Science.gov

Sample records for long-term potentiation induction

  1. Stochastic Induction of Long-Term Potentiation and Long-Term Depression.

    PubMed

    Antunes, G; Roque, A C; Simoes-de-Souza, F M

    2016-01-01

    Long-term depression (LTD) and long-term potentiation (LTP) of granule-Purkinje cell synapses are persistent synaptic alterations induced by high and low rises of the intracellular calcium ion concentration ([Ca(2+)]), respectively. The occurrence of LTD involves the activation of a positive feedback loop formed by protein kinase C, phospholipase A2, and the extracellular signal-regulated protein kinase pathway, and its expression comprises the reduction of the population of synaptic AMPA receptors. Recently, a stochastic computational model of these signalling processes demonstrated that, in single synapses, LTD is probabilistic and bistable. Here, we expanded this model to simulate LTP, which requires protein phosphatases and the increase in the population of synaptic AMPA receptors. Our results indicated that, in single synapses, while LTD is bistable, LTP is gradual. Ca(2+) induced both processes stochastically. The magnitudes of the Ca(2+) signals and the states of the signalling network regulated the likelihood of LTP and LTD and defined dynamic macroscopic Ca(2+) thresholds for the synaptic modifications in populations of synapses according to an inverse Bienenstock, Cooper and Munro (BCM) rule or a sigmoidal function. In conclusion, our model presents a unifying mechanism that explains the macroscopic properties of LTP and LTD from their dynamics in single synapses. PMID:27485552

  2. Stochastic Induction of Long-Term Potentiation and Long-Term Depression

    PubMed Central

    Antunes, G.; Roque, A. C.; Simoes-de-Souza, F. M.

    2016-01-01

    Long-term depression (LTD) and long-term potentiation (LTP) of granule-Purkinje cell synapses are persistent synaptic alterations induced by high and low rises of the intracellular calcium ion concentration ([Ca2+]), respectively. The occurrence of LTD involves the activation of a positive feedback loop formed by protein kinase C, phospholipase A2, and the extracellular signal-regulated protein kinase pathway, and its expression comprises the reduction of the population of synaptic AMPA receptors. Recently, a stochastic computational model of these signalling processes demonstrated that, in single synapses, LTD is probabilistic and bistable. Here, we expanded this model to simulate LTP, which requires protein phosphatases and the increase in the population of synaptic AMPA receptors. Our results indicated that, in single synapses, while LTD is bistable, LTP is gradual. Ca2+ induced both processes stochastically. The magnitudes of the Ca2+ signals and the states of the signalling network regulated the likelihood of LTP and LTD and defined dynamic macroscopic Ca2+ thresholds for the synaptic modifications in populations of synapses according to an inverse Bienenstock, Cooper and Munro (BCM) rule or a sigmoidal function. In conclusion, our model presents a unifying mechanism that explains the macroscopic properties of LTP and LTD from their dynamics in single synapses. PMID:27485552

  3. Induction of long-term potentiation and long-term depression is cell-type specific in the spinal cord.

    PubMed

    Kim, Hee Young; Jun, Jaebeom; Wang, Jigong; Bittar, Alice; Chung, Kyungsoon; Chung, Jin Mo

    2015-04-01

    The underlying mechanism of chronic pain is believed to be changes in excitability in spinal dorsal horn (DH) neurons that respond abnormally to peripheral input. Increased excitability in pain transmission neurons, and depression of inhibitory neurons, are widely recognized in the spinal cord of animal models of chronic pain. The possible occurrence of 2 parallel but opposing forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) was tested in 2 types of identified DH neurons using whole-cell patch-clamp recordings in mouse spinal cord slices. The test stimulus was applied to the sensory fibers to evoke excitatory postsynaptic currents in identified spinothalamic tract neurons (STTn) and GABAergic neurons (GABAn). Afferent conditioning stimulation (ACS) applied to primary afferent fibers with various stimulation parameters induced LTP in STTn but LTD in GABAn, regardless of stimulation parameters. These opposite responses were further confirmed by simultaneous dual patch-clamp recordings of STTn and GABAn from a single spinal cord slice. Both the LTP in STTn and the LTD in GABAn were blocked by an NMDA receptor antagonist, AP5, or an intracellular Ca chelator, BAPTA. Both the pattern and magnitude of intracellular Ca after ACS were almost identical between STTn and GABAn based on live-cell calcium imaging. The results suggest that the intense sensory input induces an NMDA receptor-dependent intracellular Ca increase in both STTn and GABAn, but produces opposing synaptic plasticity. This study shows that there is cell type-specific synaptic plasticity in the spinal DH. PMID:25785524

  4. Metabotropic glutamate receptors are required for the induction of long-term potentiation

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    Recent observations have led to the suggestion that the metabotropic glutamate receptor may play a role in the induction or maintenance of long-term potentiation (LTP). However, experimental evidence supporting a role for this receptor in the induction of LTP is still inconclusive and controversial. Here we report that, in rat dorsolateral septal nucleus (DLSN) neurons, which have the highest density of metabotropic receptors and show functional responses, the induction of LTP is not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovalerate, but is blocked by two putative metabotropic glutamate receptor antagonists, L-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyrate. Furthermore, superfusion of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, a selective metabotropic glutamate agonist, resulted in a long-lasting potentiation of synaptic transmission similar to that induced by tetanic stimuli. Our results demonstrated that activation of postsynaptic metabotropic receptors is both necessary and sufficient for the induction of LTP in the DLSN, and we suggest that such a mechanism may be important at other CNS synapses.

  5. Repeated cocaine administration promotes long-term potentiation induction in rat medial prefrontal cortex.

    PubMed

    Huang, Chiung-Chun; Lin, Hsiao-Ju; Hsu, Kuei-Sen

    2007-08-01

    Although drug-induced adaptations in the prefrontal cortex (PFC) may contribute to several core aspects of addictive behaviors, it is not clear yet whether drugs of abuse elicit changes in synaptic plasticity at the PFC excitatory synapses. Here we report that, following repeated cocaine administration (15 mg/kg/day intraperitoneal injection for 5 consecutive days) with a 3-day withdrawal, excitatory synapses to layer V pyramidal neurons in rat medial prefrontal cortex (mPFC) become highly sensitive to the induction of long-term potentiation (LTP) by repeated correlated presynaptic and postsynaptic activity. This promoted LTP induction is caused by cocaine-induced reduction of gamma-aminobutyric acid (GABA)(A) receptor-mediated inhibition of mPFC pyramidal neurons. In contrast, in slices from rats treated with saline or a single dose of cocaine, the same LTP induction protocol did not induce significant LTP unless the blockade of GABA(A) receptors. Blockade of the D1-like receptors specifically prevented the cocaine-induced enhancement of LTP. Repeated cocaine exposure reduced the GABA(A) receptor-mediated synaptic currents in mPFC pyramidal neurons. Biotinylation experiments revealed a significant reduction of surface GABA(A) receptor alpha1 subunit expression in mPFC slices from repeated cocaine-treated rats. These findings support an important role for cocaine-induced enhancement of synaptic plasticity in the PFC in the development of drug-associated behavioral plasticity. PMID:17050645

  6. Impaired long-term potentiation induction in dentate gyrus of calretinin-deficient mice

    PubMed Central

    Schurmans, Stéphane; Schiffmann, Serge N.; Gurden, Hirac; Lemaire, Martine; Lipp, Hans-Peter; Schwam, Valérie; Pochet, Roland; Imperato, Assunta; Böhme, Georg Andrees; Parmentier, Marc

    1997-01-01

    Calretinin (Cr) is a Ca2+ binding protein present in various populations of neurons distributed in the central and peripheral nervous systems. We have generated Cr-deficient (Cr−/−) mice by gene targeting and have investigated the associated phenotype. Cr−/− mice were viable, and a large number of morphological, biochemical, and behavioral parameters were found unaffected. In the normal mouse hippocampus, Cr is expressed in a widely distributed subset of GABAergic interneurons and in hilar mossy cells of the dentate gyrus. Because both types of cells are part of local pathways innervating dentate granule cells and/or pyramidal neurons, we have explored in Cr−/− mice the synaptic transmission between the perforant pathway and granule cells and at the Schaffer commissural input to CA1 pyramidal neurons. Cr−/− mice showed no alteration in basal synaptic transmission, but long-term potentiation (LTP) was impaired in the dentate gyrus. Normal LTP could be restored in the presence of the GABAA receptor antagonist bicuculline, suggesting that in Cr−/− dentate gyrus an excess of γ-aminobutyric acid (GABA) release interferes with LTP induction. Synaptic transmission and LTP were normal in CA1 area, which contains only few Cr-positive GABAergic interneurons. Cr−/− mice performed normally in spatial memory task. These results suggest that expression of Cr contributes to the control of synaptic plasticity in mouse dentate gyrus by indirectly regulating the activity of GABAergic interneurons, and that Cr−/− mice represent a useful tool to understand the role of dentate LTP in learning and memory. PMID:9294225

  7. Prior Activation of Inositol 1,4,5-Trisphosphate Receptors Suppresses the Subsequent Induction of Long-Term Potentiation in Hippocampal CA1 Neurons

    ERIC Educational Resources Information Center

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-01-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…

  8. Proteasome Inhibition Enhances the Induction and Impairs the Maintenance of Late-Phase Long-Term Potentiation

    ERIC Educational Resources Information Center

    Dong, Chenghai; Upadhya, Sudarshan C.; Ding, Lan; Smith, Thuy K.; Hegde, Ashok N.

    2008-01-01

    Protein degradation by the ubiquitin-proteasome pathway plays important roles in synaptic plasticity, but the molecular mechanisms by which proteolysis regulates synaptic strength are not well understood. We investigated the role of the proteasome in hippocampal late-phase long-term potentiation (L-LTP), a model for enduring synaptic plasticity.…

  9. Protein Kinase M[Zeta] Is Essential for the Induction and Maintenance of Dopamine-Induced Long-Term Potentiation in Apical CA1 Dendrites

    ERIC Educational Resources Information Center

    Navakkode, Sheeja; Sajikumar, Sreedharan; Sacktor, Todd Charlton; Frey, Julietta U.

    2010-01-01

    Dopaminergic D1/D5-receptor-mediated processes are important for certain forms of memory as well as for a cellular model of memory, hippocampal long-term potentiation (LTP) in the CA1 region of the hippocampus. D1/D5-receptor function is required for the induction of the protein synthesis-dependent maintenance of CA1-LTP (L-LTP) through activation…

  10. Exploration of the conditioning electrical stimulation frequencies for induction of long-term potentiation-like pain amplification in humans.

    PubMed

    Xia, Weiwei; Mørch, Carsten Dahl; Andersen, Ole Kæseler

    2016-09-01

    Spinal nociceptive long-term potentiation (LTP) can be induced by high- or low-frequency conditioning electrical stimulation (CES) in rodent preparations in vitro. However, there is still sparse information on the effect of different conditioning frequencies inducing LTP-like pain amplification in humans. In this study, we tested two other paradigms aiming to explore the CES frequency effect inducing pain amplification in healthy humans. Cutaneous LTP-like pain amplification induced by three different paradigms (10, 100, and 200 Hz CES) was assessed in fifteen volunteers in a crossover design. Perceptual intensity ratings to single electrical stimulation at the conditioned site and to mechanical stimuli (pinprick and light stroking) in the immediate vicinity were recorded; superficial blood flow was also measured. The short form of the McGill Pain Questionnaire (SF-MPQ) was used for characterizing the perception induced by CES. Compared with the control session, pain perception to pinprick stimuli and area of allodynia significantly increased after all three CES paradigms. In the 10 and 200 Hz sessions, the superficial blood flow 10 min after CES was significantly higher than in the control session reaching a plateau after 20 and 10 min, respectively; for the 100 Hz paradigm, a stable level was found without significant differences compared with CES and control sessions. 10 Hz CES caused a lower SF-MPQ score than 100 Hz. High-frequency (200 Hz) and low-frequency (10 Hz) paradigms can induce heterotopic pain amplification similar to the traditional 100 Hz paradigm. The 10 Hz paradigm can be an appealing alternative paradigm in future studies due to its specific association with low-level discharging of C-fibers during inflammation. PMID:27093867

  11. Calcium-Permeable AMPA Receptors Mediate the Induction of the Protein Kinase A-Dependent Component of Long-Term Potentiation in the Hippocampus

    PubMed Central

    Park, Pojeong; Sanderson, Thomas M.; Amici, Mascia; Choi, Sun-Lim; Bortolotto, Zuner A.; Zhuo, Min

    2016-01-01

    Two forms of NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) at hippocampal CA1 synapses can be distinguished based on their sensitivity to inhibitors of protein kinase A (PKA). The PKA-dependent form requires multiple episodes of high-frequency stimulation (HFS) or theta burst stimuli (TBS) with a spacing between episodes in the order of minutes. To investigate the mechanism by which spaced episodes induce the PKA-dependent form of LTP, we have compared, in interleaved experiments, spaced (s) and compressed (c) TBS protocols in the rat CA1 synapses. We find that LTP induced by sTBS, but not that induced by cTBS, involves the insertion of calcium-permeable (CP) AMPARs, as assessed using pharmacological and electrophysiological criteria. Furthermore, a single TBS when paired with rolipram [4-(3-(cyclopentyloxy)-4-methoxyphenyl)pyrrolidin-2-one], to activate PKA, generates an LTP that also involves the insertion of CP-AMPARs. These data demonstrate that the involvement of CP-AMPARs in LTP is critically determined by the timing of the induction trigger and is associated specifically with the PKA-dependent form of LTP. SIGNIFICANCE STATEMENT Long-term potentiation is a family of synaptic mechanisms that are believed to be important for learning and memory. Two of the most extensively studied forms are triggered by the synaptic activation of NMDA receptors and expressed by changes in AMPA receptor function. They can be distinguished on the basis of their requirement for activation of a protein kinase, PKA. We show that the PKA-dependent form also involves the transient insertion of calcium-permeable AMPA receptors. These results have implications for relating synaptic plasticity to learning and memory and suggest a specific linkage between PKA activation and the rapid synaptic insertion of calcium-permeable AMPA receptors during long-term potentiation. PMID:26758849

  12. Prior activation of inositol 1,4,5-trisphosphate receptors suppresses the subsequent induction of long-term potentiation in hippocampal CA1 neurons.

    PubMed

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-05-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population spike by the delivery of high-frequency stimulation (HFS, a tetanus of 100 pulses at 100 Hz) to the Schaffer collateral-commissural pathway to CA1 neuron synapses was suppressed when group I metabotropic glutamate receptors (mGluRs) were activated prior to the delivery of HFS. LTP induction was also suppressed when CA1 synapses were preconditioned 60 min before HFS by LFS of 1000 pulses at 1 Hz and this effect was inhibited when the test stimulation delivered at 0.05 Hz was either halted or applied in the presence of an antagonist ofN-methyl-d-aspartate receptors, group I mGluRs, or IP3Rs during a 20-min period from 20 to 40 min after the end of LFS. Furthermore, blockade of group I mGluRs or IP3Rs immediately before the delivery of HFS overcame the effects of the preconditioning LFS on LTP induction. These results suggest that, in CA1 neurons, after a preconditioning LFS, activation of group I mGluRs caused by the test stimulation results in IP3Rs activation that leads to a failure of LTP induction. PMID:27084928

  13. Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor

    PubMed Central

    Aicardi, Giorgio; Argilli, Emanuela; Cappello, Silvia; Santi, Spartaco; Riccio, Massimo; Thoenen, Hans; Canossa, Marco

    2004-01-01

    Neurotrophins play an important role in modulating activity-dependent neuronal plasticity. In particular, threshold levels of brain-derived neurotrophic factor (BDNF) are required to induce long-term potentiation (LTP) in acute hippocampal slices. Conversely, the administration of exogenous BDNF prevents the induction of long-term depression (LTD) in the visual cortex. A long-standing missing link in the analysis of this modulatory role of BDNF was the determination of the time-course of endogenous BDNF secretion in the same organotypic preparation in which LTP and LTD are elicited. Here, we fulfilled this requirement in slices of perirhinal cortex. Classical theta-burst stimulation patterns evoking LTP lasting >180 min elicited a large increase in BDNF secretion that persisted 5-12 min beyond the stimulation period. Weaker theta-burst stimulation patterns leading only to the initial phase of LTP (≈35 min) were accompanied by a smaller increase in BDNF secretion lasting <1 min. Sequestration of BDNF by TrkB-IgG receptor bodies prevented LTP. Low-frequency stimulations leading to LTD were accompanied by reductions in BDNF secretion that never lasted beyond the duration of the stimulation. PMID:15505222

  14. Long-term potentiation and long-term depression: a clinical perspective

    PubMed Central

    Bliss, Timothy V.P.; Cooke, Sam F

    2011-01-01

    Long-term potentiation and long-term depression are enduring changes in synaptic strength, induced by specific patterns of synaptic activity, that have received much attention as cellular models of information storage in the central nervous system. Work in a number of brain regions, from the spinal cord to the cerebral cortex, and in many animal species, ranging from invertebrates to humans, has demonstrated a reliable capacity for chemical synapses to undergo lasting changes in efficacy in response to a variety of induction protocols. In addition to their physiological relevance, long-term potentiation and depression may have important clinical applications. A growing insight into the molecular mechanisms underlying these processes, and technological advances in non-invasive manipulation of brain activity, now puts us at the threshold of harnessing long-term potentiation and depression and other forms of synaptic, cellular and circuit plasticity to manipulate synaptic strength in the human nervous system. Drugs may be used to erase or treat pathological synaptic states and non-invasive stimulation devices may be used to artificially induce synaptic plasticity to ameliorate conditions arising from disrupted synaptic drive. These approaches hold promise for the treatment of a variety of neurological conditions, including neuropathic pain, epilepsy, depression, amblyopia, tinnitus and stroke. PMID:21779718

  15. Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye-movement sleep.

    PubMed

    Ribeiro, Sidarta; Mello, Claudio V; Velho, Tarciso; Gardner, Timothy J; Jarvis, Erich D; Pavlides, Constantine

    2002-12-15

    Rapid-eye-movement (REM) sleep plays a key role in the consolidation of memories acquired during waking (WK). The search for mechanisms underlying that role has revealed significant correlations in the patterns of neuronal firing, regional blood flow, and expression of the activity-dependent gene zif-268 between WK and subsequent REM sleep. Zif-268 integrates a major calcium signal transduction pathway and is implicated by several lines of evidence in activity-dependent synaptic plasticity. Here we report that the induction of hippocampal long-term potentiation (LTP) during WK in rats leads to an upregulation of zif-268 gene expression in extrahippocampal regions during subsequent REM sleep episodes. This upregulation occurs predominantly in the amygdala, entorhinal, and auditory cerebral cortices during the first REM sleep episodes after LTP induction and reaches somatosensory and motor cerebral cortices as REM sleep recurs. We also show that hippocampal inactivation during REM sleep blocks extrahippocampal zif-268 upregulation, indicating that cortical and amygdalar zif-268 expression during REM sleep is under hippocampal control. Thus, expression of an activity-dependent gene involved in synaptic plasticity propagates gradually from the hippocampus to extrahippocampal regions as REM sleep recurs. These findings suggest that a progressive disengagement of the hippocampus and engagement of the cerebral cortex and amygdala occurs during REM sleep. They are also consistent with the view that REM sleep constitutes a privileged window for hippocampus-driven cortical activation, which may play an instructive role in the communication of memory traces from the hippocampus to the cerebral cortex. PMID:12486186

  16. Simulations suggest pharmacological methods for rescuing long-term potentiation.

    PubMed

    Smolen, Paul; Baxter, Douglas A; Byrne, John H

    2014-11-01

    Congenital cognitive dysfunctions are frequently due to deficits in molecular pathways that underlie the induction or maintenance of synaptic plasticity. For example, Rubinstein-Taybi syndrome (RTS) is due to a mutation in cbp, encoding the histone acetyltransferase CREB-binding protein (CBP). CBP is a transcriptional co-activator for CREB, and induction of CREB-dependent transcription plays a key role in long-term memory (LTM). In animal models of RTS, mutations of cbp impair LTM and late-phase long-term potentiation (LTP). As a step toward exploring plausible intervention strategies to rescue the deficits in LTP, we extended our previous model of LTP induction to describe histone acetylation and simulated LTP impairment due to cbp mutation. Plausible drug effects were simulated by model parameter changes, and many increased LTP. However no parameter variation consistent with a effect of a known drug class fully restored LTP. Thus we examined paired parameter variations consistent with effects of known drugs. A pair that simulated the effects of a phosphodiesterase inhibitor (slowing cAMP degradation) concurrent with a deacetylase inhibitor (prolonging histone acetylation) restored normal LTP. Importantly these paired parameter changes did not alter basal synaptic weight. A pair that simulated the effects of a phosphodiesterase inhibitor and an acetyltransferase activator was similarly effective. For both pairs strong additive synergism was present. The effect of the combination was greater than the summed effect of the separate parameter changes. These results suggest that promoting histone acetylation while simultaneously slowing the degradation of cAMP may constitute a promising strategy for restoring deficits in LTP that may be associated with learning deficits in RTS. More generally these results illustrate how the strategy of combining modeling and empirical studies may provide insights into the design of effective therapies for improving long-term synaptic

  17. Changes in Synaptic Transmission and Long-term Potentiation Induction as a Possible Mechanism for Learning Disability in an Animal Model of Multiple Sclerosis

    PubMed Central

    2016-01-01

    Purpose: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. It has been shown that memory deficits is common in patients with MS. Recent studies using experimental autoimmune encephalomyelitis (EAE) as an animal model of MS have shown that indicated that EAE causes hippocampal-dependent impairment in learning and memory. Thus far, there have been no in vivo electrophysiological reports describing synaptic transmission in EAE animals. The aim of the present work is to evaluate the synaptic changes in the CA1 region of the hippocampus of EAE rats. Methods: To evaluate changes in synaptic transmission in the CA1 region of the hippocampus of EAE rats, field excitatory postsynaptic potentials (fEPSPs) from the stratum radiatum of CA1 neurons, were recorded following Schaffer collateral stimulation. Results: The results showed that EAE causes deficits in synaptic transmission and long-term potentiation (LTP) in the hippocampus. In addition, paired-pulse index with a 120 msec interstimulus interval was decreased in the EAE group. These findings indicate that EAE might induce suppression in synaptic transmission and LTP by increasing the inhibitory effect of GABAB receptors on the glutamate-mediated EPSP. Conclusions: In conclusion, influence of inflammation-triggered mechanisms on synaptic transmission may explain the negative effect of EAE on learning abilities in rats. PMID:27032554

  18. A single amino acid difference between the intracellular domains of amyloid precursor protein and amyloid-like precursor protein 2 enables induction of synaptic depression and block of long-term potentiation.

    PubMed

    Trillaud-Doppia, Emilie; Paradis-Isler, Nicolas; Boehm, Jannic

    2016-07-01

    Alzheimer disease (AD) is initially characterized as a disease of the synapse that affects synaptic transmission and synaptic plasticity. While amyloid-beta and tau have been traditionally implicated in causing AD, recent studies suggest that other factors, such as the intracellular domain of the amyloid-precursor protein (APP-ICD), can also play a role in the development of AD. Here, we show that the expression of APP-ICD induces synaptic depression, while the intracellular domain of its homolog amyloid-like precursor protein 2 (APLP2-ICD) does not. We are able to show that this effect by APP-ICD is due to a single alanine vs. proline difference between APP-ICD and APLP2-ICD. The alanine in APP-ICD and the proline in APLP2-ICD lie directly behind a conserved caspase cleavage site. Inhibition of caspase cleavage of APP-ICD prevents the induction of synaptic depression. Finally, we show that the expression of APP-ICD increases and facilitates long-term depression and blocks induction of long-term potentiation. The block in long-term potentiation can be overcome by mutating the aforementioned alanine in APP-ICD to the proline of APLP2. Based on our results, we propose the emergence of a new APP critical domain for the regulation of synaptic plasticity and in consequence for the development of AD. PMID:26921470

  19. Phase dependency of long-term potentiation induction during the intermittent bursts of carbachol-induced β oscillation in rat hippocampal slices

    PubMed Central

    Nishimura, Motoshi; Nakatsuka, Hiroki; Natsume, Kiyohisa

    2012-01-01

    The rodent hippocampus possesses theta (θ) and beta (β) rhythms, which occur intermittently as bursts. Both rhythms are related to spatial memory processing in a novel environment. θ rhythm is related to spatial memory encoding process. β rhythm is related to the match/mismatch process. In the match/mismatch process, rodent hippocampus detects a representation matching sensory inputs of the current place among the retrieved internal representations of places. Long-term synaptic potentiation (LTP) is induced in both processes. The cholinergic agent carbachol induces intermittent θ and β oscillations in in vitro slices similar to in vivo bursts. LTP is facilitated during the generation of θ oscillation, suggesting that the facilitation of LTP is dependent upon the phases of intermittent burst (burst phases) of the oscillation. However, whether this is the case for β oscillation has not yet been studied. In the present study, LTP-inducing θ-burst stimulation was administered at the different burst phases of carbachol-induced β oscillations (CIBO), and the synaptic changes were measured at CA3-CA3 pyramidal cell synapses (CA3 synapse) and at CA3-CA1 pyramidal cell synapses (CA1 synapse). At the CA3 synapse, the largest magnitude of LTP was induced at the late burst phases of CIBO. At the CA1 synapse, LTP was induced only at the late burst phases. Modulation of LTP was suppressed when CIBO was blocked by the application of atropine at both synapses. The results suggest that the bursts of hippocampal β rhythm can determine the optimal temporal period for completing with the match/mismatch process.

  20. Spine expansion and stabilization associated with long-term potentiation.

    PubMed

    Yang, Yunlei; Wang, Xiao-bin; Frerking, Matthew; Zhou, Qiang

    2008-05-28

    Stable expression of long-term synaptic plasticity is critical for the developmental refinement of neural circuits and for some forms of learning and memory. Although structural remodeling of dendritic spines is associated with the stable expression of long-term potentiation (LTP), the relationship between structural and physiological plasticity remains unclear. To define whether these two processes are related or distinct, we simultaneously monitored EPSPs and dendritic spines, using combined patch-clamp recording and two-photon time-lapse imaging in the same CA1 pyramidal neurons in acute hippocampal slices. We found that theta burst stimulation paired with postsynaptic spiking, which reliably induced LTP, also induced a rapid and persistent expansion of dendritic spines. Like LTP, this expansion was NMDA receptor dependent. Spine expansion occurred even when LTP was inhibited by postsynaptic inhibition of exocytosis or PKA (protein kinase A); however, under these conditions, the spine expansion was unstable and collapsed spontaneously. Furthermore, similar changes in LTP and spine expansion were observed when hippocampal neurons were treated with protein synthesis inhibitors. Like LTP, spine expansion was reversed by low-frequency stimulation (LFS) via a phosphatase-dependent mechanism, but only if the LFS was applied in a critical time window after induction. These results indicate that the initial expression of LTP and spine expansion is dissociable, but there is a high degree of mechanistic overlap between the stabilization of structural plasticity and LTP. PMID:18509035

  1. Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus

    PubMed Central

    Klar, Rebecca; Walker, Adam G.; Ghose, Dipanwita; Grueter, Brad A.; Engers, Darren W.; Hopkins, Corey R.; Lindsley, Craig W.; Xiang, Zixiu

    2015-01-01

    Of the eight metabotropic glutamate (mGlu) receptor subtypes, only mGlu7 is expressed presynaptically at the Schaffer collateral (SC)-CA1 synapse in the hippocampus in adult animals. Coupled with the inhibitory effects of Group III mGlu receptor agonists on transmission at this synapse, mGlu7 is thought to be the predominant autoreceptor responsible for regulating glutamate release at SC terminals. However, the lack of mGlu7-selective pharmacological tools has hampered direct testing of this hypothesis. We used a novel, selective mGlu7-negative allosteric modulator (NAM), ADX71743, and a newly described Group III mGlu receptor agonist, LSP4-2022, to elucidate the role of mGlu7 in modulating transmission in hippocampal area CA1 in adult C57BL/6J male mice. Interestingly, although mGlu7 agonists inhibit SC-CA1 EPSPs, we found no evidence for activation of mGlu7 by stimulation of SC-CA1 afferents. However, LSP4-2022 also reduced evoked monosynaptic IPSCs in CA1 pyramidal cells and, in contrast to its effect on SC-CA1 EPSPs, ADX71743 reversed the ability of high-frequency stimulation of SC afferents to reduce IPSC amplitudes. Furthermore, blockade of mGlu7 prevented induction of LTP at the SC-CA1 synapse and activation of mGlu7 potentiated submaximal LTP. Together, these data suggest that mGlu7 serves as a heteroreceptor at inhibitory synapses in area CA1 and that the predominant effect of activation of mGlu7 by stimulation of glutamatergic afferents is disinhibition, rather than reduced excitatory transmission. Furthermore, this mGlu7-mediated disinhibition is required for induction of LTP at the SC-CA1 synapse, suggesting that mGlu7 could serve as a novel therapeutic target for treatment of cognitive disorders. PMID:25972184

  2. Induction of hippocampal long-term potentiation increases the morphological dynamics of microglial processes and prolongs their contacts with dendritic spines.

    PubMed

    Pfeiffer, Thomas; Avignone, Elena; Nägerl, U Valentin

    2016-01-01

    Recently microglia, the resident immune cells of the brain, have been recognized as multi-tasking talents that are not only essential in the diseased brain, but also actively contribute to synaptic circuit remodeling during normal brain development. It is well established that microglia dynamically scan their environment and thereby establish transient physical contacts with neuronal synapses, which may allow them to sense and influence synaptic function. However, it is unknown whether and how the morphological dynamics of microglia and their physical interactions with synapses are affected by the induction of synaptic plasticity in the adult brain. To this end, we characterized the morphological dynamics of microglia and their interactions with synapses before and after the induction of synaptic plasticity (LTP) in the hippocampus by time-lapse two-photon imaging and electrophysiological recordings in acute brain slices. We demonstrate that during hippocampal LTP microglia alter their morphological dynamics by increasing the number of their processes and by prolonging their physical contacts with dendritic spines. These effects were absent in the presence of an NMDA receptor antagonist. Taken together, this altered behavior could reflect an active microglial involvement in circuit remodeling during activity-dependent synaptic plasticity in the healthy adult brain. PMID:27604518

  3. Induction of hippocampal long-term potentiation increases the morphological dynamics of microglial processes and prolongs their contacts with dendritic spines

    PubMed Central

    Pfeiffer, Thomas; Avignone, Elena; Nägerl, U. Valentin

    2016-01-01

    Recently microglia, the resident immune cells of the brain, have been recognized as multi-tasking talents that are not only essential in the diseased brain, but also actively contribute to synaptic circuit remodeling during normal brain development. It is well established that microglia dynamically scan their environment and thereby establish transient physical contacts with neuronal synapses, which may allow them to sense and influence synaptic function. However, it is unknown whether and how the morphological dynamics of microglia and their physical interactions with synapses are affected by the induction of synaptic plasticity in the adult brain. To this end, we characterized the morphological dynamics of microglia and their interactions with synapses before and after the induction of synaptic plasticity (LTP) in the hippocampus by time-lapse two-photon imaging and electrophysiological recordings in acute brain slices. We demonstrate that during hippocampal LTP microglia alter their morphological dynamics by increasing the number of their processes and by prolonging their physical contacts with dendritic spines. These effects were absent in the presence of an NMDA receptor antagonist. Taken together, this altered behavior could reflect an active microglial involvement in circuit remodeling during activity-dependent synaptic plasticity in the healthy adult brain. PMID:27604518

  4. Behavioral reinforcement of long-term potentiation is impaired in aged rats with cognitive deficiencies.

    PubMed

    Bergado, J A; Almaguer, W; Ravelo, J; Rosillo, J C; Frey, J U

    2001-01-01

    Behavioral stimuli with emotional/motivational content can reinforce long-term potentiation in the dentate gyrus, if presented within a distinct time window. A similar effect can be obtained by stimulating the basolateral amygdala, a limbic structure related to emotions. We have previously shown that aging impairs amygdala-hippocampus interactions during long-term potentiation. In this report we show that behavioral reinforcement of long-term potentiation is also impaired in aged rats with cognitive deficits. While among young water-deprived animals drinking 15 min after induction of long-term potentiation leads to a significant prolongation of potentiation, cognitively impaired aged rats are devoid of such reinforcing effects. In contrast, a slight but statistically significant depression develops after drinking in this group of animals. We suggest that an impaired mechanism of emotional/motivational reinforcement of synaptic plasticity might be functionally related to the cognitive deficits shown by aged animals. PMID:11738126

  5. Modeling Maintenance of Long-Term Potentiation in Clustered Synapses: Long-Term Memory without Bistability

    PubMed Central

    Smolen, Paul

    2015-01-01

    Memories are stored, at least partly, as patterns of strong synapses. Given molecular turnover, how can synapses maintain strong for the years that memories can persist? Some models postulate that biochemical bistability maintains strong synapses. However, bistability should give a bimodal distribution of synaptic strength or weight, whereas current data show unimodal distributions for weights and for a correlated variable, dendritic spine volume. Thus it is important for models to simulate both unimodal distributions and long-term memory persistence. Here a model is developed that connects ongoing, competing processes of synaptic growth and weakening to stochastic processes of receptor insertion and removal in dendritic spines. The model simulates long-term (>1 yr) persistence of groups of strong synapses. A unimodal weight distribution results. For stability of this distribution it proved essential to incorporate resource competition between synapses organized into small clusters. With competition, these clusters are stable for years. These simulations concur with recent data to support the “clustered plasticity hypothesis” which suggests clusters, rather than single synaptic contacts, may be a fundamental unit for storage of long-term memory. The model makes empirical predictions and may provide a framework to investigate mechanisms maintaining the balance between synaptic plasticity and stability of memory. PMID:25945261

  6. Long-term potentiation and evoked spike responses in the cingulate cortex of freely mobile rats.

    PubMed

    Gorkin, A G; Reymann, K G; Aleksandrov, Yu I

    2003-10-01

    Long-term potentiation of synaptic efficiency is regarded as a major candidate for the role of the physiological mechanism of long-term memory. However, the limited development of concepts of the cellular and subcellular characteristics of the induction of long-term potentiation in animals in conditions of free behavior does not correspond to the importance of this question. The present study was undertaken to determine whether the characteristics of potentiation in the cingulate cortex in response to stimulation of fibers of the subiculo-cingulate tract are truly long-term, i.e., develop through all known phases and last at least 24 h, in freely moving animals. In addition, the study aims included identification of the effects of application of blockers of different types of glutamate receptors on the development of long-term potentiation and identification of the characteristics of spike responses of single cingulate cortex neurons to stimulation of the subiculo-cingulate tract. Long-term potentiation, lasting more than 24 h, was obtained in freely moving adult rats not treated with GABA blockers. Injection of glutamate NMDA synapse blockers led to significant decreases in evoked cingulate cortex potentials in response to test stimulation. Activatory short-latency spike responses were characterized by a low probability of spike generation, and this increased with increases in the stimulation current. These data demonstrated that it is methodologically possible to compare, in freely moving rats, the involvement of individual neurons in the mechanisms involved in learning one or another type of adaptive behavior and the dynamics of their evoked spike activity during the formation of long-term potentiation. PMID:14635990

  7. Copper interaction on the long-term potentiation.

    PubMed

    Leiva, J; Gaete, P; Palestini, M

    2003-10-01

    The role of copper on the CA1 piramidal neurons and their sinaptic connections to the Schaffer's collateral was investigated using the field excitatory post-sinaptic potential (fEPSP). The same fEPSP was used to study copper effects on Long-term potentiation (LTP). We have found that copper 10 microM has an inhibitory action on the fEPSP. Similar effects were demonstrated with 10 microM of GABA. Moreover, copper showed a strong inhibitory action on the consolidated LTP. However, copper washout left a significant and persistent excitatory response. In our opinion, copper shows a dual sinaptic effect depending on the sinaptic experience. PMID:14502829

  8. Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking.

    PubMed

    Herring, Bruce E; Nicoll, Roger A

    2016-01-01

    For more than 20 years, we have known that Ca(2+)/calmodulin-dependent protein kinase (CaMKII) activation is both necessary and sufficient for the induction of long-term potentiation (LTP). During this time, tremendous effort has been spent in attempting to understand how CaMKII activation gives rise to this phenomenon. Despite such efforts, there is much to be learned about the molecular mechanisms involved in LTP induction downstream of CaMKII activation. In this review, we highlight recent developments that have shaped our current thinking about the molecular mechanisms underlying LTP and discuss important questions that remain in the field. PMID:26863325

  9. Circadian Regulation of Hippocampal Long-Term Potentiation

    PubMed Central

    Chaudhury, Dipesh; Wang, Louisa M.; Colwell, Christopher S.

    2008-01-01

    The goal of this study is to investigate the possible circadian regulation of hippocampal excitability and long-term potentiation (LTP) measured by stimulating the Schaffer collaterals (SC) and recording the field excitatory postsynaptic potential (fEPSP) from the CA1 dendritic layer or the population spike (PS) from the soma in brain slices of C3H and C57 mice. These 2 strains of mice were of interest because the C3H mice secrete melatonin rhythmically while the C57 mice do not. The authors found that the magnitude of the enhancement of the PS was significantly greater in LTP recorded from night slices compared to day slices of both C3H and C57 mice. They also found significant diurnal variation in the decay of LTP measured with fEPSPs, with the decay slower during the night in both strains of mice. There was evidence for a diurnal rhythm in the input/output function of pyramidal neurons measured at the soma in C57 but not C3H mice. Furthermore, LTP in the PS, measured in slices prepared during the day but recorded during the night, had a profile remarkably similar to the night group. Finally, PS recordings were carried out in slices from C3H mice maintained in constant darkness prior to experimentation. Again, the authors found that the magnitude of the enhancement of the PS was significantly greater in LTP recorded from subjective night slices compared to subjective day slices. These results provide the 1st evidence that an endogenous circadian oscillator modulates synaptic plasticity in the hippocampus. PMID:15851529

  10. Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression.

    PubMed

    Stein, Valentin; House, David R C; Bredt, David S; Nicoll, Roger A

    2003-07-01

    Previous studies have shown that overexpression of the protein PSD-95 (postsynaptic density-95) selectively enhances AMPA receptor-mediated synaptic responses in hippocampal pyramidal cells. To determine whether this effect is related to synaptic plasticity at these synapses, we examined whether PSD-95 expression mimics long-term potentiation (LTP), and also whether it influences LTP and long-term depression (LTD) in hippocampal slice cultures. Using simultaneous recording from transfected or infected cells and control pyramidal cells, we found that PSD-95, similar to LTP, increases the amplitude and frequency of miniature EPSCs. It also converts silent synapses to functional synapses, as does LTP. In addition, LTP is completely occluded in cells expressing PSD-95, whereas LTD is greatly enhanced. These results suggest that common mechanisms are involved in controlling synaptic AMPA receptors by PSD-95 and synaptic plasticity. PMID:12843250

  11. Long-Term Treatment with Low Doses of Methamphetamine Promotes Neuronal Differentiation and Strengthens Long-Term Potentiation of Glutamatergic Synapses onto Dentate Granule Neurons.

    PubMed

    Baptista, Sofia; Lourenço, Joana; Milhazes, Nuno; Borges, Fernanda; Silva, Ana Paula; Bacci, Alberto

    2016-01-01

    Methamphetamine (METH) is a psychostimulant, affecting hippocampal function with disparate cognitive effects, which depends on the dose and time of administration, ranging from improvement to impairment of memory. Importantly, in the United States, METH is approved for the treatment of attention deficit hyperactivity disorder. Modifications of long-term plasticity of synapses originating from the entorhinal cortex onto dentate granule cells (DGCs) have been proposed to underlie cognitive alterations similar to those seen in METH users. However, the effects of METH on synaptic plasticity of the dentate gyrus are unknown. Here, we investigated the impact of long-term administration of METH (2 mg/kg/d) on neurogenesis and synaptic plasticity of immature and mature DGCs of juvenile mice. We used a mouse model of neurogenesis (the G42 line of GAD67-GFP), in which GFP is expressed by differentiating young DGCs. METH treatment enhanced the differentiation of GFP(+) cells, as it increased the fraction of GFP(+) cells expressing the neuronal marker NeuN, and decreased the amount of immature DGCs coexpressing doublecortin. Interestingly, METH did not change the magnitude of long-term potentiation (LTP) in more immature neurons, but facilitated LTP induction in more differentiated GFP(+) and strengthened plasticity in mature GFP(-) DGCs. The METH-induced facilitation of LTP in GFP(+) neurons was accompanied with spine enlargement. Our results reveal a specific action of long-term use of METH in the long-term plasticity of excitatory synapses onto differentiating DGCs and might have important implications toward the understanding of the synaptic basis of METH-induced cognitive alterations. PMID:27419216

  12. Long-Term Treatment with Low Doses of Methamphetamine Promotes Neuronal Differentiation and Strengthens Long-Term Potentiation of Glutamatergic Synapses onto Dentate Granule Neurons

    PubMed Central

    Milhazes, Nuno

    2016-01-01

    Abstract Methamphetamine (METH) is a psychostimulant, affecting hippocampal function with disparate cognitive effects, which depends on the dose and time of administration, ranging from improvement to impairment of memory. Importantly, in the United States, METH is approved for the treatment of attention deficit hyperactivity disorder. Modifications of long-term plasticity of synapses originating from the entorhinal cortex onto dentate granule cells (DGCs) have been proposed to underlie cognitive alterations similar to those seen in METH users. However, the effects of METH on synaptic plasticity of the dentate gyrus are unknown. Here, we investigated the impact of long-term administration of METH (2 mg/kg/d) on neurogenesis and synaptic plasticity of immature and mature DGCs of juvenile mice. We used a mouse model of neurogenesis (the G42 line of GAD67-GFP), in which GFP is expressed by differentiating young DGCs. METH treatment enhanced the differentiation of GFP+ cells, as it increased the fraction of GFP+ cells expressing the neuronal marker NeuN, and decreased the amount of immature DGCs coexpressing doublecortin. Interestingly, METH did not change the magnitude of long-term potentiation (LTP) in more immature neurons, but facilitated LTP induction in more differentiated GFP+ and strengthened plasticity in mature GFP− DGCs. The METH-induced facilitation of LTP in GFP+ neurons was accompanied with spine enlargement. Our results reveal a specific action of long-term use of METH in the long-term plasticity of excitatory synapses onto differentiating DGCs and might have important implications toward the understanding of the synaptic basis of METH-induced cognitive alterations. PMID:27419216

  13. Modelling bidirectional modulations in synaptic plasticity: A biochemical pathway model to understand the emergence of long term potentiation (LTP) and long term depression (LTD).

    PubMed

    He, Yao; Kulasiri, Don; Samarasinghe, Sandhya

    2016-08-21

    Synaptic plasticity induces bidirectional modulations of the postsynaptic response following a synaptic transmission. The long term forms of synaptic plasticity, named long term potentiation (LTP) and long term depression (LTD), are critical for the antithetic functions of the memory system, memory formation and removal, respectively. A common Ca(2+) signalling upstream triggers both LTP and LTD, and the critical proteins and factors coordinating the LTP/LTD inductions are not well understood. We develop an integrated model based on the sub-models of the indispensable synaptic proteins in the emergence of synaptic plasticity to validate and understand their potential roles in the expression of synaptic plasticity. The model explains Ca(2+)/calmodulin (CaM) complex dependent coordination of LTP/LTD expressions by the interactions among the indispensable proteins using the experimentally estimated kinetic parameters. Analysis of the integrated model provides us with insights into the effective timescales of the key proteins and we conclude that the CaM pool size is critical for the coordination between LTP/LTD expressions. PMID:27185535

  14. Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons

    NASA Astrophysics Data System (ADS)

    Malgaroli, Antonio; Tsien, Richard W.

    1992-05-01

    Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quanta! responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals.

  15. The synaptic glycoprotein neuroplastin is involved in long-term potentiation at hippocampal CA1 synapses

    PubMed Central

    Smalla, K. -H.; Matthies, H.; Langnäse, K.; Shabir, S.; Böckers, T. M.; Wyneken, U.; Staak, S.; Krug, M.; Beesley, P. W.; Gundelfinger, E. D.

    2000-01-01

    Neuroplastin-65 and -55 (previously known as gp65 and gp55) are glycoproteins of the Ig superfamily that are enriched in rat forebrain synaptic membrane preparations. Whereas the two-Ig domain isoform neuroplastin-55 is expressed in many tissues, the three-Ig domain isoform neuroplastin-65 is brain-specific and enriched in postsynaptic density (PSD) protein preparations. Here, we have assessed the function of neuroplastin in long-term synaptic plasticity. Immunocytochemical studies with neuroplastin-65-specific antibodies differentially stain distinct synaptic neuropil regions of the rat hippocampus with most prominent immunoreactivity in the CA1 region and the proximal molecular layer of the dentate gyrus. Kainate-induced seizures cause a significant enhancement of neuroplastin-65 association with PSDs. Similarly, long-term potentiation (LTP) of CA1 synapses in hippocampal slices enhanced the association of neuroplastin-65 with a detergent-insoluble PSD-enriched protein fraction. Several antibodies against the neuroplastins, including one specific for neuroplastin-65, inhibited the maintenance of LTP. A similar effect was observed when recombinant fusion protein containing the three extracellular Ig domains of neuroplastin-65 was applied to hippocampal slices before LTP induction. Microsphere binding experiments using neuroplastin-Fc chimeric proteins show that constructs containing Ig1–3 or Ig1 domains, but not Ig2–3 domains mediate homophilic adhesion. These data suggest that neuroplastin plays an essential role in implementing long-term changes in synaptic activity, possibly by means of a homophilic adhesion mechanism. PMID:10759566

  16. No requirement of TRPV1 in long-term potentiation or long-term depression in the anterior cingulate cortex

    PubMed Central

    2014-01-01

    One major interest in the study of transient receptor potential vanilloid type 1 (TRPV1) in sensory system is that it may serve as a drug target for treating chronic pain. While the roles of TRPV1 in peripheral nociception and sensitization have been well documented, less is known about its contribution to pain-related cortical plasticity. Here, we used 64 multi-electrode array recording to examine the potential role of TRPV1 in two major forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD), in the anterior cingulate cortex (ACC). We found that pharmacological blockade of TRPV1 with either [(E)-3-(4-t-Butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide] (AMG9810, 10 μM) or N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791, 20 μM) failed to affect LTP induced by strong theta burst stimulation in the ACC of adult mice. Similarly, neither AMG9810 nor SB366791 blocked the cingulate LTD induced by low-frequency stimulation. Analysis of the results from different layers of the ACC obtained the same conclusions. Spatial distribution of LTP or LTD-showing channels among the ACC network was also unaltered by the TRPV1 antagonists. Since cortical LTP and LTD in the ACC play critical roles in chronic pain triggered by inflammation or nerve injury, our findings suggest that TRPV1 may not be a viable target for treating chronic pain, especially at the cortical level. PMID:24708859

  17. A Protein Synthesis and Nitric Oxide-Dependent Presynaptic Enhancement in Persistent Forms of Long-Term Potentiation

    ERIC Educational Resources Information Center

    Johnstone, Victoria P. A.; Raymond, Clarke R.

    2011-01-01

    Long-term potentiation (LTP) is an important process underlying learning and memory in the brain. At CA3-CA1 synapses in the hippocampus, three discrete forms of LTP (LTP1, 2, and 3) can be differentiated on the basis of maintenance and induction mechanisms. However, the relative roles of pre- and post-synaptic expression mechanisms in LTP1, 2,…

  18. [Long-term potentiation and unit evoked responses in the cingulate cortex of freely moving rats].

    PubMed

    Gorkin, A G; Reymann, K G; Aleksandrov, Iu I

    2002-01-01

    Long-term potentiation (LTP) of synaptic efficacy is considered to be the most probable physiological mechanism of long-term memory. However, lack of understanding of cellular and subcellular mechanisms of LTP induction in freely behaving animals does not correspond to the importance of the problem. It was tested whether the characteristics of potentiation in the cingulate cortex after tetanization of the subiculocingulate tract (SCT) meet the criteria of true LTP (that passes all known stages in its development and lasts for more than a day in freely-behaving animals). Additionally, characteristics of spike responses to SCT stimulation and the effects of application of different glutamate receptor blockers were studied. Without application of GABA receptor blockers, the LTP lasted for more than 24 hours. Application of NMDA glutamate receptor blockers significantly inhibited field potentials evoke by testing stimulation. Short-latency spike responses to SCT stimulation were recorded with low probability that increased with stimulation intensity. The obtained data reveal the possibility to compare the involvement of cingulate neurons in acquisition of adaptive behavior and changes in their spike responses during the LTP development in freely-moving rats. PMID:12528373

  19. Matrix Metalloproteinase-9 Is Required for Hippocampal Late-Phase Long-Term Potentiation and Memory

    PubMed Central

    Nagy, Vanja; Bozdagi, Ozlem; Matynia, Anna; Balcerzyk, Marcin; Okulski, Pawel; Dzwonek, Joanna; Costa, Rui M.; Silva, Alcino J.; Kaczmarek, Leszek; Huntley, George W.

    2015-01-01

    Matrix metalloproteinases (MMPs) are extracellular proteases that have well recognized roles in cell signaling and remodeling in many tissues. In the brain, their activation and function are customarily associated with injury or pathology. Here, we demonstrate a novel role for MMP-9 in hippocampal synaptic physiology, plasticity, and memory. MMP-9 protein levels and proteolytic activity are rapidly increased by stimuli that induce late-phase long-term potentiation (L-LTP) in area CA1. Such regulation requires NMDA receptors and protein synthesis. Blockade of MMP-9 pharmacologically prevents induction of L-LTP selectively; MMP-9 plays no role in, nor is regulated during, other forms of short-term synaptic potentiation or long-lasting synaptic depression. Similarly, in slices from MMP-9 null-mutant mice, hippocampal LTP, but not long-term depression, is impaired in magnitude and duration; adding recombinant active MMP-9 to null-mutant slices restores the magnitude and duration of LTP to wild-type levels. Activated MMP-9 localizes in part to synapses and modulates hippocampal synaptic physiology through integrin receptors, because integrin function-blocking reagents prevent an MMP-9-mediated potentiation of synaptic signal strength. The fundamental importance of MMP-9 function in modulating hippocampal synaptic physiology and plasticity is underscored by behavioral impairments in hippocampal-dependent memory displayed by MMP-9 null-mutant mice. Together, these data reveal new functions for MMPs in synaptic and behavioral plasticity. PMID:16481424

  20. Inhibition of TRPV1 channels enables long-term potentiation in the entorhinal cortex.

    PubMed

    Banke, Tue G

    2016-04-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is a non-selective cation channel that is mainly found in nociceptive neurons of the peripheral nervous system; however, these channels have also been located within the CNS, including the entorhinal cortex. Whole-cell patch-clamp recordings of principal entorhinal cortex (EC) layers II/III neurons revealed that evoked inhibitory postsynaptic currents were depressed by application of the TRPV1 agonist capsaicin (CAP), accompanied by a change in the pair-pulse ratio (PPR). In addition, recordings of miniature inhibitory postsynaptic currents (mIPSCs) revealed that inter-event intervals but not amplitude were decreased in wild-type (WT) after application of CAP. This suggests that TRPV1 channels are functional in the entorhinal cortex and are located on inhibitory neurons with their axonal arborization within layers II/III. In order to study TRPV1 channels and their involvement in long-term potentiation (LTP) induction in a more intact circuit, extracellular field potential recordings were performed in EC layers II/III. It was found that activated TRPV1 channels preclude induction of long-term potentiation. In sharp contrast, clear LTP was observed when antagonizing TRPV1 channels or recording from TRPV1 knock-out mice. Thus, these results suggests that signaling through activating inhibitory presynaptic TRPV1 channels represents a novel mechanism by which a shift in feed-forward inhibition of layers II/III cortical principal neurons prompt changes in synaptic strength and thereby contribute to a change of information storage within the brain. PMID:26729265

  1. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus

    PubMed Central

    O'Dell, Thomas J.; Connor, Steven A.; Guglietta, Ryan

    2015-01-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory. The mammalian hippocampus receives noradrenergic innervation and hippocampal neurons express β-adrenergic receptors, which are known to play important roles in gating the induction of long-lasting forms of synaptic potentiation. These forms of long-term potentiation (LTP) are believed to importantly contribute to long-term storage of spatial and contextual memories in the brain. In this review, we highlight the contributions of noradrenergic signaling in general and β-adrenergic receptors in particular, toward modulating hippocampal LTP. We focus on the roles of NE and β-adrenergic receptors in altering the efficacies of specific signaling molecules such as NMDA and AMPA receptors, protein phosphatases, and translation initiation factors. Also, the roles of β-adrenergic receptors in regulating synaptic “tagging” and “capture” of LTP within synaptic networks of the hippocampus are reviewed. Understanding the molecular and cellular bases of noradrenergic signaling will enrich our grasp of how the brain makes new, enduring memories, and may shed light on credible strategies for improving mental health through treatment of specific disorders linked to perturbed memory processing and dysfunctional noradrenergic synaptic transmission. PMID:26286656

  2. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment.

    PubMed

    Moreno-Castilla, Perla; Rodriguez-Duran, Luis F; Guzman-Ramos, Kioko; Barcenas-Femat, Alejandro; Escobar, Martha L; Bermudez-Rattoni, Federico

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative condition manifested by synaptic dysfunction and memory loss, but the mechanisms underlying synaptic failure are not entirely understood. Although dopamine is a key modulator of synaptic plasticity, dopaminergic neurotransmission dysfunction in AD has mostly been associated to noncognitive symptoms. Thus, we aimed to study the relationship between dopaminergic neurotransmission and synaptic plasticity in AD models. We used a transgenic model of AD (triple-transgenic mouse model of AD) and the administration of exogenous amyloid-β (Aβ) oligomers into wild type mice. We found that Aβ decreased cortical dopamine levels and converted in vivo long-term potentiation (LTP) into long-term depression (LTD) after high-frequency stimulation delivered at basolateral amygdaloid nucleus-insular cortex projection, which led to impaired recognition memory. Remarkably, increasing cortical dopamine and norepinephrine levels rescued both high-frequency stimulation -induced LTP and memory, whereas depletion of catecholaminergic levels mimicked the Aβ-induced shift from LTP to LTD. Our results suggest that Aβ-induced dopamine depletion is a core mechanism underlying the early synaptopathy and memory alterations observed in AD models and acts by modifying the threshold for the induction of cortical LTP and/or LTD. PMID:27103531

  3. Hippocampal CA1 Kindling but Not Long-Term Potentiation Disrupts Spatial Memory Performance

    ERIC Educational Resources Information Center

    Leung, L. Stan; Shen, Bixia

    2006-01-01

    Long-term synaptic enhancement in the hippocampus has been suggested to cause deficits in spatial performance. Synaptic enhancement has been reported after hippocampal kindling that induced repeated electrographic seizures or afterdischarges (ADs) and after long-term potentiation (LTP) defined as synaptic enhancement without ADs. We studied…

  4. Long-Term Economic Benefits of Preschool Services and the Potential Impact of Privatization.

    ERIC Educational Resources Information Center

    Kendall, Earline D.

    This paper addresses the importance of a high quality preschool education for children living in poverty, the long-term effects of such an educational experience, the long-term economic benefits to the children enrolled and their families, and the potential impact of privatization on preschool services. The cost-effectiveness and cost-benefits of…

  5. SGK Protein Kinase Facilitates the Expression of Long-Term Potentiation in Hippocampal Neurons

    ERIC Educational Resources Information Center

    Ma, Yun L.; Tsai, Ming C.; Hsu, Wei L.; Lee, Eminy H.Y.

    2006-01-01

    Previous studies showed that the serum- and glucocorticoid-inducible kinase ("sgk") gene plays an important role in long-term memory formation. The present study further examined the role of SGK in long-term potentiation (LTP). The dominant-negative mutant of "sgk," SGKS422A, was used to inactivate SGK. Results revealed a time-dependent increase…

  6. Chronic pre-treatment with memantine prevents amyloid-beta protein-mediated long-term potentiation disruption.

    PubMed

    Li, Fushun; Chen, Xiaowei; Wang, Feiming; Xu, Shujun; Chang, Lan; Anwyl, Roger; Wang, Qinwen

    2013-01-01

    Previous studies indicate that memantine, a low-affinity N-methyl-D-aspartate receptor antagonist, exerted acute protective effects against amyloid-β protein-induced neurotoxicity. In the present study, the chronic effects and mechanisms of memantine were investigated further using electrophysiological methods. The results showed that 7-day intraperitoneal application of memantine, at doses of 5 mg/kg or 20 mg/kg, did not alter hippocampal long-term potentiation induction in rats, while 40 mg/kg memantine presented potent long-term potentiation inhibition. Then further in vitro studys were carried out in 5 mg/kg and 20 mg/kg memantine treated rats. We found that 20 mg/kg memantine attenuated the potent long-term potentiation inhibition caused by exposure to amyloid-β protein in the dentate gyrus in vitro. These findings are the first to demonstrate the antagonizing effect of long-term systematic treatment of memantine against amyloid-β protein triggered long-term potentiation inhibition to improve synaptic plasticity. PMID:25206371

  7. Dynamical properties of gene regulatory networks involved in long-term potentiation

    PubMed Central

    Nido, Gonzalo S.; Ryan, Margaret M.; Benuskova, Lubica; Williams, Joanna M.

    2015-01-01

    The long-lasting enhancement of synaptic effectiveness known as long-term potentiation (LTP) is considered to be the cellular basis of long-term memory. LTP elicits changes at the cellular and molecular level, including temporally specific alterations in gene networks. LTP can be seen as a biological process in which a transient signal sets a new homeostatic state that is “remembered” by cellular regulatory systems. Previously, we have shown that early growth response (Egr) transcription factors are of fundamental importance to gene networks recruited early after LTP induction. From a systems perspective, we hypothesized that these networks will show less stable architecture, while networks recruited later will exhibit increased stability, being more directly related to LTP consolidation. Using random Boolean network (RBN) simulations we found that the network derived at 24 h was markedly more stable than those derived at 20 min or 5 h post-LTP. This temporal effect on the vulnerability of the networks is mirrored by what is known about the vulnerability of LTP and memory itself. Differential gene co-expression analysis further highlighted the importance of the Egr family and found a rapid enrichment in connectivity at 20 min, followed by a systematic decrease, providing a potential explanation for the down-regulation of gene expression at 24 h documented in our preceding studies. We also found that the architecture exhibited by a control and the 24 h LTP co-expression networks fit well to a scale-free distribution, known to be robust against perturbations. By contrast the 20 min and 5 h networks showed more truncated distributions. These results suggest that a new homeostatic state is achieved 24 h post-LTP. Together, these data present an integrated view of the genomic response following LTP induction by which the stability of the networks regulated at different times parallel the properties observed at the synapse. PMID:26300724

  8. Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory

    PubMed Central

    Song, Hao; Smolen, Paul; Av-Ron, Evyatar; Baxter, Douglas A.; Byrne, John H.

    2006-01-01

    Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug

  9. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice

    PubMed Central

    Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2016-01-01

    PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice. DOI: http://dx.doi.org/10.7554/eLife.14846.001 PMID:27187150

  10. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice.

    PubMed

    Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2016-01-01

    PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice. PMID:27187150

  11. Interleukin-1β promotes long-term potentiation in patients with multiple sclerosis.

    PubMed

    Mori, Francesco; Nisticò, Robert; Mandolesi, Georgia; Piccinin, Sonia; Mango, Dalila; Kusayanagi, Hajime; Berretta, Nicola; Bergami, Alessandra; Gentile, Antonietta; Musella, Alessandra; Nicoletti, Carolina G; Nicoletti, Ferdinando; Buttari, Fabio; Mercuri, Nicola B; Martino, Gianvito; Furlan, Roberto; Centonze, Diego

    2014-03-01

    The immune system shapes synaptic transmission and plasticity in experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis (MS). These synaptic adaptations are believed to drive recovery of function after brain lesions, and also learning and memory deficits and excitotoxic neurodegeneration; whether inflammation influences synaptic plasticity in MS patients is less clear. In a cohort of 59 patients with MS, we found that continuous theta-burst transcranial magnetic stimulation did not induce the expected long-term depression (LTD)-like synaptic phenomenon, but caused persisting enhancement of brain cortical excitability. The amplitude of this long-term potentiation (LTP)-like synaptic phenomenon correlated with the concentration of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the cerebrospinal fluid. In MS and EAE, the brain and spinal cord are typically enriched of CD3(+) T lymphocyte infiltrates, which are, along with activated microglia and astroglia, a major cause of inflammation. Here, we found a correlation between the presence of infiltrating T lymphocytes in the hippocampus of EAE mice and synaptic plasticity alterations. We observed that T lymphocytes from EAE, but not from control mice, release IL-1β and promote LTP appearance over LTD, thereby mimicking the facilitated LTP induction observed in the cortex of MS patients. EAE-specific T lymphocytes were able to suppress GABAergic transmission in an IL-1β-dependent manner, providing a possible synaptic mechanism able to lower the threshold of LTP induction in MS brains. Moreover, in vivo blockade of IL-1β signaling resulted in inflammation and synaptopathy recovery in EAE hippocampus. These data provide novel insights into the pathophysiology of MS. PMID:23892937

  12. The importance of stochastic signaling processes in the induction of long-term synaptic plasticity.

    PubMed

    De Schutter, Erik

    2013-11-01

    A stochastic model of the signaling network responsible for the induction of long-term depression (LTD) at the parallel fiber to Purkinje cell synapse is described. The model includes a PKC-ERK-cPLA2 positive feedback loop and mechanisms of AMPA receptor trafficking. It was tuned to replicate calcium uncaging experiments that cause LTD. The ultrasensitive activation of ERK makes the signaling network activity bistable, causing either LTD or not. Therefore, in single synapses only two discrete stable states (LTD and non-LTD) can be expressed. The stochastic properties of the signaling network causes threshold dithering and probabilistic expression of LTD, which allows at the macroscopic level for many different and stable mean magnitudes of depression. When the volume of a single spine is simulated no thresholds for the calcium input signal are present. Such thresholds appear only when the volume of simulation is increased by a factor 100 or more and the model output is then bistable. Similarly, deterministic solutions of the same model show only bistable behavior. LTD induction requires activation of the PKC-ERK-cPLA2 positive feedback loop but this activity is not constant: the activities of ERK and of cPLA2 fluctuate strongly. This is much less the case for PKC which is more constantly activated and thereby promotes a stable output of the pathway. PMID:23267752

  13. Short-Term Plasticity and Long-Term Potentiation in Magnetic Tunnel Junctions: Towards Volatile Synapses

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhronil; Roy, Kaushik

    2016-02-01

    Synaptic memory is considered to be the main element responsible for learning and cognition in humans. Although traditionally nonvolatile long-term plasticity changes are implemented in nanoelectronic synapses for neuromorphic applications, recent studies in neuroscience reveal that biological synapses undergo metastable volatile strengthening followed by a long-term strengthening provided that the frequency of the input stimulus is sufficiently high. Such "memory strengthening" and "memory decay" functionalities can potentially lead to adaptive neuromorphic architectures. In this paper, we demonstrate the close resemblance of the magnetization dynamics of a magnetic tunnel junction (MTJ) to short-term plasticity and long-term potentiation observed in biological synapses. We illustrate that, in addition to the magnitude and duration of the input stimulus, the frequency of the stimulus plays a critical role in determining long-term potentiation of the MTJ. Such MTJ synaptic memory arrays can be utilized to create compact, ultrafast, and low-power intelligent neural systems.

  14. Changes in protein synthesis accompanying long-term potentiation in the dentate gyrus in vivo.

    PubMed

    Fazeli, M S; Corbet, J; Dunn, M J; Dolphin, A C; Bliss, T V

    1993-04-01

    The possibility that the induction of long-term potentiation (LTP) is followed by changes in protein synthesis has been examined using high-resolution two-dimensional gel electrophoresis. 35S-methionine, infused into the third ventricle of anesthetized rats, was used to label hippocampal proteins. LTP was induced unilaterally in the dentate gyrus by tetanic stimulation of the perforant path, and followed either for 1 hr or for 3 hr. Two-dimensional gel autoradiographs were quantitatively analyzed using the PDQUEST system (Protein Databases Inc.). One hour after the unilateral induction of LTP, only one protein spot was found to be statistically different in intensity from corresponding spots in the contralateral control side. Three hours after LTP, however, 11 spots were found to have altered densities. Examination of basic proteins using the nonequilibrium pH gel electrophoresis system revealed changes in three proteins in the 3 hr group. Reductions as well as increases in spot intensities were observed. The results indicate that LTP is associated with a complex pattern of changes in protein synthesis. PMID:8463823

  15. Rapid activation of hippocampal casein kinase II during long-term potentiation.

    PubMed Central

    Charriaut-Marlangue, C; Otani, S; Creuzet, C; Ben-Ari, Y; Loeb, J

    1991-01-01

    Several studies suggest that protein kinase C and type II Ca2+/calmodulin-dependent protein kinase are activated during induction of long-term potentiation (LTP). We now report that casein kinase II (CK-II), which is present in high concentration in the hippocampus, is also activated in the CA1 region during LTP. CK-II activity increased within 2 min after a train of high-frequency electrical stimulations and reached a maximum (2-fold increase) 5 min later before returning to baseline value. The stimulated protein kinase activity, which was blocked by a selective antagonist of N-methyl-D-aspartate receptors, exhibited specific properties of CK-II, including phosphorylation of the specific substrates of CK-II, marked inhibition by a low heparin concentration, and the use of GTP as a phosphate donor. CK-II activity was also selectively and rapidly augmented in another form of LTP produced by bath application of tetraethylammonium; this LTP (called LTPk) is Ca2+ dependent but N-methyl-D-aspartate independent. Phosphorylation of casein that was not inhibited by heparin (i.e., casein kinase I) remained unchanged. We suggest that an increase in CK-II activity is important in LTP induction. Images PMID:1946443

  16. Early attenuation of long-term potentiation in senescence-accelerated mouse prone 8.

    PubMed

    Taniguchi, Sakiko; Mizuno, Hisato; Kuwahara, Masayoshi; Ito, Koichi

    2015-11-01

    Senescence-accelerated mouse (SAM) is an experimental model animal showing a short lifespan and rapid advancement of senescence. Especially, SAM prone 8 (SAMP8) shows age-related impairment of learning and memory, and thus, it is a good model for age-related cognitive function. However, the synaptic characteristics related to cognitive function of SAMP8 have been poorly understood. In this study, we quantitatively evaluated the synaptic transmission and synaptic plasticity using hippocampal slices obtained from SAMP8 with electrophysiological methods to elucidate the synaptic features of SAMP8. We used the field recordings to measure some synaptic parameters. The slope of field excitatory postsynaptic potentials decreased with age in both SAMP8 and SAM resistant 1 (SAMR1), the control strain of SAMP8. The paired-pulse ratio (PPR), a representative of short-term synaptic plasticity, also decreased in both strains with age. On the other hand, although both SAMR1 and SAMP8 exhibited age-dependent decrease in long-term potentiation (LTP), a representative of long-term synaptic plasticity, the decrease in LTP in SAMP8 started at 6 months of age, while in SAMR1, it was observed at 14 months but not at 6 months of age. The PPRs after high-frequency stimulation for LTP induction were smaller than those before the stimulation. These results indicate that synaptic plasticity in SAMP8 deteriorates at an earlier age compared to SAMR1, and are consistent with behavioral tests showing early impairment of learning and memory of SAMP8. Our study is the first report on quantitative analysis of synaptic function at SAMP8 hippocampus and corroborates the behavioral studies showing cognitive dysfunction with age; therefore, it will be helpful for future studies on aging. PMID:26195169

  17. Increased ability to induce long-term potentiation of spinal dorsal horn neurones in monoarthritic rats.

    PubMed

    Vikman, Kristina S; Duggan, Arthur W; Siddall, Philip J

    2003-11-14

    Long-term potentiation (LTP) of transmission of impulses in unmyelinated (C-fibre) primary afferents by prior tetanic conditioning stimulation has been demonstrated in the dorsal horn of the spinal cord. Since this potentiation has been proposed to be relevant to the increased responsiveness of spinal neurones associated with peripheral inflammation (central sensitisation), the present experiments compared the induction of LTP in normal rats and rats with monoarthritis. Monoarthritis was induced by injection of complete Freund's adjuvant (CFA) into the left ankle joint of 12 rats. All animals showed behavioural signs of thermal hyperalgesia and were used for electrophysiological experiments after 4-8 days. In each animal, extracellular recordings were obtained from a single, wide dynamic range (WDR) dorsal horn neurone. High frequency tetanic conditioning stimulation of the sciatic nerve gave varying effects on the C-fibre-evoked responses of neurones in the normal rats, with potentiation in two, no change in five and a depression in five. By contrast, conditioning stimulation in rats with inflammation produced a long-lasting potentiation of C-fibre-evoked responses in 11 out of 12 neurones, with no effect in one. The ease with which LTP was induced in animals with inflammation supports the proposal that the underlying mechanisms of LTP are similar to those of the central sensitisation associated with peripheral inflammation. PMID:14568329

  18. Postsynaptic Signal Transduction Models for Long-Term Potentiation and Depression

    PubMed Central

    Manninen, Tiina; Hituri, Katri; Kotaleski, Jeanette Hellgren; Blackwell, Kim T.; Linne, Marja-Leena

    2010-01-01

    More than a hundred biochemical species, activated by neurotransmitters binding to transmembrane receptors, are important in long-term potentiation (LTP) and long-term depression (LTD). To investigate which species and interactions are critical for synaptic plasticity, many computational postsynaptic signal transduction models have been developed. The models range from simple models with a single reversible reaction to detailed models with several hundred kinetic reactions. In this study, more than a hundred models are reviewed, and their features are compared and contrasted so that similarities and differences are more readily apparent. The models are classified according to the type of synaptic plasticity that is modeled (LTP or LTD) and whether they include diffusion or electrophysiological phenomena. Other characteristics that discriminate the models include the phase of synaptic plasticity modeled (induction, expression, or maintenance) and the simulation method used (deterministic or stochastic). We find that models are becoming increasingly sophisticated, by including stochastic properties, integrating with electrophysiological properties of entire neurons, or incorporating diffusion of signaling molecules. Simpler models continue to be developed because they are computationally efficient and allow theoretical analysis. The more complex models permit investigation of mechanisms underlying specific properties and experimental verification of model predictions. Nonetheless, it is difficult to fully comprehend the evolution of these models because (1) several models are not described in detail in the publications, (2) only a few models are provided in existing model databases, and (3) comparison to previous models is lacking. We conclude that the value of these models for understanding molecular mechanisms of synaptic plasticity is increasing and will be enhanced further with more complete descriptions and sharing of the published models. PMID:21188161

  19. Effect of modafinil on learning performance and neocortical long-term potentiation in rats.

    PubMed

    Burgos, Héctor; Castillo, Amparo; Flores, Osvaldo; Puentes, Gustavo; Morgan, Carlos; Gatica, Arnaldo; Cofré, Christian; Hernández, Alejandro; Laurido, Claudio; Constandil, Luis

    2010-10-30

    Modafinil is a novel wake-promoting agent whose effects on cognitive performance have begun to be addressed at both preclinical and clinical level. The present study was designed to investigate in rats the effects of chronic modafinil administration on cognitive performance by evaluating: (i) working and reference memories in an Olton 4×4 maze, and (ii) learning of a complex operant conditioning task in a Skinner box. In addition, the effect of modafinil on the ability of the rat frontal cortex to develop long-term potentiation (LTP) was also studied. Chronic modafinil did not significantly modify working memory errors but decreased long-term memory errors on the Olton 4×4 maze, meaning that the drug may have a favourable profile on performance of visuo-spatial tasks (typically, a hippocampus-dependent task) when chronically administered. On the other hand, chronic modafinil resulted in a marked decrease of successful responses in a complex operant conditioning learning, which means that repeated administration of the drug influences negatively problem-solving abilities when confronting the rat to a sequencing task (typically, a prefrontal cortex-dependent task). In addition, in vivo electrophysiology showed that modafinil resulted in impaired capacity of the rat prefrontal cortex to develop LTP following tetanization. It is concluded that modafinil can improve the performance of spatial tasks that depend almost exclusively on hippocampal functioning, but not the performance in tasks including a temporal factor where the prefrontal cortex plays an important role. The fact that modafinil together with preventing operant conditioning learning was also able to block LTP induction in the prefrontal cortex, suggests that the drug could interfere some critical component required for LTP can be developed, thereby altering neuroplastic capabilities of the prefrontal cortex. PMID:20800665

  20. Long-term potentiation in the hippocampal slice: evidence for stimulated secretion of newly synthesized proteins

    SciTech Connect

    Duffy, C.; Teyler, T.J.; Shashoua, V.E.

    1981-06-01

    Long-term potentiation of the hippocampal slice preparation results in an increase in the incorporation of labeled valine into the proteins destined for secretion into the extracellular medium. Double-labeling methods established that the increased secretion of the labeled proteins was limited to the potentiated region of a slice; incorporation of labeled valine was increased in the hippocampus if potentiation was through the Schaffer collaterals and in the dentate if potentiation was through the perforant path. Controls for nonspecific stimulation showed no changes. There appears to be a link between long-term potentiation and the metabolic processes that lead to protein synthesis in the hippocampal slice system.

  1. The effects of long-term sleep deprivation on the long-term potentiation in the dentate gyrus and brain oxidation status in rats.

    PubMed

    Süer, Cem; Dolu, Nazan; Artis, A Seda; Sahin, Leyla; Yilmaz, Alpaslan; Cetin, Aysun

    2011-05-01

    Some evidence suggests that sleep deprivation might impair synaptic plasticity and produce oxidative stress in the hippocampus. However it is not clear whether impairment of long-term potentiation depends on the oxidative stress evoked by sleep deprivation protocol. In this study we aimed to investigate the effects of a 21-day sleep deprivation period on long-term plasticity taking into account the stressful effect of sleep deprivation. Sleep deprivation was carried out using the multiple platforms method on adult male Wistar rats. Long-term potentiation was studied in the medial perforant pathway-dentate gyrus synapses. Elevated T test was applied, and blood corticosterone levels were measured. Lipid peroxidation products in whole brain and hippocampus were determined. No significant difference was found between the sleep deprived, pedestal and cage control groups at the end of the 21-day period when corticosterone levels were compared. The results of the elevated T test indicated that sleep deprivation did not change the anxiety-like behavior of the animals. When compared with cage or pedestal control groups, sleep deprived rats displayed elevated malondialdehyde levels, and decreased superoxide dismutase and glutathione peroxidase activities together with impaired long-term potentiation maintenance. It can be argued that 21-day SD may impair the maintenance of long-term potentiation evoked in the dentate gyrus, and the balance between oxidant and antioxidant defenses of the hippocampus. PMID:21256900

  2. Involvement of CX3CL1/CX3CR1 Signaling in Spinal Long Term Potentiation

    PubMed Central

    Bian, Chao; Zhao, Zhi-Qi; Zhang, Yu-Qiu; Lü, Ning

    2015-01-01

    The long-term potentiation (LTP) of spinal C-fiber-evoked field potentials is considered as a fundamental mechanism of central sensitization in the spinal cord. Accumulating evidence has showed the contribution of spinal microglia to spinal LTP and pathological pain. As a key signaling of neurons-microglia interactions, the involvement of CX3CL1/CX3CR1 signaling in pathological pain has also been investigated extensively. The present study examined whether CX3CL1/CX3CR1 signaling plays a role in spinal LTP. The results showed that 10-trains tetanic stimulation (100 Hz, 2s) of the sciatic nerve (TSS) produced a significant LTP of C-fiber-evoked field potentials lasting for over 3 h in the rat spinal dorsal horn. Blockade of CX3CL1/CX3CR1 signaling with an anti-CX3CR1 neutralizing antibody (CX3CR1 AB) markedly suppressed TSS-induced LTP. Exogenous CX3CL1 significantly potentiated 3-trains TSS-induced LTP in rats. Consistently, spinal LTP of C-fiber-evoked field potentials was also induced by TSS (100 Hz, 1s, 4 trains) in all C57BL/6 wild type (WT) mice. However, in CX3CR1-/- mice, TSS failed to induce LTP and behavioral hypersensitivity, confirming an essential role of CX3CR1 in spinal LTP induction. Furthermore, blockade of IL-18 or IL-23, the potential downstream factors of CX3CL1/CX3CR1 signaling, with IL-18 BP or anti-IL-23 neutralizing antibody (IL-23 AB), obviously suppressed spinal LTP in rats. These results suggest that CX3CL1/CX3CR1 signaling is involved in LTP of C-fiber-evoked field potentials in the rodent spinal dorsal horn. PMID:25768734

  3. Long-term potentiation at excitatory synaptic inputs to the intercalated cell masses of the amygdala.

    PubMed

    Huang, Chiung-Chun; Chen, Chien-Chung; Liang, Ying-Ching; Hsu, Kuei-Sen

    2014-08-01

    The intercalated cell masses (ITCs) of the amygdala are clusters of GABAergic interneurons that surround the basolateral complex of the amygdala. ITCs have been increasingly implicated in the acquisition and extinction of conditioned fear responses, but the underlying cellular mechanisms remain unexplored. Here, we report that repetitive stimulation of lateral amygdala (LA) afferents with a modified theta burst stimulation (TBS) protocol and induces long-term potentiation (LTP) of excitatory synapses onto medial paracapsular ITC (Imp) neurons. This TBS-induced LTP is; (1) induced and expressed post-synaptically, (2) involves a rise in post-synaptic Ca2+ and the activation of NR2B-containing N-methyl-D-aspartate receptors (NMDARs), (3) dependent on calcium/calmodulin-dependent protein kinase II and cAMP-dependent protein kinase activation, and (4) associated with increased exocytotic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) to the post-synaptic membrane. Remarkably, auditory fear conditioning led to a persistent increase in AMPAR/NMDAR ratio of glutamatergic synaptic currents and occluded TBS-induced LTP at LA-Imp synapses. Furthermore, extinction training rescued the effect of fear conditioning on AMPAR/NMDAR ratio and LTP induction. These results show that a prominent form of LTP can be elicited at LA-Imp synapses and suggest that this synaptic plasticity may contribute to the expression of fear conditioning. PMID:24556032

  4. 12-Lipoxygenase regulates hippocampal long-term potentiation by modulating L-type Ca2+ channels.

    PubMed

    DeCostanzo, Anthony J; Voloshyna, Iryna; Rosen, Zev B; Feinmark, Steven J; Siegelbaum, Steven A

    2010-02-01

    Although long-term potentiation (LTP) has been intensively studied, there is disagreement as to which molecules mediate and modulate LTP. This is partly attributable to the presence of mechanistically distinct forms of LTP that are induced by different patterns of stimulation and that depend on distinct Ca(2+) sources. Here, we report a novel role for the arachidonic acid-metabolizing enzyme 12-lipoxygenase (12-LO) in LTP at CA3-CA1 hippocampal synapses that is dependent on the pattern of tetanic stimulation. We find that 12-LO activity is required for the induction of LTP in response to a theta burst stimulation protocol that depends on Ca(2+) influx through both NMDA receptors and L-type voltage-gated Ca(2+) channels. In contrast, LTP induced by 100 Hz tetanic stimulation, which requires Ca(2+) influx through NMDA receptors but not L-type channels, does not require 12-LO. We find that 12-LO regulates LTP by enhancing postsynaptic somatodendritic Ca(2+) influx through L-type channels during theta burst stimulation, an action exerted via 12(S)-HPETE [12(S)-hydroperoxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid], a downstream metabolite of 12-LO. These results help define the role of a long-disputed signaling enzyme in LTP. PMID:20130191

  5. Changes in cat medullary neurone firing rates and synchrony following induction of respiratory long-term facilitation

    PubMed Central

    Morris, K F; Shannon, R; Lindsey, B G

    2001-01-01

    Long-term facilitation is a respiratory memory expressed as an increase in motor output lasting more than an hour. This change is induced by repeated hypoxia, stimulation of carotid chemoreceptors, or electrical stimulation of the carotid sinus nerve or brainstem mid-line. The present work addressed the hypothesis that persistent changes in medullary respiratory neural networks contribute to long-term facilitation. Carotid chemoreceptors were stimulated by close arterial injection of CO2-saturated saline solution. Phrenic nerve efferent activity and up to 30 single medullary neurones were recorded simultaneously in nucleus tractus solitarii (NTS) including the dorsal respiratory group (DRG), Bötzinger-ventral respiratory group (Böt-VRG), and nucleus raphe obscurus of nine adult cats, anaesthetized, injected with a neuromuscular blocking agent, vagotomized and artificially ventilated. The firing rates of 87 of 105 neurones (83 %) changed following induction of long-term facilitation. Nine of eleven DRG and Böt-VRG putative premotor inspiratory neurones had increased firing rates with long-term facilitation. Fourteen of twenty-one raphe obscurus neurones with control firing rates less than 4 Hz had significant long-term increases in activity. Cross-correlogram analysis suggested that there were changes in effective connectivity of neuron pairs with long-term facilitation. Joint peristimulus time histograms and pattern detection methods used with ‘gravity’ analysis also detected changes in short time scale correlations associated with long-term facilitation. The results suggest that changes in firing rates and synchrony of VRG and DRG premotor neurones and altered effective connectivity among other functionally antecedent elements of the medullary respiratory network contribute to the expression of long-term facilitation. PMID:11306666

  6. Midazolam inhibits long-term potentiation through modulation of GABAA receptors.

    PubMed

    Evans, M S; Viola-McCabe, K E

    1996-03-01

    Benzodiazepine drugs (BZ) are used for anxiety, insomnia, and seizures. They worsen memory, especially in large doses, but the mechanism of this action is uncertain. In micromolar concentrations, benzodiazepines have been shown to reduce long-term potentiation (LTP), which could be a cellular basis for their amnesic action. We have found that the LTP-inhibiting effects of BZ occur in the nanomolar concentrations attained in humans, and that this effect occurs through modulation of GABAA receptor function. We recorded extracellular synaptic input/output (I/O) curves for population spikes (PS) and EPSPs in rat hippocampal slices before and after induction of LTP. LTP increased maximal PS and EPSPs and shifted I/O curves for PS and EPSPs to the left, reflecting increased synaptic responsiveness after LTP. Curves relating EPSPs to PS were also shifted, so that after LTP larger PS were elicited for the same size EPSP (E-S potentiation). Midazolam (0.5 microM) markedly inhibited the left-shift in PS I/O curves due to E-S potentiation but did not significantly affect other parameters. 8-Phenyltheophylline (10 microM), an adenosine receptor antagonist, did not prevent midazolam inhibition of LTP. Bicuculline, a GABAA receptor antagonist, caused a dose-dependent antagonism of midazolam's LTP inhibition. Our results suggest that benzodiazepines reduce LTP primarily through reduction of E-S potentiation, and that this effect occurs through modulation of GABAA receptor function. This could in part account for the ability of benzodiazepines to disturb new memory formation. PMID:8783210

  7. Orexin A induces bidirectional modulation of synaptic plasticity: Inhibiting long-term potentiation and preventing depotentiation.

    PubMed

    Lu, Guan-Ling; Lee, Chia-Hsu; Chiou, Lih-Chu

    2016-08-01

    The orexin system consists of two peptides, orexin A and B and two receptors, OX1R and OX2R. It is implicated in learning and memory regulation while controversy remains on its role in modulating hippocampal synaptic plasticity in vivo and in vitro. Here, we investigated effects of orexin A on two forms of synaptic plasticity, long-term potentiation (LTP) and depotentiation of field excitatory postsynaptic potentials (fEPSPs), at the Schaffer Collateral-CA1 synapse of mouse hippocampal slices. Orexin A (≧30 nM) attenuated LTP induced by theta burst stimulation (TBS) in a manner antagonized by an OX1R (SB-334867), but not OX2R (EMPA), antagonist. Conversely, at 1 pM, co-application of orexin A prevented the induction of depotentiation induced by low frequency stimulation (LFS), i.e. restoring LTP. This re-potentiation effect of sub-nanomolar orexin A occurred at LFS of 1 Hz, but not 2 Hz, and with LTP induced by either TBS or tetanic stimulation. It was significantly antagonized by SB-334867, EMPA and TCS-1102, selective OX1R, OX2R and dual OXR antagonists, respectively, and prevented by D609, SQ22536 and H89, inhibitors of phospholipase C (PLC), adenylyl cyclase (AC) and protein kinase A (PKA), respectively. LFS-induced depotentiation was antagonized by blockers of NMDA, A1-adenosine and type 1/5 metabotropic glutamate (mGlu1/5) receptors, respectively. However, orexin A (1 pM) did not affect chemical-induced depotentiation by agonists of these receptors. These results suggest that orexin A bidirectionally modulates hippocampal CA1 synaptic plasticity, inhibiting LTP via OX1Rs at moderate concentrations while inducing re-potentiation via OX1Rs and OX2Rs, possibly through PLC and AC-PKA signaling at sub-nanomolar concentrations. PMID:26965217

  8. Long-term potentiation in the hippocampus of fragile X knockout mice

    SciTech Connect

    Godfraind, J.M.; Reyniers, E.; De Boulle, K.

    1996-08-09

    To gain more insight in the physiological function of the fragile X gene (FMR1) and the mechanisms leading to fragile X syndrome, the Fmr1 gene has been inactivated in mice by gene targeting techniques. In the Morris water maze test, the Fmr1 knockout mice learn to find the hidden platform nearly as well as the control animals, but show impaired performance after the position of the platform has been modified. As malperformance in the Morris water maze test has been associated with impaired long-term potentiation (LTP), electrophysiological studies were performed in hippocampal slices of Fmr1 knockout mice to check for the presence of LTP. Judged by field extracellular excitatory postsynaptic potential recordings in the CA1 hippocampal area, Fmr1 knockout mice express LTP to a similar extent as their wild type littermates during the first 1-2 hr after high frequency stimulation. Also, short-term potentiation (STP) was similar in both types of mice. To investigate whether Fmr1 is involved in the latter stages of LTP as an immediate early gene, we compared Fmr1 mRNA quantities on northern blots after chemical induction of seizures. A transient increase in the transcription of immediate early genes is thought to be essential for the maintenance of LTP. As no increase in Fmr1 mRNA could be detected, neither in cortex nor in total brain, during the first 2{1/2} hr after pentylenetetrazol-induced seizures, it is unlikely that Fmr1 is an immediate early gene in mice. In conclusion, we found no evidence for a function of FMR1 in STP or LTP. 37 refs., 4 figs.

  9. Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat.

    PubMed

    Millhorn, D E

    1986-12-01

    1. The respiratory response, measured as integrated phrenic nerve activity, during and for up to an hour following 10 min of continuous electrical stimulation of raphe obscurus was quantitated in anaesthetized, artificially ventilated cats whose carotid sinus nerves and vagus nerves had been cut. End-tidal PCO2 and body temperature were kept constant with servocontrollers. 2. Stimulation of raphe obscurus caused a significant increase in both phrenic tidal activity and respiratory frequency that persisted following cessation of the stimulus. This persistent facilitation is referred to as 'long-term potentiation' of respiration. 3. Control stimulations in the parenchyma of the medulla oblongata failed to stimulate respiration and cause the long-term potentiation. 4. Both the direct facilitatory effects of raphe obscurus stimulation on phrenic nerve activity and the long-term potentiation of respiration following the stimulus were prevented by pre-treating cats with methysergide, a serotonin receptor antagonist. 5. The results are discussed in terms of the raphe obscurus being the potential source of the long-term potentiation of respiration that occurs following stimulation of carotid body afferents (Millhorn, Eldridge & Waldrop, 1980a, b). PMID:3114470

  10. Long-term athletic development, part 2: barriers to success and potential solutions.

    PubMed

    Lloyd, Rhodri S; Oliver, Jon L; Faigenbaum, Avery D; Howard, Rick; De Ste Croix, Mark B A; Williams, Craig A; Best, Thomas M; Alvar, Brent A; Micheli, Lyle J; Thomas, D Phillip; Hatfield, Disa L; Cronin, John B; Myer, Gregory D

    2015-05-01

    The first installment of this two-part commentary reviewed existing models of long-term athletic development. However, irrespective of the model that is adopted by practitioners, existing structures within competitive youth sports in addition to the prevalence of physical inactivity in a growing number of modern-day youth may serve as potential barriers to the success of any developmental pathway. The second part of this commentary will initially highlight common issues that are likely to impede the success of long-term athletic development programs and then propose solutions that will address the negative impact of such issues. PMID:25909962

  11. Synapse Specificity of Long-Term Potentiation Breaks Down with Aging

    ERIC Educational Resources Information Center

    Ris, Laurence; Godaux, Emile

    2007-01-01

    Memory shows age-related decline. According to the current prevailing theoretical model, encoding of memories relies on modifications in the strength of the synapses connecting the different cells within a neuronal network. The selective increases in synaptic weight are thought to be biologically implemented by long-term potentiation (LTP). Here,…

  12. Enhanced AMPA Receptor Function Promotes Cerebellar Long-Term Depression Rather than Potentiation

    ERIC Educational Resources Information Center

    van Beugen, Boeke J.; Qiao, Xin; Simmons, Dana H.; De Zeeuw, Chris I.; Hansel, Christian

    2014-01-01

    Ampakines are allosteric modulators of AMPA receptors that facilitate hippocampal long-term potentiation (LTP) and learning, and have been considered for the treatment of cognition and memory deficits. Here, we show that the ampakine CX546 raises the amplitude and slows the decay time of excitatory postsynaptic currents (EPSCs) at cerebellar…

  13. Global Warming Potential of Long-Term Grazing Management Systems in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grazing lands in the northern Great Plains of North America are extensive, occupying over 50 Mha. Yet grazing land contributions to, or mitigation of, global warming potential (GWP) is largely unknown for the region. The objective of this study was to estimate GWP for three long-term (70 to 90 yr)...

  14. Induction of Long-term Depression-like Plasticity by Pairings of Motor Imagination and Peripheral Electrical Stimulation

    PubMed Central

    Jochumsen, Mads; Signal, Nada; Nedergaard, Rasmus W.; Taylor, Denise; Haavik, Heidi; Niazi, Imran K.

    2015-01-01

    Long-term depression (LTD) and long-term potentiation (LTP)-like plasticity are models of synaptic plasticity which have been associated with memory and learning. The induction of LTD and LTP-like plasticity, using different stimulation protocols, has been proposed as a means of addressing abnormalities in cortical excitability associated with conditions such as focal hand dystonia and stroke. The aim of this study was to investigate whether the excitability of the cortical projections to the tibialis anterior (TA) muscle could be decreased when dorsiflexion of the ankle joint was imagined and paired with peripheral electrical stimulation (ES) of the nerve supplying the antagonist soleus muscle. The effect of stimulus timing was evaluated by comparing paired stimulation timed to reach the cortex before, at and after the onset of imagined movement. Fourteen healthy subjects participated in six experimental sessions held on non-consecutive days. The timing of stimulation delivery was determined offline based on the contingent negative variation (CNV) of electroencephalography brain data obtained during imagined dorsiflexion. Afferent stimulation was provided via a single pulse ES to the peripheral nerve paired, based on the CNV, with motor imagination of ankle dorsiflexion. A significant decrease (P = 0.001) in the excitability of the cortical projection of TA was observed when the afferent volley from the ES of the tibial nerve (TN) reached the cortex at the onset of motor imagination based on the CNV. When TN stimulation was delivered before (P = 0.62), or after (P = 0.23) imagined movement onset there was no significant effect. Nor was a significant effect found when ES of the TN was applied independent of imagined movement (P = 0.45). Therefore, the excitability of the cortical projection to a muscle can be inhibited when ES of the nerve supplying the antagonist muscle is precisely paired with the onset of imagined movement. PMID:26648859

  15. Long-term Potentiation at Temporoammonic Path-CA1 Synapses in Freely Moving Rats

    PubMed Central

    Gonzalez, Jossina; Villarreal, Desiree M.; Morales, Isaiah S.; Derrick, Brian E.

    2016-01-01

    Hippocampal area CA1 receives direct entorhinal layer III input via the temporoammonic path (TAP) and recent studies implicate TAP-CA1 synapses are important for some aspects of hippocampal memory function. Nonetheless, as few studies have examined TAP-CA1 synaptic plasticity in vivo, the induction and longevity of TAP-CA1 long-term potentiation (LTP) has not been fully characterized. We analyzed CA1 responses following stimulation of the medial aspect of the angular bundle and investigated LTP at medial temporoammonic path (mTAP)-CA1 synapses in freely moving rats. We demonstrate monosynaptic mTAP-CA1 responses can be isolated in vivo as evidenced by observations of independent current sinks in the stratum lacunosum moleculare of both areas CA1 and CA3 following angular bundle stimulation. Contrasting prior indications that TAP input rarely elicits CA1 discharge, we observed mTAP-CA1 responses that appeared to contain putative population spikes in 40% of our behaving animals. Theta burst high frequency stimulation of mTAP afferents resulted in an input specific and N-methyl-D-aspartate (NMDA) receptor-dependent LTP of mTAP-CA1 responses in behaving animals. LTP of mTAP-CA1 responses decayed as a function of two exponential decay curves with time constants (τ) of 2.7 and 148 days to decay 63.2% of maximal LTP. In contrast, mTAP-CA1 population spike potentiation longevity demonstrated a τ of 9.6 days. To our knowledge, these studies provide the first description of mTAP-CA1 LTP longevity in vivo. These data indicate TAP input to area CA1 is a physiologically relevant afferent system that displays robust synaptic plasticity. PMID:26903815

  16. The flavonoid baicalein promotes NMDA receptor-dependent long-term potentiation and enhances memory

    PubMed Central

    Wang, Wei; Wang, Fang; Yang, Yuan-Jian; Hu, Zhuang-Li; Long, Li-Hong; Fu, Hui; Xie, Na; Chen, Jian-Guo

    2011-01-01

    BACKGROUND AND PURPOSE There is growing interest in the physiological functions of flavonoids, especially in their effects on cognitive function and on neurodegenerative diseases. The aim of the current investigation was to evaluate the role of the flavonoid baicalein in long-term potentiation (LTP) in the hippocampal CA1 region and cognitive behavioural performance. EXPERIMENTAL APPROACH Effects of baicalein on LTP in rat hippocampal slices were investigated by electrophysiological methods. Phosphorylation of Akt (at Ser473), the extracellular signal-regulated kinase (ERK1/2) and the transcription factor cAMP response element-binding protein (CREB) (at Ser133) were analysed by Western blot. Fear conditioning was used to determine whether baicalein could improve learning and memory in rats. KEY RESULTS Baicalein enhanced the N-methyl-d-aspartate glutamate receptor-dependent LTP in a bell-shaped concentration-dependent manner. Addition of the lipoxygenase metabolites 12(S)-HETE and 12(S)-HPETE did not reverse these effects of baicalein. Baicalein treatment enhanced phosphorylation of Akt during induction of LTP with the same bell-shaped dose–response curve. LTP potentiation induced by baicalein was blocked by inhibitors of phosphoinositide 3-kinase. CREB phosphorylation was also increased in the CA1 region of baicalein-treated slices. Baicalein-treated rats performed significantly better than controls in a hippocampus-dependent contextual fear conditioning task. Furthermore, baicalein treatment selectively increased the phosphorylation of Akt and CREB in the CA1 region of hippocampus, but not in the prefrontal cortex, after fear conditioning training. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that the flavonoid baicalein can facilitate memory, and therefore it might be useful in the treatment of patients with memory disorders. PMID:21133890

  17. Long-term potentiation modulates synaptic phosphorylation networks and reshapes the structure of the postsynaptic interactome.

    PubMed

    Li, Jing; Wilkinson, Brent; Clementel, Veronica A; Hou, Junjie; O'Dell, Thomas J; Coba, Marcelo P

    2016-01-01

    The postsynaptic site of neurons is composed of more than 1500 proteins arranged in protein-protein interaction complexes, the composition of which is modulated by protein phosphorylation through the actions of complex signaling networks. Components of these networks function as key regulators of synaptic plasticity, in particular hippocampal long-term potentiation (LTP). The postsynaptic density (PSD) is a complex multicomponent structure that includes receptors, enzymes, scaffold proteins, and structural proteins. We triggered LTP in the mouse hippocampus CA1 region and then performed large-scale analyses to identify phosphorylation-mediated events in the PSD and changes in the protein-protein interactome of the PSD that were associated with LTP induction. Our data indicated LTP-induced reorganization of the PSD. The dynamic reorganization of the PSD links glutamate receptor signaling to kinases (writers) and phosphatases (erasers), as well as the target proteins that are modulated by protein phosphorylation and the proteins that recognize the phosphorylation status of their binding partners (readers). Protein phosphorylation and protein interaction networks converged at highly connected nodes within the PSD network. Furthermore, the LTP-regulated phosphoproteins, which included the scaffold proteins Shank3, Syngap1, Dlgap1, and Dlg4, represented the "PSD risk" for schizophrenia and autism spectrum disorder, such that without these proteins in the analysis, the association with the PSD and these two psychiatric diseases was not present. These data are a rich resource for future studies of LTP and suggest that the PSD holds the keys to understanding the molecular events that contribute to complex neurological disorders that affect synaptic plasticity. PMID:27507650

  18. Polygalasaponin F induces long-term potentiation in adult rat hippocampus via NMDA receptor activation

    PubMed Central

    Sun, Feng; Sun, Jian-dong; Han, Ning; Li, Chuang-jun; Yuan, Yu-he; Zhang, Dong-ming; Chen, Nai-hong

    2012-01-01

    Aim: To investigate the effect and underlying mechanisms of polygalasaponin F (PGSF), a triterpenoid saponin isolated from Polygala japonica, on long-term potentiation (LTP) in hippocampus dentate gyrus (DG) of anesthetized rats. Methods: Population spike (PS) of hippocampal DG was recorded in anesthetized male Wistar rats. PGSF, the NMDAR inhibitor MK801 and the CaMKII inhibitor KN93 were intracerebroventricularly administered. Western blotting analysis was used to examine the phosphorylation expressions of NMDA receptor subunit 2B (NR2B), Ca2+/calmodulin-dependent kinase II (CaMKII), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB). Results: Intracerebroventricular administration of PGSF (1 and 10 μmol/L) produced long-lasting increase of PS amplitude in hippocampal DG in a dose-dependent manner. Pre-injection of MK801 (100 μmol/L) or KN93 (100 μmol/L) completely blocked PGSF-induced LTP. Furthermore, the phosphorylation of NR2B, CaMKII, ERK, and CREB in hippocampus was significantly increased 5–60 min after LTP induction. The up-regulation of p-CaMKII expression could be completely abolished by pre-injection of MK801. The up-regulation of p-ERK and p-CREB expressions could be partially blocked by pre-injection of KN93. Conclusion: PGSF could induce LTP in hippocampal DG in anesthetized rats via NMDAR activation mediated by CaMKII, ERK and CREB signaling pathway. PMID:22286914

  19. Corticosterone enhances the potency of ethanol against hippocampal long-term potentiation via local neurosteroid synthesis

    PubMed Central

    Izumi, Yukitoshi; O’Dell, Kazuko A.; Zorumski, Charles F.

    2015-01-01

    Corticosterone is known to accumulate in brain after various stressors including alcohol intoxication. Just as severe alcohol intoxication is typically required to impair memory formation only high concentrations of ethanol (60 mM) acutely inhibit long-term potentiation (LTP), a cellular memory mechanism, in naïve hippocampal slices. This LTP inhibition involves synthesis of neurosteroids, including allopregnanolone, and appears to involve a form of cellular stress. In the CA1 region of rat hippocampal slices, we examined whether a lower concentration of ethanol (20 mM) inhibits LTP in the presence of corticosterone, a stress-related modulator, and whether corticosterone stimulates local neurosteroid synthesis. Although low micromolar corticosterone alone did not inhibit LTP induction, we found that 20 mM ethanol inhibited LTP in the presence of corticosterone. At 20 mM, ethanol alone did not stimulate neurosteroid synthesis or inhibit LTP. LTP inhibition by corticosterone plus ethanol was blocked by finasteride, an inhibitor of 5α-reductase, suggesting a role for neurosteroid synthesis. We also found that corticosterone alone enhanced neurosteroid immunostaining in CA1 pyramidal neurons and that this immunostaining was further augmented by 20 mM ethanol. The enhanced neurosteroid staining was blocked by finasteride and the N-methyl-D-aspartate antagonist, 2-amino-5-phosphonovalerate (APV). These results indicate that corticosterone promotes neurosteroid synthesis in hippocampal pyramidal neurons and can participate in ethanol-mediated synaptic dysfunction even at moderate ethanol levels. These effects may contribute to the influence of stress on alcohol-induced cognitive impairment. PMID:26190975

  20. Learning, memory and long-term potentiation are altered in Nedd4 heterozygous mice.

    PubMed

    Camera, Daria; Coleman, Harold A; Parkington, Helena C; Jenkins, Trisha A; Pow, David V; Boase, Natasha; Kumar, Sharad; Poronnik, Philip

    2016-04-15

    The consolidation of short-term memory into long-term memory involves changing protein level and activity for the synaptic plasticity required for long-term potentiation (LTP). AMPA receptor trafficking is a key determinant of LTP and recently ubiquitination by Nedd4 has been shown to play an important role via direct action on the GluA1 subunit, although the physiological relevance of these findings are yet to be determined. We therefore investigated learning and memory in Nedd4(+/-) mice that have a 50% reduction in levels of Nedd4. These mice showed decreased long-term spatial memory as evidenced by significant increases in the time taken to learn the location of and subsequently find a platform in the Morris water maze. In contrast, there were no significant differences between Nedd4(+/+) and Nedd4(+/-) mice in terms of short-term spatial memory in a Y-maze test. Nedd4(+/-) mice also displayed a significant reduction in post-synaptic LTP measured in hippocampal brain slices. Immunofluorescence of Nedd4 in the hippocampus confirmed its expression in hippocampal neurons of the CA1 region. These findings indicate that reducing Nedd4 protein by 50% significantly impairs LTP and long-term memory thereby demonstrating an important role for Nedd4 in these processes. PMID:26821291

  1. Long-term Potentiation of Perforant Pathway-dentate Gyrus Synapse in Freely Behaving Mice

    PubMed Central

    Blaise, J. Harry

    2013-01-01

    Studies of long-term potentiation of synaptic efficacy, an activity-dependent synaptic phenomenon having properties that make it attractive as a potential cellular mechanism underlying learning and information storage, have long been used to elucidate the physiology of various neuronal circuits in the hippocampus, amygdala, and other limbic and cortical structures. With this in mind, transgenic mouse models of neurological diseases represent useful platforms to conduct long-term potentiation (LTP) studies to develop a greater understanding of the role of genes in normal and abnormal synaptic communication in neuronal networks involved in learning, emotion and information processing. This article describes methodologies for reliably inducing LTP in the freely behaving mouse. These methodologies can be used in studies of transgenic and knockout freely behaving mouse models of neurodegenerative diseases. PMID:24327052

  2. Transitioning Opioid-Dependent Patients from Detoxification to Long-term Treatment: Efficacy of Intensive Role Induction

    PubMed Central

    Katz, Elizabeth C.; Brown, Barry S.; Schwartz, Robert P.; O’Grady, Kevin E.; King, Stuart D.; Gandhi, Devang

    2011-01-01

    Despite findings that opioid detoxification serves little more than a palliative function, few patients who enter detoxification subsequently transition to long-term treatment. The current study evaluated intensive role induction (IRI), a strategy adapted from a single-session intervention previously shown to facilitate engagement of substance-dependent patients in drug-free treatment. IRI was delivered either alone or combined with case management (IRI+CM) to determine the capacity of each condition to enhance transition and engagement in long-term treatment of detoxification patients. Study participants were 240 individuals admitted to a 30-day buprenorphine detoxification delivered at a publicly-funded outpatient drug treatment clinic. Following clinic intake, participants were randomly assigned to IRI, IRI+CM, or standard clinic treatment (ST). Outcomes were assessed in terms of adherence and satisfaction with the detoxification program, detoxification completion, and transition and retention in treatment following detoxification. Participants who received IRI and IRI+CM attended more counseling sessions during detoxification than those who received ST (both p’s < .001). IRI, but not IRI+CM participants, were more likely to complete detoxification (p = .017), rated their counselors more favorably (p = .01), and were retained in long-term treatment for more days following detoxification (p = .005), than ST participants. The current study demonstrates that an easily administered psychosocial intervention can be effective for enhancing patient involvement in detoxification and for enabling their engagement in long-term treatment following detoxification. PMID:21277704

  3. DEVELOPMENTAL LEAD (PB) EXPOSURE REDUCES THE ABILITY OF THE NNDA ANTAGONIST MK801 TO SUPPRESS LONG-TERM POTENTIATION (LTP) IN THE RAT DENTATE GYRUS, IN VIVO

    EPA Science Inventory

    Chronic developmental lead (Pb) exposure increases the threshold and enhances decay of long-term potentiation (LTP) in the dentate gyrus of the hippocampal formation. MK-801 and other antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor subtype impair induction of LT...

  4. Long-Term Dynamical Constraints on Pharmacologically Evoked Potentiation Imply Activity Conservation within In Vitro Hippocampal Networks

    PubMed Central

    Dzakpasu, Rhonda

    2015-01-01

    This paper describes a long-term study of network dynamics from in vitro, cultured hippocampal neurons after a pharmacological induction of synaptic potentiation. We plate a suspension of hippocampal neurons on an array of extracellular electrodes and record electrical activity in the absence of the drugs several days after treatment. While previous studies have reported on potentiation lasting up to a few hours after treatment, to the best of our knowledge, this is the first report to characterize the network effects of a potentiating mechanism several days after treatment. Using this reduced, two-dimensional in vitro network of hippocampal neurons, we show that the effects of potentiation are persistent over time but are modulated under a conservation of spike principle. We suggest that this conservation principle might be mediated by the appearance of a resonant inter-spike interval that prevents the network from advancing towards a state of hyperexcitability. PMID:26070215

  5. Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays

    PubMed Central

    Kopanitsa, Maksym V; Afinowi, Nurudeen O; Grant, Seth GN

    2006-01-01

    Background Multi-electrode arrays (MEAs) have become popular tools for recording spontaneous and evoked electrical activity of excitable tissues. The majority of previous studies of synaptic transmission in brain slices employed MEAs with planar electrodes that had limited ability to detect signals coming from deeper, healthier layers of the slice. To overcome this limitation, we used three-dimensional (3D) MEAs with tip-shaped electrodes to probe plasticity of field excitatory synaptic potentials (fEPSPs) in the CA1 area of hippocampal slices of 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice. Results Using 3D MEAs, we were able to record larger fEPSPs compared to signals measured by planar MEAs. Several stimulation protocols were used to induce long-term potentiation (LTP) of synaptic responses in the CA1 area recorded following excitation of Schäffer collateral/commissural fibres. Either two trains of high frequency tetanic stimulation or three trains of theta-burst stimulation caused a persistent, pathway specific enhancement of fEPSPs that remained significantly elevated for at least 60 min. A third LTP induction protocol that comprised 150 pulses delivered at 5 Hz, evoked moderate LTP if excitation strength was increased to 1.5× of the baseline stimulus. In all cases, we observed a clear spatial plasticity gradient with maximum LTP levels detected in proximal apical dendrites of pyramidal neurones. No significant differences in the manifestation of LTP were observed between 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice with the three protocols used. All forms of plasticity were sensitive to inhibition of N-methyl-D-aspartate (NMDA) receptors. Conclusion Principal features of LTP (magnitude, pathway specificity, NMDA receptor dependence) recorded in the hippocampal slices using MEAs were very similar to those seen in conventional glass electrode experiments. Advantages of using MEAs are the ability to record from different regions of the slice and the ease of conducting

  6. Opposing effects of PSD-93 and PSD-95 on long-term potentiation and spike timing-dependent plasticity

    PubMed Central

    Carlisle, Holly J; Fink, Ann E; Grant, Seth G N; O'Dell, Thomas J

    2008-01-01

    The membrane-associated guanylate kinases (MAGUKs) PSD-95, PSD-93 and SAP102 are thought to have crucial roles in both AMPA receptor trafficking and formation of NMDA receptor-associated signalling complexes involved in synaptic plasticity. While PSD-95, PSD-93, and SAP102 appear to have similar roles in AMPA receptor trafficking, it is not known whether these MAGUKs also have functionally similar roles in synaptic plasticity. To explore this issue we examined several properties of basal synaptic transmission in the hippocampal CA1 region of PSD-93 and PSD-95 mutant mice and compared the ability of a number of different synaptic stimulation protocols to induce long-term potentiation (LTP) and long-term depression (LTD) in these mutants. We find that while both AMPA and NMDA receptor-mediated synaptic transmission are normal in PSD-93 mutants, PSD-95 mutant mice exhibit clear deficits in AMPA receptor-mediated transmission. Moreover, in contrast to the facilitation of LTP induction and disruption of LTD observed in PSD-95 mutant mice, PSD-93 mutant mice exhibit deficits in LTP and normal LTD. Our results suggest that PSD-95 has a unique role in AMPA receptor trafficking at excitatory synapses in the hippocampus of adult mice and indicate that PSD-93 and PSD-95 have essentially opposite roles in LTP, perhaps because these MAGUKs form distinct NMDA receptor signalling complexes that differentially regulate the induction of LTP by different patterns of synaptic activity. PMID:18936077

  7. Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory

    PubMed Central

    Tamagnini, Francesco; Barker, Gareth; Warburton, E Clea; Burattini, Costanza; Aicardi, Giorgio; Bashir, Zafar I

    2013-01-01

    Synaptic plasticity in perirhinal cortex is essential for recognition memory. Nitric oxide and endocannabinoids (eCBs), which are produced in the postsynaptic cell and act on the presynaptic terminal, are implicated in mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in other brain regions. In this study, we examine these two retrograde signalling cascades in perirhinal cortex synaptic plasticity and in visual recognition memory in the rat. We show that inhibition of NO-dependent signalling prevented both carbachol- and activity (5 Hz)-dependent LTD but not activity (100 Hz theta burst)-dependent LTP in the rat perirhinal cortex in vitro. In contrast, inhibition of the eCB-dependent signalling prevented LTP but not the two forms of LTD in vitro. Local administration into perirhinal cortex of the nitric oxide synthase inhibitor NPA (2 μm) disrupted acquisition of long-term visual recognition memory. In contrast, AM251 (10 μm), a cannabinoid receptor 1 antagonist, did not impair visual recognition memory. The results of this study demonstrate dissociation between putative retrograde signalling mechanisms in LTD and LTP in perirhinal cortex. Thus, LTP relies on cannabinoid but not NO signalling, whilst LTD relies on NO- but not eCB-dependent signalling. Critically, these results also establish, for the first time, that NO- but not eCB-dependent signalling is important in perirhinal cortex-dependent visual recognition memory. PMID:23671159

  8. Improving potato drought tolerance through the induction of long-term water stress memory.

    PubMed

    Ramírez, D A; Rolando, J L; Yactayo, W; Monneveux, P; Mares, V; Quiroz, R

    2015-09-01

    Knowledge of drought tolerance in potato is limited and very little is known about stress memory in this crop. In the present study, long-term stress memory was tested on tuber yield and drought tolerance related traits in three potato varieties (Unica, Désirée and Sarnav) with contrasted yields under water restriction. Seed tubers produced by plants grown under non-restricted (non-primed tubers) and restricted (primed tubers) water conditions were sown and exposed to similar watering treatments. Tuber yield and leaf greenness of plants from primed and non-primed seeds as well as tuber carbon isotope discrimination (Δ(13)C) and antioxidant activity (AA) responses to watering treatments were compared. Higher tuber yield, both under non-restricted and restricted water regimes, was produced by primed Sarnav plants. The decrease of tuber yield and Δ(13)C with water restriction was lower in primed Unica plants. Long-term stress memory consequently appears to be highly genotype-dependent in potato. Its expression in plants originated from primed tubers and facing water restriction seems to be positively associated to the degree of inherent capability of the cultivar to yield under water restriction. However, other effects of priming appear to be genotype-independent as priming enhanced the tuber AA in response to water restriction in the three varieties. PMID:26259171

  9. High Content Imaging of Early Morphological Signatures Predicts Long Term Mineralization Capacity of Human Mesenchymal Stem Cells upon Osteogenic Induction.

    PubMed

    Marklein, Ross A; Lo Surdo, Jessica L; Bellayr, Ian H; Godil, Saniya A; Puri, Raj K; Bauer, Steven R

    2016-04-01

    Human bone marrow-derived multipotent mesenchymal stromal cells, often referred to as mesenchymal stem cells (MSCs), represent an attractive cell source for many regenerative medicine applications due to their potential for multi-lineage differentiation, immunomodulation, and paracrine factor secretion. A major complication for current MSC-based therapies is the lack of well-defined characterization methods that can robustly predict how they will perform in a particular in vitro or in vivo setting. Significant advances have been made with identifying molecular markers of MSC quality and potency using multivariate genomic and proteomic approaches, and more recently with advanced techniques incorporating high content imaging to assess high-dimensional single cell morphological data. We sought to expand upon current methods of high dimensional morphological analysis by investigating whether short term cell and nuclear morphological profiles of MSCs from multiple donors (at multiple passages) correlated with long term mineralization upon osteogenic induction. Using the combined power of automated high content imaging followed by automated image analysis, we demonstrated that MSC morphology after 3 days was highly correlated with 35 day mineralization and comparable to other methods of MSC osteogenesis assessment (such as alkaline phosphatase activity). We then expanded on this initial morphological characterization and identified morphological features that were highly predictive of mineralization capacities (>90% accuracy) of MSCs from additional donors and different manufacturing techniques using linear discriminant analysis. Together, this work thoroughly demonstrates the predictive power of MSC morphology for mineralization capacity and motivates further studies into MSC morphology as a predictive marker for additional in vitro and in vivo responses. Stem Cells 2016;34:935-947. PMID:26865267

  10. Noise Reduction in Long-term Self-potential Monitoring with Travelling Electrode Referencing

    NASA Astrophysics Data System (ADS)

    Perrier, Frédéric; Pant, Surendra Raj

    2005-01-01

    The long-term monitoring of the electric self-potential (SP) in geophysical systems is affected by electrode degradation and drift. This error contribution can be reduced if the electrodes of measuring dipoles are referenced to the same accessory electrode, moved in turn at each pole. The benefit of this travelling electrode referencing scheme (TER) has been evaluated in a dedicated experiment performed from March 2000 to March 2001 at Tribhuvan University, Nepal. Two prototype monitoring points separated by 55 m have been instrumented with pairs of lead-lead chloride Petiau electrodes, installed in buckets filled with salted bentonite at a depth of 1 and 2 meters. The electrical potential at 1 and 2 meters depth was also accessible from the surface by pipes filled with salted bentonite. Over one year, the measurement error, defined as the standard deviation of the difference between the measured potential and the true SP at a given time, is estimated to be 5 mV. This error value is reduced to less than 1 mV with TER. After correction, a smooth annual variation with amplitude of 10 to 15 mV is observed and is interpreted as streaming potentials associated with the monsoon and subsequent drying. These results provide significant guidelines for precision long-term SP monitoring, in particular in tropical volcanic or tectonically active regions.

  11. The Long-Term Effects of a Public School/State University Induction Program

    ERIC Educational Resources Information Center

    Davis, Barbara H.; Waite, Susan Field

    2006-01-01

    This paper describes a school/university graduate induction program that has provided support to beginning teachers since 1994. A 10-year follow-up study of program graduates was recently conducted to examine these questions: (a) How many graduates are still in the education profession? (b) How many have remained in the classroom? and (c) What are…

  12. Effects of selenium treatment on 6-n-propyl-2-thiouracil-induced impairment of long-term potentiation.

    PubMed

    Bitiktaş, Soner; Tan, Burak; Batakçı, Melek; Kavraal, Şehrazat; Dursun, Nurcan; Süer, Cem

    2016-08-01

    The goal of this study was to evaluate whether sodium selenite could afford protection against the effects of hypothyroidism on long-term potentiation (LTP), which is thought to be the cellular basis for learning and memory. Hypothyroidism was induced in young-adult rats by the administration of 6-n-propyl-2-thiouracil (PTU) in tap water for 21 days. Half of these hypothyroid and euthroid rats were given 10ppM selenium with their drinking water. Field potentials were recorded from the dentate gyrus in response to stimulation of the medial perforant pathway in vivo. PTU treatment resulted in a significant reduction in both free T3 and free T4 levels, whereas selenium administration to PTU-treated rats restored only the levels of free T3 to their control values. Thyroid hormone levels were not affected by selenium in euthyroid rats. PTU-treated rats exhibited an attenuation of population spike (PS) - LTP, but a comparable potentiation of excitatory postsynaptic potential (EPSP) was found among these rats. The administration of selenium to PTU-treated rats was partially able to attenuate impairment of LTP, but not of potentiation during the LTP induction protocol in hypothyroid rats. Interestingly, the hypothyroid rats that were supplemented with selenium had a lower EPSP potentiation during induction protocol than the control rats. The present study suggests a possible importance of T3 in Se-induced rescue of impaired PS-LTP in hypothyroidism. PMID:26892488

  13. Repassivation potentials for long-term life prediction of localized corrosion

    SciTech Connect

    Sridhar, N.; Cragnolino, G.

    1993-12-31

    The effect of pit growth on repassivation potentials (e{sub rp}) of type 316L stainless steel (SS) and alloy 825 is investigated using a decreasing potential staircase technique. The E{sub rp} decreases initially with increasing pit depth and then attains a value which is relatively independent of pit depth. The E{sub rp} also decreases with increasing potential scan rate because of the decreasing time for repassivation with decreasing potential. The E{sub rp} is explained in terms of the effect of applied potential on changes in solution composition inside growing pits and its use is recommended as a bounding parameter for long-term prediction of localized corrosion.

  14. Potential of mass trapping for long-term pest management and eradication of invasive species.

    PubMed

    El-Sayed, A M; Suckling, D M; Wearing, C H; Byers, J A

    2006-10-01

    Semiochemical-based pest management programs comprise three major approaches that are being used to provide environmentally friendly control methods of insect pests: mass trapping, "lure and kill," and mating disruption. In this article, we review the potential of mass trapping in long-term pest management as well as in the eradication of invasive species. We discuss similarities and differences between mass trapping and other two main approaches of semiochemical-based pest management programs. We highlight several study cases where mass trapping has been used either in long-term pest management [e.g., codling moth, Cydia pomonella (L.); pink bollworm, Pectinophora gossypiella (Saunders); bark beetles, palm weevils, corn rootworms (Diabrotica spp.); and fruit flies] or in eradication of invasive species [e.g., gypsy moth, Lymantria dispar (L.); and boll weevil, Anthonomus grandis grandis Boheman). We list the critical issues that affect the efficacy of mass trapping and compare these with previously published models developed to investigate mass trapping efficacy in pest control. We conclude that mass trapping has good potential to suppress or eradicate low-density, isolated pest populations; however, its full potential in pest management has not been adequately realized and therefore encourages further research and development of this technology. PMID:17066782

  15. Low-frequency stimulation induces long-term depression and slow onset long-term potentiation at perforant path-dentate gyrus synapses in vivo.

    PubMed

    Gonzalez, Jossina; Morales, Isaiah S; Villarreal, Desiree M; Derrick, Brian E

    2014-03-01

    The expression of homosynaptic long-term depression (LTD) is thought to mediate a crucial role in sustaining memory function. Our in vivo investigations of LTD expression at lateral (LPP) and medial perforant path (MPP) synapses in the dentate gyrus (DG) corroborate prior demonstrations that PP-DG LTD is difficult to induce in intact animals. In freely moving animals, LTD expression occurred inconsistently among LPP-DG and MPP-DG responses. Interestingly, following acute electrode implantation in anesthetized rats, low-frequency stimulation (LFS; 900 pulses, 1 Hz) promotes slow-onset LTP at both MPP-DG and LPP-DG synapses that utilize distinct induction mechanisms. Systemic administration of the N-methyl-d-aspartate (NMDA) receptor antagonist (+/-)-cyclopiperidine-6-piperiperenzine (CPP; 10 mg/kg) 90 min before LFS selectively blocked MPP-DG but not LPP-DG slow onset LTP, suggesting MPP-DG synapses express a NMDA receptor-dependent slow onset LTP whereas LPP-DG slow onset LTP induction is NMDA receptor independent. In experiments where paired-pulse LFS (900 paired pulses, 200-ms paired-pulse interval) was used to induce LTD, paired-pulse LFS of the LPP resulted in rapid onset LTP of DG responses, whereas paired-pulse LFS of the MPP induced slow onset LTP of DG responses. Although LTD observations were very rare following acute electrode implantation in anesthetized rats, LPP-DG LTD was demonstrated in some anesthetized rats with previously implanted electrodes. Together, our data indicate in vivo PP-DG LTD expression is an inconsistent phenomenon that is primarily observed in recovered animals, suggesting perturbation of the dentate through surgery-related tissue trauma influences both LTD incidence and LTP induction at PP-DG synapses in vivo. PMID:24335215

  16. Long-term changes in pigmentation of arctic Daphnia provide potential for reconstructing aquatic UV exposure

    NASA Astrophysics Data System (ADS)

    Nevalainen, Liisa; Rantala, Marttiina V.; Luoto, Tomi P.; Ojala, Antti E. K.; Rautio, Milla

    2016-07-01

    Despite the biologically damaging impacts of solar ultraviolet radiation (UV) in nature, little is known about its natural variability, forcing mechanisms, and long-term effects on ecosystems and organisms. Arctic zooplankton, for example the aquatic keystone genus Daphnia (Crustacea, Cladocera) responds to biologically damaging UV by utilizing photoprotective strategies, including pigmentation. We examined the preservation and content of UV-screening pigments in fossil Daphnia remains (ephippia) in two arctic lake sediment cores from Cornwallis Island (Lake R1), Canada, and Spitsbergen (Lake Fugledammen), Svalbard. The aims were to document changes in the degree of UV-protective pigmentation throughout the past centuries, elucidate the adaptive responses of zooplankton to long-term variations in UV exposure, and estimate the potential of fossil zooplankton pigments in reconstructing aquatic UV regimes. The spectroscopic absorbance measurements of fossil Daphnia ephippia under UV (280-400 nm) and visible light (400-700 nm) spectral ranges indicated that melanin (absorbance maxima at UV wavebands 280-350 nm) and carotenoids (absorbance maxima at 400-450 nm) pigments were preserved in the ephippia in both sediment cores. Downcore measurements of the most important UV-protective pigment melanin (absorbance measured at 305 and 340 nm) showed marked long-term variations in the degree of melanisation. These variations likely represented long-term trends in aquatic UV exposure and were positively related with solar radiation intensity. The corresponding trends in melanisation and solar activity were disrupted at the turn of the 20th century in R1, but remained as strong in Fugledammen. The reversed trends in the R1 core were simultaneous with a significant aquatic community reorganization taking place in the lake, suggesting that recent environmental changes, likely related to climate warming had a local effect on pigmentation strategies. This time horizon is also

  17. Acute cocaine exposure alters spine density and long-term potentiation in the ventral tegmental area.

    PubMed

    Sarti, Federica; Borgland, Stephanie L; Kharazia, Viktor N; Bonci, Antonello

    2007-08-01

    Growing evidence indicates that the expression of synaptic plasticity in the central nervous system results in dendritic reorganization and spine remodeling. Although long-term potentiation of glutamatergic synapses after cocaine exposure in the ventral tegmental area (VTA) has been proposed as a cellular mechanism underlying addictive behaviors, the relationship between long-term potentiation and dendritic remodeling induced by cocaine on the dopaminergic neurons of the VTA has not been demonstrated. Here we report that rat VTA cells classified as type I and II showed distinct morphological responses to cocaine, as a single cocaine exposure significantly increased dendritic spine density in type I but not in type II cells. Further, only type I cells had a significant increase in the AMPA receptor:NMDA receptor ratio after a single cocaine exposure. Taken together, our data provide evidence that increased spine density and synaptic plasticity are coexpressed within the same VTA neuronal population and that only type I neurons are structurally and synaptically modified by cocaine. PMID:17686047

  18. Ineffectiveness of organic calcium channel blockers in antagonizing long-term potentiation.

    PubMed

    Taube, J S; Schwartzkroin, P A

    1986-08-01

    Evidence has accumulated suggesting that the presence of calcium is critical for development of hippocampal long-term potentiation (LTP). However, there is a paucity of information about whether calcium's role in LTP is pre- or postsynaptic. In the present study, we examined the effectiveness of nitrendipine, verapamil, flunarizine and the benzodiazepine diazepam in: blocking voltage-dependent calcium channels; blocking synaptic transmission; and preventing development of LTP. Using the in vitro slice preparation, we obtained intracellular and extracellular recordings from guinea pig hippocampal CA1 pyramidal cells. At the cellular level, all 4 drugs were ineffective in blocking voltage-dependent calcium spikes (TTX resistant) and the calcium-dependent afterhyperpolarization. Verapamil and diazepam appeared to antagonize synaptic transmission, as reflected in smaller population spike amplitudes. Development of long-term potentiation was not affected by the presence of verapamil, flunarizine and diazepam. Nitrendipine appeared to reduce the percentage of slices exhibiting LTP; however, ethanol, the vehicle used to dissolve nitrendipine, was shown in separate experiments to reduce the percentage of slices exhibiting LTP. These results suggest that neither the organic calcium channel blockers--nitrendipine, verapamil, and flunarizine--nor micromolar concentrations of diazepam are potent blockers of extrasynaptic voltage-sensitive calcium channels in hippocampus. They thus cannot be used to demonstrate a specific pre- or postsynaptic calcium role in LTP. PMID:3017511

  19. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    NASA Astrophysics Data System (ADS)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  20. SCRAPPER regulates the thresholds of long-term potentiation/depression, the bidirectional synaptic plasticity in hippocampal CA3-CA1 synapses.

    PubMed

    Takagi, Hiroshi; Setou, Mitsutoshi; Ito, Seiji; Yao, Ikuko

    2012-01-01

    SCRAPPER, which is an F-box protein encoded by FBXL20, regulates the frequency of the miniature excitatory synaptic current through the ubiquitination of Rab3-interacting molecule 1. Here, we recorded the induction of long-term potentiation/depression (LTP/LTD) in CA3-CA1 synapses in E3 ubiquitin ligase SCRAPPER-deficient hippocampal slices. Compared to wild-type mice, Scrapper-knockout mice exhibited LTDs with smaller magnitudes after induction with low-frequency stimulation and LTPs with larger magnitudes after induction with tetanus stimulation. These findings suggest that SCRAPPER regulates the threshold of bidirectional synaptic plasticity and, therefore, metaplasticity. PMID:23316391

  1. Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons

    PubMed Central

    Kim, Yujin; Hsu, Ching-Lung; Cembrowski, Mark S; Mensh, Brett D; Spruston, Nelson

    2015-01-01

    Dendritic integration of synaptic inputs mediates rapid neural computation as well as longer-lasting plasticity. Several channel types can mediate dendritically initiated spikes (dSpikes), which may impact information processing and storage across multiple timescales; however, the roles of different channels in the rapid vs long-term effects of dSpikes are unknown. We show here that dSpikes mediated by Nav channels (blocked by a low concentration of TTX) are required for long-term potentiation (LTP) in the distal apical dendrites of hippocampal pyramidal neurons. Furthermore, imaging, simulations, and buffering experiments all support a model whereby fast Nav channel-mediated dSpikes (Na-dSpikes) contribute to LTP induction by promoting large, transient, localized increases in intracellular calcium concentration near the calcium-conducting pores of NMDAR and L-type Cav channels. Thus, in addition to contributing to rapid neural processing, Na-dSpikes are likely to contribute to memory formation via their role in long-lasting synaptic plasticity. DOI: http://dx.doi.org/10.7554/eLife.06414.001 PMID:26247712

  2. Coincident Activity of Converging Pathways Enables Simultaneous Long-Term Potentiation and Long-Term Depression in Hippocampal CA1 Network In Vivo

    PubMed Central

    Cao, Jun; Zhang, Xia; Xu, Lin

    2008-01-01

    Memory is believed to depend on activity-dependent changes in the strength of synapses, e.g. long-term potentiation (LTP) and long-term depression (LTD), which can be determined by the sequence of coincident pre- and postsynaptic activity, respectively. It remains unclear, however, whether and how coincident activity of converging efferent pathways can enable LTP and LTD in the pathways simultaneously. Here, we report that, in pentobarbital-anesthetized rats, stimulation (600 pulses, 5 Hz) to Schaffer preceding to commissural pathway within a 40-ms timing window induced similar magnitudes of LTP in both pathways onto synapses of CA1 neurons, with varied LTP magnitudes after reversal of the stimulation sequence. In contrast, in urethane-anesthetized or freely-moving rats, the stimulation to Schaffer preceding to commissural pathway induced Schaffer LTP and commissural LTD simultaneously within a 40-ms timing window, without affecting synaptic efficacy in the reversed stimulation sequence. Coincident activity of Schaffer pathways confirmed the above findings under pentobarbital and urethane anesthesia. Thus, coincident activity of converging afferent pathways tends to switch the pathways to be LTP only or LTP/LTD depending on the activity states of the hippocampus. This network rule strengthens the view that activity-dependent synaptic plasticity may well contribute to memory process of the hippocampal network with flexibility or stability from one state to another. PMID:18682723

  3. Wip1 phosphatase modulates both long-term potentiation and long-term depression through the dephosphorylation of CaMKII.

    PubMed

    He, Zhi-Yong; Hu, Wei-Yan; Zhang, Ming; Yang, Zara Zhuyun; Zhu, Hong-Mei; Xing, Da; Ma, Quan-Hong; Xiao, Zhi-Cheng

    2016-05-01

    Synaptic plasticity is an important mechanism that underlies learning and cognition. Protein phosphorylation by kinases and dephosphorylation by phosphatases play critical roles in the activity-dependent alteration of synaptic plasticity. In this study, we report that Wip1, a protein phosphatase, is essential for long-term potentiation (LTP) and long-term depression (LTD) processes. Wip1-deletion suppresses LTP and enhances LTD in the hippocampus CA1 area. Wip1 deficiency-induced aberrant elevation of CaMKII T286/287 and T305 phosphorylation underlies these dysfunctions. Moreover, we showed that Wip1 modulates CaMKII dephosphorylation. Wip1(-/-) mice exhibit abnormal GluR1 membrane expression, which could be reversed by the application of a CaMKII inhibitor, indicating that Wip1/CaMKII signaling is crucial for synaptic plasticity. Together, our results demonstrate that Wip1 phosphatase plays a vital role in regulating hippocampal synaptic plasticity by modulating the phosphorylation of CaMKII. PMID:27158969

  4. A model of the mechanism of cooperativity and associativity of long-term potentiation in the hippocampus: a fundamental mechanism of associative memory and learning.

    PubMed

    Kitajima, T; Hara, K

    1991-01-01

    Long-Term Potentiation (LTP) has three properties: (1) input specificity, (2) cooperativity and (3) associativity. In a previous paper, we proposed an integrated model of the mechanisms of the induction and maintenance of LTP with input specificity. In this paper, a model of the mechanism of cooperative and associative LTP is described. According to computer simulations of the model, its mechanism is based on the spread of synaptic potentials. PMID:2049412

  5. Long-Term Potentiation by Theta-Burst Stimulation Using Extracellular Field Potential Recordings in Acute Hippocampal Slices.

    PubMed

    Abrahamsson, Therese; Lalanne, Txomin; Watt, Alanna J; Sjöström, P Jesper

    2016-01-01

    This protocol describes how to carry out theta-burst long-term potentiation (LTP) with extracellular field recordings in acute rodent hippocampal slices. This method is relatively simple and noninvasive and provides a way to sample many neurons simultaneously, making it suitable for applications requiring higher throughput than whole-cell recording. PMID:27250947

  6. Enhanced AMPA receptor function promotes cerebellar long-term depression rather than potentiation

    PubMed Central

    van Beugen, Boeke J.; Qiao, Xin; Simmons, Dana H.; De Zeeuw, Chris I.

    2014-01-01

    Ampakines are allosteric modulators of AMPA receptors that facilitate hippocampal long-term potentiation (LTP) and learning, and have been considered for the treatment of cognition and memory deficits. Here, we show that the ampakine CX546 raises the amplitude and slows the decay time of excitatory postsynaptic currents (EPSCs) at cerebellar parallel fiber (PF) to Purkinje cell synapses, thus resembling CX546 effects described at hippocampal synapses. Using the fluorescent calcium indicator dye Oregon Green BAPTA-2 and an ultra-high-speed CCD camera, we also monitored calcium transients in Purkinje cell dendrites. In the presence of CX546 in the bath, PF-evoked calcium transients were enhanced and prolonged, suggesting that CX546 not only enhances synaptic transmission, but also boosts dendritic calcium signaling at cerebellar synapses. In contrast to previous observations in the hippocampus, however, CX546 applied during cerebellar recordings facilitates long-term depression (LTD) rather than LTP at PF synapses. These findings show that ampakines selectively modify the LTP–LTD balance depending on the brain area and type of synapse, and may provide tools for the targeted regulation of synaptic memories. PMID:25403454

  7. Non-opioid antitussives and methadone differentially influence hippocampal long-term potentiation in freely moving rats.

    PubMed

    Krug, M; Matthies, R; Wagner, M; Brödemann, R

    1993-02-16

    Long-term potentiation (LTP) of monosynaptically evoked field potentials (MEFP) in the dentate gyrus of freely moving rats following tetanization of the perforant pathway was investigated after peripheral application of substances which have been shown to influence NMDA receptor-mediated effects (dextromethorphan, methadone) as well as structurally related substances with similar antitussive effects (codeine, normethadone). The noncompetitive NMDA receptor antagonist MK 801 was also tested for comparison. Whereas under control conditions the field e.p.s.p. (excitatory postsynaptic potential) and the population spike of the MEFP were largely uninfluenced by these substances, different effects were seen after the induction of LTP. MK 801 (0.2 mg/kg i.p.) suppressed the induction of LTP of both the field e.p.s.p. and the population spike. Dextromethorphan (40 mg/kg i.p.) also prevented the potentiation of the field e.p.s.p. and the population spike, thus resembling MK 801 in its effect. Codeine (20 mg/kg i.p.), the levorotatory structural analogue of dextromethorphan had no effect. Methadone and normethadone did not influence the potentiation of the field e.p.s.p. or interfere with the induction of potentiation of the population spike but depressed its maintenance. The results obtained with MK 801 confirm those reported by others. Comparison of the effects of dextromethorphan with those of MK 801, suggests that there is a direct interaction with the NMDA receptor-ionophore complex. The effects of methadone and normethadone appear not to be linked to an interaction with opioid receptors, since naloxone did not influence the suppression of LTP caused by methadone. The possibility of interference with the NMDA receptor-ionophore complex is discussed. PMID:8449228

  8. Neonatal Immune Tolerance Induction to Allow Long-Term Studies With an Immunogenic Therapeutic Monoclonal Antibody in Mice.

    PubMed

    Piccand, Matthieu; Bessa, Juliana; Schick, Eginhard; Senn, Claudia; Bourquin, Carole; Richter, Wolfgang F

    2016-03-01

    The purpose of this study is to test the feasibility of neonatal immune tolerance induction in mice to enable long-term pharmacokinetic studies with immunogenic therapeutic monoclonal antibodies (mAb). Neonatal immune tolerance was induced by transfer of a mAb to neonatal mice via colostrum from nursing mother mice treated with two subcutaneous doses of a tolerogen starting within the first 24 h after delivery. Adalimumab and efalizumab were administered as tolerogens at various dose levels. Tolerance induction was evaluated in the offspring after reaching adulthood at 8 weeks of age. After a single intravenous injection of the same mAb as used for tolerance induction, the pharmacokinetics of the mAb and formation of anti-drug antibodies (ADA) in plasma were assessed using ELISA. Tolerance induction to adalimumab was achieved in a maternal dose-dependent manner. Adalimumab immune-tolerant offspring showed a slower adalimumab clearance (4.24 ± 0.32 mL/day/kg) as compared to the control group (12.09 ± 3.81 mL/day/kg). In the control group, accelerated clearance started 7 days after adalimumab dosing, whereas immune-tolerant offspring showed a log-linear terminal concentration-time course. In the offspring, the absence of predose ADA levels was indicative of successful tolerance induction. The second test compound efalizumab was not immunogenic in mice under our experimental conditions. Overall, the present study demonstrated the suitability of neonatal immune tolerance induction for a 4-week single dose study in adult mice with a human therapeutic mAb that is otherwise immunogenic in laboratory animals. PMID:26603888

  9. Migraine mutations impair hippocampal learning despite enhanced long-term potentiation.

    PubMed

    Dilekoz, Ergin; Houben, Thijs; Eikermann-Haerter, Katharina; Balkaya, Mustafa; Lenselink, A Mariette; Whalen, Michael J; Spijker, Sabine; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Ayata, Cenk

    2015-02-25

    To explain cognitive and memory difficulties observed in some familial hemiplegic migraine (FHM) patients, we examined hippocampal neurotransmission and plasticity in knock-in mice expressing the FHM type 1 (FHM1) R192Q gain-of function mutation in the CACNA1A gene that encodes the α1A subunit of neuronal CaV2.1 channels. We determined stimulus intensity-response curves for anterior commissure-evoked hippocampal CA1 field potentials in strata pyramidale and radiatum and assessed neuroplasticity by inducing long-term potentiation (LTP) and long-term depression (LTD) in anesthetized mice in vivo. We also studied learning and memory using contextual fear-conditioning, Morris water maze, and novel object recognition tests. Hippocampal field potentials were significantly enhanced in R192Q mice compared with wild-type controls. Stimulus intensity-response curves were shifted to the left and displayed larger maxima in the mutants. LTP was augmented by twofold in R192Q mice, whereas LTD was unchanged compared with wild-type mice. R192Q mice showed significant spatial memory deficits in contextual fear-conditioning and Morris water maze tests compared with wild-type controls. Novel object recognition was not impaired in R192Q mice; however, mice carrying the more severe S218L CACNA1A mutation showed marked deficits in this test, suggesting a genotype-phenotype relationship. Thus, whereas FHM1 gain-of-function mutations enhance hippocampal excitatory transmission and LTP, learning and memory are paradoxically impaired, providing a possible explanation for cognitive changes detected in FHM. Data suggest that abnormally enhanced plasticity can be as detrimental to efficient learning as reduced plasticity and highlight how genetically enhanced neuronal excitability may impact cognitive function. PMID:25716839

  10. Potential of "lure and kill" in long-term pest management and eradication of invasive species.

    PubMed

    El-Sayed, A M; Suckling, D M; Byers, J A; Jang, E B; Wearing, C H

    2009-06-01

    "Lure and kill" technology has been used for several decades in pest management and eradication of invasive species. In lure and kill, the insect pest attracted by a semiochemical lure is not "entrapped" at the source of the attractant as in mass trapping, but instead the insect is subjected to a killing agent, which eliminates affected individuals from the population after a short period. In past decades, a growing scientific literature has been published on this concept. This article provides the first review on the potential of lure and kill in long-term pest management and eradication of invasive species. We present a summary of lure and kill, either when used as a stand-alone control method or in combination with other methods. We discuss its efficacy in comparison with other control methods. Several case studies in which lure and kill has been used with the aims of long-term pest management (e.g., pink bollworm, Egyptian cotton leafworm, codling moth, apple maggot, biting flies, and bark beetles) or the eradication of invasive species (e.g., tephritid fruit flies and boll weevils) are provided. Subsequently, we identify essential knowledge required for successful lure and kill programs that include lure competitiveness with natural odor source; lure density; lure formulation and release rate; pest population density and risk of immigration; and biology and ecology of the target species. The risks associated with lure and kill, especially when used in the eradication programs, are highlighted. We comment on the cost-effectiveness of this technology and its strengths and weaknesses, and list key reasons for success and failure. We conclude that lure and kill can be highly effective in controlling small, low-density, isolated populations, and thus it has the potential to add value to long-term pest management. In the eradication of invasive species, lure and kill offers a major advantage in effectiveness by its being inverse density dependent and it provides

  11. Expression mechanisms underlying long-term potentiation: a postsynaptic view, 10 years on

    PubMed Central

    Granger, Adam J.; Nicoll, Roger A.

    2014-01-01

    This review focuses on the research that has occurred over the past decade which has solidified a postsynaptic expression mechanism for long-term potentiation (LTP). However, experiments that have suggested a presynaptic component are also summarized. It is argued that the pairing of glutamate uncaging onto single spines with postsynaptic depolarization provides the final and most elegant demonstration of a postsynaptic expression mechanism for NMDA receptor-dependent LTP. The fact that the magnitude of this LTP is similar to that evoked by pairing synaptic stimulation and depolarization leaves little room for a substantial presynaptic component. Finally, recent data also require a revision in our thinking about the way AMPA receptors (AMPARs) are recruited to the postsynaptic density during LTP. This recruitment is independent of subunit type, but does require an adequate reserve pool of extrasynaptic receptors. PMID:24298139

  12. A ketogenic diet does not impair rat behavior or long-term potentiation.

    PubMed

    Thio, Liu Lin; Rensing, Nicholas; Maloney, Susan; Wozniak, David F; Xiong, Chengjie; Yamada, Kelvin A

    2010-08-01

    The effect of the ketogenic diet on behavior and cognition is unclear. We addressed this issue in rats behaviorally and electrophysiologically.We fed postnatal day 21 rats a standard diet (SD), ketogenic diet (KD), or calorie-restricted diet (CR) for 2–3 weeks. CR controlled for the slower weight gain experienced by KD-fed rats. We assessed behavioral performance with a locomotor activity and a conditioned fear test. To evaluate possible parallel effects of diet on synaptic function, we examined paired-pulse modulation (PPM) and long-term potentiation (LTP) in the medial perforant path in vivo. KD-fed rats performed similarly to SD-fed rats on the behavioral tests and electrophysiologic assays. These data suggest that the KD does not alter behavioral performance or synaptic plasticity. PMID:20132289

  13. Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory

    PubMed Central

    Xia, Menghang; Huang, Ruili; Guo, Vicky; Southall, Noel; Cho, Ming-Hsuang; Inglese, James; Austin, Christopher P.; Nirenberg, Marshall

    2009-01-01

    Many studies have implicated the cAMP Response Element Binding (CREB) protein signaling pathway in long-term memory. To identify small molecule enhancers of CREB activation of gene expression, we screened ≈73,000 compounds, each at 7–15 concentrations in a quantitative high-throughput screening (qHTS) format, for activity in cells by assaying CREB mediated β-lactamase reporter gene expression. We identified 1,800 compounds that potentiated CREB mediated gene expression, with potencies as low as 16 nM, comprising 96 structural series. Mechanisms of action were systematically determined, and compounds that affect phosphodiesterase 4, protein kinase A, and cAMP production were identified, as well as compounds that affect CREB signaling via apparently unidentified mechanisms. qHTS folowed by interrogation of pathway targets is an efficient paradigm for lead generation for chemical genomics and drug development. PMID:19196967

  14. Transport of AMPA receptors during long-term potentiation is impaired in rats with hepatic encephalopathy.

    PubMed

    Monfort, Pilar; Piedrafita, Blanca; Felipo, Vicente

    2009-12-01

    Cognitive function is impaired in patients with hepatic encephalopathy. Learning ability is also impaired in rats with hepatic encephalopathy due to portacaval shunts. Long-term potentiation (LTP) in hippocampus, considered the basis of some forms of learning and memory, is impaired in rats with portacaval shunt. We analyzed the mechanisms by which LTP is impaired in these rats. In control rats, application of the tetanus to induce LTP increases phosphorylation of Thr286 of calcium-calmodulin dependent protein kinase II. This activates the kinase which phosphorylates the GluR1 subunit of AMPA receptors in Ser831 and induces its translocation to the post-synaptic densities. All these steps are completely prevented in rats with hepatic encephalopathy in which the tetanus does not induce phosphorylation of CaMKII or GluR1 nor translocation of this subunit to the post-synaptic membrane. This would explain the impairment in LTP in these rats. PMID:19450629

  15. Differences Between Synaptic Plasticity Thresholds Result in New Timing Rules for Maximizing Long-Term Potentiation

    PubMed Central

    Lynch, Gary; Kramár, Enikö A.; Babayan, Alex H.; Rumbaugh, Gavin; Gall, Christine M.

    2012-01-01

    The fundamental observation that the temporal spacing of learning episodes plays a critical role in the efficiency of memory encoding has had little effect on either research on long-term potentiation (LTP) or efforts to develop cognitive enhancers. Here we review recent findings describing a spaced trials phenomenon for LTP that appears to be related to recent evidence that plasticity thresholds differ between synapses in the adult hippocampus. Results of tests with one memory enhancing drug suggest that the compound potently facilitates LTP via effects on high threshold synapses and thus alters the temporally extended timing rules. Possible implications of these results for our understanding of LTP substrates, neurobiological contributors to the distributed practice effect, and the consequences of memory enhancement are discussed. PMID:22820276

  16. Time-dependent reversal of long-term potentiation by brief cooling shocks in rat hippocampal slices.

    PubMed

    Bittar, P; Muller, D

    1993-08-27

    Using a recording chamber built with peltier elements, we studied the effects of fast and brief reductions in temperature on synaptic transmission and plasticity in area CA1 of rat hippocampal slices. Cooling shocks consisted of a drop in temperature from 33 degrees C to 30 degrees C, 27 degrees C or 24 degrees C for 2-5 min. Equilibrium to the new temperature was reached in about 30 s. During these cooling episodes, marked modifications of the size and time course of synaptic responses were observed. Changing the temperature for 4-5 min from 33 degrees C to 24 degrees C resulted in a 75% reduction in amplitude and 158% prolongation of the rise time of excitatory postsynaptic potentials (EPSPs). These changes were followed by a complete recovery of synaptic transmission. This recovery was very fast for the EPSP rise time (about 30 s), but much slower for the amplitude or initial slope (20-30 min). This slow recovery was correlated with changes in size of the presynaptic fiber volley, thereby indicating transient modifications of cell excitability. Application of cooling episodes of 4-5 min from 33 degrees C to 24 degrees C during the first 20 min that followed induction of long-term potentiation resulted in a complete reversal of synaptic potentiation. The LTP abolished by a cooling shock could be reinstated by re-applying high frequency trains. Several sequential induction/abolition effects could thus be obtained. In contrast, cooling episodes applied later than 25 min after LTP induction did not affect synaptic potentiation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8396492

  17. Involvement of microglia activation in the lead induced long-term potentiation impairment.

    PubMed

    Liu, Ming-Chao; Liu, Xin-Qin; Wang, Wen; Shen, Xue-Feng; Che, Hong-Lei; Guo, Yan-Yan; Zhao, Ming-Gao; Chen, Jing-Yuan; Luo, Wen-Jing

    2012-01-01

    Exposure of Lead (Pb), a known neurotoxicant, can impair spatial learning and memory probably via impairing the hippocampal long-term potentiation (LTP) as well as hippocampal neuronal injury. Activation of hippocampal microglia also impairs spatial learning and memory. Thus, we raised the hypothesis that activation of microglia is involved in the Pb exposure induced hippocampal LTP impairment and neuronal injury. To test this hypothesis and clarify its underlying mechanisms, we investigated the Pb-exposure on the microglia activation, cytokine release, hippocampal LTP level as well as neuronal injury in in vivo or in vitro model. The changes of these parameters were also observed after pretreatment with minocycline, a microglia activation inhibitor. Long-term low dose Pb exposure (100 ppm for 8 weeks) caused significant reduction of LTP in acute slice preparations, meanwhile, such treatment also significantly increased hippocampal microglia activation as well as neuronal injury. In vitro Pb-exposure also induced significantly increase of microglia activation, up-regulate the release of cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) in microglia culture alone as well as neuronal injury in the co-culture with hippocampal neurons. Inhibiting the microglia activation with minocycline significantly reversed the above-mentioned Pb-exposure induced changes. Our results showed that Pb can cause microglia activation, which can up-regulate the level of IL-1β, TNF-α and iNOS, these proinflammatory factors may cause hippocampal neuronal injury as well as LTP deficits. PMID:22952811

  18. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus

    PubMed Central

    Dennis, Siobhan H.; Pasqui, Francesca; Colvin, Ellen M.; Sanger, Helen; Mogg, Adrian J.; Felder, Christian C.; Broad, Lisa M.; Fitzjohn, Steve M.; Isaac, John T.R.; Mellor, Jack R.

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans. PMID:26472558

  19. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus.

    PubMed

    Dennis, Siobhan H; Pasqui, Francesca; Colvin, Ellen M; Sanger, Helen; Mogg, Adrian J; Felder, Christian C; Broad, Lisa M; Fitzjohn, Steve M; Isaac, John T R; Mellor, Jack R

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans. PMID:26472558

  20. Long-term variability of the thunderstorm and hail potential in Europe

    NASA Astrophysics Data System (ADS)

    Mohr, Susanna; Kunz, Michael; Speidel, Johannes; Piper, David

    2016-04-01

    Severe thunderstorms and associated hazardous weather events such as hail frequently cause considerable damage to buildings, crops, and automobiles, resulting in large monetary costs in many parts of Europe and the world. To relate single extreme hail events to the historic context and to estimate their return periods and possible trends related to climate change, long-term statistics of hail events are required. Due to the local-scale nature of hail and a lack of suitable observation systems, however, hailstorms are not captured reliably and comprehensively for a long period of time. In view of this fact, different proxies (indirect climate data) obtained from sounding stations and regional climate models can be used to infer the probability and intensity of thunderstorms or hailstorms. In contrast to direct observational data, such proxies are available homogeneously over a long time period. The aim of the study is to investigate the potential for severe thunderstorms and their changes over past decades. Statistical analyses of sounding data show that the convective potential over the past 20 - 30 years has significantly increased over large parts of Central Europe, making severe thunderstorms more likely. A similar picture results from analyses of weather types that are most likely associated with damaging hailstorms. These weather patterns have increased, even if only slightly but nevertheless statistically significantly, in the time period from 1971 to 2000. To improve the diagnostics of hail events in regional climate models, a logistic hail model has been developed by means of a multivariate analysis method. The model is based on a combination of appropriate hail-relevant meteorological parameters. The output of the model is a new index that estimates the potential of the atmosphere for hailstorm development, referred to as potential hail index (PHI). Applied to a high-resolved reanalysis run for Europe driven by NCEP/NCAR1, long-term changes of the PHI for

  1. Prolonged ampakine exposure prunes dendritic spines and increases presynaptic release probability for enhanced long-term potentiation in the hippocampus.

    PubMed

    Chang, Philip K-Y; Prenosil, George A; Verbich, David; Gill, Raminder; McKinney, R Anne

    2014-09-01

    CX 546, an allosteric positive modulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic glutamate receptors (AMPARs), belongs to a drug class called ampakines. These compounds have been shown to enhance long-term potentiation (LTP), a cellular model of learning and memory, and improve animal learning task performance, and have augmented cognition in neurodegenerative patients. However, the chronic effect of CX546 on synaptic structures has not been examined. The structure and integrity of dendritic spines are thought to play a role in learning and memory, and their abnormalities have been implicated in cognitive disorders. In addition, their structural plasticity has been shown to be important for cognitive function, such that dendritic spine remodeling has been proposed as the morphological correlate for LTP. Here, we tested the effect of CX546 on dendritic spine remodeling following long-term treatment. We found that, with prolonged CX546 treatment, organotypic hippocampal slice cultures showed a significant reduction in CA3-CA1 excitatory synapse and spine density. Electrophysiological approaches revealed that the CA3-CA1 circuitry compensates for this synapse loss by increasing synaptic efficacy through enhancement of presynaptic release probability. CX546-treated slices showed prolonged and enhanced potentiation upon LTP induction. Furthermore, structural plasticity, namely spine head enlargement, was also more pronounced after CX546 treatment. Our results suggest a concordance of functional and structural changes that is enhanced with prolonged CX546 exposure. Thus, the improved cognitive ability of patients receiving ampakine treatment may result from the priming of synapses through increases in the structural plasticity and functional reliability of hippocampal synapses. PMID:24925283

  2. The Association between Long-Term Care Setting and Potentially Preventable Hospitalizations among Older Dual Eligibles

    PubMed Central

    Wysocki, Andrea; Kane, Robert L; Golberstein, Ezra; Dowd, Bryan; Lum, Terry; Shippee, Tetyana

    2014-01-01

    Objective To compare the probability of experiencing a potentially preventable hospitalization (PPH) between older dual eligible Medicaid home and community-based service (HCBS) users and nursing home residents. Data Sources Three years of Medicaid and Medicare claims data (2003–2005) from seven states, linked to area characteristics from the Area Resource File. Study Design A primary diagnosis of an ambulatory care sensitive condition on the inpatient hospital claim was used to identify PPHs. We used inverse probability of treatment weighting to mitigate the potential selection of HCBS versus nursing home use. Principal Findings The most frequent conditions accounting for PPHs were the same among the HCBS users and nursing home residents and included congestive heart failure, pneumonia, chronic obstructive pulmonary disease, urinary tract infection, and dehydration. Compared to nursing home residents, elderly HCBS users had an increased probability of experiencing both a PPH and a non-PPH. Conclusions HCBS users’ increased probability for potentially and non-PPHs suggests a need for more proactive integration of medical and long-term care. PMID:24628471

  3. Overexpression of Protein Kinase Mζ in the Hippocampus Enhances Long-Term Potentiation and Long-Term Contextual But Not Cued Fear Memory in Rats

    PubMed Central

    Fernández-Fernández, Diego; Lamla, Thorsten; Rosenbrock, Holger

    2016-01-01

    The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. SIGNIFICANCE STATEMENT Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional

  4. Long-term potentiation of neuronal excitation by neuron-glia interactions in the rat spinal dorsal horn.

    PubMed

    Ikeda, Hiroshi; Tsuda, Makoto; Inoue, Kazuhide; Murase, Kazuyuki

    2007-03-01

    By imaging neuronal excitation in rat spinal cord slices with a voltage-sensitive dye, we examined the role of glial cells in the P2X receptor agonist alphabeta-methylene ATP (alphabetameATP)-triggered long-term potentiation (LTP) in the dorsal horn. Bath application of alphabetameATP potentiated neuronal excitation in the superficial dorsal horn. The potentiation was inhibited in the presence of the P2X receptor antagonists TNP-ATP, PPADS and A-317491, and was not induced in slices taken from rats neonatally treated with capsaicin. These results suggest that alphabetameATP acts on P2X receptors, possibly P2X(3) and/or P2X(2/3), in capsaicin-sensitive primary afferent terminals. Furthermore, the potentiation was inhibited by treatment with the glial metabolism inhibitor monofluoroacetic acid. Results obtained with the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, tumour necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6, and antibodies to TNF-alpha and IL-6, as well as by double immunolabelling of activated p38 MAPK with markers of astrocytes and microglia, demonstrated that alphabetameATP activated p38 MAPK in astrocytes, and that the presence of proinflammatory cytokines and p38 MAPK activation were necessary for the induction of alphabetameATP-triggered LTP. These findings indicate that glial cells contribute to the alphabetameATP-induced LTP, which might be part of a cellular mechanism for the induction of persistent pain. PMID:17425556

  5. Long-term potentiation alters the modulator pharmacology of AMPA-type glutamate receptors.

    PubMed

    Lin, Bin; Brücher, Fernando A; Colgin, Laura Lee; Lynch, Gary

    2002-06-01

    Changes in the biophysical properties of AMPA-type glutamate receptors have been proposed to mediate the expression of long-term potentiation (LTP). The present study tested if, as predicted from this hypothesis, AMPA receptor modulators differentially affect potentiated versus control synaptic currents. Whole cell recordings were collected from CA1 pyramidal neurons in hippocampal slices from adult rats. Within-neuron comparisons were made of the excitatory postsynaptic currents (EPSCs) elicited by two separate groups of Schaffer-collateral/commissural synapses. LTP was induced by theta burst stimulation in one set of inputs; cyclothiazide (CTZ), a drug that acts on the desensitization kinetics of AMPA receptors, was infused 30 min later. The decay time constants of the potentiated EPSCs prior to drug infusion were slightly, but significantly, shorter than those of control EPSCs. CTZ slowed the decay of the EPSCs, as reported in prior studies, and did so to a significantly greater degree in the potentiated synapses. Additionally, infusion of CTZ resulted in significantly greater effects on amplitude in potentiated pathways as compared with control pathways. The interaction between LTP and CTZ was also obtained in a separate set of experiments in which GABA receptor antagonists were used to block inhibitory postsynaptic currents. Additionally, there was no significant change in paired-pulse facilitation in the presence of CTZ, indicating that presynaptic effects of the drug were negligible. These findings provide new evidence that LTP modifies AMPA receptor kinetics. Candidates for the changes responsible for the observed effects of LTP were evaluated using a model of AMPA receptor kinetics; a simple increase in the channel opening rate provided the most satisfactory match with the LTP data. PMID:12037181

  6. Both NR2A and NR2B Subunits of the NMDA Receptor Are Critical for Long-Term Potentiation and Long-Term Depression in the Lateral Amygdala of Horizontal Slices of Adult Mice

    ERIC Educational Resources Information Center

    Muller, Tobias; Albrecht, Doris; Gebhardt, Christine

    2009-01-01

    The lateral nucleus of the amygdala (LA) is implicated in emotional and social behaviors. We recently showed that in horizontal brain slices, activation of NMDA receptors (NMDARs) is a requirement for persistent synaptic alterations in the LA, such as long-term potentiation (LTP) and long-term depression (LTD). In the LA, NR2A- and NR2B-type NMDRs…

  7. In vivo and in vitro exposure to PCB 153 reduces long-term potentiation.

    PubMed Central

    Hussain, R J; Gyori, J; DeCaprio, A P; Carpenter, D O

    2000-01-01

    We examined the effects of gestational and lactational exposure to polychlorinated biphenyl (PCB) 153 (2,4,5,2',4',5'-hexaCB) on the magnitude of long-term potentiation (LTP) observed in the CA1 region of hippocampal brain slices prepared from rats at 30 days of age. We compared these actions to those observed when PCB 153 is dissolved in normal Krebs-Ringer solution and perfused on slices from control rats of the same age. In vivo exposure was at three dose levels (1. 25, 5, and 20 mg/kg/day) from gestational day 3 through weaning at postnatal day 21. Although responses to low-frequency stimulation of the Schaffer collateral pathway in exposed animals were not different from controls, significantly reduced LTP was induced after tetanic stimulation, even at the lowest dose studied. We observed a comparable depression of LTP when control slices were perfused with Krebs-Ringer that had been equilibrated with PCB 153 in a generator column. Neither in vivo nor in vitro exposure significantly altered the input-output curves obtained before tetanic stimulation, but both suppressed the increase in response observed in controls after tetanic stimulation. Because LTP is thought to be correlated with learning ability, these observations may provide at least a partial mechanism to explain the reduction of intelligence quotient observed in humans exposed to PCBs early in development. PMID:11017886

  8. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses

    NASA Astrophysics Data System (ADS)

    Ohno, Takeo; Hasegawa, Tsuyoshi; Tsuruoka, Tohru; Terabe, Kazuya; Gimzewski, James K.; Aono, Masakazu

    2011-08-01

    Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs , , , ). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag2S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag2S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag2S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.

  9. Effect of intermittent hypoxia on long-term potentiation in rat hippocampal slices.

    PubMed

    Payne, Ralphiel S; Goldbart, Aviv; Gozal, David; Schurr, Avital

    2004-12-17

    Intermittent hypoxia (IH) during sleep has been shown to induce apoptosis in a time-dependent manner and spatial learning deficits in adult rats. Recently, we have demonstrated that IH induced significant decreases in Ser-133-phosphorylated cAMP-response element-binding protein (pCREB) without changes in total CREB. The expression of cleaved caspase 3 in the hippocampal CA1, a marker of apoptosis, peaked at 3 days of IH and returned to normoxic values at 14 days of IH. In addition, biphasic changes in spatial task learning were correlated with the CREB phosphorylation time course. In the present study, the rat hippocampal slice preparation was used to evaluate the ability to induce and maintain a CA1 population spike long-term potentiation (PS-LTP) in room air (RA)-maintained and IH-exposed rats. A significant decrease in the ability to sustain PS-LTP for 15 min in slices prepared from IH-exposed rats for either 3 days (34% of total) or 7 days (51% of total) as compared to slices prepared from RA-maintained rats (76% of total) was observed. These results suggest that the diminishment in the ability of neuronal tissue to express and sustain PS-LTP is correlated with previously reported biphasic changes in CREB phosphorylation and programmed cell death. PMID:15542074

  10. Hippocampal calcium dyshomeostasis and long-term potentiation in 2-week zinc deficiency.

    PubMed

    Takeda, Atsushi; Yamada, Kohei; Tamano, Haruna; Fuke, Sayuri; Kawamura, Mika; Oku, Naoto

    2008-01-01

    On the basis of abnormal neuropsychological behavior in the open-field test after 2-week zinc deprivation, neurochemical response was examined in young mice fed a zinc-deficient diet for 2 weeks. Serum corticosterone concentration was markedly higher in zinc-deficient mice than in the control mice. Basal signals of intracellular calcium (fluo-4 FF) were also significantly more in hippocampal slices from zinc-deficient mice. These results suggest that basal Ca2+ levels in hippocampal cells are increased by zinc deficiency. On the other hand, Schaffer collateral long-term potentiation (LTP) was unaffected by zinc deficiency; the averaged fEPSP after tetanic stimulation was 162+/-8% of baseline value in the control and 172+/-22% in zinc-deficient mice. In the Morris water maze, there was also no significant difference in learning behavior for the hidden platform task between the control and zinc-deficient mice. The present study indicates that Schaffer collateral LTP associated with spatial cognition performance are unaffected by calcium dyshomeostasis in the hippocampus elicited by 2-week zinc deprivation, which may be linked to the increased serum corticosterone concentration. PMID:17683830

  11. Fusion pore modulation as a presynaptic mechanism contributing to expression of long-term potentiation.

    PubMed

    Choi, Sukwoo; Klingauf, Jürgen; Tsien, Richard W

    2003-04-29

    Working on the idea that postsynaptic and presynaptic mechanisms of long-term potentiation (LTP) expression are not inherently mutually exclusive, we have looked for the existence and functionality of presynaptic mechanisms for augmenting transmitter release in hippocampal slices. Specifically, we asked if changes in glutamate release might contribute to the conversion of 'silent synapses' that show N-methyl-D-aspartate (NMDA) responses but no detectable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) responses, to ones that exhibit both. Here, we review experiments where NMDA receptor responses provided a bioassay of cleft glutamate concentration, using opposition between peak [glu](cleft )and a rapidly reversible antagonist, L-AP5. We discuss findings of a dramatic increase in peak [glu](cleft) upon expression of pairing-induced LTP (Choi). We present simulations with a quantitative model of glutamatergic synaptic transmission that includes modulation of the presynaptic fusion pore, realistic cleft geometry and a distributed array of postsynaptic receptors and glutamate transporters. The modelling supports the idea that changes in the dynamics of glutamate release can contribute to synaptic unsilencing. We review direct evidence from Renger et al., in accord with the modelling, that trading off the strength and duration of the glutamate transient can markedly alter AMPA receptor responses with little effect on NMDA receptor responses. An array of additional findings relevant to fusion pore modulation and its proposed contribution to LTP expression are considered. PMID:12740115

  12. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis.

    PubMed

    Dong, Zhifang; Han, Huili; Li, Hongjie; Bai, Yanrui; Wang, Wei; Tu, Man; Peng, Yan; Zhou, Limin; He, Wenting; Wu, Xiaobin; Tan, Tao; Liu, Mingjing; Wu, Xiaoyan; Zhou, Weihui; Jin, Wuyang; Zhang, Shu; Sacktor, Todd Charlton; Li, Tingyu; Song, Weihong; Wang, Yu Tian

    2015-01-01

    Long-term potentiation (LTP) of synaptic strength between hippocampal neurons is associated with learning and memory, and LTP dysfunction is thought to underlie memory loss. LTP can be temporally and mechanistically classified into decaying (early-phase) LTP and nondecaying (late-phase) LTP. While the nondecaying nature of LTP is thought to depend on protein synthesis and contribute to memory maintenance, little is known about the mechanisms and roles of decaying LTP. Here, we demonstrated that inhibiting endocytosis of postsynaptic α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) prevents LTP decay, thereby converting it into nondecaying LTP. Conversely, restoration of AMPAR endocytosis by inhibiting protein kinase Mζ (PKMζ) converted nondecaying LTP into decaying LTP. Similarly, inhibition of AMPAR endocytosis prolonged memory retention in normal animals and reduced memory loss in a murine model of Alzheimer's disease. These results strongly suggest that an active process that involves AMPAR endocytosis mediates the decay of LTP and that inhibition of this process can prolong the longevity of LTP as well as memory under both physiological and pathological conditions. PMID:25437879

  13. Isolated Primary Blast Inhibits Long-Term Potentiation in Organotypic Hippocampal Slice Cultures.

    PubMed

    Vogel, Edward W; Effgen, Gwen B; Patel, Tapan P; Meaney, David F; Bass, Cameron R Dale; Morrison, Barclay

    2016-04-01

    Over the last 13 years, traumatic brain injury (TBI) has affected over 230,000 U.S. service members through the conflicts in Iraq and Afghanistan, mostly as a result of exposure to blast events. Blast-induced TBI (bTBI) is multi-phasic, with the penetrating and inertia-driven phases having been extensively studied. The effects of primary blast injury, caused by the shockwave interacting with the brain, remain unclear. Earlier in vivo studies in mice and rats have reported mixed results for primary blast effects on behavior and memory. Using a previously developed shock tube and in vitro sample receiver, we investigated the effect of isolated primary blast on the electrophysiological function of rat organotypic hippocampal slice cultures (OHSC). We found that pure primary blast exposure inhibited long-term potentiation (LTP), the electrophysiological correlate of memory, with a threshold between 9 and 39 kPa·ms impulse. This deficit occurred well below a previously identified threshold for cell death (184 kPa·ms), supporting our previously published finding that primary blast can cause changes in brain function in the absence of cell death. Other functional measures such as spontaneous activity, network synchronization, stimulus-response curves, and paired-pulse ratios (PPRs) were less affected by primary blast exposure, as compared with LTP. This is the first study to identify a tissue-level tolerance threshold for electrophysiological changes in neuronal function to isolated primary blast. PMID:26414012

  14. The reemergence of long-term potentiation in aged Alzheimer’s disease mouse model

    PubMed Central

    Huh, Seonghoo; Baek, Soo-Ji; Lee, Kyung-Hwa; Whitcomb, Daniel J.; Jo, Jihoon; Choi, Seong-Min; Kim, Dong Hyun; Park, Man-Seok; Lee, Kun Ho; Kim, Byeong C.

    2016-01-01

    Mouse models of Alzheimer’s disease (AD) have been developed to study the pathophysiology of amyloid β protein (Aβ) toxicity, which is thought to cause severe clinical symptoms such as memory impairment in AD patients. However, inconsistencies exist between studies using these animal models, specifically in terms of the effects on synaptic plasticity, a major cellular model of learning and memory. Whereas some studies find impairments in plasticity in these models, others do not. We show that long-term potentiation (LTP), in the CA1 region of hippocampal slices from this mouse, is impared at Tg2576 adult 6–7 months old. However, LTP is inducible again in slices taken from Tg2576 aged 14–19 months old. In the aged Tg2576, we found that the percentage of parvalbumin (PV)-expressing interneurons in hippocampal CA1-3 region is significantly decreased, and LTP inhibition or reversal mediated by NRG1/ErbB signaling, which requires ErbB4 receptors in PV interneurons, is impaired. Inhibition of ErbB receptor kinase in adult Tg2576 restores LTP but impairs depotentiation as shown in aged Tg2576. Our study suggests that hippocampal LTP reemerges in aged Tg2576. However, this reemerged LTP is an insuppressible form due to impaired NRG1/ErbB signaling, possibly through the loss of PV interneurons. PMID:27377368

  15. The reemergence of long-term potentiation in aged Alzheimer's disease mouse model.

    PubMed

    Huh, Seonghoo; Baek, Soo-Ji; Lee, Kyung-Hwa; Whitcomb, Daniel J; Jo, Jihoon; Choi, Seong-Min; Kim, Dong Hyun; Park, Man-Seok; Lee, Kun Ho; Kim, Byeong C

    2016-01-01

    Mouse models of Alzheimer's disease (AD) have been developed to study the pathophysiology of amyloid β protein (Aβ) toxicity, which is thought to cause severe clinical symptoms such as memory impairment in AD patients. However, inconsistencies exist between studies using these animal models, specifically in terms of the effects on synaptic plasticity, a major cellular model of learning and memory. Whereas some studies find impairments in plasticity in these models, others do not. We show that long-term potentiation (LTP), in the CA1 region of hippocampal slices from this mouse, is impared at Tg2576 adult 6-7 months old. However, LTP is inducible again in slices taken from Tg2576 aged 14-19 months old. In the aged Tg2576, we found that the percentage of parvalbumin (PV)-expressing interneurons in hippocampal CA1-3 region is significantly decreased, and LTP inhibition or reversal mediated by NRG1/ErbB signaling, which requires ErbB4 receptors in PV interneurons, is impaired. Inhibition of ErbB receptor kinase in adult Tg2576 restores LTP but impairs depotentiation as shown in aged Tg2576. Our study suggests that hippocampal LTP reemerges in aged Tg2576. However, this reemerged LTP is an insuppressible form due to impaired NRG1/ErbB signaling, possibly through the loss of PV interneurons. PMID:27377368

  16. Aluminium-maltolate-induced impairment of learning, memory and hippocampal long-term potentiation in rats.

    PubMed

    Liang, Rui-Feng; Li, Wei-Qing; Wang, Xiao-Hui; Zhang, Hui-Fang; Wang, Hong; Wang, Jun-Xia; Zhang, Yu; Wan, Ming-Tao; Pan, Bao-Long; Niu, Qiao

    2012-01-01

    Recently, aluminium (Al) has been proposed to be one of the environmental factors responsible for cause Alzheimer's disease (AD). However, the relationship between Al and AD is controversial. To investigate the effects of subchronic Aluminium-maltolate (Al (mal)(3)) exposure on the behavioral, electrophysiological functions. Forty Sprague-Dawley (SD) rats were randomly distributed into five groups. Over two months, rats in the saline group received daily intraperitoneal (i.p.) injections 0.9% saline, rats in the maltolate group received 7.56 mg/kg maltolate, and rats in the 0.27, 0.54, 1.08 mg/kg Al (mal)(3) groups received i.p. administrations of these three doses, respectively. Neural behavior was assessed in Morris water maze. Long-term potentiation (LTP) in hippocampus was recorded. Al content in the neocortex was determined using a graphite furnace atomic absorption spectrophotometer. Our studies indicate that subchronic Al (mal)(3) exposure significantly impaired spatial learning and memory abilities, suppressed the LTP in the CA1 hippocampal area, and elevated Al levels in cerebral cortex in a dose-dependent fashion. In conclusion, low doses of Al (mal)(3) can still lead to dramatic Al accumulation in the brain, severely impair learning and memory capacities, and hippocampal LTP. PMID:22878356

  17. Impairment of long-term potentiation in the hippocampus of alcohol-treated OLETF rats.

    PubMed

    Min, Jung-Ah; Lee, Hye-Ryeon; Kim, Jae-Ick; Ju, Anes; Kim, Dai-Jin; Kaang, Bong-Kiun

    2011-08-01

    Type 2 diabetes and chronic heavy alcohol consumption each have been known to be associated with the impairment of hippocampus-dependent cognitive functions. Although both conditions often coexist clinically and there is accumulated evidence of a relationship between the two, the combined effect on hippocampal long-term potentiation (LTP) has not yet been investigated. We compared the effect of type 2 diabetes itself with that of type 2 diabetes with chronic heavy alcohol consumption on the hippocampal LTP using Otsuka Long-Evans Tokushima Fatty (OLETF) rat model, which resembles the characteristics of human type 2 diabetes. Ten of 16-week-old male OLETF rats were randomized into two treatment groups according to weight: the OLETF-Alcohol (O-A, n=5) and the OLETF-Control (O-C, n=5). The rats in the O-A group were fed Lieber-DeCarli Regular EtOH over a 10-week period and the amount of alcohol consumption was 8.42±2.52g/kg/day. To ensure the effect of poor glycemic control on LTP, intraperitoneal glucose tolerance test was performed after a 10-week treatment. The hippocampal LTP was measured by extracellular field excitatory post-synaptic potentials at Shaffer collateral (SC) synapses in the CA1 region. Although the O-A group showed significantly lower fasting and postprandial glucose (P<0.01 and P=0.02, respectively), the hippocampal LTP was more significantly attenuated in the O-A group than the O-C group (P=0.032). The results of this study suggested that chronic heavy alcohol consumption could potentiate the impairment of hippocampal LTP in individuals with impaired glucose tolerance or early type 2 diabetes, even though it did not aggravate, but did improve glycemic control. Clinical attention to chronic heavy drinking will be required in preventing cognitive impairment in individuals with type 2 diabetes. PMID:21683761

  18. Thalamocortical long-term potentiation becomes gated after the early critical period in the auditory cortex.

    PubMed

    Chun, Sungkun; Bayazitov, Ildar T; Blundon, Jay A; Zakharenko, Stanislav S

    2013-04-24

    Cortical maps in sensory cortices are plastic, changing in response to sensory experience. The cellular site of such plasticity is currently debated. Thalamocortical (TC) projections deliver sensory information to sensory cortices. TC synapses are currently dismissed as a locus of cortical map plasticity because TC synaptic plasticity is thought to be limited to neonates, whereas cortical map plasticity can be induced in both neonates and adults. However, in the auditory cortex (ACx) of adults, cortical map plasticity can be induced if animals attend to a sound or receive sounds paired with activation of cholinergic inputs from the nucleus basalis. We now show that, in the ACx, long-term potentiation (LTP), a major form of synaptic plasticity, is expressed at TC synapses in both young and mature mice but becomes gated with age. Using single-cell electrophysiology, two-photon glutamate uncaging, and optogenetics in TC slices containing the auditory thalamus and ACx, we show that TC LTP is expressed postsynaptically and depends on group I metabotropic glutamate receptors. TC LTP in mature ACx can be unmasked by cortical disinhibition combined with activation of cholinergic inputs from the nucleus basalis. Cholinergic inputs passing through the thalamic radiation activate M1 muscarinic receptors on TC projections and sustain glutamate release at TC synapses via negative regulation of presynaptic adenosine signaling through A1 adenosine receptors. These data indicate that TC LTP in the ACx persists throughout life and therefore can potentially contribute to experience-dependent cortical map plasticity in the ACx in both young and adult animals. PMID:23616541

  19. Antidepressants that inhibit both serotonin and norepinephrine reuptake impair long-term potentiation in hippocampus

    PubMed Central

    Cooke, Jennifer D.; Cavender, Hannah M.; Lima, Hope K.; Grover, Lawrence M.

    2014-01-01

    Rationale Monoamine reuptake inhibitors can stimulate expression of brain-derived neurotrophic factor (BDNF) and alter long-term potentiation (LTP), a widely used model for the synaptic mechanisms that underlie memory formation. BDNF expression is up-regulated during LTP, and BDNF in turn positively modulates LTP. Previously, we found that treatment with venlafaxine, a serotonin and norepinephrine reuptake inhibitor (SNRI), but not citalopram, a selective serotonin reuptake inhibitor (SSRI) reduced LTP in hippocampal area CA1 without changing hippocampal BDNF protein expression. Objectives We tested the hypothesis that combined serotonin and norepinephrine reuptake inhibition is necessary for LTP impairment, and we reexamined the potential role of BNDF by testing for region-specific changes in areas CA1, CA3 and dentate gyrus. We also tested whether early events in the LTP signaling pathway were altered to impair LTP. Methods Animals were treated for 21 days with venlafaxine, imipramine, fluoxetine, or maprotiline. In vitro hippocampal slices were used for electrophysiological measurements. Protein expression was measured by enzyme-linked immunosorbent assay (ELISA) and western blotting. Results LTP was impaired only following treatment with combined serotonin and norepinephrine reuptake inhibitors (venlafaxine, imipramine) but not with selective serotonin (fluoxetine) or norepinephrine (maprotiline) reuptake inhibitors. BDNF protein expression was not altered by venlafaxine or imipramine treatment, nor were postsynaptic depolarization during LTP inducing stimulation or synaptic membrane NMDA receptor subunit expression affected. Conclusions LTP is impaired by chronic treatment with antidepressant that inhibit both serotonin and norepinephrine reuptake; this impairment results from changes that are downstream of postsynaptic depolarization and calcium-influx. PMID:24781518

  20. Simvastatin enhances hippocampal long-term potentiation in C57BL/6 mice

    PubMed Central

    Mans, Robert A.; Chowdhury, Nazma; Cao, Dongfeng; McMahon, Lori L.; Li, Ling

    2010-01-01

    Statins inhibit 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA), the rate-limiting enzyme in the cholesterol biosynthetic pathway, and they are widely used to control plasma cholesterol levels and prevent cardiovascular disease. However, emerging evidence indicates that the beneficial effects of statins extend to the central nervous system. Statins have been shown to improve the outcome of stroke and traumatic brain injury, and statin use has been associated with a reduced prevalence of Alzheimer’s disease (AD) and dementia. However, prospective studies with statins in AD have produced mixed results. Recently, we reported that simvastatin, a widely used statin in humans, enhances learning and memory in non-transgenic mice as well as in transgenic mice with AD-like pathology on a mixed genetic background. However, the cellular and molecular mechanisms underlying the beneficial effects of simvastatin on learning and memory remain elusive. The present study was undertaken to investigate the effect of acute simvastatin treatment on hippocampal long-term potentiation (LTP), a cellular model of learning and memory, in brain slices from C57BL/6 mice. Our results demonstrate that a prolonged in vitro simvastatin treatment for 2-4 hrs, but not a short-term 20-min exposure, significantly increases the magnitude of LTP at CA3-CA1 synapses without altering basal synaptic transmission or the paired-pulse facilitation ratio in hippocampal slices. Furthermore, we show that phosphorylation of Akt (protein kinase B) is increased significantly in the CA1 region following 2-hour treatment with simvastatin, and that inhibition of Akt phosphorylation suppresses the simvastatin-induced enhancement of LTP. These findings suggest activation of Akt as a molecular pathway for augmented hippocampal LTP by simvastatin treatment, and implicate enhancement of hippocampal LTP as a potential cellular mechanism underlying the beneficial effects of simvastatin on cognitive function. PMID

  1. A multi-slice recording system for stable late phase hippocampal long-term potentiation experiments.

    PubMed

    Kroker, Katja Sabine; Rosenbrock, Holger; Rast, Georg

    2011-01-15

    A major challenge in neuroscience is identifying the cellular and molecular processes underlying learning and memory formation. In the past decades, significant progress has been made in understanding cellular and synaptic mechanisms underlying hippocampal learning and memory using long-term potentiation (LTP) experiments in brain slices as a model system. To expedite LTP measurements it is helpful to further optimize such recording systems. Here, we describe a modification of a multi-slice recording system (SliceMaster, Scientifica Limited, East Sussex, UK) that allows absolutely stable measurements of field excitatory postsynaptic potentials (fEPSPs) for up to 8 h in up to eight slices simultaneously. The software Notocord(®) was used for on-line data acquisition and to control the digital pattern generator which can generate different patterns for slice stimulation, inducing different types of LTP. Moreover, in contrast to common gravity-driven perfusion systems, a Pumped Perfusion System was employed to recycle drug solutions applied to the hippocampal slice. In addition, slices were positioned on two stacked grids for optimal recording of fEPSPs. These two stacked grids were placed in the measuring chambers allowing recordings for several hours without any perturbances. In summary, this modified slice-recording system improves throughput and allows for better statistical design, increases number of used slices per animal and enables very robust LTP measurements for up to 7 h. Hence, this system is suitable not only to investigate molecular mechanisms underlying the late phase of LTP, but also to screen candidate compounds in the context of drug discovery. PMID:21087635

  2. Long-term Cognitive and Functional Effects of Potentially Inappropriate Medications in Older Women

    PubMed Central

    2014-01-01

    Background. The use of potentially inappropriate medications in older adults can lead to known adverse drug events, but long-term effects are less clear. We therefore conducted a prospective cohort study of older women to determine whether PIM use is associated with risk of functional impairment or low cognitive performance. Methods. We followed up 1,429 community-dwelling women (≥75 years) for a period of 5 years at four clinical sites in the United States. The primary predictor at baseline was PIM use based on 2003 Beers Criteria. We also assessed anticholinergic load using the Anticholinergic Cognitive Burden scale. Outcomes included scores on a battery of six cognitive tests at follow-up and having one or more incident impairments in instrumental activities of daily living. Regression models were adjusted for baseline age, race, education, smoking, physical activity, a modified Charlson Comorbidity Index, and cognitive score. Results. The mean ± SD age of women at baseline was 83.2 ± 3.3. In multivariate models, baseline PIM use and higher ACB scores were significantly associated with poorer performance in category fluency (PIM: p = .01; ACB: p = .02) and immediate (PIM: p = .04; ACB: p = .03) and delayed recall (PIM: p = .04). Both PIM use (odds ratio [OR]: 1.36 [1.05–1.75]) and higher ACB scores (OR: 1.11 [1.04–1.19]) were also strongly associated with incident functional impairment. Conclusions. The results provide suggestive evidence that PIM use and increased anticholinergic load may be associated with risk of functional impairment and low cognitive performance. More cautious selection of medications in older adults may reduce these potential risks. PMID:24293516

  3. The Role of Homer1c in Metabotropic Glutamate Receptor-dependent Long-Term Potentiation

    PubMed Central

    O’Riordan, Kenneth; Gerstein, Hilary; Hullinger, Rikki; Burger, Corinna

    2016-01-01

    Group I metabotropic glutamate receptors (mGluR1/5) play a role in synaptic plasticity and they demonstrate direct interactions with the neuronal Homer1c protein. We have previously shown that Homer1c can restore the plasticity deficits in Homer1 knockout mice (H1-KO). Here, we investigated the role of Homer1c in mGluR-dependent synaptic plasticity in wild-type mice, H1-KO, and H1-KO mice overexpressing Homer1c (KO+H1c). We used a form of plasticity induced by activation of mGluR1/5 that transforms short-term potentiaion (STP) induced by a subthreshold theta burst stimulation into long-term potentiation (LTP). We have shown that although acute hippocampal slices from wild-type animals can induce LTP using this stimulation protocol, H1-KO only show STP. Gene delivery of Homer1c into the hippocampus of H1-KO mice rescued LTP to wild-type levels. This form of synaptic plasticity was dependent on mGluR5 but not mGluR1 activation both in wild-type mice and in KO+H1c. mGluR1/5-dependent LTP was blocked with inhibitors of the MEK-ERK and PI3K-mTOR pathways in KO+H1c mice. Moreover, blocking Homer1c–mGluR5 interactions prevented the maintenance of LTP in acute hippocampal slices from KO+H1c. These data indicate that Homer1c–mGluR5 interactions are necessary for mGluR-dependent LTP, and that mGluR1/5-dependent LTP involves PI3K and ERK activation. PMID:24167026

  4. Loss of long-term potentiation in the hippocampus after experimental subarachnoid hemorrhage in rats.

    PubMed

    Tariq, A; Ai, J; Chen, G; Sabri, M; Jeon, H; Shang, X; Macdonald, R L

    2010-01-20

    Survivors of aneurysmal subarachnoid hemorrhage (SAH) often suffer from cognitive impairment such as memory loss. However, the underlying mechanisms of these impairments are not known. Long-term potentiation (LTP) of synapses in the hippocampus is generally regarded as a molecular substrate of memory. The purpose of this study was to examine the effect of SAH on LTP in the hippocampal Schaffer collateral (CA3-CA1) pathway in a rat model of SAH. We found SAH caused significant vasospasm of the middle cerebral artery (MCA) compared to saline injected or sham controls (P<0.001). Basic neurotransmission quantified as excitatory post synaptic and spike response from animals with SAH were significantly decreased as compared to naive controls (P<0.05). However, sham operated and saline injected controls showed similar amplitude as naive controls. This suggests that reduction in basic neurotransmission is due to blood in the subarachnoid space. Similarly, analysis of LTP demonstrated that naive, sham and saline controls have a 92+/-16%, 69+/-27% and 71+/-14% increase over the baseline in the average spike amplitude following high frequency stimulation (HFS), respectively. This indicates the presence of LTP (P<0.05). In contrast, the spike amplitude in animals of SAH returned to baseline level within 60 min post HFS indicating the absence of LTP. We conclude that SAH caused vasospasm of the MCA that was associated with disrupted basic neurotransmission and plasticity at CA3-CA1 synapses. These changes might be accountable for the memory loss in humans with SAH. PMID:19854243

  5. Prenatal ethanol exposure has sex-specific effects on hippocampal long-term potentiation.

    PubMed

    Sickmann, H M; Patten, A R; Morch, K; Sawchuk, S; Zhang, C; Parton, R; Szlavik, L; Christie, B R

    2014-01-01

    Alcohol consumption during pregnancy is deleterious to the developing brain of the fetus and leads to persistent deficits in adulthood. Long-term potentiation (LTP) is a biological model for learning and memory processes and previous evidence has shown that prenatal ethanol exposure (PNEE) affects LTP in a sex specific manner during adolescence. The objective of this study was to determine if there are sex specific differences in adult animals and to elucidate the underlying molecular mechanisms that contribute to these differences. Pregnant Sprague-Dawley dams were assigned to either; liquid ethanol, pair-fed or standard chow diet. In vivo electrophysiology was performed in the hippocampal dentate gyrus (DG) of adult offspring. LTP was induced by administering 400 Hz stimuli. Western blot analysis for glutamine synthetase (GS) and glutamate decarboxylase from tissue of the DG indicated that GS expression was increased following PNEE. Surprisingly, adult females did not show any deficit in N-methyl-D-aspartate (NMDA)-dependent LTP after PNEE. In contrast, males showed a 40% reduction in LTP. It was indicated that glutamine synthetase expression was increased in PNEE females, suggesting that altered excitatory neurotransmitter replenishment may serve as a compensatory mechanism. Ovariectomizing females did not influence LTP in control or PNEE animals, suggesting that circulating estradiol levels do not play a major role in maintaining LTP levels in PNEE females. These results demonstrate the sexually dimorphic effects of PNEE on the ability for the adult brain to elicit LTP in the DG. The mechanisms for these effects are not fully understood, but an increase in glutamine synthetase in females may underlie this phenomenon. PMID:23996604

  6. Sleep-Dependent Gene Expression in the Hippocampus and Prefrontal Cortex Following Long-Term Potentiation

    PubMed Central

    Romcy-Pereira, Rodrigo N.; Erraji-Benchekroun, Loubna; Smyrniotopoulos, Peggy; Ogawa, Sonoko; Mello, Claudio V.; Sibille, Etienne; Pavlides, Constantine

    2009-01-01

    The activity-dependent transcription factor zif268 is re-activated in sleep following hippocampal long-term potentiation (LTP). However, the activation of secondary genes, possibly involved in modifying local synaptic strengths and ultimately stabilizing memory traces during sleep, has not yet been studied. Here, we investigated changes in hippocampal and cortical gene expression at a time point subsequent to the previously reported initial zif268 re-activation during sleep. Rats underwent unilateral hippocampal LTP and were assigned to SLEEP or AWAKE groups. Eighty minutes after a long rapid-eye-movement sleep (REMS) episode (or an equivalent amount of time for awake group) animals had their hippocampi dissected and processed for gene microarray hybridization. Prefrontal and parietal cortices were also collected for qRT-PCR analysis. The microarray analysis identified 28 up-regulated genes in the hippocampus: 11 genes were enhanced in the LTPed hemisphere of sleep animals; 13 genes were enhanced after sleep, regardless of hemisphere; and 4 genes were enhanced in LTPed hemisphere, regardless of behavioral state. qRT-PCR analysis confirmed the upregulation of aif-1 and sc-65 during sleep. Moreover, we observed a down-regulation of the purinergic receptor, P2Y4R in the LTP hemisphere of awake animals and a trend for the protein kinase, CaMKI to be up-regulated in the LTP hemisphere of sleep animals. In the prefrontal cortex, we showed a significant LTP-dependent down-regulation of gluR1 and spinophilin specifically during sleep. Zif268 was downregulated in sleep regardless of the hemisphere. No changes in gene expression were observed in the parietal cortex. Our findings indicate that a set of synaptic plasticity-related genes have their expression modulated during sleep following LTP, which can reflect biochemical events associated with reshaping of synaptic connections in sleep following learning. PMID:19389414

  7. Developmental onset of long-term potentiation in area CA1 of the rat hippocampus.

    PubMed Central

    Harris, K M; Teyler, T J

    1984-01-01

    Long-term potentiation (l.t.p.) was studied in area CA1 of rat hippocampal slices during development at post-natal days 1-8, 15 and 60. Tetanic stimulation at 100 Hz for 1 s was delivered to the fibres in stratum radiatum and the time course of potentiation was recorded in stratum pyramidale for 20 min after tetanus. L.t.p. was measured at 20 min post-tetanus as an increase in the amplitude of the population spike. The time course and magnitude of post-tetanic potentiation (p.t.p.) differed with age. For 60-day-old animals p.t.p. was seen as a maximally potentiated response immediately post-tetanus that declined to a smaller potentiated response by 5 min post-tetanus. For animals younger than 15 days the response was also maximally potentiated immediately post-tetanus with subsequent decline. However, the duration of maximal potentiation was shorter and the magnitude was less. A different time course of p.t.p. was observed at 15 days. The maximal potentiation was approximately equal to that seen at 60 days, but instead of declining, the response remained maximally potentiated throughout the entire post-tetanus monitoring period. L.t.p. was first observed at post-natal day 5, and by post-natal days 7 and 8 substantial levels of l.t.p. were seen consistently. The greatest magnitude of l.t.p. was found at 15 days, and was considerably more than that produced at 60 days. When the duration of l.t.p. was monitored for longer than 20 min the response declined back to pretetanus levels by 1-1 1/2 h for animals younger than 15 days. In 15-day-old rats the response remained maximally potentiated for the full 72 min that it was monitored, with no decline. In control experiments of low-frequency stimulation (l.f.s.) at 1/15 s for 100 stimuli, hippocampal slices from 60-day-old animals showed response elevation. In contrast, l.f.s. resulted in response decrement over time for slices from 5-15-day-old animals. Three measures of pretetanus excitability in area CA1 suggested an

  8. Opposing Actions of Chronic[Deta][superscript 9] Tetrahydrocannabinol and Cannabinoid Antagonists on Hippocampal Long-Term Potentiation

    ERIC Educational Resources Information Center

    Hoffman, Alexander F.; Oz, Murat; Yang, Ruiqin; Lichtman, Aron H.; Lupica, Carl R.

    2007-01-01

    Memory deficits produced by marijuana arise partly via interaction of the psychoactive component, [Deta][superscript 9]-tetrahydrocannabinol ([Deta][superscript 9]-THC), with cannabinoid receptors in the hippocampus. Although cannabinoids acutely reduce glutamate release and block hippocampal long-term potentiation (LTP), a potential substrate for…

  9. Potential long-term storage of the predatory mite Phytoseiulus persimilis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the ability to store mass-reared natural enemies during periods or seasons of low demand is a critical need of the biocontrol industry. We tested the hypothesis that cryoprotectant or carbohydrate molecules can enhance long-term cold storage of a predatory mite Phytoseiulus persimilis At...

  10. Hormonal and Monoamine Signaling during Reinforcement of Hippocampal Long-Term Potentiation and Memory Retrieval

    ERIC Educational Resources Information Center

    Korz, Volker; Frey, Julietta U.

    2007-01-01

    Recently it was shown that holeboard training can reinforce, i.e., transform early-LTP into late-LTP in the dentate gyrus during the initial formation of a long-term spatial reference memory in rats. The consolidation of LTP as well as of the reference memory was dependent on protein synthesis. We have now investigated the transmitter systems…

  11. Long-Term Exercise Is a Potent Trigger for ΔFosB Induction in the Hippocampus along the dorso–ventral Axis

    PubMed Central

    Nishijima, Takeshi; Kawakami, Masashi; Kita, Ichiro

    2013-01-01

    Physical exercise improves multiple aspects of hippocampal function. In line with the notion that neuronal activity is key to promoting neuronal functions, previous literature has consistently demonstrated that acute bouts of exercise evoke neuronal activation in the hippocampus. Repeated activating stimuli lead to an accumulation of the transcription factor ΔFosB, which mediates long-term neural plasticity. In this study, we tested the hypothesis that long-term voluntary wheel running induces ΔFosB expression in the hippocampus, and examined any potential region-specific effects within the hippocampal subfields along the dorso–ventral axis. Male C57BL/6 mice were housed with or without a running wheel for 4 weeks. Long-term wheel running significantly increased FosB/ΔFosB immunoreactivity in all hippocampal regions measured (i.e., in the DG, CA1, and CA3 subfields of both the dorsal and ventral hippocampus). Results confirmed that wheel running induced region-specific expression of FosB/ΔFosB immunoreactivity in the cortex, suggesting that the uniform increase in FosB/ΔFosB within the hippocampus is not a non-specific consequence of running. Western blot data indicated that the increased hippocampal FosB/ΔFosB immunoreactivity was primarily due to increased ΔFosB. These results suggest that long-term physical exercise is a potent trigger for ΔFosB induction throughout the entire hippocampus, which would explain why exercise can improve both dorsal and ventral hippocampus-dependent functions. Interestingly, we found that FosB/ΔFosB expression in the DG was positively correlated with the number of doublecortin-immunoreactive (i.e., immature) neurons. Although the mechanisms by which ΔFosB mediates exercise-induced neurogenesis are still uncertain, these data imply that exercise-induced neurogenesis is at least activity dependent. Taken together, our current results suggest that ΔFosB is a new molecular target involved in regulating exercise

  12. Exploring the Potential for Long-term Storage of Depleted Peridotite in the Mantle

    NASA Astrophysics Data System (ADS)

    Walter, M. J.; Parman, S.

    2006-12-01

    There is an increasingly powerful body of evidence indicating early, episodic extraction of material from the mantle during the Pre-Cambrian [e.g. 1,2]. These melt extraction events would inevitably have led to large- scale formation of depleted lithospheric mantle. Recent data from Helium and Osmium isotopic systems indicate an important role for ancient, depleted components in the mantle source regions of modern oceanic basalts [3,4]. The implication is that discrete fragments of ancient depleted lithosphere are stored in the mantle over long timescales, presumably through the mechanism of subduction. Melt extraction from fertile peridotite in the upper mantle yields a solid residue that ranges from depleted lherzolite to harzburgite or dunite. In the upper mantle the mineralogy of depleted peridotite is dominated by olivine and opx, and in the transition zone olivine undergoes polymorphic transitions and pyroxene converts to majorite. Depleted peridotite then transforms into an assemblage of Mg-perovskite and ferropericlase at about 670 km. For any given isotherm, depleted peridotite is less dense than fertile mantle throughout the upper mantle, and negative buoyancy can only occur in cold slabs. In the lower mantle depleted peridotite is enriched in ferropericlase relative to fertile mantle and recent experimental results indicate that KD (Pv/FP) may be a factor of 3 to 5 greater in fertile compositions than in depleted compositions, causing an increase in the Fe content of ferropericlase in depleted compositions. Whether or not discrete fragments of depleted peridotite can remain negatively buoyant in the deep mantle depends on many factors including temperature, the modal abundance of minerals and their relative compressibilities, and the amount of iron and its spin state in depleted and fertile lithologies. Here we present petrologic, geochemical and mineral physical modeling to investigate the potential for long-term storage of depleted peridotite as a

  13. Worldwide impact of aerosol's time scale on the predicted long-term concentrating solar power potential.

    PubMed

    Ruiz-Arias, Jose A; Gueymard, Christian A; Santos-Alamillos, Francisco J; Pozo-Vázquez, David

    2016-01-01

    Concentrating solar technologies, which are fuelled by the direct normal component of solar irradiance (DNI), are among the most promising solar technologies. Currently, the state-of the-art methods for DNI evaluation use datasets of aerosol optical depth (AOD) with only coarse (typically monthly) temporal resolution. Using daily AOD data from both site-specific observations at ground stations as well as gridded model estimates, a methodology is developed to evaluate how the calculated long-term DNI resource is affected by using AOD data averaged over periods from 1 to 30 days. It is demonstrated here that the use of monthly representations of AOD leads to systematic underestimations of the predicted long-term DNI up to 10% in some areas with high solar resource, which may result in detrimental consequences for the bankability of concentrating solar power projects. Recommendations for the use of either daily or monthly AOD data are provided on a geographical basis. PMID:27507711

  14. The APP-Interacting Protein FE65 is Required for Hippocampus-Dependent Learning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Wang, Yan; Zhang, Ming; Moon, Changjong; Hu, Qubai; Wang, Baiping; Martin, George; Sun, Zhongsheng; Wang, Hongbing

    2009-01-01

    FE65 is expressed predominantly in the brain and interacts with the C-terminal domain of [beta]-amyloid precursor protein (APP). We examined hippocampus-dependent memory and in vivo long-term potentiation (LTP) at the CA1 synapses with isoform-specific FE65 knockout (p97FE65[superscript -/-]) mice. When examined using the Morris water maze,…

  15. Corticosterone Time-Dependently Modulates [beta]-Adrenergic Effects on Long-Term Potentiation in the Hippocampal Dentate Gyrus

    ERIC Educational Resources Information Center

    Pu, Zhenwei; Krugers, Harm J.; Joels, Marian

    2007-01-01

    Previous experiments in the hippocampal CA1 area have shown that corticosterone can facilitate long-term potentiation (LTP) in a rapid non-genomic fashion, while the same hormone suppresses LTP that is induced several hours after hormone application. Here, we elaborated on this finding by examining whether corticosterone exerts opposite effects on…

  16. Grazing Management Contributions to Net Global Warming Potential: A Long-Term Evaluation in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of grassland ecosystems as net sinks or sources of greenhouse gases (GHG) is limited by a paucity of information regarding management impacts on the flux of methane (CH4) and nitrous oxide (N2O). Furthermore, no long-term evaluation of net global warming potential (GWP) for grassland ecosy...

  17. Interaction between paired-pulse facilitation and long-term potentiation during the stimulation of the cannabinoid and vanilloid systems in the dentate gyrus.

    PubMed

    Tahmasebi, Lida; Komaki, Alireza; Karamian, Ruhollah; Shahidi, Siamak; Sarihi, Abdolrahman; Komaki, Hamidreza

    2016-07-15

    Synaptic plasticity includes short-term and long-term changes in synaptic strength. Short-term plasticity can be used to assess the site mediating the long-lasting forms of synaptic plasticity such as long-term potentiation (LTP). The endogenous endocannabinoid systems can modulate LTP, and similarly, the activation of the vanilloid system has been shown to mediate synaptic plasticity in the hippocampus. In this study, we examined the interaction between short-term and long-term plasticity during the stimulation of the cannabinoid and vanilloid systems in the hippocampus of rats in vivo. Forty male Wistar rats, divided into four groups, were treated with the following compounds: control (saline+dimethyl sulfoxide), WIN55,212-2, capsaicin, and WIN55,212-2+capsaicin. The animals were anesthetized with urethane and then recording and stimulating electrodes were positioned at the dentate gyrus(DG) and perforant pathway(PP), respectively. Population spike (PS) amplitudes were measured before and after the induction of LTP, which was induced with high-frequency stimulation (HFS). The paired-pulse ratio (PPR) was measured before and after the induction of LTP in all groups. We showed that WIN55,212-2 reduced the PS amplitude after HFS, whereas the vanilloid agonist increased the induction of LTP compared with the control treatment. In the present study, we found that in the presence of WIN55,212-2 and capsaicin, the induction of LTP changed the PPR. Additionally, we showed that the co-administration of cannabinoid and vanilloid agonists modulate the PPR. These findings suggest the presynaptic expression of this LTP form, and therefore, this form of LTP is caused by the increase of neurotransmitter release. PMID:27130895

  18. A neuroligin-1-derived peptide stimulates phosphorylation of the NMDA receptor NR1 subunit and rescues MK-801-induced decrease in long-term potentiation and memory impairment.

    PubMed

    Korshunova, Irina; Gjørlund, Michelle D; Owczarek, Sylwia; Petersen, Anders V; Perrier, Jean-François; Gøtzsche, Casper René; Berezin, Vladimir

    2015-03-01

    Neuroligins (NLs) are postsynaptic adhesion molecules, interacting with presynaptic neurexins (NXs), which determine the differential formation of excitatory (glutamatergic, NL1) and inhibitory (GABAergic, NL2) synapses. We have previously demonstrated that treatment with a NL2-derived peptide, neurolide-2, reduces sociability and increase animal aggression. We hypothesized that interfering with NL1 function at the excitatory synapses might regulate synaptic plasticity and learning, and counteract memory deficits induced by N-methyl-d-aspartate (NMDA) receptor inhibition. First, neuronal NMDA receptor phosphorylation after treatment with NL1 or a mimetic peptide, neurolide-1, was quantified by immunoblotting. Subsequently, we investigated effects of neurolide-1 on long-term potentiation (LTP) induction in hippocampal slices compromised by NMDA receptor inhibitor MK-801. Finally, we investigated neurolide-1 effects on short- and long-term social and spatial memory in social recognition, Morris water-maze, and Y-maze tests. We found that subcutaneous neurolide-1 administration, restored hippocampal LTP compromised by NMDA receptor inhibitor MK-801. It counteracted MK-801-induced memory deficit in the water-maze and Y-maze tests after long-term treatment (24 h and 1-2 h before the test), but not after short-term exposure (1-2 h). Long-term exposure to neurolide-1 also facilitated social recognition memory. In addition, neurolide-1-induced phosphorylation of the NMDA receptor NR1 subunit on a site important for synaptic trafficking, potentially favoring synaptic receptor retention. Our findings emphasize the role of NL1-NMDA receptor interaction in cognition, and identify neurolide-1, as a valuable pharmacological tool to examine the in vivo role of postsynaptic NL1 in cognitive behavior in physiological and pathological conditions. PMID:26038702

  19. Inactivation of nucleus incertus impairs passive avoidance learning and long term potentiation of the population spike in the perforant path-dentate gyrus evoked field potentials in rats.

    PubMed

    Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh

    2016-04-01

    Involvement of brainstem nucleus incertus (NI) in hippocampal theta rhythm suggests that this structure might play a role in hippocampal-dependent learning and memory. In the present study we aimed to address if NI is involved in an avoidance learning task as well as dentate gyrus (DG) short-term and long-term potentiation. Lidocaine was injected into the NI to transiently inactivate the nucleus, and control rats received saline. Role of NI was studied in passive avoidance learning (PAL) in 3 memory phases of acquisition, consolidation and retrieval. Levels of hippocampal phosphorylated p70 were also assessed in rats involved in PAL. Perforant path-DG short-term synaptic plasticity was studied upon NI inactivation before the paired-pulse stimulation, and also before or after tetanic stimulation in freely moving rats. It was found that NI inactivation delayed learning and impaired retention in the PAL task, with decreased levels of phosphorylated p70 in the respective groups. However, short-term plasticity was not affected by NI inactivation. But long term potentiation (LTP) of DG population spike was poorly induced with NI inactivation compared to the saline group, and it had no effect on population excitatory post-synaptic potential. Furthermore, when NI was inactivated after the induction of LTP, there was no difference between the saline and lidocaine groups. These observations suggest that NI has a role in PAL task, and its inactivation does not change the perforant path-DG granule cell synaptic input but decreases the excitability of the DG granule cells. Further studies should elucidate direct and indirect paths through which NI might influence hippocampal activity. PMID:26927304

  20. Long-term scar quality in burns with three distinct healing potentials: A multicenter prospective cohort study.

    PubMed

    Goei, Harold; van der Vlies, Cornelis H; Hop, M Jenda; Tuinebreijer, Wim E; Nieuwenhuis, Marianne K; Middelkoop, Esther; van Baar, Margriet E

    2016-07-01

    The laser Doppler imager is used in cases of indeterminate burn depth to accurately predict wound healing time at an early stage. The laser Doppler imager classifies burns into three estimated healing potentials as follows: high, <14 days; intermediate, 14-21 days; and low, >21 days. At this time, the relationship between these healing potentials and long-term scar quality is unknown. The objective of this study was to determine the long-term scar quality of burns with three distinct healing potentials. The secondary objectives were to compare treatment strategies in intermediate wounds, to study the effect of the timing of surgery on low healing potential wounds and to identify predictors of reduced scar quality. Hence, in a prospective cohort study, scar quality was determined in patients whose burns were assessed with laser Doppler imaging. Scar Quality was assessed with objective and subjective measurement tools, including overall scar quality (Patient and Observer Scar Assessment Scale) as a primary outcome and color and elasticity parameters. A total of 141 patients (>19 months postburn) with 216 scars were included. Wounds with high and intermediate healing potential did not significantly differ regarding scar quality. Wounds with a low healing potential had a significantly lower scar quality. Analysis of 76 surgically treated low healing potential wounds showed no significant differences in the primary outcome regarding the timing of surgery (≤14 days vs. >14). Predictors of reduced long-term scar quality were darker skin type and multiple surgeries. In conclusion, scar quality was strongly related to the healing potential category. Scar quality was very similar in high and intermediate healing potential wounds. No positive effects were found on scar quality or on healing time in surgically treated wounds with intermediate healing potential, advocating a conservative approach. Further studies should focus on the optimal timing of surgery in low healing

  1. Long-term persistence and bacterial transformation potential of transplastomic plant DNA in soil.

    PubMed

    Pontiroli, Alessandra; Ceccherini, Maria-Teresa; Poté, John; Wildi, Walter; Kay, Elisabeth; Nannipieri, Paolo; Vogel, Timothy M; Simonet, Pascal; Monier, Jean-Michel

    2010-06-01

    The long-term physical persistence and biological activity of transplastomic plant DNA (transgenes contained in the chloroplast genome) either purified and added to soil or naturally released by decaying tobacco leaves in soil was determined. Soil microcosms were amended with transplastomic tobacco leaves or purified plant DNA and incubated for up to 4 years. Total DNA was extracted from soil and the number of transgenes (aadA, which confers resistance to both spectinomycin and streptomycin) was quantified by quantitative PCR. The biological activity of these transgenes was assessed by transformation in the bacterial strain Acinetobacter sp. BD413(pBAB2) in vitro. While the proportion of transgenes recovered increased with the increasing amount of transplastomic DNA added, plant DNA was rapidly degraded over time. The number of transgenes recovered decreased about 10,000 fold within 2 weeks. Data reveal, however, that a small fraction of the plant DNA escaped degradation. Transgene sequences were still detected after 4 years and transformation assays showed that extracted DNA remained biologically active and could still transform competent cells of Acinetobacter sp. BD413(pBAB2). The approach presented here quantified the number of transgenes (based on quantitative PCR of 50% of the gene) released and persisting in the environment over time and provided new insights into the fate of transgenic plant DNA in soil. PMID:20493252

  2. Assessment of auditory evoked potential in long-term mobile phone users.

    PubMed

    Sevi, E Chandra; Kumar, P Sai; Mariam, Yasmin

    2014-01-01

    Mobile phones emit strong electromagnetic wave which causes structural and functional changes in the cell membrane within the central nervous system especially auditory system. The effect of duration of mobile phone use on auditory function was examined One hundred and seventy three long-term mobile phone users aged around 17-39 yrs (both male and female) were recruited in this study. The subjects were divided into three groups according to their age Group I (17-19 yrs), Group II (20-29 yrs), Group III (30-39 yrs). After getting informed consent the subjects were instructed to fill the questionnaire for the history related to our study, conduction deafness auditory brainstem response in both the ears were assessed. Significant difference was observed among three groups in their duration of mobile phone use. Latency of Waves in three groups showed significant difference. The average latency (both right and left ear) of waves I-V was found to be prolonged in Group II when compared to Group I and Group III. Interpeak latencies I-V and I-III showed differences among three groups. The findings of present study showed abnormalities in the conduction of electrical signals in different levels of auditory pathway. PMID:26215013

  3. Effects of repeated prenatal glucocorticoid exposure on long-term potentiation in the juvenile guinea-pig hippocampus.

    PubMed

    Setiawan, Elaine; Jackson, Michael F; MacDonald, John F; Matthews, Stephen G

    2007-06-15

    Synthetic glucocorticoids (sGCs) are routinely used to treat women at risk of preterm labour to promote fetal lung maturation. There is now strong evidence that exposure to excess glucocorticoid during periods of rapid brain development has permanent consequences for endocrine function and behaviour in the offspring. Prenatal exposure to sGC alters the expression of N-methyl-D-aspartate receptor (NMDA-R) subunits in the fetal and neonatal hippocampus. Given the integral role of the NMDA-R in synaptic plasticity, we hypothesized that prenatal sGC exposure will have effects on hippocampal long-term potentiation (LTP) after birth. Further, this may occur in either the presence or absence of elevated cortisol concentrations, in vitro. Pregnant guinea-pigs were injected with betamethasone (Beta, 1 mg kg(-1)) or vehicle on gestational days (gd) 40, 41, 50, 51, 60 and 61 (term approximately 70 days), a regimen comparable to that given to pregnant women. On postnatal day 21, LTP was examined at Schaffer collateral synapses in the CA1 region of hippocampal slices prepared from juvenile animals exposed to betamethasone or vehicle, in utero. Subsequently, the acute glucocorticoid receptor (GR)- and mineralocorticoid receptor (MR)-dependent effects of cortisol (0.1-10 microM; bath applied 30 min before LTP induction) were examined. There was no effect of prenatal sGC treatment on LTP under basal conditions. The application of 10 microM cortisol depressed excitatory synaptic transmission in all treatment groups regardless of sex. Similarly, LTP was depressed by 10 microM cortisol in all groups, with the exception of Beta-exposed females, in which LTP was unaltered. Hippocampal MR and GR protein levels were increased in Beta-exposed females, but not in any other prenatal treatment group. This study reveals sex-specific effects of prenatal exposure to sGC on LTP in the presence of elevated cortisol, a situation that would occur in vivo during stress. PMID:17412773

  4. Long term impact of different tillage practices on soil C sequestration potential

    NASA Astrophysics Data System (ADS)

    Valboa, Giuseppe; Lagomarsino, Alessandra; Papini, Rossella; Brandi, Giorgio; Elio Agnelli, Alessandro; Simoncini, Stefania; Vignozzi, Nadia; Pellegrini, Sergio

    2013-04-01

    Long-term experiments provide important information on the impact of agricultural management practices on soil quality. In 1994, a trial was started to investigate the effects of four different tillage systems on organic carbon and physical properties of a Calcari Fluvic Cambisol loam soil under continuous maize. The tillage practices compared were: conventional tillage by mould-board ploughing to 40 cm depth (DP); ripper sub-soiling to 40-45 cm (RS); shallow tillage by mould-board ploughing to 20 cm depth (SP); minimum tillage by disk harrowing to 10-15 cm (DH). Soil carbon pool, bulk density, macroporosity and aggregate stability were studied at different depth increments (0-10, 10-20, 20-30 and 30-40 cm) and by two repeated samplings (in 1999 and 2011), in order to evaluate their temporal evolution under the different tillage systems. For a better understanding of mechanisms leading to C sequestration, a qualitative characterization of soil organic matter (OM) was performed by acid hydrolysis (HCl 6N), in order to separate the labile and the recalcitrant fractions. After 18 years of treatments we hypothesized changes in OM content and quality, as well as in its vertical distribution, due to tillage practices. At the end of the trial, soil total organic carbon (TOC) stock increased in the surface layers under DH (to 10 cm depth), RS (to 20 cm depth) and SP (to 10 cm depth), while it was unchanged under DP. When considering the whole 0-40 cm layer, all tillage treatments resulted in no significant variation in TOC stock. OM quality and its evolution over time showed well defined differences among treatments: the OM recalcitrant fraction increased under RS (up to 30 cm depth), decreased under DP (up to 40 cm depth) and showed no significant changes under DH and SP. The negative impact of DP on C stabilization was confirmed by a significant decrease of the recalcitrant to TOC ratio in the whole sampled layer. In conclusion, DP showed the worst impact on C storage

  5. Distinct roles of NR2A and NR2B cytoplasmic tails in long term potentiation

    PubMed Central

    Foster, Kelly A.; McLaughlin, Nathan; Edbauer, Dieter; Phillips, Marnie; Bolton, Andrew; Constantine-Paton, Martha; Sheng, Morgan

    2010-01-01

    NMDA receptors (NMDARs) are critical mediators of activity-dependent synaptic plasticity, but the differential roles of NR2A- versus NR2B-containing NMDARs have been controversial. Here, we investigate the roles of NR2A and NR2B in LTP in organotypic hippocampal slice cultures using RNAi and overexpression, to complement pharmacological approaches. In young slices, when NR2B is the predominant subunit expressed, LTP is blocked by the NR2B-selective antagonist Ro25-6981. As slices mature, and NR2A expression rises, activation of NR2B receptors became no longer necessary for LTP induction. LTP was blocked, however, by RNAi knockdown of NR2B, and this was rescued by coexpression of an RNAi-resistant NR2B (NR2B*) cDNA. Interestingly, a chimeric NR2B subunit in which the C-terminal cytoplasmic tail was replaced by that of NR2A failed to rescue LTP while the reverse chimera, NR2A channel with NR2B tail, was able to restore LTP. Thus expression of NR2B with its intact cytoplasmic tail is required for LTP induction, at an age when channel activity of NR2B-NMDARs is not required for LTP. Overexpression of wildtype NR2A failed to rescue LTP in neurons transfected with NR2B-RNAi construct, despite restoring NMDA-EPSC amplitude to a similar level as NR2B*. Surprisingly, an NR2A construct lacking its entire C-terminal cytoplasmic tail regained its ability to restore LTP. Together these data suggest that the NR2B subunit plays a critical role for LTP, presumably by recruiting relevant molecules important for LTP via its cytoplasmic tail. By contrast, NR2A is not essential for LTP and its cytoplasmic tail seems to carry inhibitory factors for LTP. PMID:20164351

  6. Hyaluronan preserves the proliferation and differentiation potentials of long-term cultured murine adipose-derived stromal cells

    SciTech Connect

    Chen, P.-Y.; Huang, Lynn L.H. . E-mail: lynn@mail.ncku.edu.tw; Hsieh, H.-J. . E-mail: hjhsieh@ntu.edu.tw

    2007-08-17

    For long-term culture, murine adipose-derived stromal cells (mADSCs) at latter passages demonstrated a marked decline in proliferative activity, exhibited senescent morphology and reduced differentiation potentials, particularly osteogenesis. To extend the lifespan of mADSCs, two culture conditions containing hyaluronan (HA) was compared in our study, one as a culture medium supplement (SHA), and the other where HA was pre-coated on culture surface (CHA). mADSCs cultivated with SHA exhibited a prolonged lifespan, reduced cellular senescence, and enhanced osteogenic potential compared to regular culture condition (control). Upon CHA treatment, mADSCs tended to form cell aggregates with gradual growth profiles, while their differentiation activities remained similar to SHA groups. After transferring mADSCs from CHA to control surface, they were shown to have an extended lifespan and an increase of osteogenic potential. Our results suggested that HA can be useful for preserving the proliferation and differentiation potentials of long-term cultured mADSCs.

  7. Imaging-Based Neurochemistry in Schizophrenia: A Systematic Review and Implications for Dysfunctional Long-Term Potentiation

    PubMed Central

    Salavati, Bahar; Rajji, Tarek K.; Price, Rae; Sun, Yinming; Graff-Guerrero, Ariel; Daskalakis, Zafiris J.

    2015-01-01

    Cognitive deficits are commonly observed in patients with schizophrenia. Converging lines of evidence suggest that these deficits are associated with impaired long-term potentiation (LTP). In our systematic review, this hypothesis is evaluated using neuroimaging literature focused on proton magnetic resonance spectroscopy, positron emission tomography, and single-photon emission computed tomography. The review provides evidence for abnormal dopaminergic, GABAergic, and glutamatergic neurotransmission in antipsychotic-naive/free patients with schizophrenia compared with healthy controls. The review concludes with a model illustrating how these abnormalities could lead to impaired LTP in patients with schizophrenia and consequently cognitive deficits. PMID:25249654

  8. Martian Halite: Potential for Both Long-Term Preservation of Organics and a Source of Water

    NASA Astrophysics Data System (ADS)

    Fries, M.; Hynek, B.; Osterloo, M.; Zolensky, M.

    2015-10-01

    Deposits containing halite on Mars are both rich scientific targets and potentially a resource for manned Mars exploration. This abstract discusses halite deposits in a general sense without specifying a landing site.

  9. Assessment of the potential for long-term toxicological effects of the Exxon Valdez oil spill on birds and mammals

    SciTech Connect

    Hartung, R.

    1995-12-31

    This paper assesses the potential for direct long-term toxicological effects of exposures to oils in birds and mammals by tracing exposures and effects form the initial cute phases through the sub-chronic to the eventual long-term exposures. The immediate effects of oil spills are physical, the oil acting on the plumage of birds or the fur of mammals. This causes a loss of entrained air and a concomitant reduction in buoyancy and thermal insulation. Animals that escape the immediate impacts may be isolated from their food supply and often ingest large amounts of oil while attempting to clean themselves. At the comparatively high dose levels involved, these exposures can result in toxicologically significant responses in many organ systems. In the course of an oil pollution incident, the amounts of biologically available oils decrease steadily, and simultaneously the composition of the oils shifts towards those components that have low volatility, and that resist photo- and bio-degradation. As this occurs, the primary pathways of exposure change from direct intakes to indirect routes involving the food supply. Although laboratory studies often report finding some adverse effects, the dose rates employed in many of these studies are extremely high when compared with those that are potentially available to animals in the wild, and very few actually use weathered oils. An assessment of the toxicological literature and of the available empirical data on the Exxon Valdez oil spill leads to the conclusion that long-term sub-lethal toxic effects of crude oils on wildlife in such marine spills appear to be very unlikely. 111 refs., 4 figs., 1 tab.

  10. Regional prediction of long-term landfill gas to energy potential.

    PubMed

    Amini, Hamid R; Reinhart, Debra R

    2011-01-01

    Quantifying landfill gas to energy (LFGTE) potential as a source of renewable energy is difficult due to the challenges involved in modeling landfill gas (LFG) generation. In this paper a methodology is presented to estimate LFGTE potential on a regional scale over a 25-year timeframe with consideration of modeling uncertainties. The methodology was demonstrated for the US state of Florida, as a case study, and showed that Florida could increase the annual LFGTE production by more than threefold by 2035 through installation of LFGTE facilities at all landfills. The estimated electricity production potential from Florida LFG is equivalent to removing some 70 million vehicles from highways or replacing over 800 million barrels of oil consumption during the 2010-2035 timeframe. Diverting food waste could significantly reduce fugitive LFG emissions, while having minimal effect on the LFGTE potential; whereas, achieving high diversion goals through increased recycling will result in reduced uncollected LFG and significant loss of energy production potential which may be offset by energy savings from material recovery and reuse. Estimates showed that the power density for Florida LFGTE production could reach as high as 10 Wm(-2) with optimized landfill operation and energy production practices. The environmental benefits from increased lifetime LFG collection efficiencies magnify the value of LFGTE projects. PMID:21703844

  11. Potentially mineralizable nitrogen as a soil health indicator in a Long-Term Agroecosystem Research site

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potentially mineralizable nitrogen (PMN) has demonstrated utility as a valuable soil health indicator. However, the relationship between the total PMN pool and nitrogen mineralization rates has not been well described. A better understanding of PMN dynamics in agroecosystems is essential for optimiz...

  12. Dakota Diamond: An exceptionally high yielding, cold chipping potato cultivar with long-term storage potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dakota Diamond (ND5822C-7) is a medium to late maturing cultivar with uniformly sized tubers and very high yield potential. It resulted from the cross of ND4103-2 and “Dakota Pearl”. Dakota Diamond is comprised of approximately 23.3% wild potato species germplasm. It combines the characteristics ...

  13. THE NMDA ANTAGONIST, MD-801, SUPPRESSES LONG-TERM POTENTIATION, KINDLING, AND KINDLING-INDUCED POTENTIATION IN THE PERFORANT PATH OF THE UNANESTHETIZED RAT

    EPA Science Inventory

    Antagonism of NMDA-mediated transmission by MK-801 has been shown to block long-term potentiation (LTP) in vitro and delay electrical kindling of the amygdala. he present experiment sought to examine the relationship between synaptic potentiation of the perforant path-granule cel...

  14. The Long-Term Market Potential of Concentrating Solar Power (CSP) Systems

    SciTech Connect

    Smith, Steven J.

    2012-10-30

    This chapter will examine the conditions under which thermal CSP systems might play a large role in the global energy system. CSP technologies, such as troughs or power towers, have a large advantage over other solar technologies in that they offer the potential for firm power delivery, mitigating intermittency issues. These systems require relatively cloud-free conditions to operate, which limits their geographic applicability.

  15. Long-term results of a randomized phase III trial of TPF induction chemotherapy followed by surgery and radiation in locally advanced oral squamous cell carcinoma.

    PubMed

    Zhong, Lai-ping; Zhang, Chen-ping; Ren, Guo-xin; Guo, Wei; William, William N; Hong, Christopher S; Sun, Jian; Zhu, Han-guang; Tu, Wen-yong; Li, Jiang; Cai, Yi-li; Yin, Qiu-ming; Wang, Li-zhen; Wang, Zhong-he; Hu, Yong-jie; Ji, Tong; Yang, Wen-jun; Ye, Wei-min; Li, Jun; He, Yue; Wang, Yan-an; Xu, Li-qun; Zhuang, Zhengping; Lee, J Jack; Myers, Jeffrey N; Zhang, Zhi-yuan

    2015-07-30

    Previously, we conducted a randomized phase III trial of TPF (docetaxel, cisplatin, and 5-fluorouracil) induction chemotherapy in surgically managed locally advanced oral squamous cell carcinoma (OSCC) and found no improvement in overall survival. This study reports long-term follow-up results from our initial trial. All patients had clinical stage III or IVA locally advanced OSCC. In the experimental group, patients received two cycles of TPF induction chemotherapy (75mg/m2 docetaxel d1, 75mg/m2 cisplatin d1, and 750mg/m2/day 5-fluorouracil d1-5) followed by radical surgery and post-operative radiotherapy; in the control group, patients received upfront radical surgery and post-operative radiotherapy. The primary endpoint was overall survival. Among 256 enrolled patients with a median follow-up of 70 months, estimated 5-year overall survival, disease-free survival, locoregional recurrence-free survival, and distant metastasis-free survival rates were 61.1%, 52.7%, 55.2%, and 60.4%, respectively. There were no significant differences in survival rates between experimental and control groups. However, patients with favorable pathologic responses had improved outcomes compared to those with unfavorable pathologic responses and to those in the control group. Although TPF induction chemotherapy did not improve long-term survival compared to surgery upfront in patients with stage III and IVA OSCC, a favorable pathologic response after induction chemotherapy may be used as a major endpoint and prognosticator in future studies. Furthermore, the negative results observed in this trial may be represent type II error from an underpowered study. Future larger scale phase III trials are warranted to investigate whether a significant benefit exists for TPF induction chemotherapy in surgically managed OSCC. PMID:26124084

  16. Visual experience induces long-term potentiation (LTP) in the primary visual cortex

    PubMed Central

    Cooke, Sam F.; Bear, Mark F.

    2010-01-01

    Stimulus-specific response potentiation (SRP) is a robust form of experience-dependent plasticity that occurs in primary visual cortex. In awake mice, visual evoked potentials (VEPs) recorded in layer 4 of binocular visual cortex undergo increases in amplitude with repeated presentation of a sinusoidal grating stimulus over days. This effect is highly specific to the experienced stimulus. Here, we test whether the mechanisms of thalamocortical LTP, induced with a theta-burst electrical stimulation (TBS) of the dorsal lateral geniculate nucleus (dLGN), are sufficient to account for SRP. First, we demonstrate that LTP similarly enhances the amplitude of VEPs, but in a way that generalizes across multiple stimuli, spatial frequencies, and contrasts. Second, we show that LTP occludes the subsequent expression of SRP. Third, we reveal that prior SRP occludes TBS-induced LTP of the VEP evoked by the experienced stimulus, but not by unfamiliar stimuli. Finally, we show that SRP is rapidly and selectively reversed by local cortical infusion of a peptide that inhibits PKMζ, a constitutively active kinase known to maintain NMDA receptor-dependent LTP and memory. Thus, SRP is expressed by the same core mechanisms as LTP. SRP therefore provides a simple assay to assess the integrity of LTP in the intact nervous system. Moreover, the results suggest that LTP of visual cortex, like SRP, can potentially be exploited to improve vision. PMID:21123576

  17. Mobile stroke units bring treatment to patients, potentially improving long-term outcomes.

    PubMed

    2016-01-01

    At least three U.S. medical centers are evaluating the benefits of deploying specially equipped mobile stroke units to respond to emergency calls for patients with suspected strokes. Most of these units contain CT scanners, lab facilities, and other functionality capable of determining whether a patient would benefit from clot-busting therapy. Such drugs can then be administered to appropriate patients before a patient even arrives in the ED. Early findings from the approach show that care can be accelerated, potentially improving stroke outcomes and reducing longer-term costs. In Houston, a mobile stroke unit dispatches along with EMS when a call involves a potential stroke victim. If the mobile stroke unit team determines that a patient is a candidate for clot-busting therapy, clinicians can administer the therapy, accelerating potentially brain-saving care. In a nine-week period, researchers reported that they treated about two patients per week with clot-busting drugs, 40% of whom received treatment within the first hour of onset. Further, none of the patients who received the drugs experienced intracerebral hemorrhage, and half of them recovered fully from their strokes within 90 days. PMID:26731930

  18. Neo-synthesis of estrogenic or androgenic neurosteroids determine whether long-term potentiation or depression is induced in hippocampus of male rat

    PubMed Central

    Di Mauro, Michela; Tozzi, Alessandro; Calabresi, Paolo; Pettorossi, Vito Enrico; Grassi, Silvarosa

    2015-01-01

    Estrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD) and depotentiation (DP) by low frequency stimulation (LFS, 15 min-1 Hz) and of long-term potentiation (LTP) by high frequency stimulation (HFS, 1 s-100 Hz), medium (MFS, 1 s-50 Hz), or weak (WFS, 1 s-25 Hz) frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T) into DHT (5α-reductase) and T into E2 (P450-aromatase). We found that LFS-LTD depends on DHT synthesis, since it was fully prevented under finasteride, an inhibitor of DHT synthesis, and rescued by exogenous DHT, while the E2 synthesis was not involved. Conversely, the full development of HFS-LTP requires the synthesis of E2, as demonstrated by the LTP reduction observed under letrozole, an inhibitor of E2 synthesis, and its full rescue by exogenous E2. For intermediate stimulation protocols DHT, but not E2 synthesis, was involved in the production of a small LTP induced by WFS, while the E2 synthesis was required for the MFS-dependent LTP. Under the combined block of DHT and E2 synthesis all stimulation frequencies induced partial LTP. Overall, these results indicate that DHT is required for converting the partial LTP into LTD whereas E2 is needed for the full expression of LTP, evidencing a key role of the neo-synthesis of sex neurosteroids in determining the direction of synaptic long-term effects. PMID:26483631

  19. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice.

    PubMed

    Zhu, G; Wang, Y; Li, J; Wang, J

    2015-04-30

    Ginseng serves as a potential candidate for the treatment of aging-related memory decline or memory loss. However, the related mechanism is not fully understood. In this study, we applied an intraperitoneal injection of ginsenoside Rg1, an active compound from ginseng in middle-aged mice and detected memory improvement and the underlying mechanisms. Our results showed that a period of 30-day administration of ginsenoside Rg1 enhanced long-term memory in the middle-aged animals. Consistent with the memory improvement, ginsenoside Rg1 administration facilitated weak theta-burst stimulation (TBS)-induced long-term potentiation (LTP) in acute hippocampal slices from middle-aged animals. Ginsenoside Rg1 administration increased the dendritic apical spine numbers and area in the CA1 region. In addition, ginsenoside Rg1 administration up-regulated the expression of hippocampal p-AKT, brain-derived neurotrophic factor (BDNF), proBDNF and glutamate receptor 1 (GluR1), but not p-ERK. Interestingly, the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor (bpV) mimicked the ginsenoside Rg1 effects, including increasing p-AKT expression, promoting hippocampal basal synaptic transmission, LTP and memory. Taken together, our data suggest that ginsenoside Rg1 treatment improves memory in middle-aged mice possibly through regulating the PI3K/AKT pathway, altering apical spines and facilitating hippocampal LTP. PMID:25724866

  20. Mixtures of Uncaria and Tabebuia extracts are potentially chemopreventive in CBA/Ca mice: a long-term experiment.

    PubMed

    Budán, Ferenc; Szabó, István; Varjas, Tímea; Nowrasteh, Ghodratollah; Dávid, Tamás; Gergely, Péter; Varga, Zsuzsa; Molnár, Kornélia; Kádár, Balázs; Orsós, Zsuzsa; Kiss, István; Ember, István

    2011-04-01

    A long-term experimental animal model was developed by our research group for the evaluation of potential chemopreventive effects. The inhibitory effects of agents on carcinogen (7,12-dimethylbenz[a]anthracene (DMBA) induced molecular epidemiological biomarkers, in this case the expression of key onco/suppressor genes were investigated. The expression pattern of c-myc, Ha-ras, Bcl-2, K-ras protooncogene and p53 tumour suppressor gene were studied to elucidate early carcinogenic and potential chemopreventive effects. The consumption of so-called Claw of Dragon tea (CoD™ tea) containing the bark of Uncaria guianensis, Cat's Claw (Uncaria sp. U. tomentosa) and Palmer trumpet-tree (Tabebuia sp. T. avellanedae) was able to decrease the DMBA-induced onco/suppressor gene overexpression in a short-term animal experiment. In a following study CBA/Ca mice were treated with 20 mg/kg bw DMBA intraperitoneally (i.p.) and the expression patterns of onco/suppressor genes were examined at several time intervals. According to the examined gene expression patterns in this long-term experiment the chemopreventive effect of CoD™ tea consumption could be confirmed. PMID:20799345

  1. Prenatal Stress Enhances Excitatory Synaptic Transmission and Impairs Long-Term Potentiation in the Frontal Cortex of Adult Offspring Rats

    PubMed Central

    Sowa, Joanna; Bobula, Bartosz; Glombik, Katarzyna; Slusarczyk, Joanna; Basta-Kaim, Agnieszka; Hess, Grzegorz

    2015-01-01

    The effects of prenatal stress procedure were investigated in 3 months old male rats. Prenatally stressed rats showed depressive-like behavior in the forced swim test, including increased immobility, decreased mobility and decreased climbing. In ex vivo frontal cortex slices originating from prenatally stressed animals, the amplitude of extracellular field potentials (FPs) recorded in cortical layer II/III was larger, and the mean amplitude ratio of pharmacologically-isolated NMDA to the AMPA/kainate component of the field potential—smaller than in control preparations. Prenatal stress also resulted in a reduced magnitude of long-term potentiation (LTP). These effects were accompanied by an increase in the mean frequency, but not the mean amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in layer II/III pyramidal neurons. These data demonstrate that stress during pregnancy may lead not only to behavioral disturbances, but also impairs the glutamatergic transmission and long-term synaptic plasticity in the frontal cortex of the adult offspring. PMID:25749097

  2. Long-term effects of early-life environmental manipulations in rodents and primates: Potential animal models in depression research.

    PubMed

    Pryce, Christopher R; Rüedi-Bettschen, Daniela; Dettling, Andrea C; Weston, Anna; Russig, Holger; Ferger, Boris; Feldon, Joram

    2005-01-01

    Depression is one of the most common human illnesses and is of immense clinical and economic significance. Knowledge of the neuro-psychology, -biology and -pharmacology of depression is limited, as is the efficacy of antidepressant treatment. In terms of depression aetiology, whilst the evidence for causal mechanisms is sparse, some genomic and environmental factors associated with increased vulnerability have been identified. With regards to the latter, the environments in which human infants and children develop are fundamental to how they develop, and parental loss, emotional and physical neglect, and abuse have been shown to be associated with: traits of depression, traits of predisposition to depression triggered by subsequent life events, and associated physiological abnormalities, across the life span. Studies of postnatal environmental manipulations in rodents and primates can potentially yield evidence that abnormal early-life experience leading to dysfunction of the neurobiology, physiology and behaviour of emotion is a general mammalian characteristic, and therefore, that this approach can be used to develop animal models for depression research, with aetiological, face, construct and predictive validity. The establishment of models with such validity, if at all achievable, will require a sophisticated combination of (1) appropriate postnatal manipulations that induce acute stress responses in the infant brain which in turn lead to long-term neurobiological consequences, and (2) appropriate behavioural and physiological assays to identify and quantify any depression-like phenotypes resulting from these long-term neurobiological phenotypes. Here, we review some of the evidence-positive and negative-that neglect-like environments in rat pups and monkey infants lead to long-term, depression-like behavioural traits of reduced motivation for reward and impaired coping with adversity, and to altered activity in relevant physiological homeostatic systems. PMID

  3. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman Syndrome

    PubMed Central

    Baudry, Michel; Kramar, Eniko; Xu, Xiaobo; Zadran, Homera; Moreno, Stephanie; Lynch, Gary; Gall, Christine; Bi, Xiaoning

    2012-01-01

    Angelman syndrome (AS) is a neurodevelopmental disorder largely due to abnormal maternal expression of the UBE3A gene leading to the deletion of E6-associated protein. AS subjects have severe cognitive impairments for which there are no therapeutic interventions. Mouse models (knockouts of the maternal Ube3a gene: ‘AS mice’) of the disorder have substantial deficits in long-term potentiation (LTP) and learning. Here we report a clinically plausible pharmacological treatment that ameliorates both deficits. AS mice were injected ip twice daily for 5 days with vehicle or the ampakine CX929; drugs of this type enhance fast EPSCs by positively modulating AMPA receptors. Theta burst stimulation (TBS) produced a normal enhancement of field EPSPs in hippocampal slices prepared from vehicle-treated AS mice but LTP decreased steadily to baseline; however, LTP in slices from ampakine-treated AS mice stabilized at levels found in wild-type controls. TBS-induced actin polymerization within dendritic spines, an essential event for stabilizing LTP, was severely impaired in slices from vehicle-treated AS mice but not in those from ampakine-treated AS mice. Long-term memory scores in a fear conditioning paradigm were reduced by 50% in vehicle-treated AS mice but were comparable to values for littermate controls in the ampakine-treated AS mice. We propose that AS is associated with a profound defect in activity-driven spine cytoskeletal reorganization, resulting in a loss of the synaptic plasticity required for the encoding of long-term memory. Notably, the spine abnormality along with the LTP and learning impairments can be reduced by a minimally invasive drug treatment. PMID:22525571

  4. Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system

    PubMed Central

    Tozzi, Alessandro; de Iure, Antonio; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Giampà, Carmela; Di Mauro, Michela; Mazzocchetti, Petra; Costa, Cinzia; Di Filippo, Massimiliano; Grassi, Silvarosa; Pettorossi, Vito Enrico; Calabresi, Paolo

    2015-01-01

    17β-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson’s disease. PMID:26074768

  5. Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system.

    PubMed

    Tozzi, Alessandro; de Iure, Antonio; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Giampà, Carmela; Di Mauro, Michela; Mazzocchetti, Petra; Costa, Cinzia; Di Filippo, Massimiliano; Grassi, Silvarosa; Pettorossi, Vito Enrico; Calabresi, Paolo

    2015-01-01

    17β-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson's disease. PMID:26074768

  6. The E3 ligase APC/C-Cdh1 is required for associative fear memory and long-term potentiation in the amygdala of adult mice.

    PubMed

    Pick, Joseph E; Malumbres, Marcos; Klann, Eric

    2013-01-01

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating knockout mice where Cdh1 was conditionally eliminated from the forebrain post-developmentally. Although spatial learning and memory in the Morris water maze (MWM) was normal, the Cdh1 conditional knockout (cKO) mice displayed enhanced reversal learning in the MWM and in a water-based Y maze. In addition, we found that the Cdh1 cKO mice had impaired associative fear memory and exhibited impaired long-term potentiation (LTP) in amygdala slices. Finally, we observed increased expression of Shank1 and NR2A expression in amygdalar slices from the Cdh1 cKO mice following the induction of LTP, suggesting a possible molecular mechanism underlying the behavioral and synaptic plasticity impairments displayed in these mice. Our findings are consistent with a role for the APC/C-Cdh1 in fear memory and synaptic plasticity in the amygdala. PMID:23242419

  7. Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation.

    PubMed

    Narcisi, Roberto; Cleary, Mairéad A; Brama, Pieter A J; Hoogduijn, Martin J; Tüysüz, Nesrin; ten Berge, Derk; van Osch, Gerjo J V M

    2015-03-10

    Mesenchymal stem cells (MSCs) are a potential source of chondrogenic cells for the treatment of cartilage disorders, but loss of chondrogenic potential during in vitro expansion and the propensity of cartilage to undergo hypertrophic maturation impede their therapeutic application. Here we report that the signaling protein WNT3A, in combination with FGF2, supports long-term expansion of human bone marrow-derived MSCs. The cells retained their chondrogenic potential and other phenotypic and functional properties of multipotent MSCs, which were gradually lost in the absence of WNT3A. Moreover, we discovered that endogenous WNT signals are the main drivers of the hypertrophic maturation that follows chondrogenic differentiation. Inhibition of WNT signals during differentiation prevented calcification and maintained cartilage properties following implantation in a mouse model. By maintaining potency during expansion and preventing hypertrophic maturation following differentiation, the modulation of WNT signaling removes two major obstacles that impede the clinical application of MSCs in cartilage repair. PMID:25733021

  8. Long term in-line sludge storage in wastewater treatment plants: the potential for phosphorus release.

    PubMed

    Johannessen, Erik; Eikum, Arild Schanke; Krogstad, Tore

    2012-12-01

    Phosphorus removal in on-site wastewater treatment plants is normally obtained by chemical precipitation. Aluminium-based chemicals are the favoured coagulants as they are not affected by redox potential. On-site wastewater treatment package plants do not have separate sludge treatment facilities, and sludge is normally collected on an annual basis. This can potentially increase the risk of phosphorus release into the water phase, subsequently reducing treatment efficiency. This study aimed to detect release of phosphorus as a result of chemical and biological processes. Variables in the study were time, aluminium dosage and pH. Wastewater sludge was monitored for 46 weeks to investigate the different mechanisms of phosphorus release and the longevity of the aluminium treatment involving varying aluminium dosages. Phosphorus compounds were analysed based on a modified Psenner sequential fractionation method. Both pH and aluminium dosage affect the longevity of the phosphorus retention of chemically precipitated wastewater sludge, where sufficient longevity is obtained with pH control and increased aluminium dosages. Chemical dosages similar to what is considered normal levels are sufficient to retain the phosphorus in the sludge for annual sludge collection intervals. Release of soluble phosphorus was attributed to microbial activity and crystallization of Al-hydroxide complexes. PMID:23437673

  9. Human Onchocerciasis: Modelling the Potential Long-term Consequences of a Vaccination Programme

    PubMed Central

    Turner, Hugo C.; Walker, Martin; Lustigman, Sara; Taylor, David W.; Basáñez, María-Gloria

    2015-01-01

    Background Currently, the predominant onchocerciasis control strategy in Africa is annual mass drug administration (MDA) with ivermectin. However, there is a consensus among the global health community, supported by mathematical modelling, that onchocerciasis in Africa will not be eliminated within proposed time frameworks in all endemic foci with only annual MDA, and novel and alternative strategies are urgently needed. Furthermore, use of MDA with ivermectin is already compromised in large areas of central Africa co-endemic with Loa loa, and there are areas where suboptimal or atypical responses to ivermectin have been documented. An onchocerciasis vaccine would be highly advantageous in these areas. Methodology/Principal Findings We used a previously developed onchocerciasis transmission model (EPIONCHO) to investigate the impact of vaccination in areas where loiasis and onchocerciasis are co-endemic and ivermectin is contraindicated. We also explore the potential influence of a vaccination programme on infection resurgence in areas where local elimination has been successfully achieved. Based on the age range included in the Expanded Programme on Immunization (EPI), the vaccine was assumed to target 1 to 5 year olds. Our modelling results indicate that the deployment of an onchocerciasis vaccine would have a beneficial impact in onchocerciasis–loiasis co-endemic areas, markedly reducing microfilarial load in the young (under 20 yr) age groups. Conclusions/Significance An onchocerciasis prophylactic vaccine would reduce the onchocerciasis disease burden in populations where ivermectin cannot be administered safely. Moreover, a vaccine could substantially decrease the chance of re-emergence of Onchocerca volvulus infection in areas where it is deemed that MDA with ivermectin can be stopped. Therefore, a vaccine would protect the substantial investments made by present and past onchocerciasis control programmes, decreasing the chance of disease recrudescence and

  10. Long term, stable brain machine interface performance using local field potentials and multiunit spikes

    NASA Astrophysics Data System (ADS)

    Flint, Robert D.; Wright, Zachary A.; Scheid, Michael R.; Slutzky, Marc W.

    2013-10-01

    Objective. Brain machine interfaces (BMIs) have the potential to restore movement to people with paralysis. However, a clinically-viable BMI must enable consistently accurate control over time spans ranging from years to decades, which has not yet been demonstrated. Most BMIs that use single-unit spikes as inputs will experience degraded performance over time without frequent decoder re-training. Two other signals, local field potentials (LFPs) and multi-unit spikes (MSPs), may offer greater reliability over long periods and better performance stability than single-unit spikes. Here, we demonstrate that LFPs can be used in a biomimetic BMI to control a computer cursor. Approach. We implanted two rhesus macaques with intracortical microelectrodes in primary motor cortex. We recorded LFP and MSP signals from the monkeys while they performed a continuous reaching task, moving a cursor to randomly-placed targets on a computer screen. We then used the LFP and MSP signals to construct biomimetic decoders for control of the cursor. Main results. Both monkeys achieved high-performance, continuous control that remained stable or improved over nearly 12 months using an LFP decoder that was not retrained or adapted. In parallel, the monkeys used MSPs to control a BMI without retraining or adaptation and had similar or better performance, and that predominantly remained stable over more than six months. In contrast to their stable online control, both LFP and MSP signals showed substantial variability when used offline to predict hand movements. Significance. Our results suggest that the monkeys were able to stabilize the relationship between neural activity and cursor movement during online BMI control, despite variability in the relationship between neural activity and hand movements.

  11. Event-related potential correlates of long-term memory for briefly presented faces.

    PubMed

    Joyce, Carrie A; Kutas, Marta

    2005-05-01

    Electrophysiological studies have investigated the nature of face recognition in a variety of paradigms; some have contrasted famous and novel faces in explicit memory paradigms, others have repeated faces to examine implicit memory/priming. If the general finding that implicit memory can last for up to several months also holds for novel faces, a reliable measure of it could have practical application for eyewitness testimony, given that explicit measures of eyewitness memory have at times proven fallible. The current study aimed to determine whether indirect behavioral and electrophysiological measures might yield reliable estimates of face memory over longer intervals than have typically been obtained with priming manipulations. Participants were shown 192 faces and then tested for recognition at four test delays ranging from immediately up to 1 week later. Three event-related brain potential components (e.g., N250r, N400f, and LPC) varied with memory measures although only the N250r varied regardless of explicit recognition, that is, with both repetition and recognition. PMID:15904542

  12. Stability of lumbosacral somatosensory evoked potentials in a long-term follow-up.

    PubMed

    Berić, A

    1988-06-01

    Variability of the lumbosacral somatosensory evoked potential (LSEP) in test/retest situations was assessed in 49 patients with nonprogressive neurological disorder and 20 healthy subjects. The average time of LSEP follow-up in the patients was 16.2 months. The first group of healthy subjects had a short test/retest period of between 2 days and 2 weeks, and the second group had a long period between tests, with a mean of 35.7 months. The R and S waves of the LSEP were analyzed separately for latency and amplitude. Test/retest differences were statistically compared. The average correlation coefficient for healthy subjects was 0.84 and for patients was 0.78. These results suggested a remarkable stability of LSEPs in both healthy subjects and patients with nonprogressive neurological disorders. Therefore, we propose that LSEPs can be used in follow-up both to screen for initial dysfunction of the sensory system and to detect any changes in present dysfunction. PMID:3386671

  13. The Greenville Fault: preliminary estimates of its long-term creep rate and seismic potential

    USGS Publications Warehouse

    Lienkaemper, James J.; Barry, Robert G.; Smith, Forrest E.; Mello, Joseph D.; McFarland, Forrest S.

    2013-01-01

    Once assumed locked, we show that the northern third of the Greenville fault (GF) creeps at 2 mm/yr, based on 47 yr of trilateration net data. This northern GF creep rate equals its 11-ka slip rate, suggesting a low strain accumulation rate. In 1980, the GF, easternmost strand of the San Andreas fault system east of San Francisco Bay, produced a Mw5.8 earthquake with a 6-km surface rupture and dextral slip growing to ≥2 cm on cracks over a few weeks. Trilateration shows a 10-cm post-1980 transient slip ending in 1984. Analysis of 2000-2012 crustal velocities on continuous global positioning system stations, allows creep rates of ~2 mm/yr on the northern GF, 0-1 mm/yr on the central GF, and ~0 mm/yr on its southern third. Modeled depth ranges of creep along the GF allow 5-25% aseismic release. Greater locking in the southern two thirds of the GF is consistent with paleoseismic evidence there for large late Holocene ruptures. Because the GF lacks large (>1 km) discontinuities likely to arrest higher (~1 m) slip ruptures, we expect full-length (54-km) ruptures to occur that include the northern creeping zone. We estimate sufficient strain accumulation on the entire GF to produce Mw6.9 earthquakes with a mean recurrence of ~575 yr. While the creeping 16-km northern part has the potential to produce a Mw6.2 event in 240 yr, it may rupture in both moderate (1980) and large events. These two-dimensional-model estimates of creep rate along the southern GF need verification with small aperture surveys.

  14. The global economic long-term potential of modern biomass in a climate-constrained world

    NASA Astrophysics Data System (ADS)

    Klein, David; Humpenöder, Florian; Bauer, Nico; Dietrich, Jan Philipp; Popp, Alexander; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann

    2014-07-01

    Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at 5 GJ-1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by 5 GJ-1 in 2055 and by 10 GJ-1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N2O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha-1 yr-1 with and without tax.

  15. Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer's disease model.

    PubMed

    Li, Fengling; Wu, Xiqing; Li, Jing; Niu, Qingliang

    2016-06-01

    The complex etiopathogenesis of Alzheimer's disease (AD) has limited progression in the identification of effective therapeutic agents. Amyloid precursor protein (APP) and presenilin‑1 (PS1) are always overexpressed in AD, and are considered to be the initiators of the formation of β‑amyloid plaques and the symptoms of AD. In the present study, a transgenic AD model, constructed via the overexpression of APP and PS1, was used to verify the protective effects of ginsenoside Rg1 on memory performance and synaptic plasticity. AD mice (6‑month‑old) were treated via intraperitoneal injection of 0.1‑10 mg/kg ginsenoside Rg1. Long‑term memory, synaptic plasticity, and the levels of AD‑associated and synaptic plasticity‑associated proteins were measured following treatment. Memory was measured using a fear conditioning task and protein expression levels were investigated using western blotting. All the data was analyzed by one-way analysis of variance or t‑test. Following 30 days of consecutive treatment, memory in the AD mouse model was ameliorated in the 10 mg/kg ginsenoside Rg1 treatment group. As demonstrated by biochemical experiments, ginsenoside Rg1 treatment reduced the accumulations of β‑amyloid 1‑42 and phosphorylated (p)‑Tau in the AD model. Additionally, brain-derived neurotrophic factor (BDNF) and p‑TrkB synaptic plasticity‑associated proteins were upregulated following ginsenoside Rg1 application. Correspondingly, long‑term potentiation (LTP) was restored following ginsenoside Rg1 application in the AD mice model. Taken together, ginsenoside Rg1 repaired hippocampal LTP and memory, likely through facilitating the clearance of AD‑associated proteins and through activation of the BDNF‑TrkB pathway. Therefore, ginsenoside Rg1 may be a candidate drug for the treatment of AD. PMID:27082952

  16. Repeated Isoflurane Exposures Impair Long-Term Potentiation and Increase Basal GABAergic Activity in the Basolateral Amygdala

    PubMed Central

    Long II, Robert P.; Aroniadou-Anderjaska, Vassiliki; Prager, Eric M.; Pidoplichko, Volodymyr I.; Figueiredo, Taiza H.; Braga, Maria F. M.

    2016-01-01

    After surgery requiring general anesthesia, patients often experience emotional disturbances, but it is unclear if this is due to anesthetic exposure. In the present study, we examined whether isoflurane anesthesia produces long-term pathophysiological alterations in the basolateral amygdala (BLA), a brain region that plays a central role in emotional behavior. Ten-week-old, male rats were administered either a single, 1 h long isoflurane (1.5%) anesthesia or three, 1 h long isoflurane exposures, separated by 48 h. Long-term potentiation (LTP) and spontaneous GABAergic activity in the BLA were studied 1 day, 1 week, and 1 month later. Single isoflurane anesthesia had no significant effect on the magnitude of LTP. In contrast, after repeated isoflurane exposures, LTP was dramatically impaired at both 1 day and 1 week after the last exposure but was restored by 1 month after the exposures. Spontaneous GABAA receptor-mediated IPSCs were increased at 1 day and 1 week after repeated exposures but had returned to control levels by 1 month after exposure. Thus, repeated exposures to isoflurane cause a long-lasting—but not permanent—impairment of synaptic plasticity in the BLA, which could be due to increased basal GABAergic activity. These pathophysiological alterations may produce emotional disturbances and impaired fear-related learning. PMID:27313904

  17. Decellularized Allogeneic Heart Valves Demonstrate Self-Regeneration Potential after a Long-Term Preclinical Evaluation

    PubMed Central

    Iop, Laura; Bonetti, Antonella; Naso, Filippo; Rizzo, Stefania; Cagnin, Stefano; Bianco, Roberto; Lin, Carlo Dal; Martini, Paolo; Poser, Helen; Franci, Paolo; Lanfranchi, Gerolamo; Busetto, Roberto; Spina, Michel; Basso, Cristina; Marchini, Maurizio; Gandaglia, Alessandro

    2014-01-01

    Tissue-engineered heart valves are proposed as novel viable replacements granting longer durability and growth potential. However, they require extensive in vitro cell-conditioning in bioreactor before implantation. Here, the propensity of non-preconditioned decellularized heart valves to spontaneous in body self-regeneration was investigated in a large animal model. Decellularized porcine aortic valves were evaluated for right ventricular outflow tract (RVOT) reconstruction in Vietnamese Pigs (n = 11) with 6 (n = 5) and 15 (n = 6) follow-up months. Repositioned native valves (n = 2 for each time) were considered as control. Tissue and cell components from explanted valves were investigated by histology, immunohistochemistry, electron microscopy, and gene expression. Most substitutes constantly demonstrated in vivo adequate hemodynamic performances and ex vivo progressive repopulation during the 15 implantation months without signs of calcifications, fibrosis and/or thrombosis, as revealed by histological, immunohistochemical, ultrastructural, metabolic and transcriptomic profiles. Colonizing cells displayed native-like phenotypes and actively synthesized novel extracellular matrix elements, as collagen and elastin fibers. New mature blood vessels, i.e. capillaries and vasa vasorum, were identified in repopulated valves especially in the medial and adventitial tunicae of regenerated arterial walls. Such findings correlated to the up-regulated vascular gene transcription. Neoinnervation hallmarks were appreciated at histological and ultrastructural levels. Macrophage populations with reparative M2 phenotype were highly represented in repopulated valves. Indeed, no aspects of adverse/immune reaction were revealed in immunohistochemical and transcriptomic patterns. Among differentiated elements, several cells were identified expressing typical stem cell markers of embryonic, hematopoietic, neural and mesenchymal lineages in significantly higher number

  18. Working memory maintenance contributes to long-term memory formation: evidence from slow event-related brain potentials.

    PubMed

    Khader, Patrick; Ranganath, Charan; Seemüller, Anna; Rösler, Frank

    2007-09-01

    Behavioral research has led to conflicting views regarding the relationship between working memory (WM) maintenance and long-term memory (LTM) formation. We used slow event-related brain potentials to investigate the degree to which neural activity during WM maintenance is associated with successful LTM formation. Participants performed a WM task with objects and letter strings, followed by a surprise LTM test. Slow potentials were found to be more negative over the parietal and occipital cortex for objects and over the left frontal cortex for letter strings during WM maintenance. Within each category, they were enhanced for items that were subsequently successfully remembered. These effects were topographically distinct, with maximum effects at those electrodes that showed the maximum negativity during WM maintenance in general. Together, these results are strongly consistent with the ideas that WM maintenance contributes to LTM formation and that this may occur through strengthening of stimulus-specific cortical memory traces. PMID:17993207

  19. Long-term maintenance antiretroviral therapy with saquinavir hard gel, after voluntary abandonment of successful induction HAART.

    PubMed

    Manfredi, R

    2002-04-01

    HIV-infected patients who voluntarily resorted to an apparently suboptimal drug association including saquinavir hard gel after attaining viral suppression thanks to an antiretroviral regimen based on potent protease inhibitors, had a satisfactory 12-18-month clinical and laboratory outcome. The effects of a potent and sufficiently prolonged induction antiretroviral therapy may be maintained for 12 months or more, especially when the maintenance regimen includes novel nucleoside analogues, and specific genotypical mutations are absent. PMID:12017375

  20. Long-term Potentiation and Field EPSPs in the Lateral and Medial Perforant Paths in the Dentate Gyrus In Vitro: a Comparison.

    PubMed

    Hanse, Eric; Gustafsson, Bengt

    1992-10-01

    The entorhinal cortex projects monosynaptically to the granule cells in the dentate gyrus via the lateral and medial perforant paths. These two subdivisions of the perforant path differ with respect to synaptic properties, and recent studies suggest that they also differ with respect to long-term potentiation (LTP). In the present study, using the in vitro slice preparation of the guinea-pig hippocampus, field excitatory postsynaptic potentials (EPSPs) and LTP in the lateral and medial perforant paths were compared. The two pathways were distinguished on the basis of their different termination in the dendritic layer, their different pharmacology and short-term synaptic facilitation. The field EPSP [obtained in the presence of gamma-aminobutyric acid (GABA) A and B receptor antagonists] consisted of a non-N-methyl-d-aspartate (NMDA) component with different time characteristics in the two pathways, the decay being monoexponential in the lateral perforant path and biexponential in the medial one. In addition, the field EPSP in both pathways contained a small NMDA-mediated component that could also be observed after complete blockade of the non-NMDA one. LTP induction in both lateral and medial perforant paths was facilitated by blockade of GABAA inhibition, showed associative properties, and was blocked by NMDA receptor antagonists. Following the induction event, LTP in both pathways developed to a peak value within 30 - 40 s, and the stability of LTP was correlated with the amount of postsynaptic, but not presynaptic, activity during the induction event. During blockade of GABAA inhibition the opioid receptor antagonist naloxone and the beta-adrenergic antagonist timolol had no effect on the magnitude or stability of LTP. It is concluded that LTP in the lateral and medial perforant paths does not differ with respect to induction mechanisms and early temporal characteristics. PMID:12106423

  1. Vesicular zinc promotes presynaptic and inhibits postsynaptic long term potentiation of mossy fiber-CA3 synapse

    PubMed Central

    Pan, Enhui; Zhang, Xiao-an; Huang, Zhen; Krezel, Artur; Zhao, Min; Tin-berg, Christine E.; Lippard, Stephen J.; McNamara, James O.

    2011-01-01

    The presence of zinc in glutamatergic synaptic vesicles of excitatory neurons of mammalian cerebral cortex suggests that zinc might regulate plasticity of synapses formed by these neurons. Long term potentiation (LTP) is a form of synaptic plasticity that may underlie learning and memory. We tested the hypothesis that zinc within vesicles of mossy fibers (mf) contributes to mf-LTP, a classical form of presynaptic LTP. We synthesized an extracellular zinc chelator with selectivity and kinetic properties suitable for study of the large transient of zinc in the synaptic cleft induced by mf stimulation. We found that vesicular zinc is required for presynaptic mf-LTP. Unexpectedly, vesicular zinc also inhibits a novel form of postsynaptic mf-LTP. Because the mf-CA3 synapse provides a major source of excitatory input to the hippocampus, regulating its efficacy by these dual actions of vesicular zinc is critical to proper function of hippocampal circuitry in health and disease. PMID:21943607

  2. Synaptic long-term potentiation realized in Pavlov's dog model based on a NiOx-based memristor

    NASA Astrophysics Data System (ADS)

    Hu, S. G.; Liu, Y.; Liu, Z.; Chen, T. P.; Yu, Q.; Deng, L. J.; Yin, Y.; Hosaka, Sumio

    2014-12-01

    Synaptic Long-Term Potentiation (LTP), which is a long-lasting enhancement in signal transmission between neurons, is widely considered as the major cellular mechanism during learning and memorization. In this work, a NiOx-based memristor is found to be able to emulate the synaptic LTP. Electrical conductance of the memristor is increased by electrical pulse stimulation and then spontaneously decays towards its initial state, which resembles the synaptic LTP. The lasting time of the LTP in the memristor can be estimated with the relaxation equation, which well describes the conductance decay behavior. The LTP effect of the memristor has a dependence on the stimulation parameters, including pulse height, width, interval, and number of pulses. An artificial network consisting of three neurons and two synapses is constructed to demonstrate the associative learning and LTP behavior in extinction of association in Pavlov's dog experiment.

  3. The Long-Term Outcomes of Induction Chemoradiotherapy Followed by Surgery for Locally Advanced Non-Small Cell Lung Cancer

    PubMed Central

    Uramoto, Hidetaka; Akiyama, Hirohiko; Nakajima, Yuki; Kinoshita, Hiroyasu; Inoue, Takuya; Kurimoto, Futoshi; Nishimura, Yu; Saito, Yoshihiro; Sakai, Hiroshi; Kobayashi, Kunihiko

    2014-01-01

    Background Although the concept of induction therapy followed by surgical resection for locally advanced non-small cell lung cancer (LA-NSCLC) has found general acceptance, the appropriate indications and the strategy for this treatment are still controversial. Methods From 2000 through 2008, 36 patients received concurrent chemoradiotherapy followed by surgery. We retrospectively reviewed these cases, analyzed the outcomes and examined the prognosis. Results The median radiation dose given was 60 Gy. Chemotherapy included a platinum agent in all cases; cisplatin-based chemotherapy was administered to 9 cases, and a carboplatin-based chemotherapy regimen was administered to 27. A complete resection was performed in 94% of the patients. Seventeen (47.2%) patients exhibited a complete pathological response, and downstaging was induced in 26 (72%) cases. The morbidity and 30-day mortality rates were 11.1 and 0%, respectively. The 5-year overall survival rate in the patients with complete resection (n = 33) was 83.3%. Conclusions Induction chemoradiotherapy followed by surgery for LA-NSCLC provided a favorable prognosis for selected patients. A complete pathological response was found in about half of cases. This strategy is feasible and was associated with low morbidity and high resectability rates, suggesting that it contributed to improving the treatment results. PMID:25493083

  4. Methionine-enriched diet decreases hippocampal antioxidant defences and impairs spontaneous behaviour and long-term potentiation in rats.

    PubMed

    Viggiano, Alessandro; Viggiano, Emanuela; Monda, Marcellino; Ingrosso, Diego; Perna, Alessandra F; De Luca, Bruno

    2012-08-30

    Diets high in methionine lead to elevation of plasma homocysteine levels which are possibly linked to neurodegenerative diseases and oxidative stress. In the present study, we investigated the effects of methionine-enriched diet on antioxidant defences, on rat spontaneous behaviour and on the ability to sustain long-term potentiation in the dentate gyrus (DG). Sprague-Dawley rats were fed either a standard laboratory diet or a methionine enriched-diet (1% or 5% methionine in drinking water) for 8 weeks. After the 8 weeks, the animals were tested for spontaneous motor activity and habituation in an open field maze, for anxiety-like behaviour in an elevated plus maze and for the ability to sustain long-term potentiation (LTP) induced in the dentate gyrus under urethane anaesthesia. The brains were then removed and histochemically stained for superoxide dismutase (SOD) activity. Rats fed on 5% methionine significantly reduced total distance travelled during the open field test and exhibited no habituation with respect to the other two groups. Rats fed on 5% methionine also showed a significant increase of the anxiety level. Moreover, in this group, the ability to induce LTP in DG was impaired. SOD activity was significantly increased in the cerebral cortex of the rats fed on 1% and 5% methionine with respect to the control group. In conclusion, 5% methionine in drinking water led to evident impairment of locomotor skills and of synaptic plasticity. SOD activity in the cortex was increased in both the groups fed on 1% and 5% methionine, thus suggesting that metabolic adjustments, triggered by the methionine-enriched diet, are likely mediated by reactive oxygen species. PMID:22781143

  5. A Primary Cortical Input to Hippocampus Expresses a Pathway-Specific and Endocannabinoid-Dependent Form of Long-Term Potentiation

    PubMed Central

    Wang, Weisheng; Jia, Yousheng; Pham, Danielle T.; Karsten, Carley A.; Merrill, Collin B.; Gall, Christine M.; Piomelli, Daniele

    2016-01-01

    Abstract The endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), a key modulator of synaptic transmission in mammalian brain, is produced in dendritic spines and then crosses the synaptic junction to depress neurotransmitter release. Here we report that 2-AG-dependent retrograde signaling also mediates an enduring enhancement of glutamate release, as assessed with independent tests, in the lateral perforant path (LPP), one of two cortical inputs to the granule cells of the dentate gyrus. Induction of this form of long-term potentiation (LTP) involved two types of glutamate receptors, changes in postsynaptic calcium, and the postsynaptic enzyme that synthesizes 2-AG. Stochastic optical reconstruction microscopy confirmed that CB1 cannabinoid receptors are localized presynaptically to LPP terminals, while the inhibition or knockout of the receptors eliminated LPP-LTP. Suppressing the enzyme that degrades 2-AG dramatically enhanced LPP potentiation, while overexpressing it produced the opposite effect. Priming with a CB1 agonist markedly reduced the threshold for LTP. Latrunculin A, which prevents actin polymerization, blocked LPP-LTP when applied extracellularly but had no effect when infused postsynaptically into granule cells, indicating that critical actin remodeling resides in the presynaptic compartment. Importantly, there was no evidence for the LPP form of potentiation in the Schaffer-commissural innervation of field CA1 or in the medial perforant path. Peripheral injections of compounds that block or enhance LPP-LTP had corresponding effects on the formation of long-term memory for cues conveyed to the dentate gyrus by the LPP. Together, these results indicate that the encoding of information carried by a principal hippocampal afferent involves an unusual, regionally differentiated form of plasticity. PMID:27517090

  6. A Primary Cortical Input to Hippocampus Expresses a Pathway-Specific and Endocannabinoid-Dependent Form of Long-Term Potentiation.

    PubMed

    Wang, Weisheng; Trieu, Brian H; Palmer, Linda C; Jia, Yousheng; Pham, Danielle T; Jung, Kwang-Mook; Karsten, Carley A; Merrill, Collin B; Mackie, Ken; Gall, Christine M; Piomelli, Daniele; Lynch, Gary

    2016-01-01

    The endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), a key modulator of synaptic transmission in mammalian brain, is produced in dendritic spines and then crosses the synaptic junction to depress neurotransmitter release. Here we report that 2-AG-dependent retrograde signaling also mediates an enduring enhancement of glutamate release, as assessed with independent tests, in the lateral perforant path (LPP), one of two cortical inputs to the granule cells of the dentate gyrus. Induction of this form of long-term potentiation (LTP) involved two types of glutamate receptors, changes in postsynaptic calcium, and the postsynaptic enzyme that synthesizes 2-AG. Stochastic optical reconstruction microscopy confirmed that CB1 cannabinoid receptors are localized presynaptically to LPP terminals, while the inhibition or knockout of the receptors eliminated LPP-LTP. Suppressing the enzyme that degrades 2-AG dramatically enhanced LPP potentiation, while overexpressing it produced the opposite effect. Priming with a CB1 agonist markedly reduced the threshold for LTP. Latrunculin A, which prevents actin polymerization, blocked LPP-LTP when applied extracellularly but had no effect when infused postsynaptically into granule cells, indicating that critical actin remodeling resides in the presynaptic compartment. Importantly, there was no evidence for the LPP form of potentiation in the Schaffer-commissural innervation of field CA1 or in the medial perforant path. Peripheral injections of compounds that block or enhance LPP-LTP had corresponding effects on the formation of long-term memory for cues conveyed to the dentate gyrus by the LPP. Together, these results indicate that the encoding of information carried by a principal hippocampal afferent involves an unusual, regionally differentiated form of plasticity. PMID:27517090

  7. Acid Mine Drainage Passive Remediation: Potential Use of Alkaline Clay, Optimal Mixing Ratio and Long Term Impacts

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Liang, X.; Wen, Y.; Perone, H.

    2015-12-01

    Acid mine drainage (AMD) is one of the most adverse environmental problems of the mine industry. Surface water and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and heavy metals. In this study, alkaline clay, an industrial waste with a high pH, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation. Through a series of batch and column experiments, complemented with field measurements and geochemical modeling, three important issues associated with this passive and auto sustainable acid mine drainage remediation method were investigated: 1) the potential use of alkaline clay as an AMD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values near to neutral conditions, and, 3) the prediction of long term impacts, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a coal waste site located in Mather, Pennsylvania. Alkaline clay proved to be an effective remediation material for AMD. It was found that 10% AC/CR is an adequate mixing ratio (i.e. the upper limit), which has been also indicated by field measurements. The concentrations of some contaminants such as iron, manganese or sulfate are significantly reduced with the remediation approach, compared to those representative concentrations found in mine tailings. Moreover, results suggest a very reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating and hardpan (i.e. cemented layer) on the surface. These processes also made the amended layer less porous, thus increasing water retention and hindering oxygen diffusion.

  8. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010

    NASA Astrophysics Data System (ADS)

    Tian, Bo; Wu, Wenting; Yang, Zhaoqing; Zhou, Yunxuan

    2016-03-01

    The reclamation of coastal land for agricultural, industrial, and urban land use-a common worldwide practice-has occurred extensively in the coastal region of China. In recent decades, all coastal provinces and metropolises in China have experienced severe coastal reclamation related to land scarcity caused by rapid economic growth and urbanization. However, the value of coastal wetlands and ecosystems has not been well understood and appreciated until recent development of advantageous methods of restoring reclaimed land to coastal wetlands in many developed countries. The overall objective of this study is to provide detailed spatial and temporal distributions of coastal reclamation; analyze drivers such as coastal economy, population growth, and urbanization; and understand the relationships among the drivers and land reclamation. We used long-term Landsat image time series from 1985 to 2010 in 5-year intervals, in combination with remotely sensed image interpretation and spatial analysis, to map the reclamation status and changes across the coastal region of China. The Landsat images time-series analysis was also conducted to evaluate the effects of the economy, population, and urbanization drivers on coastal reclamation. The analysis results indicated that 754,697 ha of coastal wetlands have been reclaimed across all coastal provinces and metropolises from 1985 to 2010, and the trend increased sharply after 2005. High-intensity coastal reclamation was mainly driven by the booming economy, especially after 2000, associated with urbanization and industrial development in China's coastal region; this was closely correlated with the gross domestic product (GDP) per capita. The continuous large-scale coastal reclamation of its coastal region now means China is facing a great challenge, including the enormous loss of vegetated coastal wetlands, negative environmental effects, and potential disaster risks related to coastal flooding under future change climate

  9. The effect of positive mood induction on reducing reinstatement fear: Relevance for long term outcomes of exposure therapy

    PubMed Central

    Zbozinek, Tomislav D.; Holmes, Emily A.; Craske, Michelle G.

    2015-01-01

    While exposure therapy is effective in treating anxiety, fear can return after exposure. Return of fear can be understood through mechanisms of extinction learning. One form of return of fear is reinstatement, or, the fear that results from an unsignaled unconditional stimulus (US) presentation after extinction. Though the conditional response (CR; e.g., fear) typically reduces during extinction, the excitatory conditional stimulus (CS+) valence remains negative. The more negative the CS+ valence after the end of extinction, the greater the fear at reinstatement. The current study evaluated the degree to which positive mood induction (positive imagery training; PIT) compared to control (positive verbal training; PVT) before extinction a) decreased CS+ negative valence during extinction and b) reduced reinstatement fear. Compared to PVT, PIT a) increased positive affect, b) decreased post-extinction CS+ negative valence, and c) reduced reinstatement responding as measured by eye blink startle reflex (when shock was used at reinstatement) and self-report fear (regardless of reinstatement US type). Results suggest that increasing positive affect prior to exposure therapy could reduce relapse through reinstatement. PMID:26073498

  10. Long-Term Care

    MedlinePlus

    ... this page please turn Javascript on. Long-Term Care What Is Long-Term Care? Long-term care involves a variety of services ... the Escape (Esc) button on your keyboard.) Most Care Provided at Home Long-term care is provided ...

  11. Long-Term Expansion, Enhanced Chondrogenic Potential, and Suppression of Endochondral Ossification of Adult Human MSCs via WNT Signaling Modulation

    PubMed Central

    Narcisi, Roberto; Cleary, Mairéad A.; Brama, Pieter A.J.; Hoogduijn, Martin J.; Tüysüz, Nesrin; ten Berge, Derk; van Osch, Gerjo J.V.M.

    2015-01-01

    Summary Mesenchymal stem cells (MSCs) are a potential source of chondrogenic cells for the treatment of cartilage disorders, but loss of chondrogenic potential during in vitro expansion and the propensity of cartilage to undergo hypertrophic maturation impede their therapeutic application. Here we report that the signaling protein WNT3A, in combination with FGF2, supports long-term expansion of human bone marrow-derived MSCs. The cells retained their chondrogenic potential and other phenotypic and functional properties of multipotent MSCs, which were gradually lost in the absence of WNT3A. Moreover, we discovered that endogenous WNT signals are the main drivers of the hypertrophic maturation that follows chondrogenic differentiation. Inhibition of WNT signals during differentiation prevented calcification and maintained cartilage properties following implantation in a mouse model. By maintaining potency during expansion and preventing hypertrophic maturation following differentiation, the modulation of WNT signaling removes two major obstacles that impede the clinical application of MSCs in cartilage repair. PMID:25733021

  12. Hippocampal long-term potentiation is reduced in mature compared to young male rats but not in female rats.

    PubMed

    Monfort, P; Felipo, V

    2007-05-11

    Aging is associated with a decline in cognitive function which could be due to reduced synaptic plasticity. Hippocampal long-term potentiation (LTP) is an activity-dependent form of increased transmission efficacy at synapses that is considered the basis for some forms of learning and memory. We studied the N-methyl-d-aspartic acid (NMDA) receptor-dependent LTP in the CA1 region of hippocampus in young (2 months) and mature (8 months) male and female rats. We have found that in young male rats the tetanus increased the magnitude of excitatory post-synaptic potentials to 204+/-10% of basal while in mature male rats the magnitude of the LTP was significantly lower reaching only 153+/-11% of basal. This decrease did not occur in female rats. Similar changes occurred in the content of the NMDA receptor subunits NR1 and NR2A in hippocampus. The amount of both subunits was reduced significantly (15-16%) in hippocampus of 8-month-old compared with 2-month-old male rats. This decrease was not observed in female rats. Moreover, there is a significant correlation between the content of NR1 subunit and the magnitude of the potentiation. These data suggest that some of the neurobiological changes induced in hippocampus by aging are different in males and females. PMID:17395392

  13. Synergistic action of GABA-A and NMDA receptors in the induction of long-term depression in glutamatergic synapses in the newborn rat hippocampus.

    PubMed

    Pavlov, Ivan; Riekki, Ruusu; Taira, Tomi

    2004-12-01

    We show that activation of GABA(A) receptors (GABA(A)Rs) promotes induction of N-methyl-D-aspartate (NMDA) receptor (NMDAR)-dependent long-term depression (LTD) of glutamatergic synapses in the newborn rat hippocampal area CA1 in a developmentally restricted manner. In the newborn rat hippocampus two mechanistically different types of LTD of glutamatergic synapses could be induced under similar experimental conditions. The form of the LTD induced depended on the stimulation protocol and on the age of the animal. Low-frequency stimulation (1 Hz) with 100 stimuli induced a robust homosynaptic, reversible LTD at postnatal days 2-8 (P2-P8) but not at P14. This LTD was blocked by the NMDAR antagonist AP5 or by the GABA(A)R antagonist picrotoxin. Use of a low-chloride solution in the patch pipette resulting in E(GABA-A) < -70 mV blocked the NMDAR-dependent LTD, whereas clamping the cell to -40 mV during induction rescued it. In addition, it was possible to induce LTD at P14 with 100 stimuli if the cells were clamped to -40 mV during induction. Low-frequency stimulation with 900 stimuli induced a robust homosynaptic, reversible LTD both at P2-P8 and at P14. However, neither AP5 nor picrotoxin affected the LTD induced by 900 pulses at P2-P8. Instead, the 900 stimuli-induced LTD was blocked by the metabotropic glutamate receptor antagonists when co-applied with AP5. We suggest that during the first postnatal week postsynaptic depolarization provided by the activation of GABA(A)Rs shifts the threshold for the LTD induction, making the synapses more prone to activity-induced plasticity. From the second postnatal week onwards, when the GABA(A) responses are already hyperpolarizing, different mechanisms for LTD induction prevail. PMID:15579156

  14. Functional contributions of synaptically localized NR2B subunits of the NMDA receptor to synaptic transmission and long-term potentiation in the adult mouse CNS

    PubMed Central

    Miwa, Hideki; Fukaya, Masahiro; Watabe, Ayako M; Watanabe, Masahiko; Manabe, Toshiya

    2008-01-01

    The NMDA-type glutamate receptor is a heteromeric complex composed of the NR1 and at least one of the NR2 subunits. Switching from the NR2B to the NR2A subunit is thought to underlie functional alteration of the NMDA receptor during synaptic maturation, and it is generally believed that it results in preferential localization of NR2A subunits on the synaptic site and that of NR2B subunits on the extracellular site in the mature brain. It has also been proposed that activation of the NR2A and NR2B subunits results in long-term potentiation (LTP) and long-term depression (LTD), respectively. Furthermore, recent reports suggest that synaptic and extrasynaptic receptors may have distinct roles in synaptic plasticity as well as in gene expression associated with neuronal death. Here, we have investigated whether NR2B subunit-containing receptors are present and functional at mature synapses in the lateral nucleus of the amygdala (LA) and the CA1 region of the hippocampus, comparing their properties between the two brain regions. We have found, in contrast to the above hypotheses, that the NR2B subunit significantly contributes to synaptic transmission as well as LTP induction. Furthermore, its contribution is greater in the LA than in the CA1 region, and biophysical properties of NMDA receptors and the NR2B/NR2A ratio are different between the two brain regions. These results indicate that NR2B subunit-containing NMDA receptors accumulate on the synaptic site and are responsible for the unique properties of synaptic function and plasticity in the amygdala. PMID:18372311

  15. Mutant mice deficient in NOS-1 exhibit attenuated long-term facilitation and short-term potentiation in breathing

    PubMed Central

    Kline, David D; Overholt, Jeffery L; Prabhakar, Nanduri R

    2002-01-01

    The objective of the present study is to examine the potential role of nitric oxide (NO) in short-term potentiation (STP) and long-term facilitation (LTF) of breathing. Experiments were performed in wild-type (WT) and mutant mice deficient in nitric oxide synthase-1 (NOS-1), as well as in WT mice administered the NOS-1 inhibitor 7-nitroindazole (7-NI; 50 mg kg−1; i.p.). Respiratory responses following either single or recurrent episodes of hypoxia (7 % O2, balance N2) were analysed in unanaesthetised animals by body plethysmography along with rate of O2 consumption (V̇O2) and CO2 production (V̇CO2). After a single hypoxic challenge, respiration in WT mice remained elevated for 5 min, suggesting STP in ventilation. Following termination of three consecutive hypoxic challenges, respiration remained elevated during normoxia for as long as 30 min, indicating LTF in breathing under awake conditions. STP and LTF were significantly attenuated or absent in WT mice after 7-NI. A similar attenuation or absence of STP and LTF was also seen in NOS-1 mutant mice. Changes in V̇O2 and V̇CO2 were comparable among mice during the post-hypoxic period, suggesting that the absence of STP and LTF was not due to alterations in body metabolism. These results suggest endogenous NO is an important physiological modulator of ventilatory STP and LTF. PMID:11850522

  16. Effects of a human milk oligosaccharide, 2'-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents.

    PubMed

    Vázquez, Enrique; Barranco, Alejandro; Ramírez, Maria; Gruart, Agnes; Delgado-García, José M; Martínez-Lara, Esther; Blanco, Santos; Martín, María Jesús; Castanys, Esther; Buck, Rachael; Prieto, Pedro; Rueda, Ricardo

    2015-05-01

    Human milk oligosaccharides (HMOs) are unique with regard to their diversity, quantity and complexity, particularly in comparison to bovine milk oligosaccharides. HMOs are associated with functional development during early life, mainly related to immunity and intestinal health. Whether HMOs elicit a positive effect on cognitive capabilities of lactating infants remains an open question. This study evaluated the role of the most abundant HMO, 2'-fucosyllactose (2'-FL), in synaptic plasticity and learning capabilities in rodents. Mice and rats were prepared for the chronic recording of field excitatory postsynaptic potentials evoked at the hippocampal CA3-CA1 synapse. Following chronic oral administration of 2'-FL, both species showed improvements in input/output curves and in long-term potentiation (LTP) evoked experimentally in alert behaving animals. This effect on LTP was related to better performance of animals in various types of learning behavioral tests. Mice were tested for spatial learning, working memory and operant conditioning using the IntelliCage system, while rats were submitted to a fixed-ratio schedule in the Skinner box. In both cases, 2'-FL-treated animals performed significantly better than controls. In addition, chronic administration of 2'-FL increased the expression of different molecules involved in the storage of newly acquired memories, such as the postsynaptic density protein 95, phosphorylated calcium/calmodulin-dependent kinase II and brain-derived neurotrophic factor in cortical and subcortical structures. Taken together, the data show that dietary 2'-FL affects cognitive domains and improves learning and memory in rodents. PMID:25662731

  17. X11β rescues memory and long-term potentiation deficits in Alzheimer's disease APPswe Tg2576 mice

    PubMed Central

    Mitchell, Jacqueline C.; Ariff, Belall B.; Yates, Darran M.; Lau, Kwok-Fai; Perkinton, Michael S.; Rogelj, Boris; Stephenson, John D.; Miller, Christopher C.J.; McLoughlin, Declan M.

    2009-01-01

    Increased production and deposition of amyloid β-protein (Aβ) are believed to be key pathogenic events in Alzheimer's disease. As such, routes for lowering cerebral Aβ levels represent potential therapeutic targets for Alzheimer's disease. X11β is a neuronal adaptor protein that binds to the intracellular domain of the amyloid precursor protein (APP). Overexpression of X11β inhibits Aβ production in a number of experimental systems. However, whether these changes to APP processing and Aβ production induced by X11β overexpression also induce beneficial effects to memory and synaptic plasticity are not known. We report here that X11β-mediated reduction in cerebral Aβ is associated with normalization of both cognition and in vivo long-term potentiation in aged APPswe Tg2576 transgenic mice that model the amyloid pathology of Alzheimer's disease. Overexpression of X11β itself has no detectable adverse effects upon mouse behaviour. These findings support the notion that modulation of X11β function represents a therapeutic target for Aβ-mediated neuronal dysfunction in Alzheimer's disease. PMID:19744962

  18. The metabotropic glutamate receptor mGluR3 is critically required for hippocampal long-term depression and modulates long-term potentiation in the dentate gyrus of freely moving rats.

    PubMed

    Pöschel, Beatrice; Wroblewska, Barbara; Heinemann, Uwe; Manahan-Vaughan, Denise

    2005-09-01

    Group II metabotropic glutamate receptors (mGluRs) play an important role in the regulation of hippocampal synaptic plasticity in vivo: long-term potentiation (LTP) is inhibited and long-term depression (LTD) is enhanced by activation of these receptors. The contribution, in vivo, of the individual group II mGluR subtypes has not been characterized. We analysed the involvement of the subtype mGluR3 in LTD and LTP. Rats were implanted with electrodes to enable chronic measurement of evoked potentials from medial perforant path-dentate gyrus synapses. Neither the selective mGluR3 agonist, N-acetylaspartylglutamate (NAAG), nor the antagonist beta-NAAG, given intracerebrally, affected basal synaptic transmission. beta-NAAG significantly inhibited LTD expression. NAAG exhibited transient inhibitory effects on the intermediate phase of LTD. Whereas NAAG altered paired-pulse responses, beta-NAAG had no effect, suggesting that antagonism of mGluR3 prevents LTD via a postsynaptic mechanism, whereas agonist activation of mGluR3 modulates LTD at a presynaptic locus. NAAG impaired the expression of LTP, whereas beta-NAAG had no effect. NAAG effects on LTP were blocked by EGLU, a selective group II mGluR antagonist. Our data suggest an essential role for mGluR3 in LTD, and a modulatory role for mGluR3 in LTP, with effects being mediated by distinct pre- and post-synaptic loci. PMID:15635057

  19. Presynaptic long-term plasticity

    PubMed Central

    Yang, Ying; Calakos, Nicole

    2013-01-01

    Long-term synaptic plasticity is a major cellular substrate for learning, memory, and behavioral adaptation. Although early examples of long-term synaptic plasticity described a mechanism by which postsynaptic signal transduction was potentiated, it is now apparent that there is a vast array of mechanisms for long-term synaptic plasticity that involve modifications to either or both the presynaptic terminal and postsynaptic site. In this article, we discuss current and evolving approaches to identify presynaptic mechanisms as well as discuss their limitations. We next provide examples of the diverse circuits in which presynaptic forms of long-term synaptic plasticity have been described and discuss the potential contribution this form of plasticity might add to circuit function. Finally, we examine the present evidence for the molecular pathways and cellular events underlying presynaptic long-term synaptic plasticity. PMID:24146648

  20. Patients’ perspectives regarding long-term warfarin therapy and the potential transition to new oral anticoagulant therapy

    PubMed Central

    Gebler-Hughes, Elizabeth S.; Kemp, Linda

    2014-01-01

    Objectives: To examine patients’ perspectives regarding long-term vitamin K antagonist (VKA) therapy and the potential transition to new oral anticoagulants (NOACs) such as dabigatran and rivaroxaban, and to determine if factors such as residential location affect these opinions. Design, setting and participants: Patients on VKA therapy for at least 12 weeks completed a questionnaire specifically designed for the study. They were recruited while attending point-of-care international normalized ratio (INR) testing at six South Australian general practice clinics during the period July–September 2013. Main outcome measures: Opinions of current VKA therapy, level of awareness of NOACs, and ratings of potential benefits and deterrents of transition to NOACs were sought. Results: Data from 290 participants were available for analysis (response rate 95.4%). The majority of the sample (79.5%, 229/288) were either satisfied or very satisfied with current VKA therapy. The mean score for the potential benefits of transition to NOACs was 7.6 (±4.2) out of a possible 20, which was significantly lower than the mean score 10.9 (±4.5) for the perceived deterrents to transition (p < 0.001). Rural patients (82.0%, 82/100) were significantly more likely (p = 0.001) to have not heard of NOACs than metropolitan patients (50.3%, 95/189) and also perceived significant less benefits in a transition to NOACs (p = 0.001). Conclusion: When considering potential transition from VKAs to NOACs it is important for prescribers to consider that some patients, in particular those from a rural location, may not perceive a significant benefit in transitioning or may have particular concerns in this area. PMID:25436104

  1. DNA methylation profiling in the thalamus and hippocampus of postnatal malnourished mice, including effects related to long-term potentiation

    PubMed Central

    2014-01-01

    Background DNA methylation has been viewed as the most highly characterized epigenetic mark for genome regulation and development. Postnatal brains appear to exhibit stimulus-induced methylation changes because of factors such as environment, lifestyle, and diet (nutrition). The purpose of this study was to examine how extensively the brain DNA methylome is regulated by nutrition in early life. Results By quantifying the total amount of 5-methylcytosine (5mC) in the thalamus and the hippocampus of postnatal malnourished mice and normal mice, we found the two regions showed differences in global DNA methylation status. The methylation level in the thalamus was much higher than that in the hippocampus. Then, we used a next-generation sequencing (NGS)-based method (MSCC) to detect the whole genome methylation of the two regions in malnourished mice and normal mice. Notably, we found that in the thalamus, 500 discriminable variations existed and that approximately 60% were related to neuronal development or psychiatric diseases. Pathway analyses of the corresponding genes highlighted changes for 9 genes related to long-term potentiation (5.3-fold enrichment, P = 0.033). Conclusions Our findings may help to indicate the genome-wide DNA methylation status of different brain regions and the effects of malnutrition on brain DNA methylation. The results also indicate that postnatal malnutrition may increase the risk of psychiatric disorders. PMID:24555847

  2. Vesicular glutamate transporter VGLUT1 has a role in hippocampal long-term potentiation and spatial reversal learning.

    PubMed

    Balschun, Detlef; Moechars, Diederik; Callaerts-Vegh, Zsuzsanna; Vermaercke, Ben; Van Acker, Nathalie; Andries, Luc; D'Hooge, Rudi

    2010-03-01

    Vesicular glutamate transporters 1 and 2 (VGLUT1, VGLUT2) show largely complementary distribution in the mature rodent brain and tend to segregate to synapses with different physiological properties. In the hippocampus, VGLUT1 is the dominate subtype in adult animals, whereas VGLUT2 is transiently expressed during early postnatal development. We generated and characterized VGLUT1 knockout mice in order to examine the functional contribution of this transporter to hippocampal synaptic plasticity and hippocampus-dependent spatial learning. Because complete deletion of VGLUT1 resulted in postnatal lethality, we used heterozygous animals for analysis. Here, we report that deletion of VGLUT1 resulted in impaired hippocampal long-term potentiation (LTP) in the CA1 region in vitro. In contrast, heterozygous VGLUT2 mice that were investigated for comparison did not show any changes in LTP. The reduced ability of VGLUT1-deficient mice to express LTP was accompanied by a specific deficit in spatial reversal learning in the water maze. Our data suggest a functional role of VGLUT1 in forms of hippocampal synaptic plasticity that are required to adapt and modify acquired spatial maps to external stimuli and changes. PMID:19574394

  3. Platelet-activating factor attenuation of long-term potentiation in rat hippocampal slices via protein tyrosine kinase signaling.

    PubMed

    Reiner, Benjamin; Wang, Wenwei; Liu, Jianuo; Xiong, Huangui

    2016-02-26

    It is well established that HIV-1-infected mononuclear phagocytes release platelet activating factor (PAF) and elevated levels of PAF have been detected in blood and in the cerebrospinal fluid (CSF) of acquired immunodeficiency syndrome (AIDS) patients with HIV-associated neurocognitive disorders (HAND). It is our hypothesis that the elevated levels of PAF alter long-term potentiation (LTP) in the hippocampus, leading to neurocognitive dysfunction. To test this hypothesis, we studied the effects of PAF on LTP in the CA1 region of rat hippocampal slices. Our results showed incubation of hippocampal slices with PAF attenuated LTP. The PAF-mediated attenuation was blocked by ginkgolide B, a PAF receptor antagonist, suggesting PAF attenuation of LTP via PAF receptors. Application of lyso-PAF, an inactive PAF analog, had no apparent effect on LTP. Further investigation revealed an involvement of tyrosine kinase in PAF attenuation of LTP, which was demonstrated by lavendustin A (a specific protein tyrosine kinase inhibitor) blockage of PAF attenuation of LTP. As LTP is widely considered as the cellular and synaptic basis for learning and memory, the attenuation of LTP by PAF may contribute at least in part to the HAND pathogenesis. PMID:26808643

  4. DCP-LA neutralizes mutant amyloid beta peptide-induced impairment of long-term potentiation and spatial learning.

    PubMed

    Nagata, Tetsu; Tomiyama, Takami; Tominaga, Takemi; Mori, Hiroshi; Yaguchi, Takahiro; Nishizaki, Tomoyuki

    2010-01-01

    Long-term potentiation (LTP) was monitored from the CA1 region of the intact rat hippocampus by delivering high frequency stimulation (HFS) to the Schaffer collateral commissural pathway. Intraventricular injection with mutant amyloid beta(1-42) peptide lacking glutamate-22 (Abeta(1-42)E22Delta), favoring oligomerization, 10 min prior to HFS, inhibited expression of LTP, with the potency more than wild-type amyloid beta(1-42) peptide. Intraperitoneal injection with the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) 70 min prior to HFS neutralized mutant Abeta(1-42)E22Delta peptide-induced LTP inhibition. In the water maze test, continuous intraventricular injection with mutant Abeta(1-42)E22Delta peptide for 14 days prolonged the acquisition latency as compared with that for control, with the potency similar to wild-type Abeta(1-42) peptide, and intraperitoneal injection with DCP-LA shortened the prolonged latency to control levels. The results of the present study indicate that DCP-LA neutralizes mutant Abeta(1-42)E22Delta peptide-induced impairment of LTP and spatial learning. PMID:19716848

  5. Long-term characterization, lagoon treatment and migration potential of landfill leachate: a case study in an active Italian landfill.

    PubMed

    Frascari, D; Bronzini, F; Giordano, G; Tedioli, G; Nocentini, M

    2004-01-01

    The elaboration of 10 years of monitoring of leachate quality and quantity, leachate treatment and degree of contamination of soil and surface waters at the Tre Monti site--an active, 4-million-m(3) landfill in Northern Italy--is presented in this study. A hydrological model of leachate production is applied, with a good match of the experimental data. The concentrations of all leachate components except sulfate are characterized by fluctuations over a constant or increasing value. Different ways of interpreting leachate quality data are discussed; the elaboration indicates that the pollutant load on the leachate treatment facility will remain basically constant as long as waste will be added to the landfill. The analysis of the data relative to 10 years of leachate pre-treatment in the adjoining, non-aerated lagoon system indicates that a significant removal is achieved for most leachate components; the operational conditions of the plant are described, and the removal mechanisms are discussed. Finally, the potential for contamination of soil and surface waters is examined by analyzing long-term quality trends of the sub-superficial waters sampled near the lagoons and by means of an analytical campaign conducted on clay cores sampled near and underneath the treatment ponds. The experimental values indicate that the clay layer located under the entire site offers an effective barrier to the migration of leachate contaminants. PMID:14575746

  6. Preventive effect of theanine intake on stress-induced impairments of hippocamapal long-term potentiation and recognition memory.

    PubMed

    Tamano, Haruna; Fukura, Kotaro; Suzuki, Miki; Sakamoto, Kazuhiro; Yokogoshi, Hidehiko; Takeda, Atsushi

    2013-06-01

    Theanine, γ-glutamylethylamide, is one of the major amino acid components in green tea. On the basis of the preventive effect of theanine intake after birth on mild stress-induced attenuation of hippocamapal CA1 long-term potentiation (LTP), the present study evaluated the effect of theanine intake after weaning on stress-induced impairments of LTP and recognition memory. Young rats were fed water containing 0.3% theanine for 3 weeks after weaning and subjected to water immersion stress for 30min, which was more severe than tail suspension stress for 30s used previously. Serum corticosterone levels were lower in theanine-administered rats than in the control rats even after exposure to stress. CA1 LTP induced by a 100-Hz tetanus for 1s was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an N-methyl-d-aspartate (NMDA) receptor antagonist, in hippocampal slices from the control rats and was attenuated by water immersion stress. In contrast, CA1 LTP was not significantly inhibited in the presence of APV in hippocampal slices from theanine-administered rats and was not attenuated by the stress. Furthermore, object recognition memory was impaired in the control rats, but not in theanine-administered rats. The present study indicates the preventive effect of theanine intake after weaning on stress-induced impairments of hippocampal LTP and recognition memory. It is likely that the modification of corticosterone secretion after theanine intake is involved in the preventive effect. PMID:23458739

  7. Long-term exposure to fluoxetine reduces growth and reproductive potential in the dominant rocky intertidal mussel, Mytilus californianus.

    PubMed

    Peters, Joseph R; Granek, Elise F

    2016-03-01

    Environmental stressors shape community composition and ecosystem functioning. Contaminants such as pharmaceuticals are of increasing concern as an environmental stressor due to their persistence in surface waters worldwide. Limited attention has been paid to the effects of pharmaceuticals on marine life, despite widespread detection of these contaminants in the marine environment. Of the existing studies, the majority assess the negative effects of pharmaceuticals over an exposure period of 30 days or less and focus on cellular and subcellular biomarkers. Longer studies are required to determine if chronic contaminant exposure poses risks to marine life at environmentally relevant concentrations; and examination of whole organism effects are necessary to identify potential community-level consequences in estuarine and marine ecosystems. We conducted a long-term exposure study (107 days) with the anti-depressant pharmaceutical, fluoxetine (the active constituent in Prozac®) to determine whether minimal concentrations affected whole organism metrics in the California mussel, Mytilus californianus. We measured algal clearance rates, mussel growth, and the gonadosomatic index, a measure of reproductive health. We found that fluoxetine negatively affects all measured characteristics, however many effects were mediated by length of exposure. Our results fill an important data gap, highlighting organism-level effects of chronic exposure periods; such data more explicitly identify the overall impacts of pharmaceuticals and other contaminants on marine communities and ecosystems. PMID:26766390

  8. Despair-associated memory requires a slow-onset CA1 long-term potentiation with unique underlying mechanisms

    PubMed Central

    Jing, Liang; Duan, Ting-Ting; Tian, Meng; Yuan, Qiang; Tan, Ji-Wei; Zhu, Yong-Yong; Ding, Ze-Yang; Cao, Jun; Yang, Yue-Xiong; Zhang, Xia; Mao, Rong-Rong; Richter-levin, Gal; Zhou, Qi-Xin; Xu, Lin

    2015-01-01

    The emotion of despair that occurs with uncontrollable stressful event is probably retained by memory, termed despair-associated memory, although little is known about the underlying mechanisms. Here, we report that forced swimming (FS) with no hope to escape, but not hopefully escapable swimming (ES), enhances hippocampal α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-dependent GluA1 Ser831 phosphorylation (S831-P), induces a slow-onset CA1 long-term potentiation (LTP) in freely moving rats and leads to increased test immobility 24-h later. Before FS application of the antagonists to block S831-P or N-methyl-D-aspartic acid receptor (NMDAR) or glucocorticoid receptor (GR) disrupts LTP and reduces test immobility, to levels similar to those of the ES group. Because these mechanisms are specifically linked with the hopeless of escape from FS, we suggest that despair-associated memory occurs with an endogenous CA1 LTP that is intriguingly mediated by a unique combination of rapid S831-P with NMDAR and GR activation to shape subsequent behavioral despair. PMID:26449319

  9. Despair-associated memory requires a slow-onset CA1 long-term potentiation with unique underlying mechanisms.

    PubMed

    Jing, Liang; Duan, Ting-Ting; Tian, Meng; Yuan, Qiang; Tan, Ji-Wei; Zhu, Yong-Yong; Ding, Ze-Yang; Cao, Jun; Yang, Yue-Xiong; Zhang, Xia; Mao, Rong-Rong; Richter-Levin, Gal; Zhou, Qi-Xin; Xu, Lin

    2015-01-01

    The emotion of despair that occurs with uncontrollable stressful event is probably retained by memory, termed despair-associated memory, although little is known about the underlying mechanisms. Here, we report that forced swimming (FS) with no hope to escape, but not hopefully escapable swimming (ES), enhances hippocampal α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-dependent GluA1 Ser831 phosphorylation (S831-P), induces a slow-onset CA1 long-term potentiation (LTP) in freely moving rats and leads to increased test immobility 24-h later. Before FS application of the antagonists to block S831-P or N-methyl-D-aspartic acid receptor (NMDAR) or glucocorticoid receptor (GR) disrupts LTP and reduces test immobility, to levels similar to those of the ES group. Because these mechanisms are specifically linked with the hopeless of escape from FS, we suggest that despair-associated memory occurs with an endogenous CA1 LTP that is intriguingly mediated by a unique combination of rapid S831-P with NMDAR and GR activation to shape subsequent behavioral despair. PMID:26449319

  10. Enhanced Deficits in Long-Term Potentiation in the Adult Dentate Gyrus with 2nd Trimester Ethanol Consumption

    PubMed Central

    Helfer, Jennifer L.; White, Emily R.; Christie, Brian R.

    2012-01-01

    Ethanol exposure during pregnancy can cause structural and functional changes in the brain that can impair cognitive capacity. The hippocampal formation, an area of the brain strongly linked with learning and memory, is particularly vulnerable to the teratogenic effects of ethanol. In the present experiments we sought to determine if the functional effects of developmental ethanol exposure could be linked to ethanol exposure during any single trimester-equivalent. Ethanol exposure during the 1st or 3rd trimester-equivalent produced only minor changes in synaptic plasticity in adult offspring. In contrast, ethanol exposure during the 2nd trimester equivalent resulted in a pronounced decrease in long-term potentiation, indicating that the timing of exposure influences the severity of the deficit. Together, the results from these experiments demonstrate long-lasting alterations in synaptic plasticity as the result of developmental ethanol exposure and dependent on the timing of exposure. Furthermore, these results allude to neural circuit malfunction within the hippocampal formation, perhaps relating to the learning and memory deficits observed in individuals with fetal alcohol spectrum disorders. PMID:23227262

  11. In-Situ Strain Analysis of Potential Habitat Composites Exposed to a Simulated Long-Term Lunar Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; O'Rourke, Mary Jane; Hill, Charles; Nutt, Steven; Atwell, William

    2010-01-01

    NASA is studying the effects of long-term space radiation on potential multifunctional composite materials for habitats to better determine their characteristics in the harsh space environment. Two composite materials were selected for the study and were placed in a test stand that simulated the stresses of a pressure vessel wall on the material. The samples in the test stand were exposed to radiation at either a fast dose rate or a slow dose rate, and their strain and temperature was recorded during the exposure. It was found that during a fast dose rate exposure the materials saw a decreased strain with time, or a shrinking of the materials. Given previous radiation studies of polymers, this is believed to be a result of crosslinking occurring in the matrix material. However, with a slow dose rate, the materials saw an increase in strain with time, or a stretching of the materials. This result is consistent with scission or degradation of the matrix occurring, possibly due to oxidative degradation.

  12. Long-term monitoring of airborne nickel (Ni) pollution in association with some potential source processes in the urban environment.

    PubMed

    Kim, Ki-Hyun; Shon, Zang-Ho; Mauulida, Puteri T; Song, Sang-Keun

    2014-09-01

    The environmental behavior and pollution status of nickel (Ni) were investigated in seven major cities in Korea over a 13-year time span (1998-2010). The mean concentrations of Ni measured during the whole study period fell within the range of 3.71 (Gwangju: GJ) to 12.6ngm(-3) (Incheon: IC). Although Ni values showed a good comparability in a relatively large spatial scale, its values in most cities (6 out of 7) were subject to moderate reductions over the study period. To assess the effect of major sources on the long-term distribution of Ni, the relationship between their concentrations and the potent source processes like non-road transportation sources (e.g., ship and aircraft emissions) were examined from some cities with port and airport facilities. The potential impact of long-range transport of Asian dust particles in controlling Ni levels was also evaluated. The overall results suggest that the Ni levels were subject to gradual reductions over the study period irrespective of changes in such localized non-road source activities. The pollution of Ni at all the study sites was maintained well below the international threshold (Directive 2004/107/EC) value of 20ngm(-3). PMID:24997934

  13. Long-term in vitro maintenance of clonal abundance and leukaemia-initiating potential in acute lymphoblastic leukaemia

    PubMed Central

    Pal, D; Blair, H J; Elder, A; Dormon, K; Rennie, K J; Coleman, D J L; Weiland, J; Rankin, K S; Filby, A; Heidenreich, O; Vormoor, J

    2016-01-01

    Lack of suitable in vitro culture conditions for primary acute lymphoblastic leukaemia (ALL) cells severely impairs their experimental accessibility and the testing of new drugs on cell material reflecting clonal heterogeneity in patients. We show that Nestin-positive human mesenchymal stem cells (MSCs) support expansion of a range of biologically and clinically distinct patient-derived ALL samples. Adherent ALL cells showed an increased accumulation in the S phase of the cell cycle and diminished apoptosis when compared with cells in the suspension fraction. Moreover, surface expression of adhesion molecules CD34, CDH2 and CD10 increased several fold. Approximately 20% of the ALL cells were in G0 phase of the cell cycle, suggesting that MSCs may support quiescent ALL cells. Cellular barcoding demonstrated long-term preservation of clonal abundance. Expansion of ALL cells for >3 months compromised neither feeder dependence nor cancer initiating ability as judged by their engraftment potential in immunocompromised mice. Finally, we demonstrate the suitability of this co-culture approach for the investigation of drug combinations with luciferase-expressing primograft ALL cells. Taken together, we have developed a preclinical platform with patient-derived material that will facilitate the development of clinically effective combination therapies for ALL. PMID:27109511

  14. Long-term outcome of induction chemoradiotherapy with docetaxel and cisplatin followed by surgery for non-small-cell lung cancer with mediastinal lymph node metastasis

    PubMed Central

    Toyooka, Shinichi; Kiura, Katsuyuki; Takemoto, Mitsuhiro; Oto, Takahiro; Takigawa, Nagio; Fujiwara, Toshiyoshi; Miyoshi, Shinichiro; Date, Hiroshi

    2012-01-01

    The purpose of this study was to show the long-term outcome of induction chemoradiotherapy, using docetaxel and cisplatin with concurrent radiotherapy followed by surgery for non-small-cell lung cancer (NSCLC) with mediastinal nodal metastasis. Between January 2000 and July 2006, 22 consecutive NSCLC patients with pathologically proven mediastinal nodal metastasis were treated with tri-modality therapy. The regimen consisted of docetaxel and cisplatin plus concurrent radiation at a dose of 40–46 Gy. The induction therapy was followed by surgery 4–6 weeks later. The pulmonary resections were composed of a lobectomy in 19 patients, including 3 with a sleeve lobectomy, a bilobectomy in 2 patients and a left pneumonectomy in 1 patient. With a median follow-up duration of 8.7 years, the 3-year and 7-year overall survival (OS) rates for the entire population were 72.7 and 63.6%, respectively. Our results suggest that tri-modality therapy is promising for NSCLC patients with mediastinal nodal metastasis. PMID:22354091

  15. Long-term quality of life after intensified multi-modality treatment of oral cancer including intra-arterial induction chemotherapy and adjuvant chemoradiation

    PubMed Central

    Kovács, Adorján F.; Stefenelli, Ulrich; Thorn, Gerrit

    2015-01-01

    Background: Quality of life (QoL) studies are well established when accompanying trials in head and neck cancer, but studies on long-term survivors are rare. Aims: The aim was to evaluate long-term follow-up patients treated with an intensified multi-modality therapy. Setting and Design: Cross-sectional study, tertiary care center. Patients and Methods: A total of 135 oral/oropharyngeal cancer survivors having been treated with an effective four modality treatment (intra-arterial induction chemotherapy, radical surgery, adjuvant radiation, concurrent systemic chemotherapy) filled European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 and HN35 questionnaires. Mean distance to treatment was 6.1 (1.3–16.6) years. Results were compared with a reference patient population (EORTC reference manual). In-study group comparison was also carried out. Statistical Analysis: One-sample t-test, Mann–Whitney-test, Kruskal–Wallis analysis. Results: QoL scores of both populations were well comparable. Global health status, cognitive and social functioning, fatigue, social eating, status of teeth, mouth opening and dryness, and sticky saliva were significantly worse in the study population; pain and need for pain killers, cough, need for nutritional support, problems with weight loss and gain were judged to be significantly less. Patients 1-year posttreatment had generally worse scores as compared to patients with two or more years distance to treatment. Complex reconstructive measures and adjuvant (chemo) radiation were main reasons for significant impairment of QoL. Conclusion Subjective disease status of patients following a maximized multi-modality treatment showed an expectable high degree of limitations, but was generally comparable to a reference group treated less intensively, suggesting that the administration of an intensified multi-modality treatment is feasible in terms of QoL/effectivity ratio. PMID:26389030

  16. Induction of cytochrome P-450, cytochrome b-5, NADPH-cytochrome c reductase and change of cytochrome P-450 isozymes with long-term trichloroethylene treatment.

    PubMed

    Kawamoto, T; Hobara, T; Nakamura, K; Imamura, A; Ogino, K; Kobayashi, H; Iwamoto, S; Sakai, T

    1988-12-30

    Several reports have described the effects of trichloroethylene (TCE) on the microsomal mixed function oxidase system (MFOS). These studies suggest that repeated TCE administration induces MFOS, especially cytochrome P-450 and NADPH-cytochrome c reductase. However, it is uncertain what isozymes are induced by TCE treatment, and it is not clear how microsomal enzymes or cytochrome P-450 isozymes are altered when TCE is administered for a duration longer than 28 days. We investigated the changes of MFOS by long-term TCE treatment. Male Wistar rats were injected with TCE, 1.0 g/kg body weight once a day for 5 continuous days or 2.0 g/kg body weight twice a week for 15 days. The mean body weight of the rats treated with TCE for 15 weeks was slightly, but not significantly, less than that of the control rats. Relative liver weights (liver wt/body wt) of the TCE-treated group were however significantly larger (21%) than those of the control group. The weights of the other organs were not changed by long-term TCE treatment. Trichloroethylene treatments for 5 days and 15 weeks caused significant increases in microsomal protein, cytochrome P-450, cytochrome b-5 and NADPH-cytochrome c reductase. TCE treatments produced an increase in a polypeptide band at 52,000 molecular weight range observed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This increase in similar to, but less pronounced than that induced by phenobarbital (PB) treatment. There were no remarkable changes at 56,000 molecular weight range where a band appeared after the treatment with 3-methylcholanthrene (MC). It is likely that the induction of cytochrome P-450 by TCE is relatively similar to that by PB. PMID:3145630

  17. Effects of memantine on hippocampal long-term potentiation, gamma activity, and sensorimotor gating in freely moving rats.

    PubMed

    Ma, Jingyi; Mufti, Asfandyar; Stan Leung, L

    2015-09-01

    Memantine, an uncompetitive N-methyl-D-aspartate receptor antagonist, is used for treatment of patients with Alzheimer's disease. The mechanisms of memantine in relieving cognitive and behavioral symptoms are unclear, and this study attempts to elucidate its action on network and synaptic functions of the hippocampus. The effects of memantine on electrographic activity and hippocampal long-term potentiation (LTP) were investigated in freely moving rats. Basal dendritic excitation on hippocampal CA1 pyramidal cells showed a robust LTP after theta-frequency primed bursts, and the LTP was higher after 5-10 mg/kg intraperitoneal (ip) memantine pretreatment, as compared with saline pretreatment. Injection of scopolamine (5 mg/kg ip) before memantine failed to block the LTP-enhancing effect of memantine. Memantine as compared with saline pretreatment did not affect the LTP after an afterdischarge induced by high-frequency (200-Hz) train stimulation. Memantine (5 or 10 mg/kg ip) significantly enhanced gamma oscillations in the hippocampal local field potentials of 40-100 Hz during walking and awake immobility. Memantine at 10 mg/kg ip, but not at 5 mg/kg ip, increased prepulse inhibition of the acoustic startle response, while both 5 and 10 mg/kg ip memantine enhanced the acoustic startle response as compared with saline-injected rats. These electrophysiological and behavioral effects of memantine are unique among N-methyl-D-aspartate receptor antagonists but are consistent with memantine's effects in improving cognitive and sensorimotor functions of Alzheimer's patients. PMID:26119223

  18. Chronic constant light-induced hippocampal late-phase long-term potentiation impairment in vitro is attenuated by antagonist of D1/D5 receptors.

    PubMed

    Chai, An-Ping; Ma, Wen-Pei; Wang, Li-Ping; Cao, Jun; Xu, Lin; Yang, Yue-Xiong; Mao, Rong-Rong

    2015-10-01

    Previous study reported that chronic constant light exposure caused hippocampus-dependent long-term memory deficit. However, the underlying cellular mechanism of this impairment is still unclear. Multiple lines of evidence indicated that long-term potentiation (LTP) is a cellular model for memory formation. Here we found that, by recording of field excitatory postsynaptic potential (fEPSP) in vitro, chronic constant light (CCL, 3 weeks) exposure impaired the late long-term potentiation (L-LTP), but not early long-term potentiation (E-LTP) and basal transmission in Schaffer collateral (SC)-CA1 synapses of hippocampal slices from rats. Because L-LTP depends on D1/D5 receptors, we examined whether interference of D1/D5 receptors can modulate L-LTP of CCL rats. Bath application of D1/D5 receptors antagonist SCH23390 (1μM) blocked L-LTP in control rats and attenuated the impaired L-LTP in CCL rats. In contrast, pre-incubation of D1/D5 receptors agonist SKF38393 (25μM) occluded further L-LTP in control rats while exacerbated the L-LTP impairment in CCL rats. These results suggested that CCL-induced L-LTP impairment can be modulated by D1/D5 receptors. Our findings may contribute to the further understanding of synaptic plasticity mechanism underlying hippocampal long-term memory impairment induced by circadian rhythm disruption. PMID:26115584

  19. Exposure to Kynurenic Acid during Adolescence Increases Sign-Tracking and Impairs Long-Term Potentiation in Adulthood

    PubMed Central

    DeAngeli, Nicole E.; Todd, Travis P.; Chang, Stephen E.; Yeh, Hermes H.; Yeh, Pamela W.; Bucci, David J.

    2015-01-01

    Changes in brain reward systems are thought to contribute significantly to the cognitive and behavioral impairments of schizophrenia, as well as the propensity to develop co-occurring substance abuse disorders. Presently, there are few treatments for persons with a dual diagnosis and little is known about the neural substrates that underlie co-occurring schizophrenia and substance abuse. One goal of the present study was to determine if a change in the concentration of kynurenic acid (KYNA), a tryptophan metabolite that is increased in the brains of people with schizophrenia, affects reward-related behavior. KYNA is an endogenous antagonist of NMDA glutamate receptors and α7 nicotinic acetylcholine receptors, both of which are critically involved in neurodevelopment, plasticity, and behavior. In Experiment 1, rats were treated throughout adolescence with L-kynurenine (L-KYN), the precursor of KYNA. As adults, the rats were tested drug-free in an autoshaping procedure in which a lever was paired with food. Rats treated with L-KYN during adolescence exhibited increased sign-tracking behavior (lever pressing) when they were tested as adults. Sign-tracking is thought to reflect the lever acquiring incentive salience (motivational value) as a result of its pairing with reward. Thus, KYNA exposure may increase the incentive salience of cues associated with reward, perhaps contributing to an increase in sensitivity to drug-related cues in persons with schizophrenia. In Experiment 2, we tested the effects of exposure to KYNA during adolescence on hippocampal long-term potentiation (LTP). Rats treated with L-KYN exhibited no LTP after a burst of high-frequency stimulation that was sufficient to produce robust LTP in vehicle-treated rats. This finding represents the first demonstrated consequence of elevated KYNA concentration during development and provides insight into the basis for cognitive and behavioral deficits that result from exposure to KYNA during adolescence

  20. Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory

    PubMed Central

    Wang, Szu-Han; Redondo, Roger L.; Morris, Richard G. M.

    2010-01-01

    Memory for inconsequential events fades, unless these happen before or after other novel or surprising events. However, our understanding of the neurobiological mechanisms of novelty-enhanced memory persistence is mainly restricted to aversive or fear-associated memories. We now outline an “everyday appetitive” behavioral model to examine whether and how unrelated novelty facilitates the persistence of spatial memory coupled to parallel electrophysiological studies of the persistence of long-term potentiation (LTP). Across successive days, rats were given one trial per day to find food in different places and later had to recall that day's location. This task is both hippocampus and NMDA receptor dependent. First, encoding with low reward induced place memory that decayed over 24 h; in parallel, weak tetanization of CA1 synapses in brain slices induced early-LTP fading to baseline. Second, novelty exploration scheduled 30 min after this weak encoding resulted in persistent place memory; similarly, strong tetanization—analogous to novelty—both induced late-LTP and rescued early- into late-LTP on an independent but convergent pathway. Third, hippocampal dopamine D1/D5 receptor blockade or protein synthesis inhibition within 15 min of exploration prevented persistent place memory and blocked late-LTP. Fourth, symmetrically, when spatial memory was encoded using strong reward, this memory persisted for 24 h unless encoding occurred under hippocampal D1/D5 receptor blockade. Novelty exploration before this encoding rescued the drug-induced memory impairment. Parallel effects were observed in LTP. These findings can be explained by the synaptic tagging and capture hypothesis. PMID:20962282

  1. Gender differences in spatial learning, synaptic activity, and long-term potentiation in the hippocampus in rats: molecular mechanisms.

    PubMed

    Monfort, Pilar; Gomez-Gimenez, Belen; Llansola, Marta; Felipo, Vicente

    2015-08-19

    In tests of spatial ability, males outperform females both in rats and in humans. The mechanism underlying this gender differential learning ability and memory in spatial tasks remains unknown. Long-term potentiation (LTP) in the hippocampus is considered the basis for spatial learning and memory. The aims of this work were (a) to assess spatial learning and memory in male and female rats in the radial and Morris mazes; (b) to assess whether basal synaptic activity and LTP in the hippocampus are different in male and female rats; and (c) to identify the molecular mechanisms responsible for the gender differences in LTP. We analyzed in young male and female rats (a) performance in spatial tasks in the radial and Morris water mazes; (b) basal synaptic activity in hippocampal slices; and (c) LTP and some mechanisms modulating its magnitude. The results reported allow us to conclude that female rats show larger AMPA receptor-mediate synaptic responses under basal conditions, likely due to enhanced phosphorylation of GluR2 in Ser880 and increased amounts of GluR2-containing AMPA receptors in postsynaptic densities. In contrast, the magnitude of tetanus-induced LTP was lower in females than in males. This is due to reduced activation of soluble guanylate cyclase and the formation of cGMP, leading to lower activation of cGMP-dependent protein kinase and phosphorylation of GluR1 in Ser845, which results in lower insertion of AMPA receptors in the synaptic membrane and a lower magnitude of LTP. These mechanisms may contribute to the reduced performance of females in the radial and Morris water mazes. PMID:26098845

  2. Harmful potential toxic elements in greenhouse soils under long-term cultivation in Almería (Spain)

    NASA Astrophysics Data System (ADS)

    Joaquin Ramos-Miras, Jose; Rodríguez Martín, Jose Antonio; Boluda, Rafael; Bech, Jaume; Gil, Carlos

    2014-05-01

    Heavy metals (HM) are considered highly significant environmental contaminants and are the object of many scientific research works into the soil environment. Activities like agriculture or industry can increase the concentration of these contaminants in soils and waters, which can affect the food chain. Intensification of certain agricultural practices, constant and excessive use of fertilizers and phytosanitary products, and using machinery, increase the HM content in agricultural soils. Many studies have dealt with HM accumulation over time. Despite these works, the influence of long periods of time on these contents, the dynamics and evolution of these elements in agricultural soils, especially soils used for intensive farming purposes under greenhouse conditions, remain unknown to a certain extent. The western Almería region (Spain) is a very important area from both the socio-economic and agricultural viewpoints. A common practice in greenhouse agriculture is the addition of agrochemicals to soils and crops to improve nutrient supply or crop protection and disease control. Such intense agricultural activity has a strong impact, which may have negative repercussions on both these greenhouse soils and the environment. A research has been carried out to determine the total and available levels of six harmful potentially toxic elements (Cd, Cu, Pb, Ni, Zn and Co), and to assess long-term variations in the greenhouse soils of western Almeria. The results indicate that managing soils in the greenhouse preparation stage determines major changes in total and available HM contents. Furthermore, Cd, Cu and Pb enrichment in soil was observed depending on the element and years of growth.

  3. Adenylyl cyclase subtype 1 is essential for late-phase long term potentiation and spatial propagation of synaptic responses in the anterior cingulate cortex of adult mice.

    PubMed

    Chen, Tao; O'Den, Gerile; Song, Qian; Koga, Kohei; Zhang, Ming-Ming; Zhuo, Min

    2014-01-01

    Long-term potentiation (LTP) is a key cellular mechanism for pathological pain in the central nervous system. LTP contains at least two different phases: early-phase LTP (E-LTP) and late-phase LTP (L-LTP). Among several major cortical areas, the anterior cingulate cortex (ACC) is a critical brain region for pain perception and its related emotional changes. Periphery tissue or nerve injuries cause LTP of excitatory synaptic transmission in the ACC. Our previous studies have demonstrated that genetic deletion of calcium-stimulated adenylyl cyclase 1 (AC1) or pharmacological application of a selective AC1 inhibitor NB001 blocked E-LTP in the ACC. However, the effect of AC1 on L-LTP, which requires new protein synthesis and is important for the process of chronic pain, has not been investigated. Here we tested the effects of NB001 on the ACC L-LTP and found that bath application of NB001 (0.1 μM) totally blocked the induction of L-LTP and recruitment of cortical circuitry without affecting basal excitatory transmission. In contrast, gabapentin, a widely used analgesic drug for neuropathic pain, did not block the induction of L-LTP and circuitry recruitment even at a high concentration (100 μM). Gabapentin non-selectively decreased basal synaptic transmission. Our results provide strong evidence that the selective AC1 inhibitor NB001 can be used to inhibit pain-related cortical L-LTP without affecting basal synaptic transmission. It also provides basic mechanisms for possible side effects of gabapentin in the central nervous system and its ineffectiveness in some patients with neuropathic pain. PMID:25304256

  4. Long-Term Effects of Child Corporal Punishment on Depressive Symptoms in Young Adults: Potential Moderators and Mediators

    ERIC Educational Resources Information Center

    Turner, Heather A.; Muller, Paul A.

    2004-01-01

    Based on a sample of 649 students from 3 New England colleges, this study examined the long-term effects of childhood corporal punishment on symptoms of depression and considered factors that may moderate or mediate the association. Similar to national studies, approximately 40% of the sample reported experiencing some level of corporal punishment…

  5. CA1 Long-Term Potentiation Is Diminished but Present in Hippocampal Slices from α-CaMKII Mutant Mice

    PubMed Central

    Hinds, Heather L.; Tonegawa, Susumu; Malinow, Roberto

    1998-01-01

    Previous work has shown that mice missing the α-isoform of calcium–calmodulin-dependent protein kinase II (α-CaMKII) have a deficiency in CA1 hippocampal long-term potentiation (LTP). Follow-up studies on subsequent generations of these mutant mice in a novel inbred background by our laboratories have shown that whereas a deficiency in CA1 LTP is still present in α-CaMKII mutant mice, it is different both quantitatively and qualitatively from the deficiency first described. Mice of a mixed 129SvOla/SvJ;BALB/c;C57Bl/6 background derived from brother/sister mating of the α-CaMKII mutant line through multiple generations (>10) were produced by use of in vitro fertilization. Although LTP at 60 min post-tetanus was clearly deficient in these (−/−) α-CaMKII mice (42.6%, n = 33) compared with (+/+) α-CaMKII control animals (81.7%, n = 17), α-CaMKII mutant mice did show a significant level of LTP. The amount of LTP observed in α-CaMKII mutants was normally distributed, blocked by APV (2.7%, n = 8), and did not correlate with age. Although this supports a role for α-CaMKII in CA1 LTP, it also suggests that a form of α-CaMKII-independent LTP is present in mice that could be dependent on another kinase, such as the β-isoform of CaMKII. A significant difference in input/output curves was also observed between (−/−) α-CaMKII and (+/+) α-CaMKII animals, suggesting that differences in synaptic transmission may be contributing to the LTP deficit in mutant mice. However, tetani of increasing frequency (50, 100, and 200 Hz) did not reveal a higher threshold for potentiation in (−/−) α-CaMKII mice compared with (+/+) α-CaMKII controls. PMID:10454359

  6. Nitric Oxide Is Required for L-Type Ca2+ Channel-Dependent Long-Term Potentiation in the Hippocampus

    PubMed Central

    Pigott, Beatrice M.; Garthwaite, John

    2016-01-01

    Nitric oxide (NO) has long been implicated in the generation of long-term potentiation (LTP) and other types of synaptic plasticity, a role for which the intimate coupling between NMDA receptors (NMDARs) and the neuronal isoform of NO synthase (nNOS) is likely to be instrumental in many instances. While several types of synaptic plasticity depend on NMDARs, others do not, an example of which is LTP triggered by opening of L-type voltage-gated Ca2+ channels (L-VGCCs) in postsynaptic neurons. In CA3-CA1 synapses in the hippocampus, NMDAR-dependent LTP (LTPNMDAR) appears to be primarily expressed postsynaptically whereas L-VGCC-dependent LTP (LTPL−VGCC), which often coexists with LTPNMDAR, appears mainly to reflect enhanced presynaptic transmitter release. Since NO is an excellent candidate as a retrograde messenger mediating post-to-presynaptic signaling, we sought to determine if NO functions in LTPL−VGCC in mouse CA3-CA1 synapses. When elicited by a burst type of stimulation with NMDARs and the associated NO release blocked, LTPL−VGCC was curtailed by inhibition of NO synthase or of the NO-receptor guanylyl cyclase to the same extent as occurred with inhibition of L-VGCCs. Unlike LTPNMDAR at these synapses, LTPL−VGCC was unaffected in mice lacking endothelial NO synthase, implying that the major source of the NO is neuronal. Transient delivery of exogenous NO paired with tetanic synaptic stimulation under conditions of NMDAR blockade resulted in a long-lasting potentiation that was sensitive to inhibition of NO-receptor guanylyl cyclase but was unaffected by inhibition of L-VGCCs. The results indicate that NO, acting through its second messenger cGMP, plays an unexpectedly important role in L-VGCC-dependent, NMDAR-independent LTP, possibly as a retrograde messenger generated in response to opening of postsynaptic L-VGCCs and/or as a signal acting postsynaptically, perhaps to facilitate changes in gene expression. PMID:27445786

  7. The Tumour Response to Induction Chemotherapy has Prognostic Value for Long-Term Survival Outcomes after Intensity-Modulated Radiation Therapy in Nasopharyngeal Carcinoma

    PubMed Central

    Peng, Hao; Chen, Lei; Zhang, Yuan; Li, Wen-Fei; Mao, Yan-Ping; Liu, Xu; Zhang, Fan; Guo, Rui; Liu, Li-Zhi; Tian, Li; Lin, Ai-Hua; Sun, Ying; Ma, Jun

    2016-01-01

    The prognostic value of the tumour response to induction chemotherapy (IC) for long-term survival outcomes after intensity-modulated radiation therapy in nasopharyngeal carcinoma (NPC) remains unknown. We retrospectively reviewed 1811 consecutive patients with newly diagnosed NPC treated using IMRT, and 399 eligible patients with pre- and post-induction chemotherapy magnetic resonance images were recruited. The clinicopathological features of patients with different tumour responses were compared using the Chi-square test or Fisher’s exact test. Prognostic value was assessed using a multivariate Cox proportional hazards model. After IC, 101/399 (25.3%) patients had a complete tumour response overall (CR), 262 (65.7%) had a partial response (PR) and 36 (9.0%) had stable disease (SD). The 4-year disease-free survival (DFS), overall survival (OS), distant metastasis-free survival (DMFS) and locoregional relapse-free survival (LRRFS) rates for CR vs. PR vs. SD were 90.0% vs. 79.0% vs. 58.2% (CR vs. PR: P1 = 0.007; CR vs. SD: P2 < 0.001; PR vs. SD: P3 = 0.004), 95.7% vs. 88.7% vs. 70.2% (P1 = 0.017, P2 < 0.001, P3 = 0.005), 92.0% vs. 87.4% vs. 74.3% (P1 = 0.162, P2 = 0.005, P3 = 0.029) and 95.9% vs. 88.8% vs. 81.8% (P1 = 0.024, P2 = 0.006, P3 = 0.268), respectively. Multivariate analysis identified that the tumour response to IC was an independent prognostic factor for DFS, OS and LRRFS. PMID:27099096

  8. The potential use of diisononyl phthalate metabolites hair as biomarkers to assess long-term exposure demonstrated by a rat model.

    PubMed

    Hsu, Jen-Yi; Ho, Hsin-Hui; Liao, Pao-Chi

    2015-01-01

    Diisononyl phthalate (DINP) is a widely used industrial plasticizer. People come into contact with this chemical by using plastic products made with it. Human health can be adversely affected by long-term DINP exposure. However, because the body rapidly excretes DINP metabolites, the use of single-point urine analysis to assess long-term exposure may produce inconsistent results in epidemiologic studies. Hair analysis has a useful place in biomonitoring, particularly in estimating long-term or historical exposure for some chemicals. Several studies have reported using hair analysis to assess the concentrations of heavy metals, drugs and organic pollutants in humans. As a biomarker, DINP metabolites were measured in rat hair in animal experiments to evaluated long-term exposure to DINP. In addition, we evaluated the correlation between the levels of DINP metabolites in hair and in urine. The levels of DINP metabolites in rat hair were significantly higher in the exposure group, relative to the control group (p<0.05). DINP metabolites had a positive correlation with increasing administered dose. Significant positive correlations for MINP, MOINP and MHINP were found between hair and urine (r=0.86, r=0.79 and r=0.74, respectively, p<0.05). Several metabolites in urine showed earlier saturation than in hair. In this report, we detected eight metabolites in hair and demonstrate that hair analysis has potential applications in the assessment of long-term exposure to DINP. PMID:25278043

  9. Phenobarbital induction of cytochromes P-450. High-level long-term responsiveness of primary rat hepatocyte cultures to drug induction, and glucocorticoid dependence of the phenobarbital response.

    PubMed Central

    Waxman, D J; Morrissey, J J; Naik, S; Jauregui, H O

    1990-01-01

    The induction of hepatic cytochromes P-450 by phenobarbital (PB) was studied in rat hepatocytes cultured for up to 5 weeks on Vitrogen-coated plates in serum-free modified Chee's medium then exposed to PB (0.75 mM) for an additional 4 days. Immunoblotting analysis indicated that P-450 forms PB4 (IIB1) and PB5 (IIB2) were induced dramatically (greater than 50-fold increase), up to levels nearly as high as those achieved in PB-induced rat liver in vivo. The newly synthesized cytochrome P-450 was enzymically active, as shown by the major induction of the P-450 PB4-dependent steroid 16 beta-hydroxylase and pentoxyresorufin O-dealkylase activities in the PB-induced hepatocyte microsomes (up to 90-fold increase). PB induction of these P-450s was markedly enhanced by the presence of dexamethasone (50 nM-1 microM), which alone was not an affective inducing agent, and was inhibited by greater than 90% by 10% fetal bovine serum. The PB response was also inhibited (greater than 85%) by growth hormone (250 ng/ml), indicating that this hormone probably acts directly on the hepatocyte when it antagonizes the induction of P-450 PB4 in intact rats. In untreated hepatocytes, P-450 RLM2 (IIA2), P-450 3 (IIA1) and NADPH P-450 reductase levels were substantially maintained in the cultures for 10-20 days. The latter two enzymes were also inducible by PB to an extent (3-4 fold elevation) that is comparable with that observed in the liver in vivo. Moreover, P-450c (IA1) and P-450 3 (IIA1) were highly inducible by 3-methylcholanthrene (5 microM; 48 h exposure) even after 3 weeks in culture. In contrast, the male-specific pituitary-regulated P-450 form 2c (IIC11) was rapidly lost upon culturing the hepatocytes, suggesting that supplementation of appropriate hormonal factors may be necessary for its expression. The present hepatocyte culture system exhibits a responsiveness to drug inducers that is qualitatively and quantitatively comparable with that observed in vivo, and should prove

  10. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat

    NASA Astrophysics Data System (ADS)

    Konrad, Hannes; Sasgen, Ingo; Pollard, David; Klemann, Volker

    2016-04-01

    for asthenosphere viscosities of 3x10^20 Pa s or higher. References Gomez, N., Pollard, D., Mitrovica, J. X., Huybers, P., & Clark, P. U. (2012). Evolution of a coupled marine ice sheet-sea level model. J. Geophys. Res. 117(F1). Konrad, H., Sasgen, I., Pollard, D. & Klemann, V. (2015). Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. Earth Planet. Sci. Lett. 432, 2015.