Science.gov

Sample records for longin domain regulates

  1. δ-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function.

    PubMed

    Arakel, Eric C; Richter, Kora P; Clancy, Anne; Schwappach, Blanche

    2016-06-21

    Membrane recruitment of coatomer and formation of coat protein I (COPI)-coated vesicles is crucial to homeostasis in the early secretory pathway. The conformational dynamics of COPI during cargo capture and vesicle formation is incompletely understood. By scanning the length of δ-COP via functional complementation in yeast, we dissect the domains of the δ-COP subunit. We show that the μ-homology domain is dispensable for COPI function in the early secretory pathway, whereas the N-terminal longin domain is essential. We map a previously uncharacterized helix, C-terminal to the longin domain, that is specifically required for the retrieval of HDEL-bearing endoplasmic reticulum-luminal residents. It is positionally analogous to an unstructured linker that becomes helical and membrane-facing in the open form of the AP2 clathrin adaptor complex. Based on the amphipathic nature of the critical helix it may probe the membrane for lipid packing defects or mediate interaction with cargo and thus contribute to stabilizing membrane-associated coatomer. PMID:27298352

  2. δ-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function

    PubMed Central

    Arakel, Eric C.; Richter, Kora P.; Clancy, Anne; Schwappach, Blanche

    2016-01-01

    Membrane recruitment of coatomer and formation of coat protein I (COPI)-coated vesicles is crucial to homeostasis in the early secretory pathway. The conformational dynamics of COPI during cargo capture and vesicle formation is incompletely understood. By scanning the length of δ-COP via functional complementation in yeast, we dissect the domains of the δ-COP subunit. We show that the μ-homology domain is dispensable for COPI function in the early secretory pathway, whereas the N-terminal longin domain is essential. We map a previously uncharacterized helix, C-terminal to the longin domain, that is specifically required for the retrieval of HDEL-bearing endoplasmic reticulum-luminal residents. It is positionally analogous to an unstructured linker that becomes helical and membrane-facing in the open form of the AP2 clathrin adaptor complex. Based on the amphipathic nature of the critical helix it may probe the membrane for lipid packing defects or mediate interaction with cargo and thus contribute to stabilizing membrane-associated coatomer. PMID:27298352

  3. Subcellular localization and trafficking of phytolongins (non-SNARE longins) in the plant secretory pathway

    PubMed Central

    de Marcos Lousa, Carine; Soubeyrand, Eric; Bolognese, Paolo; Wattelet-Boyer, Valerie; Bouyssou, Guillaume; Marais, Claireline; Boutté, Yohann; Filippini, Francesco; Moreau, Patrick

    2016-01-01

    SNARE proteins are central elements of the machinery involved in membrane fusion of eukaryotic cells. In animals and plants, SNAREs have diversified to sustain a variety of specific functions. In animals, R-SNARE proteins called brevins have diversified; in contrast, in plants, the R-SNARE proteins named longins have diversified. Recently, a new subfamily of four longins named ‘phytolongins’ (Phyl) was discovered. One intriguing aspect of Phyl proteins is the lack of the typical SNARE motif, which is replaced by another domain termed the ‘Phyl domain’. Phytolongins have a rather ubiquitous tissue expression in Arabidopsis but still await intracellular characterization. In this study, we found that the four phytolongins are distributed along the secretory pathway. While Phyl2.1 and Phyl2.2 are strictly located at the endoplasmic reticulum network, Phyl1.2 associates with the Golgi bodies, and Phyl1.1 locates mainly at the plasma membrane and partially in the Golgi bodies and post-Golgi compartments. Our results show that export of Phyl1.1 from the endoplasmic reticulum depends on the GTPase Sar1, the Sar1 guanine nucleotide exchange factor Sec12, and the SNAREs Sec22 and Memb11. In addition, we have identified the Y48F49 motif as being critical for the exit of Phyl1.1 from the endoplasmic reticulum. Our results provide the first characterization of the subcellular localization of the phytolongins, and we discuss their potential role in regulating the secretory pathway. PMID:26962210

  4. The pollen-specific R-SNARE/longin PiVAMP726 mediates fusion of endo- and exocytic compartments in pollen tube tip growth.

    PubMed

    Guo, Feng; McCubbin, Andrew G

    2012-05-01

    The growing pollen tube apex is dedicated to balancing exo- and endocytic processes to form a rapidly extending tube. As perturbation of either tends to cause a morphological phenotype, this system provides tractable model for studying these processes. Vesicle-associated membrane protein 7s (VAMP7s) are members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family that mediate cognate membrane fusion but their role in pollen tube growth has not been investigated. This manuscript identifies PiVAMP726 of Petunia inflata as a pollen-specific VAMP7 that localizes to the inverted cone of transport vesicles at the pollen tube tip. The endocytic marker FM4-64 was found to colocalize with yellow fluorescent protein (YFP)-PiVAMP726, which is consistent with PiVAMP726 containing an amino-acid motif implicated in endosomal localization, At high overexpression levels, YFP- PiVAMP726 inhibited growth and caused the formation of novel membrane compartments within the pollen tube tip. Functional dissection of PiVAMP726 implicated the N-terminal longin domain in negative regulation of the SNARE activity, but not localization of PiVAMP726. Expression of the constitutively active C-terminal SNARE domain alone, in pollen tubes, generated similar phenotypes to the full-length protein, but the truncated domain was more potent than the wild-type protein at both inhibiting growth and forming the novel membrane compartments. Both endo- and exocytic markers localized to these compartments in addition to YFP-PiVAMP726, leading to the speculation that PiVAMP726 might be involved in the recycling of endocytic vesicles in tip growth. PMID:22345643

  5. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    NASA Astrophysics Data System (ADS)

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-08-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view.

  6. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    PubMed Central

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-01-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view. PMID:27493064

  7. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6.

    PubMed

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-01-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view. PMID:27493064

  8. The Mon1–Ccz1 GEF activates the Rab7 GTPase Ypt7 via a longin-fold–Rab interface and association with PI3P-positive membranes

    PubMed Central

    Cabrera, Margarita; Nordmann, Mirjana; Perz, Angela; Schmedt, David; Gerondopoulos, Andreas; Barr, Francis; Piehler, Jacob; Engelbrecht-Vandré, Siegfried; Ungermann, Christian

    2014-01-01

    ABSTRACT To function in fusion and signaling, Rab GTPases need to be converted into their active GTP form. We previously identified the conserved Mon1–Ccz1 complex as the guanine nucleotide exchange factor (GEF) of the yeast Rab7 GTPase Ypt7. To address the possible GEF mechanism, we generated a homology model of the predicted longin domains of Mon1 and Ccz1 using the Rab-binding surface of the TRAPP complex as a template. On the basis of this, we identified mutations in both yeast Mon1 and Ccz1 that block Ypt7 activation, without affecting heterodimer formation and intracellular localization of Mon1 and Ccz1 at endosomes. Strikingly, the activity of the isolated Mon1–Ccz1 complex for Ypt7 is highly stimulated on membranes, and is promoted by the same anionic phospholipids such as phosphatidylinositol-3-phosphate (PI3P), which also support membrane association of the GEF complex. Our data imply that the GEF activity of the Mon1–Ccz1 complex towards Rab7/Ypt7 requires the interface formed by their longin domains and profits strongly from its association with the organelle surface. PMID:24413168

  9. Constant Domain-regulated Antibody Catalysis*

    PubMed Central

    Sapparapu, Gopal; Planque, Stephanie; Mitsuda, Yukie; McLean, Gary; Nishiyama, Yasuhiro; Paul, Sudhir

    2012-01-01

    Some antibodies contain variable (V) domain catalytic sites. We report the superior amide and peptide bond-hydrolyzing activity of the same heavy and light chain V domains expressed in the IgM constant domain scaffold compared with the IgG scaffold. The superior catalytic activity of recombinant IgM was evident using two substrates, a small model peptide that is hydrolyzed without involvement of high affinity epitope binding, and HIV gp120, which is recognized specifically by noncovalent means prior to the hydrolytic reaction. The catalytic activity was inhibited by an electrophilic phosphonate diester, consistent with a nucleophilic catalytic mechanism. All 13 monoclonal IgMs tested displayed robust hydrolytic activities varying over a 91-fold range, consistent with expression of the catalytic functions at distinct levels by different V domains. The catalytic activity of polyclonal IgM was superior to polyclonal IgG from the same sera, indicating that on average IgMs express the catalytic function at levels greater than IgGs. The findings indicate a favorable effect of the remote IgM constant domain scaffold on the integrity of the V-domain catalytic site and provide a structural basis for conceiving antibody catalysis as a first line immune function expressed at high levels prior to development of mature IgG class antibodies. PMID:22948159

  10. Structural basis of Smoothened regulation by its extracellular domains.

    PubMed

    Byrne, Eamon F X; Sircar, Ria; Miller, Paul S; Hedger, George; Luchetti, Giovanni; Nachtergaele, Sigrid; Tully, Mark D; Mydock-McGrane, Laurel; Covey, Douglas F; Rambo, Robert P; Sansom, Mark S P; Newstead, Simon; Rohatgi, Rajat

    2016-07-28

    Developmental signals of the Hedgehog (Hh) and Wnt families are transduced across the membrane by Frizzledclass G-protein-coupled receptors (GPCRs) composed of both a heptahelical transmembrane domain (TMD) and an extracellular cysteine-rich domain (CRD). How the large extracellular domains of GPCRs regulate signalling by the TMD is unknown. We present crystal structures of the Hh signal transducer and oncoprotein Smoothened, a GPCR that contains two distinct ligand-binding sites: one in its TMD and one in the CRD. The CRD is stacked a top the TMD, separated by an intervening wedge-like linker domain. Structure-guided mutations show that the interface between the CRD, linker domain and TMD stabilizes the inactive state of Smoothened. Unexpectedly, we find a cholesterol molecule bound to Smoothened in the CRD binding site. Mutations predicted to prevent cholesterol binding impair the ability of Smoothened to transmit native Hh signals. Binding of a clinically used antagonist, vismodegib, to the TMD induces a conformational change that is propagated to the CRD, resulting in loss of cholesterol from the CRD-linker domain-TMD interface. Our results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains. PMID:27437577

  11. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions

    PubMed Central

    Yokogawa, Mariko; Tsushima, Takashi; Noda, Nobuo N.; Kumeta, Hiroyuki; Enokizono, Yoshiaki; Yamashita, Kazuo; Standley, Daron M.; Takeuchi, Osamu; Akira, Shizuo; Inagaki, Fuyuhiko

    2016-01-01

    Regnase-1 is an RNase that directly cleaves mRNAs of inflammatory genes such as IL-6 and IL-12p40, and negatively regulates cellular inflammatory responses. Here, we report the structures of four domains of Regnase-1 from Mus musculus—the N-terminal domain (NTD), PilT N-terminus like (PIN) domain, zinc finger (ZF) domain and C-terminal domain (CTD). The PIN domain harbors the RNase catalytic center; however, it is insufficient for enzymatic activity. We found that the NTD associates with the PIN domain and significantly enhances its RNase activity. The PIN domain forms a head-to-tail oligomer and the dimer interface overlaps with the NTD binding site. Interestingly, mutations blocking PIN oligomerization had no RNase activity, indicating that both oligomerization and NTD binding are crucial for RNase activity in vitro. These results suggest that Regnase-1 RNase activity is tightly controlled by both intramolecular (NTD-PIN) and intermolecular (PIN-PIN) interactions. PMID:26927947

  12. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions.

    PubMed

    Yokogawa, Mariko; Tsushima, Takashi; Noda, Nobuo N; Kumeta, Hiroyuki; Enokizono, Yoshiaki; Yamashita, Kazuo; Standley, Daron M; Takeuchi, Osamu; Akira, Shizuo; Inagaki, Fuyuhiko

    2016-01-01

    Regnase-1 is an RNase that directly cleaves mRNAs of inflammatory genes such as IL-6 and IL-12p40, and negatively regulates cellular inflammatory responses. Here, we report the structures of four domains of Regnase-1 from Mus musculus-the N-terminal domain (NTD), PilT N-terminus like (PIN) domain, zinc finger (ZF) domain and C-terminal domain (CTD). The PIN domain harbors the RNase catalytic center; however, it is insufficient for enzymatic activity. We found that the NTD associates with the PIN domain and significantly enhances its RNase activity. The PIN domain forms a head-to-tail oligomer and the dimer interface overlaps with the NTD binding site. Interestingly, mutations blocking PIN oligomerization had no RNase activity, indicating that both oligomerization and NTD binding are crucial for RNase activity in vitro. These results suggest that Regnase-1 RNase activity is tightly controlled by both intramolecular (NTD-PIN) and intermolecular (PIN-PIN) interactions. PMID:26927947

  13. Structural basis of Smoothened regulation by its extracellular domains

    NASA Astrophysics Data System (ADS)

    Byrne, Eamon F. X.; Sircar, Ria; Miller, Paul S.; Hedger, George; Luchetti, Giovanni; Nachtergaele, Sigrid; Tully, Mark D.; Mydock-McGrane, Laurel; Covey, Douglas F.; Rambo, Robert P.; Sansom, Mark S. P.; Newstead, Simon; Rohatgi, Rajat; Siebold, Christian

    2016-07-01

    Developmental signals of the Hedgehog (Hh) and Wnt families are transduced across the membrane by Frizzled-class G-protein-coupled receptors (GPCRs) composed of both a heptahelical transmembrane domain (TMD) and an extracellular cysteine-rich domain (CRD). How the large extracellular domains of GPCRs regulate signalling by the TMD is unknown. We present crystal structures of the Hh signal transducer and oncoprotein Smoothened, a GPCR that contains two distinct ligand-binding sites: one in its TMD and one in the CRD. The CRD is stacked atop the TMD, separated by an intervening wedge-like linker domain. Structure-guided mutations show that the interface between the CRD, linker domain and TMD stabilizes the inactive state of Smoothened. Unexpectedly, we find a cholesterol molecule bound to Smoothened in the CRD binding site. Mutations predicted to prevent cholesterol binding impair the ability of Smoothened to transmit native Hh signals. Binding of a clinically used antagonist, vismodegib, to the TMD induces a conformational change that is propagated to the CRD, resulting in loss of cholesterol from the CRD–linker domain–TMD interface. Our results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains.

  14. Distinct domains of Complexin I differentially regulate neurotransmitter release

    PubMed Central

    Xue, Mingshan; Reim, Kerstin; Chen, Xiaocheng; Chao, Hsiao-Tuan; Deng, Hui; Rizo, Josep; Brose, Nils; Rosenmund, Christian

    2016-01-01

    Complexins constitute a family of four synaptic high-affinity SNARE complex binding proteins. They positively regulate a late, post-priming step in Ca2+-triggered synchronous neurotransmitter release, but the underlying molecular mechanisms are unclear. We show here that SNARE complex binding of Complexin I via its central α-helix is necessary but unexpectedly not sufficient for its key function in promoting neurotransmitter release. An accessory α-helix N-terminal of the SNARE complex binding region plays an inhibitory role in fast synaptic exocytosis, while its N-terminally adjacent sequences facilitate Ca2+-triggered release even in the absence of the Ca2+ sensor Synaptotagmin 1. Our results indicate that distinct functional domains of Complexins differentially regulate synaptic exocytosis, and that via the interplay between these domains Complexins play a crucial role in fine-tuning Ca2+-triggered fast neurotransmitter release. PMID:17828276

  15. Problems of Subject Mediator Development for Gene Expression Regulation Domain

    NASA Astrophysics Data System (ADS)

    Kalinichenko, L. A.; Briukhov, D. O.; Zakharov, V. N.; Podkolodnaja, O. A.; Podkolodny, N. L.

    For efficient organization of research in the domain of bioinformatics it is required to organize properly the relevant information in specific research areas. One of the important outcomes of such organization would be provision of access to and querying of a large number of distributed information sources including various data on the primary and spatial structure of DNA and RNA macromolecules, proteins and their complexes as well as data on peculiarities of their interactions with each other. To provide for semantic integration of nonsystematic population of autonomous information sources kept by different information providers into a well-structured information collection it is required to create the global unified representation of the existing information sources and services. To reach that it is proposed to form a special middleware consisting of the subject mediators. For each subject mediator, the application domain model is to be defined by the experts in the field. This model may include specifications of data structures, terminologies (thesauri), concepts (ontologies), methods applicable to data, processes (workflows), characteristic for the domain. The mediators provide a uniform query interface to the multiple data and procedure service sources, thereby freeing the users from having to locate the relevant sources, query each one in isolation, and combine manually the information from them. In the paper we discuss an approach for development of the mediator for integration of heterogeneous molecular-genetic data in the gene expression regulation domain.

  16. CUB and Sushi multiple domains 3 regulates dendrite development.

    PubMed

    Mizukami, Tomoharu; Kohno, Takao; Hattori, Mitsuharu

    2016-09-01

    CUB and Sushi multiple domains 3 (CSMD3) is a large protein expressed in fetal and adult brain. Recently, mutations of the CSMD3 gene were identified in schizophrenia and autism patients. However, biochemical properties and functions of the CSMD3 protein remain unknown. Here, we demonstrate that CSMD3 is an oligomeric type I transmembrane protein localized in the apical dendrites of hippocampal pyramidal neurons in the postnatal brain. In cultured hippocampal neurons, CSMD3 is expressed only after 7 days in vitro. Overexpression of CSMD3 induced dendritic branching in hippocampal neurons. Regulation of dendritic morphology by CSMD3 depended on the presence of its extracellular region, while CSMD3 intracellular region was dispensable for this activity. These results suggest that CSMD3 acts as a co-receptor of an unidentified membrane protein to regulate dendrite development. Therefore, malfunctions of CSMD3 may be one of the factors in the pathogenesis of psychiatric disorders. PMID:27033969

  17. EH domain proteins regulate cardiac membrane protein targeting

    PubMed Central

    Gudmundsson, Hjalti; Hund, Thomas J.; Wright, Patrick J.; Kline, Crystal F.; Snyder, Jedidiah S.; Qian, Lan; Koval, Olha M.; Cunha, Shane R.; George, Manju; Rainey, Mark A.; Kashef, Farshid E.; Dun, Wen; Boyden, Penelope A.; Anderson, Mark E.; Band, Hamid; Mohler, Peter J.

    2010-01-01

    Rationale Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes. Objective We sought to discover novel pathways for membrane protein targeting in primary cardiomyocytes. Methods and Results We report the initial characterization of a large family of membrane trafficking proteins in human heart. We employed a tissue-wide screen for novel ankyrin-associated trafficking proteins and identified four members of a unique Eps15 homology (EH) domain-containing protein family (EHD1, EHD2, EHD3, EHD4) that serve critical roles in endosome-based membrane protein targeting in other cell types. We show that EHD1-4 directly associate with ankyrin, provide the first information on the expression and localization of these molecules in primary cardiomyocytes, and demonstrate that EHD1-4 are co-expressed with ankyrin-B in the myocyte perinuclear region. Notably, the expression of multiple EHD proteins is increased in animal models lacking ankyrin-B, and EHD3-deficient cardiomyocytes display aberrant ankyrin-B localization and selective loss of Na/Ca exchanger expression and function. Finally, we report significant modulation of EHD expression following myocardial infarction, suggesting that these proteins may play a key role in regulating membrane excitability in normal and diseased heart. Conclusions Our findings identify and characterize a new class of cardiac trafficking proteins, define the first group of proteins associated with the ankyrin

  18. Ubiquitin binds to and regulates a subset of SH3 domains

    PubMed Central

    Stamenova, Svetoslava D.; French, Michael E.; He, Yuan; Francis, Smitha A.; Kramer, Zachary B.; Hicke, Linda

    2009-01-01

    Summary SH3 domains are modules of 50-70 amino acids that promote interactions among proteins, often participating in the assembly of large dynamic complexes. These domains bind to peptide ligands, which usually contain a core Pro-X-X-Pro (PXXP) sequence. Here we identify a class of SH3 domains that binds to ubiquitin. The yeast endocytic protein Sla1, as well as the mammalian proteins CIN85 and amphiphysin, carry ubiquitin-binding SH3 domains. Ubiquitin and peptide ligands bind to the same hydrophobic groove on the SH3 domain surface, and ubiquitin and a PXXP-containing protein fragment compete for binding to SH3 domains. We conclude that a subset of SH3 domains constitutes a distinct type of ubiquitin-binding domain, and that ubiquitin-binding can negatively regulate interaction of SH3 domains with canonical proline-rich ligands. PMID:17244534

  19. The structural mechanism of KCNH-channel regulation by the eag domain

    PubMed Central

    Haitin, Yoni; Carlson, Anne E.; Zagotta, William N.

    2013-01-01

    The KCNH voltage-dependent potassium channels (ether-á-go-go, EAG; EAG-related gene, ERG; EAG-like channels, ELK) are important regulators of cellular excitability1-3 and have key roles in diseases such as cardiac long QT syndrome type 2 (LQT2)4, epilepsy5, schizophrenia6 and cancer7. The intracellular domains of KCNH channels are structurally distinct from other voltage-gated channels. The amino-terminal region contains an eag domain, which is comprised of a Per-Arnt-Sim (PAS) domain and a PAS-cap domain8, while the carboxy-terminal region contains a cyclic nucleotide-binding homology domain (CNBHD) which is connected to the pore through a C-linker domain. Many disease-causing mutations localize to these specialized intracellular domains, which underlie the unique gating and regulation of KCNH channels9. It has been suggested that the eag domain may regulate the channel by interacting with either the S4-S5 linker or the CNBHD8,10. Here we present a 2-Å resolution crystal structure of the eag domain-CNBHD complex of the mouse EAG1 (mEAG1) channel. It displays extensive interactions between the eag domain and the CNBHD, indicating that the regulatory mechanism of the eag domain involves primarily the CNBHD. Surprisingly, the structure reveals that a number of LQT2 mutations at homologous positions in hERG, and cancer-associated mutations in EAG channels, localize to the eag domain-CNBHD interface. Furthermore, mutations at the interface produced dramatic effects on channel gating demonstrating the important physiological role of the eag domain-CNBHD interaction. Our structure of the eag domain-CNBHD complex of mEAG1 provides unique insights into the physiological and pathophysiological mechanisms of KCNH channels. PMID:23975098

  20. The structural mechanism of KCNH-channel regulation by the eag domain.

    PubMed

    Haitin, Yoni; Carlson, Anne E; Zagotta, William N

    2013-09-19

    The KCNH voltage-dependent potassium channels (ether-à-go-go, EAG; EAG-related gene, ERG; EAG-like channels, ELK) are important regulators of cellular excitability and have key roles in diseases such as cardiac long QT syndrome type 2 (LQT2), epilepsy, schizophrenia and cancer. The intracellular domains of KCNH channels are structurally distinct from other voltage-gated channels. The amino-terminal region contains an eag domain, which is composed of a Per-Arnt-Sim (PAS) domain and a PAS-cap domain, whereas the carboxy-terminal region contains a cyclic nucleotide-binding homology domain (CNBHD), which is connected to the pore through a C-linker domain. Many disease-causing mutations localize to these specialized intracellular domains, which underlie the unique gating and regulation of KCNH channels. It has been suggested that the eag domain may regulate the channel by interacting with either the S4-S5 linker or the CNBHD. Here we present a 2 Å resolution crystal structure of the eag domain-CNBHD complex of the mouse EAG1 (also known as KCNH1) channel. It displays extensive interactions between the eag domain and the CNBHD, indicating that the regulatory mechanism of the eag domain primarily involves the CNBHD. Notably, the structure reveals that a number of LQT2 mutations at homologous positions in human ERG, in addition to cancer-associated mutations in EAG channels, localize to the eag domain-CNBHD interface. Furthermore, mutations at the interface produced marked effects on channel gating, demonstrating the important physiological role of the eag domain-CNBHD interaction. Our structure of the eag domain-CNBHD complex of mouse EAG1 provides unique insights into the physiological and pathophysiological mechanisms of KCNH channels. PMID:23975098

  1. Self-Regulated Learning with Hypermedia: The Role of Prior Domain Knowledge

    ERIC Educational Resources Information Center

    Moos, Daniel C.; Azevedo, Roger

    2008-01-01

    Think-aloud and pre-test data were collected from 49 undergraduates with varying levels of prior domain knowledge to examine the relationship between prior domain knowledge and self-regulated learning with hypermedia. During the experimental session, each participant individually completed a pretest on the circulatory system, and then one 40-min…

  2. A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution.

    PubMed

    Ostedgaard, L S; Baldursson, O; Vermeer, D W; Welsh, M J; Robertson, A D

    2000-05-01

    Phosphorylation of the regulatory (R) domain initiates cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel activity. To discover how the function of this domain is determined by its structure, we produced an R domain protein (R8) that spanned residues 708-831 of CFTR. Phosphorylated, but not unphosphorylated, R8 stimulated activity of CFTR channels lacking this domain, indicating that R8 is functional. Unexpectedly, this functional R8 was predominantly random coil, as revealed by CD and limited proteolysis. The CD spectra of both phosphorylated and nonphosphorylated R8 were similar in aqueous buffer. The folding agent trimethylamine N-oxide induced only a small increase in the helical content of nonphosphorylated R8 and even less change in the helical content of phosphorylated R8. These data, indicating that the R domain is predominantly random coil, may explain the seemingly complex way in which phosphorylation regulates CFTR channel activity. PMID:10792060

  3. A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution

    PubMed Central

    Ostedgaard, Lynda S.; Baldursson, Olafur; Vermeer, Daniel W.; Welsh, Michael J.; Robertson, Andrew D.

    2000-01-01

    Phosphorylation of the regulatory (R) domain initiates cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel activity. To discover how the function of this domain is determined by its structure, we produced an R domain protein (R8) that spanned residues 708–831 of CFTR. Phosphorylated, but not unphosphorylated, R8 stimulated activity of CFTR channels lacking this domain, indicating that R8 is functional. Unexpectedly, this functional R8 was predominantly random coil, as revealed by CD and limited proteolysis. The CD spectra of both phosphorylated and nonphosphorylated R8 were similar in aqueous buffer. The folding agent trimethylamine N-oxide induced only a small increase in the helical content of nonphosphorylated R8 and even less change in the helical content of phosphorylated R8. These data, indicating that the R domain is predominantly random coil, may explain the seemingly complex way in which phosphorylation regulates CFTR channel activity. PMID:10792060

  4. BET domain co-regulators in obesity, inflammation and cancer

    PubMed Central

    Belkina, Anna C.; Denis, Gerald V.

    2014-01-01

    The bromodomain is a highly conserved motif of 110 amino acids that is bundled into four anti-parallel α-helices and found in proteins that interact with chromatin, such as transcription factors, histone acetylases and nucleosome remodelling complexes. Bromodomain proteins are chromatin ‘readers’; they recruit chromatin-regulating enzymes, including ‘writers’ and ‘erasers’ of histone modification, to target promoters and to regulate gene expression. Conventional wisdom held that complexes involved in chromatin dynamics are not ‘druggable’ targets. However, small molecules that inhibit bromodomain and extraterminal (BET) proteins have been described. We examine these developments and discuss the implications for small molecule epigenetic targeting of chromatin networks in cancer. PMID:22722403

  5. Crystal Structure of the SPOC Domain of the Arabidopsis Flowering Regulator FPA

    PubMed Central

    Zhang, Yinglu; Rataj, Katarzyna; Simpson, Gordon G.; Tong, Liang

    2016-01-01

    The Arabidopsis protein FPA controls flowering time by regulating the alternative 3′-end processing of the FLOWERING LOCUS (FLC) antisense RNA. FPA belongs to the split ends (SPEN) family of proteins, which contain N-terminal RNA recognition motifs (RRMs) and a SPEN paralog and ortholog C-terminal (SPOC) domain. The SPOC domain is highly conserved among FPA homologs in plants, but the conservation with the domain in other SPEN proteins is much lower. We have determined the crystal structure of Arabidopsis thaliana FPA SPOC domain at 2.7 Å resolution. The overall structure is similar to that of the SPOC domain in human SMRT/HDAC1 Associated Repressor Protein (SHARP), although there are also substantial conformational differences between them. Structural and sequence analyses identify a surface patch that is conserved among plant FPA homologs. Mutations of two residues in this surface patch did not disrupt FPA functions, suggesting that either the SPOC domain is not required for the role of FPA in regulating RNA 3′-end formation or the functions of the FPA SPOC domain cannot be disrupted by the combination of mutations, in contrast to observations with the SHARP SPOC domain. PMID:27513867

  6. Crystal Structure of the SPOC Domain of the Arabidopsis Flowering Regulator FPA.

    PubMed

    Zhang, Yinglu; Rataj, Katarzyna; Simpson, Gordon G; Tong, Liang

    2016-01-01

    The Arabidopsis protein FPA controls flowering time by regulating the alternative 3'-end processing of the FLOWERING LOCUS (FLC) antisense RNA. FPA belongs to the split ends (SPEN) family of proteins, which contain N-terminal RNA recognition motifs (RRMs) and a SPEN paralog and ortholog C-terminal (SPOC) domain. The SPOC domain is highly conserved among FPA homologs in plants, but the conservation with the domain in other SPEN proteins is much lower. We have determined the crystal structure of Arabidopsis thaliana FPA SPOC domain at 2.7 Å resolution. The overall structure is similar to that of the SPOC domain in human SMRT/HDAC1 Associated Repressor Protein (SHARP), although there are also substantial conformational differences between them. Structural and sequence analyses identify a surface patch that is conserved among plant FPA homologs. Mutations of two residues in this surface patch did not disrupt FPA functions, suggesting that either the SPOC domain is not required for the role of FPA in regulating RNA 3'-end formation or the functions of the FPA SPOC domain cannot be disrupted by the combination of mutations, in contrast to observations with the SHARP SPOC domain. PMID:27513867

  7. Severed Channels Probe Regulation of Gating of Cystic Fibrosis Transmembrane Conductance Regulator by Its Cytoplasmic Domains

    PubMed Central

    Csanády, László; Chan, Kim W.; Seto-Young, Donna; Kopsco, David C.; Nairn, Angus C.; Gadsby, David C.

    2000-01-01

    Opening and closing of a CFTR Cl− channel is controlled by PKA-mediated phosphorylation of its cytoplasmic regulatory (R) domain and by ATP binding, and likely hydrolysis, at its two nucleotide binding domains. Functional interactions between the R domain and the two nucleotide binding domains were probed by characterizing the gating of severed CFTR channels expressed in Xenopus oocytes. Expression levels were assessed using measurements of oocyte conductance, and detailed functional characteristics of the channels were extracted from kinetic analyses of macroscopic current relaxations and of single-channel gating events in membrane patches excised from the oocytes. The kinetic behavior of wild-type (WT) CFTR channels was compared with that of split CFTR channels bearing a single cut (between residues 633 and 634) just before the R domain, of split channels with a single cut (between residues 835 and 837) just after the R domain, and of split channels from which the entire R domain (residues 634–836) between those two cut sites was omitted. The channels cut before the R domain had characteristics almost identical to those of WT channels, except for less than twofold shorter open burst durations in the presence of PKA. Channels cut just after the R domain were characterized by a low level of activity even without phosphorylation, strong stimulation by PKA, enhanced apparent affinity for ATP as assayed by open probability, and a somewhat destabilized binding site for the locking action of the nonhydrolyzable ATP analog AMPPNP. Split channels with no R domain (from coexpression of CFTR segments 1–633 and 837–1480) were highly active without phosphorylation, but otherwise displayed the characteristics of channels cut after the R domain, including higher apparent ATP affinity, and less tight binding of AMPPNP at the locking site, than for WT. Intriguingly, severed channels with no R domain were still noticeably stimulated by PKA, implying that activation of WT

  8. Origin and evolution of the cystic fibrosis transmembrane regulator protein R domain

    PubMed Central

    Sebastian, Aswathy; Rishishwar, Lavanya; Wang, Jianrong; Bernard, Karen F.; Conley, Andrew B.; McCarty, Nael A.; Jordan, I. King

    2013-01-01

    The Cystic Fibrosis Transmembrane Conductance Regulator protein (CFTR) is a member of the ABC transporter superfamily. CFTR is distinguished from all other members of this superfamily by its status as an ion channel as well as the presence of its unique regulatory (R) domain. We investigated the origin and subsequent evolution of the R domain along the CFTR evolutionary lineage. The R domain protein coding sequence originated via the loss of a splice donor site at the 3′ end of exon 14, leading to the subsequent read-through and capture of formerly intronic sequence as novel coding sequence. Inclusion of the remaining part of the R domain coding sequence in the CFTR transcript involved a lineage-specific gain of exonic sequence with no homology to protein coding sequences outside of CFTR and loss of two exons conserved among ABC family members. These events occurred at the base of the Gnathostome evolutionary lineage ~550–650 million years ago. The apparent origination of the R domain de novo from previously non-coding sequence is consistent with its lack of sequence similarity to other domains as well as its intrinsically disordered structure, which has important implications for its function. In particular, this lack of structure may provide for a dynamic and inducible regulatory activity based on transient physical interactions with more structured domains of the protein. Since its acquisition along the CFTR evolutionary lineage, the R domain has evolved more rapidly than any other CFTR domain; however, there is no evidence for positive (adaptive) selection in the evolution of the domain. The R domain does show a distinct pattern of relative evolutionary rates compared to other CFTR domains, which sheds additional light on the connection between its function and evolution. The regulatory function of the R domain is dependent upon a fairly small number of sites that are subject to phosphorylation, and these sites were fixed very early in R domain evolution

  9. Origin and evolution of the cystic fibrosis transmembrane regulator protein R domain.

    PubMed

    Sebastian, Aswathy; Rishishwar, Lavanya; Wang, Jianrong; Bernard, Karen F; Conley, Andrew B; McCarty, Nael A; Jordan, I King

    2013-07-10

    The Cystic Fibrosis Transmembrane Conductance Regulator protein (CFTR) is a member of the ABC transporter superfamily. CFTR is distinguished from all other members of this superfamily by its status as an ion channel as well as the presence of its unique regulatory (R) domain. We investigated the origin and subsequent evolution of the R domain along the CFTR evolutionary lineage. The R domain protein coding sequence originated via the loss of a splice donor site at the 3' end of exon 14, leading to the subsequent read-through and capture of formerly intronic sequence as novel coding sequence. Inclusion of the remaining part of the R domain coding sequence in the CFTR transcript involved a lineage-specific gain of exonic sequence with no homology to protein coding sequences outside of CFTR and loss of two exons conserved among ABC family members. These events occurred at the base of the Gnathostome evolutionary lineage ~550-650 million years ago. The apparent origination of the R domain de novo from previously non-coding sequence is consistent with its lack of sequence similarity to other domains as well as its intrinsically disordered structure, which has important implications for its function. In particular, this lack of structure may provide for a dynamic and inducible regulatory activity based on transient physical interactions with more structured domains of the protein. Since its acquisition along the CFTR evolutionary lineage, the R domain has evolved more rapidly than any other CFTR domain; however, there is no evidence for positive (adaptive) selection in the evolution of the domain. The R domain does show a distinct pattern of relative evolutionary rates compared to other CFTR domains, which sheds additional light on the connection between its function and evolution. The regulatory function of the R domain is dependent upon a fairly small number of sites that are subject to phosphorylation, and these sites were fixed very early in R domain evolution and

  10. Crystallographic characterization of the DIX domain of the Wnt signalling positive regulator Ccd1

    PubMed Central

    Terawaki, Shin-ichi; Yano, Koumei; Katsutani, Takuya; Shiomi, Kensuke; Keino-Masu, Kazuko; Masu, Masayuki; Shomura, Yasuhito; Komori, Hirofumi; Shibata, Naoki; Higuchi, Yoshiki

    2011-01-01

    Coiled-coil DIX1 (Ccd1) is a positive regulator that activates the canonical Wnt signalling pathway by inhibiting the degradation of the key signal transducer β-­catenin. The C-terminal DIX domain of Ccd1 plays an important role in the regulation of signal transduction through homo-oligomerization and protein complex formation with other DIX domain-containing proteins, i.e. axin and dishevelled proteins. Here, the expression, purification, crystallization and X-ray data collection of the Ccd1 DIX domain are reported. The crystals of the Ccd1 DIX domain belonged to space group P212121, with unit-cell parameters a = 72.9, b = 75.7, c = 125.6 Å. An X-ray diffraction data set was collected at 3.0 Å resolution. PMID:21795788

  11. Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity.

    PubMed

    Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad

    2014-12-01

    YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809

  12. Ligand Binding to WW Tandem Domains of YAP2 Transcriptional Regulator Is Under Negative Cooperativity

    PubMed Central

    Schuchardt, Brett J.; Mikles, David C.; Hoang, Lawrence M.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad

    2014-01-01

    YAP2 transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well-documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809

  13. Single-domain response regulators: molecular switches with emerging roles in cell organization and dynamics

    PubMed Central

    Jenal, Urs; Galperin, Michael Y.

    2009-01-01

    Summary Single domain response regulators (SD-RRs) are signaling components of two-component phosphorylation pathways that harbor a phosphoryl receiver domain but lack a dedicated output domain. The E. coli protein CheY, the paradigm member of this family, regulates chemotaxis by relaying information between chemoreceptors and the flagellar switch. New data provide a more complex picture of CheY-mediated motility control in several bacteria and suggest diverging mechanisms in control of cellular motors. Moreover, advances have been made in understanding cellular functions of SD-RRs beyond chemotaxis. We review recent reports indicating that SD-RRs constitute a family of versatile molecular switches that contribute to cellular organization and dynamics as spatial organizers and/or as allosteric regulators of histidine protein kinases. PMID:19246239

  14. The first propeller domain of LRP6 regulates sensitivity to DKK1.

    PubMed

    Binnerts, Minke E; Tomasevic, Nenad; Bright, Jessica M; Leung, John; Ahn, Victoria E; Kim, Kyung-Ah; Zhan, Xiaoming; Liu, Shouchun; Yonkovich, Shirlee; Williams, Jason; Zhou, Mei; Gros, Delphine; Dixon, Melissa; Korver, Wouter; Weis, William I; Abo, Arie

    2009-08-01

    The Wnt coreceptor LRP6 is required for canonical Wnt signaling. To understand the molecular regulation of LRP6 function, we generated a series of monoclonal antibodies against the extra cellular domain (ECD) of LRP6 and selected a high-affinity mAb (mAb135) that recognizes cell surface expression of endogenous LRP6. mAb135 enhanced Wnt dependent TCF reporter activation and antagonized DKK1 dependent inhibition of Wnt3A signaling, suggesting a role in modulation of LRP6 function. Detailed analysis of LRP6 domain mutants identified Ser 243 in the first propeller domain of LRP6 as a critical residue for mAb135 binding, implicating this domain in regulating the sensitivity of LRP6 to DKK1. In agreement with this notion, mAb135 directly disrupted the interaction of DKK1 with recombinant ECD LRP6 and a truncated form of the LRP6 ECD containing only repeats 1 and 2. Finally, we found that mAb135 completely protected LRP6 from DKK1 dependent internalization. Together, these results identify the first propeller domain as a novel regulatory domain for DKK1 binding to LRP6 and show that mAb against the first propeller domain of LRP6 can be used to modulate this interaction. PMID:19477926

  15. Domain-wide regulation of gene expression in the human genome

    PubMed Central

    Gierman, Hinco J.; Indemans, Mireille H.G.; Koster, Jan; Goetze, Sandra; Seppen, Jurgen; Geerts, Dirk; van Driel, Roel; Versteeg, Rogier

    2007-01-01

    Transcription factor complexes bind to regulatory sequences of genes, providing a system of individual expression regulation. Targets of distinct transcription factors usually map throughout the genome, without clustering. Nevertheless, highly and weakly expressed genes do cluster in separate chromosomal domains with an average size of 80–90 genes. We therefore asked whether, besides transcription factors, an additional level of gene expression regulation exists that acts on chromosomal domains. Here we show that identical green fluorescent protein (GFP) reporter constructs integrated at 90 different chromosomal positions obtain expression levels that correspond to the activity of the domains of integration. These domains are up to 80 genes long and can exert an eightfold effect on the expression levels of integrated genes. 3D-FISH shows that active domains of integration have a more open chromatin structure than integration domains with weak activity. These results reveal a novel domain-wide regulatory mechanism that, together with transcription factors, exerts a dual control over gene transcription. PMID:17693573

  16. The Non-Catalytic Domains of Drosophila Katanin Regulate Its Abundance and Microtubule-Disassembly Activity

    PubMed Central

    Grode, Kyle D.; Rogers, Stephen L.

    2015-01-01

    Microtubule severing is a biochemical reaction that generates an internal break in a microtubule and regulation of microtubule severing is critical for cellular processes such as ciliogenesis, morphogenesis, and meiosis and mitosis. Katanin is a conserved heterodimeric ATPase that severs and disassembles microtubules, but the molecular determinants for regulation of microtubule severing by katanin remain poorly defined. Here we show that the non-catalytic domains of Drosophila katanin regulate its abundance and activity in living cells. Our data indicate that the microtubule-interacting and trafficking (MIT) domain and adjacent linker region of the Drosophila katanin catalytic subunit Kat60 cooperate to regulate microtubule severing in two distinct ways. First, the MIT domain and linker region of Kat60 decrease its abundance by enhancing its proteasome-dependent degradation. The Drosophila katanin regulatory subunit Kat80, which is required to stabilize Kat60 in cells, conversely reduces the proteasome-dependent degradation of Kat60. Second, the MIT domain and linker region of Kat60 augment its microtubule-disassembly activity by enhancing its association with microtubules. On the basis of our data, we propose that the non-catalytic domains of Drosophila katanin serve as the principal sites of integration of regulatory inputs, thereby controlling its ability to sever and disassemble microtubules. PMID:25886649

  17. VPS10P-domain receptors - regulators of neuronal viability and function.

    PubMed

    Willnow, Thomas E; Petersen, Claus M; Nykjaer, Anders

    2008-12-01

    VPS10P-domain receptors, such as SORLA and sortilin, constitute a recently identified class of type-1 receptors that are expressed in neurons. Family members are multifunctional proteins that target a range of ligands, including trophic factors and neuropeptides but also other transmembrane proteins. New findings have revealed unexpected roles for VPS10P-domain receptors as regulators of neuronal viability and function through the regulation of both protein transport and signal transduction. Loss of these activities might contribute to the pathophysiology of devastating disorders of the nervous system, including Alzheimer's disease, affective disorders and post-traumatic neuronal cell death. PMID:19002190

  18. Role of the HIN Domain in Regulation of Innate Immune Responses

    PubMed Central

    Shaw, Neil

    2014-01-01

    The oligonucleotide/oligosaccharide binding (OB) fold is employed by proteins to bind nucleic acids during replication, transcription, and translation. Recently, a variation of the OB fold consisting of a tandem pair of OB folds named the HIN (hematopoietic expression, interferon-inducible nature, and nuclear localization) domain was shown to play essential roles in the regulation of innate immune responses originating from binding of nucleic acids in the cytoplasm or the nucleus of the cell. Although the two OB folds of the HIN domain are linked via a long linker region, conserved hydrophobic contacts between the two OB folds hold them together firmly, resulting in a single compact domain. This overall topology of the HIN domain seems to be highly conserved, and proteins containing the HIN domain have been grouped in the PYHIN family. Structures of the recently solved HIN domains reveal that these domains exhibit either absent in melanoma2 (Aim2) HIN-like or p202 HINa-like modes of DNA binding. These two modes of DNA binding seem to result in different responses and as a consequence confer distinct roles on the proteins. This review summarizes our current understanding of the structure and function of the HIN domains in context with the innate immune responses. PMID:24164899

  19. DED or alive: assembly and regulation of the death effector domain complexes

    PubMed Central

    Riley, J S; Malik, A; Holohan, C; Longley, D B

    2015-01-01

    Death effector domains (DEDs) are protein–protein interaction domains initially identified in proteins such as FADD, FLIP and caspase-8 involved in regulating apoptosis. Subsequently, these proteins have been shown to have important roles in regulating other forms of cell death, including necroptosis, and in regulating other important cellular processes, including autophagy and inflammation. Moreover, these proteins also have prominent roles in innate and adaptive immunity and during embryonic development. In this article, we review the various roles of DED-containing proteins and discuss recent developments in our understanding of DED complex formation and regulation. We also briefly discuss opportunities to therapeutically target DED complex formation in diseases such as cancer. PMID:26313917

  20. A Conserved Ectodomain-Transmembrane Domain Linker Motif Tunes the Allosteric Regulation of Cell Surface Receptors.

    PubMed

    Schmidt, Thomas; Ye, Feng; Situ, Alan J; An, Woojin; Ginsberg, Mark H; Ulmer, Tobias S

    2016-08-19

    In many families of cell surface receptors, a single transmembrane (TM) α-helix separates ecto- and cytosolic domains. A defined coupling of ecto- and TM domains must be essential to allosteric receptor regulation but remains little understood. Here, we characterize the linker structure, dynamics, and resulting ecto-TM domain coupling of integrin αIIb in model constructs and relate it to other integrin α subunits by mutagenesis. Cellular integrin activation assays subsequently validate the findings in intact receptors. Our results indicate a flexible yet carefully tuned ecto-TM coupling that modulates the signaling threshold of integrin receptors. Interestingly, a proline at the N-terminal TM helix border, termed NBP, is critical to linker flexibility in integrins. NBP is further predicted in 21% of human single-pass TM proteins and validated in cytokine receptors by the TM domain structure of the cytokine receptor common subunit β and its P441A-substituted variant. Thus, NBP is a conserved uncoupling motif of the ecto-TM domain transition and the degree of ecto-TM domain coupling represents an important parameter in the allosteric regulation of diverse cell surface receptors. PMID:27365391

  1. Crystal structure of the BTB domain from the LRF/ZBTB7 transcriptional regulator.

    PubMed

    Stogios, Peter J; Chen, Lu; Privé, Gilbert G

    2007-02-01

    BTB-zinc finger (BTB-ZF) proteins are transcription regulators with roles in development, differentiation, and oncogenesis. In these proteins, the BTB domain (also known as the POZ domain) is a protein-protein interaction motif that contains a dimerization interface, a possible oligomerization surface, and surfaces for interactions with other factors, including nuclear co-repressors and histone deacetylases. The BTB-ZF protein LRF (also known as ZBTB7, FBI-1, OCZF, and Pokemon) is a master regulator of oncogenesis, and represses the transcription of a variety of important genes, including the ARF, c-fos, and c-myc oncogenes and extracellular matrix genes. We determined the crystal structure of the BTB domain from human LRF to 2.1 A and observed the canonical BTB homodimer fold. However, novel features are apparent on the surface of the homodimer, including differences in the lateral groove and charged pocket regions. The residues that line the lateral groove have little similarity with the equivalent residues from the BCL6 BTB domain, and we show that the 17-residue BCL6 Binding Domain (BBD) from the SMRT co-repressor does not bind to the LRF BTB domain. PMID:17189472

  2. The Importin β Binding Domain as a Master Regulator of Nucleocytoplasmic Transport

    PubMed Central

    Lott, Kaylen; Cingolani, Gino

    2010-01-01

    Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB-domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB-domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB-domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ∼40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB-domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. PMID:21029753

  3. Crescerin uses a TOG domain array to regulate microtubules in the primary cilium

    PubMed Central

    Das, Alakananda; Dickinson, Daniel J.; Wood, Cameron C.; Goldstein, Bob; Slep, Kevin C.

    2015-01-01

    Eukaryotic cilia are cell-surface projections critical for sensing the extracellular environment. Defects in cilia structure and function result in a broad range of developmental and sensory disorders. However, mechanisms that regulate the microtubule (MT)-based scaffold forming the cilia core are poorly understood. TOG domain array–containing proteins ch-TOG and CLASP are key regulators of cytoplasmic MTs. Whether TOG array proteins also regulate ciliary MTs is unknown. Here we identify the conserved Crescerin protein family as a cilia-specific, TOG array-containing MT regulator. We present the crystal structure of mammalian Crescerin1 TOG2, revealing a canonical TOG fold with conserved tubulin-binding determinants. Crescerin1's TOG domains possess inherent MT-binding activity and promote MT polymerization in vitro. Using Cas9-triggered homologous recombination in Caenorhabditis elegans, we demonstrate that the worm Crescerin family member CHE-12 requires TOG domain–dependent tubulin-binding activity for sensory cilia development. Thus, Crescerin expands the TOG domain array–based MT regulatory paradigm beyond ch-TOG and CLASP, representing a distinct regulator of cilia structure. PMID:26378256

  4. The physical size of transcription factors is key to transcriptional regulation in chromatin domains.

    PubMed

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-18

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (∼50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a 'buoy' to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination. PMID:25563431

  5. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  6. The epigenetic regulator Smchd1 contains a functional GHKL-type ATPase domain.

    PubMed

    Chen, Kelan; Dobson, Renwick C J; Lucet, Isabelle S; Young, Samuel N; Pearce, F Grant; Blewitt, Marnie E; Murphy, James M

    2016-06-15

    Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic regulator that plays critical roles in gene regulation during development. Mutations in SMCHD1 were recently implicated in the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD), although the mechanistic basis remains of outstanding interest. We have previously shown that Smchd1 associates with chromatin via its homodimeric C-terminal hinge domain, yet little is known about the function of the putative GHKL (gyrase, Hsp90, histidine kinase, MutL)-type ATPase domain at its N-terminus. To formally assess the structure and function of Smchd1's ATPase domain, we have generated recombinant proteins encompassing the predicted ATPase domain and the adjacent region. Here, we show that the Smchd1 N-terminal region exists as a monomer and adopts a conformation resembling that of monomeric full-length heat shock protein 90 (Hsp90) protein in solution, even though the two proteins share only ∼8% overall sequence identity. Despite being monomeric, the N-terminal region of Smchd1 exhibits ATPase activity, which can be antagonized by the reaction product, ADP, or the Hsp90 inhibitor, radicicol, at a nanomolar concentration. Interestingly, introduction of an analogous mutation to that identified in SMCHD1 of an FSHD patient compromised protein stability, suggesting a possible molecular basis for loss of protein function and pathogenesis. Together, these results reveal important structure-function characteristics of Smchd1 that may underpin its mechanistic action at the chromatin level. PMID:27059856

  7. Regulation of the innate immune response by fibronectin: synergism between the III-1 and EDA domains.

    PubMed

    Kelsh, Rhiannon; You, Ran; Horzempa, Carol; Zheng, Mingzhe; McKeown-Longo, Paula J

    2014-01-01

    Fibronectin is a critical component of the extracellular matrix and alterations to its structure will influence cellular behavior. Matrix fibronectin is subjected to both mechanical and biochemical regulation. The Type III domains of fibronectin can be unfolded in response to increased cellular contractility, included or excluded from the molecule by alternative splicing mechanisms, or released from the matrix by proteolysis. Using Inflammatory Cytokine microarrays we found that the alternatively spliced fibronectin Type III domain, FnEDA, and the partially unfolded III-1 domain, FnIII-1c, induced the expression of a multitude of pro-inflammatory cytokines in human dermal fibroblasts, most notably CXCL1-3, IL-8 and TNF-α. FnIII-1c, a peptide representing an unfolded intermediate structure of the first Type III domain has been shown to initiate the toll-like receptor-4 (TLR4)-NFκB-dependent release of cytokines from human dermal fibroblasts (You, et al., J. Biol. Chem., 2010). Here we demonstrate that FnIII-1c and the alternatively spliced FnEDA domain induce a TLR4 dependent activation of p38 MAP kinase and its downstream effector, MAPKAP Kinase-2 (MK-2), to regulate cytokine expression in fibroblasts. RT-qPCR analysis indicated that the p38-MK-2 pathway regulates IL-8 mRNA stability. Interestingly, addition of FnIII-1c and FnEDA synergistically enhanced TLR4-dependent IL-8 release. These data indicate that Fn contains two Type III domains which can activate TLR signaling to induce an inflammatory response in fibroblasts. Furthermore, our data identifies the NF-κB and p38/MK2 signaling pathways as transducers of signals initiated in response to structural changes in fibronectin. PMID:25051083

  8. Regulation of the Innate Immune Response by Fibronectin: Synergism between the III-1 and EDA Domains

    PubMed Central

    Kelsh, Rhiannon; You, Ran; Horzempa, Carol; Zheng, Mingzhe; McKeown-Longo, Paula J.

    2014-01-01

    Fibronectin is a critical component of the extracellular matrix and alterations to its structure will influence cellular behavior. Matrix fibronectin is subjected to both mechanical and biochemical regulation. The Type III domains of fibronectin can be unfolded in response to increased cellular contractility, included or excluded from the molecule by alternative splicing mechanisms, or released from the matrix by proteolysis. Using Inflammatory Cytokine microarrays we found that the alternatively spliced fibronectin Type III domain, FnEDA, and the partially unfolded III-1 domain, FnIII-1c, induced the expression of a multitude of pro-inflammatory cytokines in human dermal fibroblasts, most notably CXCL1-3, IL-8 and TNF-α. FnIII-1c, a peptide representing an unfolded intermediate structure of the first Type III domain has been shown to initiate the toll-like receptor-4 (TLR4)-NFκB-dependent release of cytokines from human dermal fibroblasts (You, et al., J. Biol. Chem., 2010). Here we demonstrate that FnIII-1c and the alternatively spliced FnEDA domain induce a TLR4 dependent activation of p38 MAP kinase and its downstream effector, MAPKAP Kinase-2 (MK-2), to regulate cytokine expression in fibroblasts. RT-qPCR analysis indicated that the p38-MK-2 pathway regulates IL-8 mRNA stability. Interestingly, addition of FnIII-1c and FnEDA synergistically enhanced TLR4-dependent IL-8 release. These data indicate that Fn contains two Type III domains which can activate TLR signaling to induce an inflammatory response in fibroblasts. Furthermore, our data identifies the NF-κB and p38/MK2 signaling pathways as transducers of signals initiated in response to structural changes in fibronectin. PMID:25051083

  9. Calcium binding to calmodulin mutants having domain-specific effects on the regulation of ion channels.

    PubMed

    VanScyoc, Wendy S; Newman, Rhonda A; Sorensen, Brenda R; Shea, Madeline A

    2006-12-01

    Calmodulin (CaM) is an essential, eukaryotic protein comprised of two highly homologous domains (N and C). CaM binds four calcium ions cooperatively, regulating a wide array of target proteins. A genetic screen of Paramecia by Kung [Kung, C. et al. (1992) Cell Calcium 13, 413-425] demonstrated that the domains of CaM have separable physiological roles: "under-reactive" mutations affecting calcium-dependent sodium currents mapped to the N-domain, while "over-reactive" mutations affecting calcium-dependent potassium currents localized to the C-domain of CaM. To determine whether and how these mutations affected intrinsic calcium-binding properties of CaM domains, phenylalanine fluorescence was used to monitor calcium binding to sites I and II (N-domain) and tyrosine fluorescence was used to monitor sites III and IV (C-domain). To explore interdomain interactions, binding properties of each full-length mutant were compared to those of its corresponding domain fragments. The calcium-binding properties of six under-reactive mutants (V35I/D50N, G40E, G40E/D50N, D50G, E54K, and G59S) and one over-reactive mutant (M145V) were indistinguishable from those of wild-type CaM, despite their deleterious physiological effects on ion-channel regulation. Four over-reactive mutants (D95G, S101F, E104K, and H135R) significantly decreased the calcium affinity of the C-domain. Of these, one (E104K) also increased the calcium affinity of the N-domain, demonstrating that the magnitude and direction of wild-type interdomain coupling had been perturbed. This suggests that, while some of these mutations alter calcium-binding directly, others probably alter CaM-channel association or calcium-triggered conformational change in the context of a ternary complex with the affected ion channel. PMID:17128970

  10. SNX9 activities are regulated by multiple phosphoinositides through both PX and BAR domains.

    PubMed

    Yarar, Defne; Surka, Mark C; Leonard, Marilyn C; Schmid, Sandra L

    2008-01-01

    Sorting nexin 9 (SNX9) functions at the interface between membrane remodeling and the actin cytoskeleton. In particular, SNX9 links membrane binding to potentiation of N-WASP and dynamin GTPase activities. SNX9 is one of a growing number of proteins that contain two lipid-binding domains, a phox homology (PX) and a Bin1/Amphiphysin/RVS167 (BAR) domain, and localizes to diverse membranes that are enriched in different phosphoinositides. Here, we investigate the mechanism by which SNX9 functions at these varied membrane environments. We show that SNX9 has low-lipid-binding affinity and harnesses a broad range of phosphoinositides to synergistically enhance both dynamin and N-WASP activities. We introduced point mutations in either the PX domain, BAR domain or both that are predicted to disrupt their functions and examined their respective roles in lipid-binding, and dynamin and N-WASP activation. We show that the broad lipid specificity of SNX9 is not because of independent and additive contributions by individual domains. Rather, the two domains appear to function in concert to confer lipid-binding and SNX9's membrane active properties. We also demonstrate that the two domains are differentially required for full SNX9 activity in N-WASP and dynamin regulation, and for localization of SNX9 to clathrin-coated pits and dorsal ruffles. In total, our results suggest that SNX9 can integrate signals from varied lipids through two domains to direct membrane remodeling events at multiple cellular locations. PMID:17988218

  11. A two-domain model for the R domain of the cystic fibrosis transmembrane conductance regulator based on sequence similarities.

    PubMed

    Dulhanty, A M; Riordan, J R

    1994-04-25

    CFTR belongs to a group of proteins sharing the structural motif of six transmembrane helices and a nucleotide binding domain. Unique to CFTR is the R domain, a charged cytoplasmic domain. Comparison of R domain sequences from ten species revealed that the N-terminal third is highly conserved, while the C-terminal two-thirds is poorly conserved. The R domain shows no strong sequence similarity to known proteins; however, 14 viral pol proteins show limited similarity to fragments of the R domain. Analysis revealed a relationship between the N- and C-terminal fragments of the R domain and two discontinuous fragments of the pol protein. These observations support a two-domain model for the R domain. PMID:7513286

  12. Differential regulation of myosin heavy chains defines new muscle domains in zebrafish

    PubMed Central

    Nord, Hanna; Burguiere, Anne-Cecile; Muck, Joscha; Nord, Christoffer; Ahlgren, Ulf; von Hofsten, Jonas

    2014-01-01

    Numerous muscle lineages are formed during myogenesis within both slow- and fast-specific cell groups. In this study, we show that six fast muscle–specific myosin heavy chain genes have unique expression patterns in the zebrafish embryo. The expression of tail-specific myosin heavy chain (fmyhc2.1) requires wnt signaling and is essential for fast muscle organization within the tail. Retinoic acid treatment results in reduced wnt signaling, which leads to loss of the fmyhc2.1 domain. Retinoic acid treatment also results in a shift of muscle identity within two trunk domains defined by expression of fmyhc1.2 and fmyhc1.3 in favor of the anteriormost myosin isoform, fmyhc1.2. In summary, we identify new muscle domains along the anteroposterior axis in the zebrafish that are defined by individual nonoverlapping, differentially regulated expression of myosin heavy chain isoforms. PMID:24523292

  13. RNA Polymerase: Chromosome Domain Boundary Maker and Regulator of Supercoil Density

    PubMed Central

    Higgins, N. Patrick

    2014-01-01

    Summary Most bacterial chromosomes and plasmids are covalently closed circular molecules that are maintained in a dynamic supercoiled state. Average supercoil density differs significantly between E. coli and Salmonella. Two related questions are: 1) What protein(s) create supercoil domain boundaries in a bacterial chromosome? 2) How is supercoil density regulated in different bacterial species? RNA polymerase plays pivotal roles in both of these topological phenomena. PMID:25460807

  14. Structure-Function Analysis of the Mcl-1 Protein Identifies a Novel Senescence-regulating Domain.

    PubMed

    Demelash, Abeba; Pfannenstiel, Lukas W; Tannenbaum, Charles S; Li, Xiaoxia; Kalady, Matthew F; DeVecchio, Jennifer; Gastman, Brian R

    2015-09-01

    Unlike other antiapoptotic Bcl-2 family members, Mcl-1 also mediates resistance to cancer therapy by uniquely inhibiting chemotherapy-induced senescence (CIS). In general, Bcl-2 family members regulate apoptosis at the level of the mitochondria through a common prosurvival binding groove. Through mutagenesis, we determined that Mcl-1 can inhibit CIS even in the absence of its apoptotically important mitochondrion-localizing domains. This finding prompted us to generate a series of Mcl-1 deletion mutants from both the N and C termini of the protein, including one that contained a deletion of all of the Bcl-2 homology domains, none of which impacted anti-CIS capabilities. Through subsequent structure-function analyses of Mcl-1, we identified a previously uncharacterized loop domain responsible for the anti-CIS activity of Mcl-1. The importance of the loop domain was confirmed in multiple tumor types, two in vivo models of senescence, and by demonstrating that a peptide mimetic of the loop domain can effectively inhibit the anti-CIS function of Mcl-1. The results from our studies appear to be highly translatable because we discerned an inverse relationship between the expression of Mcl-1 and of various senescence markers in cancerous human tissues. In summary, our findings regarding the unique structural properties of Mcl-1 provide new approaches for targeted cancer therapy. PMID:26205817

  15. Ankyrin Repeat Domain 1 is Up-regulated During Hepatitis C Virus Infection and Regulates Hepatitis C Virus Entry

    PubMed Central

    Than, Thoa T.; Tran, Giao V. Q.; Son, Kidong; Park, Eun-Mee; Kim, Seungtaek; Lim, Yun-Sook; Hwang, Soon B.

    2016-01-01

    Hepatitis C virus (HCV) is highly dependent on host proteins for its own propagation. By transcriptome sequencing (RNA-Seq) analysis, we identified 30 host genes that were significantly differentially expressed in cell culture-grown HCV (HCVcc)-infected cells. Of these candidate genes, we selected and characterized ankyrin repeat domain 1 (ANKRD1). Here, we showed that protein expression of ANKRD1 was up-regulated in HCVcc-infected cells. We further showed that protein expression level of ANKRD1 was increased by nonstructural 5A (NS5A) protein. ANKRD1 specifically interacted with NS5A both in vitro and coimmunoprecipitation assays. Protein interaction was mediated through the domain II of NS5A and the C-terminal region of ANKRD1. Promoter activity of ANKRD1 was also increased by NS5A protein. Moreover, up-regulation of ANKRD1 expression was mediated through alteration in intracellular calcium homeostasis and ER stress in HCVcc-infected cells. We showed that silencing of ANKRD1 impaired HCV propagation without affecting HCV replication. By using HCV-like infectious particle (HCV-LP), we demonstrated that HCV single-cycle infection was drastically impaired in ANKRD1 knockdown cells. Finally, we verified that ANKRD1 was required for HCV entry. These data suggest that HCV coopts ANKRD1 for its own propagation and up-regulation of ANKRD1 may contribute to HCV-mediated liver pathogenesis. PMID:26860204

  16. Ankyrin Repeat Domain 1 is Up-regulated During Hepatitis C Virus Infection and Regulates Hepatitis C Virus Entry.

    PubMed

    Than, Thoa T; Tran, Giao V Q; Son, Kidong; Park, Eun-Mee; Kim, Seungtaek; Lim, Yun-Sook; Hwang, Soon B

    2016-01-01

    Hepatitis C virus (HCV) is highly dependent on host proteins for its own propagation. By transcriptome sequencing (RNA-Seq) analysis, we identified 30 host genes that were significantly differentially expressed in cell culture-grown HCV (HCVcc)-infected cells. Of these candidate genes, we selected and characterized ankyrin repeat domain 1 (ANKRD1). Here, we showed that protein expression of ANKRD1 was up-regulated in HCVcc-infected cells. We further showed that protein expression level of ANKRD1 was increased by nonstructural 5A (NS5A) protein. ANKRD1 specifically interacted with NS5A both in vitro and coimmunoprecipitation assays. Protein interaction was mediated through the domain II of NS5A and the C-terminal region of ANKRD1. Promoter activity of ANKRD1 was also increased by NS5A protein. Moreover, up-regulation of ANKRD1 expression was mediated through alteration in intracellular calcium homeostasis and ER stress in HCVcc-infected cells. We showed that silencing of ANKRD1 impaired HCV propagation without affecting HCV replication. By using HCV-like infectious particle (HCV-LP), we demonstrated that HCV single-cycle infection was drastically impaired in ANKRD1 knockdown cells. Finally, we verified that ANKRD1 was required for HCV entry. These data suggest that HCV coopts ANKRD1 for its own propagation and up-regulation of ANKRD1 may contribute to HCV-mediated liver pathogenesis. PMID:26860204

  17. Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating.

    PubMed

    He, Lihua; Aleksandrov, Andrei A; Serohijos, Adrian W R; Hegedus, Tamás; Aleksandrov, Luba A; Cui, Liying; Dokholyan, Nikolay V; Riordan, John R

    2008-09-26

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique ATP-binding cassette (ABC) ion channel mutated in patients with cystic fibrosis. The most common mutation, deletion of phenylalanine 508 (DeltaF508) and many other disease-associated mutations occur in the nucleotide binding domains (NBD) and the cytoplasmic loops (CL) of the membrane-spanning domains (MSD). A recently constructed computational model of the CFTR three-dimensional structure, supported by experimental data (Serohijos, A. W., Hegedus, T., Aleksandrov, A. A., He, L., Cui, L., Dokholyan, N. V., and Riordan, J. R. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 3256-3261) revealed that several of these mutations including DeltaF508 disrupted interfaces between these domains. Here we have used cysteine cross-linking experiments to verify all NBD/CL interfaces predicted by the structural model and observed that their cross-linking has a variety of different effects on channel gating. The interdomain contacts comprise aromatic clusters important for stabilization of the interfaces and also involve the Q-loops and X-loops that are in close proximity to the ATP binding sites. Cross-linking of all domain-swapping contacts between NBDs and MSD cytoplasmic loops in opposite halves of the protein rapidly and reversibly arrest single channel gating while those in the same halves have lesser impact. These results reinforce the idea that mediation of regulatory signals between cytoplasmic- and membrane-integrated domains of the CFTR channel apparently relies on an array of precise but highly dynamic interdomain structural joints. PMID:18658148

  18. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development

    PubMed Central

    2014-01-01

    Background Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. Results We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Conclusions Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility. PMID:24581456

  19. A Bacterial Hemerythrin Domain Regulates Activity of a Vibrio cholerae Di-Guanylate Cyclase

    PubMed Central

    Schaller, Ruth A.; Ali, Syed Khalid; Klose, Karl E.; Kurtz, Donald M.

    2012-01-01

    The first demonstrated example of a regulatory function for a bacterial hemerythrin (Bhr) domain is reported. Bhrs have a characteristic sequence motif providing ligand residues for a type of non-heme diiron site that is known to bind O2 and undergo autoxidation. The amino acid sequence encoded by the gene, VC1216, from Vibrio cholerae O1 biovar El Tor str. N16961 contains an N-terminal Bhr domain connected to a C-terminal domain characteristic of bacterial di-guanylate cyclases (DGCs) that catalyze formation of cyclic di-(3′,5′)-guanosine monophosphate (c-di-GMP) from GTP. This protein, Vc Bhr-DGC, was found to contain two tightly bound non-heme iron atoms per protein monomer. The as-isolated protein showed the spectroscopic signatures of oxo/dicarboxylato-bridged non-heme diferric sites of previously characterized Bhr domains. The diiron site was capable of cycling between diferric and diferrous forms, the latter of which was stable only under anaerobic conditions, undergoing rapid autoxidation upon exposure to air. Vc Bhr-DGC showed approximately 10-times higher DGC activity in the diferrous relative to the diferric form. The level of intracellular c-di-GMP is known to regulate biofilm formation in Vibrio cholerae. The higher DGC activity of the diferrous Vc Bhr-DGC is consistent with induction of biofilm formation in low dioxygen environments. The non-heme diiron cofactor in the Bhr domain thus represents an alternative to heme or flavin for redox and/or diatomic gas sensing and regulation of DGC activity. PMID:23057727

  20. Anti-peptide monoclonal antibody imaging of a common binding domain involved in muscle regulation.

    PubMed Central

    Van Eyk, J. E.; Caday-Malcolm, R. A.; Yu, L.; Irvin, R. T.; Hodges, R. S.

    1995-01-01

    Multiple-component regulatory protein systems function through a generalized mechanism where a single regulatory protein or ligand binds to a variety of receptors to modulate specific functions in a physiologically sensitive context. Muscle contraction is regulated by the interaction of actin with troponin I (TnI) or myosin in a Ca(2+)-sensitive manner. Actin utilizes a single binding domain (residues 1-28) to bind to residues 104-115 of TnI (Van Eyk JE, Sönnichsen FD, Sykes BD, Hodges RS, 1991, In: Rüegg JC, ed, Peptides as probes in muscle research, Heidelberg, Germany: Springer-Verlag, pp 15-31) and to myosin subfragment 1 (S1, an enzymatic fragment of myosin containing both the actin and ATP binding sites) (Van Eyk JE, Hodges RS, 1991, Biochemistry 30:11676-11682) in a Ca(2+)-sensitive manner. We have utilized an anti-TnI peptide (104-115) monoclonal antibody, Mab B4, that binds specifically to TnI, to image the common binding domain of actin and thus mimic the activity of actin including activation of the S1 ATPase activity and TnI-mediated regulation of the S1 ATPase. Mab B4 has also been utilized to identify a receptor binding domain on myosin (residues 633-644) that is recognized by actin. Interestingly, Mab B4 binds to the native protein receptors TnI and S1 with relative affinities of 100- and 25,000-fold higher than the binding affinity to the 12-residue peptide immunogen. Thus, anti-peptide monoclonal antibodies prepared against a receptor binding domain can mimic the ligand binding domain and be utilized as a powerful tool for the detailed analysis of complex multiple-component regulatory systems. PMID:7613476

  1. ALOG domains: provenance of plant homeotic and developmental regulators from the DNA-binding domain of a novel class of DIRS1-type retroposons

    PubMed Central

    2012-01-01

    Members of the Arabidopsis LSH1 and Oryza G1 (ALOG) family of proteins have been shown to function as key developmental regulators in land plants. However, their precise mode of action remains unclear. Using sensitive sequence and structure analysis, we show that the ALOG domains are a distinct version of the N-terminal DNA-binding domain shared by the XerC/D-like, protelomerase, topoisomerase-IA, and Flp tyrosine recombinases. ALOG domains are distinguished by the insertion of an additional zinc ribbon into this DNA-binding domain. In particular, we show that the ALOG domain is derived from the XerC/D-like recombinases of a novel class of DIRS-1-like retroposons. Copies of this element, which have been recently inactivated, are present in several marine metazoan lineages, whereas the stramenopile Ectocarpus, retains an active copy of the same. Thus, we predict that ALOG domains help establish organ identity and differentiation by binding specific DNA sequences and acting as transcription factors or recruiters of repressive chromatin. They are also found in certain plant defense proteins, where they are predicted to function as DNA sensors. The evolutionary history of the ALOG domain represents a unique instance of a domain, otherwise exclusively found in retroelements, being recruited as a specific transcription factor in the streptophyte lineage of plants. Hence, they add to the growing evidence for derivation of DNA-binding domains of eukaryotic specific TFs from mobile and selfish elements. PMID:23146749

  2. Down-Regulation of Cell Surface Receptors Is Modulated by Polar Residues within the Transmembrane Domain

    PubMed Central

    Zaliauskiene, Lolita; Kang, Sunghyun; Brouillette, Christie G.; Lebowitz, Jacob; Arani, Ramin B.; Collawn, James F.

    2000-01-01

    How recycling receptors are segregated from down-regulated receptors in the endosome is unknown. In previous studies, we demonstrated that substitutions in the transferrin receptor (TR) transmembrane domain (TM) convert the protein from an efficiently recycling receptor to one that is rapidly down regulated. In this study, we demonstrate that the “signal” within the TM necessary and sufficient for down-regulation is Thr11Gln17Thr19 (numbering in TM). Transplantation of these polar residues into the wild-type TR promotes receptor down-regulation that can be demonstrated by changes in protein half-life and in receptor recycling. Surprisingly, this modification dramatically increases the TR internalization rate as well (∼79% increase). Sucrose gradient centrifugation and cross-linking studies reveal that propensity of the receptors to self-associate correlates with down-regulation. Interestingly, a number of cell surface proteins that contain TM polar residues are known to be efficiently down-regulated, whereas recycling receptors for low-density lipoprotein and transferrin conspicuously lack these residues. Our data, therefore, suggest a simple model in which specific residues within the TM sequences dramatically influence the fate of membrane proteins after endocytosis, providing an alternative signal for down-regulation of receptor complexes to the well-characterized cytoplasmic tail targeting signals. PMID:10930460

  3. Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs.

    PubMed

    Hah, Nasun; Benner, Chris; Chong, Ling-Wa; Yu, Ruth T; Downes, Michael; Evans, Ronald M

    2015-01-20

    Enhancers are critical genomic elements that define cellular and functional identity through the spatial and temporal regulation of gene expression. Recent studies suggest that key genes regulating cell type-specific functions reside in enhancer-dense genomic regions (i.e., super enhancers, stretch enhancers). Here we report that enhancer RNAs (eRNAs) identified by global nuclear run-on sequencing are extensively transcribed within super enhancers and are dynamically regulated in response to cellular signaling. Using Toll-like receptor 4 (TLR4) signaling in macrophages as a model system, we find that transcription of super enhancer-associated eRNAs is dynamically induced at most of the key genes driving innate immunity and inflammation. Unexpectedly, genes repressed by TLR4 signaling are also associated with super enhancer domains and accompanied by massive repression of eRNA transcription. Furthermore, we find each super enhancer acts as a single regulatory unit within which eRNA and genic transcripts are coordinately regulated. The key regulatory activity of these domains is further supported by the finding that super enhancer-associated transcription factor binding is twice as likely to be conserved between human and mouse than typical enhancer sites. Our study suggests that transcriptional activities at super enhancers are critical components to understand the dynamic gene regulatory network. PMID:25564661

  4. Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs

    PubMed Central

    Hah, Nasun; Benner, Chris; Chong, Ling-Wa; Yu, Ruth T.; Downes, Michael; Evans, Ronald M.

    2015-01-01

    Enhancers are critical genomic elements that define cellular and functional identity through the spatial and temporal regulation of gene expression. Recent studies suggest that key genes regulating cell type-specific functions reside in enhancer-dense genomic regions (i.e., super enhancers, stretch enhancers). Here we report that enhancer RNAs (eRNAs) identified by global nuclear run-on sequencing are extensively transcribed within super enhancers and are dynamically regulated in response to cellular signaling. Using Toll-like receptor 4 (TLR4) signaling in macrophages as a model system, we find that transcription of super enhancer-associated eRNAs is dynamically induced at most of the key genes driving innate immunity and inflammation. Unexpectedly, genes repressed by TLR4 signaling are also associated with super enhancer domains and accompanied by massive repression of eRNA transcription. Furthermore, we find each super enhancer acts as a single regulatory unit within which eRNA and genic transcripts are coordinately regulated. The key regulatory activity of these domains is further supported by the finding that super enhancer-associated transcription factor binding is twice as likely to be conserved between human and mouse than typical enhancer sites. Our study suggests that transcriptional activities at super enhancers are critical components to understand the dynamic gene regulatory network. PMID:25564661

  5. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    NASA Technical Reports Server (NTRS)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  6. Structured and Dynamic Disordered Domains Regulate the Activity of a Multifunctional Anti-σ Factor

    PubMed Central

    Herrou, Julien; Willett, Jonathan W.

    2015-01-01

    ABSTRACT The anti-σ factor NepR plays a central role in regulation of the general stress response (GSR) in alphaproteobacteria. This small protein has two known interaction partners: its cognate extracytoplasmic function (ECF) σ factor and the anti-anti-σ factor, PhyR. Stress-dependent phosphorylation of PhyR initiates a protein partner switch that promotes phospho-PhyR binding to NepR, which frees ECF σ to activate transcription of genes required for cell survival under adverse or fluctuating conditions. We have defined key functional roles for structured and intrinsically disordered domains of Caulobacter crescentus NepR in partner binding and activation of GSR transcription. We further demonstrate that NepR strongly stimulates the rate of PhyR phosphorylation in vitro and that this effect requires the structured and disordered domains of NepR. This result provides evidence for an additional layer of GSR regulation in which NepR directly influences activation of its binding partner, PhyR, as an anti-anti-σ factor. We conclude that structured and intrinsically disordered domains of NepR coordinately control multiple functions in the GSR signaling pathway, including core protein partner switch interactions and pathway activation by phosphorylation. PMID:26220965

  7. Two Pathways Mediate Inter-Domain Allosteric Regulation in Pin1

    PubMed Central

    Guo, Jingjing; Pang, Xiaodong; Zhou, Huan-Xiang

    2014-01-01

    Summary Allostery is an essential means for regulating biomolecular functions and provides unique opportunities for drug design, yet our ability to elucidate allosteric mechanisms remains limited. Here, based on extensive molecular dynamics simulations, we present an atomistic picture of the pathways mediating the allosteric regulation of the PPIase domain of Pin1 by its WW domain. Two pathways jointly propagate the action of substrate-WW binding to produce closure and rigidification of three PPIase catalytic-site loops. One pathway preexists in the apo protein but remains dormant until substrate-WW binding completes the second. The reduction in conformational entropy and preorganization of the catalytic-site loops observed here may explain why substrate-WW binding enhances ligand affinity and catalytic activity of the PPIase domain, and suggest a combination drug therapy for Pin1-related diseases. Whereas the traditional view of allostery has emphasized conformational transition, our study uniquely identifies a distinct role of conformational dynamics in eliciting allostery. PMID:25543254

  8. The Rab6-regulated KIF1C kinesin motor domain contributes to Golgi organization

    PubMed Central

    Lee, Peter L; Ohlson, Maikke B; Pfeffer, Suzanne R

    2015-01-01

    Most kinesins transport cargoes bound to their C-termini and use N-terminal motor domains to move along microtubules. We report here a novel function for KIF1C: it transports Rab6A-vesicles and can influence Golgi complex organization. These activities correlate with KIF1C's capacity to bind the Golgi protein Rab6A directly, both via its motor domain and C-terminus. Rab6A binding to the motor domain inhibits microtubule interaction in vitro and in cells, decreasing the amount of motile KIF1C. KIF1C depletion slows protein delivery to the cell surface, interferes with vesicle motility, and triggers Golgi fragmentation. KIF1C can protect Golgi membranes from fragmentation in cells lacking an intact microtubule network. Rescue of fragmentation requires sequences that enable KIF1C to bind Rab6A at both ends, but not KIF1C motor function. Rab6A binding to KIF1C's motor domain represents an entirely new mode of regulation for a kinesin motor, and likely has important consequences for KIF1C's cellular functions. DOI: http://dx.doi.org/10.7554/eLife.06029.001 PMID:25821985

  9. An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus.

    PubMed Central

    Hecht, G B; Lane, T; Ohta, N; Sommer, J M; Newton, A

    1995-01-01

    Signal transduction pathways mediated by sensor histidine kinases and cognate response regulators control a variety of physiological processes in response to environmental conditions. Here we show that in Caulobacter crescentus these systems also play essential roles in the regulation of polar morphogenesis and cell division. Previous studies have implicated histidine kinase genes pleC and divJ in the regulation of these developmental events. We now report that divK encodes an essential, cell cycle-regulated homolog of the CheY/Spo0F subfamily and present evidence that this protein is a cognate response regulator of the histidine kinase PleC. The purified kinase domain of PleC, like that of DivJ, can serve as an efficient phosphodonor to DivK and as a phospho-DivK phosphatase. Based on these and earlier genetic results we propose that PleC and DivK are members of a signal transduction pathway that couples motility and stalk formation to completion of a late cell division cycle event. Gene disruption experiments and the filamentous phenotype of the conditional divK341 mutant reveal that DivK also functions in an essential signal transduction pathway required for cell division, apparently in response to another histidine kinase. We suggest that phosphotransfer mediated by these two-component signal transduction systems may represent a general mechanism regulating cell differentiation and cell division in response to successive cell cycle checkpoints. Images PMID:7664732

  10. PB1 domain interaction of p62/sequestosome 1 and MEKK3 regulates NF-kappaB activation.

    PubMed

    Nakamura, Kazuhiro; Kimple, Adam J; Siderovski, David P; Johnson, Gary L

    2010-01-15

    p62/Sequestosome 1 is a scaffold protein involved in the regulation of autophagy, trafficking of proteins to the proteasome, and activation of NF-kappaB. p62 encodes an N-terminal PB1 domain in addition to the ZZ domain, TRAF6-binding domain, LC3 interaction region, and ubiquitin-associated domain, each critical for the physiological function of p62. PB1 domains have a beta-grasp topology where the front end of one PB1 domain binds the back end of a second PB1 domain. The p62 PB1 domain homodimerizes as well as heterodimerizes with other PB1 domains. The front end of the PB1 domain in p62 binds the PB1 domain of atypical protein kinases C, the MAPK kinase, MEK5, and the NBR1 protein. Other than its role in homodimerization, the rear end acidic cluster region of the p62 PB1 domain had no previous defined binding partners. Herein, we demonstrate that the rear end acidic cluster region of the p62 PB1 domain binds the front end basic region of the MAPK kinase kinase, MEKK3. p62 and MEKK3 co-localize in speckles or aggregates that are centers for organizing TRAF6-regulated NF-kappaB signaling and the assembly of polyubiquinated proteins sorting to sequestosomes and proteasomes. The p62-MEKK3 complex binds TRAF6, which regulates the ubiquitination of the IKK complex and NF-kappaB activation. p62 is required for the association of MEKK3 with TRAF6 and short hairpin RNA knockdown of p62 inhibits IL-1 and MEKK3 activation of NF-kappaB. The rear end acidic cluster of the p62 PB1 domain is used to organize cytosolic aggregates or speckles-associated TRAF6-p62-MEKK3 complex for control of NF-kappaB activation. PMID:19903815

  11. Structure of the Response Regulator PhoP from Mycobacterium tuberculosis Reveals a Dimer Through the Receiver Domain

    SciTech Connect

    S Menon; S Wang

    2011-12-31

    The PhoP protein from Mycobacterium tuberculosis is a response regulator of the OmpR/PhoB subfamily, whose structure consists of an N-terminal receiver domain and a C-terminal DNA-binding domain. How the DNA-binding activities are regulated by phosphorylation of the receiver domain remains unclear due to a lack of structural information on the full-length proteins. Here we report the crystal structure of the full-length PhoP of M. tuberculosis. Unlike other known structures of full-length proteins of the same subfamily, PhoP forms a dimer through its receiver domain with the dimer interface involving {alpha}4-{beta}5-{alpha}5, a common interface for activated receiver domain dimers. However, the switch residues, Thr99 and Tyr118, are in a conformation resembling those of nonactivated receiver domains. The Tyr118 side chain is involved in the dimer interface interactions. The receiver domain is tethered to the DNA-binding domain through a flexible linker and does not impose structural constraints on the DNA-binding domain. This structure suggests that phosphorylation likely facilitates/stabilizes receiver domain dimerization, bringing the DNA-binding domains to close proximity, thereby increasing their binding affinity for direct repeat DNA sequences.

  12. Novel Mechanism of Regulation of Tomato Bushy Stunt Virus Replication by Cellular WW-Domain Proteins

    PubMed Central

    Barajas, Daniel; Kovalev, Nikolay; Qin, Jun

    2014-01-01

    ABSTRACT Replication of (+)RNA viruses depends on several co-opted host proteins but is also under the control of cell-intrinsic restriction factors (CIRFs). By using tombusviruses, small model viruses of plants, we dissect the mechanism of inhibition of viral replication by cellular WW-domain-containing proteins, which act as CIRFs. By using fusion proteins between the WW domain and the p33 replication protein, we show that the WW domain inhibits the ability of p33 to bind to the viral RNA and to other p33 and p92 replication proteins leading to inhibition of viral replication in yeast and in a cell extract. Overexpression of WW-domain protein in yeast also leads to reduction of several co-opted host factors in the viral replicase complex (VRC). These host proteins, such as eEF1A, Cdc34 E2 ubiquitin-conjugating enzyme, and ESCRT proteins (Bro1p and Vps4p), are known to be involved in VRC assembly. Simultaneous coexpression of proviral cellular factors with WW-domain protein partly neutralizes the inhibitory effect of the WW-domain protein. We propose that cellular WW-domain proteins act as CIRFs and also as regulators of tombusvirus replication by inhibiting the assembly of new membrane-bound VRCs at the late stage of infection. We suggest that tombusviruses could sense the status of the infected cells via the availability of cellular susceptibility factors versus WW-domain proteins for binding to p33 replication protein that ultimately controls the formation of new VRCs. This regulatory mechanism might explain how tombusviruses could adjust the efficiency of RNA replication to the limiting resources of the host cells during infections. IMPORTANCE Replication of positive-stranded RNA viruses, which are major pathogens of plants, animals, and humans, is inhibited by several cell-intrinsic restriction factors (CIRFs) in infected cells. We define here the inhibitory roles of the cellular Rsp5 ubiquitin ligase and its WW domain in plant-infecting tombusvirus

  13. Complex domain interactions regulate stability and activity of closely related proneural transcription factors

    PubMed Central

    McDowell, Gary S.; Hardwick, Laura J.A.; Philpott, Anna

    2014-01-01

    Characterising post-translational regulation of key transcriptional activators is crucial for understanding how cell division and differentiation are coordinated in developing organisms and cycling cells. One important mode of protein post-translational control is by regulation of half-life via ubiquitin-mediated proteolysis. Two key basic Helix-Loop-Helix transcription factors, Neurogenin 2 (Ngn2) and NeuroD, play central roles in development of the central nervous system but despite their homology, Ngn2 is a highly unstable protein whilst NeuroD is, by comparison, very stable. The basis for and the consequences of the difference in stability of these two structurally and functionally related proteins has not been explored. Here we see that ubiquitylation alone does not determine Ngn2 or NeuroD stability. By making chimeric proteins, we see that the N-terminus of NeuroD in particular has a stabilising effect, whilst despite their high levels of homology, the most conserved bHLH domains of these proneural proteins alone can confer significant changes in protein stability. Despite widely differing stabilities of Ngn2, NeuroD and the chimeric proteins composed of domains of both, there is little correlation between protein half-life and ability to drive neuronal differentiation. Therefore, we conclude that despite significant homology between Ngn2 and NeuroD, the regulation of their stability differs markedly and moreover, stability/instability of the proteins is not a direct correlate of their activity. PMID:24998442

  14. Regulation of membrane-shape transitions induced by I-BAR domains.

    PubMed

    Chen, Zhiming; Shi, Zheng; Baumgart, Tobias

    2015-07-21

    I-BAR proteins are well-known actin-cytoskeleton adaptors and have been observed to be involved in the formation of plasma membrane protrusions (filopodia). I-BAR proteins contain an all-helical, crescent-shaped IRSp53-MIM domain (IMD) dimer that is believed to be able to couple with a membrane shape. This coupling could involve the sensing and even the generation of negative plasma membrane curvature. Indeed, the in vitro studies have shown that IMDs can induce inward tubulation of liposomes. While N-BAR domains, which generate positive membrane curvature, have received a considerable amount of attention from both theory and experiments, the mechanisms of curvature coupling through IMDs are comparatively less studied and understood. Here we used a membrane-shape stability assay developed recently in our lab to quantitatively characterize IMD-induced membrane-shape transitions. We determined a membrane-shape stability diagram for IMDs that reveals how membrane tension and protein density can comodulate the generation of IMD-induced membrane protrusions. From comparison to analytical theory, we determine three key parameters that characterize the curvature coupling of IMD. We find that the curvature generation capacity of IMDs is significantly stronger compared to that of endophilin, an N-BAR protein known to be involved in plasma membrane shape transitions. Contrary to N-BAR domains, where amphipathic helix insertion is known to promote its membrane curvature generation, for IMDs we find that amphipathic helices inhibit membrane shape transitions, consistent with the inverse curvature that IMDs generate. Importantly, in both of these types of BAR domains, electrostatic interactions affect membrane-binding capacity, but do not appear to affect the curvature generation capacity of the protein. These two types of BAR domain proteins show qualitatively similar membrane shape stability diagrams, suggesting an underlying ubiquitous mechanism by which peripheral proteins

  15. Fas-Associated Protein with Death Domain Regulates Notch Signaling during Muscle Regeneration.

    PubMed

    Zhang, Rong; Wang, Lu; He, Liangqiang; Yang, Bingya; Yao, Chun; Du, Pan; Xu, Qiang; Cheng, Wei; Hua, Zi-Chun

    2014-01-01

    Notch signaling plays critical roles during myogenesis by promoting the proliferation and inhibiting the differentiation of myogenic progenitors. However, the mechanism of the temporal regulation of Notch signaling during the myogenic lineage progression remains elusive. In the present study, we show that a constitutively phosphoryl-mimicking mutation of Fas-associated death domain (FADD-D) enhances Notch-1 signaling and compromises Wnt signaling in both cultured myoblasts and regenerating muscles, which results in inhibited myogenic differentiation and muscle regeneration. Inhibition of Notch signaling recovers the regeneration ability in injured FADD-D muscles through rescuing Wnt signaling. Furthermore, we found that protein kinase Cα mediates FADD-D-induced Notch-1 signaling by stabilizing Notch-1. Collectively, these data identify a novel mechanism for the temporal regulation of Notch signaling during myogenic lineage progression and muscle regeneration. PMID:26303234

  16. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study.

    PubMed

    Belmonte, Luca; Moran, Oscar

    2015-04-01

    The Cystic Fibrosis Transmembrane Regulator (CFTR) is a membrane protein whose mutations cause cystic fibrosis, a lethal genetic disease. We performed a molecular dynamic (MD) study of the properties of the nucleotide binding domains (NBD) whose conformational changes, upon ATP binding, are the direct responsible of the gating mechanisms of CFTR. This study was done for the wild type (WT) CFTR and for the two most common mutations, ΔF508, that produces a traffic defect of the protein, and the mutation G551D, that causes a gating defect on CFTR. Using an homology model of the open channel conformation of the CFTR we thus introduced the mutations to the structure. Although the overall structures of the G551D and ΔF508 are quite well conserved, the NBD1-NBD2 interactions are severely modified in both mutants. NBD1 and NBD2 are indeed destabilized with a higher internal energy (Ei) in the ΔF508-CFTR. Differently, Ei does not change in the NBDs of G551D but, while the number of close contacts between NBD1 and NBD2 in ΔF508 is increased, a significant reduction of close contacts is found in the G551D mutated form. Hydrogen bonds formation between NBDs of the two mutated forms is also altered and it is slightly increased for the ΔF508, while are severely reduced in G551D. A consequent modification of the NBDs-ICLs interactions between residues involved in the transduction of the ATP binding and the channel gating is also registered. Indeed, while a major interaction is noticed between NBDs interface and ICL2 and ICL4 in the WT, this interaction is somehow altered in both mutated forms plausibly with effect on channel gating. Thus, single point mutations of the CFTR protein can reasonably results in channel gating defects due to alteration of the interaction mechanisms between the NBDs and NBDs-ICLs interfaces upon ATP-binding process. PMID:25640670

  17. Protein 4.1R core domain structure and insights into regulation of cytoskeletal organization.

    PubMed

    Han, B G; Nunomura, W; Takakuwa, Y; Mohandas, N; Jap, B K

    2000-10-01

    The crystal structure of the core domain (N-terminal 30 kDa domain) of cytoskeletal protein 4.1R has been determined and shows a cloverleaf-like architecture. Each lobe of the cloverleaf contains a specific binding site for either band 3, glycophorin C/D or p55. At a central region of the molecule near where the three lobes are joined are two separate calmodulin (CaM) binding regions. One of these is composed primarily of an alpha-helix and is Ca 2+ insensitive; the other takes the form of an extended structure and its binding with CaM is dramatically enhanced by the presence of Ca 2+, resulting in the weakening of protein 4.1R binding to its target proteins. This novel architecture, in which the three lobes bind with three membrane associated proteins, and the location of calmodulin binding sites provide insight into how the protein 4.1R core domain interacts with membrane proteins and dynamically regulates cell shape in response to changes in intracellular Ca2+ levels. PMID:11017195

  18. A conserved polybasic domain mediates plasma membrane targeting of Lgl and its regulation by hypoxia

    PubMed Central

    Dong, Wei; Zhang, Xuejing; Liu, Weijie; Chen, Yi-jiun; Huang, Juan; Austin, Erin; Celotto, Alicia M.; Jiang, Wendy Z.; Palladino, Michael J.; Jiang, Yu; Hammond, Gerald R.V.

    2015-01-01

    Lethal giant larvae (Lgl) plays essential and conserved functions in regulating both cell polarity and tumorigenesis in Drosophila melanogaster and vertebrates. It is well recognized that plasma membrane (PM) or cell cortex localization is crucial for Lgl function in vivo, but its membrane-targeting mechanisms remain poorly understood. Here, we discovered that hypoxia acutely and reversibly inhibits Lgl PM targeting through a posttranslational mechanism that is independent of the well-characterized atypical protein kinase C (aPKC) or Aurora kinase–mediated phosphorylations. Instead, we identified an evolutionarily conserved polybasic (PB) domain that targets Lgl to the PM via electrostatic binding to membrane phosphatidylinositol phosphates. Such PB domain–mediated PM targeting is inhibited by hypoxia, which reduces inositol phospholipid levels on the PM through adenosine triphosphate depletion. Moreover, Lgl PB domain contains all the identified phosphorylation sites of aPKC and Aurora kinases, providing a molecular mechanism by which phosphorylations neutralize the positive charges on the PB domain to inhibit Lgl PM targeting. PMID:26483556

  19. Regulation of ASPP2 Interaction with p53 Core Domain by an Intramolecular Autoinhibitory Mechanism

    PubMed Central

    Rotem-Bamberger, Shahar; Katz, Chen; Friedler, Assaf

    2013-01-01

    ASPP2 is a key protein in regulating apoptosis both in p53-dependent and-independent pathways. The C-terminal part of ASPP2 contains four ankyrin repeats and an SH3 domain (Ank-SH3) that mediate the interactions of ASPP2 with apoptosis related proteins such as p53, Bcl-2 and the p65 subunit of NFκB. p53 core domain (p53CD) binds the n-src loop and the RT loop of ASPP2 SH3. ASPP2 contains a disordered proline rich domain (ASPP2 Pro) that forms an intramolecular autoinhibitory interaction with the Ank-SH3 domains. Here we show how this intramolecular interaction affects the intermolecular interactions of ASPP2 with p53, Bcl-2 and NFkB. We used biophysical methods to obtain better understanding of the relationship between ASPP2 and its partners for getting a comprehensive view on ASPP2 pathways. Fluorescence anisotropy competition experiments revealed that both ASPP2 Pro and p53CD competed for binding the n-src loop of the ASPP2 SH3, indicating regulation of p53CD binding to this loop by ASPP2 Pro. Peptides derived from the ASPP2-binding interface of Bcl-2 did not compete with p53CD or NFkB peptides for binding the ASPP2 n-src loop. However, p53CD displaced the NFκB peptide (residues 303–332) from its complex with ASPP2 Ank-SH3, indicating that NFκB 303–332 and p53CD bind a partly overlapping site in ASPP2 SH3, mostly in the RT loop. These results are in agreement with previous docking studies, which showed that ASPP2 Ank-SH3 binds Bcl-2 and NFκB mostly via distinct sites from p53. However they show some overlap between the binding sites of p53CD and NFkB in ASPP2 Ank-SH3. Our results provide experimental evidence that the intramolecular interaction in ASPP2 regulates its binding to p53CD and that ASPP2 Ank-SH3 binds Bcl-2 and NFκB via distinct sites. PMID:23472201

  20. The Dentin Sialoprotein (DSP) Domain Regulates Dental Mesenchymal Cell Differentiation through a Novel Surface Receptor

    PubMed Central

    Wan, Chunyan; Yuan, Guohua; Luo, Daoshu; Zhang, Lu; Lin, Heng; Liu, Huan; Chen, Lei; Yang, Guobin; Chen, Shuo; Chen, Zhi

    2016-01-01

    Dentin sialophosphoprotein (DSPP) is a dentin extracellular matrix protein that is processed into dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP). DSP is mainly expressed in odontoblasts. We hypothesized that DSP interacts with cell surface receptors and subsequently activates intracellular signaling. Using DSP as bait for screening a protein library, we demonstrate that DSP acts as a ligand and binds to integrin β6. The 36 amino acid residues of DSP are sufficient to bind to integrin β6. This peptide promoted cell attachment, migration, differentiation and mineralization of dental mesenchymal cells. In addition, DSP aa183-219 stimulated phosphorylation of ERK1/2 and P38 kinases. This activation was inhibited by an anti-integrin β6 antibody and siRNA. Furthermore, we demonstrate that this DSP fragment induces SMAD1/5/8 phosphorylation and nuclear translocation via ERK1/2 and P38 signaling. SMAD1/5/8 binds to SMAD binding elements (SBEs) in the DSPP gene promoter. SBE mutations result in a decrease in DSPP transcriptional activity. Endogenous DSPP expression was up-regulated by DSP aa183-219 in dental mesenchymal cells. The data in the current study demonstrate for the first time that this DSP domain acts as a ligand in a RGD-independent manner and is involved in intracellular signaling via interacting with integrin β6. The DSP domain regulates DSPP expression and odontoblast homeostasis via a positive feedback loop. PMID:27430624

  1. The Dentin Sialoprotein (DSP) Domain Regulates Dental Mesenchymal Cell Differentiation through a Novel Surface Receptor.

    PubMed

    Wan, Chunyan; Yuan, Guohua; Luo, Daoshu; Zhang, Lu; Lin, Heng; Liu, Huan; Chen, Lei; Yang, Guobin; Chen, Shuo; Chen, Zhi

    2016-01-01

    Dentin sialophosphoprotein (DSPP) is a dentin extracellular matrix protein that is processed into dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP). DSP is mainly expressed in odontoblasts. We hypothesized that DSP interacts with cell surface receptors and subsequently activates intracellular signaling. Using DSP as bait for screening a protein library, we demonstrate that DSP acts as a ligand and binds to integrin β6. The 36 amino acid residues of DSP are sufficient to bind to integrin β6. This peptide promoted cell attachment, migration, differentiation and mineralization of dental mesenchymal cells. In addition, DSP (aa183-219) stimulated phosphorylation of ERK1/2 and P38 kinases. This activation was inhibited by an anti-integrin β6 antibody and siRNA. Furthermore, we demonstrate that this DSP fragment induces SMAD1/5/8 phosphorylation and nuclear translocation via ERK1/2 and P38 signaling. SMAD1/5/8 binds to SMAD binding elements (SBEs) in the DSPP gene promoter. SBE mutations result in a decrease in DSPP transcriptional activity. Endogenous DSPP expression was up-regulated by DSP (aa183-219) in dental mesenchymal cells. The data in the current study demonstrate for the first time that this DSP domain acts as a ligand in a RGD-independent manner and is involved in intracellular signaling via interacting with integrin β6. The DSP domain regulates DSPP expression and odontoblast homeostasis via a positive feedback loop. PMID:27430624

  2. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility

    NASA Astrophysics Data System (ADS)

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I.; Hantschel, Oliver

    2014-11-01

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  3. Role of individual R domain phosphorylation sites in CFTR regulation by protein kinase A.

    PubMed

    Hegedus, Tamás; Aleksandrov, Andrei; Mengos, April; Cui, Liying; Jensen, Timothy J; Riordan, John R

    2009-06-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) plays a critical role in transcellular ion transport and when defective, results in the genetic disease cystic fibrosis. CFTR is novel in the ATP-binding cassette superfamily as an ion channel that is enabled by a unique unstructured regulatory domain. This R domain contains multiple protein kinase A sites, which when phosphorylated allow channel gating. Most of the sites have been indicated to stimulate channel activity, while two of them have been suggested to be inhibitory. It is unknown whether individual sites act coordinately or distinctly. To address this issue, we raised monoclonal antibodies recognizing the unphosphorylated, but not the phosphorylated states of four functionally relevant sites (700, 737, 768, and 813). This enabled simultaneous monitoring of their phosphorylation and dephosphorylation and revealed that both processes occurred rapidly at the first three sites, but more slowly at the fourth. The parallel phosphorylation rates of the stimulatory 700 and the putative inhibitory 737 and 768 sites prompted us to reexamine the role of the latter two. With serines 737 and 768 reintroduced individually into a PKA insensitive variant, in which serines at 15 sites had been replaced by alanines, a level of channel activation by PKA was restored, showing that these sites can mediate stimulation. Thus, we have provided new tools to study the CFTR regulation by phosphorylation and found that sites proposed to inhibit channel activity can also participate in stimulation. PMID:19328185

  4. NMDA receptor desensitization regulated by direct binding to PDZ1-2 domains of PSD-95

    PubMed Central

    Sornarajah, Lavan; Vasuta, Oana Cristina; Zhang, Lily; Sutton, Christine; Li, Bo; El-Husseini, Alaa; Raymond, Lynn A.

    2010-01-01

    Regulation of NMDA receptor (NMDAR) activity by desensitization is important in physiological and pathological states; NMDAR desensitization contributes in shaping synaptic responses and may be protective by limiting calcium influx during sustained glutamate insults. We previously reported that glycine-independent desensitization decreases during hippocampal neuronal development, correlating with NMDAR synaptic localization and association with post-synaptic density 95 (PSD-95). PSD-95/Discs large/zona occludens (PDZ)-1,2 domains of PSD-95 bind to the C-terminus of NMDAR NR2 subunits. The role of PSD-95 in anchoring signaling proteins near NMDARs is well documented. To determine if PSD-95-induced changes in NMDAR desensitization occur because of direct binding to NR2 or due to recruitment of regulatory proteins, we tested the effects of various PSD-95 constructs on NMDAR currents in human embryonic kidney 293 (HEK293) cells and neurons. In HEK cells, wild-type PSD-95 significantly reduced wild-type NMDAR desensitization without altering currents of NMDARs containing NR2A-S1462A, a mutation that abolishes PSD-95 binding. The PSD-95 N-terminus truncated after the PDZ1-2 domains was sufficient for this effect in neurons with low endogenous PSD-95 levels; in NMDAR-expressing HEK cells, the effect persisted when PSD-95 multimerization was eliminated. Moreover, other PSD-95 family members with highly homologous PDZ1-2 domains significantly reduced NMDAR desensitization. In mature neurons, disruption of PSD-95/NMDAR interaction through protein kinase C (PKC) activation increased desensitization to levels found in immature neurons, and this effect was not due to PKC direct regulation of NMDAR activity. We conclude that direct binding of PSD-95 increases stability of NMDAR responses to agonist exposure in neuronal and non-neuronal cells. PMID:18400955

  5. Functional characterization of the dimerization domain of the ferric uptake regulator (Fur) of Pseudomonas aeruginosa.

    PubMed

    Bai, Erdeni; Rosell, Federico I; Lige, Bao; Mauk, Marcia R; Lelj-Garolla, Barbara; Moore, Geoffrey R; Mauk, A Grant

    2006-12-15

    The functional properties of the recombinant C-terminal dimerization domain of the Pseudomonas aeruginosa Fur (ferric uptake regulator) protein expressed in and purified from Escherichia coli have been evaluated. Sedimentation velocity measurements demonstrate that this domain is dimeric, and the UV CD spectrum is consistent with a secondary structure similar to that observed for the corresponding region of the crystallographically characterized wild-type protein. The thermal stability of the domain as determined by CD spectroscopy decreases significantly as pH is increased and increases significantly as metal ions are added. Potentiometric titrations (pH 6.5) establish that the domain possesses a high-affinity and a low-affinity binding site for metal ions. The high-affinity (sensory) binding site demonstrates association constants (K(A)) of 10(+/-7)x10(6), 5.7(+/-3)x10(6), 2.0(+/-2)x10(6) and 2.0(+/-3)x10(4) M(-1) for Ni2+, Zn2+, Co2+ and Mn2+ respectively, while the low-affinity (structural) site exhibits association constants of 1.3(+/-2)x10(6), 3.2(+/-2)x10(4), 1.76(+/-1)x10(5) and 1.5(+/-2)x10(3) M(-1) respectively for the same metal ions (pH 6.5, 300 mM NaCl, 25 degrees C). The stability of metal ion binding to the sensory site follows the Irving-Williams order, while metal ion binding to the partial sensory site present in the domain does not. Fluorescence experiments indicate that the quenching resulting from binding of Co2+ is reversed by subsequent titration with Zn2+. We conclude that the domain is a reasonable model for many properties of the full-length protein and is amenable to some analyses that the limited solubility of the full-length protein prevents. PMID:16928194

  6. APP intracellular domain acts as a transcriptional regulator of miR-663 suppressing neuronal differentiation

    PubMed Central

    Shu, R; Wong, W; Ma, Q H; Yang, Z Z; Zhu, H; Liu, F J; Wang, P; Ma, J; Yan, S; Polo, J M; Bernard, C C A; Stanton, L W; Dawe, G S; Xiao, Z C

    2015-01-01

    Amyloid precursor protein (APP) is best known for its involvement in the pathogenesis of Alzheimer's disease. We have previously demonstrated that APP intracellular domain (AICD) regulates neurogenesis; however, the mechanisms underlying AICD-mediated regulation of neuronal differentiation are not yet fully characterized. Using genome-wide chromatin immunoprecipitation approaches, we found that AICD is specifically recruited to the regulatory regions of several microRNA genes, and acts as a transcriptional regulator for miR-663, miR-3648 and miR-3687 in human neural stem cells. Functional assays show that AICD negatively modulates neuronal differentiation through miR-663, a primate-specific microRNA. Microarray data further demonstrate that miR-663 suppresses the expression of multiple genes implicated in neurogenesis, including FBXL18 and CDK6. Our results indicate that AICD has a novel role in suppression of neuronal differentiation via transcriptional regulation of miR-663 in human neural stem cells. PMID:25695604

  7. A PAS domain-containing regulator controls flagella-flagella interactions in Campylobacter jejuni

    PubMed Central

    Reuter, Mark; Periago, Paula M.; Mulholland, Francis; Brown, Helen L.; van Vliet, Arnoud H. M.

    2015-01-01

    The bipolar flagella of the foodborne bacterial pathogen Campylobacter jejuni confer motility, which is essential for virulence. The flagella of C. jejuni are post-translationally modified, but how this process is controlled is not well understood. In this work, we have identified a novel PAS-domain containing regulatory system, which modulates flagella-flagella interactions in C. jejuni. Inactivation of the cj1387c gene, encoding a YheO-like PAS6 domain linked to a helix-turn-helix domain, resulted in the generation of a tightly associated “cell-train” morphotype, where up to four cells were connected by their flagella. The morphotype was fully motile, resistant to vortexing, accompanied by increased autoagglutination, and was not observed in aflagellated cells. The Δcj1387c mutant displayed increased expression of the adjacent Cj1388 protein, which comprises of a single endoribonuclease L-PSP domain. Comparative genomics showed that cj1387c (yheO) orthologs in bacterial genomes are commonly linked to an adjacent cj1388 ortholog, with some bacteria, including C. jejuni, containing another cj1388-like gene (cj0327). Inactivation of the cj1388 and cj0327 genes resulted in decreased autoagglutination in Tween-20-supplemented media. The Δcj1388 and Δcj0327 mutants were also attenuated in a Galleria larvae-based infection model. Finally, substituting the sole cysteine in Cj1388 for serine prevented Cj1388 dimerization in non-reducing conditions, and resulted in decreased autoagglutination in the presence of Tween-20. We hypothesize that Cj1388 and Cj0327 modulate post-translational modification of the flagella through yet unidentified mechanisms, and propose naming Cj1387 the Campylobacter Flagella Interaction Regulator CfiR, and the Cj1388 and Cj0327 protein as CfiP and CfiQ, respectively. PMID:26284050

  8. Cystic fibrosis transmembrane conductance regulator Cl- channels with R domain deletions and translocations show phosphorylation-dependent and -independent activity.

    PubMed

    Baldursson, O; Ostedgaard, L S; Rokhlina, T; Cotten, J F; Welsh, M J

    2001-01-19

    Phosphorylation of the R domain regulates cystic fibrosis transmembrane conductance regulator Cl- channel activity. Earlier studies suggested that the R domain controls activity via more than one mechanism; a phosphorylated R domain may stimulate activity, and an unphosphorylated R domain may prevent constitutive activity, i.e. opening with ATP alone. However, the mechanisms responsible for these two regulatory properties are not understood. In this study we asked whether the two effects are dependent on its position in the protein and whether smaller regions from the R domain mediate the effects. We found that several portions of the R domain conferred phosphorylation-stimulated activity. This was true whether the R domain sequences were present in their normal location or were translocated to the C terminus. We also found that some parts of the R domain could be deleted without inducing constitutive activity. However, when residues 760-783 were deleted, channels opened without phosphorylation. Translocation of the R domain to the C terminus did not prevent constitutive activity. These results suggest that different parts of the phosphorylated R domain can stimulate activity and that their location within the protein is not critical. In contrast, prevention of constitutive activity required a short specific sequence that could not be moved to the C terminus. These results are consistent with a recent model of an R domain composed primarily of random coil in which more than one phosphorylation site is capable of stimulating channel activity, and net activity reflects interactions between multiple sites in the R domain and the rest of the channel. PMID:11038358

  9. Transformation/Transcription Domain-Associated Protein (TRRAP)-Mediated Regulation of Wee1

    PubMed Central

    Calonge, Teresa M.; Eshaghi, Majid; Liu, Jianhua; Ronai, Ze'ev; O'Connell, Matthew J.

    2010-01-01

    The G2 DNA damage checkpoint inhibits Cdc2 and mitotic entry through the dual regulation of Wee1 and Cdc25 by the Chk1 effector kinase. Upregulation of Chk1 by mutation or overexpression bypasses the requirement for upstream regulators or DNA damage to promote a G2 cell cycle arrest. We screened in fission yeast for mutations that rendered cells resistant to overexpressed chk1+. We identified a mutation in tra1, which encodes one of two homologs of transformation/transcription domain-associated protein (TRRAP), an ATM/R-related pseudokinase that scaffolds several histone acetyltransferase (HAT) complexes. Inhibition of histone deacetylases reverts the resistance to overexpressed chk1+, suggesting this phenotype is due to a HAT activity, although expression of checkpoint and cell cycle genes is not greatly affected. Cells with mutant or deleted tra1 activate Chk1 normally and are checkpoint proficient. However, these cells are semi-wee even when overexpressing chk1+ and accumulate inactive Wee1 protein. The changed division response (Cdr) kinases Cdr1 and Cdr2 are negative regulators of Wee1, and we show that they are required for the Tra1-dependent alterations to Wee1 function. This identifies Tra1 as another component controlling the timing of entry into mitosis via Cdc2 activation. PMID:20194963

  10. Functional Domains of Autoimmune Regulator (AIRE) Modulate INS-VNTR Transcription in Human Thymic Epithelial Cells.

    PubMed

    Sparks, Avis E; Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2016-05-20

    INS-VNTR (insulin-variable number of tandem repeats) and AIRE (autoimmune regulator) have been associated with the modulation of insulin gene expression in thymus, which is essential to induce either insulin tolerance or the development of insulin autoimmunity and type 1 diabetes. We sought to analyze whether each functional domain of AIRE is critical for the activation of INS-VNTR in human thymic epithelial cells. Twelve missense or nonsense mutations in AIRE and two chimeric AIRE constructs were generated. A luciferase reporter assay and a pulldown assay using biotinylated INS-class I VNTR probe were performed to examine the transactivation and binding activities of WT, mutant, and chimeric AIREs on the INS-VNTR promoter. Confocal microscopy analysis was performed for WT or mutant AIRE cellular localization. We found that all of the AIRE mutations resulted in loss of transcriptional activation of INS-VNTR except mutant P252L. Using WT/mutant AIRE heterozygous forms to modulate the INS-VNTR target revealed five mutations (R257X, G228W, C311fsX376, L397fsX478, and R433fsX502) that functioned in a dominant negative fashion. The LXXLL-3 motif is identified for the first time to be essential for DNA binding to INS-VNTR, whereas the intact PHD1, PHD2, LXXLL-3, and LXXLL-4 motifs were important for successful transcriptional activation. AIRE nuclear localization in the human thymic epithelial cell line was disrupted by mutations in the homogenously staining region domain and the R257X mutation in the PHD1 domain. This study supports the notion that AIRE mutation could specifically affect human insulin gene expression in thymic epithelial cells through INS-VNTR and subsequently induce either insulin tolerance or autoimmunity. PMID:27048654

  11. Engineering FKBP-Based Destabilizing Domains to Build Sophisticated Protein Regulation Systems

    PubMed Central

    An, Wenlin; Jackson, Rachel E.; Hunter, Paul; Gögel, Stefanie; van Diepen, Michiel; Liu, Karen; Meyer, Martin P.; Eickholt, Britta J.

    2015-01-01

    Targeting protein stability with small molecules has emerged as an effective tool to control protein abundance in a fast, scalable and reversible manner. The technique involves tagging a protein of interest (POI) with a destabilizing domain (DD) specifically controlled by a small molecule. The successful construction of such fusion proteins may, however, be limited by functional interference of the DD epitope with electrostatic interactions required for full biological function of proteins. Another drawback of this approach is the remaining endogenous protein. Here, we combined the Cre-LoxP system with an advanced DD and generated a protein regulation system in which the loss of an endogenous protein, in our case the tumor suppressor PTEN, can be coupled directly with a conditionally fine-tunable DD-PTEN. This new system will consolidate and extend the use of DD-technology to control protein function precisely in living cells and animal models. PMID:26717575

  12. Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator.

    PubMed

    Kunzelmann, K; Kiser, G L; Schreiber, R; Riordan, J R

    1997-01-01

    Cystic fibrosis is characterized by an impaired cyclic adenosine 3,5-monophosphate (cAMP) activated Cl- conductance in parallel with an enhanced amiloride sensitive Na+ conductance (ENaC) of the respiratory epithelium. Very recently, acute downregulation of ENaC by the cystic fibrosis transmembrane conductance regulator (CFTR) was demonstrated in several studies. The mechanism, however, by which CFTR exerts its inhibitory effect on ENaC remains obscure. We demonstrate that cytosolic domains of human CFTR are sufficient to induce inhibition of rat epithelial Na+ currents (rENaC) when coexpressed in Xenopus oocytes and stimulated with 3-isobutyl-1-methylxanthine (IBMX). Moreover, mutations of CFTR, which occur in cystic fibrosis, abolish CFTR-dependent downregulation of rENaC. Yeast two hybrid analysis of CFTR domains and rENaC subunits suggest direct interaction between the proteins. Enhanced Na+ transport as found in the airways of cystic fibrosis patients is probably due to a lack of CFTR dependent downregulation of ENaC. PMID:9009227

  13. G1 Domain of Versican Regulates Hyaluronan Organization and the Phenotype of Cultured Human Dermal Fibroblasts.

    PubMed

    Merrilees, Mervyn J; Zuo, Ning; Evanko, Stephen P; Day, Anthony J; Wight, Thomas N

    2016-06-01

    Variants of versican have wide-ranging effects on cell and tissue phenotype, impacting proliferation, adhesion, pericellular matrix composition, and elastogenesis. The G1 domain of versican, which contains two Link modules that bind to hyaluronan (HA), may be central to these effects. Recombinant human G1 (rhG1) with an N-terminal 8 amino acid histidine (His) tag, produced in Nicotiana benthamiana, was applied to cultures of dermal fibroblasts, and effects on proliferation and pericellular HA organization determined. rhG1 located to individual strands of cell surface HA which aggregated into structures resembling HA cables. On both individual and aggregated strands, the spacing of attached rhG1 was similar (~120 nm), suggesting interaction between rhG1 molecules. Endogenous V0/V1, present on HA between attached rhG1, did not prevent cable formation, while treatment with V0/V1 alone, which also bound to HA, did not induce cables. A single treatment with rhG1 suppressed cell proliferation for an extended period. Treating cells for 4 weeks with rhG1 resulted in condensed layers of elongated, differentiated α actin-positive fibroblasts, with rhG1 localized to cell surfaces, and a compact extracellular matrix including both collagen and elastin. These results demonstrate that the G1 domain of versican can regulate the organization of pericellular HA and affect phenotype. PMID:27126822

  14. Discoidin domain receptor 2 (DDR2) regulates proliferation of endochondral cells in mice

    SciTech Connect

    Kawai, Ikuma; Hisaki, Tomoka; Sugiura, Koji; Naito, Kunihiko; Kano, Kiyoshi

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase. Black-Right-Pointing-Pointer DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. Black-Right-Pointing-Pointer We produced in vitro and in vivo model to better understand the role of DDR2. Black-Right-Pointing-Pointer DDR2 might play an inhibitory role in the proliferation of chondrocyte. -- Abstract: Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase that is activated by fibrillar collagens. DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. The decrement of endogenous DDR2 represses osteoblastic marker gene expression and osteogenic differentiation in murine preosteoblastic cells, but the functions of DDR2 in chondrogenic cellular proliferation remain unclear. To better understand the role of DDR2 signaling in cellular proliferation in endochondral ossification, we inhibited Ddr2 expression via the inhibitory effect of miRNA on Ddr2 mRNA (miDdr2) and analyzed the cellular proliferation and differentiation in the prechondrocyte ATDC5 cell lines. To investigate DDR2's molecular role in endochondral cellular proliferation in vivo, we also produced transgenic mice in which the expression of truncated, kinase dead (KD) DDR2 protein is induced, and evaluated the DDR2 function in cellular proliferation in chondrocytes. Although the miDdr2-transfected ATDC5 cell lines retained normal differentiation ability, DDR2 reduction finally promoted cellular proliferation in proportion to the decreasing ratio of Ddr2 expression, and it also promoted earlier differentiation to cartilage cells by insulin induction. The layer of hypertrophic chondrocytes in KD Ddr2 transgenic mice was not significantly thicker than that of normal littermates, but the layer of proliferative chondrocytes in KD-Ddr2 transgenic mice was significantly thicker than that of normal littermates

  15. The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation

    PubMed Central

    Jaleel, Mahaboobi; Villa, Fabrizio; Deak, Maria; Toth, Rachel; Prescott, Alan R.; van Aalten, Daan M. F.; Alessi, Dario R.

    2006-01-01

    Recent work indicates that the LKB1 tumour suppressor protein kinase, which is mutated in Peutz–Jeghers cancer syndrome, phosphorylates and activates a group of protein kinases that are related to AMPK (AMP-activated protein kinase). Ten of the 14 AMPK-related protein kinases activated by LKB1, including SIK (salt-induced kinase), MARK (microtubule-affinity-regulating kinase) and BRSK (brain-specific kinase) isoforms, possess a ubiquitin-associated (UBA) domain immediately C-terminal to the kinase catalytic domain. These are the only protein kinases in the human genome known to possess a UBA domain, but their roles in regulating AMPK-related kinases are unknown. We have investigated the roles that the UBA domain may play in regulating these enzymes. Limited proteolysis of MARK2 revealed that the kinase and UBA domains were contained within a fragment that was resistant to trypsin proteolysis. SAXS (small-angle X-ray scattering) analysis of inactive and active LKB1-phosphorylated MARK2 revealed that activation of MARK2 is accompanied by a significant conformational change that alters the orientation of the UBA domain with respect to the catalytic domain. Our results indicate that none of the UBA domains found in AMPK-related kinases interact with polyubiquitin or other ubiquitin-like molecules. Instead, the UBA domains appear to play an essential conformational role and are required for the LKB1-mediated phosphorylation and activation of AMPK-related kinases. This is based on the findings that mutation or removal of the UBA domains of several AMPK-related kinases, including isoforms of MARK, SIK and BRSK, markedly impaired the catalytic activity and LKB1-mediated phosphorylation of these enzymes. We also provide evidence that the UBA domains do not function as LKB1–STRAD (STE20-related adaptor)–MO25 (mouse protein 25) docking/interacting sites and that mutations in the UBA domain of SIK suppressed the ability of SIK to localize within punctate regions of the

  16. Conformational change-induced repeat domain expansion regulates Rap phosphatase quorum-sensing signal receptors.

    PubMed

    Parashar, Vijay; Jeffrey, Philip D; Neiditch, Matthew B

    2013-01-01

    The large family of Gram-positive quorum-sensing receptors known as the RNPP proteins consists of receptors homologous to the Rap, NprR, PlcR, and PrgX proteins that are regulated by imported oligopeptide autoinducers. Rap proteins are phosphatases and transcriptional anti-activators, and NprR, PlcR, and PrgX proteins are DNA binding transcription factors. Despite their obvious importance, the mechanistic basis of oligopeptide receptor regulation is largely unknown. Here, we report the X-ray crystal structure of the Bacillus subtilis quorum-sensing receptor RapJ in complex with the centrally important oligopeptide autoinducer competence and sporulation factor (CSF, also termed PhrC), a member of the Phr family of quorum-sensing signals. Furthermore, we present the crystal structure of RapI. Comparison of the RapJ-PhrC, RapI, RapH-Spo0F, and RapF-ComA(C) crystal structures reveals the mechanistic basis of Phr activity. More specifically, when complexed with target proteins, Rap proteins consist of a C-terminal tetratricopeptide repeat (TPR) domain connected by a flexible helix-containing linker to an N-terminal 3-helix bundle. In the absence of a target protein or regulatory peptide, the Rap protein 3-helix bundle adopts different conformations. However, in the peptide-bound conformation, the Rap protein N-terminal 3-helix bundle and linker undergo a radical conformational change, form TPR-like folds, and merge with the existing C-terminal TPR domain. To our knowledge, this is the first example of conformational change-induced repeat domain expansion. Furthermore, upon Phr binding, the entire Rap protein is compressed along the TPR superhelical axis, generating new intramolecular contacts that lock the Rap protein in an inactive state. The fact that Rap proteins are conformationally flexible is surprising considering that it is accepted dogma that TPR proteins do not undergo large conformational changes. Repeat proteins are widely used as scaffolds for the

  17. Novel regulation of Smad3 oligomerization and DNA binding by its linker domain.

    PubMed

    Vasilaki, Eleftheria; Siderakis, Manos; Papakosta, Paraskevi; Skourti-Stathaki, Konstantina; Mavridou, Sofia; Kardassis, Dimitris

    2009-09-01

    Smad proteins are key effectors of the transforming growth factor beta (TGFbeta) signaling pathway in mammalian cells. Smads are composed of two highly structured and conserved domains called Mad homology 1 (MH1) and 2 (MH2), which are linked together by a nonconserved linker region. The recent identification of phosphorylation sites and binding sites for ubiquitin ligases in the linker regions of TGFbeta and bone morphogenetic protein (BMP) receptor-regulated Smads suggested that the linker may contribute to the regulation of Smad function by facilitating cross-talks with other signaling pathways. In the present study, we have generated and characterized novel Smad3 mutants bearing individual substitutions of conserved and nonconserved amino acid residues within a previously described transcriptionally active linker fragment. Our analysis showed that the conserved linker amino acids glutamine 222 and proline 229 play important roles in Smad functions such as homo- and hetero-oligomerization, nuclear accumulation in response to TGFbeta stimulation, and DNA binding. Furthermore, a Smad3 mutant bearing a substitution of the nonconserved amino acid asparagine 218 to alanine displayed enhanced transactivation potential relative to wild type Smad3. Finally, Smad3 P229A inhibited TGFbeta signaling when overexpressed in mammalian cells. In conclusion, our data are in line with previous studies supporting an important regulatory role of the linker region of Smads in their function as key transducers of TGFbeta signaling. PMID:19645436

  18. The Src Homology 2 Domain-Containing Adapter Protein B (SHB) Regulates Mouse Oocyte Maturation

    PubMed Central

    Calounova, Gabriela; Livera, Gabriel; Zhang, Xiao-Qun; Liu, Kui; Gosden, Roger G.; Welsh, Michael

    2010-01-01

    SHB (Src homology 2 domain-containing adapter protein B) is involved in receptor tyrosine kinase signaling. Mice deficient in the Shb gene have been found to exhibit a transmission ratio distortion with respect to inheritance of the Shb null allele among offspring and this phenomenon was linked to female gamete production. Consequently, we postulated that Shb plays a role for oocyte biology and thus decided to investigate oocyte formation, meiotic maturation, and early embryo development in relation to absence of the Shb gene. Oogenesis was apparently accelerated judging from the stages of oocyte development on fetal day 18.5 and one week postnatally in Shb −/− mice; but in adulthood ovarian follicle maturation was impaired in these mice. Completion of meiosis I (first polar body extrusion) was less synchronized, with a fraction of oocytes showing premature polar body extrusion in the absence of Shb. In vitro fertilization of mature oocytes isolated from Shb +/+, +/− and −/− mice revealed impaired early embryo development in the −/− embryos. Moreover, the absence of Shb enhanced ERK (extracellular-signal regulated kinase) and RSK (ribosomal S6 kinase) signaling in oocytes and these effects were paralleled by an increased ribosomal protein S6 phosphorylation and activation. It is concluded that SHB regulates normal oocyte and follicle development and that perturbation of SHB signaling causes defective meiosis I and early embryo development. PMID:20585392

  19. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    NASA Astrophysics Data System (ADS)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  20. Cryptic activity within the Type III1 domain of fibronectin regulates tissue inflammation and angiogenesis

    PubMed Central

    Cho, Christina; Kelsh-Lasher, Rhiannon; Ambesi, Anthony; McKeown-Longo, Paula J.

    2016-01-01

    The fibronectin matrix provides mechanical and biochemical information to regulate homeostatic and pathological processes within tissues. Fibronectin consists of independently-folded modules termed Types I, II and III. In response to cellular contractile force, Type III domains unfold to initiate a series of homophilic binding events which result in the assembly of a complex network of intertwining fibrils. The unfolding of Type III modules provides elasticity to the assembled fibronectin matrix allowing it to function as a dynamic scaffold which provides binding sites for cellular receptors, growth factors and other matrix molecules. Access to bioactive sites within the fibronectin matrix is under complex regulation and controlled through a combination of mechanical and proteolytic activity. Mechanical unfolding of Type III modules and limited proteolysis can alter the topographical display of bioactive sites within the fibronectin fibrils by exposing previously cryptic sites and disrupting functional sites. In this review we will discuss cryptic activity found within the first Type III module of fibronectin and its impact on tissue angiogenesis and inflammation.

  1. Novel autophosphorylation sites of Src family kinases regulate kinase activity and SH2 domain-binding capacity.

    PubMed

    Weir, Marion E; Mann, Jacqueline E; Corwin, Thomas; Fulton, Zachary W; Hao, Jennifer M; Maniscalco, Jeanine F; Kenney, Marie C; Roman Roque, Kristal M; Chapdelaine, Elizabeth F; Stelzl, Ulrich; Deming, Paula B; Ballif, Bryan A; Hinkle, Karen L

    2016-04-01

    Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the C-terminal site to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. PMID:27001024

  2. Regulation and Function of the Nucleotide Binding Domain Leucine-Rich Repeat-Containing Receptor, Pyrin Domain-Containing-3 Inflammasome in Lung Disease.

    PubMed

    Lee, Seonmin; Suh, Gee-Young; Ryter, Stefan W; Choi, Augustine M K

    2016-02-01

    Inflammasomes are specialized inflammatory signaling platforms that govern the maturation and secretion of proinflammatory cytokines, such as IL-1β and IL-18, through the regulation of caspase-1-dependent proteolytic processing. Several nucleotide binding domain leucine-rich repeat-containing receptor (NLR) family members (i.e., NLR family, pyrin domain containing [NLRP] 1, NLRP3, and NLR family, caspase recruitment domain containing-4 [NLRC4]) as well as the pyrin and hemopoietic expression, interferon-inducibility, nuclear localization domain-containing family member, absent in melanoma 2, can form inflammasome complexes in human cells. In particular, the NLRP3 inflammasome is activated in response to cellular stresses through a two-component pathway, involving Toll-like receptor 4-ligand interaction (priming) followed by a second signal, such as ATP-dependent P2X purinoreceptor 7 receptor activation. Emerging studies suggest that the NLRP3 inflammasome can exert pleiotropic effects in human diseases with potentially both pro- and antipathogenic sequelae. Whereas NLRP3 inflammasome activation can serve as a vital component of host defense against invading bacteria and pathogens, excessive activation of the inflammasome can lead to inflammation-associated tissue injury in the setting of chronic disease. In addition, pyroptosis, an inflammasome-associated mode of cell death, contributes to host defense. Recent research has described the regulation and function of the NLRP3 inflammasome in various pulmonary diseases, including acute lung injury and acute respiratory distress syndrome, sepsis, respiratory infections, chronic obstructive pulmonary disease, asthma, pulmonary hypertension, cystic fibrosis, and idiopathic pulmonary fibrosis. The NLRP3 and related inflammasomes, and their regulated cytokines or receptors, may represent novel diagnostic or therapeutic targets in pulmonary diseases and other diseases in which inflammation contributes to pathogenesis. PMID

  3. Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains

    PubMed Central

    Lee, Seok-Yong; De La Torre, Armando; Yan, Dalai; Kustu, Sydney; Nixon, B. Tracy; Wemmer, David E.

    2003-01-01

    Transcription by σ54 RNA polymerase depends on activators that contain ATPase domains of the AAA+ class. These activators, which are often response regulators of two-component signal transduction systems, remodel the polymerase so that it can form open complexes at promoters. Here, we report the first crystal structures of the ATPase domain of an activator, the NtrC1 protein from the extreme thermophile Aquifex aeolicus. This domain alone, which is active, crystallized as a ring-shaped heptamer. The protein carrying both the ATPase and adjacent receiver domains, which is inactive, crystallized as a dimer. In the inactive dimer, one residue needed for catalysis is far from the active site, and extensive contacts among the domains prevent oligomerization of the ATPase domain. Oligomerization, which completes the active site, depends on surfaces that are buried in the dimer, and hence, on a rearrangement of the receiver domains upon phosphorylation. A motif in the ATPase domain known to be critical for coupling energy to remodeling of polymerase forms a novel loop that projects from the middle of an α helix. The extended, structured loops from the subunits of the heptamer localize to a pore in the center of the ring and form a surface that could contact σ54. PMID:14561776

  4. Target of Rapamycin Regulates Development and Ribosomal RNA Expression through Kinase Domain in Arabidopsis1[W][OA

    PubMed Central

    Ren, Maozhi; Qiu, Shuqing; Venglat, Prakash; Xiang, Daoquan; Feng, Li; Selvaraj, Gopalan; Datla, Raju

    2011-01-01

    Target of rapamycin (TOR) is a central regulator of cell growth, cell death, nutrition, starvation, hormone, and stress responses in diverse eukaryotes. However, very little is known about TOR signaling and the associated functional domains in plants. We have taken a genetic approach to dissect TOR functions in Arabidopsis (Arabidopsis thaliana) and report here that the kinase domain is essential for the role of TOR in embryogenesis and 45S rRNA expression. Twelve new T-DNA insertion mutants, spanning 14.2 kb of TOR-encoding genomic region, have been characterized. Nine of these share expression of defective kinase domain and embryo arrest at 16 to 32 cell stage. However, three T-DNA insertion lines affecting FATC domain displayed normal embryo development, indicating that FATC domain was dispensable in Arabidopsis. Genetic complementation showed that the TOR kinase domain alone in tor-10/tor-10 mutant background can rescue early embryo lethality and restore normal development. Overexpression of full-length TOR or kinase domain in Arabidopsis displayed developmental abnormalities in meristem, leaf, root, stem, flowering time, and senescence. We further show that TOR, especially the kinase domain, plays a role in ribosome biogenesis by activating 45S rRNA production. Of the six putative nuclear localization sequences in the kinase domain, nuclear localization sequence 6 was identified to confer TOR nuclear targeting in transient expression assays. Chromatin immunoprecipitation studies revealed that the HEAT repeat domain binds to 45S rRNA promoter and the 5′ external transcribed spacer elements motif. Together, these results show that TOR controls the embryogenesis, postembryonic development, and 45S rRNA production through its kinase domain in Arabidopsis. PMID:21266656

  5. Glycosylation at Asn211 Regulates the Activation State of the Discoidin Domain Receptor 1 (DDR1)*

    PubMed Central

    Fu, Hsueh-Liang; Valiathan, Rajeshwari R.; Payne, Leo; Kumarasiri, Malika; Mahasenan, Kiran V.; Mobashery, Shahriar; Huang, Paul; Fridman, Rafael

    2014-01-01

    Discoidin domain receptor 1 (DDR1) belongs to a unique family of receptor tyrosine kinases that signal in response to collagens. DDR1 undergoes autophosphorylation in response to collagen binding with a slow and sustained kinetics that is unique among members of the receptor tyrosine kinase family. DDR1 dimerization precedes receptor activation suggesting a structural inhibitory mechanism to prevent unwarranted phosphorylation. However, the mechanism(s) that maintains the autoinhibitory state of the DDR1 dimers is unknown. Here, we report that N-glycosylation at the Asn211 residue plays a unique role in the control of DDR1 dimerization and autophosphorylation. Using site-directed mutagenesis, we found that mutations that disrupt the conserved 211NDS N-glycosylation motif, but not other N-glycosylation sites (Asn260, Asn371, and Asn394), result in collagen I-independent constitutive phosphorylation. Mass spectrometry revealed that the N211Q mutant undergoes phosphorylation at Tyr484, Tyr520, Tyr792, and Tyr797. The N211Q traffics to the cell surface, and its ectodomain displays collagen I binding with an affinity similar to that of the wild-type DDR1 ectodomain. However, unlike the wild-type receptor, the N211Q mutant exhibits enhanced receptor dimerization and sustained activation upon ligand withdrawal. Taken together, these data suggest that N-glycosylation at the highly conserved 211NDS motif evolved to act as a negative repressor of DDR1 phosphorylation in the absence of ligand. The presence of glycan moieties at that site may help to lock the collagen-binding domain in the inactive state and prevent unwarranted signaling by receptor dimers. These studies provide a novel insight into the structural mechanisms that regulate DDR activation. PMID:24509848

  6. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells

    PubMed Central

    Dubois, Fanny; Leroy, Cédric; Simon, Valérie; Benistant, Christine; Roche, Serge

    2015-01-01

    Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells. PMID:26269757

  7. Mutation of potential phosphorylation sites in the recombinant R domain of the cystic fibrosis transmembrane conductance regulator has significant effects on domain conformation.

    PubMed

    Dulhanty, A M; Chang, X B; Riordan, J R

    1995-01-01

    Mutation of potential cAMP dependent protein kinase sites in the R domain of the cystic fibrosis transmembrane conductance regulator has significant effects on protein function. Mutation of the potential phosphorylation sites from serine to alanine, to abolish the site, reduced sensitivity to activation, or to glutamic acid, to mimic phosphorylation, caused some constitutive activity. To explore the structural effects of these mutations, recombinant R domain peptides were studied: the wild type, a mutant with nine serine residues changed to alanine, and a mutant with eight serine residues changed to glutamic acid. As assessed by C.D. spectroscopy, the mutants have substantially different secondary structure than the wild type, in agreement with the predictive algorithm of Gascuel and Golmard. The results show that mutagenesis of residues alters the polypeptide structurally as well as preventing it from serving as a phosphorylation substrate. Hence, the functional consequences of the mutations may not be entirely due to effects on phosphorylation. PMID:7529497

  8. Impact of the [delta]F508 Mutation in First Nucleotide-binding Domain of Human Cystic Fibrosis Transmembrane Conductance Regulator on Domain Folding and Structure

    SciTech Connect

    Lewis, Hal A.; Zhao, Xun; Wang, Chi; Sauder, J. Michael; Rooney, Isabelle; Noland, Brian W.; Lorimer, Don; Kearins, Margaret C.; Conners, Kris; Condon, Brad; Maloney, Peter C.; Guggino, William B.; Hunt, John F.; Emtage, Spencer

    2010-07-19

    Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformation but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.

  9. Structure of a new DNA-binding domain which regulates pathogenesis in a wide variety of fungi

    PubMed Central

    Lohse, Matthew B.; Rosenberg, Oren S.; Cox, Jeffery S.; Stroud, Robert M.; Finer-Moore, Janet S.; Johnson, Alexander D.

    2014-01-01

    WOPR-domain proteins are found throughout the fungal kingdom where they function as master regulators of cell morphology and pathogenesis. Genetic and biochemical experiments previously demonstrated that these proteins bind to specific DNA sequences and thereby regulate transcription. However, their primary sequence showed no relationship to any known DNA-binding domain, and the basis for their ability to recognize DNA sequences remained unknown. Here, we describe the 2.6-Å crystal structure of a WOPR domain in complex with its preferred DNA sequence. The structure reveals that two highly conserved regions, separated by an unconserved linker, form an interdigitated β-sheet that is tilted into the major groove of DNA. Although the main interaction surface is in the major groove, the highest-affinity interactions occur in the minor groove, primarily through a deeply penetrating arginine residue. The structure reveals a new, unanticipated mechanism by which proteins can recognize specific sequences of DNA. PMID:24994900

  10. A Unique Phenylalanine in the Transmembrane Domain Strengthens Homodimerization of the Syndecan-2 Transmembrane Domain and Functionally Regulates Syndecan-2*

    PubMed Central

    Kwon, Mi-Jung; Choi, Youngsil; Yun, Ji-Hye; Lee, Weontae; Han, Inn-Oc; Oh, Eok-Soo

    2015-01-01

    The syndecans are a type of cell surface adhesion receptor that initiates intracellular signaling events through receptor clustering mediated by their highly conserved transmembrane domains (TMDs). However, the exact function of the syndecan TMD is not yet fully understood. Here, we investigated the specific regulatory role of the syndecan-2 TMD. We found that syndecan-2 mutants in which the TMD had been replaced with that of syndecan-4 were defective in syndecan-2-mediated functions, suggesting that the TMD of syndecan-2 plays one or more specific roles. Interestingly, syndecan-2 has a stronger tendency to form sodium dodecyl sulfate (SDS)-resistant homodimers than syndecan-4. Our structural studies showed that a unique phenylalanine residue (Phe167) enables an additional molecular interaction between the TMDs of the syndecan-2 homodimer. The presence of Phe167 was correlated with a higher tendency toward oligomerization, and its replacement with isoleucine significantly reduced the SDS-resistant dimer formation and cellular functions of syndecan-2 (e.g. cell migration). Conversely, replacement of isoleucine with phenylalanine at this position in the syndecan-4 TMD rescued the defects observed in a mutant syndecan-2 harboring the syndecan-4 TMD. Taken together, these data suggest that Phe167 in the TMD of syndecan-2 endows the protein with specific functions. Our work offers new insights into the signaling mediated by the TMD of syndecan family members. PMID:25572401

  11. Regulation of Telomere Length Requires a Conserved N-Terminal Domain of Rif2 in Saccharomyces cerevisiae

    PubMed Central

    Kaizer, Hannah; Connelly, Carla J.; Bettridge, Kelsey; Viggiani, Christopher; Greider, Carol W.

    2015-01-01

    The regulation of telomere length equilibrium is essential for cell growth and survival since critically short telomeres signal DNA damage and cell cycle arrest. While the broad principles of length regulation are well established, the molecular mechanism of how these steps occur is not fully understood. We mutagenized the RIF2 gene in Saccharomyces cerevisiae to understand how this protein blocks excess telomere elongation. We identified an N-terminal domain in Rif2 that is essential for length regulation, which we have termed BAT domain for Blocks Addition of Telomeres. Tethering this BAT domain to Rap1 blocked telomere elongation not only in rif2Δ mutants but also in rif1Δ and rap1C-terminal deletion mutants. Mutation of a single amino acid in the BAT domain, phenylalanine at position 8 to alanine, recapitulated the rif2Δ mutant phenotype. Substitution of F8 with tryptophan mimicked the wild-type phenylalanine, suggesting the aromatic amino acid represents a protein interaction site that is essential for telomere length regulation. PMID:26294668

  12. Two Measures of Self-Regulation for Young Adults and Late Adolescents in the Academic and Social Domains

    ERIC Educational Resources Information Center

    Geldhof, John; Little, Todd D.; Hawley, Patricia H.

    2012-01-01

    In this paper we present domain-specific measures of academic and social self-regulation in young adults. We base our scales on Baltes and colleagues' Selection, Optimization, and Compensation (SOC) model, and establish the factor structure of our new measures using data collected from a sample of 152 college students. We then compare the…

  13. The N-BAR Domain Protein, Bin3, Regulates Rac1- and Cdc42-Dependent Processes in Myogenesis

    PubMed Central

    Simionescu-Bankston, Adriana; Leoni, Giovanna; Wang, Yanru; Pham, Peter P.; Ramalingam, Arivudainambi; DuHadaway, James B.; Faundez, Victor; Nusrat, Asma; Prendergast, George C.; Pavlath, Grace K.

    2013-01-01

    Actin dynamics are necessary at multiple steps in the formation of multinucleated muscle cells. BAR domain proteins can regulate actin dynamics in several cell types, but have been little studied in skeletal muscle. Here, we identify novel functions for the N-BAR domain protein, Bridging integrator 3 (Bin3), during myogenesis in mice. Bin3 plays an important role in regulating myofiber size in vitro and in vivo. During early myogenesis, Bin3 promotes migration of differentiated muscle cells, where it colocalizes with F-actin in lamellipodia. In addition, Bin3 forms a complex with Rac1 and Cdc42, Rho GTPases involved in actin polymerization, which are known to be essential for myotube formation. Importantly, a Bin3-dependent pathway is a major regulator of Rac1 and Cdc42 activity in differentiated muscle cells. Overall, these data classify N-BAR domain proteins as novel regulators of actin-dependent processes in myogenesis, and further implicate BAR domain proteins in muscle growth and repair. PMID:23872330

  14. The external PASTA domain of the essential serine/threonine protein kinase PknB regulates mycobacterial growth

    PubMed Central

    Turapov, Obolbek; Loraine, Jessica; Jenkins, Christopher H.; Barthe, Philippe; McFeely, Daniel; Forti, Francesca; Ghisotti, Daniela; Hesek, Dusan; Lee, Mijoon; Bottrill, Andrew R.; Vollmer, Waldemar; Mobashery, Shahriar; Cohen-Gonsaud, Martin; Mukamolova, Galina V.

    2015-01-01

    PknB is an essential serine/threonine protein kinase required for mycobacterial cell division and cell-wall biosynthesis. Here we demonstrate that overexpression of the external PknB_PASTA domain in mycobacteria results in delayed regrowth, accumulation of elongated bacteria and increased sensitivity to β-lactam antibiotics. These changes are accompanied by altered production of certain enzymes involved in cell-wall biosynthesis as revealed by proteomics studies. The growth inhibition caused by overexpression of the PknB_PASTA domain is completely abolished by enhanced concentration of magnesium ions, but not muropeptides. Finally, we show that the addition of recombinant PASTA domain could prevent regrowth of Mycobacterium tuberculosis, and therefore offers an alternative opportunity to control replication of this pathogen. These results suggest that the PknB_PASTA domain is involved in regulation of peptidoglycan biosynthesis and maintenance of cell-wall architecture. PMID:26136255

  15. Two-pore-domain potassium channels in smooth muscles: new components of myogenic regulation.

    PubMed

    Sanders, Kenton M; Koh, Sang Don

    2006-01-01

    Gastrointestinal (GI) smooth muscles are influenced by many levels of regulation, including those provided by enteric motor neurones, hormones and paracrine substances. The integrated contractile responses to these regulatory mechanisms depend heavily on the state of excitability of smooth muscle cells. Resting ionic conductances and myogenic responses to agonists and physical parameters, such as stretch, are important in establishing basal excitability. This review discusses the role of 2-pore-domain K+ channels in contributing to background conductances and in mediating responses of GI muscles to enteric inhibitory nerve stimulation and stretch. Murine GI muscles express TREK-1 channels and display a stretch-dependent K+ (SDK) conductance that is also activated by nitric oxide via a cGMP-dependent mechanism. Cloning and expression of mTREK-1 produced an SDK conductance that was activated by cGMP-dependent phosphorylation at serine-351. GI muscle cells also express TASK-1 and TASK-2 channels that are inhibited by lidocaine and external acidification. These conductances appear to provide significant background K+ permeability that contributes to the negative resting potentials of GI muscles. PMID:16239268

  16. Novel RNA chaperone domain of RNA-binding protein La is regulated by AKT phosphorylation

    PubMed Central

    Kuehnert, Julia; Sommer, Gunhild; Zierk, Avery W.; Fedarovich, Alena; Brock, Alexander; Fedarovich, Dzmitry; Heise, Tilman

    2015-01-01

    The cellular function of the cancer-associated RNA-binding protein La has been linked to translation of viral and cellular mRNAs. Recently, we have shown that the human La protein stimulates IRES-mediated translation of the cooperative oncogene CCND1 in cervical cancer cells. However, there is little known about the underlying molecular mechanism by which La stimulates CCND1 IRES-mediated translation, and we propose that its RNA chaperone activity is required. Herein, we show that La binds close to the CCND1 start codon and demonstrate that La's RNA chaperone activity can change the folding of its binding site. We map the RNA chaperone domain (RCD) within the C-terminal region of La in close proximity to a novel AKT phosphorylation site (T389). Phosphorylation at T389 by AKT-1 strongly impairs its RNA chaperone activity. Furthermore, we demonstrate that the RCD as well as T389 is required to stimulate CCND1 IRES-mediated translation in cells. In summary, we provide a model whereby a novel interplay between RNA-binding, RNA chaperoning and AKT phosphorylation of La protein regulates CCND1 IRES-mediated translation. PMID:25520193

  17. YAP regulates neural progenitor cell number via the TEA domain transcription factor

    PubMed Central

    Cao, Xinwei; Pfaff, Samuel L.; Gage, Fred H.

    2008-01-01

    Tight control of cell proliferation is essential for proper growth during development and for tissue homeostasis in mature animals. The evolutionarily conserved Hippo pathway restrains proliferation through a kinase cascade that culminates in the inhibition of the transcriptional coactivator YAP. Unphosphorylated YAP activates genes involved in cell proliferation and survival by interacting with a DNA-binding factor. Here we show that during vertebrate neural tube development, the TEA domain transcription factor (TEAD) is the cognate DNA-binding partner of YAP. YAP and TEAD gain of function causes marked expansion of the neural progenitor population, partly owing to their ability to promote cell cycle progression by inducing cyclin D1 and to inhibit differentiation by suppressing NeuroM. Their loss of function results in increased apoptosis, whereas repressing their target genes leads to premature neuronal differentiation. Inhibiting the upstream kinases of the Hippo pathway also causes neural progenitor overproliferation. Thus, the Hippo pathway plays critical roles in regulating neural progenitor cell number by affecting proliferation, fate choice, and cell survival. PMID:19015275

  18. Lrp4 domains differentially regulate limb/brain development and synaptic plasticity.

    PubMed

    Pohlkamp, Theresa; Durakoglugil, Murat; Lane-Donovan, Courtney; Xian, Xunde; Johnson, Eric B; Hammer, Robert E; Herz, Joachim

    2015-01-01

    Apolipoprotein E (ApoE) genotype is the strongest predictor of Alzheimer's Disease (AD) risk. ApoE is a cholesterol transport protein that binds to members of the Low-Density Lipoprotein (LDL) Receptor family, which includes LDL Receptor Related Protein 4 (Lrp4). Lrp4, together with one of its ligands Agrin and its co-receptors Muscle Specific Kinase (MuSK) and Amyloid Precursor Protein (APP), regulates neuromuscular junction (NMJ) formation. All four proteins are also expressed in the adult brain, and APP, MuSK, and Agrin are required for normal synapse function in the CNS. Here, we show that Lrp4 is also required for normal hippocampal plasticity. In contrast to the closely related Lrp8/Apoer2, the intracellular domain of Lrp4 does not appear to be necessary for normal expression and maintenance of long-term potentiation at central synapses or for the formation and maintenance of peripheral NMJs. However, it does play a role in limb development. PMID:25688974

  19. Lrp4 Domains Differentially Regulate Limb/Brain Development and Synaptic Plasticity

    PubMed Central

    Pohlkamp, Theresa; Durakoglugil, Murat; Lane-Donovan, Courtney; Xian, Xunde; Johnson, Eric B.; Hammer, Robert E.; Herz, Joachim

    2015-01-01

    Apolipoprotein E (ApoE) genotype is the strongest predictor of Alzheimer’s Disease (AD) risk. ApoE is a cholesterol transport protein that binds to members of the Low-Density Lipoprotein (LDL) Receptor family, which includes LDL Receptor Related Protein 4 (Lrp4). Lrp4, together with one of its ligands Agrin and its co-receptors Muscle Specific Kinase (MuSK) and Amyloid Precursor Protein (APP), regulates neuromuscular junction (NMJ) formation. All four proteins are also expressed in the adult brain, and APP, MuSK, and Agrin are required for normal synapse function in the CNS. Here, we show that Lrp4 is also required for normal hippocampal plasticity. In contrast to the closely related Lrp8/Apoer2, the intracellular domain of Lrp4 does not appear to be necessary for normal expression and maintenance of long-term potentiation at central synapses or for the formation and maintenance of peripheral NMJs. However, it does play a role in limb development. PMID:25688974

  20. The CBS domain: a protein module with an emerging prominent role in regulation.

    PubMed

    Baykov, Alexander A; Tuominen, Heidi K; Lahti, Reijo

    2011-11-18

    Regulatory CBS (cystathionine β-synthase) domains exist as two or four tandem copies in thousands of cytosolic and membrane-associated proteins from all kingdoms of life. Mutations in the CBS domains of human enzymes and membrane channels are associated with an array of hereditary diseases. Four CBS domains encoded within a single polypeptide or two identical polypeptides (each having a pair of CBS domains at the subunit interface) form a highly conserved disk-like structure. CBS domains act as autoinhibitory regulatory units in some proteins and activate or further inhibit protein function upon binding to adenosine nucleotides (AMP, ADP, ATP, S-adenosyl methionine, NAD, diadenosine polyphosphates). As a result of the differential effects of the nucleotides, CBS domain-containing proteins can sense cell energy levels. Significant conformational changes are induced in CBS domains by bound ligands, highlighting the structural basis for their effects. PMID:21958115

  1. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis.

    PubMed

    Salahudeen, Ameen A; Thompson, Joel W; Ruiz, Julio C; Ma, He-Wen; Kinch, Lisa N; Li, Qiming; Grishin, Nick V; Bruick, Richard K

    2009-10-30

    Cellular iron homeostasis is maintained by the coordinate posttranscriptional regulation of genes responsible for iron uptake, release, use, and storage through the actions of the iron regulatory proteins IRP1 and IRP2. However, the manner in which iron levels are sensed to affect IRP2 activity is poorly understood. We found that an E3 ubiquitin ligase complex containing the FBXL5 protein targets IRP2 for proteasomal degradation. The stability of FBXL5 itself was regulated, accumulating under iron- and oxygen-replete conditions and degraded upon iron depletion. FBXL5 contains an iron- and oxygen-binding hemerythrin domain that acted as a ligand-dependent regulatory switch mediating FBXL5's differential stability. These observations suggest a mechanistic link between iron sensing via the FBXL5 hemerythrin domain, IRP2 regulation, and cellular responses to maintain mammalian iron homeostasis. PMID:19762597

  2. An intramolecular interaction between the FHA domain and a coiled coil negatively regulates the kinesin motor KIF1A

    PubMed Central

    Lee, Jae-Ran; Shin, Hyewon; Choi, Jeonghoon; Ko, Jaewon; Kim, Seho; Lee, Hyun Woo; Kim, Karam; Rho, Seong-Hwan; Lee, Jun Hyuck; Song, Hye-Eun; Eom, Soo Hyun; Kim, Eunjoon

    2004-01-01

    Motor proteins not actively involved in transporting cargoes should remain inactive at sites of cargo loading to save energy and remain available for loading. KIF1A/Unc104 is a monomeric kinesin known to dimerize into a processive motor at high protein concentrations. However, the molecular mechanisms underlying monomer stabilization and monomer-to-dimer transition are not well understood. Here, we report an intramolecular interaction in KIF1A between the forkhead-associated (FHA) domain and a coiled-coil domain (CC2) immediately following the FHA domain. Disrupting this interaction by point mutations in the FHA or CC2 domains leads to a dramatic accumulation of KIF1A in the periphery of living cultured neurons and an enhancement of the microtubule (MT) binding and self-multimerization of KIF1A. In addition, point mutations causing rigidity in the predicted flexible hinge disrupt the intramolecular FHA–CC2 interaction and increase MT binding and peripheral accumulation of KIF1A. These results suggest that the intramolecular FHA–CC2 interaction negatively regulates KIF1A activity by inhibiting MT binding and dimerization of KIF1A, and point to a novel role of the FHA domain in the regulation of kinesin motors. PMID:15014437

  3. Activities of the Cytoplasmic Domains of Patched-1 Modulate but Are Not Essential for the Regulation of Canonical Hedgehog Signaling.

    PubMed

    Fleet, Andrew; Lee, Jennifer P Y; Tamachi, Aaliya; Javeed, Imaan; Hamel, Paul A

    2016-08-19

    The Hedgehog (Hh) pathway is a highly conserved signaling cascade crucial for cell fate determination during embryogenesis. Response to the Hh ligands is mediated by the receptor Patched-1 (Ptch1), a 12-pass transmembrane glycoprotein. Despite its essential role in Hh signaling and its activity as a tumor suppressor, Ptch1 remains largely uncharacterized. We demonstrate here that Ptch1 binds to itself to form oligomeric structures. Oligomerization is mediated by two distinct, structurally disordered, intracellular domains spanning amino acids 584-734 ("middle loop") and 1162-1432 (C terminus). However, oligomerization is not required for Ptch1-dependent regulation of the canonical Hh pathway operating through Smo. Expression of a mutant protein that deletes both regions represses the Hh pathway and responds to the addition of Hh ligand independent of its inability to bind other factors such as Smurf2. Additionally, deletion of the cytoplasmic middle loop domain generates a Ptch1 mutant that, despite binding to Hh ligand, constitutively suppresses Hh signaling and increases the length of primary cilia. Constitutive activity because of deletion of this region is reversed by further deletion of specific sequences in the cytoplasmic C-terminal domain. These data reveal an interaction between the cytoplasmic domains of Ptch1 and that these domains modulate Ptch1 activity but are not essential for regulation of the Hh pathway. PMID:27325696

  4. Phosphorylation of the Bin, Amphiphysin, and RSV161/167 (BAR) domain of ACAP4 regulates membrane tubulation.

    PubMed

    Zhao, Xuannv; Wang, Dongmei; Liu, Xing; Liu, Lifang; Song, Zhenwei; Zhu, Tongge; Adams, Gregory; Gao, Xinjiao; Tian, Ruijun; Huang, Yuejia; Chen, Runhua; Wang, Fengsong; Liu, Dong; Yu, Xue; Chen, Yong; Chen, Zhengjun; Teng, Maikun; Ding, Xia; Yao, Xuebiao

    2013-07-01

    ArfGAP With Coiled-Coil, Ankyrin Repeat And PH Domains 4 (ACAP4) is an ADP-ribosylation factor 6 (ARF6) GTPase-activating protein essential for EGF-elicited cell migration. However, how ACAP4 regulates membrane dynamics and curvature in response to EGF stimulation is unknown. Here, we show that phosphorylation of the N-terminal region of ACAP4, named the Bin, Amphiphysin, and RSV161/167 (BAR) domain, at Tyr34 is necessary for EGF-elicited membrane remodeling. Domain structure analysis demonstrates that the BAR domain regulates membrane curvature. EGF stimulation of cells causes phosphorylation of ACAP4 at Tyr34, which subsequently promotes ACAP4 homodimer curvature. The phospho-mimicking mutant of ACAP4 demonstrates lipid-binding activity and tubulation in vitro, and ARF6 enrichment at the membrane is associated with ruffles of EGF-stimulated cells. Expression of the phospho-mimicking ACAP4 mutant promotes ARF6-dependent cell migration. Thus, the results present a previously undefined mechanism by which EGF-elicited phosphorylation of the BAR domain controls ACAP4 molecular plasticity and plasma membrane dynamics during cell migration. PMID:23776207

  5. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    SciTech Connect

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  6. Plant homologs of mammalian MBT-domain protein-regulated KDM1 histone lysine demethylases do not interact with plant Tudor/PWWP/MBT-domain proteins.

    PubMed

    Sadiq, Irfan; Keren, Ido; Citovsky, Vitaly

    2016-02-19

    Histone lysine demethylases of the LSD1/KDM1 family play important roles in epigenetic regulation of eukaryotic chromatin, and they are conserved between plants and animals. Mammalian LSD1 is thought to be targeted to its substrates, i.e., methylated histones, by an MBT-domain protein SFMBT1 that represents a component of the LSD1-based repressor complex and binds methylated histones. Because MBT-domain proteins are conserved between different organisms, from animals to plants, we examined whether the KDM1-type histone lysine demethylases KDM1C and FLD of Arabidopsis interact with the Arabidopsis Tudor/PWWP/MBT-domain SFMBT1-like proteins SL1, SL2, SL3, and SL4. No such interaction was detected using the bimolecular fluorescence complementation assay in living plant cells. Thus, plants most likely direct their KDM1 chromatin-modifying enzymes to methylated histones of the target chromatin by a mechanism different from that employed by the mammalian cells. PMID:26826387

  7. The juxtamembrane domain in ETV6/FLT3 is critical for PIM-1 up-regulation and cell proliferation

    SciTech Connect

    Vu, Hoang Anh; Xinh, Phan Thi; Kano, Yasuhiko; Tokunaga, Katsushi; Sato, Yuko

    2009-06-05

    We recently reported that the ETV6/FLT3 fusion protein conferred interleukin-3-independent growth on Ba/F3 cells. The present study has been conducted to assess role of the juxtamembrane domain of FLT3 for signal transduction and cell transformation. The wild-type ETV6/FLT3 fusion protein in transfected cells was a constitutively activated tyrosine kinase that led to up-regulation of PIM-1 and activations of STAT5, AKT, and MAPK. Deletion of the juxtamembrane domain abrogated interleukin-3-independent growth of the transfected cells and PIM-1 up-regulation, whereas it retained compatible levels of phosphorylations of STAT5, AKT, and MAPK. Further deletion of N-terminal region of the tyrosine kinase I domain of FLT3 completely abolished these phosphorylations. Our data indicate that the juxtamembrane domain of FLT3 in ETV6/FLT3 fusion protein is critical for cell proliferation and PIM-1 up-regulation that might be independent of a requirement for signaling through STAT5, MAPK, and AKT pathways.

  8. ESTROGEN-DEPENDENT SUSHI DOMAIN CONTAINING 3 REGULATES CYTOSKELETON ORGANIZATION AND MIGRATION IN BREAST CANCER CELLS

    PubMed Central

    Moy, I; Todorović, V; Dubash, A D; Coon, J S; Parker, J B; Buranapramest, M; Huang, CC; Zhao, H; Green, K J; Bulun, S E

    2014-01-01

    Aromatase inhibitors (AI) are the standard endocrine therapy for postmenopausal breast cancer; however, currently used biomarkers, i.e., estrogen receptor-alpha/progesterone receptor (ERα/PR), predict only slightly more than half of the potential responders to AI treatment. To identify novel markers of AI responsiveness, a genome-wide microarray analysis was performed using primary breast tumor samples from 50 postmenopausal women (PMW) who later developed metastatic breast cancer. Sushi domain containing 3 (SUSD3) was significantly differentially expressed gene, with 3.38-fold higher mRNA levels in AI-responsive breast tumors versus non-responders (p<0.001). SUSD3 was highly expressed in ERα-positive breast tumors and treatment with estradiol increased SUSD3 expression in ERα-positive breast cancer cells. Treatment with an antiestrogen or ERα knockdown abolished basal and estradiol-dependent SUSD3 expression. Recruitment of ERα upstream of the transcription start site of SUSD3 was demonstrated by chromatin immunoprecipitation (ChIP)-PCR. Flow cytometric analysis of SUSD3 knockdown cells revealed blunted estradiol effects on progression into S and M phases. SUSD3 was localized to the plasma membrane of breast cancer cells. SUSD3 knockdown decreased the appearance of actin-rich protrusions, stress fibers and large basal focal adhesions, while increasing the presence of cortical actin concomitant with a decrease in Rho and FAK activity. SUSD3-deficient cells demonstrated diminished cell spreading, cell-cell adhesion, and motility. In conclusion, SUSD3 is a novel promoter of estrogen-dependent cell proliferation and regulator of cell-cell and cell-substrate interactions and migration in breast cancer. It may serve as a novel predictor of response to endocrine therapy and potential therapeutic target. PMID:24413080

  9. Estrogen-dependent sushi domain containing 3 regulates cytoskeleton organization and migration in breast cancer cells.

    PubMed

    Moy, I; Todorović, V; Dubash, A D; Coon, J S; Parker, J B; Buranapramest, M; Huang, C C; Zhao, H; Green, K J; Bulun, S E

    2015-01-15

    Aromatase inhibitors (AIs) are the standard endocrine therapy for postmenopausal breast cancer; however, currently used biomarkers, such as, estrogen receptor-alpha/progesterone receptor (ERα/PR), predict only slightly more than half of the potential responders to AI treatment. To identify novel markers of AI responsiveness, a genome-wide microarray analysis was performed using primary breast tumor samples from 50 postmenopausal women who later developed metastatic breast cancer. Sushi domain containing 3 (SUSD3) is a significantly differentially expressed gene, with 3.38-fold higher mRNA levels in AI-responsive breast tumors vs non-responders (P<0.001). SUSD3 was highly expressed in ERα-positive breast tumors and treatment with estradiol increased SUSD3 expression in ERα-positive breast cancer cells. Treatment with an antiestrogen or ERα knockdown abolished basal and estradiol-dependent SUSD3 expression. Recruitment of ERα upstream of the transcription start site of SUSD3 was demonstrated by chromatin immunoprecipitation-PCR. Flow cytometric analysis of SUSD3-knockdown cells revealed blunted estradiol effects on progression into S and M phases. SUSD3 was localized to the plasma membrane of breast cancer cells. SUSD3 knockdown decreased the appearance of actin-rich protrusions, stress fibers and large basal focal adhesions, while increasing the presence of cortical actin concomitant with a decrease in Rho and focal adhesion kinase activity. SUSD3-deficient cells demonstrated diminished cell spreading, cell-cell adhesion and motility. In conclusion, SUSD3 is a novel promoter of estrogen-dependent cell proliferation and regulator of cell-cell and cell-substrate interactions and migration in breast cancer. It may serve as a novel predictor of response to endocrine therapy and potential therapeutic target. PMID:24413080

  10. Identification of domains required for developmentally regulated SNARE function in Saccharomyces cerevisiae.

    PubMed Central

    Neiman, A M; Katz, L; Brennwald, P J

    2000-01-01

    Saccharomyces cerevisiae cells contain two homologues of the mammalian t-SNARE protein SNAP-25, encoded by the SEC9 and SPO20 genes. Although both gene products participate in post-Golgi vesicle fusion events, they cannot substitute for one another; Sec9p is active primarily in vegetative cells while Spo20p functions only during sporulation. We have investigated the basis for the developmental stage-specific differences in the function of these two proteins. Localization of the other plasma membrane SNARE subunits, Ssop and Sncp, in sporulating cells suggests that these proteins act in conjunction with Spo20p in the formation of the prospore membrane. In vitro binding studies demonstrate that, like Sec9p, Spo20p binds specifically to the t-SNARE Sso1p and, once bound to Sso1p, can complex with the v-SNARE Snc2p. Therefore, Sec9p and Spo20p interact with the same binding partners, but developmental conditions appear to favor the assembly of complexes with Spo20p in sporulating cells. Analysis of chimeric Sec9p/Spo20p molecules indicates that regions in both the SNAP-25 domain and the unique N terminus of Spo20p are required for activity during sporulation. Additionally, the N terminus of Spo20p is inhibitory in vegetative cells. Deletion studies indicate that activation and inhibition are separable functions of the Spo20p N terminus. Our results reveal an additional layer of regulation of the SNARE complex, which is necessary only in sporulating cells. PMID:10924463

  11. Characterization of a novel transcriptionally active domain in the transforming growth factor beta-regulated Smad3 protein.

    PubMed

    Prokova, Vassiliki; Mavridou, Sofia; Papakosta, Paraskevi; Kardassis, Dimitris

    2005-01-01

    Transforming growth factor beta (TGFbeta) regulates transcriptional responses via activation of cytoplasmic effector proteins termed Smads. Following their phosphorylation by the type I TGFbeta receptor, Smads form oligomers and translocate to the nucleus where they activate the transcription of TGFbeta target genes in cooperation with nuclear cofactors and coactivators. In the present study, we have undertaken a deletion analysis of human Smad3 protein in order to characterize domains that are essential for transcriptional activation in mammalian cells. With this analysis, we showed that Smad3 contains two domains with transcriptional activation function: the MH2 domain and a second middle domain that includes the linker region and the first two beta strands of the MH2 domain. Using a protein-protein interaction assay based on biotinylation in vivo, we were able to show that a Smad3 protein bearing an internal deletion in the middle transactivation domain is characterized by normal oligomerization and receptor activation properties. However, this mutant has reduced transactivation capacity on synthetic or natural promoters and is unable to interact physically and functionally with the histone acetyltransferase p/CAF. The loss of interaction with p/CAF or other coactivators could account, at least in part, for the reduced transactivation capacity of this Smad3 mutant. Our data support an essential role of the previously uncharacterized middle region of Smad3 for nuclear functions, such as transcriptional activation and interaction with coactivators. PMID:15994459

  12. A WHEP Domain Regulates the Dynamic Structure and Activity of Caenorhabditis elegans Glycyl-tRNA Synthetase.

    PubMed

    Chang, Chih-Yao; Chien, Chin-I; Chang, Chia-Pei; Lin, Bo-Chun; Wang, Chien-Chia

    2016-08-01

    WHEP domains exist in certain eukaryotic aminoacyl-tRNA synthetases and play roles in tRNA or protein binding. We present evidence herein that cytoplasmic and mitochondrial forms of Caenorhabditis elegans glycyl-tRNA synthetase (CeGlyRS) are encoded by the same gene (CeGRS1) through alternative initiation of translation. The cytoplasmic form possessed an N-terminal WHEP domain, whereas its mitochondrial isoform possessed an extra N-terminal sequence consisting of an mitochondrial targeting signal and an appended domain. Cross-species complementation assays showed that CeGRS1 effectively rescued the cytoplasmic and mitochondrial defects of a yeast GRS1 knock-out strain. Although both forms of CeGlyRS efficiently charged the cytoplasmic tRNAs(Gly) of C. elegans, the mitochondrial form was much more efficient than its cytoplasmic counterpart in charging the mitochondrial tRNA(Gly) isoacceptor, which carries a defective TψC hairpin. Despite the WHEP domain per se lacking tRNA binding activity, deletion of this domain reduced the catalytic efficiency of the enzyme. Most interestingly, the deletion mutant possessed a higher thermal stability and a somewhat lower structural flexibility. Our study suggests a role for the WHEP domain as a regulator of the dynamic structure and activity of the enzyme. PMID:27298321

  13. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions

    SciTech Connect

    Eibl, Clarissa; Hessenberger, Manuel; Wenger, Julia; Brandstetter, Hans

    2014-07-01

    Pyrin domains (PYDs) recruit downstream effector molecules in NLR signalling. A specific charge-relay system suggests a the formation of a signalling complex involving a PYD dimer. The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed.

  14. Regulation of the human. beta. -actin promoter by upstream and intron domains

    SciTech Connect

    Ng, Sunyu )); Gunning, P.; Kedes, L. ); Liu, Shuhui National Tsing Hua Univ., Hsinchu ); Leavitt, J. )

    1989-01-25

    The authors have identified three regulatory domains of the complex human {beta}-actin gene promoter. They span a region of about 3,000 bases, from not more than {minus}2,011 bases upstream of the mRNA cap site to within the 5{prime} intron (832 bases long). A distal upstream domain contains at least one enhancer-like element. A proximal upstream domain, with a CArG (for CC(A+T rich){sub 6}GG) motif found in all known mammalian actin genes, seems to confer serum, but not growth factor, inducibility. The third domain is within the evolutionarily conserved 3{prime} region of the first intron and contains a 13 base-pair sequence, identical to the upstream sequence with the CArG motif. This domain also contains sequences that are both serum and fibroblast growth inducible.

  15. The catalytic region and PEST domain of PTPN18 distinctly regulate the HER2 phosphorylation and ubiquitination barcodes.

    PubMed

    Wang, Hong-Mei; Xu, Yun-Fei; Ning, Shang-Lei; Yang, Du-Xiao; Li, Yi; Du, Yu-Jie; Yang, Fan; Zhang, Ya; Liang, Nan; Yao, Wei; Zhang, Ling-Li; Gu, Li-Chuan; Gao, Cheng-Jiang; Pang, Qi; Chen, Yu-Xin; Xiao, Kun-Hong; Ma, Rong; Yu, Xiao; Sun, Jin-Peng

    2014-09-01

    The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes. Enzymologic characterization and three crystal structures of PTPN18 in complex with HER2 phospho-peptides revealed the molecular basis for the recognition between PTPN18 and specific HER2 phosphorylation sites, which assumes two distinct conformations. Unique structural properties of PTPN18 contribute to the regulation of sub-cellular phosphorylation networks downstream of HER2, which are required for inhibition of HER2-mediated cell growth and migration. Whereas the catalytic domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation of HER2 on pY(1112), the PEST domain of PTPN18 promotes K48-linked HER2 ubiquitination and its rapid destruction via the proteasome pathway and an HER2 negative feedback loop. In agreement with the negative regulatory role of PTPN18 in HER2 signaling, the HER2/PTPN18 ratio was correlated with breast cancer stage. Taken together, our study presents a structural basis for selective HER2 dephosphorylation, a previously uncharacterized mechanism for HER2 degradation and a novel function for the PTPN18 PEST domain. The new regulatory role of the PEST domain in the ubiquitination pathway will broaden our understanding of the functions of other important PEST domain-containing phosphatases, such as LYP and PTPN12. PMID:25081058

  16. The catalytic region and PEST domain of PTPN18 distinctly regulate the HER2 phosphorylation and ubiquitination barcodes

    PubMed Central

    Wang, Hong-Mei; Xu, Yun-Fei; Ning, Shang-Lei; Yang, Du-Xiao; Li, Yi; Du, Yu-Jie; Yang, Fan; Zhang, Ya; Liang, Nan; Yao, Wei; Zhang, Ling-Li; Gu, Li-Chuan; Gao, Cheng-Jiang; Pang, Qi; Chen, Yu-Xin; Xiao, Kun-Hong; Ma, Rong; Yu, Xiao; Sun, Jin-Peng

    2014-01-01

    The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes. Enzymologic characterization and three crystal structures of PTPN18 in complex with HER2 phospho-peptides revealed the molecular basis for the recognition between PTPN18 and specific HER2 phosphorylation sites, which assumes two distinct conformations. Unique structural properties of PTPN18 contribute to the regulation of sub-cellular phosphorylation networks downstream of HER2, which are required for inhibition of HER2-mediated cell growth and migration. Whereas the catalytic domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation of HER2 on pY1112, the PEST domain of PTPN18 promotes K48-linked HER2 ubiquitination and its rapid destruction via the proteasome pathway and an HER2 negative feedback loop. In agreement with the negative regulatory role of PTPN18 in HER2 signaling, the HER2/PTPN18 ratio was correlated with breast cancer stage. Taken together, our study presents a structural basis for selective HER2 dephosphorylation, a previously uncharacterized mechanism for HER2 degradation and a novel function for the PTPN18 PEST domain. The new regulatory role of the PEST domain in the ubiquitination pathway will broaden our understanding of the functions of other important PEST domain-containing phosphatases, such as LYP and PTPN12. PMID:25081058

  17. Drosophila KASH-domain protein Klarsicht regulates microtubule stability and integrin receptor localization during collective cell migration.

    PubMed

    Myat, M M; Rashmi, R N; Manna, D; Xu, N; Patel, U; Galiano, M; Zielinski, K; Lam, A; Welte, M A

    2015-11-01

    During collective migration of the Drosophila embryonic salivary gland, cells rearrange to form a tube of a distinct shape and size. Here, we report a novel role for the Drosophila Klarsicht-Anc-Syne Homology (KASH) domain protein Klarsicht (Klar) in the regulation of microtubule (MT) stability and integrin receptor localization during salivary gland migration. In wild-type salivary glands, MTs became progressively stabilized as gland migration progressed. In embryos specifically lacking the KASH domain containing isoforms of Klar, salivary gland cells failed to rearrange and migrate, and these defects were accompanied by decreased MT stability and altered integrin receptor localization. In muscles and photoreceptors, KASH isoforms of Klar work together with Klaroid (Koi), a SUN domain protein, to position nuclei; however, loss of Koi had no effect on salivary gland migration, suggesting that Klar controls gland migration through novel interactors. The disrupted cell rearrangement and integrin localization observed in klar mutants could be mimicked by overexpressing Spastin (Spas), a MT severing protein, in otherwise wild-type salivary glands. In turn, promoting MT stability by reducing spas gene dosage in klar mutant embryos rescued the integrin localization, cell rearrangement and gland migration defects. Klar genetically interacts with the Rho1 small GTPase in salivary gland migration and is required for the subcellular localization of Rho1. We also show that Klar binds tubulin directly in vitro. Our studies provide the first evidence that a KASH-domain protein regulates the MT cytoskeleton and integrin localization during collective cell migration. PMID:26247519

  18. State-dependent Regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gating by a High Affinity Fe3+ Bridge between the Regulatory Domain and Cytoplasmic Loop 3*

    PubMed Central

    Wang, Guangyu

    2010-01-01

    The unique regulatory (R) domain differentiates the human CFTR channel from other ATP-binding cassette transporters and exerts multiple effects on channel function. However, the underlying mechanisms are unclear. Here, an intracellular high affinity (2.3 × 10−19 m) Fe3+ bridge is reported as a novel approach to regulating channel gating. It inhibited CFTR activity by primarily reducing an open probability and an opening rate, and inhibition was reversed by EDTA and phenanthroline. His-950, His-954, Cys-832, His-775, and Asp-836 were found essential for inhibition and phosphorylated Ser-768 may enhance Fe3+ binding. More importantly, inhibition by Fe3+ was state-dependent. Sensitivity to Fe3+ was reduced when the channel was locked in an open state by AMP-PNP. Similarly, a K978C mutation from cytoplasmic loop 3 (CL3), which promotes ATP-independent channel opening, greatly weakened inhibition by Fe3+ no matter whether NBD2 was present or not. Therefore, although ATP binding-induced dimerization of NBD1-NBD2 is required for channel gating, regulation of CFTR activity by Fe3+ may involve an interaction between the R domain and CL3. These findings may support proximity of the R domain to the cytoplasmic loops. They also suggest that Fe3+ homeostasis may play a critical role in regulating pathophysiological CFTR activity because dysregulation of this protein causes cystic fibrosis, secretary diarrhea, and infertility. PMID:20952391

  19. Cytoplasmic Ig-Domain Proteins: Cytoskeletal Regulators with a Role in Human Disease

    PubMed Central

    Otey, Carol A.; Dixon, Richard; Stack, Christianna; Goicoechea, Silvia M.

    2009-01-01

    Immunoglobulin domains are found in a wide variety of functionally diverse transmembrane proteins, and also in a smaller number of cytoplasmic proteins. Members of this latter group are usually associated with the actin cytoskeleton, and most of them bind directly to either actin or myosin, or both. Recently, studies of inherited human disorders have identified disease-causing mutations in five cytoplasmic Ig-domain proteins: myosin-binding protein C, titin, myotilin, palladin, and myopalladin. Together with results obtained from cultured cells and mouse models, these clinical studies have yielded novel insights into the unexpected roles of Ig domain proteins in mechanotransduction and signaling to the nucleus. An emerging theme in this field is that cytoskeleton-associated Ig domain proteins are more than structural elements of the cell, and may have evolved to fill different needs in different cellular compartments. PMID:19466753

  20. Phosphoinositide binding by the SNX27 FERM domain regulates its localization at the immune synapse of activated T-cells

    PubMed Central

    Ghai, Rajesh; Tello-Lafoz, Maria; Norwood, Suzanne J.; Yang, Zhe; Clairfeuille, Thomas; Teasdale, Rohan D.; Mérida, Isabel; Collins, Brett M.

    2015-01-01

    ABSTRACT Sorting nexin 27 (SNX27) controls the endosomal-to-cell-surface recycling of diverse transmembrane protein cargos. Crucial to this function is the recruitment of SNX27 to endosomes which is mediated by the binding of phosphatidylinositol-3-phosphate (PtdIns3P) by its phox homology (PX) domain. In T-cells, SNX27 localizes to the immunological synapse in an activation-dependent manner, but the molecular mechanisms underlying SNX27 translocation remain to be clarified. Here, we examined the phosphoinositide-lipid-binding capabilities of full-length SNX27, and discovered a new PtdInsP-binding site within the C-terminal 4.1, ezrin, radixin, moesin (FERM) domain. This binding site showed a clear preference for bi- and tri-phosphorylated phophoinositides, and the interaction was confirmed through biophysical, mutagenesis and modeling approaches. At the immunological synapse of activated T-cells, cell signaling regulates phosphoinositide dynamics, and we find that perturbing phosphoinositide binding by the SNX27 FERM domain alters the SNX27 distribution in both endosomal recycling compartments and PtdIns(3,4,5)P3-enriched domains of the plasma membrane during synapse formation. Our results suggest that SNX27 undergoes dynamic partitioning between different membrane domains during immunological synapse assembly, and underscore the contribution of unique lipid interactions for SNX27 orchestration of cargo trafficking. PMID:25472716

  1. Androgen regulation of the human FERM domain encoding gene EHM2 in a cell model of steroid-induced differentiation

    PubMed Central

    Chauhan, Sanjay; Pandey, Ritu; Way, Jeffrey F.; Sroka, Thomas C.; Demetriou, Manolis C.; Kunz, Susan; Cress, Anne E.; Mount, David W.; Miesfeld, Roger L.

    2009-01-01

    We have developed a cell model to investigate steroid control of differentiation using a subline of HT1080 cells (HT-AR1) that have been engineered to express the human androgen receptor. Dihydrotestosterone (DHT) treatment of HT-AR1 cells induced growth arrest and cytoskeletal reorganization that was associated with the expression of fibronectin and the neuroendocrine markers chromogranin A and neuron-specific enolase. Expression profiling analysis identified the human FERM domain-encoding gene EHM2 as uniquely induced in HT-AR1 cells as compared to 16 other FERM domain containing genes. Since FERM domain proteins control cytoskeletal functions in differentiating cells, and the human EHM2 gene has not been characterized, we investigated EHM2 steroid-regulation, genomic organization, and sequence conservation. We found that DHT, but not dexamethasone, induced the expression of a 3.8 kb transcript in HT-AR1 cells encoding a 504 amino acid protein, and moreover, that human brain tissue contains a 5.8 kb transcript encoding a 913 amino acid isoform. Construction of an unrooted phylogenetic tree using 98 FERM domain proteins revealed that the human EHM2 gene is a member of a distinct subfamily consisting of nine members, all of which contain a highly conserved 325 amino acid FERM domain. PMID:14521927

  2. Androgen regulation of the human FERM domain encoding gene EHM2 in a cell model of steroid-induced differentiation.

    PubMed

    Chauhan, Sanjay; Pandey, Ritu; Way, Jeffrey F; Sroka, Thomas C; Demetriou, Manolis C; Kunz, Susan; Cress, Anne E; Mount, David W; Miesfeld, Roger L

    2003-10-17

    We have developed a cell model to investigate steroid control of differentiation using a subline of HT1080 cells (HT-AR1) that have been engineered to express the human androgen receptor. Dihydrotestosterone (DHT) treatment of HT-AR1 cells induced growth arrest and cytoskeletal reorganization that was associated with the expression of fibronectin and the neuroendocrine markers chromogranin A and neuron-specific enolase. Expression profiling analysis identified the human FERM domain-encoding gene EHM2 as uniquely induced in HT-AR1 cells as compared to 16 other FERM domain containing genes. Since FERM domain proteins control cytoskeletal functions in differentiating cells, and the human EHM2 gene has not been characterized, we investigated EHM2 steroid-regulation, genomic organization, and sequence conservation. We found that DHT, but not dexamethasone, induced the expression of a 3.8 kb transcript in HT-AR1 cells encoding a 504 amino acid protein, and moreover, that human brain tissue contains a 5.8 kb transcript encoding a 913 amino acid isoform. Construction of an unrooted phylogenetic tree using 98 FERM domain proteins revealed that the human EHM2 gene is a member of a distinct subfamily consisting of nine members, all of which contain a highly conserved 325 amino acid FERM domain. PMID:14521927

  3. Histone demethylase KDM5A is regulated by its reader domain through a positive-feedback mechanism

    NASA Astrophysics Data System (ADS)

    Torres, Idelisse Ortiz; Kuchenbecker, Kristopher M.; Nnadi, Chimno I.; Fletterick, Robert J.; Kelly, Mark J. S.; Fujimori, Danica Galonić

    2015-02-01

    The retinoblastoma binding protein KDM5A removes methyl marks from lysine 4 of histone H3 (H3K4). Misregulation of KDM5A contributes to the pathogenesis of lung and gastric cancers. In addition to its catalytic jumonji C domain, KDM5A contains three PHD reader domains, commonly recognized as chromatin recruitment modules. It is unknown whether any of these domains in KDM5A have functions beyond recruitment and whether they regulate the catalytic activity of the demethylase. Here using biochemical and nuclear magnetic resonance (NMR)-based structural studies, we show that the PHD1 preferentially recognizes unmethylated H3K4 histone tail, product of KDM5A-mediated demethylation of tri-methylated H3K4 (H3K4me3). Binding of unmodified H3 peptide to the PHD1 stimulates catalytic domain-mediated removal of methyl marks from H3K4me3 peptide and nucleosome substrates. This positive-feedback mechanism—enabled by the functional coupling between a reader and a catalytic domain in KDM5A—suggests a model for the spread of demethylation on chromatin.

  4. Domain location within the cystic fibrosis transmembrane conductance regulator protein investigated by electron microscopy and gold labelling.

    PubMed

    Zhang, Liang; Aleksandrov, Luba A; Riordan, John R; Ford, Robert C

    2011-01-01

    The domain organisation of the cystic fibrosis transmembrane conductance regulator (CFTR) protein was studied using electron microscopy of detergent-solubilised dimeric complexes. Ni-NTA nanogold labelling data suggest that in the nonphosphorylated, nucleotide-free state, the C-terminus is intimately associated with the cytoplasmic ATP-binding regions, whilst part of the regulatory domain occupies a position close to the cytoplasmic surface of the lipid membrane. Removal of the entire second nucleotide binding domain (NBD2) results in a deficit in the CFTR structure that is consistent with the size and shape of a single NBD. The data suggest that NBD2 lies closer to the C2 symmetry axis than the first nucleotide binding domain (NBD1) and that NBD2 from one CFTR monomer also contacts NBD1 from the opposing one. These data suggest that current homology models for CFTR based on other ATP-binding cassette proteins appear to be reasonable, at least to low resolution. We also find that Ni-NTA nanogold labelling of an internal hexa-Histidine sequence is a valuable approach to locate individual protein domains. PMID:20727849

  5. Gelsolin-Like Domain 3 Plays Vital Roles in Regulating the Activities of the Lily Villin/Gelsolin/Fragmin Superfamily.

    PubMed

    Qian, Dong; Nan, Qiong; Yang, Yueming; Li, Hui; Zhou, Yuelong; Zhu, Jingen; Bai, Qifeng; Zhang, Pan; An, Lizhe; Xiang, Yun

    2015-01-01

    The villin/gelsolin/fragmin superfamily is a major group of Ca2+-dependent actin-binding proteins (ABPs) involved in various cellular processes. Members of this superfamily typically possess three or six tandem gelsolin-like (G) domains, and each domain plays a distinct role in actin filament dynamics. Although the activities of most G domains have been characterized, the biochemical function of the G3 domain remains poorly understood. In this study, we carefully compared the detailed biochemical activities of ABP29 (a new member of this family that contains the G1-G2 domains of lily ABP135) and ABP135G1-G3 (which contains the G1-G3 domains of lily ABP135). In the presence of high Ca2+ levels in vitro (200 and 10 μM), ABP135G1-G3 exhibited greater actin severing and/or depolymerization and nucleating activities than ABP29, and these proteins had similar actin capping activities. However, in the presence of low levels of Ca2+ (41 nM), ABP135G1-G3 had a weaker capping activity than ABP29. In addition, ABP29 inhibited F-actin depolymerization, as shown by dilution-mediated depolymerization assay, differing from the typical superfamily proteins. In contrast, ABP135G1-G3 accelerated F-actin depolymerization. All of these results demonstrate that the G3 domain plays specific roles in regulating the activities of the lily villin/gelsolin/fragmin superfamily proteins. PMID:26587673

  6. Gelsolin-Like Domain 3 Plays Vital Roles in Regulating the Activities of the Lily Villin/Gelsolin/Fragmin Superfamily

    PubMed Central

    Yang, Yueming; Li, Hui; Zhou, Yuelong; Zhu, Jingen; Bai, Qifeng; Zhang, Pan; An, Lizhe; Xiang, Yun

    2015-01-01

    The villin/gelsolin/fragmin superfamily is a major group of Ca2+-dependent actin-binding proteins (ABPs) involved in various cellular processes. Members of this superfamily typically possess three or six tandem gelsolin-like (G) domains, and each domain plays a distinct role in actin filament dynamics. Although the activities of most G domains have been characterized, the biochemical function of the G3 domain remains poorly understood. In this study, we carefully compared the detailed biochemical activities of ABP29 (a new member of this family that contains the G1-G2 domains of lily ABP135) and ABP135G1-G3 (which contains the G1-G3 domains of lily ABP135). In the presence of high Ca2+ levels in vitro (200 and 10 μM), ABP135G1-G3 exhibited greater actin severing and/or depolymerization and nucleating activities than ABP29, and these proteins had similar actin capping activities. However, in the presence of low levels of Ca2+ (41 nM), ABP135G1-G3 had a weaker capping activity than ABP29. In addition, ABP29 inhibited F-actin depolymerization, as shown by dilution-mediated depolymerization assay, differing from the typical superfamily proteins. In contrast, ABP135G1-G3 accelerated F-actin depolymerization. All of these results demonstrate that the G3 domain plays specific roles in regulating the activities of the lily villin/gelsolin/fragmin superfamily proteins. PMID:26587673

  7. Calmodulin Regulates Human Ether à Go-Go 1 (hEAG1) Potassium Channels through Interactions of the Eag Domain with the Cyclic Nucleotide Binding Homology Domain.

    PubMed

    Lörinczi, Eva; Helliwell, Matthew; Finch, Alina; Stansfeld, Phillip J; Davies, Noel W; Mahaut-Smith, Martyn; Muskett, Frederick W; Mitcheson, John S

    2016-08-19

    The ether à go-go family of voltage-gated potassium channels is structurally distinct. The N terminus contains an eag domain (eagD) that contains a Per-Arnt-Sim (PAS) domain that is preceded by a conserved sequence of 25-27 amino acids known as the PAS-cap. The C terminus contains a region with homology to cyclic nucleotide binding domains (cNBHD), which is directly linked to the channel pore. The human EAG1 (hEAG1) channel is remarkably sensitive to inhibition by intracellular calcium (Ca(2+) i) through binding of Ca(2+)-calmodulin to three sites adjacent to the eagD and cNBHD. Here, we show that the eagD and cNBHD interact to modulate Ca(2+)-calmodulin as well as voltage-dependent gating. Sustained elevation of Ca(2+) i resulted in an initial profound inhibition of hEAG1 currents, which was followed by a phase when current amplitudes partially recovered, but activation gating was slowed and shifted to depolarized potentials. Deletion of either the eagD or cNBHD abolished the inhibition by Ca(2+) i However, deletion of just the PAS-cap resulted in a >15-fold potentiation in response to elevated Ca(2+) i Mutations of residues at the interface between the eagD and cNBHD have been linked to human cancer. Glu-600 on the cNBHD, when substituted with residues with a larger volume, resulted in hEAG1 currents that were profoundly potentiated by Ca(2+) i in a manner similar to the ΔPAS-cap mutant. These findings provide the first evidence that eagD and cNBHD interactions are regulating Ca(2+)-dependent gating and indicate that the binding of the PAS-cap with the cNBHD is required for the closure of the channels upon CaM binding. PMID:27325704

  8. A structural model of anti-anti-σ inhibition by a two-component receiver domain: the PhyR stress response regulator

    PubMed Central

    Herrou, Julien; Foreman, Robert; Fiebig, Aretha; Crosson, Sean

    2010-01-01

    Summary PhyR is a hybrid stress regulator conserved in α-proteobacteria that contains an N-terminal σ-like (SL) domain and a C-terminal receiver domain. Phosphorylation of the receiver domain is known to promote binding of the SL domain to an anti-σ factor. PhyR thus functions as an anti-anti-σ factor in its phosphorylated state. We present genetic evidence that Caulobacter crescentus PhyR is a phosphorylation-dependent stress regulator that functions in the same pathway as σT and its anti-σ factor, NepR. Additionally, we report the X-ray crystal structure of PhyR at 1.25 Å resolution, which provides insight into the mechanism of anti-anti-σ regulation. Direct intramolecular contact between the PhyR receiver and SL domains spans regions σ2 and σ4, likely serving to stabilize the SL domain in a closed conformation. The molecular surface of the receiver domain contacting the SL domain is the structural equivalent of α4-β5-α5, which is known to undergo dynamic conformational change upon phosphorylation in a diverse range of receiver proteins. We propose a structural model of PhyR regulation in which receiver phosphorylation destabilizes the intramolecular interaction between SL and receiver domains, thereby permitting regions σ2 and σ4 in the SL domain to open about a flexible connector loop and bind anti-σ factor. PMID:20735776

  9. Extracellular Signal-Regulated Kinase 7 (ERK7), a Novel ERK with a C-Terminal Domain That Regulates Its Activity, Its Cellular Localization, and Cell Growth

    PubMed Central

    Abe, Mark K.; Kuo, Wen-Liang; Hershenson, Marc B.; Rosner, Marsha Rich

    1999-01-01

    Mitogen-activated protein (MAP) kinases play distinct roles in a variety of cellular signaling pathways and are regulated through multiple mechanisms. In this study, a novel 61-kDa member of the MAP kinase family, termed extracellular signal-regulated kinase 7 (ERK7), has been cloned and characterized. Although it has the signature TEY activation motif of ERK1 and ERK2, ERK7 is not activated by extracellular stimuli that typically activate ERK1 and ERK2 or by common activators of c-Jun N-terminal kinase (JNK) and p38 kinase. Instead, ERK7 has appreciable constitutive activity in serum-starved cells that is dependent on the presence of its C-terminal domain. Interestingly, the C-terminal tail, not the kinase domain, of ERK7 regulates its nuclear localization and inhibition of growth. Taken together, these results elucidate a novel type of MAP kinase whereby interactions via its C-terminal tail, rather than extracellular signal-mediated activation cascades, regulate its activity, localization, and function. PMID:9891064

  10. Dynamin GTPase Regulation is Altered by PH Domain Mutations Found in Centronuclear Myopathy Patients

    SciTech Connect

    Kenniston, J.; Lemmon, M

    2010-01-01

    The large GTPase dynamin has an important membrane scission function in receptor-mediated endocytosis and other cellular processes. Self-assembly on phosphoinositide-containing membranes stimulates dynamin GTPase activity, which is crucial for its function. Although the pleckstrin-homology (PH) domain is known to mediate phosphoinositide binding by dynamin, it remains unclear how this promotes activation. Here, we describe studies of dynamin PH domain mutations found in centronuclear myopathy (CNM) that increase dynamin's GTPase activity without altering phosphoinositide binding. CNM mutations in the PH domain C-terminal {alpha}-helix appear to cause conformational changes in dynamin that alter control of the GTP hydrolysis cycle. These mutations either 'sensitize' dynamin to lipid stimulation or elevate basal GTPase rates by promoting self-assembly and thus rendering dynamin no longer lipid responsive. We also describe a low-resolution structure of dimeric dynamin from small-angle X-ray scattering that reveals conformational changes induced by CNM mutations, and defines requirements for domain rearrangement upon dynamin self-assembly at membrane surfaces. Our data suggest that changes in the PH domain may couple lipid binding to dynamin GTPase activation at sites of vesicle invagination.

  11. The Bel1 protein of human foamy virus contains one positive and two negative control regions which regulate a distinct activation domain of 30 amino acids.

    PubMed Central

    Lee, C W; Chang, J; Lee, K J; Sung, Y C

    1994-01-01

    The Bel1 transactivator is essential for the replication of human foamy virus (HFV). To define the functional domains of HFV Bel1, we generated random missense mutations throughout the entire coding sequence of Bel1. Functional analyses of 24 missense mutations have revealed the presence of at least two functional domains in Bel1. One domain corresponds to a basic amino acid-rich motif which acts as a bipartite nuclear targeting sequence. A second, central domain corresponds to a presumed effector region which, when mutated, leads to dominant-negative mutants and/or lacks transactivating ability. In addition, deletion analyses and domain-swapping experiments further showed that Bel1 protein contains a strong carboxy-terminal activation domain. The activating region is also capable of functioning as a transcription-activating domain in yeast cells, although it does not bear any significant sequence homology to the well-characterized acidic activation domain which is known to function only in yeast and mammalian cells. We also demonstrated that the regions of Bel1 from residues 1 to 76 and from residues 153 to 225 repressed transcriptional activation exerted by the Bel1 activation domain. In contrast, the region from residues 82 to 150 appears to overcome an inhibitory effect. These results indicate that Bel1 contains one positive and two negative regulatory domains that modulate a distinct activation domain of Bel1. These regulatory domains of Bel1 cannot affect the function of the VP16 activation domain, suggesting that these domains specifically regulate the activation domain of Bel1. Furthermore, in vivo competition experiments showed that the positive regulatory domain acts in trans. Thus, our results demonstrate that Bel1-mediated transactivation appears to undergo a complex regulatory pathway which provides a novel mode of regulation for a transcriptional activation domain. Images PMID:8139046

  12. Lamin B receptor (LBR) regulates the growth and maturation of myeloid progenitors via its sterol reductase domain: Implications for cholesterol biosynthesis in regulating myelopoiesis

    PubMed Central

    Subramanian, Gayathri; Chaudhury, Pulkit; Malu, Krishnakumar; Fowler, Samantha; Manmode, Rahul; Gotur, Deepali; Zwerger, Monika; Ryan, David; Roberti, Rita; Gaines, Peter

    2011-01-01

    Lamin B receptor (LBR) is a bifunctional nuclear membrane protein with N-terminal lamin B and chromatin binding domains plus a C-terminal sterol Δ14 reductase domain. LBR expression increases during neutrophil differentiation and deficient expression disrupts neutrophil nuclear lobulation characteristic of Pelger-Huët anomaly. Thus LBR plays a critical role in regulating myeloid differentiation, but how the two functional domains of LBR support this role is currently unclear. We previously identified abnormal proliferation and deficient functional maturation of promyelocytes (EPRO cells) derived from EML-ic/ic cells, a myeloid model of ichthyosis (ic) bone marrow that lacks Lbr expression. Here we provide new evidence that cholesterol biosynthesis is important to myeloid cell growth and is supported by the sterol reductase domain of Lbr. Cholesterol biosynthesis inhibitors caused growth inhibition of EML cells that increased in EPRO cells, whereas cells lacking Lbr exhibited complete growth arrest at both stages. Lipid production increased during wild-type neutrophil maturation, but ic/ic cells exhibited deficient levels of lipid and cholesterol production. Ectopic expression of a full length Lbr in EML-ic/ic cells rescued both nuclear lobulation and growth arrest in cholesterol starvation conditions. Lipid production also was rescued, and a deficient respiratory burst was corrected. Expression of just the C-terminal sterol reductase domain of Lbr in ic/ic cells also improved each of these phenotypes. Our data support the conclusion that the sterol Δ14 reductase domain of LBR plays a critical role in cholesterol biosynthesis, and that this process is essential to both myeloid cell growth and functional maturation. PMID:22140257

  13. The Inhibition Mechanism of Non-phosphorylated Ser768 in the Regulatory Domain of Cystic Fibrosis Transmembrane Conductance Regulator*

    PubMed Central

    Wang, Guangyu

    2011-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette transporters but serves as a chloride channel dysfunctional in cystic fibrosis. The activity of CFTR is tightly controlled not only by ATP-driven dimerization of its nucleotide-binding domains but also by phosphorylation of a unique regulatory (R) domain by protein kinase A (PKA). The R domain has multiple excitatory phosphorylation sites, but Ser737 and Ser768 are inhibitory. The underlying mechanism is unclear. Here, sulfhydryl-specific cross-linking strategy was employed to demonstrate that Ser768 or Ser737 could interact with outwardly facing hydrophilic residues of cytoplasmic loop 3 regulating channel gating. Furthermore, mutation of these residues to alanines promoted channel opening by curcumin in an ATP-dependent manner even in the absence of PKA. However, mutation of Ser768 and His950 with different hydrogen bond donors or acceptors clearly changed ATP- and PKA-dependent channel activity no matter whether curcumin was present or not. More importantly, significant activation of a double mutant H950R/S768R needed only ATP. Finally, in vitro and in vivo single channel recordings suggest that Ser768 may form a putative hydrogen bond with His950 of cytoplasmic loop 3 to prevent channel opening by ATP in the non-phosphorylated state and by subsequent cAMP-dependent phosphorylation. These observations support an electron cryomicroscopy-based structural model on which the R domain is closed to cytoplasmic loops regulating channel gating. PMID:21059651

  14. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator.

    PubMed

    Aleksandrov, L; Mengos, A; Chang, X; Aleksandrov, A; Riordan, J R

    2001-04-20

    After phosphorylation by protein kinase A, gating of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by the interaction of ATP with its nucleotide binding domains (NBDs). Models of this gating regulation have proposed that ATP hydrolysis at NBD1 and NBD2 may drive channel opening and closing, respectively (reviewed in Nagel, G. (1999) Biochim. Biophys. Acta 1461, 263-274). However, as yet there has been little biochemical confirmation of the predictions of these models. We have employed photoaffinity labeling with 8-azido-ATP, which supports channel gating as effectively as ATP to evaluate interactions with each NBD in intact membrane-bound CFTR. Mutagenesis of Walker A lysine residues crucial for azido-ATP hydrolysis to generate the azido-ADP that is trapped by vanadate indicated a greater role of NBD1 than NBD2. Separation of the domains by limited trypsin digestion and enrichment by immunoprecipitation confirmed greater and more stable nucleotide trapping at NBD1. This asymmetry of the two domains in interactions with nucleotides was reflected most emphatically in the response to the nonhydrolyzable ATP analogue, 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP), which in the gating models was proposed to bind with high affinity to NBD2 causing inhibition of ATP hydrolysis there postulated to drive channel closing. Instead we found a strong competitive inhibition of nucleotide hydrolysis and trapping at NBD1 and a simultaneous enhancement at NBD2. This argues strongly that AMP-PNP does not inhibit ATP hydrolysis at NBD2 and thereby questions the relevance of hydrolysis at that domain to channel closing. PMID:11279083

  15. Rhomboid domain-containing protein 3 is a negative regulator of TLR3-triggered natural killer cell activation.

    PubMed

    Liu, Juan; Liu, Shuxun; Xia, Meng; Xu, Sheng; Wang, Chunmei; Bao, Yan; Jiang, Minghong; Wu, Yue; Xu, Tian; Cao, Xuetao

    2013-05-01

    Rhomboid domain-containing protein 3 (Rhbdd3), which belongs to a family of proteins with rhomboid domain, is widely expressed in immune cells; however, the roles of the Rhbdd members, including Rhbdd3, in immunity remain unknown. Natural killer (NK) cells are critical for host immune defense and also can mediate inflammatory diseases such as hepatitis. Although much is known about how NK cells are activated, the detailed mechanisms for negative regulation of NK cell activation remain to be fully understood. Using Rhbdd3-deficient mice, we reveal that Rhbdd3, selectively up-regulated in NK cells upon Toll-like receptor 3 (TLR3) stimulation, negatively regulates TLR3-mediated NK cell activation in a feedback manner. Rhbdd3 inhibits TLR3-triggered IFN-γ and granzyme B expression of NK cells in cell-cell contact dependence of accessory cells such as dendritic cells and Kupffer cells. Rhbdd3 interacts with DNAX activation protein of 12 kDa and promotes its degradation, inhibiting MAPK activation in TLR3-triggered NK cells. Furthermore, Rhbdd3 plays a critical role in attenuating TLR3-triggered acute inflammation by controlling NK cell activation and accumulation in liver and disrupting NK cell-Kupffer cell interaction. Therefore, Rhbdd3 is a feedback inhibitor of TLR3-triggered NK cell activation. Our study outlines a mechanism for the negative regulation of NK cell activation and also provides clues for the function of the rhomboid proteins in immunity. PMID:23610400

  16. Regulation of Activation and Processing of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by a Complex Electrostatic Interaction between the Regulatory Domain and Cytoplasmic Loop 3*

    PubMed Central

    Wang, Guangyu; Duan, Dayue Darrel

    2012-01-01

    NEG2, a short C-terminal segment (817–838) of the unique regulatory (R) domain of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, has been reported to regulate CFTR gating in response to cAMP-dependent R domain phosphorylation. The underlying mechanism, however, is unclear. Here, Lys-946 of cytoplasmic loop 3 (CL3) is proposed as counter-ion of Asp-835, Asp-836, or Glu-838 of NEG2 to prevent the channel activation by PKA. Arg-764 or Arg-766 of the Ser-768 phosphorylation site of the R domain is proposed to promote the channel activation possibly by weakening the putative CL3-NEG2 electrostatic attraction. First, not only D835A, D836A, and E838A but also K946A reduced the PKA-dependent CFTR activation. Second, both K946D and D835R/D836R/E838R mutants were activated by ATP and curcumin to a different extent. Third, R764A and R766A mutants enhanced the PKA-dependent activation. However, it is very exciting that D835R/D836R/E838R and K946D/H950D and H950R exhibited normal channel processing and activity whereas D835R/D836R/E838R/K946D/H950D was fractionally misprocessed and silent in response to forskolin. Further, D836R and E838R played a critical role in the asymmetric electrostatic regulation of CFTR processing, and Ser-768 phosphorylation may not be involved. Thus, a complex interfacial interaction among CL3, NEG2, and the Ser-768 phosphorylation site may be responsible for the asymmetric electrostatic regulation of CFTR activation and processing. PMID:23060444

  17. The N-terminal domains of TRF1 and TRF2 regulate their ability to condense telomeric DNA

    PubMed Central

    Poulet, Anaïs; Pisano, Sabrina; Faivre-Moskalenko, Cendrine; Pei, Bei; Tauran, Yannick; Haftek-Terreau, Zofia; Brunet, Frédéric; Le Bihan, Yann-Vaï; Ledu, Marie-Hélène; Montel, Fabien; Hugo, Nicolas; Amiard, Simon; Argoul, Françoise; Chaboud, Annie; Giraud-Panis, Marie-Josèphe

    2012-01-01

    TRF1 and TRF2 are key proteins in human telomeres, which, despite their similarities, have different behaviors upon DNA binding. Previous work has shown that unlike TRF1, TRF2 condenses telomeric, thus creating consequential negative torsion on the adjacent DNA, a property that is thought to lead to the stimulation of single-strand invasion and was proposed to favor telomeric DNA looping. In this report, we show that these activities, originating from the central TRFH domain of TRF2, are also displayed by the TRFH domain of TRF1 but are repressed in the full-length protein by the presence of an acidic domain at the N-terminus. Strikingly, a similar repression is observed on TRF2 through the binding of a TERRA-like RNA molecule to the N-terminus of TRF2. Phylogenetic and biochemical studies suggest that the N-terminal domains of TRF proteins originate from a gradual extension of the coding sequences of a duplicated ancestral gene with a consequential progressive alteration of the biochemical properties of these proteins. Overall, these data suggest that the N-termini of TRF1 and TRF2 have evolved to finely regulate their ability to condense DNA. PMID:22139926

  18. Dictyostelium calcium-binding protein 4a interacts with nucleomorphin, a BRCT-domain protein that regulates nuclear number.

    PubMed

    Myre, Michael A; O'Day, Danton H

    2004-09-17

    Nucleomorphin from Dictyostelium discoideum is a nuclear calmodulin-binding protein that is a member of the BRCT-domain containing cell cycle checkpoint proteins. Two differentially expressed isoforms, NumA and NumB, share an extensive acidic domain (DEED) that when deleted produces highly multinucleated cells. We performed a yeast two-hybrid screen of a Dictyostelium cDNA library using NumA as bait. Here we show that nucleomorphin interacts with calcium-binding protein 4a (CBP4a) in a Ca(2+)-dependent manner. Further deletion analysis suggests this interaction requires residues found within the DEED domain. NumA and CBP4a mRNAs are expressed at the same stages of development. CBP4a belongs to a large family of Dictyostelium CBPs, for which no cellular or developmental functions had previously been determined. Since the interaction of CBP4a with nucleomorphin requires the DEED domain, this suggests that CBP4a may respond to Ca(2+)-signalling through modulating factors that might function in concert to regulate nuclear number. PMID:15325281

  19. Association of the SEL1L protein transmembrane domain with HRD1 ubiquitin ligase regulates ERAD-L.

    PubMed

    Hosokawa, Nobuko; Wada, Ikuo

    2016-01-01

    Misfolded proteins in the endoplasmic reticulum (ER) are transported to the cytoplasm for degradation by the ubiquitin-proteasome system, a process otherwise known as ER-associated degradation (ERAD). Mammalian HRD1, an integral membrane ubiquitin ligase that ubiquitinates ERAD substrates, forms a large assembly in the ER membrane including SEL1L, a single-pass membrane protein, and additional components. The mechanism by which these molecules export misfolded proteins through the ER membrane remains unclear. Unlike Hrd3p, the homologue in Saccharomyces cerevisiae, human SEL1L is an unstable protein, which is restored by the association with HRD1. Here we report that the inherently unstable nature of the human SEL1L protein lies in its transmembrane domain, and that association of HRD1 with the SEL1L transmembrane domain restored its stability. On the other hand, we found that the SEL1L luminal domain escaped degradation, and inhibited the degradation of misfolded α1 -antitrypsin variant null Hong Kong by retaining the misfolded cargo in the ER. Overexpression of HRD1 inhibited the degradation of unfolded secretory cargo, which was restored by the interaction of HRD1 with the SEL1L transmembrane domain. Hence, we propose that SEL1L critically regulates HRD1-mediated disposal of misfolded cargo through its short membrane spanning stretch. PMID:26471130

  20. Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro

    PubMed Central

    Li, Yan; Burclaff, Joseph; Anderson, James T.

    2016-01-01

    RNA processing and turnover play important roles in the maturation, metabolism and quality control of a large variety of RNAs thereby contributing to gene expression and cellular health. The TRAMP complex, composed of Air2p, Trf4p and Mtr4p, stimulates nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae. The Mtr4 protein structure is composed of a helicase core and a novel so-called arch domain, which protrudes from the core. The helicase core contains highly conserved helicase domains RecA-1 and 2, and two structural domains of unclear functions, winged helix domain (WH) and ratchet domain. How the structural domains (arch, WH and ratchet domain) coordinate with the helicase domains and what roles they are playing in regulating Mtr4p helicase activity are unknown. We created a library of Mtr4p structural domain mutants for the first time and screened for those defective in the turnover of TRAMP and exosome substrate, hypomodified tRNAiMet. We found these domains regulate Mtr4p enzymatic activities differently through characterizing the arch domain mutants K700N and P731S, WH mutant K904N, and ratchet domain mutant R1030G. Arch domain mutants greatly reduced Mtr4p RNA binding, which surprisingly did not lead to significant defects on either in vivo tRNAiMet turnover, or in vitro unwinding activities. WH mutant K904N and Ratchet domain mutant R1030G showed decreased tRNAiMet turnover in vivo, as well as reduced RNA binding, ATPase and unwinding activities of Mtr4p in vitro. Particularly, K904 was found to be very important for steady protein levels in vivo. Overall, we conclude that arch domain plays a role in RNA binding but is largely dispensable for Mtr4p enzymatic activities, however the structural domains in the helicase core significantly contribute to Mtr4p ATPase and unwinding activities. PMID:26820724

  1. Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro.

    PubMed

    Li, Yan; Burclaff, Joseph; Anderson, James T

    2016-01-01

    RNA processing and turnover play important roles in the maturation, metabolism and quality control of a large variety of RNAs thereby contributing to gene expression and cellular health. The TRAMP complex, composed of Air2p, Trf4p and Mtr4p, stimulates nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae. The Mtr4 protein structure is composed of a helicase core and a novel so-called arch domain, which protrudes from the core. The helicase core contains highly conserved helicase domains RecA-1 and 2, and two structural domains of unclear functions, winged helix domain (WH) and ratchet domain. How the structural domains (arch, WH and ratchet domain) coordinate with the helicase domains and what roles they are playing in regulating Mtr4p helicase activity are unknown. We created a library of Mtr4p structural domain mutants for the first time and screened for those defective in the turnover of TRAMP and exosome substrate, hypomodified tRNAiMet. We found these domains regulate Mtr4p enzymatic activities differently through characterizing the arch domain mutants K700N and P731S, WH mutant K904N, and ratchet domain mutant R1030G. Arch domain mutants greatly reduced Mtr4p RNA binding, which surprisingly did not lead to significant defects on either in vivo tRNAiMet turnover, or in vitro unwinding activities. WH mutant K904N and Ratchet domain mutant R1030G showed decreased tRNAiMet turnover in vivo, as well as reduced RNA binding, ATPase and unwinding activities of Mtr4p in vitro. Particularly, K904 was found to be very important for steady protein levels in vivo. Overall, we conclude that arch domain plays a role in RNA binding but is largely dispensable for Mtr4p enzymatic activities, however the structural domains in the helicase core significantly contribute to Mtr4p ATPase and unwinding activities. PMID:26820724

  2. A coiled-coil domain acts as a molecular ruler in LPS chain length regulation

    PubMed Central

    Tuukkanen, Anne; Danciu, Iulia; Svergun, Dmitri I.; Hussain, Rohanah; Liu, Huanting; Whitfield, Chris; Naismith, James H.

    2014-01-01

    Long-chain bacterial polysaccharides play important roles in pathogenicity. In Escherichia coli O9a, a model for ABC transporter dependent polysaccharide assembly, a large extracellular carbohydrate with a narrow distribution of size is polymerized from monosaccharides by a complex of two proteins, WbdA (polymerase) and WbdD (terminating protein). Such careful control of polymerization is recurring theme in biology. Combining crystallography and small angle X-ray scattering, we show that the C-terminal domain of WbdD contains an extended coiled-coil that physically separates WbdA from the catalytic domain of WbdD. The effects of insertions and deletions within the coiled-coil region were analyzed in vivo, revealing that polymer size is controlled by varying the length of the coiled-coil domain. Thus, the coiled-coil domain of WbdD functions as a molecular ruler that, along with WbdA:WbdD stoichiometry, controls the chain length of a model bacterial polysaccharide. PMID:25504321

  3. Lipids Regulate Lck Protein Activity through Their Interactions with the Lck Src Homology 2 Domain.

    PubMed

    Sheng, Ren; Jung, Da-Jung; Silkov, Antonina; Kim, Hyunjin; Singaram, Indira; Wang, Zhi-Gang; Xin, Yao; Kim, Eui; Park, Mi-Jeong; Thiagarajan-Rosenkranz, Pallavi; Smrt, Sean; Honig, Barry; Baek, Kwanghee; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-08-19

    Lymphocyte-specific protein-tyrosine kinase (Lck) plays an essential role in T cell receptor (TCR) signaling and T cell development, but its activation mechanism is not fully understood. To explore the possibility that plasma membrane (PM) lipids control TCR signaling activities of Lck, we measured the membrane binding properties of its regulatory Src homology 2 (SH2) and Src homology 3 domains. The Lck SH2 domain binds anionic PM lipids with high affinity but with low specificity. Electrostatic potential calculation, NMR analysis, and mutational studies identified the lipid-binding site of the Lck SH2 domain that includes surface-exposed basic, aromatic, and hydrophobic residues but not the phospho-Tyr binding pocket. Mutation of lipid binding residues greatly reduced the interaction of Lck with the ζ chain in the activated TCR signaling complex and its overall TCR signaling activities. These results suggest that PM lipids, including phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, modulate interaction of Lck with its binding partners in the TCR signaling complex and its TCR signaling activities in a spatiotemporally specific manner via its SH2 domain. PMID:27334919

  4. Regulation of Rac1 translocation and activation by membrane domains and their boundaries

    PubMed Central

    Moissoglu, Konstadinos; Kiessling, Volker; Wan, Chen; Hoffman, Brenton D.; Norambuena, Andres; Tamm, Lukas K.; Schwartz, Martin Alexander

    2014-01-01

    ABSTRACT The activation of Rac1 and related Rho GTPases involves dissociation from Rho GDP-dissociation inhibitor proteins and translocation to membranes, where they bind effectors. Previous studies have suggested that the binding of Rac1 to membranes requires, and colocalizes with, cholesterol-rich liquid-ordered (lo) membrane domains (lipid rafts). Here, we have developed a fluorescence resonance energy transfer (FRET) assay that robustly detects Rac1 membrane targeting in living cells. Surprisingly, FRET with acceptor constructs that were targeted to either raft or non-raft areas indicated that Rac1 was present in both regions. Functional studies showed that Rac1 localization to non-raft regions decreased GTP loading as a result of inactivation by GTPase-activating proteins. In vitro, Rac1 translocation to supported lipid bilayers also required lo domains, yet Rac1 was concentrated in the liquid-disordered (ld) phase. Single-molecule analysis demonstrated that translocation occurred preferentially at lo–ld boundaries. These results, therefore, suggest that Rac1 translocates to the membrane at domain boundaries, then diffuses into raft and non-raft domains, which controls interactions. These findings resolve discrepancies in our understanding of Rac biology and identify novel mechanisms by which lipid rafts modulate Rho GTPase signaling. PMID:24695858

  5. Redox state of p63 and p73 core domains regulates sequence-specific DNA binding.

    PubMed

    Tichý, Vlastimil; Navrátilová, Lucie; Adámik, Matej; Fojta, Miroslav; Brázdová, Marie

    2013-04-19

    Cysteine oxidation and covalent modification of redox sensitive transcription factors including p53 are known, among others, as important events in cell response to oxidative stress. All p53 family proteins p53, p63 and p73 act as stress-responsive transcription factors. Oxidation of p53 central DNA binding domain destroys its structure and abolishes its sequence-specific binding by affecting zinc ion coordination at the protein-DNA interface. Proteins p63 and p73 can bind the same response elements as p53 but exhibit distinct functions. Moreover, all three proteins contain highly conserved cysteines in central DNA binding domain suitable for possible redox modulation. In this work we report for the first time the redox sensitivity of p63 and p73 core domains to a thiol oxidizing agent azodicarboxylic acid bis[dimethylamide] (diamide). Oxidation of both p63 and p73 abolished sequence-specific binding to p53 consensus sequence, depending on the agent concentration. In the presence of specific DNA all p53 family core domains were partially protected against loss of DNA binding activity due to diamide treatment. Furthermore, we detected conditional reversibility of core domain oxidation for all p53 family members and a role of zinc ions in this process. We showed that p63 and p73 proteins had greater ability to resist the diamide oxidation in comparison with p53. Our results show p63 and p73 as redox sensitive proteins with possible functionality in response of p53 family proteins to oxidative stress. PMID:23501101

  6. The Aβ-clearance protein transthyretin, like neprilysin, is epigenetically regulated by the amyloid precursor protein intracellular domain.

    PubMed

    Kerridge, Caroline; Belyaev, Nikolai D; Nalivaeva, Natalia N; Turner, Anthony J

    2014-08-01

    Proteolytic cleavage of the amyloid precursor protein (APP) by the successive actions of β- and γ-secretases generates several biologically active metabolites including the amyloid β-peptide (Aβ) and the APP intracellular domain (AICD). By analogy with the Notch signalling pathway, AICD has been proposed to play a role in transcriptional regulation. Among the cohort of genes regulated by AICD is the Aβ-degrading enzyme neprilysin (NEP). AICD binds to the NEP promoter causing transcriptional activation by competitive replacement with histone deacetylases (HDACs) leading to increased levels of NEP activity and hence increased Aβ clearance. We now show that the Aβ-clearance protein transthyretin (TTR) is also epigenetically up-regulated by AICD. Like NEP regulation, AICD derived specifically from the neuronal APP isoform, APP695 , binds directly to the TTR promoter displacing HDAC1 and HDAC3. Cell treatment with the tyrosine kinase inhibitor Gleevec (imatinib) or with the alkalizing agent NH4 Cl causes an accumulation of 'functional' AICD capable of up-regulating both TTR and NEP, leading to a reduction in total cellular Aβ levels. Pharmacological regulation of both NEP and TTR might represent a viable therapeutic target in Alzheimer's disease. PMID:24528201

  7. Energetic modeling and single-molecule verification of dynamic regulation on receptor complexes by actin corrals and lipid raft domains

    NASA Astrophysics Data System (ADS)

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2014-12-01

    We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane of a living cell. Simulation results are presented to elaborate the confinement effects from actin corrals and protein-induced lipid domains. Single-molecule tracking data of epidermal growth factor receptors (EGFR) acquired on live HeLa cells agree with the simulation results and the mechanism that controls the diffusion of single-molecule receptors is clarified. We discovered that after ligand binding, EGFR molecules move into lipid nanodomains. The transition rates between different diffusion states of liganded EGFR molecules are regulated by the lipid domains. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

  8. Structural insights into the regulation and the recognition of histone marks by the SET domain of NSD1

    SciTech Connect

    Morishita, Masayo; Di Luccio, Eric

    2011-08-26

    Highlights: {yields} NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1 are histone methyltransferases linked to numerous cancers. {yields} Little is known about the NSD pathways and HMTase inhibitors are sorely needed in the epigenetic therapy of cancers. {yields} We investigate the regulation and the recognition of histone marks by the SET domain of NSD1. {yields} A unique and key mechanism is driven by a loop at the interface of the SET and postSET region. {yields} Implications for developing specific and selective HMTase inhibitors are presented. -- Abstract: The development of epigenetic therapies fuels cancer hope. DNA-methylation inhibitors, histone-deacetylase and histone-methyltransferase (HMTase) inhibitors are being developed as the utilization of epigenetic targets is emerging as an effective and valuable approach to chemotherapy as well as chemoprevention of cancer. The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1 that are critical in maintaining the chromatin integrity. A growing number of studies have reported alterations or amplifications of NSD1, NSD2, or NSD3 in numerous carcinogenic events. Reducing NSDs activity through specific lysine-HMTase inhibitors appears promising to help suppressing cancer growth. However, little is known about the NSD pathways and our understanding of the histone lysine-HMTase mechanism is partial. To shed some light on both the recognition and the regulation of epigenetic marks by the SET domain of the NSD family, we investigate the structural mechanisms of the docking of the histone-H4 tail on the SET domain of NSD1. Our finding exposes a key regulatory and recognition mechanism driven by the flexibility of a loop at the interface of the SET and postSET region. Finally, we prospect the special value of this regulatory region for developing specific and selective NSD inhibitors for the epigenetic therapy of cancers.

  9. Distinct class of DNA-binding domains is exemplified by a master regulator of phenotypic switching in Candida albicans

    PubMed Central

    Lohse, Matthew B.; Zordan, Rebecca E.; Cain, Christopher W.; Johnson, Alexander D.

    2010-01-01

    Among the most important classes of regulatory proteins are the sequence-specific DNA-binding proteins that control transcription through the occupancy of discrete DNA sequences within genomes. Currently, this class of proteins encompasses at least 37 distinct structural superfamilies and more than 100 distinct structural motifs. In this paper, we examine the transcriptional regulator Wor1, a master regulator of white-opaque switching in the human fungal pathogen Candida albicans. As assessed by a variety of algorithms, this protein has no sequence or structural similarity to any known DNA-binding protein. It is, however, conserved across the vast fungal lineage, with a 300aa region of sequence conservation. Here, we show that this 300aa region of Wor1 exhibits sequence-specific DNA binding and therefore represents a new superfamily of DNA-binding proteins. We identify the 14-nucleotide-pair DNA sequence recognized by Wor1, characterize the site through mutational analysis, and demonstrate that this sequence is sufficient for the Wor1-dependent activation of transcription in vivo. Within the 300aa DNA-binding conserved region, which we have termed the WOPR box, are two domains (WOPRa and WOPRb), dissimilar to each other but especially well-conserved across the fungal lineage. We show that the WOPR box binds DNA as a monomer and that neither domain, when expressed and purified separately, exhibits sequence-specific binding. DNA binding is restored, however, when the two isolated domains are added together. These results indicate that the WOPR family of DNA-binding proteins involves an unusual coupling between two dissimilar, covalently linked domains. PMID:20660774

  10. Multiple Membrane-Cytoplasmic Domain Contacts in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mediate Regulation of Channel Gating*S⃞

    PubMed Central

    He, Lihua; Aleksandrov, Andrei A.; Serohijos, Adrian W. R.; Hegedüs, Tamás; Aleksandrov, Luba A.; Cui, Liying; Dokholyan, Nikolay V.; Riordan, John R.

    2008-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique ATP-binding cassette (ABC) ion channel mutated in patients with cystic fibrosis. The most common mutation, deletion of phenylalanine 508 (ΔF508) and many other disease-associated mutations occur in the nucleotide binding domains (NBD) and the cytoplasmic loops (CL) of the membrane-spanning domains (MSD). A recently constructed computational model of the CFTR three-dimensional structure, supported by experimental data (Serohijos, A. W., Hegedus, T., Aleksandrov, A. A., He, L., Cui, L., Dokholyan, N. V., and Riordan, J. R. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 3256–3261) revealed that several of these mutations including ΔF508 disrupted interfaces between these domains. Here we have used cysteine cross-linking experiments to verify all NBD/CL interfaces predicted by the structural model and observed that their cross-linking has a variety of different effects on channel gating. The interdomain contacts comprise aromatic clusters important for stabilization of the interfaces and also involve the Q-loops and X-loops that are in close proximity to the ATP binding sites. Cross-linking of all domain-swapping contacts between NBDs and MSD cytoplasmic loops in opposite halves of the protein rapidly and reversibly arrest single channel gating while those in the same halves have lesser impact. These results reinforce the idea that mediation of regulatory signals between cytoplasmic- and membrane-integrated domains of the CFTR channel apparently relies on an array of precise but highly dynamic interdomain structural joints. PMID:18658148

  11. Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity.

    PubMed

    Ham, Su Jin; Lee, Soo Young; Song, Saera; Chung, Ju-Ryung; Choi, Sekyu; Chung, Jongkyeong

    2016-01-22

    Parkin is an E3 ligase that contains a ubiquitin-like (UBL) domain in the N terminus and an R1-in-between-ring-RING2 motif in the C terminus. We showed that the UBL domain specifically interacts with the R1 domain and negatively regulates Parkin E3 ligase activity, Parkin-dependent mitophagy, and Parkin translocation to the mitochondria. The binding between the UBL domain and the R1 domain was suppressed by carbonyl cyanide m-chlorophenyl hydrazone treatment or by expression of PTEN-induced putative kinase 1 (PINK1), an upstream kinase that phosphorylates Parkin at the Ser-65 residue of the UBL domain. Moreover, we demonstrated that phosphorylation of the UBL domain at Ser-65 prevents its binding to the R1 domain and promotes Parkin activities. We further showed that mitochondrial translocation of Parkin, which depends on phosphorylation at Ser-65, and interaction between the R1 domain and a mitochondrial outer membrane protein, VDAC1, are suppressed by binding of the UBL domain to the R1 domain. Interestingly, Parkin with missense mutations associated with Parkinson disease (PD) in the UBL domain, such as K27N, R33Q, and A46P, did not translocate to the mitochondria and induce E3 ligase activity by m-chlorophenyl hydrazone treatment, which correlated with the interaction between the R1 domain and the UBL domain with those PD mutations. These findings provide a molecular mechanism of how Parkin recruitment to the mitochondria and Parkin activation as an E3 ubiquitin ligase are regulated by PINK1 and explain the previously unknown mechanism of how Parkin mutations in the UBL domain cause PD pathogenesis. PMID:26631732

  12. Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing

    PubMed Central

    Tashiro, Sanki; Handa, Tetsuya; Matsuda, Atsushi; Ban, Takuto; Takigawa, Toru; Miyasato, Kazumi; Ishii, Kojiro; Kugou, Kazuto; Ohta, Kunihiro; Hiraoka, Yasushi; Masukata, Hisao; Kanoh, Junko

    2016-01-01

    A chromosome is composed of structurally and functionally distinct domains. However, the molecular mechanisms underlying the formation of chromatin structure and the function of subtelomeres, the telomere-adjacent regions, remain obscure. Here we report the roles of the conserved centromeric protein Shugoshin 2 (Sgo2) in defining chromatin structure and functions of the subtelomeres in the fission yeast Schizosaccharomyces pombe. We show that Sgo2 localizes at the subtelomeres preferentially during G2 phase and is essential for the formation of a highly condensed subtelomeric chromatin body ‘knob'. Furthermore, the absence of Sgo2 leads to the derepression of the subtelomeric genes and premature DNA replication at the subtelomeric late origins. Thus, the subtelomeric specialized chromatin domain organized by Sgo2 represses both transcription and replication to ensure proper gene expression and replication timing. PMID:26804021

  13. Calcium binding by the PKD1 domain regulates interdomain flexibility in Vibrio cholerae metalloprotease PrtV☆

    PubMed Central

    Edwin, Aaron; Rompikuntal, Pramod; Björn, Erik; Stier, Gunter; Wai, Sun N.; Sauer-Eriksson, A. Elisabeth

    2013-01-01

    Vibrio cholerae, the causative agent of cholera, releases several virulence factors including secreted proteases when it infects its host. These factors attack host cell proteins and break down tissue barriers and cellular matrix components such as collagen, laminin, fibronectin, keratin, elastin, and they induce necrotic tissue damage. The secreted protease PrtV constitutes one virulence factors of V. cholerae. It is a metalloprotease belonging to the M6 peptidase family. The protein is expressed as an inactive, multidomain, 102 kDa pre-pro-protein that undergoes several N- and C-terminal modifications after which it is secreted as an intermediate variant of 81 kDa. After secretion from the bacteria, additional proteolytic steps occur to produce the 55 kDa active M6 metalloprotease. The domain arrangement of PrtV is likely to play an important role in these maturation steps, which are known to be regulated by calcium. However, the molecular mechanism by which calcium controls proteolysis is unknown. In this study, we report the atomic resolution crystal structure of the PKD1 domain from V. cholera PrtV (residues 755–838) determined at 1.1 Å. The structure reveals a previously uncharacterized Ca2+-binding site located near linker regions between domains. Conformational changes in the Ca2+-free and Ca2+-bound forms suggest that Ca2+-binding at the PKD1 domain controls domain linker flexibility, and plays an important structural role, providing stability to the PrtV protein. PMID:23905008

  14. Novel Zinc-binding Site in the E2 Domain Regulates Amyloid Precursor-like Protein 1 (APLP1) Oligomerization*

    PubMed Central

    Mayer, Magnus C.; Kaden, Daniela; Schauenburg, Linda; Hancock, Mark A.; Voigt, Philipp; Roeser, Dirk; Barucker, Christian; Than, Manuel E.; Schaefer, Michael; Multhaup, Gerhard

    2014-01-01

    The amyloid precursor protein (APP) and the APP-like proteins 1 and 2 (APLP1 and APLP2) are a family of multidomain transmembrane proteins possessing homo- and heterotypic contact sites in their ectodomains. We previously reported that divalent metal ions dictate the conformation of the extracellular APP E2 domain (Dahms, S. O., Könnig, I., Roeser, D., Gührs, K.-H., Mayer, M. C., Kaden, D., Multhaup, G., and Than, M. E. (2012) J. Mol. Biol. 416, 438–452), but unresolved is the nature and functional importance of metal ion binding to APLP1 and APLP2. We found here that zinc ions bound to APP and APLP1 E2 domains and mediated their oligomerization, whereas the APLP2 E2 domain interacted more weakly with zinc possessing a less surface-exposed zinc-binding site, and stayed monomeric. Copper ions bound to E2 domains of all three proteins. Fluorescence resonance energy transfer (FRET) analyses examined the effect of metal ion binding to APP and APLPs in the cellular context in real time. Zinc ions specifically induced APP and APLP1 oligomerization and forced APLP1 into multimeric clusters at the plasma membrane consistent with zinc concentrations in the blood and brain. The observed effects were mediated by a novel zinc-binding site within the APLP1 E2 domain as APLP1 deletion mutants revealed. Based upon its cellular localization and its dominant response to zinc ions, APLP1 is mainly affected by extracellular zinc among the APP family proteins. We conclude that zinc binding and APP/APLP oligomerization are intimately linked, and we propose that this represents a novel mechanism for regulating APP/APLP protein function at the molecular level. PMID:24855651

  15. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1.

    PubMed

    Ren, Hong Yu; Grove, Diane E; De La Rosa, Oxana; Houck, Scott A; Sopha, Pattarawut; Van Goor, Fredrick; Hoffman, Beth J; Cyr, Douglas M

    2013-10-01

    Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR. PMID:23924900

  16. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1

    PubMed Central

    Ren, Hong Yu; Grove, Diane E.; De La Rosa, Oxana; Houck, Scott A.; Sopha, Pattarawut; Van Goor, Fredrick; Hoffman, Beth J.; Cyr, Douglas M.

    2013-01-01

    Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR. PMID:23924900

  17. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription

    PubMed Central

    Tuand, Krizia; Stijnen, Pieter; Volders, Karolien; Declercq, Jeroen; Nuytens, Kim; Meulemans, Sandra; Creemers, John

    2016-01-01

    Background Neurobeachin (NBEA) is an autism spectrum disorders (ASD) candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA)-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA), an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088) and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW). Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed. Methods Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO) enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression. Results Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated. Conclusion Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for

  18. Topologically-associating domains are stable units of replication-timing regulation

    PubMed Central

    Pope, Benjamin D.; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L.; Wang, Yanli; Hansen, R. Scott; Canfield, Theresa K.; Thurman, Robert E.; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H.; Snyder, Michael P.; Stamatoyannopoulos, John A.; Taylor, James; Hardison, Ross C.; Kahveci, Tamer; Ren, Bing; Gilbert, David M.

    2014-01-01

    Summary Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program1. During mammalian development, at least half the genome changes replication timing, primarily in units of 400–800 kb (“replication domains”; RDs), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements2–7. Early and late replication correlate strongly with open and closed chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, lamina-associated domains (LADs)4,5,8,9. Recent Hi-C mapping has unveiled a substructure of topologically-associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to RDs8,10. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale11,12. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure8,9,13. Here, we localize boundaries of RDs to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, RD boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure RD boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell type specific sub-nuclear compartmentalization with developmentally

  19. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration

    PubMed Central

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-01-01

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration. PMID:26681405

  20. Paracrine regulation of growth factor signaling by shed leucine-rich repeats and immunoglobulin-like domains 1

    SciTech Connect

    Yi, Wei; Holmlund, Camilla; Nilsson, Jonas; Inui, Shigeki; Lei, Ting; Itami, Satoshi; Henriksson, Roger; Hedman, Hakan

    2011-02-15

    Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a recently discovered negative regulator of growth factor signaling. The LRIG1 integral membrane protein has been demonstrated to regulate various oncogenic receptor tyrosine kinases, including epidermal growth factor (EGF) receptor (EGFR), by cell-autonomous mechanisms. Here, we investigated whether LRIG1 ectodomains were shed, and if LRIG1 could regulate cell proliferation and EGF signaling in a paracrine manner. Cells constitutively shed LRIG1 ectodomains in vitro, and shedding was modulated by known regulators of metalloproteases, including the ADAM17 specific inhibitor TAPI-2. Furthermore, shedding was enhanced by ectopic expression of Adam17. LRIG1 ectodomains appeared to be shed in vivo, as well, as demonstrated by immunoblotting of mouse and human tissue lysates. Ectopic expression of LRIG1 in lymphocytes suppressed EGF signaling in co-cultured fibroblastoid cells, demonstrating that shed LRIG1 ectodomains can function in a paracrine fashion. Purified LRIG1 ectodomains suppressed EGF signaling without any apparent downregulation of EGFR levels. Taken together, the results show that the LRIG1 ectodomain can be proteolytically shed and can function as a non-cell-autonomous regulator of growth factor signaling. Thus, LRIG1 or its ectodomain could have therapeutic potential in the treatment of growth factor receptor-dependent cancers.

  1. The Indeterminate Domain Protein ROC1 Regulates Chilling Tolerance via Activation of DREB1B/CBF1 in Rice

    PubMed Central

    Dou, Mingzhu; Cheng, Shuai; Zhao, Baotian; Xuan, Yuanhu; Shao, Minglong

    2016-01-01

    Abiotic stress, including salinity, drought and cold, severely affect diverse aspects of plant development and production. Rice is an important crop that does not acclimate to cold; therefore, it is relatively sensitive to low temperature stress. Dehydration-responsive element-binding protein 1s (DREB1s)/C-repeat binding factors (CBFs) are well known for their function in cold tolerance, but the transcriptional regulation of CBFs remains elusive, especially in rice. Here, we performed a yeast one-hybrid assay using the promoter of CBF1, a cold-induced gene, to isolate transcriptional regulators of CBF1. Among the seven candidates identified, an indeterminate domain (IDD) protein named ROC1 (a regulator of CBF1) was further analyzed. The ROC1 transcript was induced by exogenously-treated auxin, while it was not altered by cold or ABA stimuli. ROC1-GFP was localized at the nucleus, and ROC1 showed trans-activation activity in yeast. The electrophoretic mobility shift assay (EMSA) and ChIP analyses revealed that ROC1 directly bound to the promoter of CBF1. Furthermore, ROC1 mutants exhibited chilling-sensitive symptoms and inhibited cold-mediated induction of CBF1 and CBF3, indicating that ROC1 is a positive regulator of cold stress responses. Taken together, this study identified the CBF1 regulator, and the results are important for rice plant adaptation to chilling stress. PMID:26927068

  2. The Indeterminate Domain Protein ROC1 Regulates Chilling Tolerance via Activation of DREB1B/CBF1 in Rice.

    PubMed

    Dou, Mingzhu; Cheng, Shuai; Zhao, Baotian; Xuan, Yuanhu; Shao, Minglong

    2016-01-01

    Abiotic stress, including salinity, drought and cold, severely affect diverse aspects of plant development and production. Rice is an important crop that does not acclimate to cold; therefore, it is relatively sensitive to low temperature stress. Dehydration-responsive element-binding protein 1s (DREB1s)/C-repeat binding factors (CBFs) are well known for their function in cold tolerance, but the transcriptional regulation of CBFs remains elusive, especially in rice. Here, we performed a yeast one-hybrid assay using the promoter of CBF1, a cold-induced gene, to isolate transcriptional regulators of CBF1. Among the seven candidates identified, an indeterminate domain (IDD) protein named ROC1 (a regulator of CBF1) was further analyzed. The ROC1 transcript was induced by exogenously-treated auxin, while it was not altered by cold or ABA stimuli. ROC1-GFP was localized at the nucleus, and ROC1 showed trans-activation activity in yeast. The electrophoretic mobility shift assay (EMSA) and ChIP analyses revealed that ROC1 directly bound to the promoter of CBF1. Furthermore, ROC1 mutants exhibited chilling-sensitive symptoms and inhibited cold-mediated induction of CBF1 and CBF3, indicating that ROC1 is a positive regulator of cold stress responses. Taken together, this study identified the CBF1 regulator, and the results are important for rice plant adaptation to chilling stress. PMID:26927068

  3. A Kelch Domain-Containing F-Box Coding Gene Negatively Regulates Flavonoid Accumulation in Muskmelon1[OPEN

    PubMed Central

    Feder, Ari; Burger, Joseph; Gao, Shan; Lewinsohn, Efraim; Katzir, Nurit; Schaffer, Arthur A.; Meir, Ayala; Davidovich-Rikanati, Rachel; Portnoy, Vitaly; Gal-On, Amit; Fei, Zhangjun; Kashi, Yechezkel; Tadmor, Yaakov

    2015-01-01

    The flavonoids are phenylpropanoid-derived metabolites that are ubiquitous in plants, playing many roles in growth and development. Recently, we observed that fruit rinds of yellow casaba muskmelons (Cucumis melo ‘Inodorous Group’) accumulate naringenin chalcone, a yellow flavonoid pigment. With RNA-sequencing analysis of bulked segregants representing the tails of a population segregating for naringenin chalcone accumulation followed by fine mapping and genetic transformation, we identified a Kelch domain-containing F-box protein coding (CmKFB) gene that, when expressed, negatively regulates naringenin chalcone accumulation. Additional metabolite analysis indicated that downstream flavonoids are accumulated together with naringenin chalcone, whereas CmKFB expression diverts the biochemical flux toward coumarins and general phenylpropanoids. These results show that CmKFB functions as a posttranscriptional regulator that diverts flavonoid metabolic flux. PMID:26358418

  4. The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses.

    PubMed

    Khare, Sonal; Ratsimandresy, Rojo A; de Almeida, Lúcia; Cuda, Carla M; Rellick, Stephanie L; Misharin, Alexander V; Wallin, Melissa C; Gangopadhyay, Anu; Forte, Eleonora; Gottwein, Eva; Perlman, Harris; Reed, John C; Greaves, David R; Dorfleutner, Andrea; Stehlik, Christian

    2014-04-01

    The innate immune system responds to infection and tissue damage by activating cytosolic sensory complexes called 'inflammasomes'. Cytosolic DNA is sensed by AIM2-like receptors (ALRs) during bacterial and viral infections and in autoimmune diseases. Subsequently, recruitment of the inflammasome adaptor ASC links ALRs to the activation of caspase-1. A controlled immune response is crucial for maintaining homeostasis, but the regulation of ALR inflammasomes is poorly understood. Here we identified the PYRIN domain (PYD)-only protein POP3, which competes with ASC for recruitment to ALRs, as an inhibitor of DNA virus-induced activation of ALR inflammasomes in vivo. Data obtained with a mouse model with macrophage-specific POP3 expression emphasize the importance of the regulation of ALR inflammasomes in monocytes and macrophages. PMID:24531343

  5. Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease.

    PubMed

    March, Zachary M; King, Oliver D; Shorter, James

    2016-09-15

    Key challenges faced by all cells include how to spatiotemporally organize complex biochemistry and how to respond to environmental fluctuations. The budding yeast Saccharomyces cerevisiae harnesses alternative protein folding mediated by yeast prion domains (PrDs) for rapid evolution of new traits in response to environmental stress. Increasingly, it is appreciated that low complexity domains similar in amino acid composition to yeast PrDs (prion-like domains; PrLDs) found in metazoa have a prominent role in subcellular cytoplasmic organization, especially in relation to RNA homeostasis. In this review, we highlight recent advances in our understanding of the role of prions in enabling rapid adaptation to environmental stress in yeast. We also present the complete list of human proteins with PrLDs and discuss the prevalence of the PrLD in nucleic-acid binding proteins that are often connected to neurodegenerative disease, including: ataxin 1, ataxin 2, FUS, TDP-43, TAF15, EWSR1, hnRNPA1, and hnRNPA2. Recent paradigm-shifting advances establish that PrLDs undergo phase transitions to liquid states, which contribute to the structure and biophysics of diverse membraneless organelles. This structural functionality of PrLDs, however, simultaneously increases their propensity for deleterious protein-misfolding events that drive neurodegenerative disease. We suggest that even these PrLD-misfolding events are not irreversible and can be mitigated by natural or engineered protein disaggregases, which could have important therapeutic applications. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease. PMID:26996412

  6. BACE1 retrograde trafficking is uniquely regulated by the cytoplasmic domain of sortilin.

    PubMed

    Finan, Gina M; Okada, Hirokazu; Kim, Tae-Wan

    2011-04-01

    BACE1 (β-site β-amyloid precursor protein (APP)-cleaving enzyme 1) mediates the first proteolytic cleavage of APP, leading to amyloid β-peptide (Aβ) production. It has been reported that BACE1 intracellular trafficking, in particular endosome-to-TGN sorting, is mediated by adaptor complexes, such as retromer and Golgi-localized γ-ear-containing ARF-binding proteins (GGAs). Here we investigated whether sortilin, a Vps10p domain-sorting receptor believed to participate in retromer-mediated transport of select membrane cargoes, contributes to the subcellular trafficking and activity of BACE1. Our initial studies revealed increased levels of sortilin in post-mortem brain tissue of AD patients and that overexpression of sortilin leads to increased BACE1-mediated cleavage of APP in cultured cells. In contrast, RNAi suppression of sortilin results in decreased BACE1-mediated cleavage of APP. We also found that sortilin interacts with BACE1 and that a sortilin construct lacking its cytoplasmic domain, which contains putative retromer sorting motifs, remains bound to BACE1. However, expression of this truncated sortilin redistributes BACE1 from the trans-Golgi network to the endosomes and substantially reduces the retrograde trafficking of BACE1. Site-directed mutagenesis and chimera experiments reveal that the cytoplasmic tail of sortilin, but not those from other VPS10p domain receptors (e.g. SorCs1b and SorLA), plays a unique role in BACE1 trafficking. Our studies suggest a new function for sortilin as a modulator of BACE1 retrograde trafficking and subsequent generation of Aβ. PMID:21245145

  7. Jagged1 intracellular domain-mediated inhibition of Notch1 signalling regulates cardiac homeostasis in the postnatal heart

    PubMed Central

    Metrich, Mélanie; Bezdek Pomey, April; Berthonneche, Corinne; Sarre, Alexandre; Nemir, Mohamed; Pedrazzini, Thierry

    2015-01-01

    Aims Notch1 signalling in the heart is mainly activated via expression of Jagged1 on the surface of cardiomyocytes. Notch controls cardiomyocyte proliferation and differentiation in the developing heart and regulates cardiac remodelling in the stressed adult heart. Besides canonical Notch receptor activation in signal-receiving cells, Notch ligands can also activate Notch receptor-independent responses in signal-sending cells via release of their intracellular domain. We evaluated therefore the importance of Jagged1 (J1) intracellular domain (ICD)-mediated pathways in the postnatal heart. Methods and results In cardiomyocytes, Jagged1 releases J1ICD, which then translocates into the nucleus and down-regulates Notch transcriptional activity. To study the importance of J1ICD in cardiac homeostasis, we generated transgenic mice expressing a tamoxifen-inducible form of J1ICD, specifically in cardiomyocytes. Using this model, we demonstrate that J1ICD-mediated Notch inhibition diminishes proliferation in the neonatal cardiomyocyte population and promotes maturation. In the neonatal heart, a response via Wnt and Akt pathway activation is elicited as an attempt to compensate for the deficit in cardiomyocyte number resulting from J1ICD activation. In the stressed adult heart, J1ICD activation results in a dramatic reduction of the number of Notch signalling cardiomyocytes, blunts the hypertrophic response, and reduces the number of apoptotic cardiomyocytes. Consistently, this occurs concomitantly with a significant down-regulation of the phosphorylation of the Akt effectors ribosomal S6 protein (S6) and eukaryotic initiation factor 4E binding protein1 (4EBP1) controlling protein synthesis. Conclusions Altogether, these data demonstrate the importance of J1ICD in the modulation of physiological and pathological hypertrophy, and reveal the existence of a novel pathway regulating cardiac homeostasis. PMID:26249804

  8. A fraction of Crm1 locates at centrosomes by its CRIME domain and regulates the centrosomal localization of pericentrin

    SciTech Connect

    Liu, Qinying; Jiang, Qing; Zhang, Chuanmao

    2009-07-03

    Crm1 plays a role in exporting proteins containing nuclear export signals (NESs) from the nucleus to the cytoplasm. Some proteins that are capable of interacting with Ran/Crm1 were reported to be localized at centrosomes and to function as centrosome checkpoints. But it remains unclear how Crm1 locates at centrosomes. In this study, we found that a fraction of Crm1 is located at centrosomes through its N-terminal CRM1, importin {beta} etc. (CRIME) domain, which is responsible for interacting with RanGTP, suggesting that Crm1 might target to centrosomes through binding centrosomal RanGTP. Moreover, overexpression of the CRIME domain, which is free of NES binding domain, resulted in the dissociation of pericentrin and {gamma}-tubulin complex from centrosomes and the disruption of microtubule nucleation. Deficiency of Crm1 provoked by RNAi also decreased the spindle poles localization of pericentrin and {gamma}-tubulin complex, coupled with mitotic defects. Since pericentrin was sensitive to Crm1 specific inhibitor leptomycin B, we propose that the centrosomal Crm1 might interact with pericentrin and regulate the localization and function of pericentrin at centrosomes.

  9. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate.

    PubMed

    Gelato, Kathy A; Tauber, Maria; Ong, Michelle S; Winter, Stefan; Hiragami-Hamada, Kyoko; Sindlinger, Julia; Lemak, Alexander; Bultsma, Yvette; Houliston, Scott; Schwarzer, Dirk; Divecha, Nullin; Arrowsmith, Cheryl H; Fischle, Wolfgang

    2014-06-19

    UHRF1 is a multidomain protein crucially linking histone H3 modification states and DNA methylation. While the interaction properties of its specific domains are well characterized, little is known about the regulation of these functionalities. We show that UHRF1 exists in distinct active states, binding either unmodified H3 or the H3 lysine 9 trimethylation (H3K9me3) modification. A polybasic region (PBR) in the C terminus blocks interaction of a tandem tudor domain (TTD) with H3K9me3 by occupying an essential peptide-binding groove. In this state the plant homeodomain (PHD) mediates interaction with the extreme N terminus of the unmodified H3 tail. Binding of the phosphatidylinositol phosphate PI5P to the PBR of UHRF1 results in a conformational rearrangement of the domains, allowing the TTD to bind H3K9me3. Our results define an allosteric mechanism controlling heterochromatin association of an essential regulatory protein of epigenetic states and identify a functional role for enigmatic nuclear phosphatidylinositol phosphates. PMID:24813945

  10. Cation Diffusion Facilitators Transport Initiation and Regulation Is Mediated by Cation Induced Conformational Changes of the Cytoplasmic Domain

    PubMed Central

    Maes, Michal; Davidov, Geula; Baram, Michal; Raschdorf, Oliver; Nadav-Tsubery, Merav; Kolusheva, Sofiya; Bitton, Ronit; Goobes, Gil; Friedler, Assaf; Miller, Yifat; Schüler, Dirk; Zarivach, Raz

    2014-01-01

    Cation diffusion facilitators (CDF) are part of a highly conserved protein family that maintains cellular divalent cation homeostasis in all domains of life. CDF's were shown to be involved in several human diseases, such as Type-II diabetes and neurodegenerative diseases. In this work, we employed a multi-disciplinary approach to study the activation mechanism of the CDF protein family. For this we used MamM, one of the main ion transporters of magnetosomes – bacterial organelles that enable magnetotactic bacteria to orientate along geomagnetic fields. Our results reveal that the cytosolic domain of MamM forms a stable dimer that undergoes distinct conformational changes upon divalent cation binding. MamM conformational change is associated with three metal binding sites that were identified and characterized. Altogether, our results provide a novel auto-regulation mode of action model in which the cytosolic domain's conformational changes upon ligand binding allows the priming of the CDF into its transport mode. PMID:24658343

  11. Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity.

    PubMed

    Wohlever, Matthew L; Baker, Tania A; Sauer, Robert T

    2014-01-01

    Degron binding regulates the activities of the AAA+ Lon protease in addition to targeting proteins for degradation. The sul20 degron from the cell-division inhibitor SulA is shown here to bind to the N domain of Escherichia coli Lon, and the recognition site is identified by cross-linking and scanning for mutations that prevent sul20-peptide binding. These N-domain mutations limit the rates of proteolysis of model sul20-tagged substrates and ATP hydrolysis by an allosteric mechanism. Lon inactivation of SulA in vivo requires binding to the N domain and robust ATP hydrolysis but does not require degradation or translocation into the proteolytic chamber. Lon-mediated relief of proteotoxic stress and protein aggregation in vivo can also occur without degradation but is not dependent on robust ATP hydrolysis. In combination, these results demonstrate that Lon can function as a protease or a chaperone and reveal that some of its ATP-dependent biological activities do not require translocation. PMID:24205897

  12. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion

    SciTech Connect

    Karvonen, Ulla; Jaenne, Olli A.; Palvimo, Jorma J. . E-mail: jorma.palvimo@uku.fi

    2006-10-01

    In addition to chromosomal proteins, histone deacetylases (HDACs) target transcription factors in transcriptional repression. Here, we show that the class II HDAC family member HDAC7 is an efficient corepressor of the androgen receptor (AR). HDAC7 resided in the cytoplasm in the absence of AR or a cognate ligand, but hormone-occupancy of AR induced nuclear transfer of HDAC7. Nuclear colocalization pattern of AR and HDAC7 was dependent on the nature of the ligand. In the presence of testosterone, a portion of HDAC7 localized to pearl-like nuclear domains, whereas AR occupied with antagonistic ligands cyproterone acetate- or casodex (bicalutamide) recruited HDAC7 from these domains to colocalize with the receptor in speckles and nucleoplasm in a more complete fashion. Ectopic expression of PML-3 relieved the repressive effect of HDAC7 on AR function by sequestering HDAC7 to PML-3 domains. AR acetylation at Lys630/632/633 was not the target of HDAC7 repression, since repression of AR function was independent of these acetylation sites. Moreover, the deacetylase activity of HDAC7 was in part dispensable in the repression of AR function. In sum, our results identify HDAC7 as a novel AR corepressor whose subcellular and subnuclear compartmentalization can be regulated in an androgen-selective manner.

  13. Plant chimeric Ca2+/Calmodulin-dependent protein kinase. Role of the neural visinin-like domain in regulating autophosphorylation and calmodulin affinity

    NASA Technical Reports Server (NTRS)

    Sathyanarayanan, P. V.; Cremo, C. R.; Poovaiah, B. W.

    2000-01-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is characterized by a serine-threonine kinase domain, an autoinhibitory domain, a calmodulin-binding domain and a neural visinin-like domain with three EF-hands. The neural visinin-like Ca(2+)-binding domain at the C-terminal end of the CaM-binding domain makes CCaMK unique among all the known calmodulin-dependent kinases. Biological functions of the plant visinin-like proteins or visinin-like domains in plant proteins are not well known. Using EF-hand deletions in the visinin-like domain, we found that the visinin-like domain regulated Ca(2+)-stimulated autophosphorylation of CCaMK. To investigate the effects of Ca(2+)-stimulated autophosphorylation on the interaction with calmodulin, the equilibrium binding constants of CCaMK were measured by fluorescence emission anisotropy using dansylated calmodulin. Binding was 8-fold tighter after Ca(2+)-stimulated autophosphorylation. This shift in affinity did not occur in CCaMK deletion mutants lacking Ca(2+)-stimulated autophosphorylation. A variable calmodulin affinity regulated by Ca(2+)-stimulated autophosphorylation mediated through the visinin-like domain is a new regulatory mechanism for CCaMK activation and calmodulin-dependent protein kinases. Our experiments demonstrate the existence of two functional molecular switches in a protein kinase regulating the kinase activity, namely a visinin-like domain acting as a Ca(2+)-triggered switch and a CaM-binding domain acting as an autophosphorylation-triggered molecular switch.

  14. Regulation of stress response signaling by the N-terminal dishevelled/EGL-10/pleckstrin domain of Sst2, a regulator of G protein signaling in Saccharomyces cerevisiae.

    PubMed

    Burchett, Scott A; Flanary, Paul; Aston, Christopher; Jiang, Lixin; Young, Kathleen H; Uetz, Peter; Fields, Stanley; Dohlman, Henrik G

    2002-06-21

    All members of the regulator of G protein signaling (RGS) family contain a conserved core domain that can accelerate G protein GTPase activity. The RGS in yeast, Sst2, can inhibit a G protein signal leading to mating. In addition, some RGS proteins contain an N-terminal domain of unknown function. Here we use complementary whole genome analysis methods to investigate the function of the N-terminal Sst2 domain. To identify a signaling pathway regulated by N-Sst2, we performed genome-wide transcription profiling of cells expressing this fragment alone and found differences in 53 transcripts. Of these, 40 are induced by N-Sst2, and nearly all contain a stress response element (STRE) in the promoter region. To identify components of a signaling pathway leading from N-Sst2 to STREs, we performed a genome-wide two-hybrid analysis using N-Sst2 as bait and found 17 interacting proteins. To identify the functionally relevant interacting proteins, we analyzed all of the available gene deletion mutants and found three (vps36 Delta, pep12 Delta, and tlg2 Delta) that induce STRE and also repress pheromone-dependent transcription. We selected VPS36 for further characterization. A vps36 Delta mutation diminishes signaling by pheromone as well as by downstream components including the G protein, effector kinase (Ste11), and transcription factor (Ste12). Conversely, overexpression of Vps36 enhances the pheromone response in sst2 Delta cells but not in wild type. These findings indicate that Vps36 and Sst2 have opposite and opposing effects on the pheromone and stress response pathways, with Vps36 acting downstream of the G protein and independently of Sst2 RGS activity. PMID:11940600

  15. Palmitoylation-dependent regulation of glutamate receptors and their PDZ domain-containing partners

    PubMed Central

    Thomas, Gareth M.; Huganir, Richard L.

    2013-01-01

    In recent years, it has become clear that both AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid)- and NMDA (N-methyl-D-aspartate)-type glutamate receptors, and many of their interacting partners, are palmitoylated proteins. Interfering with palmitoylation dramatically affects receptor trafficking and distribution and, in turn, can profoundly alter synaptic transmission. Increased knowledge of synaptic palmitoylation not only will aid our understanding of physiological neuronal regulation, but also may provide insights into, and even novel treatments for, neuropathological conditions. In the present paper, we review recent advances regarding the regulation of ionotropic glutamate receptor trafficking and function by palmitoylation. PMID:23356261

  16. Intrinsic regulation of FIC-domain AMP-transferases by oligomerization and automodification

    PubMed Central

    Stanger, Frédéric V.; Harms, Alexander; Aragão, Hugo; Mazur, Adam; Sharpe, Timothy; Dehio, Christoph; Schirmer, Tilman

    2016-01-01

    Filamentation induced by cyclic AMP (FIC)-domain enzymes catalyze adenylylation or other posttranslational modifications of target proteins to control their function. Recently, we have shown that Fic enzymes are autoinhibited by an α-helix (αinh) that partly obstructs the active site. For the single-domain class III Fic proteins, the αinh is located at the C terminus and its deletion relieves autoinhibition. However, it has remained unclear how activation occurs naturally. Here, we show by structural, biophysical, and enzymatic analyses combined with in vivo data that the class III Fic protein NmFic from Neisseria meningitidis gets autoadenylylated in cis, thereby autonomously relieving autoinhibition and thus allowing subsequent adenylylation of its target, the DNA gyrase subunit GyrB. Furthermore, we show that NmFic activation is antagonized by tetramerization. The combination of autoadenylylation and tetramerization results in nonmonotonic concentration dependence of NmFic activity and a pronounced lag phase in the progress of target adenylylation. Bioinformatic analyses indicate that this elaborate dual-control mechanism is conserved throughout class III Fic proteins. PMID:26787847

  17. Cystic fibrosis transmembrane conductance regulator with a shortened R domain rescues the intestinal phenotype of CFTR−/− mice

    PubMed Central

    Ostedgaard, Lynda S.; Meyerholz, David K.; Vermeer, Daniel W.; Karp, Philip H.; Schneider, Lindsey; Sigmund, Curt D.; Welsh, Michael J.

    2011-01-01

    Gene transfer could provide a novel therapeutic approach for cystic fibrosis (CF), and adeno-associated virus (AAV) is a promising vector. However, the packaging capacity of AAV limits inclusion of the full-length cystic fibrosis transmembrane conductance regulator (CFTR) cDNA together with other regulatory and structural elements. To overcome AAV size constraints, we recently developed a shortened CFTR missing the N-terminal portion of the R domain (residues 708–759, CFTRΔR) and found that it retained regulated anion channel activity in vitro. To test the hypothesis that CFTRΔR could correct in vivo defects, we generated CFTR−/− mice bearing a transgene with a fatty acid binding protein promoter driving expression of human CFTRΔR in the intestine (CFTR−/−;TgΔR). We found that intestinal crypts of CFTR−/−;TgΔR mice expressed CFTRΔR and the intestine appeared histologically similar to that of WT mice. Moreover, like full-length CFTR transgene, the CFTRΔR transgene produced CFTR Cl− currents and rescued the CFTR−/− intestinal phenotype. These results indicate that the N-terminal part of the CFTR R domain is dispensable for in vivo intestinal physiology. Thus, CFTRΔR may have utility for AAV-mediated gene transfer in CF. PMID:21285372

  18. Cystic fibrosis transmembrane conductance regulator with a shortened R domain rescues the intestinal phenotype of CFTR-/- mice.

    PubMed

    Ostedgaard, Lynda S; Meyerholz, David K; Vermeer, Daniel W; Karp, Philip H; Schneider, Lindsey; Sigmund, Curt D; Welsh, Michael J

    2011-02-15

    Gene transfer could provide a novel therapeutic approach for cystic fibrosis (CF), and adeno-associated virus (AAV) is a promising vector. However, the packaging capacity of AAV limits inclusion of the full-length cystic fibrosis transmembrane conductance regulator (CFTR) cDNA together with other regulatory and structural elements. To overcome AAV size constraints, we recently developed a shortened CFTR missing the N-terminal portion of the R domain (residues 708-759, CFTRΔR) and found that it retained regulated anion channel activity in vitro. To test the hypothesis that CFTRΔR could correct in vivo defects, we generated CFTR(-/-) mice bearing a transgene with a fatty acid binding protein promoter driving expression of human CFTRΔR in the intestine (CFTR(-/-);TgΔR). We found that intestinal crypts of CFTR(-/-);TgΔR mice expressed CFTRΔR and the intestine appeared histologically similar to that of WT mice. Moreover, like full-length CFTR transgene, the CFTRΔR transgene produced CFTR Cl(-) currents and rescued the CFTR(-/-) intestinal phenotype. These results indicate that the N-terminal part of the CFTR R domain is dispensable for in vivo intestinal physiology. Thus, CFTRΔR may have utility for AAV-mediated gene transfer in CF. PMID:21285372

  19. Regulation of dynamin-2 assembly-disassembly and function through the SH3A domain of intersectin-1s.

    PubMed

    Knezevic, Ivana; Predescu, Dan; Bardita, Cristina; Wang, Minhua; Sharma, Tiffany; Keith, Barbara; Neamu, Radu; Malik, Asrar B; Predescu, Sanda

    2011-11-01

    Intersectin-1s (ITSN-1s), a five Src homology 3 (SH3) domain-containing protein, is critically required for caveolae and clathrin-mediated endocytosis (CME), due to its interactions with dynamin (dyn). Of the five SH3A-E domains, SH3A is unique because of its high affinity for dyn and potent inhibition of CME. However, the molecular mechanism by which SH3A integrates in the overall function of ITSN-1s to regulate the endocytic process is not understood. Using biochemical and functional approaches as well as high-resolution electron microscopy, we show that SH3A exogenously expressed in human lung endothelial cells caused abnormal endocytic structures, distorted caveolae clusters, frequent staining-dense rings around the caveolar necks and 60% inhibition of caveolae internalization. In vitro studies further revealed that SH3A, similar to full-length ITSN-1s stimulates dyn2 oligomerization and guanosine triphosphatase (GTP)ase activity, effects not detected when other SH3 domains of ITSN-1s were used as controls. Strikingly, in the presence of SH3A, dyn2-dyn2 interactions are stabilized and despite continuous GTP hydrolysis, dyn2 oligomers cannot disassemble. SH3A may hold up caveolae release from the plasma membrane and formation of free-transport vesicles, by prolonging the lifetime of assembled dyn2. Altogether, our results indicate that ITSN-1s, via its SH3A has the unique ability to regulate dyn2 assembly-disassembly and function during endocytosis. PMID:21129155

  20. Regulation of dynamin-2 assembly–disassembly and function through the SH3A domain of intersectin-1s

    PubMed Central

    Knezevic, Ivana; Predescu, Dan; Bardita, Cristina; Wang, Minhua; Sharma, Tiffany; Keith, Barbara; Neamu, Radu; Malik, Asrar B; Predescu, Sanda

    2011-01-01

    Abstract Intersectin-1s (ITSN-1s), a five Src homology 3 (SH3) domain-containing protein, is critically required for caveolae and clathrin-mediated endocytosis (CME), due to its interactions with dynamin (dyn). Of the five SH3A-E domains, SH3A is unique because of its high affinity for dyn and potent inhibition of CME. However, the molecular mechanism by which SH3A integrates in the overall function of ITSN-1s to regulate the endocytic process is not understood. Using biochemical and functional approaches as well as high-resolution electron microscopy, we show that SH3A exogenously expressed in human lung endothelial cells caused abnormal endocytic structures, distorted caveolae clusters, frequent staining-dense rings around the caveolar necks and 60% inhibition of caveolae internalization. In vitro studies further revealed that SH3A, similar to full-length ITSN-1s stimulates dyn2 oligomerization and guanosine triphosphatase (GTP)ase activity, effects not detected when other SH3 domains of ITSN-1s were used as controls. Strikingly, in the presence of SH3A, dyn2–dyn2 interactions are stabilized and despite continuous GTP hydrolysis, dyn2 oligomers cannot disassemble. SH3A may hold up caveolae release from the plasma membrane and formation of free-transport vesicles, by prolonging the lifetime of assembled dyn2. Altogether, our results indicate that ITSN-1s, via its SH3A has the unique ability to regulate dyn2 assembly–disassembly and function during endocytosis. PMID:21129155

  1. Structure of a Highly Conserved Domain of Rock1 Required for Shroom-Mediated Regulation of Cell Morphology

    PubMed Central

    Bauer, Robert J.; Heroux, Annie; Zalewski, Jenna K.; Heber, Simone; Dosunmu-Ogunbi, Atinuke M.; Trakselis, Michael A.; Hildebrand, Jeffrey D.; VanDemark, Andrew P.

    2013-01-01

    Rho-associated coiled coil containing protein kinase (Rho-kinase or Rock) is a well-defined determinant of actin organization and dynamics in most animal cells characterized to date. One of the primary effectors of Rock is non-muscle myosin II. Activation of Rock results in increased contractility of myosin II and subsequent changes in actin architecture and cell morphology. The regulation of Rock is thought to occur via autoinhibition of the kinase domain via intramolecular interactions between the N-terminus and the C-terminus of the kinase. This autoinhibited state can be relieved via proteolytic cleavage, binding of lipids to a Pleckstrin Homology domain near the C-terminus, or binding of GTP-bound RhoA to the central coiled-coil region of Rock. Recent work has identified the Shroom family of proteins as an additional regulator of Rock either at the level of cellular distribution or catalytic activity or both. The Shroom-Rock complex is conserved in most animals and is essential for the formation of the neural tube, eye, and gut in vertebrates. To address the mechanism by which Shroom and Rock interact, we have solved the structure of the coiled-coil region of Rock that binds to Shroom proteins. Consistent with other observations, the Shroom binding domain is a parallel coiled-coil dimer. Using biochemical approaches, we have identified a large patch of residues that contribute to Shrm binding. Their orientation suggests that there may be two independent Shrm binding sites on opposing faces of the coiled-coil region of Rock. Finally, we show that the binding surface is essential for Rock colocalization with Shroom and for Shroom-mediated changes in cell morphology. PMID:24349032

  2. Refined molecular hinge between allosteric and catalytic domain determines allosteric regulation and stability of fungal chorismate mutase

    PubMed Central

    Helmstaedt, Kerstin; Heinrich, Gabriele; Lipscomb, William N.; Braus, Gerhard H.

    2002-01-01

    The yeast chorismate mutase is regulated by tyrosine as feedback inhibitor and tryptophan as crosspathway activator. The monomer consists of a catalytic and a regulatory domain covalently linked by the loop L220s (212–226), which functions as a molecular hinge. Two monomers form the active dimeric enzyme stabilized by hydrophobic interactions in the vicinity of loop L220s. The role of loop L220s and its environment for enzyme regulation, dimerization, and stability was analyzed. Substitution of yeast loop L220s in place of the homologous loop from the corresponding and similarly regulated Aspergillus enzyme (and the reverse substitution) changed tyrosine inhibition to activation. Yeast loop L220s substituted into the Aspergillus enzyme resulted in a tryptophan-inhibitable enzyme. Monomeric yeast chorismate mutases could be generated by substituting two hydrophobic residues in and near the hinge region. The resulting Thr-212→Asp–Phe-28→Asp enzyme was as stable as wild type, but lost allosteric regulation and showed reduced catalytic activity. These results underline the crucial role of this molecular hinge for inhibition, activation, quaternary structure, and stability of yeast chorismate mutase. PMID:11997452

  3. LLM-Domain Containing B-GATA Factors Control Different Aspects of Cytokinin-Regulated Development in Arabidopsis thaliana.

    PubMed

    Ranftl, Quirin L; Bastakis, Emmanouil; Klermund, Carina; Schwechheimer, Claus

    2016-04-01

    Leu-Leu-Met (LLM)-domain B-GATAs are a subfamily of the 30-membered GATA transcription factor family from Arabidopsis. Only two of the six Arabidopsis LLM-domain B-GATAs, i.e. GATA, NITRATE-INDUCIBLE, CARBON METABOLISM-INVOLVED (GNC) and its paralog GNC-LIKE/CYTOKININ-RESPONSIVE GATA FACTOR1 (GNL), have already been analyzed with regard to their biological function. Together, GNC and GNL control germination, greening, flowering time, and senescence downstream from auxin, cytokinin (CK), gibberellin (GA), and light signaling. Whereas overexpression and complementation analyses suggest a redundant biochemical function between GNC and GNL, nothing is known about the biological role of the four other LLM-domain B-GATAs, GATA15, GATA16, GATA17, and GATA17L (GATA17-LIKE), based on loss-of-function mutant phenotypes. Here, we examine insertion mutants of the six Arabidopsis B-GATA genes and reveal the role of these genes in the control of greening, hypocotyl elongation, phyllotaxy, floral organ initiation, accessory meristem formation, flowering time, and senescence. Several of these phenotypes had previously not been described for the gnc and gnl mutants or were enhanced in the more complex mutants when compared to gnc gnl mutants. Some of the respective responses may be mediated by CK signaling, which activates the expression of all six GATA genes. CK-induced gene expression is partially compromised in LLM-domain B-GATA mutants, suggesting that B-GATA genes play a role in CK responses. We furthermore provide evidence for a transcriptional cross regulation between these GATAs that may, in at least some cases, be at the basis of their apparent functional redundancy. PMID:26829982

  4. Binding of Drosophila Polo kinase to its regulator Matrimony is noncanonical and involves two separate functional domains

    PubMed Central

    Bonner, Amanda M.; Hughes, Stacie E.; Chisholm, Jennifer A.; Smith, S. Kendall; Slaughter, Brian D.; Unruh, Jay R.; Collins, Kimberly A.; Friederichs, Jennifer M.; Florens, Laurence; Swanson, Selene K.; Pelot, Marissa C.; Miller, Danny E.; Washburn, Michael P.; Jaspersen, Sue L.; Hawley, R. Scott

    2013-01-01

    Drosophila melanogaster Polo kinase physically interacts with, and is repressed by, the Matrimony (Mtrm) protein during oogenesis. Females heterozygous for a deletion of the mtrm gene display defects in chromosome segregation at meiosis I. However, a complete absence of Mtrm results in both meiotic catastrophe and female sterility. We show that three phosphorylated residues in an N-terminal region in Mtrm are required for Mtrm::Polo binding. However, this binding is noncanonical; it does not require either a complete S-pS/pT-P motif in Mtrm or key residues in the Polo-box domain of Polo that allow Polo to bind phosphorylated substrates. By using fluorescence cross-correlation spectroscopy to characterize the Mtrm::Polo interaction in vivo, we show that a sterile α-motif (SAM) domain located at the C terminus of Mtrm increases the stability of Mtrm::Polo binding. Although Mtrm’s C-terminal SAM domain is not required to rescue the chromosome segregation defects observed in mtrm/+ females, it is essential to prevent both meiotic catastrophe and the female sterility observed in mtrm/mtrm females. We propose that Polo’s interaction with the cluster of phosphorylated residues alone is sufficient to rescue the meiosis I defect. However, the strengthening of Mtrm::Polo binding mediated by the SAM domain is necessary to prevent meiotic catastrophe and ensure female fertility. Characterization of the Mtrm::Polo interaction, as well as that of other Polo regulators, may assist in the design of a new class of Polo inhibitors to be used as targeted anticancer therapeutic agents. PMID:23479640

  5. Multiple Domain Associations within the Arabidopsis Immune Receptor RPP1 Regulate the Activation of Programmed Cell Death

    PubMed Central

    Schreiber, Karl J.; Bentham, Adam; Williams, Simon J.; Kobe, Bostjan; Staskawicz, Brian J.

    2016-01-01

    Upon recognition of pathogen virulence effectors, plant nucleotide-binding leucine-rich repeat (NLR) proteins induce defense responses including localized host cell death. In an effort to understand the molecular mechanisms leading to this response, we examined the Arabidopsis thaliana NLR protein RECOGNITION OF PERONOSPORA PARASITICA1 (RPP1), which recognizes the Hyaloperonospora arabidopsidis effector ARABIDOPSIS THALIANA RECOGNIZED1 (ATR1). Expression of the N-terminus of RPP1, including the Toll/interleukin-1 receptor (TIR) domain (“N-TIR”), elicited an effector-independent cell death response, and we used allelic variation in TIR domain sequences to define the key residues that contribute to this phenotype. Further biochemical characterization indicated that cell death induction was correlated with N-TIR domain self-association. In addition, we demonstrated that the nucleotide-binding (NB)-ARC1 region of RPP1 self-associates and plays a critical role in cell death activation, likely by facilitating TIR:TIR interactions. Structural homology modeling of the NB subdomain allowed us to identify a putative oligomerization interface that was shown to influence NB-ARC1 self-association. Significantly, full-length RPP1 exhibited effector-dependent oligomerization and, although mutations at the NB-ARC1 oligomerization interface eliminated cell death induction, RPP1 self-association was unaffected, suggesting that additional regions contribute to oligomerization. Indeed, the leucine-rich repeat domain of RPP1 also self-associates, indicating that multiple interaction interfaces exist within activated RPP1 oligomers. Finally, we observed numerous intramolecular interactions that likely function to negatively regulate RPP1, and present a model describing the transition to an active NLR protein. PMID:27427964

  6. Oxidation State of the XRCC1 N-terminal Domain Regulates DNA Polymerase Beta Binding Affinity

    SciTech Connect

    Cuneo, M.; London, R

    2010-01-01

    Formation of a complex between the XRCC1 N-terminal domain (NTD) and DNA polymerase {beta} (Pol {beta}) is central to base excision repair of damaged DNA. Two crystal forms of XRCC1-NTD complexed with Pol {beta} have been solved, revealing that the XRCC1-NTD is able to adopt a redox-dependent alternate fold, characterized by a disulfide bond, and substantial variations of secondary structure, folding topology, and electrostatic surface. Although most of these structural changes occur distal to the interface, the oxidized XRCC1-NTD forms additional interactions with Pol {beta}, enhancing affinity by an order of magnitude. Transient disulfide bond formation is increasingly recognized as an important molecular regulatory mechanism. The results presented here suggest a paradigm in DNA repair in which the redox state of a scaffolding protein plays an active role in organizing the repair complex.

  7. Critical role of the first transmembrane domain of Cx26 in regulating oligomerization and function

    PubMed Central

    Jara, Oscar; Acuña, Rodrigo; García, Isaac E.; Maripillán, Jaime; Figueroa, Vania; Sáez, Juan C.; Araya-Secchi, Raúl; Lagos, Carlos F.; Pérez-Acle, Tomas; Berthoud, Viviana M.; Beyer, Eric C.; Martínez, Agustín D.

    2012-01-01

    To identify motifs involved in oligomerization of the gap junction protein Cx26, we studied individual transmembrane (TM) domains and the full-length protein. Using the TOXCAT assay for interactions of isolated TM α-helices, we found that TM1, a Cx26 pore domain, had a strong propensity to homodimerize. We identified amino acids Val-37–Ala-40 (VVAA) as the TM1 motif required for homodimerization. Two deafness-associated Cx26 mutations localized in this region, Cx26V37I and Cx26A40G, differentially affected dimerization. TM1-V37I dimerized only weakly, whereas TM1-A40G did not dimerize. When the full-length mutants were expressed in HeLa cells, both Cx26V37I and Cx26A40G formed oligomers less efficiently than wild-type Cx26. A Cx26 cysteine substitution mutant, Cx26V37C formed dithiothreitol-sensitive dimers. Substitution mutants of Val-37 formed intercellular channels with reduced function, while mutants of Ala-40 did not form functional gap junction channels. Unlike wild-type Cx26, neither Cx26V37I nor Cx26A40G formed functional hemichannels in low extracellular calcium. Thus the VVAA motif of Cx26 is critical for TM1 dimerization, hexamer formation, and channel function. The differential effects of VVAA mutants on hemichannels and gap junction channels imply that inter-TM interactions can differ in unapposed and docked hemichannels. Moreover, Cx26 oligomerization appears dependent on transient TM1 dimerization as an intermediate step. PMID:22787277

  8. A structural model of anti-anti-[sigma];#963; inhibition by a two-component receiver domain: the PhyR stress response regulator

    SciTech Connect

    Herrou, Julien; Foreman, Robert; Fiebig, Aretha; Crosson, Sean

    2012-03-30

    PhyR is a hybrid stress regulator conserved in {alpha}-proteobacteria that contains an N-terminal {sigma}-like (SL) domain and a C-terminal receiver domain. Phosphorylation of the receiver domain is known to promote binding of the SL domain to an anti-{sigma} factor. PhyR thus functions as an anti-anti-{sigma} factor in its phosphorylated state. We present genetic evidence that Caulobacter crescentus PhyR is a phosphorylation-dependent stress regulator that functions in the same pathway as {sigma}{sup T} and its anti-{sigma} factor, NepR. Additionally, we report the X-ray crystal structure of PhyR at 1.25 {angstrom} resolution, which provides insight into the mechanism of anti-anti-{sigma} regulation. Direct intramolecular contact between the PhyR receiver and SL domains spans regions {sigma}{sub 2} and {sigma}{sub 4}, likely serving to stabilize the SL domain in a closed conformation. The molecular surface of the receiver domain contacting the SL domain is the structural equivalent of {alpha}4-{beta}5-{alpha}5, which is known to undergo dynamic conformational change upon phosphorylation in a diverse range of receiver proteins. We propose a structural model of PhyR regulation in which receiver phosphorylation destabilizes the intramolecular interaction between SL and receiver domains, thereby permitting regions {sigma}{sub 2} and {sigma}{sub 4} in the SL domain to open about a flexible connector loop and bind anti-{sigma} factor.

  9. A heme-binding domain controls regulation of ATP-dependent potassium channels

    PubMed Central

    Burton, Mark J.; Kapetanaki, Sofia M.; Chernova, Tatyana; Jamieson, Andrew G.; Dorlet, Pierre; Santolini, Jérôme; Mitcheson, John S.; Davies, Noel W.; Schmid, Ralf; Raven, Emma L.; Storey, Nina M.

    2016-01-01

    Heme iron has many and varied roles in biology. Most commonly it binds as a prosthetic group to proteins, and it has been widely supposed and amply demonstrated that subtle variations in the protein structure around the heme, including the heme ligands, are used to control the reactivity of the metal ion. However, the role of heme in biology now appears to also include a regulatory responsibility in the cell; this includes regulation of ion channel function. In this work, we show that cardiac KATP channels are regulated by heme. We identify a cytoplasmic heme-binding CXXHX16H motif on the sulphonylurea receptor subunit of the channel, and mutagenesis together with quantitative and spectroscopic analyses of heme-binding and single channel experiments identified Cys628 and His648 as important for heme binding. We discuss the wider implications of these findings and we use the information to present hypotheses for mechanisms of heme-dependent regulation across other ion channels. PMID:27006498

  10. Arginine/serine-rich domains of the su(wa) and tra RNA processing regulators target proteins to a subnuclear compartment implicated in splicing.

    PubMed

    Li, H; Bingham, P M

    1991-10-18

    Two unrelated pre-mRNA splicing regulators-suppressor-of-white-apricot (su(wa)) and transformer (tra)-contain distinctive, approximately 120 amino acid arginine/serine (RS)-rich domains. Deletion of the su(wa) RS domain eliminates function. Replacement with the tra RS domain restores su(wa) function to nearly wild-type levels. Replacement with a 10 amino acid simple nuclear entry signal allows partial, inefficient function. Thus, the su(wa) RS domain apparently serves a generic function(s) subsuming nuclear entry. Moreover, immunocytochemical studies demonstrate that both RS domains specifically direct localization of a fused reporter protein to a punctate subnuclear compartment shown previously to be enriched in several constitutive splicing components. We propose that RS domains are a new class of targeting signals directing concentration of proteins in a subnuclear compartment implicated in splicing metabolism. PMID:1655279

  11. The role of Nedd4-1 WW domains in binding and regulating human organic anion transporter 1.

    PubMed

    Xu, Da; Wang, Haoxun; Gardner, Carol; Pan, Zui; Zhang, Ping L; Zhang, Jinghui; You, Guofeng

    2016-08-01

    Human organic anion transporter 1 (hOAT1), expressed at the basolateral membrane of kidney proximal tubule cells, mediates the active renal secretion of a diverse array of clinically important drugs, including anti-human immunodeficiency virus therapeutics, antitumor drugs, antibiotics, antihypertensives, and anti-inflammatories. We have previously demonstrated that posttranslational modification of hOAT1 by ubiquitination is an important mechanism for the regulation of this transporter. The present study aimed at identifying the ubiquitin ligase for hOAT1 and its mechanism of action. We showed that overexpression of neural precursor cell expressed, developmentally downregulated (Nedd)4-1, an E3 ubiquitin ligase, enhanced hOAT1 ubiquitination, decreased hOAT1 expression at the cell surface, and inhibited hOAT1 transport activity. In contrast, overexpression of the ubiquitin ligase-dead mutant Nedd4-1/C867S was without effects on hOAT1. Furthermore, knockdown of endogenously expressed Nedd4-1 by Nedd4-1-specific small interfering RNA reduced hOAT1 ubiquitination. Immunoprecipitation experiments in cultured cells and rat kidney slices and immunofluorescence experiments in rat kidney slices showed that there was a physical interaction between OAT1 and Nedd4-1. Nedd4-1 contains four protein-protein interacting WW domains. When these WW domains were inactivated by mutating two amino acid residues in each of the four WW domains (Mut-WW1: V210W/H212G, Mut-WW2: V367W/H369G, Mut-WW3: I440W/H442G, and Mut-WW4: I492W/H494G, respectively), only Mut-WW2 and Mut-WW3 significantly lost their ability to bind and to ubiquitinate hOAT1. As a result, Mut-WW2 and Mut-WW3 were unable to suppress hOAT1-mediated transport as effectively as wild-type Nedd4-1. In conclusion, this is the first demonstration that Nedd4-1 regulates hOAT1 ubiquitination, expression, and transport activity through its WW2 and WW3 domains. PMID:27226107

  12. Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator.

    PubMed

    Dulhanty, A M; Riordan, J R

    1994-04-01

    Individuals with cystic fibrosis have a defect in the CFTR protein, a chloride channel regulated by cAMP-dependent protein kinase (PKA). The majority of the phosphorylation sites of PKA are located in the R domain of CFTR. It has been postulated that this domain may act as a gate for the chloride channel. Of the many possible mechanisms whereby the R domain could gate the channel, including interdomain interactions, charge distribution, or conformational change, we investigated the possibility that phosphorylation leads to conformational changes in the R domain. To test this hypothesis, a protocol for purification of human R domain peptide synthesized in a bacterial expression system was developed. Purified R domain was phosphorylated by PKA, and CD spectra were obtained. As a result of phosphorylation by PKA, a significant spectral change, indicative of a reduction in the alpha-helical content, was found. CD spectra of the R domain of a shark homologue of CFTR indicated similar changes in conformation as a result of phosphorylation by PKA. In contrast, phosphorylation of the human R domain by PKC, which has only a small influence on CFTR channel activity, failed to elicit CD spectral changes, indicating no conformational change comparable to those induced by PKA phosphorylation. These observations provide the first structural characterization of the R domain and suggest that the gating of the CFTR chloride channel by PKA may involve a conformational change in the R domain. PMID:7511414

  13. ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis

    PubMed Central

    Zhang, Xiaoming; Niu, DongDong; Carbonell, Alberto; Wang, Airong; Lee, Angel; Tun, Vinnary; Wang, Zonghua; Carrington, James C.; Chang, Chia-en A.; Jin, Hailing

    2014-01-01

    Small RNAs (sRNAs) are loaded into ARGONAUTE (AGO) proteins to induce gene silencing. In plants, the 5′-terminal nucleotide is important for sRNA sorting into different AGOs. Here, we show that miRNA duplex structure also contributes to miRNA sorting. Base-pairing at the 15th nucleotide of a miRNA duplex is important for miRNA sorting in both Arabidopsis AGO1 and AGO2. AGO2 favors miRNA duplexes with no middle mismatches, whereas AGO1 tolerates, or prefers, duplexes with central mismatches. AGO structure modeling and mutational analyses reveal that the QF-V motif within the conserved PIWI domain contributes to recognition of base-pairing at the 15th nucleotide of a duplex, while the DDDE catalytic core of AtAGO2 is important for recognition of the central nucleotides. Finally, we rescued the adaxialized phenotype of ago1-12, which is largely due to miR165 loss-of-function, by changing miR165 duplex structure which we predict redirects it to AGO2. PMID:25406978

  14. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation

    PubMed Central

    Le Dily, François; Baù, Davide; Pohl, Andy; Vicent, Guillermo P.; Serra, François; Soronellas, Daniel; Castellano, Giancarlo; Wright, Roni H.G.; Ballare, Cecilia; Filion, Guillaume; Marti-Renom, Marc A.

    2014-01-01

    The human genome is segmented into topologically associating domains (TADs), but the role of this conserved organization during transient changes in gene expression is not known. Here we describe the distribution of progestin-induced chromatin modifications and changes in transcriptional activity over TADs in T47D breast cancer cells. Using ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing), Hi-C (chromosome capture followed by high-throughput sequencing), and three-dimensional (3D) modeling techniques, we found that the borders of the ∼2000 TADs in these cells are largely maintained after hormone treatment and that up to 20% of the TADs could be considered as discrete regulatory units where the majority of the genes are either transcriptionally activated or repressed in a coordinated fashion. The epigenetic signatures of the TADs are homogeneously modified by hormones in correlation with the transcriptional changes. Hormone-induced changes in gene activity and chromatin remodeling are accompanied by differential structural changes for activated and repressed TADs, as reflected by specific and opposite changes in the strength of intra-TAD interactions within responsive TADs. Indeed, 3D modeling of the Hi-C data suggested that the structure of TADs was modified upon treatment. The differential responses of TADs to progestins and estrogens suggest that TADs could function as “regulons” to enable spatially proximal genes to be coordinately transcribed in response to hormones. PMID:25274727

  15. Acetylation of the p53 DNA binding domain regulates apoptosis induction.

    PubMed Central

    Sykes, Stephen M.; Mellert, Hestia S.; Holbert, Marc A.; Li, Keqin; Marmorstein, Ronen; Lane, William S.; McMahon, Steven B.

    2007-01-01

    SUMMARY The ability of p53 to induce apoptosis plays an important role in tumor suppression. Here we describe a previously unknown post-translational modification of the DNA-binding domain of p53. This modification, acetylation of lysine 120, occurs rapidly after DNA damage and is catalyzed by the MYST family acetyltransferases hMOF and TIP60. Mutation of lysine 120 to arginine, as occurs in human cancer, debilitates K120 acetylation and diminishes p53-mediated apoptosis without affecting cell-cycle arrest. The K120R mutation selectively blocks the transcription of pro-apoptotic target genes such as BAX and PUMA while the non-apoptotic targets p21 and hMDM2 remain unaffected. Consistent with this, depletion of hMOF and/or TIP60 inhibits the ability of p53 to activate BAX and PUMA transcription. Furthermore, the acetyl-lysine 120 form of p53 specifically accumulates at pro-apoptotic target genes. These data suggest that K120 acetylation may help distinguish the cell cycle arrest and apoptotic functions of p53. PMID:17189187

  16. Angiogenic factor with G patch and FHA domains 1 (Aggf1) regulates liver fibrosis by modulating TGF-β signaling.

    PubMed

    Zhou, Bisheng; Zeng, Sheng; Li, Luyuang; Fan, Zhiwen; Tian, Wenfang; Li, Min; Xu, Huihui; Wu, Xiaoyan; Fang, Mingming; Xu, Yong

    2016-06-01

    Fibrosis is a common pathophysiological process following liver injury and can lead to, if left unattended to, irreversible end-stage liver disease such as cirrhosis. Hepatic stellate cells (HSCs) are a major contributor to liver fibrosis. Here we investigated the involvement of angiogenic factor with G patch and FHA domains 1 (Aggf1) in HSC activation and the underlying mechanisms. Aggf1 expression was down-regulated in the livers in three different mouse models of liver fibrosis following injury. Aggf1 expression was also suppressed in activated HSCs when compared to quiescent HSCs. Over-expression of Aggf1 alleviated liver fibrosis in mice and in cultured HSCs. RNA-sequencing (RNA-seq) analysis performed in HSCs revealed that Aggf1-dependent transcription regulates several key fibrogenic pathways. Mechanistically, Aggf1 regulated liver fibrogenesis by forming a complex with the inhibitor SMAD protein (SMAD7) thereby leading to diminished SMAD3 binding to the pro-fibrogenic gene promoters. On the contrary, SMAD7 knockdown abrogated the effect of Aggf1 and rescued HSC activation. Aggf1 expression was silenced during HSC activation/liver fibrogenesis as a result of DNA methylation. Treatment with a DNA methyltransferase inhibitor (5-Azacytidine) restored Aggf1 expression and repressed liver fibrosis in an Aggf1-dependent manner. In conclusion, our data illustrate a previously unknown role for Aggf1 and shed light on the development of novel therapeutic solutions against liver fibrosis. PMID:26850475

  17. Cu,Zn-Superoxide Dismutase-Mediated Redox Regulation of Jumonji Domain Containing 3 Modulates Macrophage Polarization and Pulmonary Fibrosis.

    PubMed

    He, Chao; Larson-Casey, Jennifer L; Gu, Linlin; Ryan, Alan J; Murthy, Shubha; Carter, A Brent

    2016-07-01

    M2 macrophages are implicated in the development of pulmonary fibrosis as they generate profibrotic signals. The polarization process, at least in part, is regulated by epigenetic modulation. Because Cu,Zn-superoxide dismutase-induced H2O2 can polarize macrophages to a profibrotic M2 phenotype, we hypothesized that modulation of the redox state of the cell is involved in the epigenetic modulation of the macrophage phenotype. In this study, we show that signal transducer and activator of transcription 6 (STAT6) regulates Jumonji domain containing (Jmjd) 3, a histone H3 lysine 27 demethylase, and mutation of a redox-sensitive cysteine in STAT6 attenuates jmjd3 expression. Moreover, Jmjd3 deficiency abrogates profibrotic M2 gene expression. Treatment with leflunomide, which reduces mitochondrial reactive oxygen species production and tyrosine phosphorylation, inhibits jmjd3 expression and M2 polarization, as well as development of a fibrotic phenotype. Taken together, these observations provide evidence that the redox regulation of Jmjd3 is a unique regulatory mechanism for Cu,Zn-superoxide dismutase-mediated profibrotic M2 polarization. Furthermore, leflunomide, which reduces reactive oxygen species production and tyrosine phosphorylation, may prove to be therapeutic in the treatment of asbestos-induced pulmonary fibrosis. PMID:26699812

  18. The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 Axis Regulates Pulmonary Artery Pressure in Mice.

    PubMed

    Kapitsinou, Pinelopi P; Rajendran, Ganeshkumar; Astleford, Lindsay; Michael, Mark; Schonfeld, Michael P; Fields, Timothy; Shay, Sheila; French, Jaketa L; West, James; Haase, Volker H

    2016-05-15

    Hypoxia-inducible factors 1 and 2 (HIF-1 and -2) control oxygen supply to tissues by regulating erythropoiesis, angiogenesis and vascular homeostasis. HIFs are regulated in response to oxygen availability by prolyl-4-hydroxylase domain (PHD) proteins, with PHD2 being the main oxygen sensor that controls HIF activity under normoxia. In this study, we used a genetic approach to investigate the endothelial PHD2/HIF axis in the regulation of vascular function. We found that inactivation of Phd2 in endothelial cells specifically resulted in severe pulmonary hypertension (∼118% increase in right ventricular systolic pressure) but not polycythemia and was associated with abnormal muscularization of peripheral pulmonary arteries and right ventricular hypertrophy. Concurrent inactivation of either Hif1a or Hif2a in endothelial cell-specific Phd2 mutants demonstrated that the development of pulmonary hypertension was dependent on HIF-2α but not HIF-1α. Furthermore, endothelial HIF-2α was required for the development of increased pulmonary artery pressures in a model of pulmonary hypertension induced by chronic hypoxia. We propose that these HIF-2-dependent effects are partially due to increased expression of vasoconstrictor molecule endothelin 1 and a concomitant decrease in vasodilatory apelin receptor signaling. Taken together, our data identify endothelial HIF-2 as a key transcription factor in the pathogenesis of pulmonary hypertension. PMID:26976644

  19. Poly(A)-binding proteins: structure, domain organization, and activity regulation.

    PubMed

    Eliseeva, I A; Lyabin, D N; Ovchinnikov, L P

    2013-12-01

    RNA-binding proteins are of vital importance for mRNA functioning. Among these, poly(A)-binding proteins (PABPs) are of special interest due to their participation in virtually all mRNA-dependent events that is caused by their high affinity for A-rich mRNA sequences. Apart from mRNAs, PABPs interact with many proteins, thus promoting their involvement in cellular events. In the nucleus, PABPs play a role in polyadenylation, determine the length of the poly(A) tail, and may be involved in mRNA export. In the cytoplasm, they participate in regulation of translation initiation and either protect mRNAs from decay through binding to their poly(A) tails or stimulate this decay by promoting mRNA interactions with deadenylase complex proteins. This review presents modern notions of the role of PABPs in mRNA-dependent events; peculiarities of regulation of PABP amount in the cell and activities are also discussed. PMID:24490729

  20. Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain.

    PubMed

    Dorman, Charles J; Colgan, Aoife; Dorman, Matthew J

    2016-07-01

    The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process. PMID:27252403

  1. Distinct protein domains regulate ciliary targeting and function of C. elegans PKD-2

    PubMed Central

    Knobel, Karla M.; Peden, Erik M.; Barr, Maureen M.

    2008-01-01

    TRPP2 (transient receptor potential polycystin-2) channels function in a range of cells where they are localized to specific subcellular regions including the endoplasmic reticulum (ER) and primary cilium. In humans, TRPP2/PC-2 mutations severely compromise kidney function and give rise to autosomal dominant polycystic kidney disease (ADPKD). The Caenorhabditis elegans TRPP2 homolog, PKD-2, is restricted to the somatodendritic (cell body and dendrite) and ciliary compartment of male specific sensory neurons. Within these neurons PKD-2 function is required for sensation. To understand the mechanisms regulating TRPP2 subcellular distribution and activity, we performed in vivo structure-function-localization studies using C. elegans as a model system. Our data demonstrate that somatodendritic and ciliary targeting requires the transmembrane (TM) region of PKD-2and that the PKD-2 cytosolic termini regulate subcellular distribution and function. Within neuronal cell bodies, PKD-2 colocalizes with the OSM-9 TRP vanilloid (TRPV) channel, suggesting that these TRPP and TRPV channels may function in a common process. When human TRPP2/PC-2 is heterologously expressed in transgenic C. elegans animals, PC-2 does not visibly localize to cilia but does partially rescue pkd-2 null mutant defects, suggesting that human PC-2 and PKD-2 are functional homologs. PMID:18037411

  2. SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells

    SciTech Connect

    Noah, Taeko K.; Kazanjian, Avedis; Whitsett, Jeffrey; Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH ; Shroyer, Noah F.

    2010-02-01

    Background and Aims: SPDEF (also termed PDEF or PSE) is an ETS family transcription factor that regulates gene expression in the prostate and goblet cell hyperplasia in the lung. Spdef has been reported to be expressed in the intestine. In this paper, we identify an important role for Spdef in regulating intestinal epithelial cell homeostasis and differentiation. Methods: SPDEF expression was inhibited in colon cancer cells to determine its ability to control goblet cell gene activation. The effects of transgenic expression of Spdef on intestinal differentiation and homeostasis were determined. Results: In LS174T colon cancer cells treated with Notch/{gamma}-secretase inhibitor to activate goblet cell gene expression, shRNAs that inhibited SPDEF also repressed expression of goblet cell genes AGR2, MUC2, RETLNB, and SPINK4. Transgenic expression of Spdef caused the expansion of intestinal goblet cells and corresponding reduction in Paneth, enteroendocrine, and absorptive enterocytes. Spdef inhibited proliferation of intestinal crypt cells without induction of apoptosis. Prolonged expression of the Spdef transgene caused a progressive reduction in the number of crypts that expressed Spdef, consistent with its inhibitory effects on cell proliferation. Conclusions: Spdef was sufficient to inhibit proliferation of intestinal progenitors and induce differentiation into goblet cells; SPDEF was required for activation of goblet cell associated genes in vitro. These data support a model in which Spdef promotes terminal differentiation into goblet cells of a common goblet/Paneth progenitor.

  3. The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons

    PubMed Central

    Einheber, Steven; Maurel, Patrice; Meng, Xiaosong; Rubin, Marina; Lam, Isabel; Mohandas, Narla; An, Xiuli; Shrager, Peter; Kissil, Joseph; Salzer, James L.

    2012-01-01

    Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e. nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno-EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron-autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B-deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl-1 and Necl-2, and of alpha-2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt-Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains and, unexpectedly, that it regulates myelin sheath thickness. PMID:23109359

  4. The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons.

    PubMed

    Einheber, Steven; Meng, Xiaosong; Rubin, Marina; Lam, Isabel; Mohandas, Narla; An, Xiuli; Shrager, Peter; Kissil, Joseph; Maurel, Patrice; Salzer, James L

    2013-02-01

    Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno-EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron-autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B-deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl-1 and Necl-2, and of alpha-2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt-Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness. PMID:23109359

  5. CyclinA2-Cyclin-dependent Kinase Regulates SAMHD1 Protein Phosphohydrolase Domain.

    PubMed

    Yan, Junpeng; Hao, Caili; DeLucia, Maria; Swanson, Selene; Florens, Laurence; Washburn, Michael P; Ahn, Jinwoo; Skowronski, Jacek

    2015-05-22

    SAMHD1 is a nuclear deoxyribonucleoside triphosphate triphosphohydrolase that contributes to the control of cellular deoxyribonucleoside triphosphate (dNTP) pool sizes through dNTP hydrolysis and modulates the innate immune response to viruses. CyclinA2-CDK1/2 phosphorylates SAMHD1 at Thr-592, but how this modification controls SAMHD1 functions in proliferating cells is not known. Here, we show that SAMHD1 levels remain relatively unchanged during the cell division cycle in primary human T lymphocytes and in monocytic cell lines. Inactivation of the bipartite cyclinA2-CDK-binding site in the SAMHD1 C terminus described herein abolished SAMHD1 phosphorylation on Thr-592 during S and G2 phases thus interfering with DNA replication and progression of cells through S phase. The effects exerted by Thr-592 phosphorylation-defective SAMHD1 mutants were associated with activation of DNA damage checkpoint and depletion of dNTP concentrations to levels lower than those seen upon expression of wild type SAMHD1 protein. These disruptive effects were relieved by either mutation of the catalytic residues of the SAMHD1 phosphohydrolase domain or by a Thr-592 phosphomimetic mutation, thus linking the Thr-592 phosphorylation state to the control of SAMHD1 dNTPase activity. Our findings support a model in which phosphorylation of Thr-592 by cyclinA2-CDK down-modulates, but does not inactivate, SAMHD1 dNTPase in S phase, thereby fine-tuning SAMHD1 control of dNTP levels during DNA replication. PMID:25847232

  6. Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development

    PubMed Central

    Canovas, Sebastian; Cibelli, Jose B.; Ross, Pablo J.

    2012-01-01

    Understanding the mechanisms of epigenetic remodeling that follow fertilization is a fundamental step toward understanding the bases of early embryonic development and pluripotency. Extensive and dynamic chromatin remodeling is observed after fertilization, including DNA methylation and histone modifications. These changes underlie the transition from gametic to embryonic chromatin and are thought to facilitate embryonic genome activation. In particular, trimethylation of histone 3 lysine 27 (H3K27me3) is associated with gene-specific transcription repression. Global levels of this epigenetic mark are high in oocyte chromatin and decrease to minimal levels at the time of embryonic genome activation. We provide evidence that the decrease in H3K27me3 observed during early development is cell-cycle independent, suggesting an active mechanism for removal of this epigenetic mark. Among H3K27me3-specific demethylases, Jumonji domain-containing protein 3 (JMJD3), but not ubiquitously transcribed tetratricopeptide repeat X (UTX), present high transcript levels in oocytes. Soon after fertilization JMJD3 protein levels increase, concurrent with a decrease in mRNA levels. This pattern of expression suggests maternal inheritance of JMJD3. Knockdown of JMJD3 by siRNA injection in parthenogenetically activated metaphase II oocytes resulted in inhibition of the H3K27me3 decrease normally observed in preimplantation embryos. Moreover, knockdown of JMJD3 in oocytes reduced the rate of blastocyst development. Overall, these results indicate that JMJD3 is involved in active demethylation of H3K27me3 during early embryo development and that this mark plays an important role during the progression of embryos to blastocysts. PMID:22308433

  7. Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development.

    PubMed

    Canovas, Sebastian; Cibelli, Jose B; Ross, Pablo J

    2012-02-14

    Understanding the mechanisms of epigenetic remodeling that follow fertilization is a fundamental step toward understanding the bases of early embryonic development and pluripotency. Extensive and dynamic chromatin remodeling is observed after fertilization, including DNA methylation and histone modifications. These changes underlie the transition from gametic to embryonic chromatin and are thought to facilitate embryonic genome activation. In particular, trimethylation of histone 3 lysine 27 (H3K27me3) is associated with gene-specific transcription repression. Global levels of this epigenetic mark are high in oocyte chromatin and decrease to minimal levels at the time of embryonic genome activation. We provide evidence that the decrease in H3K27me3 observed during early development is cell-cycle independent, suggesting an active mechanism for removal of this epigenetic mark. Among H3K27me3-specific demethylases, Jumonji domain-containing protein 3 (JMJD3), but not ubiquitously transcribed tetratricopeptide repeat X (UTX), present high transcript levels in oocytes. Soon after fertilization JMJD3 protein levels increase, concurrent with a decrease in mRNA levels. This pattern of expression suggests maternal inheritance of JMJD3. Knockdown of JMJD3 by siRNA injection in parthenogenetically activated metaphase II oocytes resulted in inhibition of the H3K27me3 decrease normally observed in preimplantation embryos. Moreover, knockdown of JMJD3 in oocytes reduced the rate of blastocyst development. Overall, these results indicate that JMJD3 is involved in active demethylation of H3K27me3 during early embryo development and that this mark plays an important role during the progression of embryos to blastocysts. PMID:22308433

  8. Disintegrin-like domain of glycoprotein B regulates Kaposi's sarcoma-associated herpesvirus infection of cells.

    PubMed

    Walker, Lia R; Hussein, Hosni A M; Akula, Shaw M

    2014-08-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) glycoprotein B (gB) is a lytic structural protein expressed on the envelope of mature virions and on the membrane of cells supporting lytic infection. In addition to this viral glycoprotein's interaction with integrins via its RGD (Arg-Gly-Asp) motif, KSHV gB possesses a disintegrin-like domain (DLD), which binds integrins as well. Prior to this study, there has been minimal research involving the less common integrin-binding motif, DLD, of gB as it pertains to herpesvirus infection. By using phage display peptide library screening and molecular biology techniques, the DLD of KSHV gB was shown to interact specifically with non-RGD binding α9β1 integrins. Similarly, monitoring wild-type infection confirmed α9β1:DLD interactions to be critical to successful KSHV infection of human foreskin fibroblast (HFF) cells and human dermal microvascular endothelial cells (HMVEC-d) compared with 293 cells. To further demonstrate the importance of the DLD of gB in KSHV infection, two recombinant virus constructs were generated using a bacterial artificial chromosome (BAC) system harbouring the KSHV genome (BAC36): BAC36ΔD-KSHV (lacking a functionally intact DLD of gB and containing an introduced tetracycline cassette) and BAC36.T-KSHV (containing an intact DLD sequence and an introduced tetracycline cassette). Accordingly, BAC36ΔD-KSHV presented significantly lower infection rates in HFF and HMVEC-d cells compared with the comparable infection rates achieved by wild-type BAC36-KSHV and BAC36.T-KSHV. Thus, the present report has delineated a critical role for the DLD of gB in KSHV infection, which may lead to a broader knowledge regarding the sophisticated mechanisms utilized by virus-encoded structural proteins in KSHV entry and infection. PMID:24814923

  9. Role of cardiac troponin I carboxy terminal mobile domain and linker sequence in regulating cardiac contraction.

    PubMed

    Meyer, Nancy L; Chase, P Bryant

    2016-07-01

    Inhibition of striated muscle contraction at resting Ca(2+) depends on the C-terminal half of troponin I (TnI) in thin filaments. Much focus has been on a short inhibitory peptide (Ip) sequence within TnI, but structural studies and identification of disease-associated mutations broadened emphasis to include a larger mobile domain (Md) sequence at the C-terminus of TnI. For Md to function effectively in muscle relaxation, tight mechanical coupling to troponin's core-and thus tropomyosin-is presumably needed. We generated recombinant, human cardiac troponins containing one of two TnI constructs: either an 8-amino acid linker between Md and the rest of troponin (cTnILink8), or an Md deletion (cTnI1-163). Motility assays revealed that Ca(2+)-sensitivity of reconstituted thin filament sliding was markedly increased with cTnILink8 (∼0.9 pCa unit leftward shift of speed-pCa relation compared to WT), and increased further when Md was missing entirely (∼1.4 pCa unit shift). Cardiac Tn's ability to turn off filament sliding at diastolic Ca(2+) was mostly (61%), but not completely eliminated with cTnI1-163. TnI's Md is required for full inhibition of unloaded filament sliding, although other portions of troponin-presumably including Ip-are also necessary. We also confirm that TnI's Md is not responsible for superactivation of actomyosin cycling by troponin. PMID:26971468

  10. CyclinA2-Cyclin-dependent Kinase Regulates SAMHD1 Protein Phosphohydrolase Domain*

    PubMed Central

    Yan, Junpeng; Hao, Caili; DeLucia, Maria; Swanson, Selene; Florens, Laurence; Washburn, Michael P.; Ahn, Jinwoo; Skowronski, Jacek

    2015-01-01

    SAMHD1 is a nuclear deoxyribonucleoside triphosphate triphosphohydrolase that contributes to the control of cellular deoxyribonucleoside triphosphate (dNTP) pool sizes through dNTP hydrolysis and modulates the innate immune response to viruses. CyclinA2-CDK1/2 phosphorylates SAMHD1 at Thr-592, but how this modification controls SAMHD1 functions in proliferating cells is not known. Here, we show that SAMHD1 levels remain relatively unchanged during the cell division cycle in primary human T lymphocytes and in monocytic cell lines. Inactivation of the bipartite cyclinA2-CDK-binding site in the SAMHD1 C terminus described herein abolished SAMHD1 phosphorylation on Thr-592 during S and G2 phases thus interfering with DNA replication and progression of cells through S phase. The effects exerted by Thr-592 phosphorylation-defective SAMHD1 mutants were associated with activation of DNA damage checkpoint and depletion of dNTP concentrations to levels lower than those seen upon expression of wild type SAMHD1 protein. These disruptive effects were relieved by either mutation of the catalytic residues of the SAMHD1 phosphohydrolase domain or by a Thr-592 phosphomimetic mutation, thus linking the Thr-592 phosphorylation state to the control of SAMHD1 dNTPase activity. Our findings support a model in which phosphorylation of Thr-592 by cyclinA2-CDK down-modulates, but does not inactivate, SAMHD1 dNTPase in S phase, thereby fine-tuning SAMHD1 control of dNTP levels during DNA replication. PMID:25847232

  11. Identification of a calmodulin-binding domain in Sema4D that regulates its exodomain shedding in platelets.

    PubMed

    Mou, Peipei; Zeng, Zhao; Li, Qiang; Liu, Xiaohui; Xin, Xiaoran; Wannemacher, Kenneth M; Ruan, Changgeng; Li, Renhao; Brass, Lawrence F; Zhu, Li

    2013-05-16

    Semaphorin 4D (Sema4D) is a transmembrane protein that supports contact-dependent amplification of platelet activation by collagen before being gradually cleaved by the metalloprotease ADAM17, as we have previously shown. Cleavage releases a soluble 120-kDa exodomain fragment for which receptors exist on platelets and endothelial cells. Here we have examined the mechanism that regulates Sema4D exodomain cleavage. The results show that the membrane-proximal cytoplasmic domain of Sema4D contains a binding site for calmodulin within the polybasic region Arg762-Lys779. Coprecipitation studies show that Sema4D and calmodulin are associated in resting platelets, forming a complex that dissociates upon platelet activation by the agonists that trigger Sema4D cleavage. Inhibiting calmodulin with W7 or introducing a membrane-permeable peptide corresponding to the calmodulin-binding site is sufficient to trigger the dissociation of Sema4D from calmodulin and initiate cleavage. Conversely, deletion of the calmodulin-binding site causes constitutive shedding of Sema4D. These results show that (1) Sema4D is a calmodulin-binding protein with a site of interaction in its membrane-proximal cytoplasmic domain, (2) platelet agonists cause dissociation of the calmodulin-Sema4D complex, and (3) dissociation of the complex is sufficient to trigger ADAM17-dependent cleavage of Sema4D, releasing a bioactive fragment. PMID:23564909

  12. The Q-rich/PST domain of the AHR regulates both ligand-induced nuclear transport and nucleocytoplasmic shuttling

    PubMed Central

    Tkachenko, Anna; Henkler, Frank; Brinkmann, Joep; Sowada, Juliane; Genkinger, Doris; Kern, Christian; Tralau, Tewes; Luch, Andreas

    2016-01-01

    The aryl hydrocarbon receptor (AHR) shuttles continuously between cytoplasm and nucleus, unless ligand-binding triggers association with the AHR nuclear translocator (ARNT) and subsequent binding to cognate DNA motifs. We have now identified Val 647 as mandatory residue for export from the nucleus and AHR-function. This residue prevents inactivation of the receptor as a consequence of nuclear sequestration via constitutive import. Concomitantly mutants lacking this residue are exclusively localised in the nucleus. Although ligands accelerate nuclear import transiently, stable nuclear transition depends on a motif adjacent to Val 647 that comprises residues 650–661. Together, this defined region within the Q-rich domain regulates intracellular trafficking of the AHR in context of both nucleocytoplasmic shuttling and receptor activation. Nuclear export therefore depends on the previously characterised N-terminal NES and the newly identified motif that includes V647. Nucleocytoplasmic distribution of full-length human AHR is further affected by a section of the PST domain that shows sequence similarities with nuclear export signals. In concert, these motifs maintain a predominant cytoplasmic compartmentalisation, receptive for ligand binding. PMID:27535013

  13. The Q-rich/PST domain of the AHR regulates both ligand-induced nuclear transport and nucleocytoplasmic shuttling.

    PubMed

    Tkachenko, Anna; Henkler, Frank; Brinkmann, Joep; Sowada, Juliane; Genkinger, Doris; Kern, Christian; Tralau, Tewes; Luch, Andreas

    2016-01-01

    The aryl hydrocarbon receptor (AHR) shuttles continuously between cytoplasm and nucleus, unless ligand-binding triggers association with the AHR nuclear translocator (ARNT) and subsequent binding to cognate DNA motifs. We have now identified Val 647 as mandatory residue for export from the nucleus and AHR-function. This residue prevents inactivation of the receptor as a consequence of nuclear sequestration via constitutive import. Concomitantly mutants lacking this residue are exclusively localised in the nucleus. Although ligands accelerate nuclear import transiently, stable nuclear transition depends on a motif adjacent to Val 647 that comprises residues 650-661. Together, this defined region within the Q-rich domain regulates intracellular trafficking of the AHR in context of both nucleocytoplasmic shuttling and receptor activation. Nuclear export therefore depends on the previously characterised N-terminal NES and the newly identified motif that includes V647. Nucleocytoplasmic distribution of full-length human AHR is further affected by a section of the PST domain that shows sequence similarities with nuclear export signals. In concert, these motifs maintain a predominant cytoplasmic compartmentalisation, receptive for ligand binding. PMID:27535013

  14. Characterization of Functional Domains in NME1L Regulation of NF-κB Signaling

    PubMed Central

    You, Dong-Joo; Park, Cho Rong; Mander, Sunam; Ahn, Curie; Seong, Jae Young; Hwang, Jong-Ik

    2016-01-01

    NME1 is a well-known metastasis suppressor which has been reported to be downregulated in some highly aggressive cancer cells. Although most studies have focused on NME1, the NME1 gene also encodes the protein (NME1L) containing N-terminal 25 extra amino acids by alternative splicing. According to previous studies, NME1L has potent anti-metastatic activity, in comparison with NME1, by interacting with IKKβ and regulating its activity. In the present study, we tried to define the role of the N-terminal 25 amino acids of NME1L in NF-κB activation signaling. Unfortunately, the sequence itself did not interact with IKKβ, suggesting that it may be not enough to constitute the functional structure. Further construction of NME1L fragments and biochemical analysis revealed that N-terminal 84 residues constitute minimal structure for homodimerization, IKKβ interaction and regulation of NF-κB signaling. The inhibitory effect of the fragment on cancer cell migration and NF-κB-stimulated gene expression was equivalent to that of whole NME1L. The data suggest that the N-terminal 84 residues may be a core region for the anti-metastatic activity of NME1L. Based on this result, further structural analysis of the binding between NME1L and IKKβ may help in understanding the anti-metastatic activity of NME1L and provide direction to NME1L and IKKβ-related anti-cancer drug design. PMID:27094059

  15. Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling.

    PubMed

    Zhao, Ying; Shi, Jianli; Winey, Mark; Klymkowsky, Michael W

    2016-03-15

    EFHC1 encodes a ciliary protein that has been linked to Juvenile Myoclonic Epilepsy. In ectodermal explants, derived from Xenopus laevis embryos, the morpholino-mediated down-regulation of EFHC1b inhibited multiciliated cell formation. In those ciliated cells that did form, axoneme but not basal body formation was inhibited. EFHC1b morphant embryos displayed defects in central nervous system (CNS) and neural crest patterning that were rescued by a EFHC1b-GFP chimera. EFHC1b-GFP localized to ciliary axonemes in epidermal, gastrocoele roof plate, and neural tube cells. In X. laevis there is a link between Wnt signaling and multiciliated cell formation. While down-regulation of EFHC1b led to a ~2-fold increase in the activity of the β-catenin/Wnt-responsive TOPFLASH reporter, EFHC1b-GFP did not inhibit β-catenin activation of TOPFLASH. Wnt8a RNA levels were increased in EFHC1b morphant ectodermal explants and intact embryos, analyzed prior to the on-set of ciliogenesis. Rescue of the EFHC1b MO's ciliary axonemal phenotypes required the entire protein; in contrast, the EFHC1b morpholino's Wnt8a, CNS, and neural crest phenotypes were rescued by a truncated form of EFHC1b. The EFHC1b morpholino's Wnt8a phenotype was also rescued by the injection of RNAs encoding secreted Wnt inhibitors, suggesting that these phenotypes are due to effects on Wnt signaling, rather than the loss of cilia, an observation of potential relevance to understanding EFHC1's role in human neural development. PMID:26783883

  16. Characterization of Functional Domains in NME1L Regulation of NF-κB Signaling.

    PubMed

    You, Dong-Joo; Park, Cho Rong; Mander, Sunam; Ahn, Curie; Seong, Jae Young; Hwang, Jong-Ik

    2016-05-31

    NME1 is a well-known metastasis suppressor which has been reported to be downregulated in some highly aggressive cancer cells. Although most studies have focused on NME1, the NME1 gene also encodes the protein (NME1L) containing N-terminal 25 extra amino acids by alternative splicing. According to previous studies, NME1L has potent anti-metastatic activity, in comparison with NME1, by interacting with IKKβ and regulating its activity. In the present study, we tried to define the role of the N-terminal 25 amino acids of NME1L in NF-κB activation signaling. Unfortunately, the sequence itself did not interact with IKKβ, suggesting that it may be not enough to constitute the functional structure. Further construction of NME1L fragments and biochemical analysis revealed that N-terminal 84 residues constitute minimal structure for homodimerization, IKKβ interaction and regulation of NF-κB signaling. The inhibitory effect of the fragment on cancer cell migration and NF-κB-stimulated gene expression was equivalent to that of whole NME1L. The data suggest that the N-terminal 84 residues may be a core region for the anti-metastatic activity of NME1L. Based on this result, further structural analysis of the binding between NME1L and IKKβ may help in understanding the anti-metastatic activity of NME1L and provide direction to NME1L and IKKβ-related anti-cancer drug design. PMID:27094059

  17. FlnA binding to PACSIN2 F-BAR domain regulates membrane tubulation in megakaryocytes and platelets

    PubMed Central

    Begonja, Antonija Jurak; Pluthero, Fred G.; Suphamungmee, Worawit; Giannini, Silvia; Christensen, Hilary; Leung, Richard; Lo, Richard W.; Nakamura, Fumihiko; Lehman, William; Plomann, Markus; Hoffmeister, Karin M.; Kahr, Walter H. A.; Hartwig, John H.

    2015-01-01

    Bin-Amphiphysin-Rvs (BAR) and Fes-CIP4 homology BAR (F-BAR) proteins generate tubular membrane invaginations reminiscent of the megakaryocyte (MK) demarcation membrane system (DMS), which provides membranes necessary for future platelets. The F-BAR protein PACSIN2 is one of the most abundant BAR/F-BAR proteins in platelets and the only one reported to interact with the cytoskeletal and scaffold protein filamin A (FlnA), an essential regulator of platelet formation and function. The FlnA-PACSIN2 interaction was therefore investigated in MKs and platelets. PACSIN2 associated with FlnA in human platelets. The interaction required FlnA immunoglobulin-like repeat 20 and the tip of PACSIN2 F-BAR domain and enhanced PACSIN2 F-BAR domain membrane tubulation in vitro. Most human and wild-type mouse platelets had 1 to 2 distinct PACSIN2 foci associated with cell membrane GPIbα, whereas Flna-null platelets had 0 to 4 or more foci. Endogenous PACSIN2 and transfected enhanced green fluorescent protein-PACSIN2 were concentrated in midstage wild-type mouse MKs in a well-defined invagination of the plasma membrane reminiscent of the initiating DMS and dispersed in the absence of FlnA binding. The DMS appeared less well defined, and platelet territories were not readily visualized in Flna-null MKs. We conclude that the FlnA-PACSIN2 interaction regulates membrane tubulation in MKs and platelets and likely contributes to DMS formation. PMID:25838348

  18. Neprilysin and Aβ Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer’s Disease

    PubMed Central

    Grimm, Marcus O. W.; Mett, Janine; Stahlmann, Christoph P.; Haupenthal, Viola J.; Zimmer, Valerie C.; Hartmann, Tobias

    2013-01-01

    One of the characteristic hallmarks of Alzheimer’s disease (AD) is an accumulation of amyloid β (Aβ) leading to plaque formation and toxic oligomeric Aβ complexes. Besides the de novo synthesis of Aβ caused by amyloidogenic processing of the amyloid precursor protein (APP), Aβ levels are also highly dependent on Aβ degradation. Several enzymes are described to cleave Aβ. In this review we focus on one of the most prominent Aβ degrading enzymes, the zinc-metalloprotease Neprilysin (NEP). In the first part of the review we discuss beside the general role of NEP in Aβ degradation the alterations of the enzyme observed during normal aging and the progression of AD. In vivo and cell culture experiments reveal that a decreased NEP level results in an increased Aβ level and vice versa. In a pathological situation like AD, it has been reported that NEP levels and activity are decreased and it has been suggested that certain polymorphisms in the NEP gene result in an increased risk for AD. Conversely, increasing NEP activity in AD mouse models revealed an improvement in some behavioral tests. Therefore it has been suggested that increasing NEP might be an interesting potential target to treat or to be protective for AD making it indispensable to understand the regulation of NEP. Interestingly, it is discussed that the APP intracellular domain (AICD), one of the cleavage products of APP processing, which has high similarities to Notch receptor processing, might be involved in the transcriptional regulation of NEP. However, the mechanisms of NEP regulation by AICD, which might be helpful to develop new therapeutic strategies, are up to now controversially discussed and summarized in the second part of this review. In addition, we review the impact of AICD not only in the transcriptional regulation of NEP but also of further genes. PMID:24391587

  19. Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of the Hsp70 chaperone DnaK.

    PubMed

    Bauer, Daniela; Merz, Dale R; Pelz, Benjamin; Theisen, Kelly E; Yacyshyn, Gail; Mokranjac, Dejana; Dima, Ruxandra I; Rief, Matthias; Žoldák, Gabriel

    2015-08-18

    The regulation of protein function through ligand-induced conformational changes is crucial for many signal transduction processes. The binding of a ligand alters the delicate energy balance within the protein structure, eventually leading to such conformational changes. In this study, we elucidate the energetic and mechanical changes within the subdomains of the nucleotide binding domain (NBD) of the heat shock protein of 70 kDa (Hsp70) chaperone DnaK upon nucleotide binding. In an integrated approach using single molecule optical tweezer experiments, loop insertions, and steered coarse-grained molecular simulations, we find that the C-terminal helix of the NBD is the major determinant of mechanical stability, acting as a glue between the two lobes. After helix unraveling, the relative stability of the two separated lobes is regulated by ATP/ADP binding. We find that the nucleotide stays strongly bound to lobe II, thus reversing the mechanical hierarchy between the two lobes. Our results offer general insights into the nucleotide-induced signal transduction within members of the actin/sugar kinase superfamily. PMID:26240360

  20. Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of the Hsp70 chaperone DnaK

    PubMed Central

    Bauer, Daniela; Merz, Dale R.; Pelz, Benjamin; Theisen, Kelly E.; Yacyshyn, Gail; Mokranjac, Dejana; Dima, Ruxandra I.; Rief, Matthias; Žoldák, Gabriel

    2015-01-01

    The regulation of protein function through ligand-induced conformational changes is crucial for many signal transduction processes. The binding of a ligand alters the delicate energy balance within the protein structure, eventually leading to such conformational changes. In this study, we elucidate the energetic and mechanical changes within the subdomains of the nucleotide binding domain (NBD) of the heat shock protein of 70 kDa (Hsp70) chaperone DnaK upon nucleotide binding. In an integrated approach using single molecule optical tweezer experiments, loop insertions, and steered coarse-grained molecular simulations, we find that the C-terminal helix of the NBD is the major determinant of mechanical stability, acting as a glue between the two lobes. After helix unraveling, the relative stability of the two separated lobes is regulated by ATP/ADP binding. We find that the nucleotide stays strongly bound to lobe II, thus reversing the mechanical hierarchy between the two lobes. Our results offer general insights into the nucleotide-induced signal transduction within members of the actin/sugar kinase superfamily. PMID:26240360

  1. The Ubiquitin-associated (UBA) Domain of SCCRO/DCUN1D1 Protein Serves as a Feedback Regulator of Biochemical and Oncogenic Activity*

    PubMed Central

    Huang, Guochang; Towe, Christopher W.; Choi, Lydia; Yonekawa, Yoshihiro; Bommeljé, Claire C.; Bains, Sarina; Rechler, Willi; Hao, Bing; Ramanathan, Yegnanarayana; Singh, Bhuvanesh

    2015-01-01

    Amplification of squamous cell carcinoma-related oncogene (SCCRO) activates its function as an oncogene in a wide range of human cancers. The oncogenic activity of SCCRO requires its potentiating neddylation domain, which regulates its E3 activity for neddylation. The contribution of the N-terminal ubiquitin-associated (UBA) domain to SCCRO function remains to be defined. We found that the UBA domain of SCCRO preferentially binds to polyubiquitin chains in a linkage-independent manner. Binding of polyubiquitin chains to the UBA domain inhibits the neddylation activity of SCCRO in vivo by inhibiting SCCRO-promoted nuclear translocation of neddylation components and results in a corresponding decrease in cullin-RING-ligase-promoted ubiquitination. The results of colony formation and xenograft assays showed a mutation in the UBA domain of SCCRO that reduces binding to polyubiquitin chains, significantly enhancing its oncogenic activity. Analysis of 47 lung and head and neck squamous cell carcinomas identified a case with a frameshift mutation in SCCRO that putatively codes for a protein that lacks a UBA domain. Analysis of data from The Cancer Genome Atlas showed that recurrent mutations cluster in the UBA domains of SCCRO, lose the ability to bind to polyubiquitinated proteins, and have increased neddylation and transformation activities. Combined, these data suggest that the UBA domain functions as a negative regulator of SCCRO function. Mutations in the UBA domain lead to loss of inhibitory control, which results in increased biochemical and oncogenic activity. The clustering of mutations in the UBA domain of SCCRO suggests that mutations may be a mechanism of oncogene activation in human cancers. PMID:25411243

  2. Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain

    PubMed Central

    Jers, Carsten; Kobir, Ahasanul; Søndergaard, Elsebeth Oline; Jensen, Peter Ruhdal; Mijakovic, Ivan

    2011-01-01

    Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity. The phosphorylation state of the response regulator DegU also does not confer a straightforward “on/off” response; it is fine-tuned and at different levels triggers different sub-regulons. Here we describe serine phosphorylation of the DegS sensing domain, which stimulates its kinase activity. We demonstrate that DegS phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp) and non-phosphorylatable (Ser76Ala) mutants of DegS. In a number of physiological assays focused on different processes regulated by DegU, DegS S76D phosphomimetic mutant behaved like a strain with intermediate levels of DegU phosphorylation, whereas DegS S76A behaved like a strain with lower levels of DegU phophorylation. These findings suggest a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system. PMID:21304896

  3. SUMOylation of the C-terminal domain of DNA topoisomerase IIα regulates the centromeric localization of Claspin

    PubMed Central

    Ryu, Hyunju; Yoshida, Makoto M; Sridharan, Vinidhra; Kumagai, Akiko; Dunphy, William G; Dasso, Mary; Azuma, Yoshiaki

    2015-01-01

    DNA topoisomerase II (TopoII) regulates DNA topology by its strand passaging reaction, which is required for genome maintenance by resolving tangled genomic DNA. In addition, TopoII contributes to the structural integrity of mitotic chromosomes and to the activation of cell cycle checkpoints in mitosis. Post-translational modification of TopoII is one of the key mechanisms by which its broad functions are regulated during mitosis. SUMOylation of TopoII is conserved in eukaryotes and plays a critical role in chromosome segregation. Using Xenopus laevis egg extract, we demonstrated previously that TopoIIα is modified by SUMO on mitotic chromosomes and that its activity is modulated via SUMOylation of its lysine at 660. However, both biochemical and genetic analyses indicated that TopoII has multiple SUMOylation sites in addition to Lys660, and the functions of the other SUMOylation sites were not clearly determined. In this study, we identified the SUMOylation sites on the C-terminal domain (CTD) of TopoIIα. CTD SUMOylation did not affect TopoIIα activity, indicating that its function is distinct from that of Lys660 SUMOylation. We found that CTD SUMOylation promotes protein binding and that Claspin, a well-established cell cycle checkpoint mediator, is one of the SUMOylation-dependent binding proteins. Claspin harbors 2 SUMO-interacting motifs (SIMs), and its robust association to mitotic chromosomes requires both the SIMs and TopoIIα-CTD SUMOylation. Claspin localizes to the mitotic centromeres depending on mitotic SUMOylation, suggesting that TopoIIα-CTD SUMOylation regulates the centromeric localization of Claspin. Our findings provide a novel mechanistic insight regarding how TopoIIα-CTD SUMOylation contributes to mitotic centromere activity. PMID:26131587

  4. Regulation and function of the two-pore-domain (K2P) potassium channel Trek-1 in alveolar epithelial cells.

    PubMed

    Schwingshackl, Andreas; Teng, Bin; Ghosh, Manik; West, Alina Nico; Makena, Patrudu; Gorantla, Vijay; Sinclair, Scott E; Waters, Christopher M

    2012-01-01

    Hyperoxia can lead to a myriad of deleterious effects in the lung including epithelial damage and diffuse inflammation. The specific mechanisms by which hyperoxia promotes these pathological changes are not completely understood. Activation of ion channels has been proposed as one of the mechanisms required for cell activation and mediator secretion. The two-pore-domain K(+) channel (K2P) Trek-1 has recently been described in lung epithelial cells, but its function remains elusive. In this study we hypothesized that hyperoxia affects expression of Trek-1 in alveolar epithelial cells and that Trek-1 is involved in regulation of cell proliferation and cytokine secretion. We found gene expression of several K2P channels in mouse alveolar epithelial cells (MLE-12), and expression of Trek-1 was significantly downregulated in cultured cells and lungs of mice exposed to hyperoxia. Similarly, proliferation cell nuclear antigen (PCNA) and Cyclin D1 expression were downregulated by exposure to hyperoxia. We developed an MLE-12 cell line deficient in Trek-1 expression using shRNA and found that Trek-1 deficiency resulted in increased cell proliferation and upregulation of PCNA but not Cyclin D1. Furthermore, IL-6 and regulated on activation normal T-expressed and presumably secreted (RANTES) secretion was decreased in Trek-1-deficient cells, whereas release of monocyte chemoattractant protein-1 was increased. Release of KC/IL-8 was not affected by Trek-1 deficiency. Overall, deficiency of Trek-1 had a more pronounced effect on mediator secretion than exposure to hyperoxia. This is the first report suggesting that the K(+) channel Trek-1 could be involved in regulation of alveolar epithelial cell proliferation and cytokine secretion, but a direct association with hyperoxia-induced changes in Trek-1 levels remains elusive. PMID:21949155

  5. The MprB Extracytoplasmic Domain Negatively Regulates Activation of the Mycobacterium tuberculosis MprAB Two-Component System

    PubMed Central

    Bretl, Daniel J.; Bigley, Tarin M.; Terhune, Scott S.

    2014-01-01

    Mycobacterium tuberculosis is an acid-fast pathogen of humans and the etiological agent of tuberculosis (TB). It is estimated that one-third of the world's population is latently (persistently) infected with M. tuberculosis. M. tuberculosis persistence is regulated, in part, by the MprAB two-component signal transduction system, which is activated by and mediates resistance to cell envelope stress. Here we identify MprAB as part of an evolutionarily conserved cell envelope stress response network and demonstrate that MprAB-mediated signal transduction is negatively regulated by the MprB extracytoplasmic domain (ECD). In particular, we report that deregulated production of the MprB sensor kinase, or of derivatives of this protein, negatively impacts M. tuberculosis growth. The observed growth attenuation is dependent on MprAB-mediated signal transduction and is exacerbated in strains of M. tuberculosis producing an MprB variant lacking its ECD. Interestingly, full-length MprB, and the ECD of MprB specifically, immunoprecipitates the Hsp70 chaperone DnaK in vivo, while overexpression of dnaK inhibits MprAB-mediated signal transduction in M. tuberculosis grown in the absence or presence of cell envelope stress. We propose that under nonstress conditions, or under conditions in which proteins present in the extracytoplasmic space are properly folded, signaling through the MprAB system is inhibited by the MprB ECD. Following exposure to cell envelope stress, proteins present in the extracytoplasmic space become unfolded or misfolded, leading to removal of the ECD-mediated negative regulation of MprB and subsequent activation of MprAB. PMID:24187094

  6. Human cell receptor CD46 is down regulated through recognition of a membrane-proximal region of the cytoplasmic domain in persistent measles virus infection.

    PubMed Central

    Hirano, A; Yant, S; Iwata, K; Korte-Sarfaty, J; Seya, T; Nagasawa, S; Wong, T C

    1996-01-01

    Monkey cells persistently infected by measles virus (MV) Biken strain (Biken-CV-1 cells) showed no cytopathic effects and lacked surface expression of a homolog of human cell receptor, membrane cofactor protein CD46. Transfection of a human CD46 gene into these cells induced extensive cell fusion, indicating that down regulation of the endogenous CD46 homolog was essential for the maintenance of a noncytopathic mode of infection. Surface expression of the exogenously introduced human CD46 was also drastically down regulated in the persistently infected cells compared with uninfected cells. The down regulation was specific for CD46 and did not affect surface expression of exogenously introduced CD4. Exogenous human CD46 was synthesized efficiently in the persistently infected cells, but it did not accumulate on the cell surface. Fusion of Biken-CV-1 cells required the extracellular hemagglutinin (H-protein)-binding domain but not the cytoplasmic domain. Replacing the transmembrane and cytoplasmic domains of CD46 with a glycosylphosphatidylinositol anchor did not prevent cell fusion but completely alleviated down regulation of the glycosylphosphatidylinositol-anchored CD46 in Biken-CV-1 cells. Deletion analyses revealed that the membrane-distal sequences of the CD46 cytoplasmic domain were not only unnecessary but also inhibitory for CD46 down regulation. By contrast, the six amino acid residues proximal to the membrane contained a sequence required for CD46 down regulation in the persistently infected cells. These results indicate that CD46 is down regulated in the persistently infected cells by a mechanism that recognizes a membrane-proximal sequence in the CD46 cytoplasmic domain. PMID:8794336

  7. Structure of the second RRM domain of Nrd1, a fission yeast MAPK target RNA binding protein, and implication for its RNA recognition and regulation

    SciTech Connect

    Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke; Fujiwara, Toshinobu; Ito, Yutaka; Sugiura, Reiko; Mishima, Masaki

    2013-07-19

    Highlights: •Solution structure of the second RRM of Nrd1 was determined. •RNA binding site of the second RRM was estimated. •Regulatory mechanism of RNA binding by phosphorylation is discussed. -- Abstract: Negative regulator of differentiation 1 (Nrd1) is known as a negative regulator of sexual differentiation in fission yeast. Recently, it has been revealed that Nrd1 also regulates cytokinesis, in which physical separation of the cell is achieved by a contractile ring comprising many proteins including actin and myosin. Cdc4, a myosin II light chain, is known to be required for cytokinesis. Nrd1 binds and stabilizes Cdc4 mRNA, and thereby suppressing the cytokinesis defects of the cdc4 mutants. Interestingly, Pmk1 MAPK phosphorylates Nrd1, resulting in markedly reduced RNA binding activity. Furthermore, Nrd1 localizes to stress granules in response to various stresses, and Pmk1 phosphorylation enhances the localization. Nrd1 consists of four RRM domains, although the mechanism by which Pmk1 regulates the RNA binding activity of Nrd1 is unknown. In an effort to delineate the relationship between Nrd1 structure and function, we prepared each RNA binding domain of Nrd1 and examined RNA binding to chemically synthesized oligo RNA using NMR. The structure of the second RRM domain of Nrd1 was determined and the RNA binding site on the second RRM domain was mapped by NMR. A plausible mechanism pertaining to the regulation of RNA binding activity by phosphorylation is also discussed.

  8. NMR Study Reveals the Receiver Domain of Arabidopsis ETHYLENE RESPONSE1 Ethylene Receptor as an Atypical Type Response Regulator.

    PubMed

    Hung, Yi-Lin; Jiang, Ingjye; Lee, Yi-Zong; Wen, Chi-Kuang; Sue, Shih-Che

    2016-01-01

    The gaseous plant hormone ethylene, recognized by plant ethylene receptors, plays a pivotal role in various aspects of plant growth and development. ETHYLENE RESPONSE1 (ETR1) is an ethylene receptor isolated from Arabidopsis and has a structure characteristic of prokaryotic two-component histidine kinase (HK) and receiver domain (RD), where the RD structurally resembles bacteria response regulators (RRs). The ETR1 HK domain has autophosphorylation activity, and little is known if the HK can transfer the phosphoryl group to the RD for receptor signaling. Unveiling the correlation of the receptor structure and phosphorylation status would advance the studies towards the underlying mechanisms of ETR1 receptor signaling. In this study, using the nuclear magnetic resonance technique, our data suggested that the ETR1-RD is monomeric in solution and the rigid structure of the RD prevents the conserved aspartate residue phosphorylation. Comparing the backbone dynamics with other RRs, we propose that backbone flexibility is critical to the RR phosphorylation. Besides the limited flexibility, ETR1-RD has a unique γ loop conformation of opposite orientation, which makes ETR1-RD unfavorable for phosphorylation. These two features explain why ETR1-RD cannot be phosphorylated and is classified as an atypical type RR. As a control, phosphorylation of the ETR1-RD was also impaired when the sequence was swapped to the fragment of the bacterial typical type RR, CheY. Here, we suggest a molecule insight that the ETR1-RD already exists as an active formation and executes its function through binding with the downstream factors without phosphorylation. PMID:27486797

  9. Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains.

    PubMed

    Nicholas, Matthew P; Berger, Florian; Rao, Lu; Brenner, Sibylle; Cho, Carol; Gennerich, Arne

    2015-05-19

    Cytoplasmic dynein is a homodimeric microtubule (MT) motor protein responsible for most MT minus-end-directed motility. Dynein contains four AAA+ ATPases (AAA: ATPase associated with various cellular activities) per motor domain (AAA1-4). The main site of ATP hydrolysis, AAA1, is the only site considered by most dynein motility models. However, it remains unclear how ATPase activity and MT binding are coordinated within and between dynein's motor domains. Using optical tweezers, we characterize the MT-binding strength of recombinant dynein monomers as a function of mechanical tension and nucleotide state. Dynein responds anisotropically to tension, binding tighter to MTs when pulled toward the MT plus end. We provide evidence that this behavior results from an asymmetrical bond that acts as a slip bond under forward tension and a slip-ideal bond under backward tension. ATP weakens MT binding and reduces bond strength anisotropy, and unexpectedly, so does ADP. Using nucleotide binding and hydrolysis mutants, we show that, although ATP exerts its effects via binding AAA1, ADP effects are mediated by AAA3. Finally, we demonstrate "gating" of AAA1 function by AAA3. When tension is absent or applied via dynein's C terminus, ATP binding to AAA1 induces MT release only if AAA3 is in the posthydrolysis state. However, when tension is applied to the linker, ATP binding to AAA3 is sufficient to "open" the gate. These results elucidate the mechanisms of dynein-MT interactions, identify regulatory roles for AAA3, and help define the interplay between mechanical tension and nucleotide state in regulating dynein motility. PMID:25941405

  10. NMR Study Reveals the Receiver Domain of Arabidopsis ETHYLENE RESPONSE1 Ethylene Receptor as an Atypical Type Response Regulator

    PubMed Central

    Lee, Yi-Zong; Wen, Chi-Kuang; Sue, Shih-Che

    2016-01-01

    The gaseous plant hormone ethylene, recognized by plant ethylene receptors, plays a pivotal role in various aspects of plant growth and development. ETHYLENE RESPONSE1 (ETR1) is an ethylene receptor isolated from Arabidopsis and has a structure characteristic of prokaryotic two-component histidine kinase (HK) and receiver domain (RD), where the RD structurally resembles bacteria response regulators (RRs). The ETR1 HK domain has autophosphorylation activity, and little is known if the HK can transfer the phosphoryl group to the RD for receptor signaling. Unveiling the correlation of the receptor structure and phosphorylation status would advance the studies towards the underlying mechanisms of ETR1 receptor signaling. In this study, using the nuclear magnetic resonance technique, our data suggested that the ETR1-RD is monomeric in solution and the rigid structure of the RD prevents the conserved aspartate residue phosphorylation. Comparing the backbone dynamics with other RRs, we propose that backbone flexibility is critical to the RR phosphorylation. Besides the limited flexibility, ETR1-RD has a unique γ loop conformation of opposite orientation, which makes ETR1-RD unfavorable for phosphorylation. These two features explain why ETR1-RD cannot be phosphorylated and is classified as an atypical type RR. As a control, phosphorylation of the ETR1-RD was also impaired when the sequence was swapped to the fragment of the bacterial typical type RR, CheY. Here, we suggest a molecule insight that the ETR1-RD already exists as an active formation and executes its function through binding with the downstream factors without phosphorylation. PMID:27486797