy demand and supply for the Principality of Andorra by 2050. It has a general bottom-up structure, where energy demand is driven by the technological composition of the sectors of the economy. The technological model is combined with a top-down econometric model to take into account macroeconomic trends. The model presented in this paper provides an initial estimate of energy demand in Andorra segregated into all sectors (residential, transport, secondary, tertiary and public administration) and charts a baseline scenario based on historical trends. Additional scenarios representing different policy strategies are built to explore the country's potential energy savings and the feasibility to achieve the Intended Nationally Determined Contribution (INDC) submitted in April 2015 to UN. In this climatic agreement Andorra intends to reduce net greenhouse gas emissions (GHG) by 37% as compared to a business-as-usual scenario by 2030. In addition, current and future energy security is analysed in this paper under baseline and de-carbonization scenarios. Energy security issues are assessed in LEAP with an integrated vision, going beyond the classic perspective of security of supply, and being closer to the sustainability's integrative vision. Results of scenarios show the benefits of climate policies in terms of national energy security and the difficulties for Andorra to achieving the de-carbonization target by 2030.

  5. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    NASA Astrophysics Data System (ADS)

    Kim, Lance Kyungwoo

    Long-term planning for nuclear energy systems has been an area of interest for policy planners and systems designers to assess and manage the complexity of the system and the long-term, wide-ranging societal impacts of decisions. However, traditional planning tools are often poorly equipped to cope with the deep parametric, structural, and value uncertainties in long-term planning. A more robust, multiobjective decision-making method is applied to a model of the nuclear fuel cycle to address the many sources of complexity, uncertainty, and ambiguity inherent to long-term planning. Unlike prior studies that rely on assessing the outcomes of a limited set of deployment strategies, solutions in this study arise from optimizing behavior against multiple incommensurable objectives, utilizing goal-seeking multiobjective evolutionary algorithms to identify minimax regret solutions across various demand scenarios. By excluding inferior and infeasible solutions, the choice between the Pareto optimal solutions depends on a decision-maker's preferences for the defined outcomes---limiting analyst bias and increasing transparency. Though simplified by the necessity of reducing computational burdens, the nuclear fuel cycle model captures important phenomena governing the behavior of the nuclear energy system relevant to the decision to close the fuel cycle---incorporating reactor population dynamics, material stocks and flows, constraints on material flows, and outcomes of interest to decision-makers. Technology neutral performance criteria are defined consistent with the Generation IV International Forum goals of improved security and proliferation resistance based on structural features of the nuclear fuel cycle, natural resource sustainability, and waste production. A review of safety risks and the economic history of the development of nuclear technology suggests that safety and economic criteria may not be decisive criteria as the safety risks posed by alternative fuel

  6. Long-term characterization of indoor and outdoor ultrafine particles at a commercial building.

    PubMed

    Wang, Yungang; Hopke, Philip K; Chalupa, David C; Utell, Mark J

    2010-08-01

    The particle number concentrations in the size range of 10-500 nm were measured inside and outside of a commercial building in Rochester, New York from 2005 to 2009. The indoor ventilation conditions were controlled by a heating, ventilation, and air-conditioning (HVAC) system. The overall average indoor and outdoor particle number concentrations were 2166 cm(-3) and 5214 cm(-3), respectively. Comparison of the indoor and outdoor ultrafine particles (UFP) distributions revealed that indoor sources contributed to the indoor UFP concentrations. The indoor/outdoor (I/O) ratio generally increased with particle size. The I/O ratios in the summer months were higher than those in the winter months. Indoor and outdoor correlations of particle concentrations were slightly weaker in warmer months. These results indicated that changes in the air exchange rates (AER) may have affected the correlation between indoor and outdoor UFP number concentrations. Moreover, indoor activities such as food preparation and cleaning may have contributed to the indoor UFP number concentrations. PMID:20586487

  7. Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)

    SciTech Connect

    Ross, M.H.; Thimmapuram, P.; Fisher, R.E.; Maciorowski, W.

    1993-05-01

    The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

  8. Granular Model of Long-Term Prediction for Energy System in Steel Industry.

    PubMed

    Zhao, Jun; Han, Zhongyang; Pedrycz, Witold; Wang, Wei

    2016-02-01

    Sound energy scheduling and allocation is of paramount significance for the current steel industry, and the quantitative prediction of energy media is being regarded as the prerequisite for such challenging tasks. In this paper, a long-term prediction for the energy flows is proposed by using a granular computing-based method that considers industrial-driven semantics and granulates the initial data based on the specificity of manufacturing processes. When forming information granules on a basis of experimental data, we propose to deal with the unequal-length temporal granules by exploiting dynamic time warping, which becomes instrumental to the realization of the prediction model. The model engages the fuzzy C -means clustering method. To quantify the performance of the proposed method, real-world industrial energy data coming from a steel plant in China are employed. The experimental results demonstrate that the proposed method is superior to some other data-driven methods and becomes capable of satisfying the requirements of the practically viable prediction. PMID:26168454

  9. Long-Term US Industrial Energy Use and CO2 Emissions

    SciTech Connect

    Wise, Marshall A.; Sinha, Paramita; Smith, Steven J.; Lurz, Joshua P.

    2007-12-03

    We present a description and scenario results from our recently-developed long-term model of United States industrial sector energy consumption, which we have incorporated as a module within the ObjECTS-MiniCAM integrated assessment model. This new industrial model focuses on energy technology and fuel choices over a 100 year period and allows examination of the industrial sector response to climate policies within a global modeling framework. A key challenge was to define a level of aggregation that would be able to represent the dynamics of industrial energy demand responses to prices and policies, but at a level that remains tractable over a long time frame. In our initial results, we find that electrification is an important response to a climate policy, although there are services where there are practical and economic limits to electrification, and the ability to switch to a low-carbon fuel becomes key. Cogeneration of heat and power using biomass may also play a role in reducing carbon emissions under a policy constraint.

  10. Long-term change in the cyclotron line energy in Her X-1

    NASA Astrophysics Data System (ADS)

    Staubert, Rüdiger

    2016-04-01

    We investigate the long-term evolution in the centroid energy of the Cyclotron Resonance Scattering Feature (CRSF) in the spectrum of the binary X-ray pulsar Her X-1. After the discovery in 1976 by the MPE/AIT balloon telescope HEXE, the line feature was confirmed by several other instruments, establishing the centroid energy at around 35 keV, thereby providing the first direct measure of the B-filed strength of a neutron star at a few 10^12 Gauss. Between 1991 and 1993 an upward jump by ~7 keV occurred, first noted by BATSE and soon confirmed by RXTE and Beppo/SAX. Since then a systematic effort to monitor the cyclotron line energy E_cyc with all available instruments has led to two further discoveries: 1) E_cyc correlates positively with the X-ray luminosity (this feature is now found in four more binary X-ray pulsars). 2) Over the last 20 years the (flux normalized) E_cyc in Her X-1 has decayed by ~5 keV, down to 36.5 keV in August 2015. Her X-1 is the first and so far the only source showing such a variation. We will discuss possible physical scenarios relevant for accretion mounds/columns on highly magnetized neutron stars.

  11. Long-term comparison of energy flux calculation methods over an agricultural field

    NASA Astrophysics Data System (ADS)

    Kolle, O.

    1996-05-01

    Since March 1990 micrometeorological measurements were carried out over an agricultural field with varying land use (wheat, barley, sunflowers, mustard) using a profile mast and an energy balance mast with an eddy correlation system for the sensible heat flux. Soil temperature, soil heat flux, soil moisture and precipitation were measured as well. Long-term measurements allow statistical analysis of the energy fluxes and comparisons of different methods for their calculation (eddy correlation, flux profile, Bowen ratio and the residual method). For the sensible heat flux a good agreement was found using these different methods after applying all necessary corrections. The latent heat flux shows greater deviations in the daily cycle between the flux profile method and the residual method due to the shape of the humidity profiles which often and especially at night show a maximum at heights between 1 m and 4 m, even if the soil is free of vegetation. This could be a consequence of the patchiness of the agricultural area, the position of the station on top of a hillock or high water absorption of the soil, respectively. The residual method seems to give more reliable results for the actual evapotranspiration than the flux profile method or the Bowen ratio method if an eddy correlation system is used to determine the sensible heat flux. Differences in the soil heat flux measured with heat flux plates and determined using the profiles of soil temperature and soil moisture can be explained by the heat flux plates being a disturbance to the soil matrix.

  12. Determination of longevities, chamber building rates and growth functions for Operculina complanata from long term cultivation experiments

    NASA Astrophysics Data System (ADS)

    Woeger, Julia; Kinoshita, Shunichi; Wolfgang, Eder; Briguglio, Antonino; Hohenegger, Johann

    2016-04-01

    Operculina complanata was collected in 20 and 50 m depth around the Island of Sesoko belonging to Japans southernmost prefecture Okinawa in a series of monthly sampling over a period of 16 months (Apr.2014-July2015). A minimum of 8 specimens (4 among the smallest and 4 among the largest) per sampling were cultured in a long term experiment that was set up to approximate conditions in the field as closely as possible. A set up allowing recognition of individual specimens enabled consistent documentation of chamber formation, which in combination with μ-CT-scanning after the investigation period permitted the assignment of growth steps to specific time periods. These data were used to fit various mathematical models to describe growth (exponential-, logistic-, generalized logistic-, Gompertz-function) and chamber building rate (Michaelis-Menten-, Bertalanffy- function) of Operculina complanata. The mathematically retrieved maximum lifespan and mean chamber building rate found in cultured Operculina complanata were further compared to first results obtained by the simultaneously conducted "natural laboratory approach". Even though these comparisons hint at a somewhat stunted growth and truncated life spans of Operculina complanata in culture, they represent a possibility to assess and improve the quality of further cultivation set ups, opening new prospects to a better understanding of the their theoretical niches.

  13. BWRS for long-term energy supply and for fissioning almost all transuranium

    SciTech Connect

    Takeda, Renzo; Miwa, Junichi; Moriya, Kumiaki

    2007-07-01

    An adaptation of the BWR has been conceived that demonstrates yet another aspect of the superiority of the BWR, this time as an LWR which has the potential to breed and consume transuranium (TRUs) using a multi-recycling process. It is referred to as the Resource- Renewable BWR (RBWR) and can be used as a long-term energy supply, while greatly reducing the negative environmental impact that TRUs are becoming long-lived radioactive wastes. The RBWR is composed of three cores with a compatible fuel bundle of an RBWR-T3, RBWR-AC and RBWR-TB. The RBWR-T3 increases the amount of enriched uranium per unit volume in the core without reducing the neutron moderating power. A long-cycle core can be operated continuously for 4 years while maintaining a 48 GWd/t fuel bundle exposure and a 4.87% bundle-averaged enrichment. The RBWR-AC may be characterized as a BWR that operates with mixed (depleted uranium and TRUs) oxide fuel, and that has a breeding ratio of 1.01 and a negative void coefficient. The RBWR-TB should fission almost all the TRUs, by repeating the recycling and collection process, leaving a minimum critical mass of TRUs, and removing the growing concern that TRUs are becoming long-lived radioactive wastes. (authors)

  14. Long-term change in the cyclotron line energy in Hercules X-1

    NASA Astrophysics Data System (ADS)

    Staubert, R.; Klochkov, D.; Wilms, J.; Postnov, K.; Shakura, N. I.; Rothschild, R. E.; Fürst, F.; Harrison, F. A.

    2014-12-01

    Aims: We investigate the long-term evolution of the cyclotron resonance scattering feature (CRSF) in the spectrum of the binary X-ray pulsar Her X-1 and present evidence of a true long-term decrease in the centroid energy Ecyc of the cyclotron line in the pulse phase averaged spectra from 1996 to 2012. Methods: Our results are based on repeated observations of Her X-1 by those X-ray observatories capable of measuring clearly beyond the cyclotron line energy of ~40 keV; these are RXTE, INTEGRAL, Suzaku, and NuSTAR. We consider results based on our own successful observing proposals as well as results from the literature. Results: The historical evolution of the pulse phase averaged CRSF centroid energy Ecyc since its discovery in 1976 is characterized by an initial value around 35 keV, an abrupt jump upwards to beyond ~40 keV between 1990 and 1994, and an apparent decay thereafter. Much of this decay, however, was found to be due to an artifact, namely a correlation between Ecyc and the X-ray luminosity Lx discovered in 2007. In observations after 2006, however, we now find a statistically significant true decrease in the cyclotron line energy. At the same time, the dependence of Ecyc on X-ray luminosity is still valid with an increase of ~5% in energy for a factor of two increase in luminosity. We also report on the first evidence of a weak dependence of Ecyc on phase of the 35 d precessional period, which manifests itself not only in the modulation of the X-ray flux, but also in the systematic variation in the shape of the 1.24 s pulse profile. One of our motivations for repeatedly observing Her X-1, namely the suspicion that the cyclotron line energy may be gradually decreasing after its strong upward jump in the early 1990s, is finally confirmed. A decrease in Ecyc by 4.2 keV over the 16 years from 1996 to 2012 can either be modeled by a linear decay, or by a slow decay until 2006 followed by a more abrupt decrease thereafter. Conclusions: The observed timescale

  15. Simulation of long term renewable energy feed-in for European power system studies

    NASA Astrophysics Data System (ADS)

    Kies, Alexander; Nag, Kabitri; von Bremen, Lueder; Lorenz, Elke; Heinemann, Detlev; Späth, Stephan

    2014-05-01

    Renewable energies already play a remarkable role in Europe as of today. It is expected that wind and solar amongst other renewables will contribute strongly to the future European energy generation. However, wind and solar generation facilities have due to the weather dependent nature of their resources highly fluctuating feed-in profiles. To overcome the mismatch between energy demand and generation it is important to study and understand the generation patterns and balancing potentials. The goal of the current work is to investigate how the feed-in time series from different renewable sources like on- and offshore wind, photovoltaic, solar thermal, wave, hydro, geothermal and biomass power and combination of them look like in an European power supply system . The work is part of the RESTORE 2050 project (BMU) that investigates the requirements for cross-country grid extensions, usage of storage technologies and capacities, the development of new balancing technologies and the conceptual design of the future energy market which is suitable for high generation percentages of solar and wind. High temporally and spatially resolved long term weather data from COSMO-EU, MERRA and Meteosat (MFG/MSG) satellite data has been used to simulate feed-in from several types of renewable energy sources on a 7 x 7 km grid covering Europe. For wind speeds MERRA reanalysis data has been statistically downscaled to account for orography. Generation was aggregated on the country level and production patterns and their variations in time of different resources were investigated for the years ranging from 2002 to 2012. In a first step the quality of the simulated feed in time series has been investigated by comparison to real observations of wind power and PV generation. Furthermore, some sensitivity studies with respect to underlying assumptions like spatial distribution of wind and PV capacities, the chosen hub-height and wind power curve have been done and will be presented. While

  16. An investigation of ESSA 7 radiation data for use in long-term earth energy experiments, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    House, F. B.

    1974-01-01

    The results are presented of an investigation of ESSA 7 satellite radiation data for use in long-term earth energy experiments. Satellite systems for performing long-term earth radiation balance measurements over geographical areas, hemispheres, and the entire earth for periods of 10 to 30 years are examined. The ESSA 7 satellite employed plate and cone radiometers to measure earth albedo and emitted radiation. Each instrument had a black and white radiometer which discriminated the components of albedo and emitted radiation. Earth measurements were made continuously from ESSA 7 for ten months. The ESSA 7 raw data is processed to a point where it can be further analyzed for: (1) development of long-term earth energy experiments; and (2) document climate trends.

  17. Long-term lightcurves from combined unified very high energy γ-ray data

    NASA Astrophysics Data System (ADS)

    Tluczykont, M.; Bernardini, E.; Satalecka, K.; Clavero, R.; Shayduk, M.; Kalekin, O.

    2010-12-01

    Context. Very high-energy (VHE, E > 100 GeV) γ-ray data are a valuable input for multi-wavelength and multi-messenger (e.g. combination with neutrino data) studies. Aims: We aim at the conservation and homogenization of historical, current, and future VHE γ-ray-data on active galactic nuclei (AGN). Methods: We have collected lightcurve data taken by major VHE experiments since 1991 and combined them into long-term lightcurves for several AGN, and now provide our collected datasets for further use. Due to the lack of common data formats in VHE γ-ray astronomy, we have defined relevant datafields to be stored in standard data formats. The time variability of the combined VHE lightcurve data was investigated, and correlation with archival X-ray data collected by RXTE/ASM tested. Results: The combination of data on the prominent blazar Mrk 421 from different experiments yields a lightcurve spanning more than a decade. From this combined dataset we derive an integral baseline flux from Mrk 421 that must be lower than 33% of the Crab Nebula flux above 1 TeV. The analysis of the time variability yields log-normal flux variations in the VHE-data on Mrk 421. Conclusions: Existing VHE data contain valuable information concerning the variability of AGN and can be an important ingredient for multi-wavelength or multi-messenger studies. In the future, upcoming and planned experiments will provide more data from many transient objects, and the interaction of VHE astronomy with classical astronomy will intensify. In this context a unified and exchangeable data format will become increasingly important. Our data collection is available at the url: http://nuastro-zeuthen.desy.de/magic_experiment/projects/light_curve_archive/index_eng.html

  18. A retrospective investigation of energy efficiency standards: policies may have accelerated long term declines in appliance costs

    NASA Astrophysics Data System (ADS)

    Van Buskirk, R. D.; Kantner, C. L. S.; Gerke, B. F.; Chu, S.

    2014-11-01

    We perform a retrospective investigation of multi-decade trends in price and life-cycle cost (LCC) for home appliances in periods with and without energy efficiency (EE) standards and labeling polices. In contrast to the classical picture of the impact of efficiency standards, the introduction and updating of appliance standards is not associated with a long-term increase in purchase price; rather, quality-adjusted prices undergo a continued or accelerated long-term decline. In addition, long term trends in appliance LCCs—which include operating costs—consistently show an accelerated long term decline with EE policies. We also show that the incremental price of efficiency improvements has declined faster than the baseline product price for selected products. These observations are inconsistent with a view of EE standards that supposes a perfectly competitive market with static supply costs. These results suggest that EE policies may be associated with other forces at play, such as innovation and learning-by-doing in appliance production and design, that can affect long term trends in quality-adjusted prices and LCCs.

  19. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    NASA Astrophysics Data System (ADS)

    Kennedy, Scott Warren

    contribution by synthesizing information from research in power market economics, power system reliability, and environmental impact assessment, to develop a comprehensive methodology for analyzing wind power in the context of long-term energy planning.

  20. A cycle life tester for the long-term stability of phase change materials for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Grandbois, A.; Sangster, J.; Paris, J. R.

    Testing of the long-term stability of large quantities of a phase-change material, intended for low potential thermal storage of solar energy, was conducted on an accelerated freeze-thaw cycle apparatus with microcomputer monitoring. Such testing is considered essential for the selection of optimal substances among a wide variety of candidates.

  1. 77 FR 33446 - Jordan Cove Energy Project, L.P.; Application for Long-Term Authorization to Export Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Cove Energy Project, L.P.; Application for Long-Term Authorization to Export Liquefied Natural Gas Produced From Domestic and Canadian Natural Gas Resources to Non-Free Trade Agreement Countries for a 25..., multi-contract authorization to export as liquefied natural gas (LNG) both natural gas...

  2. 78 FR 34084 - Freeport-McMoRan Energy LLC; Application for Long-Term Authorization To Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ...The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an application (Application) filed on February 22, 2013, by Freeport-McMoRan Energy LLC (FME), requesting long-term, multi-contract authorization to export liquefied natural gas (LNG) produced from domestic sources in an amount up to 24 million metric tons per year (mtpa), which FME states is......

  3. Global economics/energy/environmental (E{sup 3}) modeling of long-term nuclear energy futures

    SciTech Connect

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-09-01

    A global energy, economics, environment (E{sup 3}) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors.

  4. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    PubMed

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. PMID:20471819

  5. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    SciTech Connect

    Muenster, M.; Meibom, P.

    2010-12-15

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO{sub 2} quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO{sub 2} quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  6. Planning India's long-term energy shipment infrastructures for electricity and coal

    SciTech Connect

    Brian H. Bowen; Devendra Canchi; Vishal Agarwal Lalit; Paul V. Precke; F.T. Sparrow; Marty W. Irwin

    2010-01-15

    The Purdue Long-Term Electricity Trading and Capacity Expansion Planning Model simultaneously optimizes both the expansion of transmission and generation capacity. Most commercial electricity system planning software is limited to only transmission planning. An application of the model to India's national power grid, for 2008-2028, indicates substantial transmission expansion is the cost-effective means of meeting the needs of the nation's growing economy. An electricity demand growth rate of 4% over the 20-year planning horizon requires more than a 50% increase in the Government's forecasted transmission capacity expansion, and 8% demand growth requires more than a six-fold increase in the planned transmission capacity expansion. The model minimizes the long-term expansion costs (operational and capital) for the nation's five existing regional power grids and suggests the need for large increases in load-carrying capability between them. Changes in coal policy affect both the location of new thermal power plants and the optimal pattern inter-regional transmission expansions. 15 refs., 10 figs., 7 tabs.

  7. Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 2: Long-term monitoring and modeling

    SciTech Connect

    Petrie, T.W.; Childs, P.W.

    1998-06-01

    The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. This is the second volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. The first volume described the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. This second volume updates and completes the presentation of data to compare performance of fresh coatings with weathered coatings.

  8. Can long-term bisphosphonate use causes low-energy fractures? A case report.

    PubMed

    Dandinoğlu, T; Akarsu, S; Karadeniz, M; Tekin, L; Arıbal, S; Kıralp, M Z

    2014-02-01

    Bisphosphonates are inorganic pyrophosphate analog which accumulate on the bone surface, cause osteoclast apoptosis, and inhibit bone resorption. The nitrogen-containing bisphosphonates continue to be the drug of choice for the treatment of osteoporosis in both men and women. Although histomorphometric studies including bone biopsies have not shown any evidence of microcracks, recent studies have revealed that potent bisphosphonates are responsible for the oversuppression of bone turnover leading to microdamages, reduced bone strength, and increased fracture risk. There are individual cases reporting atypical femoral fractures and severely suppressed bone turnover along with long-term (≥ 5 years) use of biphosphonates. In this study, we report on a 74-year-old woman with a history of continuous alendronate use for nearly 16 years who presented to the emergency department with right proximal humerus and left femur fracture. PMID:23824297

  9. Long-Term Care

    MedlinePlus

    ... this page please turn Javascript on. Long-Term Care What Is Long-Term Care? Long-term care involves a variety of services ... the Escape (Esc) button on your keyboard.) Most Care Provided at Home Long-term care is provided ...

  10. Meaningful public participation in scientific research: How to build an effective site-based long-term education program

    NASA Astrophysics Data System (ADS)

    Barnett, L.

    2013-12-01

    Many site-based educators (Wildlife Refuges, nature centers, Cooperative Extension Programs, schools, arboretums) struggle with developing and implementing cohesive long-term scientific monitoring projects into their existing outreach programming. Moreover, projects that are not meaningful to participants often have little or no sustainable long-term impact. Programs proven most effective are those which 1.) engage the participants in the study design and implementation process, 2.) answer a scientific question posed by site leaders; the data collected supports USA-NPN efforts as well as related site management and monitoring questions, 3.) are built into existing outreach and education programs, using phenology as a lens for understanding both natural and cultural history, and 4.) consistently share outcomes and results with the participants. The USA National Phenology Network's (USA-NPN) Education Program provides phenology curriculum and outreach to educators in formal, non-formal, and informal settings. Materials are designed to serve participants in grades 5-12, higher education, and adult learners. Phenology, used as a lens for place-based education, can inform science, environmental, and climate literacy, as well as other subject areas including cultural studies, art, and language arts. The USA-NPN offers consultation with site leaders on how to successfully engage site-based volunteers and students in long-term phenological studies using Nature's Notebook (NN), the professional and citizen science phenology monitoring program. USA-NPN education and educator instruction materials are designed and field-tested to demonstrate how to implement a long-term NN phenology-monitoring program at such sites. These curricula incorporate monitoring for public visitors, long-term volunteers, and school groups, while meeting the goals of USA-NPN and the site, and can be used as a model for other public participation in science programs interested in achieving similar

  11. An assessment of the role of coal in the long-term energy plan for Korea

    SciTech Connect

    Cha, J.S.

    1982-03-01

    During the last two decades, Korean industry has been developed very quickly. Energy consumption also has been increased very rapidly by the growth of industry. These energy requirements should be imported from other countries because Korea has few energy sources. Korean energy consumption depends highly on oil, even though oil has less security of supply and a higher price than other energy sources due to the limitation of oil reserves and the oil cartel. The Korean government wishes to import energy sources with more security of supply and a lower price.

  12. University of Minnesota Aquifer Thermal Energy Storage (ATES) project report on the first long-term cycle

    SciTech Connect

    Walton, M. )

    1991-10-01

    The technical feasibility of high-temperature (>100{degrees}C) aquifer thermal energy storage (IOTAS) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the additions to the FTF for the long-term cycles and the details of the first long-term cycle (LT1) that was conducted from November 1984 through May 1985. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic aspects of LT1 are reported. The permits for long-term cycles required the addition of a monitoring well 30.5 m from the storage well for monitoring near the edge of the thermally affected area and allowed the addition of a cation-exchange water softener to enable continuous operation during the injection phase. Approximately 62% of the 9.47 GWh of energy added to the 9.21 {times} 10{sup 4} m{sup 3} of ground water stored in the aquifer LT1 was recovered. Ion-exchange water softening of the heated and stored ground water prevented scaling in the system heat exchangers and the storage well and changed the major-ion chemistry of the stored water. Temperatures at the storage horizons in site monitoring wells reached as high as 108{degrees}C during the injection phase of LT1. Following heat recovery, temperatures were <30{degrees}C at the same locations. Less permeable horizons underwent slow temperature changes. No thermal or chemical effects were observed at the remote monitoring site. 25 refs.

  13. University of Minnesota Aquifer Thermal Energy Storage (ATES) project report on the first long-term cycle

    SciTech Connect

    Walton, M.

    1991-10-01

    The technical feasibility of high-temperature (>100{degrees}C) aquifer thermal energy storage (IOTAS) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota`s St. Paul field test facility (FTF). This report describes the additions to the FTF for the long-term cycles and the details of the first long-term cycle (LT1) that was conducted from November 1984 through May 1985. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic aspects of LT1 are reported. The permits for long-term cycles required the addition of a monitoring well 30.5 m from the storage well for monitoring near the edge of the thermally affected area and allowed the addition of a cation-exchange water softener to enable continuous operation during the injection phase. Approximately 62% of the 9.47 GWh of energy added to the 9.21 {times} 10{sup 4} m{sup 3} of ground water stored in the aquifer LT1 was recovered. Ion-exchange water softening of the heated and stored ground water prevented scaling in the system heat exchangers and the storage well and changed the major-ion chemistry of the stored water. Temperatures at the storage horizons in site monitoring wells reached as high as 108{degrees}C during the injection phase of LT1. Following heat recovery, temperatures were <30{degrees}C at the same locations. Less permeable horizons underwent slow temperature changes. No thermal or chemical effects were observed at the remote monitoring site. 25 refs.

  14. Long-term stewardship of the environmental legacy at restored sites within the Department of Energy nuclear weapons complex.

    PubMed

    Wells, James R; Spitz, Henry B

    2003-11-01

    It is readily apparent, as the Department of Energy Office of Environmental Management proceeds in remediating its vast network of contaminated nuclear weapons facilities, that final cleanup at many facilities will not be performed to a level allowing unrestricted use of the facility. Instead, these facilities must rely on engineering, administrative, and institutional controls to ensure the level of cleanup performed at the site remains adequately protective of public health and the environment. In order for these controls to remain effective, however, a plan for long-term stewardship of these sites must be developed that is approved by the U.S. Congress. Although this sounds simple enough for the present, serious questions remain regarding how best to implement a program of stewardship to ensure its effectiveness over time, particularly for sites with residual contamination of radionuclides with half-lives on the order of thousands of years. Individual facilities have attempted to answer these questions at the site-specific level. However, the complexities of the issues require federal support and oversight to ensure the programs implemented at each of the facilities are consistent and effective. The Department of Energy recently submitted a report to Congress outlining the extent of long-term stewardship needs at each of its facilities. As a result, the time is ripe for forward thinking Congressional action to address the relevant issues and ensure the remedy of long-term stewardship successfully carries out its intended purpose and remains protective of public health and the environment. The regulatory elements necessary for the stewardship program to succeed can only be implemented through the plenary powers of the U.S. Congress. PMID:14571990

  15. The Solar Energy Institute: A long-term investment in America's youth

    SciTech Connect

    Arwood, J.W.

    1999-07-01

    Unlike students of a generation ago, today's high school students have had limited personal experience with the energy issues that influence their everyday lives. They have no personal knowledge of the Arab Oil Embargo or the long lines at gas pumps that students in the 1970s encountered. Unlike their counterparts of the 1980s, who demonstrated against nuclear power plant construction projects, today's students have had very little exposure to energy debates of any national or international consequence. What's more, they have only vague memories of the Persian Gulf War and the fight over energy supplies. Fearing that the absence of crucial, real-life experiences has negatively impacted the energy literacy of today's students, numerous entities have implemented programs designed to introduce young people to a cornucopia of diverse energy issues that affect every aspect of daily life. As part of this educational movement, the Arizona Department of Commerce Energy Office recognized the fact that young people face an increasingly uncertain energy picture and, as such, one must provide them an education that will allow them to make informed energy decisions in the future. To this end, the Energy Office founded the Solar Energy Institute. What the author has gathered from his two years of experience operating the Solar Energy Institute is that the energy IQ of America's youth, specifically their solar energy IQ, is deficient. The other conclusion he has been able to draw from the program of study is that this summer camp is having a positive impact on students' energy literacy as measured by test scores and a follow-up survey of participants.

  16. Evaluation of the long-term energy analysis program used for the 1978 EIA Administrator's Report to Congress

    SciTech Connect

    Peelle, R. W.; Weisbin, C. R.; Alsmiller, Jr., R. G.

    1981-10-01

    An evaluation of the Long-Term Energy Analysis Program (LEAP), a computer model of the energy portion of the US economy that was used for the 1995-2020 projections in its 1978 Annual Report to Congress, is presented. An overview of the 1978 version, LEAP Model 22C, is followed by an analysis of the important results needed by its users. The model is then evaluated on the basis of: (1) the adequacy of its documentation; (2) the local experience in operating the model; (3) the adequacy of the numerical techniques used; (4) the soundness of the economic and technical foundations of the model equations; and (5) the degree to which the computer program has been verified. To show which parameters strongly influence the results and to approach the question of whether the model can project important results with sufficient accuracy to support qualitative conclusions, the numerical sensitivities of some important results to model input parameters are described. The input data are categorized and discussed, and uncertainties are given for some parameters as examples. From this background and from the relation of LEAP to other available approaches for long-term energy modeling, an overall evaluation is given of the model's suitability for use by the EIA.

  17. Low or moderate dietary energy restriction for long-term weight loss: what works best?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theoretical calculations suggest that small daily reductions in energy intake can cumulatively lead to substantial weight loss, but experimental data to support these calculations are lacking. We conducted a 1-year randomized controlled pilot study of low (10%) or moderate (30%) energy restriction (...

  18. Long-term shifts in life-cycle energy efficiency and carbon intensity.

    PubMed

    Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier

    2013-03-19

    The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF. PMID:23409918

  19. Food characteristics, long-term habituation and energy intake: Laboratory and field studies

    PubMed Central

    Epstein, Leonard H.; Fletcher, Kelly D.; O’Neill, Jessica; Roemmich, James N.; Raynor, Hollie; Bouton, Mark E.

    2012-01-01

    Greater food variety is related to increased energy intake, and one approach to reduce food intake is to reduce food variety. The effects of varying the variety of foods at the dinner meal to reduce energy intake was assessed in laboratory and field experiments. Experiment 1 randomly assigned 31 overweight children to one of three conditions that provided one laboratory meal per day over a week. Conditions were the SAME macaroni and cheese, SIMILAR types of macaroni and cheese, or a VARIETY of high-energy-dense foods. On days 1 and 5 all children consumed the same macaroni and cheese meal. Results showed significant differences in energy consumed between SAME and SIMILAR versus VARIETY from day 1 to 5, with SAME and SIMILAR decreasing and VARIETY increasing energy intake. Trials to habituation, a potential mechanism for the variety effect, showed the same pattern of between group differences as energy intake. Experiment 2 randomly assigned 30 overweight children to conditions that provided the SAME, SIMILAR or VARIETY of high-energy-dense entrees along with a variety of low-energy-dense dinner entrees to eat in their homes for four weeks. Results showed significant between group differences in energy intake across weeks, with significant decreases over weeks for the SAME and SIMILAR versus VARIETY groups. The pattern of results across the experiments shows the same pattern of reduction in energy intake if children eat the same or similar characteristics of foods (types of macaroni and cheese), which may provide ideas about how to develop dietary variety prescriptions that can reduce intake and be tested in clinical trials. PMID:23085682

  20. Algal Biofuels Factsheet: Long-Term Energy Benefits Drive U.S. Research

    SciTech Connect

    2013-03-04

    Algal biofuels are generating considerable interest around the world. In the United States, they represent promising pathways for helping to meet the biofuel production targets set by the Energy Independence and Security Act of 2007.

  1. Regional prediction of long-term landfill gas to energy potential.

    PubMed

    Amini, Hamid R; Reinhart, Debra R

    2011-01-01

    Quantifying landfill gas to energy (LFGTE) potential as a source of renewable energy is difficult due to the challenges involved in modeling landfill gas (LFG) generation. In this paper a methodology is presented to estimate LFGTE potential on a regional scale over a 25-year timeframe with consideration of modeling uncertainties. The methodology was demonstrated for the US state of Florida, as a case study, and showed that Florida could increase the annual LFGTE production by more than threefold by 2035 through installation of LFGTE facilities at all landfills. The estimated electricity production potential from Florida LFG is equivalent to removing some 70 million vehicles from highways or replacing over 800 million barrels of oil consumption during the 2010-2035 timeframe. Diverting food waste could significantly reduce fugitive LFG emissions, while having minimal effect on the LFGTE potential; whereas, achieving high diversion goals through increased recycling will result in reduced uncollected LFG and significant loss of energy production potential which may be offset by energy savings from material recovery and reuse. Estimates showed that the power density for Florida LFGTE production could reach as high as 10 Wm(-2) with optimized landfill operation and energy production practices. The environmental benefits from increased lifetime LFG collection efficiencies magnify the value of LFGTE projects. PMID:21703844

  2. Long-Term Modeling of Wind Energy in the United States

    SciTech Connect

    Kyle, G. Page; Smith, Steven J.; Wise, Marshall A.; Lurz, Joshua P.; Barrie, Daniel

    2007-09-30

    An improved representation of wind energy has been developed for the ObjECTS MiniCAM integrated assessment modeling framework. The first version of this wind model was used for the CCTP scenarios, where wind accounts for between 9% and 17% of U.S. electricity generation by 2095. Climate forcing stabilization policies tend to increase projected deployment. Accelerated technological development in wind electric generation can both increase output and reduce the costs of wind energy. In all scenarios, wind generation is constrained by its costs relative to alternate electricity sources, particularly as less favorable wind farm sites are utilized. These first scenarios were based on exogenous resource estimates that do not allow evaluation of resource availability assumptions. A more detailed representation of wind energy is under development that uses spatially explicit resource information and explicit wind turbine technology characteristics.

  3. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  4. Local government involvement in long term resource planning for community energy systems

    SciTech Connect

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  5. Short and long term impacts of energy variables on transportation controls. Paper 81. 43. 5

    SciTech Connect

    Wada, R.Y.; Petrites, V.; Knudson, W.

    1981-01-01

    The purpose of this paper was to assess the implications of the energy crisis for the planning of transportation controls. Shortages of gasoline had significant effects on urban travel. The use of transportation control is a method to improve air quality. They include parking provision for carpools, transit improvement, mandatory high vehicle occupancy and use of bicycles. 11 refs.

  6. Simulating energy, water and carbon fluxes at the Shortgrass Steppe Long Term Ecological Research (LTER) site

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coupled atmospheric-biospheric models are a particularly valuable tool for studying the potential effects of land-use and land-cover changes on the near-surface atmosphere since the atmosphere and biosphere are allowed to dynamically interact through the surface and canopy energy balance. GEMRAMS is...

  7. Environmental assessment of energy production based on long term commercial willow plantations in Sweden.

    PubMed

    González-García, Sara; Mola-Yudego, Blas; Dimitriou, Ioannis; Aronsson, Pär; Murphy, Richard

    2012-04-01

    The present paper analyzed the environmental assessment of short rotation willow plantations in Sweden based on the standard framework of Life Cycle Assessment (LCA) from the International Standards Organisation. The analysis is focused on two alternative management regimes for willow plantations dedicated to biomass production for energy purposes. The data used included the averages of a large sample of commercial plantations. One of the scenarios is carried out under nitrogen based fertilized conditions and the other under non-fertilized management with total biomass yields (dry weight) of 140t/ha and 86t/ha over a 21 and 22-year life time respectively. The environmental profile was analyzed in terms of the potentials for abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, photochemical oxidant formation, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity. In addition, an energy analysis was performed using the cumulative energy demand method (CED). The application of nitrogen based fertilizers allows an increase in the biomass yield per ha of up to 40% although the contributions to almost all impact categories, particularly the eutrophication potential and toxicity potential impact categories are also considerably higher. Conversely, due to the higher biomass yields achieved with fertilization of these willow plantations, that regime presents a better overall environmental profile in terms of energy yield and global warming potential. PMID:22369863

  8. A low-energy-consumption electroactive valveless hydrogel micropump for long-term biomedical applications.

    PubMed

    Kwon, Gu Han; Jeong, Gi Seok; Park, Joong Yull; Moon, Jin Hee; Lee, Sang-Hoon

    2011-09-01

    Stimuli-responsive hydrogels have attracted considerable interest in the field of microfluidics due to their ability to transform electrical energy directly into mechanical work through swelling, bending, and other deformations. In particular, electroactive hydrogels hold great promise for biomedical micropumping applications such as implantable drug delivery systems. In such applications, energy consumption rate and durability are key properties. Here, we developed a valveless micropump system that utilizes a hydrogel as the main actuator, and tested its performance over 6 months of continuous operation. The proposed micropump system, powered by a single 1.5 V commercial battery, expended very little energy (less than 750 μWs per stroke) while pumping 0.9 wt% saline solution under a low voltage (less than 1 V), and remained fully functional after 6 months. CFD simulations were conducted to improve the microchannel geometry so as to minimize the backflow caused by the valveless mechanism of the system. Based on the simulation results, an asymmetric geometry and a stop post were introduced to enhance the pumping performance. To demonstrate the feasibility of the proposed system as a drug delivery pump, an anti-cancer drug (adriamycin) was perfused to human breast cancer cells (MCF-7) using the pump. The present study showed that the proposed system can operate continuously for long periods with low energy consumption, powered by a single 1.5 V battery, making it a promising candidate for an implantable drug delivery system. PMID:21761057

  9. Food characteristics, long-term habituation and energy intake. Laboratory and field studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food variety is related to increased energy intake, and one approach to reduce food intake is to reduce food variety. However characteristics of foods that constitute variety are not known. The effects of varying food characteristics to reduce food variety on laboratory and usual dinner intake was ...

  10. Short and long term energy source technologies for electrically-heated catalysts

    SciTech Connect

    Bass, E.A.; Johnston, R.; Hunt, B.; Rodriguez, G.; Gottberg, I.; Ishizuka, A.; Hall, W.

    1996-12-31

    A consortium of six companies formed by Southwest Research Institute conducted an investigation into alternative electric power supplies for electrically heated catalysts (EHCs). Previous studies showed that, due to their high power and energy requirements upon engine start, battery-powered EHCs would cause premature failure of common lead-acid batteries. This project identified and characterized several alternative electric energy sources. Production starting, lighting, and ignition (SLI) batteries were evaluated along with lead-acid electric vehicle batteries, nickel-cadmium aircraft batteries, prototype ultracapacitors, and a modified alternator. Battery Council International and US Advanced Battery Consortium test methods were employed where applicable. Evaluations included ambient and low-temperature ({minus}18 C) constant-current discharge characterization, low-temperature peak-power determination, self-discharge, and passenger car Federal Test Procedure (FTP) emissions and fuel economy. As demonstrated by discharge-energy and peak-power tests, some EV batteries may have potential for the EHC/SLI application. Other appeared to be poorly suited due to low-temperature problems. The best low-temperature performance was observed with ultracapacitors. These units were also the least to be affected by the power versus energy trade-off. The problems with these prototype storage units were high cost and self-discharge rate. Alternator power for EHCs as an alternative to energy storage devices was successfully demonstrated on a vehicle. Power produced was a linear function of engine speed and EHC load. High-voltage switching devices will be necessary for successful use of alternator power on EHCs. A fuel economy penalty was expected, but not observed during the FTP vehicle demonstration.

  11. Building on a national health information technology strategic plan for long-term and post-acute care: comments by the Long Term Post Acute Care Health Information Technology Collaborative.

    PubMed

    Alexander, Gregory L; Alwan, Majd; Batshon, Lynne; Bloom, Shawn M; Brennan, Richard D; Derr, John F; Dougherty, Michelle; Gruhn, Peter; Kirby, Annessa; Manard, Barbara; Raiford, Robin; Serio, Ingrid Johnson

    2011-07-01

    The LTPAC (Long Term Post Acute Care) Health Information Technology (HIT) Collaborative consists of an alliance of long-term services and post-acute care stakeholders. Members of the collaborative are actively promoting HIT innovations in long-term care settings because IT adoption for health care institutions in the United States has become a high priority. One method used to actively promote HIT is providing expert comments on important documents addressing HIT adoption. Recently, the Office of the National Coordinator for HIT released a draft of the Federal Health Information Technology Strategic Plan 2011-2015 for public comment. The following brief is intended to inform about recommendations and comments made by the Collaborative on the strategic plan. PMID:21667892

  12. 76 FR 80913 - Carib Energy (USA) LLC; Application for Long-Term Authorization To Export Domestically Produced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... Natural Gas Regulatory Activities, Office of Fossil Energy, Forrestal Building, Room 3E-042, 1000... Energy, Forrestal Building, Room 3E-042, 1000 Independence Avenue SW., Washington, DC 20585, (202) 586... available for inspection and copying in the Office of Natural Gas Regulatory Activities docket room, Room...

  13. Is H(2) the Universal Energy Source for Long-Term Survival?

    PubMed

    Morita

    1999-11-01

    This review revisits anabiosis (cryptobiosis or latent life); but more specifically with the discrepancy (time factor) between the finding of viable bacteria in ancient material and the racemization of amino acids and depurination of DNA that would have contributed to their death. The omnipresence of H(2) in the biosphere since life began, its ability to penetrate the microbial cell, its low energy of activation, its ability to form protons and electrons in the presence of Fe(II), and its (including electrons and protons) role in many biochemical reactions make H(2) the best candidate as the energy of survival for microbial cells. Although the concentration of H(2) in most environments is below the threshold level for microbial growth, the surviving cells have a long period of time to carry out the necessary metabolism to offset the racemization and depurination processes. This paper explores a hypothesis that explains this discrepancy. PMID:10758178

  14. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  15. Simulating Energy, Water and Carbon Fluxes at the Shortgrass Steppe Long Term Ecological Research (LTER) Site

    NASA Astrophysics Data System (ADS)

    Beltran-Przekurat, A. B.; Pielke, R. A.; Morgan, J. A.; Burke, I. C.

    2005-12-01

    Coupled atmospheric-biospheric models are a particularly valuable tool for studying the potential effects of land-use and land-cover changes on the near-surface atmosphere since the atmosphere and biosphere are allowed to dynamically interact through the surface and canopy energy balance. GEMRAMS is a coupled atmospheric-biospheric model comprised of an atmospheric model, RAMS, and an ecophysiological process-based model, GEMTM. In the first part of this study, the soil-vegetation-atmosphere-transfer (SVAT) scheme, LEAF2, from RAMS, coupled with GEMTM, are used to simulate energy, water and carbon fluxes over different cropping systems (winter wheat and irrigated corn) and over a mixed C3/C4 shortgrass prairie located at the USDA-ARS Central Plains Experimental Range near Nunn, Colorado, the LTER Shortgrass Steppe site. The new SVAT scheme, GEMLEAF, is forced with air temperature and humidity, wind speed and photosynthetic active radiation (PAR). Calculated canopy temperature and relative humidity, soil moisture and temperature and PAR are used to compute sunlit/shaded leaf photosynthesis (for C3 and C4 plant types) and respiration. Photosynthate is allocated to leaves, shoots, roots and reproductive organs with variable partition coefficients, which are functions of soil water conditions. As water stress increases, the fraction of photosynthate allocated to root growth increases. Leaf area index (LAI) is estimated from daily leaf biomass growth, using the vegetation-prescribed specific leaf area. Canopy conductance, computed and based on photosynthesis and relative humidity, is used to calculate latent heat flux. Simulated energy and CO2 fluxes are compared to observations collected using Bowen ratio flux towers during two growing seasons. Seasonality of the fluxes reflecting different plant phenologies agrees well with the observed patterns. In the second part of this study, simulations for two clear days are performed with GEMRAMS over a model domain centered at

  16. Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Zhaoguo; Lyu, Shihua; Ao, Yinhuan; Wen, Lijuan; Zhao, Lin; Wang, Shaoying

    2015-03-01

    It remains unclear what are the characteristics of the surface energy budget and the radiation balance over the lake at high altitudes. Here we report a nearly two-year ice-free time measurement (2011-2012) of energy flux and radiation balance using the eddy covariance method over Lake Ngoring, Tibetan Plateau. A persistent unstable atmospheric boundary layer was maintained over the lake, caused by a higher water surface temperature compared with the overlying atmosphere. As a result, the positive sensible heat (H) and latent heat (LE) fluxes almost lasted throughout the entire observation period. The heat storage period of the lake could last until September, and the strongest heating occurred in October from the lake to the atmosphere. Compared with the subtropical lake, Bowen ratios were larger in Lake Ngoring, caused by a large temperature difference and a small specific humidity difference between the water surface and the overlying air. The patterns of H versus the atmospheric stability differed from those of LE. H was large under unstable stratification conditions and significantly decreased in the nearly neutral and stable atmospheric stratification. By contrast, the large LE concentrated in the weak unstable to the nearly neutral atmospheric stratification, and clearly declined with increased atmospheric instability. Overall, the vertical specific humidity difference contributed more to LE than the wind speed. As regards H, the major contributors varied with the atmospheric stability. The intrusion of dry, cold air with strong wind could result in significant increases in H and LE (approximately 2.0-4.5 times as much as those of normal days); during this period, the stored energy in water dramatically decreased and even could provide 70% of the energy for H and LE.

  17. Low-energy laser treatment of rheumatic diseases: a long-term study

    NASA Astrophysics Data System (ADS)

    Antipa, Ciprian; Moldoveanu, Vladimir; Rusca, Nicolae; Bruckner, Ion I.; Podoleanu, Adrian Gh.; Stanciulescu, Viorica

    1995-05-01

    We tried to establish the efficiency of low energy (power) lasers (LEL), in various inflammatory and noninflammatory rheumatic diseases during five years. We treated 514 patients with osteoarthrosis, 326 patients with nonarticular rheumatism and 82 patients with inflammatory rheumatism, in four different ways: only with Galium-Aluminum-Arsenide (GaAs) infrared lasers; both GaAs lasers and Helium neon (HeNe) lasers; with placebo laser; with classical anti-inflammatory therapy. The results were analyzed using local objective improvements and the score obtained from a pain scale before and after the treatments. We also note some preliminary results obtained by the computer analysis of the evocated potentials after laser irradiation. We conclude that LEL (especially HeNe with GaAs) is obviously more efficient than placebo laser therapy and also had better or at least similar results, in most of the cases, than classical anti-inflammatory therapy.

  18. Long-term environmental monitoring at two US Department of Energy Nuclear Sites

    SciTech Connect

    Gray, R.H.

    1996-12-31

    The U.S. Department of Energy`s Hanford Site was established in southeastern Washington during the 1940s to produce plutonium during World War II. The Pantex Plant in the Texas Panhandle was originally used by the U.S. Army for loading conventional ammunition shells and bombs. The Plant was rehabilitated and enhanced in the 1950s to assemble nuclear weapons. Environmental monitoring has been ongoing at both locations for several decades. Monitoring objectives are to detect and assess potential impacts of facility operations on air, surface and ground waters, foodstuffs, fish, wildlife, soils, and vegetation. Currently, measured concentrations of airborne radionuclides around the perimeters of both sites are below applicable guidelines. The low levels of {sup 137}Cs and {sup 90}Sr in some onsite Hanford wildlife samples and concentrations of radionuclides in soils and vegetation from onsite and offsite at both locations are typical of those attributable to naturally occurring radioactivity and to worldwide fallout. Ironically, by virtue of its size (1,450 km{sup 2} [560 mi{sup 2})], restricted public access, and conservative use of undeveloped land, the Hanford Site has provided a sanctuary for plant and animal populations that have been eliminated from, or greatly reduced on, surrounding agricultural and range lands. Ongoing studies will determine if this is also true at Pantex Plant. The Hanford Reach of the Columbia River and its islands and the Pantex Plant with its playas both serve as refuges for raptorial birds and migratory waterfowl. In addition, the Hanford Reach serves as a migration route for several species of salmon, and chinook salmon and steelhead trout spawn there. Bald eagles congregate along the Hanford Reach in the fall and winter to feed on the spawned-out carcasses of salmon and on wintering waterfowl.

  19. Integrating Environmental Restoration and Ecological Restoration: Long-Term Stewardship at the Department of Energy

    NASA Astrophysics Data System (ADS)

    Burger, Joanna

    2000-11-01

    With the ending of the Cold War, several federal agencies are reclaiming land through remediation and restoration and are considering potential future land uses that are compatible with current uses and local needs. Some sites are sufficiently contaminated that it is likely that the responsible federal agency will retain control over the land for the foreseeable future, providing them with a stewardship mission. This is particularly true of some of the larger Department of Energy (DOE) facilities contaminated during the production of nuclear weapons. The use of the term "restoration" is explored in this paper because the word means different things to the public, ecologists, and environmental managers responsible for contaminated sites, such as Superfund sites and the DOE facilities. While environmental restoration usually refers to remediation and removal of hazardous wastes, ecological restoration refers to the broader process of repairing damaged ecosystems and enhancing their productivity and/or biodiversity. The goals of the two types of restoration can be melded by considering environmental restoration as a special case of ecological restoration, one that involves risk reduction from hazardous wastes, and by broadening environmental restoration to include a more extensive problem-formulation phase (both temporal and spatial), which includes the goal of reestablishing a functioning ecosystem after remediation. Further, evaluating options for the desired post remediation result will inform managers and policy-makers concerning the feasibility and efficacy of environmental restoration itself.

  20. Long-term population, productivity, and energy use trends in the sequence of leading capitalist nations.

    SciTech Connect

    LePoire, D. J.

    2010-10-01

    There are many theories on why sustainable science, technology, and commerce emerged first in Western Europe rather than elsewhere. A general theory is that the geography of Europe facilitated the development of diverse and independent states and resultant competition among them. Over the past 500 years, the sequence of leading states began with Portugal and the Netherlands on the edge of continental Western Europe, then moved to the British Isles, and finally moved across the Atlantic Ocean to the United States. The transitions of leadership from one state to another occurred about every 100 years. This sequence suggests that leadership moves from smaller states to larger states (although not to the largest existing state at the time), perhaps because larger states have the flexibility to develop more complex organizational processes and adapt new technology. To explore this theory further, this paper analyzes state population data at the beginning and end of each leadership period. The data reveal an accelerating initial population sequence. Further understanding is gained from comparing the populations of the preceding and succeeding states at the time of each transition: the succeeding state's population is usually about two times larger than that of the preceding state. It is also seen that over time, the new organizational processes and technologies developed by the leading state are diffused and adapted by other states. Evidence of the effects of this diffusion should be seen in the dynamics of relative productivity and energy use (since the relative advantage of new ideas and technology can be maintained for a short period of about 100 years). This paper investigates these trends in population, trade, and resources to provide insight on possible future transitions.

  1. Building long-term and high spatio-temporal resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric reanalyses: the ANATEM model

    NASA Astrophysics Data System (ADS)

    Mathevet, T.; Gailhard, J.; Kuentz, A.; Hingray, B.

    2015-12-01

    Efforts to improve the understanding of past climatic or hydrologic variability have received a great deal of attention in various fields of geosciences such as glaciology, dendrochronology, sedimentology and hydrology. Based on different proxies, each research community produces different kinds of climatic or hydrologic reanalyses at different spatio-temporal scales and resolutions. When considering climate or hydrology, many studies have been devoted to characterising variability, trends or breaks using observed time series representing different regions or climates of the world. However, in hydrology, these studies have usually been limited to short temporal scales (mainly a few decades and more rarely a century) because they require observed time series (which suffer from a limited spatio-temporal density). This paper introduces ANATEM, a method that combines local observations and large-scale climatic information (such as the 20CR Reanalysis) to build long-term probabilistic air temperature and precipitation time series with a high spatio-temporal resolution (1 day and a few km2). ANATEM was tested on the reconstruction of air temperature and precipitation time series of 22 watersheds situated in the Durance River basin, in the French Alps. Based on a multi-criteria and multi-scale diagnosis, the results show that ANATEM improves the performance of classical statistical models - especially concerning spatial homogeneity - while providing an original representation of uncertainties which are conditioned by atmospheric circulation patterns. The ANATEM model has been also evaluated for the regional scale against independent long-term time series and was able to capture regional low-frequency variability over more than a century (1883-2010). Citation: Kuentz, A., Mathevet, T., Gailhard, J., and Hingray, B.: Building long-term and high spatio-temporal resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric

  2. The Impact of a Long-Term Reduction in Dietary Energy Density on Body Weight Within a Randomized Diet Trial

    PubMed Central

    Saquib, Nazmus; Natarajan, Loki; Rock, Cheryl L.; Flatt, Shirley W.; Madlensky, Lisa; Kealey, Sheila; Pierce, John P.

    2008-01-01

    We examined the effect of dietary energy density change on body weight in participants of a randomized trial. Intervention participants markedly increased fruit and vegetable intake while reducing energy intake from fat. Participants were 2,718 breast cancer survivors, aged 26−74 yr, with baseline mean body mass index of 27.3 kg/m2 (SD = 6.3). We assessed dietary intake by sets of four 24-h dietary recalls and validated with plasma carotenoid concentrations. Weight and height were measured at baseline, 1 yr, and 4 yr. Dietary energy density was calculated using food but excluding beverages. Intervention participants significantly reduced dietary energy density compared to controls and maintained it over 4 yr—both in cross-sectional (P < 0.0001) and longitudinal (Group × Time interaction, P < 0.0001) analyses. Total energy intake or physical activity did not vary between groups. The intervention group had a small but significant weight loss at 1 yr (Group × Time interaction, P < 0.0001), but no between-group weight difference was observed at 4 yr. Our study showed that reducing dietary energy density did not result in a reduction in total energy intake and suggests that this strategy alone is not sufficient to promote long-term weight loss in a free-living population. PMID:18444133

  3. The impact of a long-term reduction in dietary energy density on body weight within a randomized diet trial.

    PubMed

    Saquib, Nazmus; Natarajan, Loki; Rock, Cheryl L; Flatt, Shirley W; Madlensky, Lisa; Kealey, Sheila; Pierce, John P

    2008-01-01

    We examined the effect of dietary energy density change on body weight in participants of a randomized trial. Intervention participants markedly increased fruit and vegetable intake while reducing energy intake from fat. Participants were 2,718 breast cancer survivors, aged 26-74 yr, with baseline mean body mass index of 27.3 kg/m(2) (SD = 6.3). We assessed dietary intake by sets of four 24-h dietary recalls and validated with plasma carotenoid concentrations. Weight and height were measured at baseline, 1 yr, and 4 yr. Dietary energy density was calculated using food but excluding beverages. Intervention participants significantly reduced dietary energy density compared to controls and maintained it over 4 yr -- both in cross-sectional (P < 0.0001) and longitudinal (Group x Time interaction, P < 0.0001) analyses. Total energy intake or physical activity did not vary between groups. The intervention group had a small but significant weight loss at 1 yr (Group x Time interaction, P < 0.0001), but no between-group weight difference was observed at 4 yr. Our study showed that reducing dietary energy density did not result in a reduction in total energy intake and suggests that this strategy alone is not sufficient to promote long-term weight loss in a free-living population. PMID:18444133

  4. Storm- Time Dynamics of Ring Current Protons: Implications for the Long-Term Energy Budget in the Inner Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Gkioulidou, M.; Ukhorskiy, A. Y.; Mitchell, D. G.; Lanzerotti, L. J.

    2015-12-01

    The ring current energy budget plays a key role in the global electrodynamics of Earth's space environment. Pressure gradients developed in the inner magnetosphere can shield the near-Earth region from solar wind-induced electric fields. The distortion of Earth's magnetic field due to the ring current affects the dynamics of particles contributing both to the ring current and radiation belts. Therefore, understanding the long-term evolution of the inner magnetosphere energy content is essential. We have investigated the evolution of ring current proton pressure (7 - 600 keV) in the inner magnetosphere based on data from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument aboard Van Allen Probe B throughout the year 2013. We find that although the low-energy component of the protons (< 80 keV) is governed by convective timescales and is very well correlated with the Dst index, the high-energy component (>100 keV) varies on much longer timescales and shows either no or anti-correlation with the Dst index. Interestingly, the contributions of the high- and low-energy protons to the total energy content are comparable. Our results indicate that the proton dynamics, and as a consequence the total energy budget in the inner magnetosphere (inside geosynchronous orbit), is not strictly controlled by storm-time timescales as those are defined by the Dst index.

  5. Long-Term Surveillance and Maintenance Plan for the U.S. Department of Energy Amchitka, Alaska, Site

    SciTech Connect

    2008-09-01

    This Long-Term Surveillance and Maintenance Plan describes how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at the Amchitka, Alaska, Site1. Three underground nuclear tests were conducted on Amchitka Island. The U.S. Department of Defense, in conjunction with the U.S. Atomic Energy Commission (AEC), conducted the first nuclear test (Long Shot) to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC as a means to study the feasibility of detonating a much larger device. The final nuclear test (Cannikin), the largest United States underground test, was a weapons-related test. Surface disturbances associated with these tests have been remediated. However, radioactivity remains deep below the surface, contained in and around the test cavities, for which no feasible remediation technology has been identified. In 2006, the groundwater model (Hassan et al. 2002) was updated using 2005 data collected by the Consortium for Risk Evaluation with Stakeholder Participation. Model simulation results indicate there is no breakthrough or seepage of radionuclides into the marine environment within 2,000 years. The Amchitka conceptual model is reasonable; the flow and transport simulation is based on the best available information and data. The simulation results are a quantitative prediction supported by the best available science and technology. This Long-Term Surveillance and Maintenance Plan is an additional step intended for the protection of human health and the environment. This plan may be modified from time to time in the future consistent with the mission to protect human health

  6. Long-term toxicity of an intraoperative radiotherapy boost using low energy X-rays during breast-conserving surgery

    SciTech Connect

    Kraus-Tiefenbacher, Uta . E-mail: uta.kraus-tiefenbacher@radonk.ma.uni-heidelberg.de; Bauer, Lelia; Scheda, Antonella; Fleckenstein, Katharina; Keller, Anke; Herskind, Carsten; Steil, Volker; Melchert, Frank; Wenz, Frederik

    2006-10-01

    Purpose: Intraoperative radiotherapy (IORT) as a boost for breast cancer delivers a high single dose of radiation to a late-reacting tissue; therefore late toxicity is of particular interest, and long-term follow-up is warranted. To date there are only limited data available on breast cancer patients treated with IORT using low energy X-rays. We analyzed toxicity and cosmesis after IORT as a boost with a minimum follow-up of 18 months. Methods and Materials: A total of 73 patients treated with IORT (20 Gy/50 kV X-rays; INTRABEAM [Carl Zeiss Surgical, Oberkochen, Germany]) to the tumor bed during breast-conserving surgery as a boost followed by whole-breast radiotherapy (WBRT, 46 Gy) underwent a prospective, predefined follow-up (median, 25 months; range 18-44 months), including clinical examination and breast ultrasound at 6-months and mammographies at 1-year intervals. Toxicities were documented using the common toxicity criteria (CTC)/European Organization for Research and Treatment of Cancer and the LENT-SOMA score. Cosmesis was evaluated with a score from 1 to 4. Results: The IORT in combination with WBRT was well tolerated, with no Grade 3 or 4 skin toxicities and no telangiectasias. Fibrosis of the entire breast was observed in 5% of the patients. A circumscribed fibrosis around the tumor bed was palpable in up to 27% with a peak around 18 months after therapy and a decline thereafter. The observed toxicitiy rates were not influenced by age, tumor stage, or systemic therapy. The cosmetic outcome was good to excellent in {>=}90% of cases. Conclusions: After IORT of the breast using low-energy X-rays, no unexpected toxicity rates were observed during long-term-follow-up.

  7. A multiobjective short-term optimal operation model for a cascade system of reservoirs considering the impact on long-term energy production

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Zhong, Ping-An; Stanko, Zachary; Zhao, Yunfa; Yeh, William W.-G.

    2015-05-01

    This paper examines the impact of short-term operation on long-term energy production. We propose a multiobjective optimization model for the short-term, daily operation of a system of cascade reservoirs. The two objectives considered in the daily model are: (1) minimizing the total amount of water released and (2) maximizing the stored energy in the system. Optimizing short-term operation without considering its impact on long-term energy production does not guarantee maximum energy production in the system. Therefore, a major goal of this paper is to identify desirable short-term operation strategies that, at the same time, optimize long-term energy production. First, we solve the daily model for 1 month (30 days) using a nondominated genetic algorithm (NSGAII). We then use the nondominated solutions obtained by NSGAII to assess the impact on long-term energy production using a monthly model. We use historical monthly inflows to characterize the inflow variability. We apply the proposed methodology to the Qingjiang cascade system of reservoirs in China. The results show: (1) in average hydrology scenarios, the solution maximizing stored energy produces the most overall long-term energy production; (2) in moderately wet hydrology scenarios, the solution minimizing water released outperforms the maximizing stored energy solution; and (3) when extremely wet hydrology scenarios are expected, a compromise solution is the best strategy.

  8. Investigation of balancing effects in long term renewable energy feed-in with respect to the transmission grid

    NASA Astrophysics Data System (ADS)

    Kies, A.; Nag, K.; von Bremen, L.; Lorenz, E.; Heinemann, D.

    2015-05-01

    A European power system mainly based on renewable sources will have dominant contributions from wind and solar power. However, wind and solar generation facilities have, due to the weather dependent nature of their resources, highly fluctuating feed-in profiles. To overcome the mismatch between power consumption and generation it is important to study and understand the generation patterns and balancing potentials. High temporally and spatially resolved long term weather data was used to simulate the feed-in from wind and photovoltaics for European countries for the years 2003 to 2012. We investigate storage energy and capacity needs in Europe in dependency of the generation mix from wind onshore, wind offshore and photovoltaics and the share of renewables. Furthermore we compute the storage energy and capacity needs for different transmission scenarios. We show that for unlimited transmission storage needs are reduced mostly by high wind offshore shares. We also show that higher shares above 100% of renewables can decrease the required storage capacity to a higher extent than the required storage energy.

  9. Long-term measurement of indoor thermal environment and energy performance in a detached wooden house with passive solar systems

    SciTech Connect

    Ishikawa, Yoshimi; Yoshino, Hiroshi; Sasaki, Chikashi

    1998-07-01

    The indoor thermal environment, energy performance and energy consumption for a detached wooden house equipped with two passive solar systems, were investigated over a period of three years. The house with a floor area of 188 m{sup 2} was constructed in the autumn of 1993 in Sendai, Japan; and was well insulated and very airtight compared with other houses in Japan. There are six occupants. Heating equipment is comprises of a thermal storage space heater using night-time electricity and a vented firewood furnace on the first floor. Each room is ventilated all day by a central ventilation system. Two passive solar systems were incorporated: a concrete floor in the southern perimeter of the living room as a direct gain system, and an earth tube embedded around the circumference of the house to supply fresh air. The principal results obtained are as follows: (1) The indoor environment during the heating season was more thermally comfortable, compared with that or ordinary houses in Japan. (2) The concrete floor played a role of thermal storage, which absorbed and released heat for decreasing the fluctuation of room temperature. (3) The earth tube supplied air with lower temperature in the summer and higher temperature in the winter to the room, that the outdoor air temperature. This thermal performance did not decrease in spite of the long-term use. (4) The annual amount of energy consumption of this house was less than that of ordinary houses in the northern part of Japan.

  10. Southern Alaska as an Example of the Long-Term Consequences of Mountain Building Under the Influence of Glaciers

    NASA Technical Reports Server (NTRS)

    Meigs, Andrew; Sauber, Jeanne

    2000-01-01

    Southern Alaska is a continent-scale region of ongoing crustal deformation within the Pacific-North American plate boundary zone. Glaciers and glacial erosion have dictated patterns of denudation in the orogen over the last approx. 5 My. The orogen comprises three discrete topographic domains from south to north, respectively: (1) the Chugach/St. Elias Range; (2) the Wrangell Mountains; and (3) the eastern Alaska Range. Although present deformation is distributed across the orogen, much of the shortening and uplift are concentrated in the Chugach/St. Elias Range. A systematic increase in topographic wavelength of the range from east to west reflects east-to-west increases in the width of a shallowly-dipping segment of the plate interface, separation of major upper plate structures, and a decrease in the obliquity of plate motion relative to the plate boundary. Mean elevation decays exponentially from approx. 2500 m to approx. 1100 m from east to west, respectively. Topographic control on the present and past distribution of glaciers is indicated by close correspondence along the range between mean elevation and the modern equilibrium line altitude of glaciers (ELA) and differences in the modern ELA, mean annual precipitation and temperature across the range between the windward, southern and leeward, northern flanks. Net, range- scale erosion is the sum of: (1) primary bedrock erosion by glaciers and (2) erosion in areas of the landscape that are ice-marginal and are deglaciated at glacial minima. Oscillations between glacial and interglacial climates controls ice height and distribution, which, in turn, modulates the locus and mode of erosion in the landscape. Mean topography and the mean position of the ELA are coupled because of the competition between rock uplift, which tends to raise the ELA, and enhanced orographic precipitation accompanying mountain building, which tends to lower the ELA. Mean topography is controlled both by the 60 deg latitude and maritime

  11. Building long-term and high spatio-temporal resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric reanalyses: the ANATEM method

    NASA Astrophysics Data System (ADS)

    Kuentz, A.; Mathevet, T.; Gailhard, J.; Hingray, B.

    2015-01-01

    Improving the understanding of past climatic or hydrologic variability has received a large attention in different fields of geosciences, such as glaciology, dendrochronology, sedimentology or hydrology. Based on different proxies, each research community produces different kind of climatic or hydrologic reanalyses, at different spatio-temporal scales and resolution. When considering climate or hydrology, numerous studies aim at characterising variability, trends or breaks using observed time-series of different regions or climate of world. However, in hydrology, these studies are usually limited to reduced temporal scale (mainly few decades, seldomly a century) because they are limited to observed time-series, that suffers from a limited spatio-temporal density. This paper introduces a new model, ANATEM, based on a combination of local observations and large scale climatic informations (such as 20CR Reanalysis). This model allow to build long-term air temperature and precipitation time-series, with a high spatio-temporal resolution (daily time-step, few km2). ANATEM was tested on the air temperature and precipitation time-series of 22 watersheds situated on the Durance watershed, in the french Alps. Based on a multi-criteria and multi-scale diagnostic, the results show that ANATEM improves the performances of classical statistical models. ANATEM model have been validated on a regional level, improving spatial homogeneity of performances and on independent long-term time-series, being able to capture the regional low-frequency variabilities over more than a century (1883-2010).

  12. Alien reef-building polychaete drives long-term changes in invertebrate biomass and diversity in a small, urban estuary

    NASA Astrophysics Data System (ADS)

    McQuaid, K. A.; Griffiths, C. L.

    2014-02-01

    Two of the greatest threats to native biodiversity are the construction of artificial structures in natural environments and the introduction of invasive species. As the development and urbanisation of estuaries continues at an increasing rate worldwide, these environments are being simultaneously affected by these threats. This study quantifies the spread of an invasive reef-building polychaete, Ficopomatus enigmaticus, in a small, highly manipulated urban estuary in South Africa and investigates its role as an ecosystem engineer. Anthropogenic changes to the Zandvlei Estuary, including construction of a rubble weir and canalisation near the estuary mouth, construction of an extensive marina development and hardening of the banks with concrete, have facilitated the expansion of F. enigmaticus. The standing stock of F. enigmaticus increased from 13.69 t, as measured in 1986, to 50.03 t in 2012, due both to increase in the total area colonised and standing stock per m2. Since F. enigmaticus reefs support a greater biomass of infauna than adjacent sandy areas, total invertebrate biomass in the estuary is estimated to have increased from less than 0.30 t in 1942, to over 56.80 t in 2012, due mainly to hardening of banks in parts of the main estuary with concrete and construction of a marina system. A positive correlation between reef mass and infaunal biomass, density and diversity was also found.

  13. University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle

    SciTech Connect

    Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F. )

    1991-12-01

    The technical feasibility of high-temperature (>100{degrees}C (>212{degrees}F)) aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

  14. University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle

    SciTech Connect

    Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F.

    1991-12-01

    The technical feasibility of high-temperature [>100{degrees}C (>212{degrees}F)] aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota`s St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

  15. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives.

    PubMed

    Monson, Brian B; Lotto, Andrew J; Story, Brad H

    2012-09-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech. PMID:22978902

  16. Long-term effects of provided low & high glycemic load low energy diets on mood and cognition

    PubMed Central

    Cheatham, Rachel A.; Roberts, Susan B.; Das, Sai Krupa; Gilhooly, Cheryl H.; Golden, Julie K.; Hyatt, Raymond; Lerner, Debra; Saltzman, Edward; Lieberman, Harris R.

    2009-01-01

    Energy-restricted low glycemic load diets are being used increasingly for weight loss. However, the long-term effects of such regimens on mood and cognitive performance are not known. We assessed the effects of low glycemic load (LG) and high glycemic load (HG) energy-restricted diets on mood and cognitive performance during 6 months of a randomized controlled trial when all food was provided. Subjects were 42 healthy overweight adults (age 35 ± 5 y; BMI 27.8 ± 1.6 kg/m2) with a mean weight loss of 8.7 ± 5.0% that did not differ significantly by diet randomization. Mood was assessed by using the Profile of Mood States (POMS) questionnaire. Cognitive performance was assessed by using computerized tests of simple reaction time, vigilance, learning, short-term memory and attention, and language-based logical reasoning. Worsening mood outcome over time was observed in the HG diet group compared to the LG for the depression subscale of POMS (P=0.009 after including hunger as a covariate). There was no significant change over time in any cognitive performance values. These findings suggest a negative effect of an HG weight loss diet on sub-clinical depression but, in contrast to a previous suggestion, provide no support for differential effects of LG versus HD diets on cognitive performance. PMID:19576915

  17. Building America Case Study: Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation (Fact Sheet)

    SciTech Connect

    Not Available

    2014-10-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders are going to finding themselves required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has been a significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research was an extension on previous research conducted by BSC in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full years worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  18. The Swift-BAT monitoring reveals a long term decay of the cyclotron line energy in Vela X-1

    NASA Astrophysics Data System (ADS)

    La Parola, V.; Cusumano, G.; Segreto, A.; D'Aì, A.

    2016-08-01

    We study the behaviour of the cyclotron resonant scattering feature (CRSF) of the high mass X-ray binary Vela X-1 using the long-term hard X-ray monitoring performed by the Burst Alert Telescope (BAT) on board Swift. High statistics, intensity selected spectra were built along 11 years of BAT survey. While the fundamental line is not revealed, the second harmonic of the CRSF can be clearly detected in all the spectra, at an energy varying between ˜53 keV and ˜58 keV, directly correlated with the luminosity. We have further investigated the evolution of the CRSF in time, by studying the intensity selected spectra built along four 33-month time intervals along the survey. For the first time we find in this source a secular variation in the CRSF energy: independent of the source luminosity, the CRSF second harmonic energy decreases by ˜0.36 keV/year between the first and the third time interval, corresponding to an apparent decay of the magnetic field of ˜3 × 1010 G/year. The intensity-cyclotron energy pattern is consistent between the third and the last time intervals. A possible interpretation for this decay could be the settling of an accreted mound that produces either a distortion of the poloidal magnetic field on the polar cap or a geometrical displacement of the line forming region. This hypothesis seems supported by the correspondance between the rate of the line shift per unit accreted mass and the mass accreted on the polar cap per unit area in Vela X-1 and Her X-1, respectively.

  19. Applying a decision process for long-term stewardship planning at a US Department of Energy site.

    SciTech Connect

    Hocking, E. K.; Smiley, S. L.

    2002-05-14

    Long-term stewardship (LTS) can be defined as the system of activities needed to protect human health and the environment from hazards left remaining at a site as a result of a cleanup decision. Although the general consensus has been that remediation decisions and LTS decisions should be made conjointly, the general practice has been to separate them. This bifurcation can result in LTS plans that are difficult to implement and enforce and disproportionately costly for the benefit they provide. Worse still, they can be ineffective and result in harmful exposures to humans and the environment. Sites that have not yet made cleanup decisions and that can still integrate LTS planning into that decision making would benefit from a process built on a systematic review of the LTS risks and costs associated with remedial alternatives that include allowing on-site residual contamination. Sites that must develop LTS plans in response to previously determined cleanup decisions are even more in need of a process that involves close scrutiny of the risks and costs of possible LTS plan components. An LTS planning decision process usable by both categories of sites has been developed and is being used at the US Department of Energy (DOE) Mound site. In addition to facilitating LTS planning, the process demonstrated the need to integrate the work of LTS planners, remediation decision makers, and LTS technology developers and deployers.

  20. Energy efficiency, resilience to future climates and long-term sustainability: the role of the built environment

    PubMed Central

    Kelly, M. J.

    2010-01-01

    Just under half of all energy consumption in the UK today takes place indoors, and over a quarter within our homes. The challenges associated with energy security, climate change and sustainable consumption will be overcome or lost in our existing buildings. A background analysis, and the scale of the engineering challenge for the next three to four decades, is described in this paper. PMID:20123747

  1. Design and Conduct of the CALERIE Study: Comprehensive Assessment of the Long-term Effects of Reducing Intake of Energy

    PubMed Central

    Bales, Connie W.; Ravussin, Eric; Redman, Leanne M.; Holloszy, John O.; Racette, Susan B.; Roberts, Susan B.; Das, Sai Krupa; Romashkan, Sergei; Galan, Katherine M.; Hadley, Evan C.; Kraus, William E.

    2011-01-01

    Background. In a robust and consistent manner, sustained caloric restriction (CR) has been shown to retard the aging process in a variety of animal species. Nonhuman primate studies suggest that CR may have similar effects in longer-lived species. The CALERIE (Comprehensive Assessment of the Long-term Effects of Reducing Intake of Energy) research program is the first systematic investigation of CR in nonobese human beings. In the phase 2 study, it is hypothesized that 2 years of sustained CR, involving a 25% reduction of ad libitum energy intake, results in beneficial effects similar to those observed in animal studies. This article presents the design and implementation of this study. Methods. The study is a multicenter, parallel-group, randomized controlled trial. A sample of 225 participants (22.0 ≤ body mass index [BMI] < 28.0 kg/m2) is being enrolled with 2:1 allocation to CR. Results. An intensive dietary and behavioral intervention was developed to achieve 25% CR and sustain it over the 2 years. Adherence is monitored using a doubly labeled water technique. Primary outcomes are resting metabolic rate and core temperature, and are assessed at baseline and at 6-month intervals. Secondary outcomes address oxyradical formation, cardiovascular risk markers, insulin sensitivity and secretion, immune function, neuroendocrine function, quality of life and cognitive function. Biologic materials are stored in a central repository. Conclusions. An intricate protocol has been developed to conduct this study. Procedures have been implemented to safeguard the integrity of the data and the conclusions drawn. The results will provide insight into the detrimental changes associated with the human aging process and how CR mitigates these effects. PMID:20923909

  2. Building long-term and high spatio-temporal resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric reanalyses: the ANATEM model

    NASA Astrophysics Data System (ADS)

    Kuentz, A.; Mathevet, T.; Gailhard, J.; Hingray, B.

    2015-06-01

    Efforts to improve the understanding of past climatic or hydrologic variability have received a great deal of attention in various fields of geosciences such as glaciology, dendrochronology, sedimentology and hydrology. Based on different proxies, each research community produces different kinds of climatic or hydrologic reanalyses at different spatio-temporal scales and resolutions. When considering climate or hydrology, many studies have been devoted to characterising variability, trends or breaks using observed time series representing different regions or climates of the world. However, in hydrology, these studies have usually been limited to short temporal scales (mainly a few decades and more rarely a century) because they require observed time series (which suffer from a limited spatio-temporal density). This paper introduces ANATEM, a method that combines local observations and large-scale climatic information (such as the 20CR Reanalysis) to build long-term probabilistic air temperature and precipitation time series with a high spatio-temporal resolution (1 day and a few km2). ANATEM was tested on the reconstruction of air temperature and precipitation time series of 22 watersheds situated in the Durance River basin, in the French Alps. Based on a multi-criteria and multi-scale diagnosis, the results show that ANATEM improves the performance of classical statistical models - especially concerning spatial homogeneity - while providing an original representation of uncertainties which are conditioned by atmospheric circulation patterns. The ANATEM model has been also evaluated for the regional scale against independent long-term time series and was able to capture regional low-frequency variability over more than a century (1883-2010).

  3. Analysis of a long-term dataset of global and diffuse horizontal irradiance at northeastern Spain for energy applications

    NASA Astrophysics Data System (ADS)

    Rincón, A.; Jorba, O.; Baldasano, J. M.

    2009-04-01

    An accurate knowledge of the global, diffuse and direct beam irradiance at specific geographical locations in high temporal and spatial resolutions is a must requirement for the development of solar energy applications. Most available datasets comprise global irradiance, but it is not the case for diffuse or direct beam components. These two latter are of great importance when converting the data into declined impinging irradiance or specific components like for example daylight or available energy, utilized to assess the feasibility of solar energy systems. The surface irradiance presents a high temporal variability, and analysis of high frequency sampling datasets provides very valuable information for energy applications. In this contribution, we present an analysis of a long-term dataset of ground measurements of global and diffuse irradiance over a period of 22 years (1986-2007) at northeastern Spain. Ten Irradiance stations of the Catalan Energy Institute (ICAEN) solar network are analyzed to assess the temporal and spatial fluctuations and trends of the ground solar irradiance. The stations provide 5-minutes global and diffuse irradiance over a period of 22 years. In a first step, a quality control testing is applied over our datasets based on QCRad methodology (Long and Shi, 2006; Long and Dutton, 2002). The total amount of valid data from sunrise to sunset is over 6 Million data for global irradiance (87%) and over 4.5 Million data for diffuse irradiance (62%). Then, a comparison and validation of global-to-beam irradiance conversion models is performed to estimate beam irradiance and daily sunshine duration through the clearness index (Kt) and diffuse fraction (Kd). The results allow us to provide a representative solar radiation year which sums up all the climatic information characterizing an annual radiation cycle. REFERENCES Long CN. and Shi Y., 2006. "The QCRad Value Added Product: Surface Radiation Measurement Quality Control Testing, Including

  4. Evidence for long-term variability in the ultra high energy photon flux from Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Bhat, C. L.; Rannot, R. C.; Rawat, H. S.; Razdan, H.; Sanecha, V. K.; Sapru, M.

    1985-01-01

    A time-correlation analysis of atmospheric Cerenkov pulses by a wide-angle photomultiplier system was previously shown to have present in it a nonrandom component which seemed associated with the Right Ascension (RA) range approx. 20+or-04h. A recent examination of multi-muon events recorded by a photon-decay detector shows a similar time-dependent effect, closely matching the previous results, supporting the suggestion that the effect is of cosmic origin. However, even though Cyg. X-3 lies well inside the region of peak intensity, it does not seem possible to ascribe to it the whole effect, for the implied photon flux appears too large to be reconciled to various gamma-ray measurements of Cyg. X-3. The original data were subjected to a phase-histogram analysis and it as found that only 2.5% of overall recorded data are compatible with a phase-dependent emission from Cyg. X-3. Assuming these events to be gamma rays yields a detected flux of (2.6 + or - 0.3) x 10 to the minus 12th power gamma cm -2s-1 above 5 x 10 to the 14th power eV. Comparing this value with more recent ultra high energy (UHE) photon data from the same source, it is suggested that the available data generally favor a long-term reduction in the Cyg. X-3 inferred luminosity ( 10 to the 13th power eV) by a factor of (1.8 + or - 0.3) per year.

  5. Energy metabolism and biochemical features of adipose tissues in ICR mice after long-term calorie-restricted diet.

    PubMed

    Mizonova, O V; Elsukova, E I; Medvedev, L N

    2013-10-01

    Long-term calorie-restricted diet (8 weeks, 60% of control food intake) was followed by an increase in thermogenic activity of interscapular brown fat. The relative amount of DNA and protein and the rate of oxygen consumption increased and tissue-specific marker of brown fat (uncoupling protein UCP1) appeared in significantly reduced deep-pink abdominal adipose tissue. PMID:24288756

  6. Integrating Long-Term Avian Studies with Planning and Adaptive Management: Department of Energy Lands as a Case Study.

    SciTech Connect

    Burger, J.

    2000-10-01

    Long-term bio-monitoring of avian communities have been initiated, but they often lack a management component. Integration of the managers needs at an early stage is suggested as a means to increase the use of the data. Variation in community structure is important in understanding impacts. In addition, reference site must be carefully selected.

  7. Long-term Observations of Ecohydrology, Climate, Energy Fluxes, and Eddy Covariance Error in a Large, Semiarid Floodplain

    NASA Astrophysics Data System (ADS)

    Cleverly, J. R.; Thibault, J. R.; Dahm, C. N.; Allred Coonrod, J. E.; Slusher, M.; Teet, S.; Schuetz, J.

    2008-12-01

    Some of the highest rates of water and energy fluxes between terrestrial ecosystems and the atmosphere occur over large floodplains in arid and semiarid areas. Often located in high-pressure zones near 35 degrees latitude, abundant radiation and easily accessible groundwater contribute few limitations on growth and production in desert phreatophytes. Desert regions typically undergo cycles of drought and floods, and phreatophytic communities wax or wane in cover, density, and structure with cumulative species responses to timing and severity in these regional weather cycles. The Rio-ET Laboratory at the University of New Mexico has been collecting long-term data from a flux network of riparian monitoring stations, mounted on towers along the Middle Rio Grande. Ongoing measurements of energy, water and carbon dioxide fluxes, groundwater dynamics, meteorology, leaf area index, and community dynamics began at some locations in 1999. Recent reanalysis of the flux dataset was performed in which error correction procedures were compared to each and other and in relation to an irrigated crop under advection. Most riparian sites exhibited stable atmospheric stratification and an energy balance consistent with evaporative cooling. Evaporative cooling was more prominent in the late afternoon and evening, during wet conditions. Reduced latent heat fluxes were observed in a cottonwood forest following restoration and fire, but only in years when the forest floor was not re-vegetated by opportunistic annuals or target removal species. Water use by riparian phreatophytes was 1) non-responsive to drought during the monsoon season (non-native Russian olive and monospecific saltcedar communities), 2) responded negatively to monsoon-season drought (xeroriparian saltcedar and saltgrass mosaic community), or 3) responded positively to monsoon-season drought (cottonwood forests). Water salvage related to ecological restoration is dependent upon restoration strategy, emphasizing the

  8. Long-term channel adjustment and geomorphic feature creation by vegetation in a lowland, low energy river

    NASA Astrophysics Data System (ADS)

    Grabowski, Robert; Gurnell, Angela

    2016-04-01

    Physical habitat restoration is increasingly being used to improve the ecological status of rivers. This is particularly true for lowland streams which are perceived to lack sufficient energy to create new features or to flush out fine sediment derived from agricultural and urban sources. However, this study has found that even in low-energy, base-flow dominated chalk streams, physical habitat improvement can happen naturally without direct human intervention. Furthermore this positive change is achieved by components of the river that are often regarded as management problems: in-stream macrophytes (i.e. weed), riparian trees, woody debris, and most importantly fine sediment. This project investigated the long-term changes in channel planform for the River Frome (Dorset, UK) over the last 120 years and the role of aquatic and riparian vegetation in driving this change. Agricultural census data, historical maps, recent aerial images and field observations were analysed within a process-based, hierarchical framework for hydromorphological assessment, developed in the EU FP7 REFORM project, to investigate the source and timing of fine sediment production in the catchment, to quantify the reach-scale geomorphic response, and to identify vegetation-related bedforms that could be responsible for the adjustment. The analysis reveals that the channel has narrowed and become more sinuous in the last 50-60 years. The timing of this planform adjustment correlates with substantial changes in land use and agricultural practices (post-World War II) that are known to increase soil erosion and sediment connectivity. The field observations and recent aerial images suggest that the increased delivery of fine sediment to the channel has been translated into geomorphic adjustment and diversification though the interactions between vegetation, water flow and sediment. Emergent aquatic macrophytes are retaining fine sediment, leading to the development of submerged shelves that aggrade

  9. Comprehensive assessment of long-term effects of reducing intake of energy phase 2 (CALERIE Phase 2) screening and recruitment: Methods and results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Comprehensive Assessment of the Long-term Effects of Reducing Intake of Energy Phase 2 (CALERIE) study is a systematic investigation of sustained 25% calorie restriction (CR) in non-obese humans. CALERIE is a multicenter (3 clinical sites, one coordinating center), parallel group, randomized con...

  10. Construction of a cathode using amorphous FePO4 nanoparticles for a high-power/energy-density lithium-ion battery with long-term stability

    NASA Astrophysics Data System (ADS)

    Zhang, Tongbao; Cheng, Xin-Bing; Zhang, Qiang; Lu, Yangcheng; Luo, Guangsheng

    2016-08-01

    Using amorphous FePO4 (a-FePO4) nanoparticles with a high purity, a narrow size distribution and good dispersion, we successfully developed a new strategy to generate a uniformly dispersed a-FePO4-CNT nano-composite using the interface interaction between surface-modified a-FePO4 and CNT dispersion under mild sonication. The uniformly dispersed a-FePO4-CNT nano-composite exhibited the best performance and long-term stability as a cathode material in a lithium-ion battery compared to previously reported results. The developed nano-composite could deliver a theoretical specific capacity at 0.1 C, 162 mAh g-1 at 1 C and 117 mAh g-1 at 5 C. No capacity fading was observed at 1 C after 500 cycles, and nearly 90% of the initial discharge capacity could be retained at 5 C after 2000 cycles. This study confirms the validity of the proposed strategy to construct a cathode structure, and also describes the potential of a-FePO4 for building high-power energy-storage and conversion systems.

  11. Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: the case study of the city of Rome, Italy

    NASA Astrophysics Data System (ADS)

    Zeni, G.; Bonano, M.; Casu, F.; Manunta, M.; Manzo, M.; Marsella, M.; Pepe, A.; Lanari, R.

    2011-09-01

    Monitoring of deformation phenomena affecting urban areas and man-made structures is of key relevance for the preservation of the artistic, archaeological and architectural heritage. The differential SAR interferometry (DInSAR) technique has already been demonstrated to be an effective tool for non-invasive deformation analyses over large areas by producing spatially dense deformation maps with centimetre to millimetre accuracy. Moreover, by exploiting long sequences of SAR data acquired by different sensors, the advanced DInSAR technique referred to as the small baseline subset (SBAS) approach allows providing long-term deformation time series, which are strategic for guaranteeing the monitoring of urban area displacements. In this work, we investigate the effectiveness of the two-scale multi-sensor SBAS-DInSAR approach to detect and monitor displacements affecting historical and artistic monuments. The presented results, achieved by applying the full resolution SBAS technique to a huge set of ERS-1/2 and ENVISAT data, spanning the 1992-2010 time interval and relevant to the city of Rome (Italy), show the capability of this approach to detect and analyse the temporal evolution of possible deformation phenomena affecting historical buildings and archaeological sites. Accordingly, our analysis demonstrates the effectiveness of the full resolution multi-sensor SBAS approach to operate as a surface deformation tool for supporting the study and conservation strategies of the historical, cultural and artistic heritage.

  12. Long Term Thermal Stability In Air Of Ionic Liquid Based Alternative Heat Transfer Fluids For Clean Energy Production

    SciTech Connect

    Fox, Elise B; Kendrick, Sarah E.; Visser, Ann E.; Bridges, Nicholas J.

    2012-10-15

    The purpose of this study was to investigate the effect of long-term aging on the thermal stability and chemical structure of seven different ILs so as to explore their suitability for use as a heat transfer fluid. This was accomplished by heating the ILs for 15 weeks at 200°C in an oxidizing environment and performing subsequent analyses on the aged chemicals.

  13. Tracing the History of the Energy Sector Related Applications Using Specially Adapted NASA Long-Term Climate Data Sets and Measures of Their Socio-Economic Value

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W.; Hoell, J. M.; Chandler, W.; Westberg, D. J.; Zhang, T.

    2012-12-01

    In the mid-1990's the National Renewable Energy Laboratory approached NASA Langley Research Center to gain information about the solar resource in Africa as estimated via early satellite based methods. From this began an effort that eventually involved collaboration with DOE NREL, Natural Resources Canada RETScreen International, and numerous other partners in industry and universities to make progressively improved data products available for the renewable energy and other energy related applications. In 2002, NASA Applied Science projects were initiated providing a more focused effort to accomplish the goal of empowering energy related decision support tools using NASA meteorological and climate related data sets. At this time, NASA Langley Research Center reorganized a project aimed to make long-term solar energy and meteorological data sets available to Energy sector related industries, including sustainable buildings and agroclimatology. This task involved the design and adaption of NASA derived data sets that these industries use, key partnerships, a commitment to validation, a commitment to expansion of parameters and data products over time, and a web based interface that allows energy industry specialists to obtained the needed data parameters in easy to use formats. This presentation shows the history of the NASA Langley Research Center effort to provide data sets for energy sector applications. This includes the development and usage of the Surface meteorology and Solar Energy (SSE, http://eosweb.larc.nasa.gov/sse/) web interface that has been improved under the Prediction of Worldwide renewable Energy Resource Project (POWER, http://power.larc.nasa.gov). Through the years the data sets provided now span more than 30 years and since 2009 include global parameters released within about 4-6 days of real time. The history of usage of this web site is discussed in terms of key partnerships and new data releases. We will present ways of categorizing the

  14. Participatory Approach to Long-Term Socio-Economic Scenarios as Building Block of a Local Vulnerability and Risk Assessment Tool - The Case Study Lienz (East-Tyrol)

    NASA Astrophysics Data System (ADS)

    Meyer, Ina; Eder, Brigitte; Hama, Michiko; Leitner, Markus

    2016-04-01

    Risks associated with climate change are mostly still understood and analyzed in a sector- or hazard-specific and rarely in a systemic, dynamic and scenario-based manner. In addition, socio-economic trends are often neglected in local vulnerability and risk assessments although they represent potential key determinants of risk and vulnerability. The project ARISE (Adaptation and Decision Support via Risk Management Through Local Burning Embers) aims at filling this gap by applying a participatory approach to socio-economic scenario building as building block of a local vulnerability assessment and risk management tool. Overall, ARISE aims at developing a decision support system for climate-sensitive iterative risk management as a key adaptation tool for the local level using Lienz in the East-Tyrol as a test-site City. One central building block is participatory socio-economic scenario building that - together with regionalized climate change scenarios - form a centrepiece in the process-oriented assessment of climate change risks and vulnerability. Major vulnerabilities and risks may stem from the economic performance, the socio-economic or socio-demographic developments or changes in asset exposition and not from climate change impacts themselves. The IPCC 5th assessment report underlines this and states that for most economic sectors, the impact of climate change may be small relative to the impacts of other driving forces such as changes in population growth, age, income, technology, relative prices, lifestyle, regulation, governance and many other factors in the socio-economy (Arent et al., 2014). The paper presents the methodology, process and results with respect to the building of long-term local socio-economic scenarios for the City of Lienz and the surrounding countryside. Scenarios were developed in a participatory approach using a scenario workshop that involved major stakeholders from the region. Participatory approaches are increasingly recognized as

  15. Building energy analysis tool

    DOEpatents

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  16. Localization of health systems in low- and middle-income countries in response to long-term increases in energy prices

    PubMed Central

    2013-01-01

    External challenges to health systems, such as those caused by global economic, social and environmental changes, have received little attention in recent debates on health systems’ performance in low-and middle-income countries (LMICs). One such challenge in coming years will be increasing prices for petroleum-based products as production from conventional petroleum reserves peaks and demand steadily increases in rapidly-growing LMICs. Health systems are significant consumers of fossil fuels in the form of petroleum-based medical supplies; transportation of goods, personnel and patients; and fuel for lighting, heating, cooling and medical equipment. Long-term increases in petroleum prices in the global market will have potentially devastating effects on health sectors in LMICs who already struggle to deliver services to remote parts of their catchment areas. We propose the concept of “localization,” originating in the environmental sustainability literature, as one element of response to these challenges. Localization assigns people at the local level a greater role in the production of goods and services, thereby decreasing reliance on fossil fuels and other external inputs. Effective localization will require changes to governance structures within the health sector in LMICs, empowering local communities to participate in their own health in ways that have remained elusive since this goal was first put forth in the Alma-Ata Declaration on Primary Health Care in 1978. Experiences with decentralization policies in the decades following Alma-Ata offer lessons on defining roles and responsibilities, building capacity at the local level, and designing appropriate policies to target inequities, all of which can guide health systems to adapt to a changing environmental and energy landscape. PMID:24199690

  17. Localization of health systems in low- and middle-income countries in response to long-term increases in energy prices.

    PubMed

    Dalglish, Sarah L; Poulsen, Melissa N; Winch, Peter J

    2013-01-01

    External challenges to health systems, such as those caused by global economic, social and environmental changes, have received little attention in recent debates on health systems' performance in low-and middle-income countries (LMICs). One such challenge in coming years will be increasing prices for petroleum-based products as production from conventional petroleum reserves peaks and demand steadily increases in rapidly-growing LMICs. Health systems are significant consumers of fossil fuels in the form of petroleum-based medical supplies; transportation of goods, personnel and patients; and fuel for lighting, heating, cooling and medical equipment. Long-term increases in petroleum prices in the global market will have potentially devastating effects on health sectors in LMICs who already struggle to deliver services to remote parts of their catchment areas. We propose the concept of "localization," originating in the environmental sustainability literature, as one element of response to these challenges. Localization assigns people at the local level a greater role in the production of goods and services, thereby decreasing reliance on fossil fuels and other external inputs. Effective localization will require changes to governance structures within the health sector in LMICs, empowering local communities to participate in their own health in ways that have remained elusive since this goal was first put forth in the Alma-Ata Declaration on Primary Health Care in 1978. Experiences with decentralization policies in the decades following Alma-Ata offer lessons on defining roles and responsibilities, building capacity at the local level, and designing appropriate policies to target inequities, all of which can guide health systems to adapt to a changing environmental and energy landscape. PMID:24199690

  18. THE GREEN RENOVATION AND EXPANSION OF THE AIKEN CENTER: A SUSTAINABLE GREEN BUILDING DESIGN, COLLABORATIVE PLANNING PROCESS AND LONG-TERM DEMONSTRATION AND RESEARCH PROJECT

    EPA Science Inventory

    One important outcome of this project will be the development of a long-term demonstration program that will provide teaching and research tools for many decades. In addition, we will develop models that will be available for others to use, present our findings to others, and ...

  19. Energy-conserving programming of VVI pacemakers: a telemetry-supported, long-term, follow-up study.

    PubMed

    Klein, H H; Knake, W

    1990-06-01

    Thirty patients with VVI pacemakers (Quantum 253-09, 253-19, Intermedics Inc., Freeport, TX) were observed for a mean of 65 months. Within 12 months after implantation, optimized output programming was performed in 29 patients. This included a decrease in pulse amplitude (22 patients), pulse width (4 patients), and/or pacing rate (11 patients). After 65 months postimplantation, telemetered battery voltage and battery impedance were compared with the predicted values expected when the pulse generator constantly stimulates at nominal program conditions (heart rate 72.3 beats/min, pulse amplitude 5.4 V, pulse width 0.61 ms). Instead of an expected cell voltage of 2.6 V and a cell impedance of 10 k omega mean telemetered values amounted to 2.78 V and 1.4 k omega, respectively. These data correspond to a battery age of 12-15 months at nominal program conditions. This long-term follow-up study suggests that adequate programming will extend battery longevity and thus pulse generator survival in many patients. PMID:2344702

  20. Energy conversion with solid oxide fuel cell systems: A review of concepts amd outlooks for the short- and long-term

    SciTech Connect

    Adams, II, Thomas A.; Nease, Jake; Tucker, David; Barton, Paul I.

    2013-01-01

    A review of energy conversion systems which use solid oxide fuel cells (SOFCs) as their primary electricity generation component is presented. The systems reviewed are largely geared for development and use in the short- and long-term future. These include systems for bulk power generation, distributed power generation, and systems integrated with other forms of energy conversion such as fuel production. The potential incorporation of CO{sub 2} capture and sequestration technologies and the influences of potential government policies are also discussed.

  1. 26 CFR 1.460-1 - Long-term contracts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Long-term contracts. 1.460-1 Section 1.460-1...) INCOME TAXES (CONTINUED) Taxable Year for Which Items of Gross Income Included § 1.460-1 Long-term... the manufacture, building, installation, or construction of property is a long-term contract...

  2. 26 CFR 1.460-1 - Long-term contracts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Long-term contracts. 1.460-1 Section 1.460-1...) INCOME TAXES (CONTINUED) Taxable Year for Which Items of Gross Income Included § 1.460-1 Long-term... the manufacture, building, installation, or construction of property is a long-term contract...

  3. 26 CFR 1.460-1 - Long-term contracts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Long-term contracts. 1.460-1 Section 1.460-1...) INCOME TAXES (CONTINUED) Taxable Year for Which Items of Gross Income Included § 1.460-1 Long-term... the manufacture, building, installation, or construction of property is a long-term contract...

  4. Moderate long-term modulation of neuropeptide Y in hypothalamic arcuate nucleus induces energy balance alterations in adult rats.

    PubMed

    Sousa-Ferreira, Lígia; Garrido, Manuel; Nascimento-Ferreira, Isabel; Nobrega, Clévio; Santos-Carvalho, Ana; Alvaro, Ana Rita; Rosmaninho-Salgado, Joana; Kaster, Manuella; Kügler, Sebastian; de Almeida, Luís Pereira; Cavadas, Claudia

    2011-01-01

    Neuropeptide Y (NPY) produced by arcuate nucleus (ARC) neurons has a strong orexigenic effect on target neurons. Hypothalamic NPY levels undergo wide-ranging oscillations during the circadian cycle and in response to fasting and peripheral hormones (from 0.25 to 10-fold change). The aim of the present study was to evaluate the impact of a moderate long-term modulation of NPY within the ARC neurons on food consumption, body weight gain and hypothalamic neuropeptides. We achieved a physiological overexpression (3.6-fold increase) and down-regulation (0.5-fold decrease) of NPY in the rat ARC by injection of AAV vectors expressing NPY and synthetic microRNA that target the NPY, respectively. Our work shows that a moderate overexpression of NPY was sufficient to induce diurnal over-feeding, sustained body weight gain and severe obesity in adult rats. Additionally, the circulating levels of leptin were elevated but the immunoreactivity (ir) of ARC neuropeptides was not in accordance (POMC-ir was unchanged and AGRP-ir increased), suggesting a disruption in the ability of ARC neurons to response to peripheral metabolic alterations. Furthermore, a dysfunction in adipocytes phenotype was observed in these obese rats. In addition, moderate down-regulation of NPY did not affect basal feeding or normal body weight gain but the response to food deprivation was compromised since fasting-induced hyperphagia was inhibited and fasting-induced decrease in locomotor activity was absent.These results highlight the importance of the physiological ARC NPY levels oscillations on feeding regulation, fasting response and body weight preservation, and are important for the design of therapeutic interventions for obesity that include the NPY. PMID:21799827

  5. Long-term testing

    NASA Astrophysics Data System (ADS)

    Ferber, M.; Graves, G. A., Jr.

    Land-based gas turbines are significantly different from automotive gas turbines in that they are designed to operate for 50,000 h or greater (compared to 5,000-10,000 h). The primary goal of this research is to determine the long-term survivability of ceramic materials for industrial gas turbine applications. Research activities in this program focus on the evaluation of the static tensile creep and stress rupture (SR) behavior of three commercially available structural ceramics which have been identified by the gas turbine manufacturers as leading candidates for use in industrial gas turbines. For each material investigated, a minimum of three temperatures and four stresses will be used to establish the stress and temperature sensitivities of the creep and SR behavior. Because existing data for many candidate structural ceramics are limited to testing times less than 2,000 h, this program will focus on extending these data to times on the order of 10,000 h, which represents the lower limit of operating time anticipated for ceramic blades and vanes in gas turbine engines. A secondary goal of the program will be to investigate the possibility of enhancing life prediction estimates by combining interrupted tensile SR tests and tensile dynamic fatigue tests in which tensile strength is measured as a function of stressing rate. The third goal of this program will be to investigate the effects of water vapor upon the SR behavior of the three structural ceramics chosen for the static tensile studies by measuring the flexural strength as a function of stressing rate at three temperatures.

  6. Long-term testing

    SciTech Connect

    Ferber, M.; Graves, G.A. Jr.

    1994-12-31

    Land-based gas turbines are significantly different from automotive gas turbines in that they are designed to operate for 50,000 h or greater (compared to 5,000--10,000 h). The primary goal of this research is to determine the long-term survivability of ceramic materials for industrial gas turbine applications. Research activities in this program focus on the evaluation of the static tensile creep and stress rupture (SR) behavior of three commercially available structural ceramics which have been identified by the gas turbine manufacturers as leading candidates for use in industrial gas turbines. For each material investigated, a minimum of three temperatures and four stresses will be used to establish the stress and temperature sensitivities of the creep and SR behavior. Because existing data for many candidate structural ceramics are limited to testing times less than 2,000 h, this program will focus on extending these data to times on the order of 10,000 h, which represents the lower limit of operating time anticipated for ceramic blades and vanes in gas turbine engines. A secondary goal of the program will be to investigate the possibility of enhancing life prediction estimates by combining interrupted tensile SR tests and tensile dynamic fatigue tests in which tensile strength is measured as a function of stressing rate. The third goal of this program will be to investigate the effects of water vapor upon the SR behavior of the three structural ceramics chosen for the static tensile studies by measuring the flexural strength as a function of stressing rate at three temperatures.

  7. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  8. Building long-term constituencies for space exploration: The challenge of raising public awareness and engagement in the United States and in Europe

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, P.; Peter, N.; Billings, L.

    2010-08-01

    Space exploration is a multifaceted endeavor and will be a "grand challenge" of the 21st century. It has already become an element of the political agenda of a growing number of countries worldwide. However, the public is largely unaware of space exploration activities and in particular does not perceive any personal benefit. In order to achieve highly ambitious space exploration goals to explore robotically and with humans the inner solar system, space agencies must improve and expand their efforts to inform and raise the awareness of the public about what they are doing, and why. Therefore adopting new techniques aiming at informing and engaging the public using participatory ways, new communication techniques to reach, in particular, the younger generation will be a prerequisite for a sustainable long-term exploration program: as they will enable it and carry most of the associated financial burden. This paper presents an environmental analysis of space exploration in the United States and Europe and investigates the current branding stature of the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). We discuss how improved market research and new branding methods can increase public space awareness and improve the image of NASA and ESA. We propose a new participatory approach to engage the public as major stakeholder (along governments, the industrial space sector and the science community) that may provide sufficient resources for and sustainability of a long-term space exploration program.

  9. Long-term exposure of the isopod Porcellionides pruinosus to nickel: Costs in the energy budget and detoxification enzymes.

    PubMed

    Ferreira, Nuno G C; Cardoso, Diogo N; Morgado, Rui; Soares, Amadeu M V M; Loureiro, Susana

    2015-09-01

    Terrestrial isopods from the species Porcellionides pruinosus were exposed to the maximum allowed nickel concentration in the Canadian framework guideline (50 mg Ni/kg soil) and to 5× this concentration (250 mg Ni/kg soil). The exposure lasted for 28 days and was followed by a recovery period of 14 days where organisms were changed to clean soil. Organisms were sampled after 24 h, 48 h, 96 h, 7 days, 14 days, 21 days, and 28 days of exposure, and at days 35 and 42 during the recovery period. For each sampling time the acetylcholinesterase (AChE), glutathione-S-transferases (GST), catalase (CAT), lactate dehydrogenase (LDH) activities were determined as well as lipid peroxidation rate (LPO) along with lipids, carbohydrates, proteins content, energy available (Ea), energy consumption (Ec) and cellular energy allocation (CEA). The integrated biomarker response (IBR) was calculated for each sampling time as well as for each one of the above parameters. In addition, mortality was also recorded throughout the assay. The results obtained showed that nickel induced oxidative stress, evidenced by results on GST, GPx, CAT or LPO, but also on changes in the energy reserves content of these organisms. In addition, this study showed that these organisms possess a specific strategy to handle nickel toxicity. In this case, biomarkers were associated with costs in the energy budget, and the increase of energy reserves has a compensation for that cost. PMID:25985212

  10. CO sub 2 emissions from developing countries: Better understanding the role of energy in the long term

    SciTech Connect

    Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. Of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world's share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and Co{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. These individual studies were conducted for China, India, Indonesia and South Korea in Asia.

  11. CO sub 2 emissions from developing countries: Better understanding the role of energy in the long term

    SciTech Connect

    Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world's share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. A combined study was carried out for the countries of the Gulf Cooperation Council (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates).

  12. CO sub 2 emissions from developing countries: Better understanding the role of Energy in the long term

    SciTech Connect

    Ketoff, A.; Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. Of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world's share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist energy demand in developing will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. These individual studies were conducted fro Argentina, Brazil, Mexico and Venezuela in Latin America.

  13. Inclusion of the energy thread in the introductory physics curriculum: An example of long-term conceptual and thematic coherence

    NASA Astrophysics Data System (ADS)

    Brewe, Eric Thomas

    The energy thread is a logical outgrowth of the modeling theory of physics instruction; it exemplifies a conceptually and pedagogically coherent theme designed to enhance connections between models inherent in the introductory curriculum. Implementation of the energy thread requires restructuring and reorganization of the existing curriculum. The reorganization and restructuring of the curriculum is designed to reinforce expert characteristics of physicists including, coordination of representation, qualitative analysis, and flexibility of method guided by a rich knowledge base organized around a small set of general models. In-depth descriptions of the modeling tools, instructional design, and methodology are included. Comparisons based on the Force Concept Inventory, as well as on problem solutions, are made between two university physics courses, one taught with an included energy thread and another with a traditional treatment of energy concepts. The energy thread course compared favorably on all instruments. Student interviews further characterize students' use of modeling tools and problem-solving approaches as encouraged by the energy thread.

  14. An Exercise Protocol Designed to control Energy Expenditure and to have a Positive Impact on Maximal Oxygen Consumption for Long-Term Space Missions

    NASA Astrophysics Data System (ADS)

    Matsuo, Tomoaki; Ohkawara, Kazunori; Seino, Satoshi; Shimojo, Nobutake; Yamada, Shin; Ohshima, Hiroshi; Tanaka, Kiyoji; Mukai, Chiaki

    2013-02-01

    Maximal oxygen consumption decreases during spaceflight, and astronauts also experience controversial weight loss. Future space missions require a more efficient exercise program to maintain work efficiency and to control increased energy expenditure (EE). We have been developing two types of original exercise training protocols which are better suited to astronauts’ daily routine exercise during long-term spaceflight: sprint interval training (SIT) and high-intensity interval aerobic training (HIAT). In this study, we compared the total EE, including excess post-exercise energy expenditure (EPEE), induced by our interval cycling protocols with the total EE of a traditional, continuous aerobic training (CAT). In the results, while the EPEEs after the SIT and HIAT were greater than after the CAT, the total EE for an entire exercise/rest session with the CAT was the greatest of our three exercise protocols. The SIT and HIAT would be potential protocols to control energy expenditure for long space missions.

  15. The energy intake through regular nontherapeutic meals provision in long-term care: impact on nutritional status and related Geriatric Nutritional Risk Index.

    PubMed

    Sturtzel, Baerbel; Elmadfa, Ibrahim; Ohrenberger, Gerald

    2016-01-01

    To investigate how the energy intake of institutionalized long-term-care patients through the regular nontherapeutic meals provision is associated with the nutritional status and the Geriatric Nutritional Risk Index (GNRI). A 9 month longitudinal, observational study. Long-term-care Hospital. 66 long-term-care patients with multiple medical conditions and solely oral food-intake. 47 (71 %) patients, predominantly women (n = 39/47), with a mean age of 83.04 (±9.58) years completed study time and 19 (29 %) deceased. At week 1 and week 36 of observation time energy intake was measured by means of three-days-weighing-records. Body composition was assessed with bioelectrical impedance analysis. Serum albumin, body weight and body height were taken from the medical report. Albumin content, body weight and height were used to calculate the Geriatric Nutritional Risk Index: GNRI = [1.489 × albumin (g/L)] + [41.7 × (weight/ideal body weight)]. Energy intake was significantly below 24 kcal/kg body weight per day. The GNRI of the deceased patients was significantly (p = 0.002) lower than the GNRI of the completers. During observation time energy-intake p < 0.001, body fat (p = 0.001) and phase angle (PA) of bio impedance measurement (p = 0.018) and likewise the GNRI (p = 0.021) of the completers decreased significantly. At the beginning and at the end of observation time energy intake correlated significantly with PA (p = 0.028/p < 0.001) and GNRI (p = 0.436/p = 0.004). Also GNRI and PA correlated significantly at the beginning (p = 0.001) and at the end (p < 0.001) of observation time. The energy intake through non therapeutic meals provision was too low for sustaining the nutritional status and likewise the GNRI. The malnourishment and the nutrition related clinical risk of the geriatric patients aggrevated during observation time. PMID:26933634

  16. CO sub 2 emissions from developing countries: Better understanding the role of energy in the long term

    SciTech Connect

    Sathaye, J.; Ketoff, A.

    1991-02-01

    This study examines energy use and carbon emissions in the developing world. Based on analyses of present energy-use patterns in 17 developing nations, this study presents high emissions and low emissions scenarios for these nations in the year 2025. These nations combined account for two thirds of the energy-related carbon emissions presently generated in the developing world. The analysis reveals that energy demand expands dramatically by 2025 and grows increasingly carbon intensive. In the high emissions scenario, carbon emissions from these countries increase four-fold. The greatest share of carbon stems from the industrial sector in 2025, followed by the transport and residential sectors. With the implementation of policies aimed at reducing CO{sub 2} emissions, the low emissions scenario reduces the level of carbon in 2025 by 20 percent relative to the high emissions scenario figure. These nations achieve 80 percent of the carbon reductions by improving the efficiency of energy production and use and the remaining 20 percent by implementing fuel-switching measures. Of all the sectors examined, the industrial sector offers the greatest opportunity for absolute carbon savings (39 percent of the total). This summary is volume one of five volumes.

  17. Quantifying uncertainties influencing the long-term impacts of oil prices on energy markets and carbon emissions

    NASA Astrophysics Data System (ADS)

    McCollum, David L.; Jewell, Jessica; Krey, Volker; Bazilian, Morgan; Fay, Marianne; Riahi, Keywan

    2016-07-01

    Oil prices have fluctuated remarkably in recent years. Previous studies have analysed the impacts of future oil prices on the energy system and greenhouse gas emissions, but none have quantitatively assessed how the broader, energy-system-wide impacts of diverging oil price futures depend on a suite of critical uncertainties. Here we use the MESSAGE integrated assessment model to study several factors potentially influencing this interaction, thereby shedding light on which future unknowns hold the most importance. We find that sustained low or high oil prices could have a major impact on the global energy system over the next several decades; and depending on how the fuel substitution dynamics play out, the carbon dioxide consequences could be significant (for example, between 5 and 20% of the budget for staying below the internationally agreed 2 ∘C target). Whether or not oil and gas prices decouple going forward is found to be the biggest uncertainty.

  18. The long-term Swift observations of the high-energy peaked BL Lacertae source 1ES 1959+650

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Romano, P.; Vercellone, S.; Kapanadze, S.; Mdzinarishvili, T.; Kharshiladze, G.

    2016-03-01

    We present the results based on the monitoring of the high-energy peaked BL Lacertae object 1ES 1959+650 by the Swift satellite during 2005-2014. Our timing study shows that the source was highly variable on longer (weeks-to-months) time-scales with the 0.3-10 keV fluxes ranging by a factor of 8. It sometimes showed a significant intra-day variability in the course of ˜1 ks, detected mainly in the epochs of higher brightness states. The flux variability exhibited an erratic character and no signatures of periodic variations are revealed. The X-ray spectra were mainly curved with broad ranges of photon index, curvature parameter, hardness ratio, synchrotron spectral energy distribution (SED) peak location which exhibited a significant variability with the flux at different time-scales. Our study of multi-wavelength cross-correlations shows that the one-zone synchrotron self-Compton scenario was not always valid for 1ES 1959+650. The X-ray flares were sometimes not accompanied with an increasing activity in the γ-ray or lower-energy parts of the spectrum and vice versa. Similar to the prominent `orphan' TeV event in 2002, significant flares in the high-energy and very high energy bands in 2009 May and 2012 May were not accompanied by those in the synchrotron part of the spectrum. Similar to other TeV-detected high-energy peaked BLLs, the stochastic acceleration of the electrons from the magnetic turbulence close to the shock front may be more important for our target compared to other scenarios since it showed mainly broader synchrotron SEDs during the X-ray flares expected when the stochastic mechanism is more efficient.

  19. Solar and wind energy resources in Northern Hungary, including bi-variate distribution and long-term tendencies

    NASA Astrophysics Data System (ADS)

    Mika, Janos; Dobi-Wantuch, Ildiko; Tóth-Tarjányi Zsuzsanna, Zsuzsanna; Molnar, Zsofia; Kitti Csabai, Edina; Razsi, Andras

    2014-05-01

    Spatial interpolation and mapping of renewable energy resources is an important task of potential estimation in case of atmospheric renewable energy sources. Its first steps, concerning global radiation measured at horizontal surfaces (not on optimally tilted ones) and near-surface wind speed measured at 10 m height above the surface (not at 60-120 m of contemporary wind-turbines). Based on these standard meteorological observations, experts of the Hungarian Meteorological Service elaborated a series of digital maps with 0.1 x 0.1 deg resolution compiled in the framework of the CarpatClim Project (www.carpatclim-eu.org). The grid-point values are based on homogenised data using MASH theory and software (SZENTIMREY, 1999). The interpolation has been performed by the MISH theory and software (SZENTIMREY and BIHARI, 2006). The study tackles the solar and wind energy in four aspects. Firstly, a trial for validation of the gridded data is provided by comparison a single station, Eger for 2001-2010 (global radiation) and 1996-2010 (wind speed cube). The horizontal distance between the closest grid-point and the station is less than 1 km. Gridded global radiation data perform very well comparing to the observations, based on various statistical parameters of the distribution, whereas for the wind speed cube, used as indicator of available energy, there is a considerable bias between the two sets of data. Secondly, the annual cycles of the area-mean global radiation and wind-speed are presented, based on the gridded data of a selected ca. 50x50 km2 (6x8 grid-points) region. Both the averages and standard deviations of the diurnal mean values are presented for the 1981-2010 reference period. Presenting the maps of the distribution within this area is our third aspect, considering both averages and standard deviations. Finally the point-wise trends are drown for both energy sources in the single grid-point used in the aspect one in 1981-2010, and also in the nearby located

  20. Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications

    NASA Astrophysics Data System (ADS)

    O'Connor, S. M.; Lynch, J. P.; Gilbert, A. C.

    2014-08-01

    Compressed sensing (CS) is a powerful new data acquisition paradigm that seeks to accurately reconstruct unknown sparse signals from very few (relative to the target signal dimension) random projections. The specific objective of this study is to save wireless sensor energy by using CS to simultaneously reduce data sampling rates, on-board storage requirements, and communication data payloads. For field-deployed low power wireless sensors that are often operated with limited energy sources, reduced communication translates directly into reduced power consumption and improved operational reliability. In this study, acceleration data from a multi-girder steel-concrete deck composite bridge are processed for the extraction of mode shapes. A wireless sensor node previously designed to perform traditional uniform, Nyquist rate sampling is modified to perform asynchronous, effectively sub-Nyquist rate sampling. The sub-Nyquist data are transmitted off-site to a computational server for reconstruction using the CoSaMP matching pursuit recovery algorithm and further processed for extraction of the structure’s mode shapes. The mode shape metric used for reconstruction quality is the modal assurance criterion (MAC), an indicator of the consistency between CS and traditional Nyquist acquired mode shapes. A comprehensive investigation of modal accuracy from a dense set of acceleration response data reveals that MAC values above 0.90 are obtained for the first four modes of a bridge structure when at least 20% of the original signal is sampled using the CS framework. Reduced data collection, storage and communication requirements are found to lead to substantial reductions in the energy requirements of wireless sensor networks at the expense of modal accuracy. Specifically, total energy reductions of 10-60% can be obtained for a sensor network with 10-100 sensor nodes, respectively. The reduced energy requirements of the CS sensor nodes are shown to directly result in

  1. LONG-TERM MONITORING OF MRK 501 FOR ITS VERY HIGH ENERGY {gamma} EMISSION AND A FLARE IN 2011 OCTOBER

    SciTech Connect

    Bartoli, B.; Catalanotti, S.; Bernardini, P.; Bleve, C.; Bi, X. J.; Cao, Z.; Chen, S. Z.; Chen, Y.; Bolognino, I.; Branchini, P.; Budano, A.; Calabrese Melcarne, A. K.; Cardarelli, R.; Cattaneo, C.; Chen, T. L.; Creti, P.; Cui, S. W.; Dai, B. Z.; D'Ali Staiti, G.; Collaboration: ARGO-YBJ Collaboration; and others

    2012-10-10

    As one of the brightest active blazars in both X-ray and very high energy {gamma}-ray bands, Mrk 501, is very useful for physics associated with jets from active galactic nuclei. The ARGO-YBJ experiment has monitored Mrk 501 for {gamma}-rays above 0.3 TeV since 2007 November. The largest flare since 2005 was observed from 2011 October and lasted until about 2012 April. In this paper, a detailed analysis of this event is reported. During the brightest {gamma}-ray flaring episodes from 2011 October 17 to November 22, an excess of the event rate over 6{sigma} is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the {gamma}-ray flux above 1 TeV by a factor of 6.6 {+-} 2.2 from its steady emission. In particular, the {gamma}-ray flux above 8 TeV is detected with a significance better than 4{sigma}. Based on time-dependent synchrotron self-Compton (SSC) processes, the broadband energy spectrum is interpreted as the emission from an electron energy distribution parameterized with a single power-law function with an exponential cutoff at its high-energy end. The average spectral energy distribution for the steady emission is well described by this simple one-zone SSC model. However, the detection of {gamma}-rays above 8 TeV during the flare challenges this model due to the hardness of the spectra. Correlations between X-rays and {gamma}-rays are also investigated.

  2. Study protocol for the translating research in elder care (TREC): building context – an organizational monitoring program in long-term care project (project one)

    PubMed Central

    Estabrooks, Carole A; Squires, Janet E; Cummings, Greta G; Teare, Gary F; Norton, Peter G

    2009-01-01

    Background While there is a growing awareness of the importance of organizational context (or the work environment/setting) to successful knowledge translation, and successful knowledge translation to better patient, provider (staff), and system outcomes, little empirical evidence supports these assumptions. Further, little is known about the factors that enhance knowledge translation and better outcomes in residential long-term care facilities, where care has been shown to be suboptimal. The project described in this protocol is one of the two main projects of the larger five-year Translating Research in Elder Care (TREC) program. Aims The purpose of this project is to establish the magnitude of the effect of organizational context on knowledge translation, and subsequently on resident, staff (unregulated, regulated, and managerial) and system outcomes in long-term care facilities in the three Canadian Prairie Provinces (Alberta, Saskatchewan, Manitoba). Methods/Design This study protocol describes the details of a multi-level – including provinces, regions, facilities, units within facilities, and individuals who receive care (residents) or work (staff) in facilities – and longitudinal (five-year) research project. A stratified random sample of 36 residential long-term care facilities (30 urban and 6 rural) from the Canadian Prairie Provinces will comprise the sample. Caregivers and care managers within these facilities will be asked to complete the TREC survey – a suite of survey instruments designed to assess organizational context and related factors hypothesized to be important to successful knowledge translation and to achieving better resident, staff, and system outcomes. Facility and unit level data will be collected using standardized data collection forms, and resident outcomes using the Resident Assessment Instrument-Minimum Data Set version 2.0 instrument. A variety of analytic techniques will be employed including descriptive analyses

  3. Planning for the Transition to Long-Term Stewardship at Three U.S. Department of Energy-Chicago Operations Office Facilities

    SciTech Connect

    Moos, L. P.; Ditmars, J. D.; Heston, S. L.; Granzen, G. A.; Holzemer, M. J.; Bennett, D. B.

    2003-02-26

    This paper describes a pilot study that resulted in the generation of draft planning documents for the upcoming transition from remediation construction to long-term stewardship at three national laboratories managed by the U.S. Department of Energy (DOE)-Chicago Operations Office (CH). The remediation construction work at these facilities is being completed under the DOE's Office of Environmental Management (EM) Program. Once the remediation is complete, the responsibility for long-term stewardship (LTS) of the closed waste sites is expected to be transferred to the DOE organization responsible for managing each of the three facilities (i.e., the site landlord). To prepare for this transfer, an extensive planning effort is required. This pilot study utilized the DOE guidance in effect at the time to (1) develop a series of documents identifying applicable requirements that the LTS Programs will need to satisfy, issues that need to be resolved before the transfer can proceed, and criteria to be used to determine when active remediation is complete and a given site is ready for transfer to the LTS Program; (2) examine alternate structures for possible LTS Programs; and (3) develop draft LTS Implementation Plans. This advanced planning effort yielded a number of observations and lessons learned that are applicable to any facility approaching the end of its remediation construction phase.

  4. A Theoretical Framework for Utilizing Long-Term Measurements of Radiation and Clouds for Solar Energy Research

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xie, Y.

    2015-12-01

    One of the greatest challenges facing solar energy research is accurately predicting global horizontal irradiance (GHI) for photovoltaic (PV) modules and direct normal irradiance (DNI) for concentrated solar power (CSP) plants at the surface with a high temporal resolution. Addressing this solar energy challenge is tied ultimately to the quantitative relationship between the direct, diffuse and total radiation reaching the surface and clouds in the atmosphere, which remains elusive. Here we will first introduce a theoretical framework that relates DNI and GHI to cloud fraction and cloud albedo through two dimensionless numbers: the relative cloud radiative forcing for the direct radiation (defined as the difference between the clear sky and all sky direct downwelling radiative fluxes normalized by the clear sky direct downwelling radiative fluxes) is primarily determined by cloud fraction; the ratio of the relative cloud radiative forcing for the total downwelling radiation to the relative cloud radiative forcing for the direct radiation is primarily determined by cloud albedo. We then use decade-long measurements of partitioned radiation and cloud properties at the ARM sites to validate the theoretical relationships between the two dimensionless radiation-based parameters and cloud properties. We will also explore the potentials and challenges of using the relationships between cloud properties and radiation partition at the surface for solar energy research, opening new avenues to utilizing ARM measurements.

  5. Long-term environmental stewardship.

    SciTech Connect

    Nagy, Michael David

    2010-08-01

    The purpose of this Supplemental Information Source Document is to effectively describe Long-Term Environmental Stewardship (LTES) at Sandia National Laboratories/New Mexico (SNL/NM). More specifically, this document describes the LTES and Long-Term Stewardship (LTS) Programs, distinguishes between the LTES and LTS Programs, and summarizes the current status of the Environmental Restoration (ER) Project.

  6. Presynaptic long-term plasticity

    PubMed Central

    Yang, Ying; Calakos, Nicole

    2013-01-01

    Long-term synaptic plasticity is a major cellular substrate for learning, memory, and behavioral adaptation. Although early examples of long-term synaptic plasticity described a mechanism by which postsynaptic signal transduction was potentiated, it is now apparent that there is a vast array of mechanisms for long-term synaptic plasticity that involve modifications to either or both the presynaptic terminal and postsynaptic site. In this article, we discuss current and evolving approaches to identify presynaptic mechanisms as well as discuss their limitations. We next provide examples of the diverse circuits in which presynaptic forms of long-term synaptic plasticity have been described and discuss the potential contribution this form of plasticity might add to circuit function. Finally, we examine the present evidence for the molecular pathways and cellular events underlying presynaptic long-term synaptic plasticity. PMID:24146648

  7. Assessing Antibody Microarray for Space Missions: Effect of Long-term Storage, Gamma radiation and High Energy proton radiation

    NASA Astrophysics Data System (ADS)

    de Diego-Castilla, G.; Parro, V.

    2012-09-01

    Fluorescent antibody microarray has been proposed for Molecular biomarker detector in planetary exploration [1]. A number of different environmental stresses may affect the antibody performance, such as temperatures variations, highly penetrating radiation and high energy particles. Here we have tested the effect of gamma radiation, proton radiation and longterm storage on the microarray immunoassay and fluorocromes. Although different antibodies might have different susceptibilities we conclude that there was not significant reduction in the functionality of antibodies printed on the microarray and the fluorescent tracers antibodies, even in a extreme case of receiving a radiation dose 3000-fold than a biochip would receive in a trip mission to Mars. In summary, antibodies are suitable for use in planetary exploration purposes.

  8. 42 CFR 412.536 - Special payment provisions for long-term care hospitals and satellites of long-term care...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hospitals and satellites of long-term care hospitals that discharged Medicare patients admitted from a hospital not located in the same building or on the same campus as the long-term care hospital or satellite... payment provisions for long-term care hospitals and satellites of long-term care hospitals that...

  9. 42 CFR 412.536 - Special payment provisions for long-term care hospitals and satellites of long-term care...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hospitals and satellites of long-term care hospitals that discharged Medicare patients admitted from a hospital not located in the same building or on the same campus as the long-term care hospital or satellite... payment provisions for long-term care hospitals and satellites of long-term care hospitals that...

  10. 42 CFR 412.536 - Special payment provisions for long-term care hospitals and satellites of long-term care...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hospitals and satellites of long-term care hospitals that discharged Medicare patients admitted from a hospital not located in the same building or on the same campus as the long-term care hospital or satellite... payment provisions for long-term care hospitals and satellites of long-term care hospitals that...

  11. 42 CFR 412.536 - Special payment provisions for long-term care hospitals and satellites of long-term care...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hospitals and satellites of long-term care hospitals that discharged Medicare patients admitted from a hospital not located in the same building or on the same campus as the long-term care hospital or satellite... payment provisions for long-term care hospitals and satellites of long-term care hospitals that...

  12. Early decrease in dietary protein:energy ratio by fat addition and ontogenetic changes in muscle growth mechanisms of rainbow trout: short- and long-term effects.

    PubMed

    Alami-Durante, Hélène; Cluzeaud, Marianne; Duval, Carine; Maunas, Patrick; Girod-David, Virginia; Médale, Françoise

    2014-09-14

    As the understanding of the nutritional regulation of muscle growth mechanisms in fish is fragmentary, the present study aimed to (1) characterise ontogenetic changes in muscle growth-related genes in parallel to changes in muscle cellularity; (2) determine whether an early decrease in dietary protein:energy ratio by fat addition affects the muscle growth mechanisms of rainbow trout (Oncorhynchus mykiss) alevins; and (3) determine whether this early feeding of a high-fat (HF) diet to alevins had a long-term effect on muscle growth processes in juveniles fed a commercial diet. Developmental regulation of hyperplasia and hypertrophy was evidenced at the molecular (expression of myogenic regulatory factors, proliferating cell nuclear antigen and myosin heavy chains (MHC)) and cellular (number and diameter of white muscle fibres) levels. An early decrease in dietary protein:energy ratio by fat addition stimulated the body growth of alevins but led to a fatty phenotype, with accumulation of lipids in the anterior part, and less caudal muscle when compared at similar body weights, due to a decrease in both the white muscle hyperplasia and maximum hypertrophy of white muscle fibres. These HF diet-induced cellular changes were preceded by a very rapid down-regulation of the expression of fast-MHC. The present study also demonstrated that early dietary composition had a long-term effect on the subsequent muscle growth processes of juveniles fed a commercial diet for 3 months. When compared at similar body weights, initially HF diet-fed juveniles indeed had a lower mean diameter of white muscle fibres, a smaller number of large white muscle fibres, and lower expression levels of MyoD1 and myogenin. These findings demonstrated the strong effect of early feed composition on the muscle growth mechanisms of trout alevins and juveniles. PMID:24949706

  13. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    NASA Astrophysics Data System (ADS)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Van Zee, Justin W.; Courtright, Ericha M.; Hugenholtz, Christopher H.; Zobeck, Ted M.; Okin, Gregory S.; Barchyn, Thomas E.; Billings, Benjamin J.; Boyd, Robert; Clingan, Scott D.; Cooper, Brad F.; Duniway, Michael C.; Derner, Justin D.; Fox, Fred A.; Havstad, Kris M.; Heilman, Philip; LaPlante, Valerie; Ludwig, Noel A.; Metz, Loretta J.; Nearing, Mark A.; Norfleet, M. Lee; Pierson, Frederick B.; Sanderson, Matt A.; Sharratt, Brenton S.; Steiner, Jean L.; Tatarko, John; Tedela, Negussie H.; Toledo, David; Unnasch, Robert S.; Van Pelt, R. Scott; Wagner, Larry

    2016-09-01

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the United States Department of Agriculture's Agricultural Research Service and Natural Resources Conservation Service, and the United States Department of the Interior's Bureau of Land Management, to address the need for a long-term research program to meet critical challenges in wind erosion research and management in the United States. The Network has three aims: (1) provide data to support understanding of basic aeolian processes across land use types, land cover types, and management practices, (2) support development and application of models to assess wind erosion and dust emission and their impacts on human and environmental systems, and (3) encourage collaboration among the aeolian research community and resource managers for the transfer of wind erosion technologies. The Network currently consists of thirteen intensively instrumented sites providing measurements of aeolian sediment transport rates, meteorological conditions, and soil and vegetation properties that influence wind erosion. Network sites are located across rangelands, croplands, and deserts of the western US.

  14. Seismic response trends evaluation via long term monitoring and finite element model updating of an RC building including soil-structure interaction

    NASA Astrophysics Data System (ADS)

    Butt, F.; Omenzetter, P.

    2012-04-01

    This paper presents a study on the seismic response trends evaluation and finite element model updating of a reinforced concrete building monitored for a period of more than two years. The three storey reinforced concrete building is instrumented with five tri-axial accelerometers and a free-field tri-axial accelerometer. The time domain N4SID system identification technique was used to obtain the frequencies and damping ratios considering flexible base models taking into account the soil-structure-interaction (SSI) using 50 earthquakes. Trends of variation of seismic response were developed by correlating the peak response acceleration at the roof level with identified frequencies and damping ratios. A general trend of decreasing frequencies was observed with increased level of shaking. To simulate the behavior of the building, a three dimensional finite element model (FEM) was developed. To incorporate real in-situ conditions, soil underneath the foundation and around the building was modeled using spring elements and non-structural components (claddings and partitions) were also included. The developed FEM was then calibrated using a sensitivity based model updating technique taking into account soil flexibility and non-structural components as updating parameters. It was concluded from the investigation that knowledge of the variation of seismic response of buildings is necessary to better understand their behavior during earthquakes, and also that the participation of soil and non-structural components is significant towards the seismic response of the building and these should be considered in models to simulate the real behavior.

  15. Long term complications of diabetes

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000327.htm Long term complications of diabetes To use the sharing ... sores and infections. If it goes on too long, your toes, foot, or leg may need to ...

  16. Abdominal Pain, Long-Term

    MedlinePlus

    MENU Return to Web version Abdominal Pain, Long-term See complete list of charts. Ongoing or recurrent abdominal pain, also called chronic pain, may be difficult to diagnose, causing frustration for ...

  17. Mental health response in Haiti in the aftermath of the 2010 earthquake: a case study for building long-term solutions.

    PubMed

    Raviola, Giuseppe; Eustache, Eddy; Oswald, Catherine; Belkin, Gary S

    2012-01-01

    Significant challenges exist in providing safe, effective, and culturally sound mental health and psychosocial services when an unforeseen disaster strikes in a low-resource setting. We present here a case study describing the experience of a transnational team in expanding mental health and psychosocial services delivered by two health care organizations, one local (Zanmi Lasante) and one international (Partners in Health), acting collaboratively as part of the emergency response to the 2010 Haiti earthquake. In the year and a half following the earthquake, Zanmi Lasante and Partners in Health provided 20,000 documented individual and group appointments for mental health and psychosocial needs. During the delivery of disaster response services, the collaboration led to the development of a model to guide the expansion and scaling up of community-based mental health services in the Zanmi Lasante health care system over the long-term, with potential for broader scale-up in Haiti. This model identifies key skill packages and implementation rules for developing evidence-based pathways and algorithms for treating common mental disorders. Throughout the collaboration, efforts were made to coordinate planning with multiple organizations interested in supporting the development of mental health programs following the disaster, including national governmental bodies, nongovernmental organizations, universities, foreign academic medical centers, and corporations. The collaborative interventions are framed here in terms of four overarching categories of action: direct service delivery, research, training, and advocacy. This case study exemplifies the role of psychiatrists working in low-resource settings as public health program implementers and as members of multidisciplinary teams. PMID:22335184

  18. Mental Health Response in Haiti in the Aftermath of the 2010 Earthquake: A Case Study for Building Long-Term Solutions

    PubMed Central

    Raviola, Giuseppe; Eustache, Eddy; Oswald, Catherine; Belkin, Gary S

    2012-01-01

    Significant challenges exist in providing safe, effective, and culturally sound mental health and psychosocial services when an unforeseen disaster strikes in a low-resource setting. We present here a case study describing the experience of a transnational team in expanding mental health and psychosocial services delivered by two health care organizations, one local (Zanmi Lasante) and one international (Partners in Health), acting collaboratively as part of the emergency response to the 2010 Haiti earthquake. In the year and a half following the earthquake, Zanmi Lasante and Partners in Health provided 20,000 documented individual and group appointments for mental health and psychosocial needs. During the delivery of disaster response services, the collaboration led to the development of a model to guide the expansion and scaling up of community-based mental health services in the Zanmi Lasante health care system over the long-term, with potential for broader scale-up in Haiti. This model identifies key skill packages and implementation rules for developing evidence-based pathways and algorithms for treating common mental disorders. Throughout the collaboration, efforts were made to coordinate planning with multiple organizations interested in supporting the development of mental health programs following the disaster, including national governmental bodies, nongovernmental organizations, universities, foreign academic medical centers, and corporations. The collaborative interventions are framed here in terms of four overarching categories of action: direct service delivery, research, training, and advocacy. This case study exemplifies the role of psychiatrists working in low-resource settings as public health program implementers and as members of multidisciplinary teams. (Harv Rev Psychiatry 2012;20:68–77.) PMID:22335184

  19. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Van Zee, Justin W; Courtright, Ericha M; Hugenholtz, Ted M; Zobeck, Ted M; Okin, Gregory S.; Barchyn, Thomas E; Billings, Benjamin J; Boyd, Robert A.; Clingan, Scott D; Cooper, Brad F; Duniway, Michael C.; Derner, Justin D; Fox, Fred A; Havstad, Kris M.; Heilman, Philip; LaPlante, Valerie; Ludwig, Noel A; Metz, Loretta J; Nearing, Mark A; Norfleet, M Lee; Pierson, Frederick B; Sanderson, Matt A; Sharrat, Brenton S; Steiner, Jean L; Tatarko, John; Tedela, Negussie H; Todelo, David; Unnasch, Robert S; Van Pelt, R Scott; Wagner, Larry

    2016-01-01

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the United States Department of Agriculture’s Agricultural Research Service and Natural Resources Conservation Service, and the United States Department of the Interior’s Bureau of Land Management, to address the need for a long-term research program to meet critical challenges in wind erosion research and management in the United States. The Network has three aims: (1) provide data to support understanding of basic aeolian processes across land use types, land cover types, and management practices, (2) support development and application of models to assess wind erosion and dust emission and their impacts on human and environmental systems, and (3) encourage collaboration among the aeolian research community and resource managers for the transfer of wind erosion technologies. The Network currently consists of thirteen intensively instrumented sites providing measurements of aeolian sediment transport rates, meteorological conditions, and soil and vegetation properties that influence wind erosion. Network sites are located across rangelands, croplands, and deserts of the western US. In support of Network activities, http://winderosionnetwork.org was developed as a portal for information about the Network, providing site descriptions, measurement protocols, and data visualization tools to facilitate collaboration with scientists and managers interested in the Network and accessing Network products. The Network provides a mechanism for engaging national and international partners in a wind erosion research program that addresses the need for improved understanding and prediction of aeolian processes across complex and diverse land use types and management practices.

  20. Short and Long-Term Perspectives: The Impact on Low-Income Consumers of Forecasted Energy Price Increases in 2008 and A Cap & Trade Carbon Policy in 2030

    SciTech Connect

    Eisenberg, Joel Fred

    2008-01-01

    The Department of Energy's Energy Information Administration (EIA) recently released its short-term forecast for residential energy prices for the winter of 2007-2008. The forecast indicates increases in costs for low-income consumers in the year ahead, particularly for those using fuel oil to heat their homes. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation's low-income households by primary heating fuel type, nationally and by Census Region. The report provides an update of bill estimates provided in a previous study, "The Impact Of Forecasted Energy Price Increases On Low-Income Consumers" (Eisenberg, 2005). The statistics are intended for use by policymakers in the Department of Energy's Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2008 fiscal year. In addition to providing expenditure forecasts for the year immediately ahead, this analysis uses a similar methodology to give policy makers some insight into one of the major policy debates that will impact low-income energy expenditures well into the middle decades of this century and beyond. There is now considerable discussion of employing a cap-and-trade mechanism to first limit and then reduce U.S. emissions of carbon into the atmosphere in order to combat the long-range threat of human-induced climate change. The Energy Information Administration has provided an analysis of projected energy prices in the years 2020 and 2030 for one such cap-and-trade carbon reduction proposal that, when integrated with the RECS 2001 database, provides estimates of how low-income households will be impacted over the long term by such a carbon reduction policy.

  1. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (ESTSC)

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).« less

  2. Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Henschel, Florian; Müller, Björn

    2015-04-01

    Traditionally, for the planning and assessment of solar energy systems, the amount of solar radiation (sunlight) incident on the Earth's surface is assumed to be constant over the years. However, with changing climate and air pollution levels, solar resources may no longer be stable over time and undergo substantial decadal changes. Observational records covering the past decades confirm long-term changes in this quantity. Here we examine, how the latest generation of climate models used for the 5th IPCC report projects potential changes in surface solar radiation over the coming decades, and how this may affect, in combination with the expected greenhouse warming, solar power output from photovoltaic (PV) systems. For this purpose, projections up to the mid 21th century from 39 state of the art climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analysed globally and for selected key regions with major solar power production capacity. The large model ensemble allows to assess the degree of consistency of their projections. Models are largely consistent in the sign of the projected changes in solar radiation under cloud-free conditions as well as in surface temperatures over most of the globe, while still reasonably consistent over a considerable part of the globe in the sign of changes in cloudiness and associated changes in solar radiation. A first order estimate of the impact of solar radiation and temperature changes on energy yields of PV systems under the RPC8.5 scenario indicates statistically significant decreases in PV outputs in large parts of the world, but notable exceptions with positive trends in parts of Europe and the South-East of China. Projected changes between 2006 and 2049 under the RCP8.5 scenario overall are on the order of 1 % per decade for horizontal planes, but may be larger for tilted or tracked planes as well as on shorter (decadal) timescales. Related References: Wild, M., Folini, D., Henschel, F., and M

  3. Commercial Buildings Energy Consumption Survey - Office Buildings

    EIA Publications

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  4. Building Capacity for a Long-Term, in-Situ, National-Scale Phenology Monitoring Network: Successes, Challenges and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Weltzin, J. F.; Browning, D. M.

    2014-12-01

    The USA National Phenology Network (USA-NPN; www.usanpn.org) is a national-scale science and monitoring initiative focused on phenology - the study of seasonal life-cycle events such as leafing, flowering, reproduction, and migration - as a tool to understand the response of biodiversity to environmental variation and change. USA-NPN provides a hierarchical, national monitoring framework that enables other organizations to leverage the capacity of the Network for their own applications - minimizing investment and duplication of effort - while promoting interoperability. Network participants can leverage: (1) Standardized monitoring protocols that have been broadly vetted, tested and published; (2) A centralized National Phenology Database (NPDb) for maintaining, archiving and replicating data, with standard metadata, terms-of-use, web-services, and documentation of QA/QC, plus tools for discovery, visualization and download of raw data and derived data products; and/or (3) A national in-situ, multi-taxa phenological monitoring system, Nature's Notebook, which enables participants to observe and record phenology of plants and animals - based on the protocols and information management system (IMS) described above - via either web or mobile applications. The protocols, NPDb and IMS, and Nature's Notebook represent a hierarchy of opportunities for involvement by a broad range of interested stakeholders, from individuals to agencies. For example, some organizations have adopted (e.g., the National Ecological Observatory Network or NEON) -- or are considering adopting (e.g., the Long-Term Agroecosystems Network or LTAR) -- the USA-NPN standardized protocols, but will develop their own database and IMS with web services to promote sharing of data with the NPDb. Other organizations (e.g., the Inventory and Monitoring Programs of the National Wildlife Refuge System and the National Park Service) have elected to use Nature's Notebook to support their phenological monitoring

  5. Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery

    NASA Astrophysics Data System (ADS)

    García, Pablo; Torreglosa, Juan P.; Fernández, Luis M.; Jurado, Francisco

    2014-11-01

    This paper presents two novel hourly energy supervisory controls (ESC) for improving long-term operation of off-grid hybrid systems (HS) integrating renewable energy sources (wind turbine and photovoltaic solar panels), hydrogen system (fuel cell, hydrogen tank and electrolyzer) and battery. The first ESC tries to improve the power supplied by the HS and the power stored in the battery and/or in the hydrogen tank, whereas the second one tries to minimize the number of needed elements (batteries, fuel cells and electrolyzers) throughout the expected life of the HS (25 years). Moreover, in both ESC, the battery state-of-charge (SOC) and the hydrogen tank level are controlled and maintained between optimum operating margins. Finally, a comparative study between the controls is carried out by models of the commercially available components used in the HS under study in this work. These ESC are also compared with a third ESC, already published by the authors, and based on reducing the utilization costs of the energy storage devices. The comparative study proves the right performance of the ESC and their differences.

  6. Scenarios for long-term analysis

    SciTech Connect

    Wolbers, Stephen; /Fermilab

    2009-01-01

    Data Preservation and Long-Term Analysis of High Energy Physics (HEP) Experiments data is described and summarized in this talk. The summary covers information presented at the First Workshop on Data Preservation and Long-Term Analysis. Experiments representing e{sup +}e{sup -} collisions (LEP, B Factories and CLEO), ep collisions (H1 and ZEUS), p{bar p} collisions (CDF and D0) and others presented interesting information related to utilizing the large datasets collected over many years at these HEP facilities. Many questions and issues remain to be explored.

  7. Long-term monitoring reveals stable and remarkably similar microbial communities in parallel full-scale biogas reactors digesting energy crops.

    PubMed

    Lucas, Rico; Kuchenbuch, Anne; Fetzer, Ingo; Harms, Hauke; Kleinsteuber, Sabine

    2015-03-01

    Biogas is an important renewable energy carrier. It is a product of stepwise anaerobic degradation of organic materials by highly diverse microbial communities forming complex interlinking metabolic networks. Knowledge about the microbial background of long-term stable process performance in full-scale reactors is crucial for rationally improving the efficiency and reliability of biogas plants. To generate such knowledge, in the present study three parallel mesophilic full-scale reactors fed exclusively with energy crops were sampled weekly over one year. Physicochemical process parameters were determined and the microbial communities were analysed by terminal restriction fragment length polymorphism (T-RFLP) fingerprinting and 454-amplicon sequencing. For investigating the methanogenic community, a high-resolution T-RFLP approach based on the mcrA gene was developed by selecting restriction enzymes with improved taxonomic resolution compared to previous studies. Interestingly, no Methanosarcina-related generalists, but rather specialized hydrogenotrophic and acetoclastic methanogenic taxa were detected. In general, the microbial communities in the non-connected reactors were remarkably stable and highly similar indicating that identical environmental and process parameters resulted in identical microbial assemblages and dynamics. Practical implications such as flexible operation schemes comprising controlled variations of process parameters for an efficient microbial resource management under fluctuating process conditions are discussed. PMID:25764564

  8. Predicting successful long-term weight loss from short-term weight-loss outcomes: new insights from a dynamic energy balance model (the POUNDS Lost study)123

    PubMed Central

    Ivanescu, Andrada E; Martin, Corby K; Heymsfield, Steven B; Marshall, Kaitlyn; Bodrato, Victoria E; Williamson, Donald A; Anton, Stephen D; Sacks, Frank M; Ryan, Donna; Bray, George A

    2015-01-01

    Background: Currently, early weight-loss predictions of long-term weight-loss success rely on fixed percent-weight-loss thresholds. Objective: The objective was to develop thresholds during the first 3 mo of intervention that include the influence of age, sex, baseline weight, percent weight loss, and deviations from expected weight to predict whether a participant is likely to lose 5% or more body weight by year 1. Design: Data consisting of month 1, 2, 3, and 12 treatment weights were obtained from the 2-y Preventing Obesity Using Novel Dietary Strategies (POUNDS Lost) intervention. Logistic regression models that included covariates of age, height, sex, baseline weight, target energy intake, percent weight loss, and deviation of actual weight from expected were developed for months 1, 2, and 3 that predicted the probability of losing <5% of body weight in 1 y. Receiver operating characteristic (ROC) curves, area under the curve (AUC), and thresholds were calculated for each model. The AUC statistic quantified the ROC curve’s capacity to classify participants likely to lose <5% of their body weight at the end of 1 y. The models yielding the highest AUC were retained as optimal. For comparison with current practice, ROC curves relying solely on percent weight loss were also calculated. Results: Optimal models for months 1, 2, and 3 yielded ROC curves with AUCs of 0.68 (95% CI: 0.63, 0.74), 0.75 (95% CI: 0.71, 0.81), and 0.79 (95% CI: 0.74, 0.84), respectively. Percent weight loss alone was not better at identifying true positives than random chance (AUC ≤0.50). Conclusions: The newly derived models provide a personalized prediction of long-term success from early weight-loss variables. The predictions improve on existing fixed percent-weight-loss thresholds. Future research is needed to explore model application for informing treatment approaches during early intervention. The POUNDS Lost study was registered at clinicaltrials.gov as NCT00072995. PMID:25733628

  9. Report to the Nuclear energy Research Advisory Committee (NERAC) Subcommittee on "Long-Term Isotope Research and Productions Plan" - Responses to Questions

    SciTech Connect

    Ammoniums

    1999-07-01

    This report presents responses to two series of questions that were raised by a subcommittee of the Nuclear Energy Research Advisory Committee (NERAC) that has been charged with producing a ''Long-Term Isotope Research and Production Plan.'' The NERAC subcommittee is chaired by Dr. Richard Reba, and the Hanford Site Visit team, which comprises a subset of the subcommittee members, is chaired by Dr. Thomas Ruth. The first set of questions raised by the subcommittee on isotope production at the Hanford Site was received from Dr. Ruth on May 10, 1999, and the second set was received from him on July 5, 1999. Responses to the first set of questions were prepared as part of a June 1999 report entitled ''Isotope Production at the Hanford Site in Richland, Washington'' (PNNL 1999a). The responses to these questions are summarized in this document, with frequent references to the June 1999 report for additional details. Responses to the second set of questions from the NERAC subcommittee are presented in this document for the first time.

  10. MAXI INVESTIGATION INTO THE LONG-TERM X-RAY VARIABILITY FROM THE VERY-HIGH-ENERGY γ-RAY BLAZAR Mrk 421

    SciTech Connect

    Isobe, Naoki; Sato, Ryosuke; Ueda, Yoshihiro; Hayashida, Masaaki; Shidatsu, Megumi; Kawamuro, Taiki; Ueno, Shiro; Matsuoka, Masaru; Sugizaki, Mutsumi; Sugimoto, Juri; Mihara, Tatehiro; Negoro, Hitoshi

    2015-01-01

    The archetypical very-high-energy γ-ray blazar Mrk 421 was monitored for more than three years with the Gas Slit Camera on board Monitor of All Sky X-ray Image (MAXI), and its long-term X-ray variability was investigated. The MAXI light curve in the 3-10 keV range was transformed into the periodogram in the frequency range f = 1 × 10{sup –8}-2 × 10{sup –6} Hz. The artifacts on the periodogram, resulting from data gaps in the observed light curve, were extensively simulated for variations with a power-law-like power spectrum density (PSD). By comparing the observed and simulated periodograms, the PSD index was evaluated as α = 1.60 ± 0.25. This index is smaller than that obtained in the higher-frequency range (f ≳ 1 × 10{sup –5} Hz), namely, α = 2.14 ± 0.06 in the 1998 ASCA observation of the object. The MAXI data impose a lower limit on the PSD break at f {sub b} = 5 × 10{sup –6} Hz, consistent with the break of f {sub b} = 9.5 × 10{sup –6} Hz suggested from the ASCA data. The low-frequency PSD index of Mrk 421 derived with MAXI falls well within the range of typical values among nearby Seyfert galaxies (α = 1-2). The physical implications from these results are briefly discussed.

  11. Long Term Illness and Wages

    ERIC Educational Resources Information Center

    Sandy, Robert; Elliott, Robert R.

    2005-01-01

    Long-term illness (LTI) is a more prevalent workplace risk than fatal accidents but there is virtually no evidence for compensating differentials for a broad measure of LTI. In 1990 almost 3.4 percent of the U.K. adult population suffered from a LTI caused solely by their working conditions. This paper provides the first estimates of compensating…

  12. Impact of long-term moderate hypercapnia and elevated temperature on the energy budget of isolated gills of Atlantic cod (Gadus morhua).

    PubMed

    Kreiss, Cornelia M; Michael, Katharina; Bock, Christian; Lucassen, Magnus; Pörtner, Hans-O

    2015-04-01

    Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 μatm) and temperature (18°C). Isolated perfused gill preparations were established to determine gill thermal plasticity during acute exposures (10-22°C) and in vivo costs of Na(+)/K(+)-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H(+)-ATPase and Na(+)/K(+)-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na(+)/K(+)-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na(+)/K(+)-ATPase, which remained unchanged under elevated CO2 at 10°C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na(+)/K(+)ATPase and H(+)-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature. PMID:25535111

  13. Energy efficient building design

    SciTech Connect

    Not Available

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  14. Long-term infusion of nesfatin-1 causes a sustained regulation of whole-body energy homeostasis of male Fischer 344 rats

    PubMed Central

    Mortazavi, Sima; Gonzalez, Ronald; Ceddia, Rolando; Unniappan, Suraj

    2015-01-01

    Nesfatin-1, the N-terminal fragment of nucleobindin 2 (NUCB2), is an 82 amino-acid peptide that inhibits food intake and exerts weight-reducing effects. Nesfatin-1 has been proposed as a potential anti-obesity peptide. However, studies to date have mainly focused on the acute satiety effects of centrally administered nesfatin-1. The main objective of our studies was to characterize the long-term/chronic effects of peripheral administration of nesfatin-1 on whole-body energy balance and metabolic partitioning in male Fischer 344 rats. Short-term (1 day) subcutaneous infusion of nesfatin-1 (50 μg/kg body weight/day) using osmotic mini-pumps increased spontaneous physical activity and whole-body fat oxidation during the dark phase. This was accompanied by decreased food intake and basal metabolic rate compared to saline infused controls. On the seventh day of nesfatin-1 infusion, cumulative food intake, and total spontaneous physical activity during the dark phase were significantly reduced and elevated, respectively. Meanwhile, intraperitoneal injection of nesfatin-1 only caused a dark phase specific reduction in food intake and an increase in physical activity. NUCB2 mRNA expression in the brain and stomach, as well as serum NUCB2 concentrations were significantly reduced after 24 h fasting, while a post-prandial increase in serum NUCB2 was found in ad libitum fed rats. Collectively, our results indicate that chronic peripheral administration of nesfatin-1 at the dose tested, results in a sustained reduction in food intake and modulation of whole body energy homeostasis. PMID:25905102

  15. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (ESTSC)

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.« less

  16. Exploring the role nurses play at different stages of the birthing process. Developing strong and long-term relationships with women by examining relationship-building stages prior to delivery, during delivery, and after delivery.

    PubMed

    Peltier, J W; Schibrowski, J A; Westfall, J

    2000-01-01

    The health care community is becoming increasingly aware of the need to develop strong and long-term relationships with the women who make up the majority of the health care market. The perceived quality of obstetric care positively impacts future revenue streams by creating "family" loyalty for an umbrella of other health services offered by the provider organization. This article examines the differential impact that various service performance dimensions have on women's perceptions of quality for different stages of the birthing process, and how relationship-marketing principles can be utilized to develop loyal partnerships. The three distinct relationship-building stages are examined--birthing experiences prior to delivery, during delivery, and after delivery--along with their implications for perceptions of quality analyzed. PMID:11185870

  17. Long-term data archiving

    SciTech Connect

    Moore, David Steven

    2009-01-01

    Long term data archiving has much value for chemists, not only to retain access to research and product development records, but also to enable new developments and new discoveries. There are some recent regulatory requirements (e.g., FDA 21 CFR Part 11), but good science and good business both benefit regardless. A particular example of the benefits of and need for long term data archiving is the management of data from spectroscopic laboratory instruments. The sheer amount of spectroscopic data is increasing at a scary rate, and the pressures to archive come from the expense to create the data (or recreate it if it is lost) as well as its high information content. The goal of long-term data archiving is to save and organize instrument data files as well as any needed meta data (such as sample ID, LIMS information, operator, date, time, instrument conditions, sample type, excitation details, environmental parameters, etc.). This editorial explores the issues involved in long-term data archiving using the example of Raman spectral databases. There are at present several such databases, including common data format libraries and proprietary libraries. However, such databases and libraries should ultimately satisfy stringent criteria for long term data archiving, including readability for long times into the future, robustness to changes in computer hardware and operating systems, and use of public domain data formats. The latter criterion implies the data format should be platform independent and the tools to create the data format should be easily and publicly obtainable or developable. Several examples of attempts at spectral libraries exist, such as the ASTM ANDI format, and the JCAMP-DX format. On the other hand, proprietary library spectra can be exchanged and manipulated using proprietary tools. As the above examples have deficiencies according to the three long term data archiving criteria, Extensible Markup Language (XML; a product of the World Wide Web

  18. Nest site characteristics, nesting movements, and lack of long-term nest site fidelity in Agassiz's desert tortoises at a wind energy facility in southern California

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Agha, Mickey; Yackulic, Charles B.; Meyer-Wilkins, Kathie; Bjurlin, Curtis; Ennen, Joshua R.; Arundel, Terry R.; Austin, Meaghan

    2014-01-01

    Nest site selection has important consequences for maternal and offspring survival and fitness. Females of some species return to the same nesting areas year after year. We studied nest site characteristics, fidelity, and daily pre-nesting movements in a population of Agassiz’s desert tortoises (Gopherus agassizii) at a wind energy facility in southern California during two field seasons separated by over a decade. No females returned to the same exact nest site within or between years but several nested in the same general area. However, distances between first and second clutches within a year (2000) were not significantly different from distances between nests among years (2000 and 2011) for a small sample of females, suggesting some degree of fidelity within their normal activity areas. Environmental attributes of nest sites did not differ significantly among females but did among years due largely to changes in perennial plant structure as a result of multiple fires. Daily pre-nesting distances moved by females decreased consistently from the time shelled eggs were first visible in X-radiographs until oviposition, again suggesting some degree of nest site selection. Tortoises appear to select nest sites that are within their long-term activity areas, inside the climate-moderated confines of one of their self-constructed burrows, and specifically, at a depth in the burrow that minimizes exposure of eggs and embryos to lethal incubation temperatures. Nesting in “climate-controlled” burrows and nest guarding by females relaxes some of the constraints that drive nest site selection in other oviparous species.

  19. On the effect of short temporal scale climate variability on long-term water, energy and carbon fluxes: Insights from a modeling approach

    NASA Astrophysics Data System (ADS)

    Paschalis, A.; Fatichi, S.; Katul, G. G.; Ivanov, V. Y.

    2014-12-01

    While the impact of rapid (i.e. sub-daily) fluctuations in climatic forcing on short-term fluctuations in water and carbon fluxes is rarely disputed, their aggregate effect on long-term fluxes and stores of carbon and water continues to be the subject of active research. A process based ecohydrological model was used to unfold the effect of short time scale variability in precipitation, temperature and radiation on the water and carbon cycles across different climatic regimes and biomes worldwide. Specifically, synthetic climate inputs are first generated with prescribed statistical properties, modifying the small scale structure of each of the investigated forcing variable to evaluate its impact on ecosystem fluxes and stores at all temporal scales. The key statistical properties investigated here include: precipitation extremes, correlation structure, intermittency and its inter- and intra-storm structure; temperature distribution and correlation; and radiation distribution and their correlation structure. A statistical analysis and mechanistic explanations of how climate variability at short temporal scales affects evapotranspiration (ET) and its two components, net and gross primary productivity and vegetation dynamics at a wide range of temporal scales spanning from hourly to inter-annual is provided. The main result is that short-lived excursions in climate forcings play a major role in controlling water, energy and carbon fluxes at all temporal scales. This finding is supported by the fact that nonlinearities describing the pathways by which climate variables impact carbon and water fluxes at short time scale do not necessarily 'weaken' with increasing temporal scales due to feedbacks and 'soft' thresholds and switches. The feedbacks, thresholds and switches depend on the limiting factor for each of the climatic regimes and are not expected to be universal, but site specific. Furthermore, the responses are mostly dependent on climate, rather than vegetation

  20. Environmental Management Long-Term Stewardship Transition Guidance

    SciTech Connect

    Kristofferson, Keith

    2001-11-01

    Long-term stewardship consists of those actions necessary to maintain and demonstrate continued protection of human health and the environment after the completion of facility cleanup. Long-term stewardship is administered and overseen by the U.S. Department of Energy Environmental Management Office of Science and Technology. This report describes the background of long-term stewardship and gives general guidance about considerations when ownership and/or responsibility of a site should be transferred to a long-term stewardship program. This guidance document will assist the U.S. Department of Energy in: (a) ensuring that the long-term stewardship program leads transition planning with respect to facility and site areas, and (b) describing the classes and types of criteria and data required to initiate transition for areas and sites where the facility mission has ended and cleanup is complete.

  1. 18 CFR 367.4270 - Account 427, Interest on long-term debt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... on long-term debt. 367.4270 Section 367.4270 Conservation of Power and Water Resources FEDERAL ENERGY..., Interest on long-term debt. (a) This account must include the amount of interest on outstanding long-term..., Other long-term debt (§ 367.2240). (b) This account must be kept or supported so as to show the...

  2. 18 CFR 367.4270 - Account 427, Interest on long-term debt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... on long-term debt. 367.4270 Section 367.4270 Conservation of Power and Water Resources FEDERAL ENERGY..., Interest on long-term debt. (a) This account must include the amount of interest on outstanding long-term..., Other long-term debt (§ 367.2240). (b) This account must be kept or supported so as to show the...

  3. 18 CFR 367.4270 - Account 427, Interest on long-term debt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... on long-term debt. 367.4270 Section 367.4270 Conservation of Power and Water Resources FEDERAL ENERGY..., Interest on long-term debt. (a) This account must include the amount of interest on outstanding long-term..., Other long-term debt (§ 367.2240). (b) This account must be kept or supported so as to show the...

  4. 18 CFR 367.4270 - Account 427, Interest on long-term debt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... on long-term debt. 367.4270 Section 367.4270 Conservation of Power and Water Resources FEDERAL ENERGY..., Interest on long-term debt. (a) This account must include the amount of interest on outstanding long-term..., Other long-term debt (§ 367.2240). (b) This account must be kept or supported so as to show the...

  5. Residential Building Energy Analysis

    Energy Science and Technology Software Center (ESTSC)

    1990-09-01

    PEAR (Program for Energy Analysis of Residences) provides an easy-to-use and accurate method of estimating the energy and cost savings associated with various energy conservation measures in site-built single-family homes. Measures such as ceiling, wall, and floor insulation; different window type and glazing layers; infiltration levels; and equipment efficiency can be considered. PEAR also allows the user to consider the effects of roof and wall color, movable night insulation on the windows, reflective and heatmore » absorbing glass, an attached sunspace, and use of a night temperature setback. Regression techniques permit adjustments for different building geometries, window areas and orientations, wall construction, and extension of the data to 880 U.S. locations determined by climate parameters. Based on annual energy savings, user-specified costs of conservation measures, fuel, lifetime of measure, loan period, and fuel escalation and interest rates, PEAR calculates two economic indicators; the Simple Payback Period (SPP) and the Savings-to-Investment Ratio (SIR). Energy and cost savings of different sets of conservation measures can be compared in a single run. The program can be used both as a research tool by energy policy analysts and as a method for nontechnical energy calculation by architects, home builders, home owners, and others in the building industry.« less

  6. Residential Building Energy Analysis

    SciTech Connect

    Ritschard, R. L.

    1990-09-01

    PEAR (Program for Energy Analysis of Residences) provides an easy-to-use and accurate method of estimating the energy and cost savings associated with various energy conservation measures in site-built single-family homes. Measures such as ceiling, wall, and floor insulation; different window type and glazing layers; infiltration levels; and equipment efficiency can be considered. PEAR also allows the user to consider the effects of roof and wall color, movable night insulation on the windows, reflective and heat absorbing glass, an attached sunspace, and use of a night temperature setback. Regression techniques permit adjustments for different building geometries, window areas and orientations, wall construction, and extension of the data to 880 U.S. locations determined by climate parameters. Based on annual energy savings, user-specified costs of conservation measures, fuel, lifetime of measure, loan period, and fuel escalation and interest rates, PEAR calculates two economic indicators; the Simple Payback Period (SPP) and the Savings-to-Investment Ratio (SIR). Energy and cost savings of different sets of conservation measures can be compared in a single run. The program can be used both as a research tool by energy policy analysts and as a method for nontechnical energy calculation by architects, home builders, home owners, and others in the building industry.

  7. Energy Simulator Residential Buildings

    Energy Science and Technology Software Center (ESTSC)

    1992-02-24

    SERI-RES performs thermal energy analysis of residential or small commercial buildings and has the capability of modeling passive solar equipment such as rock beds, trombe walls, and phase change material. The analysis is accomplished by simulation. A thermal model of the building is created by the user and translated into mathematical form by the program. The mathematical equations are solved repeatedly at time intervals of one hour or less for the period of simulation. Themore » mathematical representation of the building is a thermal network with nonlinear, temperature-dependent controls. A combination of forward finite differences, Jacobian iteration, and constrained optimization techniques is used to obtain a solution. An auxiliary interactive editing program, EDITOR, is included for creating building descriptions. EDITOR checks the validity of the input data and also provides facilities for storing and referencing several types of building description files. Some of the data files used by SERI-RES need to be implemented as direct-access files. Programs are included to convert sequential files to direct-access files and vice versa.« less

  8. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  9. Accelerated long-term assessment of thermal and chemical stability of bio-based phase change materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal energy storage (TES) systems incorporated with phase change materials (PCMs) have potential applications to control energy use by building envelopes. However, it is essential to evaluate long term performance of the PCMs and cost effectiveness prior to full scale implementation. For this rea...

  10. Who owns the long term? Perspectives from global business leaders.

    PubMed

    Lévy, Maurice; Eskew, Mike; Bernotat, Wulf H; Barner, Marianne

    2007-01-01

    Day-to-day management is challenging enough for CEOs. How do they manage for the long term as well? We posed that question to four top executives of global companies. According to Maurice Levy, chairman and CEO of Publicis Groupe, building the future is really about building the present and keeping close to the front line--those who deal with your customers and markets. He also attributes his company's success in large part to knowing when to take action: In a market where clients' needs steer your long-term future, timing is everything. UPS Chairman and CEO Mike Eskew emphasizes staying true to your vision and values over the long run, despite meeting obstacles along the way. It took more than 20 years, and many lessons learned, to produce consistent profits in what is today the company's fastest-growing and most profitable business: international small packages. Wulf H. Bernotat, CEO of E.ON, examines the challenges facing business leaders and politicians as they try to balance energy needs against potential environmental damage. He calls for educating people about consumption and waste, and he maintains that a diverse and reliable mix of energy sources is the only way to ensure a secure supply while protecting our environment. Finally, Marianne Barner, the director of corporate communications and ombudsman for children's issues at IKEA, discusses how the company is taking steps to improve the environment and be otherwise socially responsible. For example, it's partnering with NGOs to address child labor issues and, on its own, is working to help mitigate climate change. IKEA's goals include using renewable sources for 100% of its energy needs and cutting its overall energy consumption by 25%. PMID:17642126

  11. Long-Term Wind Power Variability

    SciTech Connect

    Wan, Y. H.

    2012-01-01

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  12. Long-Term Solar Irradiance Variability

    NASA Technical Reports Server (NTRS)

    Pap, J. M.

    1996-01-01

    Measurements of the solar energy throughout the solar spectrum and understanding its variability provide important information about the physical processes and structural changes in the solar interior and in the solar atmosphere...The aim of this paper is to discuss the solar-cycle-related long-term changes in solar total and UV irradiances. The spaceborne irradiance observations are compared to ground-based indices of solar magnetic activity, such as the Photometric Sunspot Index, full disk magnetic flux, and the Mt. Wilson Magnetic Plage Strength Index.

  13. Stapedectomy - long-term report.

    PubMed

    Shea, J J

    1982-01-01

    The long-term results with large fenestra stapedectomy with vein graft and Teflon piston are compared with results with the small fenestra stapedectomy with teflon piston directly into the vestibule. There were 1,943 operations in the former group and 2,155 in the latter when compared in 1970. One hundred consecutive patients from the beginning of each group with follow-up to present were compared. Results were generally the same with no great change in 15 and 20 years as compared to those at 5 years. The complication of perilymph fistula was caused by creating an opening in the footplate much larger than the prosthesis and was eliminated by interposing a living oval window seal if the opening was much larger than the prosthesis and a flap of lining membrane from the promontory when it was not. Other factors that influence a good result are discussed, including the type and the diameter of the piston used, the type of living oval window seal and the method of attachment to the incus. The small fenestra operation was found to be superior to the large, not only for the hearing gain achieved, but the case of performance and the freedom from complications due to migration of the prosthesis and/or the oval window seal. At present we have done about all that can be done for the conductive components. What remains is the sensorineural component which our studies indicate may be due to an autoimmune response. PMID:6897157

  14. Long Term Surface Salinity Measurements

    NASA Technical Reports Server (NTRS)

    Schmitt, Raymond W.; Brown, Neil L.

    2005-01-01

    Our long-term goal is to establish a reliable system for monitoring surface salinity around the global ocean. Salinity is a strong indicator of the freshwater cycle and has a great influence on upper ocean stratification. Global salinity measurements have potential to improve climate forecasts if an observation system can be developed. This project is developing a new internal field conductivity cell that can be protected from biological fouling for two years. Combined with a temperature sensor, this foul-proof cell can be deployed widely on surface drifters. A reliable in-situ network of surface salinity sensors will be an important adjunct to the salinity sensing satellite AQUARIUS to be deployed by NASA in 2009. A new internal-field conductivity cell has been developed by N Brown, along with new electronics. This sensor system has been combined with a temperature sensor to make a conductivity - temperature (UT) sensor suitable for deployment on drifters. The basic sensor concepts have been proven on a high resolution CTD. A simpler (lower cost) circuit has been built for this application. A protection mechanism for the conductivity cell that includes antifouling protection has also been designed and built. Mr. A.Walsh of our commercial partner E-Paint has designed and delivered time-release formulations of antifoulants for our application. Mr. G. Williams of partner Clearwater Instrumentation advised on power and communication issues and supplied surface drifters for testing.

  15. Net zero building energy conservation

    NASA Astrophysics Data System (ADS)

    Kadam, Rohit

    This research deals with energy studies performed as part of a net-zero energy study for buildings. Measured data of actual energy utilization by a building for a continuous period of 33 months was collected and studied. The peak design day on which the building consumes maximum energy was found. The averages of the energy consumption for the peak month were determined. The DOE EnergyPlus software was used to simulate the energy requirements for the building and also obtain peak energy requirements for the peak month. Alternative energy sources such as ground source heat pump, solar photovoltaic (PV) panels and day-lighting modifications were applied to redesign the energy consumption for the building towards meeting net-zero energy requirements. The present energy use by the building, DOE Energy software simulations for the building as well as the net-zero model for the building were studied. The extents of the contributions of the individual energy harvesting measures were studied. For meeting Net Zero Energy requirement, it was found that the total energy load for the building can be distributed between alternative energy methods as 5.4% to daylighting modifications, 58% to geothermal and 36.6% to solar photovoltaic panels for electricity supply and thermal energy. Thus the directions to proceed towards achieving complete net-zero energy status were identified.

  16. Problems and Issues in Long-Term Care. Hearings before the Subcommittee on Health and the Environment of the Committee on Energy and Commerce. House of Representatives, Ninety-Ninth Congress. Long-Term Care Services for the Elderly (October 18, 1985) and Alzheimer's Disease and Related Disorders (January 27, 1986).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Energy and Commerce.

    This document provides testimony from two Congressional hearings, one on the subject of long-term care services for the elderly and the other on Alzheimer's disease and related disorders. In the hearing on long-term care, opening remarks are given by Congressmen Waxman and Wyden. Expert testimony from the following witnesses is provided: (1)…

  17. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema

    None

    2014-06-26

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  18. Energy 101: Energy Efficient Commercial Buildings

    SciTech Connect

    2014-03-14

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  19. Long-term acclimatory response to excess excitation energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size.

    PubMed

    Borisova-Mubarakshina, Maria M; Ivanov, Boris N; Vetoshkina, Daria V; Lubimov, Valeriy Y; Fedorchuk, Tatyana P; Naydov, Ilya A; Kozuleva, Marina A; Rudenko, Natalia N; Dall'Osto, Luca; Cazzaniga, Stefano; Bassi, Roberto

    2015-12-01

    Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves. In particular, it has been demonstrated that the ability to reduce the antenna size of photosystem II in high light is restricted to photosynthetic apparatus with a reduced level of the plastoquinone pool and with a low hydrogen peroxide content. Conversely, the reduction of antenna size in low light is induced in photosynthetic apparatus possessing elevated hydrogen peroxide even when the reduction level of the plastoquinone pool is low. Hydrogen peroxide affects the relative abundance of the antenna proteins that modulate the antenna size of photosystem II through a down-regulation of the corresponding lhcb mRNA levels. This work shows that hydrogen peroxide contributes to triggering the photosynthetic apparatus response for the reduction of the antenna size of photosystem II by being the molecular signal for the long-term acclimation of plants to high light. PMID:26324464

  20. Energy conservation in swine buildings

    SciTech Connect

    Jones, D.D.; Friday, W.H.

    1980-05-01

    Saving energy in confinement swine buildings can be achieved by conserving existing animal heat through both proper building construction and control of the environment. Environmental management practices considered include building insulation and modifications, heating and cooling system selection, ventilation system adjustments, and proper building temperature. (MCW)

  1. Accuracy-energy configurable sensor processor and IoT device for long-term activity monitoring in rare-event sensing applications.

    PubMed

    Park, Daejin; Cho, Jeonghun

    2014-01-01

    A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error. PMID:25580458

  2. Accuracy-Energy Configurable Sensor Processor and IoT Device for Long-Term Activity Monitoring in Rare-Event Sensing Applications

    PubMed Central

    2014-01-01

    A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error. PMID:25580458

  3. Analyzing the Life Cycle Energy Savings of DOE Supported Buildings Technologies

    SciTech Connect

    Cort, Katherine A.; Hostick, Donna J.; Dirks, James A.; Elliott, Douglas B.

    2009-08-31

    This report examines the factors that would potentially help determine an appropriate analytical timeframe for measuring the U.S. Department of Energy's Building Technology (BT) benefits and presents a summary-level analysis of the life cycle savings for BT’s Commercial Buildings Integration (CBI) R&D program. The energy savings for three hypothetical building designs are projected over a 100-year period using Building Energy Analysis and Modeling System (BEAMS) to illustrate the resulting energy and carbon savings associated with the hypothetical aging buildings. The report identifies the tasks required to develop a long-term analytical and modeling framework, and discusses the potential analytical gains and losses by extending an analysis into the “long-term.”

  4. Energy for Buildings and Homes.

    ERIC Educational Resources Information Center

    Bevington, Rick; Rosenfeld, Arthur H.

    1990-01-01

    Described are new technologies such as superwindows, compact fluorescent lights, and automated control systems which, when combined with other strategies such as shade trees and light-colored buildings, could reduce building energy expenditures. (CW)

  5. Building Energy Monitoring and Analysis

    SciTech Connect

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  6. Building Energy Monitoring and Analysis

    SciTech Connect

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  7. Long-term solar-terrestrial observations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The results of an 18-month study of the requirements for long-term monitoring and archiving of solar-terrestrial data is presented. The value of long-term solar-terrestrial observations is discussed together with parameters, associated measurements, and observational problem areas in each of the solar-terrestrial links (the sun, the interplanetary medium, the magnetosphere, and the thermosphere-ionosphere). Some recommendations are offered for coordinated planning for long-term solar-terrestrial observations.

  8. Building energy governance in Shanghai

    NASA Astrophysics Data System (ADS)

    Kung, YiHsiu Michelle

    With Asia's surging economies and urbanization, the region is adding to its built environment at an unprecedented rate, especially those population centers in China and India. With numerous existing buildings, plus a new building boom, construction in these major Asian cities has caused momentous sustainability challenges. This dissertation focuses on China's leading city, Shanghai, to explore and assess its existing commercial building energy policies and practices. Research estimates that Shanghai's commercial buildings might become a key challenge with regard to energy use and CO2 emissions as compared to other major Asian cities. Relevant building energy policy instruments at national and local levels for commercial buildings are reviewed. In addition, two benchmarks are established to further assess building energy policies in Shanghai. The first benchmark is based on the synthesis of relevant criteria and policy instruments as recommended by professional organizations, while the second practical benchmark is drawn from an analysis of three global cities: New York, London and Tokyo. Moreover, two large-scale commercial building sites - Shanghai IKEA and Plaza 66 - are selected for investigation and assessment of their efforts on building energy saving measures. Detailed building energy savings, CO2 reductions, and management cost reductions based on data availability and calculations are presented with the co-benefits approach. The research additionally analyzes different interventions and factors that facilitate or constrain the implementation process of building energy saving measures in each case. Furthermore, a multi-scale analytical framework is employed to investigate relevant stakeholders that shape Shanghai's commercial building energy governance. Research findings and policy recommendations are offered at the close of this dissertation. Findings and policy recommendations are intended to facilitate commercial building energy governance in Shanghai and

  9. State building energy codes status

    SciTech Connect

    1996-09-01

    This document contains the State Building Energy Codes Status prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy under Contract DE-AC06-76RL01830 and dated September 1996. The U.S. Department of Energy`s Office of Codes and Standards has developed this document to provide an information resource for individuals interested in energy efficiency of buildings and the relevant building energy codes in each state and U.S. territory. This is considered to be an evolving document and will be updated twice a year. In addition, special state updates will be issued as warranted.

  10. Leadership: the Winnipeg Community and Long-Term Care Authority.

    PubMed

    Suski, M; Hack, T; Heaman, M

    1999-01-01

    The Winnipeg Community and Long Term Care Authority (WCA) was established in 1998 under the Regional Health Authorities Act of the Province of Manitoba. The WCA's role is to provide for the successful integration of Winnipeg's community-based healthcare delivery services through its three main portfolios: Community Care and Public Health, Home Care and Mental Health, and Long Term Care and Specialized Services. The WCA is dedicated to building a quality health future for Winnipeg. Various initiatives undertaken in the pursuit of quality are described. PMID:10538544

  11. Long-term preservation of Anammox bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deposit of useful microorganisms in culture collections requires long-term preservation and successful reactivation techniques. The goal of this study was to develop a simple preservation protocol for the long-term storage and reactivation of the anammox biomass. To achieve this, anammox biomass w...

  12. Long Term Preservation of Digital Information.

    ERIC Educational Resources Information Center

    Lorie, Raymond A.

    The preservation of digital data for the long term presents a variety of challenges from technical to social and organizational. The technical challenge is to ensure that the information, generated today, can survive long term changes in storage media, devices, and data formats. This paper presents a novel approach to the problem. It distinguishes…

  13. Virtual Models of Long-Term Care

    ERIC Educational Resources Information Center

    Phenice, Lillian A.; Griffore, Robert J.

    2012-01-01

    Nursing homes, assisted living facilities and home-care organizations, use web sites to describe their services to potential consumers. This virtual ethnographic study developed models representing how potential consumers may understand this information using data from web sites of 69 long-term-care providers. The content of long-term-care web…

  14. Managing Records for the Long Term - 12363

    SciTech Connect

    Montgomery, John V.; Gueretta, Jeanie

    2012-07-01

    The U.S. Department of Energy (DOE) is responsible for managing vast amounts of information documenting historical and current operations. This information is critical to the operations of the DOE Office of Legacy Management. Managing legacy records and information is challenging in terms of accessibility and changing technology. The Office of Legacy Management is meeting these challenges by making records and information management an organizational priority. The Office of Legacy Management mission is to manage DOE post-closure responsibilities at former Cold War weapons sites to ensure the future protection of human health and the environment. These responsibilities include environmental stewardship and long-term preservation and management of operational and environmental cleanup records associated with each site. A primary organizational goal for the Office of Legacy Management is to 'Preserve, Protect, and Share Records and Information'. Managing records for long-term preservation is an important responsibility. Adequate and dedicated resources and management support are required to perform this responsibility successfully. Records tell the story of an organization and may be required to defend an organization in court, provide historical information, identify lessons learned, or provide valuable information for researchers. Loss of records or the inability to retrieve records because of poor records management processes can have serious consequences and even lead to an organisation's downfall. Organizations must invest time and resources to establish a good records management program because of its significance to the organization as a whole. The Office of Legacy Management will continue to research and apply innovative ways of doing business to ensure that the organization stays at the forefront of effective records and information management. DOE is committed to preserving records that document our nation's Cold War legacy, and the Office of Legacy

  15. Paying for long-term care.

    PubMed Central

    Estes, C L; Bodenheimer, T

    1994-01-01

    Everyone agrees that insurance for long-term care is inadequate in the United States. Disagreement exists, however, on whether such insurance should be provided through the private or public sector. Private insurance generally uses the experience-rating principle that persons with higher risk of illness are charged higher premiums. For private insurance for long-term care, this principle creates a dilemma. Most policies will be purchased by the elderly; yet, because the elderly have a high risk of needing long-term care, only about 20% of them can afford the cost of premiums. A public-private partnership by which the government partially subsidizes private long-term-care insurance is unlikely to resolve this dilemma. Only a social insurance program for long-term care can provide universal, affordable, and equitable coverage. PMID:8128712

  16. An empirical study of the impact of human activity on long-term temperature change in China: A perspective from energy consumption

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhao, Xinyi

    2012-09-01

    Human activity is an important contributor to local temperature change, especially in urban areas. Energy consumption is treated here as an index of the intensity of human induced local thermal forcing. The relationship between energy consumption and temperature change is analyzed in China by Observation Minus Reanalysis (OMR) method. Temperature trends for observation, reanalysis and OMR are estimated from meteorological records and 2 m-temperature from NCEP/NCAR Reanalysis 1 for the period 1979-2007. A spatial mapping scheme based on the spatial and temporal relationship between energy consumption and Gross Domestic Production (GDP) is developed to derive the spatial distribution of energy consumption of China in 2003. A positive relationship between energy consumption and OMR trends is found in high and mid energy consumption region. OMR trends decline with the decreasing intensity of human activity from 0.20°C/decade in high energy consumption region to 0.13°C/decade in mid energy consumption region. Forty-four stations in high energy consumption region that are exposed to the largest human impact are selected to investigate the impact of energy consumption spatial pattern on temperature change. Results show human impact on temperature trends is highly dependent on spatial pattern of energy consumption. OMR trends decline from energy consumption center to surrounding areas (0.26 to 0.04°C/decade) and get strengthened as the spatial extent of high energy consumption area expands (0.14 to 0.25°C/decade).

  17. Nonlinear predictive energy management of residential buildings with photovoltaics & batteries

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Sun, Fengchun; Moura, Scott J.

    2016-09-01

    This paper studies a nonlinear predictive energy management strategy for a residential building with a rooftop photovoltaic (PV) system and second-life lithium-ion battery energy storage. A key novelty of this manuscript is closing the gap between building energy management formulations, advanced load forecasting techniques, and nonlinear battery/PV models. Additionally, we focus on the fundamental trade-off between lithium-ion battery aging and economic performance in energy management. The energy management problem is formulated as a model predictive controller (MPC). Simulation results demonstrate that the proposed control scheme achieves 96%-98% of the optimal performance given perfect forecasts over a long-term horizon. Moreover, the rate of battery capacity loss can be reduced by 25% with negligible losses in economic performance, through an appropriate cost function formulation.

  18. California commercial building energy benchmarking

    SciTech Connect

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and

  19. CO{sub 2} emissions from developing countries: Better understanding the role of energy in the long term. Volume 3, China, India, Indonesia, and South Korea

    SciTech Connect

    Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. Of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world`s share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and Co{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. These individual studies were conducted for China, India, Indonesia and South Korea in Asia.

  20. CO{sub 2} emissions from developing countries: Better understanding the role of Energy in the long term. Volume 2, Argentina, Brazil, Mexico, and Venezuela

    SciTech Connect

    Ketoff, A.; Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. Of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world`s share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist energy demand in developing will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. These individual studies were conducted fro Argentina, Brazil, Mexico and Venezuela in Latin America.

  1. Long-Term Stewardship Program Science and Technology Requirements

    SciTech Connect

    Joan McDonald

    2002-09-01

    Many of the United States’ hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the program’s mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

  2. CO{sub 2} emissions from developing countries: Better understanding the role of energy in the long term. Volume 1, Summary: Revision

    SciTech Connect

    Sathaye, J.; Ketoff, A.

    1991-02-01

    This study examines energy use and carbon emissions in the developing world. Based on analyses of present energy-use patterns in 17 developing nations, this study presents high emissions and low emissions scenarios for these nations in the year 2025. These nations combined account for two thirds of the energy-related carbon emissions presently generated in the developing world. The analysis reveals that energy demand expands dramatically by 2025 and grows increasingly carbon intensive. In the high emissions scenario, carbon emissions from these countries increase four-fold. The greatest share of carbon stems from the industrial sector in 2025, followed by the transport and residential sectors. With the implementation of policies aimed at reducing CO{sub 2} emissions, the low emissions scenario reduces the level of carbon in 2025 by 20 percent relative to the high emissions scenario figure. These nations achieve 80 percent of the carbon reductions by improving the efficiency of energy production and use and the remaining 20 percent by implementing fuel-switching measures. Of all the sectors examined, the industrial sector offers the greatest opportunity for absolute carbon savings (39 percent of the total). This summary is volume one of five volumes.

  3. Energy conservation in large buildings

    NASA Astrophysics Data System (ADS)

    Rosenfeld, A.; Hafemeister, D.

    1985-11-01

    As energy prices rise, newly energy aware designers use better tools and technology to create energy efficient buildings. Thus the U.S. office stock (average age 20 years) uses 250 kBTU/ft2 of resource energy, but the guzzler of 1972 uses 500 (up×2), and the 1986 ASHRAE standards call for 100-125 (less than 25% of their 1972 ancestors). Surprisingly, the first real cost of these efficient buildings has not risen since 1972. Scaling laws are used to calculate heat gains and losses of buildings to obtain the ΔT(free) which can be as large as 15-30 °C (30-60 °F) for large buildings. The net thermal demand and thermal time constants are determined for the Swedish Thermodeck buildings which need essentially no heat in the winter and no chillers in summer. The BECA and other data bases for large buildings are discussed. Off-peak cooling for large buildings is analyzed in terms of saving peak-electrical power. By downsizing chillers and using cheaper, off-peak power, cost-effective thermal storage in new commercial buildings can reduce U.S. peak power demands by 10-20 GW in 15 years. A further potential of about 40 GW is available from adopting partial thermal storage and more efficient air conditioners in existing buildings.

  4. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate: Long-Term Utility and Monitoring Data (Revised)

    SciTech Connect

    Parker, D.; Sherwin, J.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution, and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.

  5. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate. Long-Term Utility and Monitoring Data

    SciTech Connect

    Parker, D.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution, and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.

  6. Studies of breakeven prices and electricity supply potentials of nuclear fusion by a long-term world energy and environment model

    NASA Astrophysics Data System (ADS)

    Tokimatsu, K.; Asaoka, Y.; Konishi, S.; Fujino, J.; Ogawa, Y.; Okano, K.; Nishio, S.; Yoshida, T.; Hiwatari, R.; Yamaji, K.

    2002-11-01

    In response to social demand, this paper investigates the breakeven price (BP) and potential electricity supply of nuclear fusion energy in the 21st century by means of a world energy and environment model. We set the following objectives in this paper: (i) to reveal the economics of the introduction conditions of nuclear fusion; (ii) to know when tokamak-type nuclear fusion reactors are expected to be introduced cost-effectively into future energy systems; (iii) to estimate the share in 2100 of electricity produced by the presently designed reactors that could be economically selected in the year. The model can give in detail the energy and environment technologies and price-induced energy saving, and can illustrate optimal energy supply structures by minimizing the costs of total discounted energy systems at a discount rate of 5%. The following parameters of nuclear fusion were considered: cost of electricity (COE) in the nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and regional nuclear fusion capacity projection. The investigations are carried out for three nuclear fusion projections one of which includes tritium breeding constraints, four future CO2 concentration constraints, and technological assumptions on fossil fuels, nuclear fission, CO2 sequestration, and anonymous innovative technologies. It is concluded that: (1) the BPs are from 65 to 125 mill kW-1 h-1 depending on the introduction year of nuclear fusion under the 550 ppmv CO2 concentration constraints; those of a business-as-usual (BAU) case are from 51 to 68 mill kW-1h-1. Uncertainties resulting from the CO2 concentration constraints and the technological options influenced the BPs by plus/minus some 10 30 mill kW-1h-1, (2) tokamak-type nuclear fusion reactors (as presently designed, with a COE range around 70 130 mill kW-1h-1) would be favourably introduced into energy systems after 2060 based on the economic criteria under the 450 and 550 ppmv CO2

  7. Long-term adequacy of metal resources

    USGS Publications Warehouse

    Singer, D.A.

    1977-01-01

    Although the earth's crust contains vast quantities of metals, extraction technologies and associated costs are inextricably bound to three fundamental geological factors - the amount of metal available in the earth's crust in each range of grades, the mineralogical form and chemical state of the metal, and the spatial distribution of the metal. The energy required to recover a given amount of metal increases substantially as grade declines. Most metal is produced from sulphide or oxide minerals, whereas most metal in the crust may be locked in the structures of the more refractory silicates. Recovery from silicate minerals could require orders of magnitude more energy than that used at present as also could exploitation of small, widely scattered or thin, deeply buried deposits. Although specific information on the fundamental factors is not available, each factor must in turn tend to further restrict exploitation. Independence of average grade and tonnage for many deposit types further reduces the availability of rock as a source of metal. In the long term, effects of these factors will be large increases in price for many metals. ?? 1977.

  8. Long-term post-fire effects on spatial ecology and reproductive output of female Agassiz’s desert tortoises (Gopherus agassizii) at a wind energy facility near Palm Springs, California, USA

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Ennen, Joshua R.; Madrak, Sheila V.; Loughran, Caleb L.; Meyer, Katherin P.; Arundel, Terence R.; Bjurlin, Curtis D.

    2011-01-01

    We studied the long-term response of a cohort of eight female Agassiz’s desert tortoises (Gopherus agassizii) during the first 15 years following a large fire at a wind energy generation facility near Palm Springs, California, USA. The fire burned a significant portion of the study site in 1995. Tortoise activity areas were mapped using minimum convex polygons for a proximate post-fire interval from 1997 to 2000, and a long-term post-fire interval from 2009 to 2010. In addition, we measured the annual reproductive output of eggs each year and monitored the body condition of tortoises over time. One adult female tortoise was killed by the fire and five tortoises bore exposure scars that were not fatal. Despite predictions that tortoises would make the short-distance movements from burned to nearby unburned habitats, most activity areas and their centroids remained in burned areas for the duration of the study. The percentage of activity area burned did not differ significantly between the two monitoring periods. Annual reproductive output and measures of body condition remained statistically similar throughout the monitoring period. Despite changes in plant composition, conditions at this site appeared to be suitable for survival of tortoises following a major fire. High productivity at the site may have buffered tortoises from the adverse impacts of fire if they were not killed outright. Tortoise populations at less productive desert sites may not have adequate resources to sustain normal activity areas, reproductive output, and body conditions following fire.

  9. Long Term Effects of Food Poisoning

    MedlinePlus

    ... develop chronic arthritis. Brain and nerve damage A Listeria infection can lead to meningitis, an inflammation of ... brain. If a newborn infant is infected with Listeria , long-term consequences may include mental retardation, seizures, ...

  10. Mental Health in Long Term Care Settings.

    ERIC Educational Resources Information Center

    Shore, Herbert

    1978-01-01

    There are many ways in which long-term care facilities attempt to cope with the mental health problems of the elderly. The author reviews five factors crucial to effective care for the aged in these facilities. (Author/RK)